1
|
Salarian M, Liu S, Tsai HM, Leslie SN, Hayes T, Lo ST, Szardenings AK, Zhang W, Chen G, Sandiego C, Wells L, Nair DG, Kolb HC, Xia CA. Evaluation of [ 18F]JNJ-CSF1R-1 as a Positron Emission Tomography Ligand Targeting Colony-Stimulating Factor 1 Receptor. Mol Imaging Biol 2025; 27:163-172. [PMID: 40009327 DOI: 10.1007/s11307-025-01991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE Colony-stimulating factor 1 receptor (CSF1R) signaling plays a pivotal role in neuroinflammation, driving microglia proliferation and activation. CSF1R is considered a hallmark of inflammation in many neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Our study aims to evaluate the potential value of 5-cyano-N-(4-(4-(2-([18F]fluoro)ethyl)piperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide ([18F]JNJ-CSF1R-1) as a positron emission tomography (PET) ligand targeting CSF1R in preclinical models of neuroinflammation. PROCEDURES A cell-based MSD assay was used to measure the IC50 of 5-cyano-N-(4-(4-(2-(fluoro)ethyl)piperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide (JNJ-CSF1R-1). JNJ-CSF1R-1 was radiolabeled with fluorine-18. PET imaging was used to evaluate brain uptake, and target engagement of [18F]JNJ-CSF1R-1 in two neuroinflammation mouse models, including systemic lipopolysaccharide (LPS) and AppSAA knock in (KI). CSF1R protein levels in brain tissue were determined by western blot and ELISA assays. [18F]JNJ-CSF1R-1 brain uptake was also measured in a non-human primate (NHP) PET study. RESULTS JNJ-CSF1R-1 is a 12 nM (IC50) inhibitor of CSF1R. [18F]JNJ-CSF1R-1 demonstrated significantly higher brain uptake in both LPS and AD mouse models as measured by the area under the time activity curves (AUC) compared to control animals. In the AppSAA KI model, CSF1R levels increased near amyloid plaques as detected by IHC. [18F]JNJ-CSF1R-1 PET imaging signal showed a good correlation with CSF1R expression levels measured by western blot and ELISA. In an NHP study, [18F]JNJ-CSF1R-1 readily entered the brain and demonstrated reversible kinetics. CONCLUSION [18F]JNJ-CSF1R-1 is a potent and promising CSF1R PET tracer with translational potential for measuring microglia-based neuroinflammatory processes and for tracking the impact of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Mani Salarian
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Shuanglong Liu
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Hsiu-Ming Tsai
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Shannon N Leslie
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Thomas Hayes
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Su-Tang Lo
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
- RayzeBio a Bristol Myers Squibb's Company, San Diego, CA, USA
| | | | - Wei Zhang
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
- RemeGen Biosciences, Inc, San Francisco, CA, USA
| | - Gang Chen
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
- US Rad Bio LLC, San Diego, CA, USA
| | | | | | - Dileep G Nair
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
- Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Institute of Molecular Pathobiochemistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen, Germany
| | - Hartmuth C Kolb
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
- Enigma Biomedical Group, Knoxville, TN, USA
| | - Chunfang A Xia
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA.
| |
Collapse
|
2
|
Abellanas MA, Purnapatre M, Burgaletto C, Schwartz M. Monocyte-derived macrophages act as reinforcements when microglia fall short in Alzheimer's disease. Nat Neurosci 2025; 28:436-445. [PMID: 39762659 DOI: 10.1038/s41593-024-01847-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/06/2024] [Indexed: 03/12/2025]
Abstract
The central nervous system (CNS) is endowed with its own resident innate immune cells, the microglia. They constitute approximately 10% of the total cells within the CNS parenchyma and act as 'sentinels', sensing and mitigating any deviation from homeostasis. Nevertheless, under severe acute or chronic neurological injury or disease, microglia are unable to contain the damage, and the reparative activity of monocyte-derived macrophages (MDMs) is required. The failure of the microglia under such conditions could be an outcome of their prolonged exposure to hostile stimuli, leading to their exhaustion or senescence. Here, we describe the conditions under which the microglia fall short, focusing mainly on the context of Alzheimer's disease, and shed light on the functions performed by MDMs. We discuss whether and how MDMs engage in cross-talk with the microglia, why their recruitment is often inadequate, and potential ways to augment their homing to the brain in a well-controlled manner.
Collapse
Affiliation(s)
- Miguel A Abellanas
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Chiara Burgaletto
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Schwartz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Futácsi A, Rusznák K, Szarka G, Völgyi B, Wiborg O, Czéh B. Quantification and correlation of amyloid-β plaque load, glial activation, GABAergic interneuron numbers, and cognitive decline in the young TgF344-AD rat model of Alzheimer's disease. Front Aging Neurosci 2025; 17:1542229. [PMID: 40013092 PMCID: PMC11860898 DOI: 10.3389/fnagi.2025.1542229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/28/2025] [Indexed: 02/28/2025] Open
Abstract
Background Animal models of Alzheimer's disease (AD) are essential tools for investigating disease pathophysiology and conducting preclinical drug testing. In this study, we examined neuronal and glial alterations in the hippocampus and medial prefrontal cortex (mPFC) of young TgF344-AD rats and correlated these changes with cognitive decline and amyloid-β plaque load. Methods We compared TgF344-AD and non-transgenic littermate rats aged 7-8 months of age. We systematically quantified β-amyloid plaques, astrocytes, microglia, four different subtypes of GABAergic interneurons (calretinin-, cholecystokinin-, parvalbumin-, and somatostatin-positive neurons), and newly generated neurons in the hippocampus. Spatial learning and memory were assessed using the Barnes maze test. Results Young TgF344-AD rats had a large number of amyloid plaques in both the hippocampus and mPFC, together with a pronounced increase in microglial cell numbers. Astrocytic activation was significant in the mPFC. Cholecystokinin-positive cell numbers were decreased in the hippocampus of transgenic rats, but calretinin-, parvalbumin-, and somatostatin-positive cell numbers were not altered. Adult neurogenesis was not affected by genotype. TgF344-AD rats had spatial learning and memory impairments, but this cognitive deficit did not correlate with amyloid plaque number or cellular changes in the brain. In the hippocampus, amyloid plaque numbers were negatively correlated with cholecystokinin-positive neuron and microglial cell numbers. In the mPFC, amyloid plaque number was negatively correlated with the number of astrocytes. Conclusion Pronounced neuropathological changes were found in the hippocampus and mPFC of young TgF344-AD rats, including the loss of hippocampal cholecystokinin-positive interneurons. Some of these neuropathological changes were negatively correlated with amyloid-β plaque load, but not with cognitive impairment.
Collapse
Affiliation(s)
- Anett Futácsi
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Imaging Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Kitti Rusznák
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Gergely Szarka
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Imaging Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Neurobiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Béla Völgyi
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Neurobiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Ove Wiborg
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Boldizsár Czéh
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Imaging Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
4
|
Zheng F, Dong T, Chen Y, Wang L, Peng G. Border-associated macrophages: From physiology to therapeutic targets in Alzheimer's disease. Exp Neurol 2025; 383:115021. [PMID: 39461707 DOI: 10.1016/j.expneurol.2024.115021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Border-associated macrophages (BAMs) constitute a highly heterogeneous group of central nervous system-resident macrophages at the brain boundaries. Despite their significance, BAMs have mainly been overlooked compared to microglia, resulting in a limited understanding of their functions. However, recent advancements in single-cell immunophenotyping and transcriptomic analyses of BAMs have revealed a previously unrecognized complexity in these cells, in addition to their critical roles under non-pathological conditions and diseases like Alzheimer's disease (AD), Parkinson's disease, glioma, and ischemic stroke. In this review, we discuss the origins, self-renewal capabilities, and extensive heterogeneity of BAMs, and clarify their important physiological functions such as immune monitoring, waste removal and vascular permeability regulation. We also summarize experimental evidence linking BAMs to the progression of AD. Finally, we review therapeutic strategies targeting brain innate immune cells mainly focusing on strategies aimed at modulating BAMs to treat AD and evaluate their potential in clinical applications.
Collapse
Affiliation(s)
- Fangxue Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Taiwei Dong
- Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Yi Chen
- Department of Neurology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lang Wang
- Department of Neurology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Guoping Peng
- Department of Neurology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Serradas ML, Ding Y, Martorell PV, Kulińska I, Castro-Gomez S. Therapeutic Targets in Innate Immunity to Tackle Alzheimer's Disease. Cells 2024; 13:1426. [PMID: 39272998 PMCID: PMC11394242 DOI: 10.3390/cells13171426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
There is an urgent need for effective disease-modifying therapeutic interventions for Alzheimer's disease (AD)-the most prevalent cause of dementia with a profound socioeconomic burden. Most clinical trials targeting the classical hallmarks of this disease-β-amyloid plaques and neurofibrillary tangles-failed, showed discrete clinical effects, or were accompanied by concerning side effects. There has been an ongoing search for novel therapeutic targets. Neuroinflammation, now widely recognized as a hallmark of all neurodegenerative diseases, has been proven to be a major contributor to AD pathology. Here, we summarize the role of neuroinflammation in the pathogenesis and progression of AD and discuss potential targets such as microglia, TREM2, the complement system, inflammasomes, and cytosolic DNA sensors. We also present an overview of ongoing studies targeting specific innate immune system components, highlighting the progress in this field of drug research while bringing attention to the delicate nature of innate immune modulations in AD.
Collapse
Affiliation(s)
- Maria L. Serradas
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Yingying Ding
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Paula V. Martorell
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Ida Kulińska
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Sergio Castro-Gomez
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
- Center for Neurology, Department of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
6
|
García-Culebras A, Cuartero MI, Peña-Martínez C, Moraga A, Vázquez-Reyes S, de Castro-Millán FJ, Cortes-Canteli M, Lizasoain I, Moro MÁ. Myeloid cells in vascular dementia and Alzheimer's disease: Possible therapeutic targets? Br J Pharmacol 2024; 181:777-798. [PMID: 37282844 DOI: 10.1111/bph.16159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/10/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023] Open
Abstract
Growing evidence supports the suggestion that the peripheral immune system plays a role in different pathologies associated with cognitive impairment, such as vascular dementia (VD) or Alzheimer's disease (AD). The aim of this review is to summarize, within the peripheral immune system, the implications of different types of myeloid cells in AD and VD, with a special focus on post-stroke cognitive impairment and dementia (PSCID). We will review the contributions of the myeloid lineage, from peripheral cells (neutrophils, platelets, monocytes and monocyte-derived macrophages) to central nervous system (CNS)-associated cells (perivascular macrophages and microglia). Finally, we will evaluate different potential strategies for pharmacological modulation of pathological processes mediated by myeloid cell subsets, with an emphasis on neutrophils, their interaction with platelets and the process of immunothrombosis that triggers neutrophil-dependent capillary stall and hypoperfusion, as possible effector mechanisms that may pave the way to novel therapeutic avenues to stop dementia, the epidemic of our time. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Alicia García-Culebras
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, UCM, Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - María Isabel Cuartero
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Carolina Peña-Martínez
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Ana Moraga
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, UCM, Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Sandra Vázquez-Reyes
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Francisco Javier de Castro-Millán
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Marta Cortes-Canteli
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María Ángeles Moro
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
7
|
Kim AB, Xiao Q, Yan P, Pan Q, Pandey G, Grathwohl S, Gonzales E, Xu I, Cho Y, Haecker H, Epelman S, Diwan A, Lee JM, DeSelm CJ. Chimeric antigen receptor macrophages target and resorb amyloid plaques. JCI Insight 2024; 9:e175015. [PMID: 38516884 PMCID: PMC11063938 DOI: 10.1172/jci.insight.175015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Substantial evidence suggests a role for immunotherapy in treating Alzheimer's disease (AD). While the precise pathophysiology of AD is incompletely understood, clinical trials of antibodies targeting aggregated forms of β amyloid (Aβ) have shown that reducing amyloid plaques can mitigate cognitive decline in patients with early-stage AD. Here, we describe what we believe to be a novel approach to target and degrade amyloid plaques by genetically engineering macrophages to express an Aβ-targeting chimeric antigen receptor (CAR-Ms). When injected intrahippocampally, first-generation CAR-Ms have limited persistence and fail to significantly reduce plaque load, which led us to engineer next-generation CAR-Ms that secrete M-CSF and self-maintain without exogenous cytokines. Cytokine secreting "reinforced CAR-Ms" have greater survival in the brain niche and significantly reduce plaque load locally in vivo. These findings support CAR-Ms as a platform to rationally target, resorb, and degrade pathogenic material that accumulates with age, as exemplified by targeting Aβ in AD.
Collapse
Affiliation(s)
- Alexander B. Kim
- Department of Radiation Oncology
- Bursky Center for Human Immunology and Immunotherapy
| | - Qingli Xiao
- Department of Neurology, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ping Yan
- Department of Neurology, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qiuyun Pan
- Department of Radiation Oncology
- Bursky Center for Human Immunology and Immunotherapy
| | - Gaurav Pandey
- Department of Radiation Oncology
- Bursky Center for Human Immunology and Immunotherapy
| | - Susie Grathwohl
- Department of Neurology, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ernesto Gonzales
- Department of Neurology, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Isabella Xu
- Department of Neurology, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yoonho Cho
- Department of Neurology, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hans Haecker
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Slava Epelman
- Department of Medicine, Division of Cardiology, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Abhinav Diwan
- Department of Neurology, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
- Departments of Medicine, Cell Biology and Physiology, Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
- Medicine Service, St. Louis VA Medical Center, St. Louis, Missouri, USA
| | - Jin-Moo Lee
- Department of Neurology, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carl J. DeSelm
- Department of Radiation Oncology
- Bursky Center for Human Immunology and Immunotherapy
| |
Collapse
|
8
|
Altomonte S, Pike VW. Candidate Tracers for Imaging Colony-Stimulating Factor 1 Receptor in Neuroinflammation with Positron Emission Tomography: Issues and Progress. ACS Pharmacol Transl Sci 2023; 6:1632-1650. [PMID: 37974622 PMCID: PMC10644394 DOI: 10.1021/acsptsci.3c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 11/19/2023]
Abstract
The tyrosine kinase, colony-stimulating factor 1 receptor (CSF1R), has attracted attention as a potential biomarker of neuroinflammation for imaging studies with positron emission tomography (PET), especially because of its location on microglia and its role in microglia proliferation. The development of an effective radiotracer for specifically imaging and quantifying brain CSF1R is highly challenging. Here we review the progress that has been made on PET tracer development and discuss issues that have arisen and which remain to be addressed and resolved.
Collapse
Affiliation(s)
- Stefano Altomonte
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes
of Health, Building 10,
B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes
of Health, Building 10,
B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| |
Collapse
|
9
|
Quick JD, Silva C, Wong JH, Lim KL, Reynolds R, Barron AM, Zeng J, Lo CH. Lysosomal acidification dysfunction in microglia: an emerging pathogenic mechanism of neuroinflammation and neurodegeneration. J Neuroinflammation 2023; 20:185. [PMID: 37543564 PMCID: PMC10403868 DOI: 10.1186/s12974-023-02866-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023] Open
Abstract
Microglia are the resident innate immune cells in the brain with a major role in orchestrating immune responses. They also provide a frontline of host defense in the central nervous system (CNS) through their active phagocytic capability. Being a professional phagocyte, microglia participate in phagocytic and autophagic clearance of cellular waste and debris as well as toxic protein aggregates, which relies on optimal lysosomal acidification and function. Defective microglial lysosomal acidification leads to impaired phagocytic and autophagic functions which result in the perpetuation of neuroinflammation and progression of neurodegeneration. Reacidification of impaired lysosomes in microglia has been shown to reverse neurodegenerative pathology in Alzheimer's disease. In this review, we summarize key factors and mechanisms contributing to lysosomal acidification impairment and the associated phagocytic and autophagic dysfunction in microglia, and how these defects contribute to neuroinflammation and neurodegeneration. We further discuss techniques to monitor lysosomal pH and therapeutic agents that can reacidify impaired lysosomes in microglia under disease conditions. Finally, we propose future directions to investigate the role of microglial lysosomal acidification in lysosome-mitochondria crosstalk and in neuron-glia interaction for more comprehensive understanding of its broader CNS physiological and pathological implications.
Collapse
Affiliation(s)
- Joseph D Quick
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Cristian Silva
- Faculty of Graduate Studies, University of Kelaniya, Kelaniya, Sri Lanka
| | - Jia Hui Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Richard Reynolds
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Anna M Barron
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jialiu Zeng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| | - Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
10
|
Pan Q, Yan P, Kim AB, Xiao Q, Pandey G, Haecker H, Epelman S, Diwan A, Lee JM, DeSelm CJ. Chimeric Antigen Receptor Macrophages Target and Resorb Amyloid Plaques in a Mouse Model of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538637. [PMID: 37162824 PMCID: PMC10168376 DOI: 10.1101/2023.04.28.538637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Substantial evidence suggests a role for immunotherapy in treating Alzheimer's disease (AD). Several monoclonal antibodies targeting aggregated forms of beta amyloid (Aβ), have been shown to reduce amyloid plaques and in some cases, mitigate cognitive decline in early-stage AD patients. We sought to determine if genetically engineered macrophages could improve the targeting and degradation of amyloid plaques. Chimeric antigen receptor macrophages (CAR-Ms), which show promise as a cancer treatment, are an appealing strategy to enhance target recognition and phagocytosis of amyloid plaques in AD. We genetically engineered macrophages to express a CAR containing the anti-amyloid antibody aducanumab as the external domain and the Fc receptor signaling domain internally. CAR-Ms recognize and degrade Aβ in vitro and on APP/PS1 brain slices ex vivo; however, when injected intrahippocampally, these first-generation CAR-Ms have limited persistence and fail to reduce plaque load. We overcame this limitation by creating CAR-Ms that secrete M-CSF and self-maintain without exogenous cytokines. These CAR-Ms have greater survival in the brain niche, and significantly reduce plaque load locally in vivo. These proof-of-principle studies demonstrate that CAR-Ms, previously only applied to cancer, may be utilized to target and degrade unwanted materials, such as amyloid plaques in the brains of AD mice.
Collapse
Affiliation(s)
- Qiuyun Pan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ping Yan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexander B. Kim
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Bursky Center for Human Immunology and Immunotherapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Qingli Xiao
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Gaurav Pandey
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Bursky Center for Human Immunology and Immunotherapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Hans Haecker
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Slava Epelman
- Department of Medicine, Division of Cardiology, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Abhinav Diwan
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Medicine Service, Saint Louis VA Medical Center, St. Louis, MO, USA
- Departments of Medicine, Cell Biology and Physiology, Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Carl J. DeSelm
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Bursky Center for Human Immunology and Immunotherapy, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Mizobuchi H. Oral route lipopolysaccharide as a potential dementia preventive agent inducing neuroprotective microglia. Front Immunol 2023; 14:1110583. [PMID: 36969154 PMCID: PMC10033586 DOI: 10.3389/fimmu.2023.1110583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
In today's aging society, dementia is an urgent problem to be solved because no treatment or preventive methods have been established. This review focuses on oral administration of lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria, as a novel preventive drug for dementia. LPS is also called endotoxin and is well known to induce inflammation when administered systemically. On the other hand, although we humans routinely ingest LPS derived from symbiotic bacteria of edible plants, the effect of oral administration of LPS has hardly been studied. Recently, oral administration of LPS was reported to prevent dementia by inducing neuroprotective microglia. Furthermore, it has been suggested that colony stimulating factor 1 (CSF1) is involved in the dementia prevention mechanism by oral administration of LPS. Thus, in this review, we summarized the previous studies of oral administration of LPS and discussed the predicted dementia prevention mechanism. In addition, we showed the potential of oral LPS administration as a preventive drug for dementia by highlighting research gaps and future issues for clinical application development.
Collapse
|
12
|
Yin H, Ju Z, Zheng M, Zhang X, Zuo W, Wang Y, Ding X, Zhang X, Peng Y, Li J, Yang A, Zhang R. Loss of the m6A methyltransferase METTL3 in monocyte-derived macrophages ameliorates Alzheimer's disease pathology in mice. PLoS Biol 2023; 21:e3002017. [PMID: 36881554 PMCID: PMC9990945 DOI: 10.1371/journal.pbio.3002017] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
Alzheimer's disease (AD) is a heterogeneous disease with complex clinicopathological characteristics. To date, the role of m6A RNA methylation in monocyte-derived macrophages involved in the progression of AD is unknown. In our study, we found that methyltransferase-like 3 (METTL3) deficiency in monocyte-derived macrophages improved cognitive function in an amyloid beta (Aβ)-induced AD mouse model. The mechanistic study showed that that METTL3 ablation attenuated the m6A modification in DNA methyltransferase 3A (Dnmt3a) mRNAs and consequently impaired YTH N6-methyladenosine RNA binding protein 1 (YTHDF1)-mediated translation of DNMT3A. We identified that DNMT3A bound to the promoter region of alpha-tubulin acetyltransferase 1 (Atat1) and maintained its expression. METTL3 depletion resulted in the down-regulation of ATAT1, reduced acetylation of α-tubulin and subsequently enhanced migration of monocyte-derived macrophages and Aβ clearance, which led to the alleviated symptoms of AD. Collectively, our findings demonstrate that m6A methylation could be a promising target for the treatment of AD in the future.
Collapse
Affiliation(s)
- Huilong Yin
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- The State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhuan Ju
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Minhua Zheng
- The State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiang Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Wenjie Zuo
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yidi Wang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiaochen Ding
- Department of Experimental Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiaofang Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yingran Peng
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jiadi Li
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Angang Yang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- The State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (AY); (RZ)
| | - Rui Zhang
- The State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (AY); (RZ)
| |
Collapse
|
13
|
Zhou K, Han J, Wang Y, Xu Y, Zhang Y, Zhu C. The therapeutic potential of bone marrow-derived macrophages in neurological diseases. CNS Neurosci Ther 2022; 28:1942-1952. [PMID: 36066198 PMCID: PMC9627381 DOI: 10.1111/cns.13964] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023] Open
Abstract
Circulating monocytes are precursors of both tissue macrophages and dendritic cells, and they can infiltrate the central nervous system (CNS) where they transform into bone marrow-derived macrophages (BMDMs). BMDMs play essential roles in various CNS diseases, thus modulating BMDMs might be a way to treat these disorders because there are currently no efficient therapeutic methods available for most of these neurological diseases. Moreover, BMDMs can serve as promising gene delivery vehicles following bone marrow transplantation for otherwise incurable genetic CNS diseases. Understanding the distinct roles that BMDMs play in CNS diseases and their potential as gene delivery vehicles may provide new insights and opportunities for using BMDMs as therapeutic targets or delivery vehicles. This review attempts to comprehensively summarize the neurological diseases that might be treated by modulating BMDMs or by delivering gene therapies via BMDMs after bone marrow transplantation.
Collapse
Affiliation(s)
- Kai Zhou
- Henan Neurodevelopment Engineering Research Center for ChildrenChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Jinming Han
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yafeng Wang
- Henan Neurodevelopment Engineering Research Center for ChildrenChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
- Department of Hematology and OncologyChildren's Hospital Affiliated to Zhengzhou University, Henan, Children's Hospital, Zhengzhou Children's HospitalZhengzhouChina
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research CenterThe Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina
| | - Yaodong Zhang
- Henan Neurodevelopment Engineering Research Center for ChildrenChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research CenterThe Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina
- Centre for Brain Repair and RehabilitationInstitute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| |
Collapse
|
14
|
Drieu A, Du S, Storck SE, Rustenhoven J, Papadopoulos Z, Dykstra T, Zhong F, Kim K, Blackburn S, Mamuladze T, Harari O, Karch CM, Bateman RJ, Perrin R, Farlow M, Chhatwal J, Hu S, Randolph GJ, Smirnov I, Kipnis J. Parenchymal border macrophages regulate the flow dynamics of the cerebrospinal fluid. Nature 2022; 611:585-593. [PMID: 36352225 PMCID: PMC9899827 DOI: 10.1038/s41586-022-05397-3] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 09/29/2022] [Indexed: 11/11/2022]
Abstract
Macrophages are important players in the maintenance of tissue homeostasis1. Perivascular and leptomeningeal macrophages reside near the central nervous system (CNS) parenchyma2, and their role in CNS physiology has not been sufficiently well studied. Given their continuous interaction with the cerebrospinal fluid (CSF) and strategic positioning, we refer to these cells collectively as parenchymal border macrophages (PBMs). Here we demonstrate that PBMs regulate CSF flow dynamics. We identify a subpopulation of PBMs that express high levels of CD163 and LYVE1 (scavenger receptor proteins), closely associated with the brain arterial tree, and show that LYVE1+ PBMs regulate arterial motion that drives CSF flow. Pharmacological or genetic depletion of PBMs led to accumulation of extracellular matrix proteins, obstructing CSF access to perivascular spaces and impairing CNS perfusion and clearance. Ageing-associated alterations in PBMs and impairment of CSF dynamics were restored after intracisternal injection of macrophage colony-stimulating factor. Single-nucleus RNA sequencing data obtained from patients with Alzheimer's disease (AD) and from non-AD individuals point to changes in phagocytosis, endocytosis and interferon-γ signalling on PBMs, pathways that are corroborated in a mouse model of AD. Collectively, our results identify PBMs as new cellular regulators of CSF flow dynamics, which could be targeted pharmacologically to alleviate brain clearance deficits associated with ageing and AD.
Collapse
Affiliation(s)
- Antoine Drieu
- Center for Brain Immunology and Glia (BIG), Washington University in St Louis, St Louis, MO, USA.
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA.
| | - Siling Du
- Center for Brain Immunology and Glia (BIG), Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Immunology Graduate Program, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Steffen E Storck
- Center for Brain Immunology and Glia (BIG), Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Justin Rustenhoven
- Center for Brain Immunology and Glia (BIG), Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Zachary Papadopoulos
- Center for Brain Immunology and Glia (BIG), Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Immunology Graduate Program, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Taitea Dykstra
- Center for Brain Immunology and Glia (BIG), Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Fenghe Zhong
- Department of Biomedical Engineering, Danforth Campus, Washington University in St Louis, St Louis, MO, USA
| | - Kyungdeok Kim
- Center for Brain Immunology and Glia (BIG), Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Susan Blackburn
- Center for Brain Immunology and Glia (BIG), Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Tornike Mamuladze
- Center for Brain Immunology and Glia (BIG), Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Immunology Graduate Program, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Richard Perrin
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | | | - Jasmeer Chhatwal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Song Hu
- Department of Biomedical Engineering, Danforth Campus, Washington University in St Louis, St Louis, MO, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Igor Smirnov
- Center for Brain Immunology and Glia (BIG), Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Washington University in St Louis, St Louis, MO, USA.
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA.
- Immunology Graduate Program, School of Medicine, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
15
|
Muramyl Dipeptide Administration Delays Alzheimer’s Disease Physiopathology via NOD2 Receptors. Cells 2022; 11:cells11142241. [PMID: 35883683 PMCID: PMC9321587 DOI: 10.3390/cells11142241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia in the world. The prevalence is steadily increasing due to an aging population and the lack of effective treatments. However, modulation of innate immune cells is a new therapeutic avenue, which is quite effective at delaying disease onset and improving cognitive decline. Methods: We studied the effect of the NOD2 receptor ligand muramyl dipeptide (MDP) on the modulation of the innate immune cells, namely patrolling monocytes and microglia. We administrated MDP once a week for 3 months in an APPswe/PS1 mouse model in both sexes. We started the treatment at 3 months before plaque formation and evaluated its effects at 6 months. Results: We showed that the MDP injections delay cognitive decline in both sexes via different mechanisms and protect the blood brain barrier (BBB). In males, MDP triggers the sink effect from the BBB, leading to a diminution in the amyloid load in the brain. This phenomenon is underlined by the increased expression of phagocytosis markers such as TREM2, CD68, and LAMP2 and a higher expression of ABCB1 and LRP1 at the BBB level. The beneficial effect seems more restricted to the brain in females treated with MDP, where microglia surround amyloid plaques and prevent the spreading of amyloid peptides. This phenomenon is also associated with an increase in TREM2 expression. Interestingly, both treated groups showed an increase in Arg-1 expression compared to controls, suggesting that MDP modulates the inflammatory response. Conclusion: These results indicate that stimulation of the NOD2 receptor in innate immune cells is a promising therapeutic avenue with potential different mechanisms between males and females.
Collapse
|
16
|
Uddin MS, Lim LW. Glial cells in Alzheimer's disease: From neuropathological changes to therapeutic implications. Ageing Res Rev 2022; 78:101622. [PMID: 35427810 DOI: 10.1016/j.arr.2022.101622] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that usually develops slowly and progressively worsens over time. Although there has been increasing research interest in AD, its pathogenesis is still not well understood. Although most studies primarily focus on neurons, recent research findings suggest that glial cells (especially microglia and astrocytes) are associated with AD pathogenesis and might provide various possible therapeutic targets. Growing evidence suggests that microglia can provide protection against AD pathogenesis, as microglia with weakened functions and impaired responses to Aβ proteins are linked with elevated AD risk. Interestingly, numerous findings also suggest that microglial activation can be detrimental to neurons. Indeed, microglia can induce synapse loss via the engulfment of synapses, possibly through a complement-dependent process. Furthermore, they can worsen tau pathology and release inflammatory factors that cause neuronal damage directly or through the activation of neurotoxic astrocytes. Astrocytes play a significant role in various cerebral activities. Their impairment can mediate neurodegeneration and ultimately the retraction of synapses, resulting in AD-related cognitive deficits. Deposition of Aβ can result in astrocyte reactivity, which can further lead to neurotoxic effects and elevated secretion of inflammatory mediators and cytokines. Moreover, glial-induced inflammation in AD can exert both beneficial and harmful effects. Understanding the activities of astrocytes and microglia in the regulation of AD pathogenesis would facilitate the development of novel therapies. In this article, we address the implications of microglia and astrocytes in AD pathogenesis. We also discuss the mechanisms of therapeutic agents that exhibit anti-inflammatory effects against AD.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
17
|
Colony-stimulating factor 1 receptor signaling in the central nervous system and the potential of its pharmacological inhibitors to halt the progression of neurological disorders. Inflammopharmacology 2022; 30:821-842. [PMID: 35290551 DOI: 10.1007/s10787-022-00958-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
Abstract
Colony Stimulating Factor-1 (CSF-1)/Colony Stimulating Factor-1 Receptor (CSF-1R) signaling axis plays an essential role in the development, maintenance, and proliferation of macrophage lineage cells. Within the central nervous system, CSF-1R signaling primarily maintains microglial homeostasis. Microglia, being the resident macrophage and first responder to any neurological insults, plays critical importance in overall health of the human brain. Aberrant and sustained activation of microglia along with continued proliferation and release of neurotoxic proinflammatory cytokines have been reported in various neurological and neurodegenerative diseases. Therefore, halting the neuroinflammatory pathway via targeting microglial proliferation, which depends on CSF-1R signaling, has emerged as a potential therapeutic target for neurological disorders. However, apart from regulating the microglial function, recently it has been discovered that CSF-1R has much broader role in central nervous system. These findings limit the therapeutic utility of CSF-1R inhibitors but also highlight the need for a complete understanding of CSF-1R function within the central nervous system. Moreover, it has been found that selective inhibitors of CSF-1R may be more efficient in avoiding non-specific targeting and associated side effects. Short-term depletion of microglial population in diseased conditions have also been found to be beneficial; however, the dose and therapeutic window for optimum effects may need to be standardized further.This review summarizes the present understanding of CSF-1R function within the central nervous system. We discuss the CSF-1R signaling in the context of microglia function, crosstalk between microglia and astroglia, and regulation of neuronal cell function. We also discuss a few of the neurological disorders with a focus on the utility of CSF-1R inhibitors as potential therapeutic strategy for halting the progression of neurological diseases.
Collapse
|
18
|
Lecordier S, Pons V, Rivest S, ElAli A. Multifocal Cerebral Microinfarcts Modulate Early Alzheimer’s Disease Pathology in a Sex-Dependent Manner. Front Immunol 2022; 12:813536. [PMID: 35173711 PMCID: PMC8841345 DOI: 10.3389/fimmu.2021.813536] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) constitutes a major cause of dementia, affecting more women than men. It is characterized by amyloid-β (Aβ) deposition and neurofibrillary tangles (NFTs) formation, associated with a progressive cognitive decline. Evidence indicates that AD onset increases the prevalence of cerebral microinfarcts caused by vascular pathologies, which occur in approximately in half of AD patients. In this project, we postulated that multifocal cerebral microinfarcts decisively influence early AD-like pathology progression in a sex dependent manner in young APP/PS1 mice. For this purpose, we used a novel approach to model multifocal microinfarcts in APP/PS1 mice via the sporadic occlusions of the microvasculature. Our findings indicate that microinfarcts reduced Aβ deposits without affecting soluble Aβ levels in the brain of male and female APP/PS1 mice, while causing rapid and prolonged cognitive deficits in males, and a mild and transient cognitive decline in females. In male APP/PS1 mice, microinfarcts triggered an acute hypoperfusion followed by a chronic hyperperfusion. Whereas in female APP/PS1 mice, microinfarcts caused an acute hypoperfusion, which was recovered in the chronic phase. Microinfarcts triggered a robust microglial activation and recruitment of peripheral monocytes to the lesion sites and Aβ plaques more potently in female APP/PS1 mice, possibly accounting for the reduced Aβ deposition. Finally, expression of Dickkopf-1 (DKK1), which plays a key role in mediating synaptic and neuronal dysfunction in AD, was strongly induced at the lesion sites of male APP/PS1 mice, while its expression was reduced in females. Our findings suggest that multifocal microinfarcts accelerate AD pathology more potently in young males compared to young females independently upon Aβ pathology via modulation of neurovascular coupling, inflammatory response, and DKK1 expression. Our results suggest that the effects of microinfarcts should be taken into consideration in AD diagnosis, prognosis, and therapies.
Collapse
Affiliation(s)
- Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Vincent Pons
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Serge Rivest
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- *Correspondence: Ayman ElAli,
| |
Collapse
|
19
|
Eastman G, Sharlow ER, Lazo JS, Bloom GS, Sotelo-Silveira JR. Transcriptome and Translatome Regulation of Pathogenesis in Alzheimer's Disease Model Mice. J Alzheimers Dis 2022; 86:365-386. [PMID: 35034904 DOI: 10.3233/jad-215357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Defining cellular mechanisms that drive Alzheimer's disease (AD) pathogenesis and progression will be aided by studies defining how gene expression patterns change during pre-symptomatic AD and ensuing periods of declining cognition. Previous studies have emphasized changes in transcriptome, but not translatome regulation, leaving the ultimate results of gene expression alterations relatively unexplored in the context of AD. OBJECTIVE To identify genes whose expression might be regulated at the transcriptome and translatome levels in AD, we analyzed gene expression in cerebral cortex of two AD model mouse strains, CVN (APPSwDI;NOS2 -/- ) and Tg2576 (APPSw), and their companion wild type (WT) strains at 6 months of age by tandem RNA-Seq and Ribo-Seq (ribosome profiling). METHODS Identical starting pools of bulk RNA were used for RNA-Seq and Ribo-Seq. Differential gene expression analysis was performed at the transcriptome, translatome, and translational efficiency levels. Regulated genes were functionally evaluated by gene ontology tools. RESULTS Compared to WT mice, AD model mice had similar levels of transcriptome regulation, but differences in translatome regulation. A microglial signature associated with early stages of Aβ accumulation was upregulated at both levels in CVN mice. Although the two mice strains did not share many regulated genes, they showed common regulated pathways related to AβPP metabolism associated with neurotoxicity and neuroprotection. CONCLUSION This work represents the first genome-wide study of brain translatome regulation in animal models of AD and provides evidence of a tight and early translatome regulation of gene expression controlling the balance between neuroprotective and neurodegenerative processes in brain.
Collapse
Affiliation(s)
- Guillermo Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay.,Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Elizabeth R Sharlow
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - John S Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.,Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - George S Bloom
- Department of Biology, University of Virginia, Charlottesville, VA, USA.,Department of Cell Biology, University of Virginia, Charlottesville, VA, USA.,Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - José R Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay.,Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
20
|
Pons V, Rivest S. Targeting Systemic Innate Immune Cells as a Therapeutic Avenue for Alzheimer Disease. Pharmacol Rev 2022; 74:1-17. [PMID: 34987086 DOI: 10.1124/pharmrev.121.000400] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer disease (AD) is the first progressive neurodegenerative disease worldwide, and the disease is characterized by an accumulation of amyloid in the brain and neurovasculature that triggers cognitive decline and neuroinflammation. The innate immune system has a preponderant role in AD. The last decade, scientists focused their efforts on therapies aiming to modulate innate immunity. The latter is of great interest, since they participate to the inflammation and phagocytose the amyloid in the brain and blood vessels. We and others have developed pharmacological approaches to stimulate these cells using various ligands. These include toll-like receptor 4, macrophage colony stimulating factor, and more recently nucleotide-binding oligomerization domain-containing 2 receptors. This review will discuss the great potential to take advantage of the innate immune system to fight naturally against amyloid β accumulation and prevent its detrimental consequence on brain functions and its vascular system. SIGNIFICANCE STATEMENT: The focus on amyloid β removal from the perivascular space rather than targeting CNS plaque formation and clearance represents a new direction with a great potential. Small molecules able to act at the level of peripheral immunity would constitute a novel approach for tackling aberrant central nervous system biology, one of which we believe would have the potential of generating a lot of interest.
Collapse
Affiliation(s)
- Vincent Pons
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Québec City, QC G1V 4G2, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Québec City, QC G1V 4G2, Canada
| |
Collapse
|
21
|
Cisbani G, Rivest S. Targeting innate immunity to protect and cure Alzheimer's disease: opportunities and pitfalls. Mol Psychiatry 2021; 26:5504-5515. [PMID: 33854189 DOI: 10.1038/s41380-021-01083-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/10/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Innate immunity has been the focus of many new directions to understand the mechanisms involved in the aetiology of brain diseases, especially Alzheimer's disease (AD). AD is a multifactorial disorder, with the innate immune response and neuroinflammation at the forefront of the pathology. Thus, microglial cells along with peripheral circulating monocytes and more generally the innate immune response have been the target of several pre-clinical and clinical studies. More than a decade ago, inhibiting innate immune cells was considered to be the critical angle for preventing and treating brain diseases. After the failing of numerous clinical trials and the discovery that it may actually be the opposite in various pre-clinical models, the field has changed considerably. Here, we present both sides of the story with a particular emphasis on the beneficial properties of innate immune cells and how they can be targeted to have neuroprotective properties.
Collapse
Affiliation(s)
- Giulia Cisbani
- Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Serge Rivest
- CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, QC, Canada.
| |
Collapse
|
22
|
Mizobuchi H, Yamamoto K, Yamashita M, Nakata Y, Inagawa H, Kohchi C, Soma GI. Prevention of Diabetes-Associated Cognitive Dysfunction Through Oral Administration of Lipopolysaccharide Derived From Pantoea agglomerans. Front Immunol 2021; 12:650176. [PMID: 34512619 PMCID: PMC8429836 DOI: 10.3389/fimmu.2021.650176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/13/2021] [Indexed: 11/26/2022] Open
Abstract
Diabetes-related cognitive dysfunction (DRCD) is a serious complication induced by diabetes. However, there are currently no specific remedies for DRCD. Here, we show that streptozotocin-induced DRCD can be prevented without causing side effects through oral administration of lipopolysaccharide (LPS) derived from Pantoea agglomerans. Oral administration of LPS (OAL) prevented the cerebral cortex atrophy and tau phosphorylation induced by DRCD. Moreover, we observed that neuroprotective transformation of microglia (brain tissue-resident macrophages) is important for preventing DRCD through OAL. These findings are contrary to the general recognition of LPS as an inflammatory agent when injected systemically. Furthermore, our results strongly suggest that OAL promotes membrane-bound colony stimulating factor 1 (CSF1) expression on peripheral leukocytes, which activates the CSF1 receptor on microglia, leading to their transformation to the neuroprotective phenotype. Taken together, the present study indicates that controlling innate immune modulation through the simple and safe strategy of OAL can be an innovative prophylaxis for intractable neurological diseases such as DRCD. In a sense, for modern people living in an LPS-depleted environment, OAL is like a time machine that returns microglia to the good old LPS-abundant era.
Collapse
Affiliation(s)
- Haruka Mizobuchi
- Control of Innate Immunity, Collaborative Innovation Partnership, Kagawa, Japan
| | - Kazushi Yamamoto
- Control of Innate Immunity, Collaborative Innovation Partnership, Kagawa, Japan
| | - Masashi Yamashita
- Control of Innate Immunity, Collaborative Innovation Partnership, Kagawa, Japan
| | - Yoko Nakata
- Research and Development Department Macrophi Inc., Kagawa, Japan
| | - Hiroyuki Inagawa
- Control of Innate Immunity, Collaborative Innovation Partnership, Kagawa, Japan.,Research and Development Department Macrophi Inc., Kagawa, Japan.,Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Chie Kohchi
- Control of Innate Immunity, Collaborative Innovation Partnership, Kagawa, Japan.,Research and Development Department Macrophi Inc., Kagawa, Japan
| | - Gen-Ichiro Soma
- Control of Innate Immunity, Collaborative Innovation Partnership, Kagawa, Japan.,Research and Development Department Macrophi Inc., Kagawa, Japan.,Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| |
Collapse
|
23
|
Piec PA, Pons V, Rivest S. Triggering Innate Immune Receptors as New Therapies in Alzheimer's Disease and Multiple Sclerosis. Cells 2021; 10:cells10082164. [PMID: 34440933 PMCID: PMC8393987 DOI: 10.3390/cells10082164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis and Alzheimer's disease are two complex neurodegenerative diseases involving the immune system. So far, available treatments provide at best mild improvements to patients' conditions. For decades now, a new set of molecules have been used to modulate and regulate the innate immunity in these pathologies. Most studies have been carried out in rodents and some of them have reported tremendous beneficial effects on the disease course. The modulation of innate immune cells is of great interest since it provides new hope for patients. In this review, we will briefly overview the therapeutic potential of some molecules and receptors in multiple sclerosis and Alzheimer's disease and how they could be used to exploit new therapeutic avenues.
Collapse
|
24
|
Beaino W, Janssen B, Vugts DJ, de Vries HE, Windhorst AD. Towards PET imaging of the dynamic phenotypes of microglia. Clin Exp Immunol 2021; 206:282-300. [PMID: 34331705 PMCID: PMC8561701 DOI: 10.1111/cei.13649] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
There is increasing evidence showing the heterogeneity of microglia activation in neuroinflammatory and neurodegenerative diseases. It has been hypothesized that pro‐inflammatory microglia are detrimental and contribute to disease progression, while anti‐inflammatory microglia play a role in damage repair and remission. The development of therapeutics targeting the deleterious glial activity and modulating it into a regenerative phenotype relies heavily upon a clearer understanding of the microglia dynamics during disease progression and the ability to monitor therapeutic outcome in vivo. To that end, molecular imaging techniques are required to assess microglia dynamics and study their role in disease progression as well as to evaluate the outcome of therapeutic interventions. Positron emission tomography (PET) is such a molecular imaging technique, and provides unique capabilities for non‐invasive quantification of neuroinflammation and has the potential to discriminate between microglia phenotypes and define their role in the disease process. However, several obstacles limit the possibility for selective in vivo imaging of microglia phenotypes mainly related to the poor characterization of specific targets that distinguish the two ends of the microglia activation spectrum and lack of suitable tracers. PET tracers targeting translocator protein 18 kDa (TSPO) have been extensively explored, but despite the success in evaluating neuroinflammation they failed to discriminate between microglia activation statuses. In this review, we highlight the current knowledge on the microglia phenotypes in the major neuroinflammatory and neurodegenerative diseases. We also discuss the current and emerging PET imaging targets, the tracers and their potential in discriminating between the pro‐ and anti‐inflammatory microglia activation states.
Collapse
Affiliation(s)
- Wissam Beaino
- Department of Radiology and Nuclear Medicine, Tracer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Bieneke Janssen
- Department of Radiology and Nuclear Medicine, Tracer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Danielle J Vugts
- Department of Radiology and Nuclear Medicine, Tracer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, Tracer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|
25
|
Sun M, Ma K, Wen J, Wang G, Zhang C, Li Q, Bao X, Wang H. A Review of the Brain-Gut-Microbiome Axis and the Potential Role of Microbiota in Alzheimer's Disease. J Alzheimers Dis 2021; 73:849-865. [PMID: 31884474 DOI: 10.3233/jad-190872] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative process characterized by loss of neurons in the hippocampus and cerebral cortex, leading to progressive cognitive decline. Pathologically, the hallmark of AD is accumulation of "senile" plaques composed of amyloid-β (Aβ) protein surrounding neurons in affected regions. Despite extensive research into AD pathogenesis and therapeutic targets, there remains no breakthroughs in its management. In recent years, there has been a spark of interest in the connection between the brain and gastrointestinal tract, referred to as the brain-gut axis, and its potential implications for both metabolic and neurologic disease. Moreover, the gastrointestinal flora, referred to as the microbiome, appears to exert significant influence over the brain-gut axis. With the need for expanded horizons in understanding and treating AD, many have turned to the brain-gut-microbiome axis for answers. Here we provide a review of the brain-gut-microbiome axis and discuss the evidence supporting alterations of the axis in the pathogenesis of AD. Specifically, we highlight the role for the microbiome in disruption of Aβ metabolism/clearance, increased permeability of the blood-brain barrier and modulation of the neuroinflammatory response, and inhibition of hippocampal neurogenesis. The majority of the above described findings are the result of excellent, albeit basic and pre-clinical studies. Therefore, we conclude with a brief description of documented clinical support for brain-gut-microbiome axis alteration in AD, including potential microbiome-based therapeutics for AD. Collectively, these findings suggest that the brain-gut-microbiome axis may be a "lost link" in understanding and treating AD and call for future work.
Collapse
Affiliation(s)
- Miao Sun
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Kai Ma
- Probiotics Australia, Ormeau, QLD, Australia
| | - Jie Wen
- Beijing Allwegene Health, Beijing, China
| | | | | | - Qi Li
- Beijing Allwegene Health, Beijing, China
| | - Xiaofeng Bao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
26
|
Edler MK, Mhatre-Winters I, Richardson JR. Microglia in Aging and Alzheimer's Disease: A Comparative Species Review. Cells 2021; 10:1138. [PMID: 34066847 PMCID: PMC8150617 DOI: 10.3390/cells10051138] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are the primary immune cells of the central nervous system that help nourish and support neurons, clear debris, and respond to foreign stimuli. Greatly impacted by their environment, microglia go through rapid changes in cell shape, gene expression, and functional behavior during states of infection, trauma, and neurodegeneration. Aging also has a profound effect on microglia, leading to chronic inflammation and an increase in the brain's susceptibility to neurodegenerative processes that occur in Alzheimer's disease. Despite the scientific community's growing knowledge in the field of neuroinflammation, the overall success rate of drug treatment for age-related and neurodegenerative diseases remains incredibly low. Potential reasons for the lack of translation from animal models to the clinic include the use of a single species model, an assumption of similarity in humans, and ignoring contradictory data or information from other species. To aid in the selection of validated and predictive animal models and to bridge the translational gap, this review evaluates similarities and differences among species in microglial activation and density, morphology and phenotype, cytokine expression, phagocytosis, and production of oxidative species in aging and Alzheimer's disease.
Collapse
Affiliation(s)
- Melissa K. Edler
- Department of Anthropology, School of Biomedical Sciences, Brain Health Research Institute, Kent State University, Kent, OH 44240, USA;
| | - Isha Mhatre-Winters
- School of Biomedical Sciences, College of Arts and Sciences, Kent State University, Kent, OH 44240, USA;
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Jason R. Richardson
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
27
|
Cheng B, Li X, Dai K, Duan S, Rong Z, Chen Y, Lü L, Liu Z, Huang X, Xu H, Zhang YW, Zheng H. Triggering Receptor Expressed on Myeloid Cells-2 (TREM2) Interacts With Colony-Stimulating Factor 1 Receptor (CSF1R) but Is Not Necessary for CSF1/CSF1R-Mediated Microglial Survival. Front Immunol 2021; 12:633796. [PMID: 33841415 PMCID: PMC8027073 DOI: 10.3389/fimmu.2021.633796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
Triggering receptor expressed on myeloid cells-2 (TREM2) and colony-stimulating factor 1 receptor (CSF1R) are crucial molecules for microgliopathy, which is characterized by microglia dysfunction and has recently been proposed as the neuropathological hallmark of neurological disorders. TREM2 and CSF1R are receptors expressed primarily in microglia in the brain and modulate microglial activation and survival. They are thought to be in close physical proximity. However, whether there is a direct interaction between these receptors remains elusive. Moreover, the physiological role and mechanism of the interaction of TREM2 and CSF1R remain to be determined. Here, we found that TREM2 interacted with CSF1R based on a co-immunoprecipitation assay. Additionally, we found that CSF1R knockdown significantly reduced the survival of primary microglia and increased the Trem2 mRNA level. In contrast, CSF1R expression was increased in Trem2-deficient microglia. Interestingly, administration of CSF1, the ligand of CSF1R, partially restored the survival of Trem2-deficient microglia in vitro and in vivo. Furthermore, CSF1 ameliorated Aβ plaques deposition in Trem2 -/-; 5XFAD mouse brain. These findings provide solid evidence that TREM2 and CSF1R have intrinsic abilities to form complexes and mutually modulate their expression. These findings also indicate the potential role of CSF1 in therapeutic intervention in TREM2 variant-bearing patients with a high risk of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Baoying Cheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Kai Dai
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Shengshun Duan
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Zhouyi Rong
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yingmin Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Liangcheng Lü
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Zhaoji Liu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaohua Huang
- Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Honghua Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.,Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
28
|
Ni J, Wu Z. Inflammation Spreading: Negative Spiral Linking Systemic Inflammatory Disorders and Alzheimer's Disease. Front Cell Neurosci 2021; 15:638686. [PMID: 33716675 PMCID: PMC7947253 DOI: 10.3389/fncel.2021.638686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
As a physiological response to injury in the internal body organs, inflammation is responsible for removing dangerous stimuli and initiating healing. However, persistent and exaggerative chronic inflammation causes undesirable negative effects in the organs. Inflammation occurring in the brain and spinal cord is known as neuroinflammation, with microglia acting as the central cellular player. There is increasing evidence suggesting that chronic neuroinflammation is the most relevant pathological feature of Alzheimer’s disease (AD), regulating other pathological features, such as the accumulation of amyloid-β (Aβ) and hyperphosphorylation of Tau. Systemic inflammatory signals caused by systemic disorders are known to strongly influence neuroinflammation as a consequence of microglial activation, inflammatory mediator production, and the recruitment of peripheral immune cells to the brain, resulting in neuronal dysfunction. However, the neuroinflammation-accelerated neuronal dysfunction in AD also influences the functions of peripheral organs. In the present review, we highlight the link between systemic inflammatory disorders and AD, with inflammation serving as the common explosion. We discuss the molecular mechanisms that govern the crosstalk between systemic inflammation and neuroinflammation. In our view, inflammation spreading indicates a negative spiral between systemic diseases and AD. Therefore, “dampening inflammation” through the inhibition of cathepsin (Cat)B or CatS may be a novel therapeutic approach for delaying the onset of and enacting early intervention for AD.
Collapse
Affiliation(s)
- Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
29
|
Pons V, Lévesque P, Plante MM, Rivest S. Conditional genetic deletion of CSF1 receptor in microglia ameliorates the physiopathology of Alzheimer's disease. Alzheimers Res Ther 2021; 13:8. [PMID: 33402196 PMCID: PMC7783991 DOI: 10.1186/s13195-020-00747-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia in the world. Microglia are the innate immune cells of CNS; their proliferation, activation, and survival in pathologic and healthy brain have previously been shown to be highly dependent on CSF1R. METHODS Here, we investigate the impact of such receptor on AD etiology and microglia. We deleted CSF1R using Cre/Lox system; the knockout (KO) is restricted to microglia in the APP/PS1 mouse model. We induced the knockout at 3 months old, before plaque formation, and evaluated both 6- and 8-month-old groups of mice. RESULTS Our findings demonstrated that CSF1R KO did not impair microglial survival and proliferation at 6 and 8 months of age in APP cKO compared to their littermate-control groups APPSwe/PS1. We have also shown that cognitive decline is delayed in CSF1R-deleted mice. Ameliorations of AD etiology are associated with a decrease in plaque volume in the cortex and hippocampus area. A compensating system seems to take place following the knockout, since TREM2/β-Catenin and IL-34 expression are significantly increased. Such a compensatory mechanism may promote microglial survival and phagocytosis of Aβ in the brain. CONCLUSIONS Our results provide new insights on the role of CSF1R in microglia and how it interacts with the TREM2/β-Catenin and IL-34 system to clear Aβ and ameliorates the physiopathology of AD.
Collapse
Affiliation(s)
- Vincent Pons
- Neuroscience laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier boulevard, Québec City, QC G1V 4G2 Canada
| | - Pascal Lévesque
- Neuroscience laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier boulevard, Québec City, QC G1V 4G2 Canada
| | - Marie-Michèle Plante
- Neuroscience laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier boulevard, Québec City, QC G1V 4G2 Canada
| | - Serge Rivest
- Neuroscience laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier boulevard, Québec City, QC G1V 4G2 Canada
| |
Collapse
|
30
|
Brown MR, Radford SE, Hewitt EW. Modulation of β-Amyloid Fibril Formation in Alzheimer's Disease by Microglia and Infection. Front Mol Neurosci 2020; 13:609073. [PMID: 33324164 PMCID: PMC7725705 DOI: 10.3389/fnmol.2020.609073] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/03/2020] [Indexed: 01/06/2023] Open
Abstract
Amyloid plaques are a pathological hallmark of Alzheimer's disease. The major component of these plaques are highly ordered amyloid fibrils formed by amyloid-β (Aβ) peptides. However, whilst Aβ amyloid fibril assembly has been subjected to detailed and extensive analysis in vitro, these studies may not reproduce how Aβ fibrils assemble in the brain. This is because the brain represents a highly complex and dynamic environment, and in Alzheimer's disease multiple cofactors may affect the assembly of Aβ fibrils. Moreover, in vivo amyloid plaque formation will reflect the balance between the assembly of Aβ fibrils and their degradation. This review explores the roles of microglia as cofactors in Aβ aggregation and in the clearance of amyloid deposits. In addition, we discuss how infection may be an additional cofactor in Aβ fibril assembly by virtue of the antimicrobial properties of Aβ peptides. Crucially, by understanding the roles of microglia and infection in Aβ amyloid fibril assembly it may be possible to identify new therapeutic targets for Alzheimer's disease.
Collapse
Affiliation(s)
- Madeleine R Brown
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Eric W Hewitt
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
31
|
Guo X, Liu Y, Morgan D, Zhao LR. Reparative Effects of Stem Cell Factor and Granulocyte Colony-Stimulating Factor in Aged APP/PS1 Mice. Aging Dis 2020; 11:1423-1443. [PMID: 33269098 PMCID: PMC7673847 DOI: 10.14336/ad.2020.0201] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/01/2020] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD), characterized by the accumulation of β-amyloid (Aβ) plaques and tau neurofibrillary tangles in the brain, neuroinflammation and neurodegeneration, is the most common form of neurodegenerative disease among the elderly. No effective treatment is available now in restricting the pathological progression of AD. The aim of this study is to determine the therapeutic efficacy of stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) (SCF+G-CSF) in aged APPswe/PS1dE9 (APP/PS1) mice. SCF+G-CSF was subcutaneously injected for 12 days to 25-month-old male APP/PS1 mice. We observed that SCF+G-CSF treatment reduced the Aβ plaques in both the cortex and hippocampus. SCF+G-CSF treatment increased the association of TREM2+/Iba1+ cells with Aβ plaques and enhanced Aβ uptake by Iba1+ and CD68+cells in the brains of aged APP/PS1 mice. Importantly, cerebral expression area of P2RY12+and TMEM119+ homeostatic microglia and the branches of P2RY12+ homeostatic microglia were increased in the SCF+G-CSF-treated aged APP/PS1 mice. SCF+G-CSF treatment also decreased NOS-2 and increased IL-4 in the brains of aged APP/PS1 mice. Moreover, the loss of MAP2+dendrites and PSD-95+post-synapses and the accumulation of aggregated tau in the brains of aged APP/PS1 mice were ameliorated by SCF+G-CSF treatment. Furthermore, the density of P2RY12+ microglia was negatively correlated with Aβ deposits, but positively correlated with the densities of MAP2+ dendrites and PSD-95+ puncta in the brains of aged APP/PS1 mice. These findings reveal the therapeutic potential of SCF+G-CSF treatment in ameliorating AD pathology at the late stage.
Collapse
Affiliation(s)
- Xingzhi Guo
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, New York, 13210, USA
| | - Yanying Liu
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, New York, 13210, USA
| | - David Morgan
- Translational Neuroscience, Michigan State University, College of Human Medicine, Grand Rapids, Michigan, 49503, USA
| | - Li-Ru Zhao
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, New York, 13210, USA
| |
Collapse
|
32
|
Harms AS, Kordower JH, Sette A, Lindestam Arlehamn CS, Sulzer D, Mach RH. Inflammation in Experimental Models of α-Synucleinopathies. Mov Disord 2020; 36:37-49. [PMID: 33009855 DOI: 10.1002/mds.28264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation has long been associated with central nervous system pathology in α-synucleinopathy disorders including Parkinson's disease and multiple system atrophy. In the past decade, research-focused efforts in preclinical and experimental models have rallied around this idea, and considerable effort has been made to delineate critical neuroinflammatory processes. In this article, we discuss challenges in preclinical research, notably the use of animal models to recapitulate and dissect disease phenotypes as well as the need for more sensitive, reliable radiotracers to detect on-target efficacy of immunomodulatory treatments in both human Parkinson's disease as well as preclinical models. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ashley S Harms
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | - David Sulzer
- Department of Neurology, Columbia University Medical Center, New York, New York, USA.,Department of Psychiatry, Columbia University Medical Center, New York, New York, USA.,Department of Pharmacology, Columbia University Medical Center, New York, New York, USA
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
33
|
Yuan J, Meloni BP, Shi T, Bonser A, Papadimitriou JM, Mastaglia FL, Zhang C, Zheng M, Gao J. The Potential Influence of Bone-Derived Modulators on the Progression of Alzheimer's Disease. J Alzheimers Dis 2020; 69:59-70. [PMID: 30932886 DOI: 10.3233/jad-181249] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bone, the major structural scaffold of the human body, has recently been demonstrated to interact with several other organ systems through the actions of bone-derived cells and bone-derived cell secretory proteins. Interestingly, the brain is one organ that appears to fall into this interconnected network. Furthermore, the fact that osteoporosis and Alzheimer's disease are two common age-related disorders raises the possibility that these two organ systems are interconnected in terms of disease pathogenesis. This review focuses on the latest evidence demonstrating the impact of bone-derived cells and bone-derived proteins on the central nervous system, and on how this may be relevant in the progression of Alzheimer's disease and for the identification of novel therapeutic approaches to treat this neurodegenerative disorder.
Collapse
Affiliation(s)
- Jun Yuan
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Bruno P Meloni
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Tianxing Shi
- Department of Art as Applied to Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne Bonser
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - John M Papadimitriou
- Pathwest Laboratories and Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Changqing Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Minghao Zheng
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Junjie Gao
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
34
|
Koronyo-Hamaoui M, Sheyn J, Hayden EY, Li S, Fuchs DT, Regis GC, Lopes DHJ, Black KL, Bernstein KE, Teplow DB, Fuchs S, Koronyo Y, Rentsendorj A. Peripherally derived angiotensin converting enzyme-enhanced macrophages alleviate Alzheimer-related disease. Brain 2020; 143:336-358. [PMID: 31794021 DOI: 10.1093/brain/awz364] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/17/2019] [Accepted: 10/01/2019] [Indexed: 11/13/2022] Open
Abstract
Targeted overexpression of angiotensin-converting enzyme (ACE), an amyloid-β protein degrading enzyme, to brain resident microglia and peripheral myelomonocytes (ACE10 model) substantially diminished Alzheimer's-like disease in double-transgenic APPSWE/PS1ΔE9 (AD+) mice. In this study, we explored the impact of selective and transient angiotensin-converting enzyme overexpression on macrophage behaviour and the relative contribution of bone marrow-derived ACE10 macrophages, but not microglia, in attenuating disease progression. To this end, two in vivo approaches were applied in AD+ mice: (i) ACE10/GFP+ bone marrow transplantation with head shielding; and (ii) adoptive transfer of CD115+-ACE10/GFP+ monocytes to the peripheral blood. Extensive in vitro studies were further undertaken to establish the unique ACE10-macrophage phenotype(s) in response to amyloid-β1-42 fibrils and oligomers. The combined in vivo approaches showed that increased cerebral infiltration of ACE10 as compared to wild-type monocytes (∼3-fold increase; P < 0.05) led to reductions in cerebral soluble amyloid-β1-42, vascular and parenchymal amyloid-β deposits, and astrocytosis (31%, 47-80%, and 33%, respectively; P < 0.05-0.0001). ACE10 macrophages surrounded brain and retinal amyloid-β plaques and expressed 3.2-fold higher insulin-like growth factor-1 (P < 0.01) and ∼60% lower tumour necrosis factor-α (P < 0.05). Importantly, blood enrichment with CD115+-ACE10 monocytes in symptomatic AD+ mice resulted in pronounced synaptic and cognitive preservation (P < 0.05-0.001). In vitro analysis of macrophage response to well-defined amyloid-β1-42 conformers (fibrils, prion rod-like structures, and stabilized soluble oligomers) revealed extensive resistance to amyloid-β1-42 species by ACE10 macrophages. They exhibited 2-5-fold increased surface binding to amyloid-β conformers as well as substantially more effective amyloid-β1-42 uptake, at least 8-fold higher than those of wild-type macrophages (P < 0.0001), which were associated with enhanced expression of surface scavenger receptors (i.e. CD36, scavenger receptor class A member 1, triggering receptor expressed on myeloid cells 2, CD163; P < 0.05-0.0001), endosomal processing (P < 0.05-0.0001), and ∼80% increased extracellular degradation of amyloid-β1-42 (P < 0.001). Beneficial ACE10 phenotype was reversed by the angiotensin-converting enzyme inhibitor (lisinopril) and thus was dependent on angiotensin-converting enzyme catalytic activity. Further, ACE10 macrophages presented distinct anti-inflammatory (low inducible nitric oxide synthase and lower tumour necrosis factor-α), pro-healing immune profiles (high insulin-like growth factor-1, elongated cell morphology), even following exposure to Alzheimer's-related amyloid-β1-42 oligomers. Overall, we provide the first evidence for therapeutic roles of angiotensin-converting enzyme-overexpressing macrophages in preserving synapses and cognition, attenuating neuropathology and neuroinflammation, and enhancing resistance to defined pathognomonic amyloid-β forms.
Collapse
Affiliation(s)
- Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eric Y Hayden
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Songlin Li
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Institute of Neuroscience and Chemistry, and Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Giovanna C Regis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dahabada H J Lopes
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David B Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Sebastien Fuchs
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
35
|
Schwartz M, Peralta Ramos JM, Ben-Yehuda H. A 20-Year Journey from Axonal Injury to Neurodegenerative Diseases and the Prospect of Immunotherapy for Combating Alzheimer's Disease. THE JOURNAL OF IMMUNOLOGY 2020; 204:243-250. [PMID: 31907265 DOI: 10.4049/jimmunol.1900844] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
The understanding of the dialogue between the brain and the immune system has undergone dramatic changes over the last two decades, with immense impact on the perception of neurodegenerative diseases, mental dysfunction, and many other brain pathologic conditions. Accumulated results have suggested that optimal function of the brain is dependent on support from the immune system, provided that this immune response is tightly controlled. Moreover, in contrast to the previous prevailing dogma, it is now widely accepted that circulating immune cells are needed for coping with brain pathologies and that their optimal effect is dependent on their type, location, and activity. In this perspective, we describe our own scientific journey, reviewing the milestones in attaining this understanding of the brain-immune axis integrated with numerous related studies by others. We then explain their significance in demonstrating the possibility of harnessing the immune system in a well-controlled manner for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Michal Schwartz
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142; and .,Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Hila Ben-Yehuda
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
36
|
Zuroff LR, Torbati T, Hart NJ, Fuchs DT, Sheyn J, Rentsendorj A, Koronyo Y, Hayden EY, Teplow DB, Black KL, Koronyo-Hamaoui M. Effects of IL-34 on Macrophage Immunological Profile in Response to Alzheimer's-Related Aβ 42 Assemblies. Front Immunol 2020; 11:1449. [PMID: 32765504 PMCID: PMC7378440 DOI: 10.3389/fimmu.2020.01449] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
Interleukin-34 (IL-34) is a recently discovered cytokine that acts as a second ligand of the colony stimulating factor 1 receptor (CSF1R) in addition to macrophage colony-stimulating factor (M-CSF). Similar to M-CSF, IL-34 also stimulates bone marrow (BM)-derived monocyte survival and differentiation into macrophages. Growing evidence suggests that peripheral BM-derived monocyte/macrophages (BMMO) play a key role in the physiological clearance of cerebral amyloid β-protein (Aβ). Aβ42 forms are especially neurotoxic and highly associated with Alzheimer's disease (AD). As a ligand of CSF1R, IL-34 may be relevant to innate immune responses in AD. To investigate how IL-34 affects macrophage phenotype in response to structurally defined and stabilized Aβ42 oligomers and preformed fibrils, we characterized murine BMMO cultured in media containing M-CSF, IL-34, or regimens involving both cytokines. We found that the immunological profile and activation phenotype of IL-34-stimulated BMMO differed significantly from those cultured with M-CSF alone. Specifically, macrophage uptake of fibrillar or oligomeric Aβ42 was markedly reduced following exposure to IL-34 compared to M-CSF. Surface expression of type B scavenger receptor CD36, known to facilitate Aβ recognition and uptake, was modified following treatment with IL-34. Similarly, IL-34 macrophages expressed lower levels of proteins involved in both Aβ uptake (triggering receptor expressed on myeloid cells 2, TREM2) as well as Aβ-degradation (matrix metallopeptidase 9, MMP-9). Interestingly, intracellular compartmentalization of Aβ visualized by staining of early endosome antigen 1 (EEA1) was not affected by IL-34. Macrophage characteristics associated with an anti-inflammatory and pro-wound healing phenotype, including processes length and morphology, were also quantified, and macrophages stimulated with IL-34 alone displayed less process elongation in response to Aβ42 compared to those cultured with M-CSF. Further, monocytes treated with IL-34 alone yielded fewer mature macrophages than those treated with M-CSF alone or in combination with IL-34. Our data indicate that IL-34 impairs monocyte differentiation into macrophages and reduces their ability to uptake pathological forms of Aβ. Given the critical role of macrophage-mediated Aβ clearance in both murine models and patients with AD, future work should investigate the therapeutic potential of modulating IL-34 in vivo to increase macrophage-mediated Aβ clearance and prevent disease development.
Collapse
Affiliation(s)
- Leah R Zuroff
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Tania Torbati
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States.,Western University of Health Sciences College of Osteopathic Medicine of the Pacific, Pomona, CA, United States
| | - Nadav J Hart
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Dieu-Trang Fuchs
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Julia Sheyn
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Altan Rentsendorj
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yosef Koronyo
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Eric Y Hayden
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - David B Teplow
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Keith L Black
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Applied Cellular Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
37
|
Anwar S, Rivest S. Alzheimer's disease: microglia targets and their modulation to promote amyloid phagocytosis and mitigate neuroinflammation. Expert Opin Ther Targets 2020; 24:331-344. [PMID: 32129117 DOI: 10.1080/14728222.2020.1738391] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Introduction: Despite the revolutionary progress in neurodegenerative disease research, there is no cure for Alzheimer's disease (AD). This is a chronic progressive neurodegenerative disease affecting aged people and is associated with chronic neuroinflammation and amyloid-beta (Aβ) deposition in the brain parenchyma. Microglia, the resident myeloid cells in the central nervous system, are critically involved in the pathogenesis of AD and have emerged as a potential therapeutic target for treating or preventing AD. The failure of microglia to keep up with persistent amyloid-beta development along with secretion of inflammatory cytokines is detrimental to neurons and favors Aβ accumulation.Areas covered: This review illuminates the latest research that is focused on molecules and their intracellular targets that promote microglial phagocytosis and /or its polarization to an anti-inflammatory state.Expert opinion: A robust inflammatory response of microglia is not necessary to improve their efficiency of Aβ clearance. The challenge is to master inflammatory/anti-inflammatory phenotypes depending on the stage of AD and to maintain efficient responses to remove Aβ. Therefore, promoting microglia phagocytosis without a persistent excessive inflammatory response could be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Shehata Anwar
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada.,Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| |
Collapse
|
38
|
Pons V, Laflamme N, Préfontaine P, Rivest S. Role of Macrophage Colony-Stimulating Factor Receptor on the Proliferation and Survival of Microglia Following Systemic Nerve and Cuprizone-Induced Injuries. Front Immunol 2020; 11:47. [PMID: 32082318 PMCID: PMC7001158 DOI: 10.3389/fimmu.2020.00047] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Microglia are the innate immune cells of the CNS and their proliferation, activation, and survival have previously been shown to be highly dependent on macrophage colony-stimulating factor receptor (CSF1R). Here we investigated the impact of the receptor in such processes using two different models of nerve injuries, namely hypoglossal axotomy and cuprizone-induced demyelination. Both models are associated with a robust microgliosis. The role of CSF1R was investigated using the gene deletion Cre/Lox system, which allows the conditional knock-out following tamoxifen administration. We found that after 5 weeks of cuprizone diet that CSF1R suppression caused a significant impairment of microglia function. A reduced microgliosis was detected in the corpus collosum of CSF1R knock-out mice compared to controls. In contrast to cuprizone model, the overall number of Iba1 cells was unchanged at all the times evaluated following hypoglossal axotomy in WT and cKO conditions. After nerve lesion, a tremendous proliferation was noticed in the ipsilateral hypoglossal nucleus to a similar level in both knock-out and wild-type groups. We also observed infiltration of bone-marrow derived cells specifically in CSF1R-deficient mice, these cells tend to compensate the CSF1R signaling pathway suppression in resident microglia. Taking together our results suggest a different role of CSF1R in microglia depending on the model. In the pathologic context of cuprizone-induced demyelination CSF1R signaling pathway is essential to trigger proliferation and survival of microglia, while this is not the case in a model of systemic nerve injury. M-CSF/CSF1R is consequently not the unique system involved in microgliosis following nerve damages.
Collapse
Affiliation(s)
- Vincent Pons
- Neuroscience Laboratory, Department of Molecular Medicine, Faculty of Medicine, CHU de Québec Research Center, Laval University, Québec City, QC, Canada
| | - Nataly Laflamme
- Neuroscience Laboratory, Department of Molecular Medicine, Faculty of Medicine, CHU de Québec Research Center, Laval University, Québec City, QC, Canada
| | - Paul Préfontaine
- Neuroscience Laboratory, Department of Molecular Medicine, Faculty of Medicine, CHU de Québec Research Center, Laval University, Québec City, QC, Canada
| | - Serge Rivest
- Neuroscience Laboratory, Department of Molecular Medicine, Faculty of Medicine, CHU de Québec Research Center, Laval University, Québec City, QC, Canada
| |
Collapse
|
39
|
Li C, Chen YH, Zhang K. Neuroprotective Properties and Therapeutic Potential of Bone Marrow-Derived Microglia in Alzheimer's Disease. Am J Alzheimers Dis Other Demen 2020; 35:1533317520927169. [PMID: 32536247 PMCID: PMC10623913 DOI: 10.1177/1533317520927169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, which is characterized by a progressive cognitive decline and senile plaques formed by amyloid β (Aβ). Microglia are the immune cells of the central nervous system (CNS). Studies have proposed 2 types of microglia, namely, the resident microglia and bone marrow-derived microglia (BMDM). Recent studies suggested that BMDM, not the resident microglia, can phagocytose Aβ, which has a great therapeutic potential in AD. Bone marrow-derived microglia can populate the CNS in an efficient manner and their functions can be regulated by some genes. Thus, methods that increase their recruitment and phagocytosis could be used as a new tool that clears Aβ and ameliorates cognitive impairment. Herein, we review the neuroprotective functions of BMDM and their therapeutic potential in AD.
Collapse
Affiliation(s)
- Chang Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yu-Hua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Ke Zhang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
40
|
Rivera-Escalera F, Pinney JJ, Owlett L, Ahmed H, Thakar J, Olschowka JA, Elliott MR, O’Banion MK. IL-1β-driven amyloid plaque clearance is associated with an expansion of transcriptionally reprogrammed microglia. J Neuroinflammation 2019; 16:261. [PMID: 31822279 PMCID: PMC6902486 DOI: 10.1186/s12974-019-1645-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/18/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Neuroinflammation is thought to contribute to the pathogenesis of Alzheimer's disease (AD), yet numerous studies have demonstrated a beneficial role for neuroinflammation in amyloid plaque clearance. We have previously shown that sustained expression of IL-1β in the hippocampus of APP/PS1 mice decreases amyloid plaque burden independent of recruited CCR2+ myeloid cells, suggesting resident microglia as the main phagocytic effectors of IL-1β-induced plaque clearance. To date, however, the mechanisms of IL-1β-induced plaque clearance remain poorly understood. METHODS To determine whether microglia are involved in IL-1β-induced plaque clearance, APP/PS1 mice induced to express mature human IL-1β in the hippocampus via adenoviral transduction were treated with the Aβ fluorescent probe methoxy-X04 (MX04) and microglial internalization of fibrillar Aβ (fAβ) was analyzed by flow cytometry and immunohistochemistry. To assess microglial proliferation, APP/PS1 mice transduced with IL-1β or control were injected intraperitoneally with BrdU and hippocampal tissue was analyzed by flow cytometry. RNAseq analysis was conducted on microglia FACS sorted from the hippocampus of control or IL-1β-treated APP/PS1 mice. These microglia were also sorted based on MX04 labeling (MX04+ and MX04- microglia). RESULTS Resident microglia (CD45loCD11b+) constituted > 70% of the MX04+ cells in both Phe- and IL-1β-treated conditions, and < 15% of MX04+ cells were recruited myeloid cells (CD45hiCD11b+). However, IL-1β treatment did not augment the percentage of MX04+ microglia nor the quantity of fAβ internalized by individual microglia. Instead, IL-1β increased the total number of MX04+ microglia in the hippocampus due to IL-1β-induced proliferation. In addition, transcriptomic analyses revealed that IL-1β treatment was associated with large-scale changes in the expression of genes related to immune responses, proliferation, and cytokine signaling. CONCLUSIONS These studies show that IL-1β overexpression early in amyloid pathogenesis induces a change in the microglial gene expression profile and an expansion of microglial cells that facilitates Aβ plaque clearance.
Collapse
Affiliation(s)
- Fátima Rivera-Escalera
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 603, Rochester, NY 14642 USA
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Jonathan J. Pinney
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Laura Owlett
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 603, Rochester, NY 14642 USA
- Del Monte Neuroscience Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Hoda Ahmed
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 603, Rochester, NY 14642 USA
| | - Juilee Thakar
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - John A. Olschowka
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 603, Rochester, NY 14642 USA
- Del Monte Neuroscience Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Michael R. Elliott
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - M. Kerry O’Banion
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 603, Rochester, NY 14642 USA
- Del Monte Neuroscience Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| |
Collapse
|
41
|
Association between CSF1 and CSF1R Polymorphisms and Parkinson's Disease in Taiwan. J Clin Med 2019; 8:jcm8101529. [PMID: 31554150 PMCID: PMC6832167 DOI: 10.3390/jcm8101529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 12/26/2022] Open
Abstract
Background: CSF1/CSF1R neuroinflammatory signaling is emerging as an important pathway involved in the pathogenesis of Parkinson’s disease (PD). However, the genetic associations between CSF1/CSF1R and PD have not yet been explored. Methods: We investigated the effects of two functional genetic variants, including CSF1 rs1058885 and CSF1R rs10079250 in a cohort including 502 Taiwanese patients with PD and 511 age- and gender-matched healthy controls. Results: The CSF1 rs1058885 TT genotype was less frequent in PD patients compared with control subjects (odds ratio (OR) = 0.63, 95% confidence interval (CI): 0.43–0.92, p = 0.015). The PD patients also had a lower frequency of the CSF1 rs1058885 T allele compared with the control subjects (OR = 0.80, 95% CI: 0.67–0.96, p = 0.014). No statistically significant differences in allelic and genotypic frequencies of CSF1R rs10079250 between the PD and control subjects were found, even after stratification by age at onset and gender. Conclusion: This study reports a genetic association between CSF1 and PD for the first time.
Collapse
|
42
|
Li T, Zhu J. Entanglement of CCR5 and Alzheimer's Disease. Front Aging Neurosci 2019; 11:209. [PMID: 31447666 PMCID: PMC6692443 DOI: 10.3389/fnagi.2019.00209] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022] Open
Abstract
Although the mechanisms of Alzheimer's disease are diverse and unclear, the past 20 years have witnessed the unprecedented development of the AD inflammation theory. As a key inflammatory receptor family, the C-C chemokine receptor family is a remarkable participant in the cause of Alzheimer's disease; of this family, CCR5 is the most widely studied. CCR5 is an essential entrance when HIV infects immune cells and is also involved in other inflammatory and immune activities. New evidence on the inevitably intertwined link between Alzheimer's disease and CCR5 indicates that CCR5 accelerates the development of Alzheimer's disease, and few studies disputed it. The role of CCR5 in Alzheimer's disease remains elusive. However, as the research progresses, this intricate relationship will gradually be uncovered.
Collapse
Affiliation(s)
- Tianwen Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Shanghai, China
- Institutes of Brain Science, Shanghai, China
| |
Collapse
|
43
|
Fani Maleki A, Rivest S. Innate Immune Cells: Monocytes, Monocyte-Derived Macrophages and Microglia as Therapeutic Targets for Alzheimer's Disease and Multiple Sclerosis. Front Cell Neurosci 2019; 13:355. [PMID: 31427930 PMCID: PMC6690269 DOI: 10.3389/fncel.2019.00355] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
The immune system provides protection in the CNS via resident microglial cells and those that traffic into it in the course of pathological challenges. These populations of cells are key players in modulating immune functions that are involved in disease outcomes. In this review, we briefly summarize and highlight the current state of knowledge of the differential contributions of microglia and monocytes in Alzheimer’s disease and multiple sclerosis. The role of innate immunity is frequently seen as a Yin and Yang in both diseases, but this depends on the environment, pre-clinical disease models and the type of cells involved.
Collapse
Affiliation(s)
- Adham Fani Maleki
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, QC, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, QC, Canada
| |
Collapse
|
44
|
Kawanishi S, Takata K, Itezono S, Nagayama H, Konoya S, Chisaki Y, Toda Y, Nakata S, Yano Y, Kitamura Y, Ashihara E. Bone-Marrow-Derived Microglia-Like Cells Ameliorate Brain Amyloid Pathology and Cognitive Impairment in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2019; 64:563-585. [PMID: 29914020 DOI: 10.3233/jad-170994] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microglia, the primary immune cells in the brain, sense pathogens and tissue damage, stimulate cytokine production, and phagocytosis to maintain homeostasis. Accumulation of amyloid-β peptides (Aβ) in the brain triggers the onset of Alzheimer's disease (AD). Accordingly, promotion of Aβ clearance represents a promising strategy for AD therapy. We previously demonstrated that primary-cultured rat microglia phagocytose Aβ, and that transplantation of these cells ameliorates the Aβ burden in brains of Aβ-injected rats. In this study, we demonstrate that stimulation with colony-stimulating factor-1 efficiently differentiates mouse bone marrow cells into bone marrow-derived microglia-like (BMDML) cells that express markers for microglia, including the recently identified transmembrane protein 119. BMDML cells effectively phagocytose Aβ in vitro, with effects comparable to primary-cultured mouse microglia and greater than peritoneal macrophages. RT-qPCR analysis for cytokine mRNA levels revealed that BMDML cells polarize to a relatively anti-inflammatory state under non-stimulated and inflammatory conditions but exert a pro-inflammatory reaction after lipopolysaccharide treatment. Moreover, BMDML cells hippocampally injected into a mouse model of AD are morphologically similar to the ramified and amoeboid types of residential microglia. Comparisons with simulations assuming a uniform distribution of cells suggest that BMDML cells migrate directionally toward Aβ plaques. We also detected Aβ phagocytosis by BMDML cells, concomitant with a reduction in the number and area of Aβ plaques. Finally, we observed amelioration of cognitive impairment in a mouse model of AD after hippocampal injection of BMDML cells. Our results suggest that BMDML cells have potential as a cell-based disease-modifying therapy against AD.
Collapse
Affiliation(s)
- Shohei Kawanishi
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Kazuyuki Takata
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan.,Current address: Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Shouma Itezono
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Hiroko Nagayama
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Sayaka Konoya
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Yugo Chisaki
- Education and Research Center for Clinical Pharmacy, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Yuki Toda
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Susumu Nakata
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Yoshitaka Yano
- Education and Research Center for Clinical Pharmacy, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | - Yoshihisa Kitamura
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan.,Laboratory of Pharmacology and Neurobiology, College of Pharmaceutical Sciences, Ritsumeikan University Kusatsu, Shiga, Japan
| | - Eishi Ashihara
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| |
Collapse
|
45
|
El Hajj H, Savage JC, Bisht K, Parent M, Vallières L, Rivest S, Tremblay MÈ. Ultrastructural evidence of microglial heterogeneity in Alzheimer's disease amyloid pathology. J Neuroinflammation 2019; 16:87. [PMID: 30992040 PMCID: PMC6469225 DOI: 10.1186/s12974-019-1473-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by the deposition of extracellular fibrillar amyloid β (fΑβ) and the intracellular accumulation of neurofibrillary tangles. As AD progresses, Aβ drives a robust and prolonged inflammatory response via its recognition by microglia, the brain's immune cells. Microglial reactivity to fAβ plaques may impair their normal surveillance duties, facilitating synaptic loss and neuronal death, as well as cognitive decline in AD. METHODS In the current study, we performed correlative light, transmission, and scanning electron microscopy to provide insights into microglial structural and functional heterogeneity. We analyzed microglial cell bodies and processes in areas containing fAβ plaques and neuronal dystrophy, dystrophy only, or appearing healthy, among the hippocampus CA1 of 14-month-old APPSwe-PS1Δe9 mice versus wild-type littermates. RESULTS Our quantitative analysis revealed that microglial cell bodies in the AD model mice were larger and displayed ultrastructural signs of cellular stress, especially nearby plaques. Microglial cell bodies and processes were overall less phagocytic in AD model mice. However, they contained increased fibrillar materials and non-empty inclusions proximal to plaques. Microglial cell bodies and processes in AD model mice also displayed reduced association with extracellular space pockets that contained debris. In addition, microglial processes in healthy subregions of AD model mice encircled synaptic elements more often compared with plaque-associated processes. These observations in mice were qualitatively replicated in post-mortem hippocampal samples from two patients with AD (Braak stage 5). CONCLUSION Together, our findings identify at the ultrastructural level distinct microglial transformations common to mouse and human in association with amyloid pathology.
Collapse
Affiliation(s)
- Hassan El Hajj
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, 2705, boulevard Laurier, T2-50, Quebec, QC G1V 4G2 Canada
| | - Julie C. Savage
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, 2705, boulevard Laurier, T2-50, Quebec, QC G1V 4G2 Canada
| | - Kanchan Bisht
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, 2705, boulevard Laurier, T2-50, Quebec, QC G1V 4G2 Canada
| | - Martin Parent
- Département de psychiatrie et de neurosciences, Faculté de médecine, Université Laval, Quebec, QC Canada
- CERVO Brain Research Center, Quebec, QC Canada
| | - Luc Vallières
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, 2705, boulevard Laurier, T2-50, Quebec, QC G1V 4G2 Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Quebec, QC Canada
| | - Serge Rivest
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, 2705, boulevard Laurier, T2-50, Quebec, QC G1V 4G2 Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Quebec, QC Canada
| | - Marie-Ève Tremblay
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, 2705, boulevard Laurier, T2-50, Quebec, QC G1V 4G2 Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Quebec, QC Canada
| |
Collapse
|
46
|
PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). Proc Natl Acad Sci U S A 2019; 116:1686-1691. [PMID: 30635412 DOI: 10.1073/pnas.1812155116] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
While neuroinflammation is an evolving concept and the cells involved and their functions are being defined, microglia are understood to be a key cellular mediator of brain injury and repair. The ability to measure microglial activity specifically and noninvasively would be a boon to the study of neuroinflammation, which is involved in a wide variety of neuropsychiatric disorders including traumatic brain injury, demyelinating disease, Alzheimer's disease (AD), and Parkinson's disease, among others. We have developed [11C]CPPC [5-cyano-N-(4-(4-[11C]methylpiperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide], a positron-emitting, high-affinity ligand that is specific for the macrophage colony-stimulating factor 1 receptor (CSF1R), the expression of which is essentially restricted to microglia within brain. [11C]CPPC demonstrates high and specific brain uptake in a murine and nonhuman primate lipopolysaccharide model of neuroinflammation. It also shows specific and elevated uptake in a murine model of AD, experimental allergic encephalomyelitis murine model of demyelination and in postmortem brain tissue of patients with AD. Radiation dosimetry in mice indicated [11C]CPPC to be safe for future human studies. [11C]CPPC can be synthesized in sufficient radiochemical yield, purity, and specific radioactivity and possesses binding specificity in relevant models that indicate potential for human PET imaging of CSF1R and the microglial component of neuroinflammation.
Collapse
|
47
|
Takatori S, Wang W, Iguchi A, Tomita T. Genetic Risk Factors for Alzheimer Disease: Emerging Roles of Microglia in Disease Pathomechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:83-116. [PMID: 30747419 DOI: 10.1007/978-3-030-05542-4_5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The accumulation of aggregated amyloid β (Aβ) peptides in the brain is deeply involved in Alzheimer disease (AD) pathogenesis. Mutations in APP and presenilins play major roles in Aβ pathology in rare autosomal-dominant forms of AD, whereas pathomechanisms of sporadic AD, accounting for the majority of cases, remain unknown. In this chapter, we review current knowledge on genetic risk factors of AD, clarified by recent advances in genome analysis technology. Interestingly, TREM2 and many genes associated with disease risk are predominantly expressed in microglia, suggesting that these risk factors are involved in pathogenicity through common mechanisms involving microglia. Therefore, we focus on factors closely associated with microglia and discuss their possible roles in pathomechanisms of AD. Furthermore, we review current views on the pathological roles of microglia and emphasize the importance of microglial changes in response to Aβ deposition and mechanisms underlying the phenotypic changes. Importantly, functional outcomes of microglial activation can be both protective and deleterious to neurons. We further describe the involvement of microglia in tau pathology and the activation of other glial cells. Through these topics, we shed light on microglia as a promising target for drug development for AD and other neurological disorders.
Collapse
Affiliation(s)
- Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Wenbo Wang
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Akihiro Iguchi
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
48
|
Pons V, Rivest S. New Therapeutic Avenues of mCSF for Brain Diseases and Injuries. Front Cell Neurosci 2018; 12:499. [PMID: 30618643 PMCID: PMC6306462 DOI: 10.3389/fncel.2018.00499] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/03/2018] [Indexed: 01/08/2023] Open
Abstract
Macrophage colony-stimulating factor (mCSF) is a cytokine known to promote the recruitment of macrophages inducing the release of CCL2, a chemokine mobilizing monocytes to sites of inflammation. Additionally, it induces microglia/macrophage proliferation and the polarization of these cells towards a M2-like phenotype, impairing their ability to release pro-inflammatory factors and toxic mediators, while favoring the release of mediators promoting tissue repair. Another important player is the mCSF receptor CSFR1, which is highly expressed in monocytes, macrophages and microglia. Here, we discuss the new interesting therapeutic avenue of the mCSF/CSFR1 axis on brain diseases. More specifically, mCSF cascade might stimulate the survival/proliferation of oligodendrocytes, enhance the immune response as well as modulate the release of growth factors and the phagocytic activity of immune cells to remove myelin debris and toxic proteins from the brain.
Collapse
Affiliation(s)
- Vincent Pons
- Neuroscience Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC, Canada
| | - Serge Rivest
- Neuroscience Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC, Canada
| |
Collapse
|
49
|
Kelly ÁM. Exercise-Induced Modulation of Neuroinflammation in Models of Alzheimer's Disease. Brain Plast 2018; 4:81-94. [PMID: 30564548 PMCID: PMC6296260 DOI: 10.3233/bpl-180074] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2018] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD), a progressive, neurodegenerative condition characterised by accumulation of toxic βeta-amyloid (Aβ) plaques, is one of the leading causes of dementia globally. The cognitive impairment that is a hallmark of AD may be caused by inflammation in the brain triggered and maintained by the presence of Aβ protein, ultimately leading to neuronal dysfunction and loss. Since there is a significant inflammatory component to AD, it is postulated that anti-inflammatory strategies may be of prophylactic or therapeutic benefit in AD. One such strategy is that of regular physical activity, which has been shown in epidemiological studies to be protective against various forms of dementia including AD. Exercise induces an anti-inflammatory environment in peripheral organs and also increases expression of anti-inflammatory molecules within the brain. Here we review the evidence, mainly from animal models of AD, supporting the hypothesis that exercise can reduce or slow the cellular and cognitive impairments associated with AD by modulating neuroinflammation.
Collapse
Affiliation(s)
- Áine M. Kelly
- Department of Physiology, School of Medicine & Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
50
|
Heard DS, Tuttle CSL, Lautenschlager NT, Maier AB. Repurposing Proteostasis-Modifying Drugs to Prevent or Treat Age-Related Dementia: A Systematic Review. Front Physiol 2018; 9:1520. [PMID: 30425653 PMCID: PMC6218672 DOI: 10.3389/fphys.2018.01520] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/09/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Dementia has a significant impact on quality of life of older individuals. Impaired proteostasis has been implicated as a potential cause of dementia, that can be therapeutically targeted to improve patient outcomes. This review aimed to collate all current evidence of the potential for targeting proteostasis with repurposed drugs as an intervention for age-related dementia and cognitive decline. Methods: PubMed, Web of Science and Embase databases were searched from inception until 4th July 2017 for studies published in English. Interventional studies of repurposed proteostasis-modifying drugs in Alzheimer's disease (AD), Parkinson's disease (PD), Lewy Body disease, vascular dementia, and cognitive aging, in either animal models or humans with change in cognition as the outcome were included. The SYRCLE and Cochrane tools were used to assess risk of bias for included studies. Results: Overall 47 trials, 38 animal and 9 human, were isolated for inclusion in this review. Drugs tested in animals and humans included lithium, rapamycin, rifampicin, and tyrosine kinase inhibitors. Drugs tested only in animals included Macrophage and Granulocyte-Macrophage Colony Stimulating Factors, methylene blue, dantrolene, geranylgeranylacetone, minocycline and phenylbutyric acid. Lithium (n = 10 animal, n = 6 human) and rapamycin (n = 12 animal, n = 1 human) were the most studied proteostasis modifying drugs influencing cognition. Nine of ten animal studies of lithium showed a statistically significant benefit in Alzheimer's models. Rapamycin demonstrated a significant benefit in models of vascular dementia, aging, and Alzheimer's, but may not be effective in treating established Alzheimer's pathology. Lithium and nilotinib had positive outcomes in human studies including Alzheimer's and Parkinson's patients respectively, while a human study of rifampicin in Alzheimer's failed to demonstrate benefit. Microdose lithium showed a strongly significant benefit in both animals and humans. While the risk of bias was relatively low in human studies, the risk of bias in animal studies was largely unclear. Conclusion: Overall, the collective findings support the hypothesis that targeting proteostasis for treatment of dementia may be beneficial, and therefore future studies in humans with repurposed proteostasis modifying drugs are warranted. Larger human clinical trials focusing on safety, efficacy, tolerability, and reproducibility are required to translate these therapeutics into clinical practice.
Collapse
Affiliation(s)
- Daniel S Heard
- North West Mental Health, Melbourne Health, Melbourne, VIC, Australia
| | - Camilla S L Tuttle
- @AgeMelbourne, Department of Medicine and Aged Care, University of Melbourne, Melbourne, VIC, Australia
| | - Nicola T Lautenschlager
- North West Mental Health, Melbourne Health, Melbourne, VIC, Australia.,Academic Unit for Psychiatry of Old Age, Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Andrea B Maier
- @AgeMelbourne, Department of Medicine and Aged Care, University of Melbourne, Melbourne, VIC, Australia.,@AgeAmsterdam, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| |
Collapse
|