1
|
Lv Y, Li Y, Fang M, Liu Y, Wang Y, Yang Y, Zou Y, Shi Q, Mu X. Chromosome-level genome assembly reveals adaptive evolution of the invasive Amazon sailfin catfish (Pterygoplichthys pardalis). Commun Biol 2025; 8:616. [PMID: 40240788 PMCID: PMC12003874 DOI: 10.1038/s42003-025-08029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Catfish represents a diverse lineage with variable number of chromosomes and complex relationships with humans. Although certain species pose significant invasive threats to native fish populations, comprehensive genomic investigations into the evolutionary adaptations that contribute to their invasion success are lacking. To address this gap, our study presents a high-quality genome assembly of the Amazon sailfin catfish (Pterygoplichthys pardalis), a member of the armored catfish family, along with a comprehensive comparative genomic analysis. By utilizing conserved genomic regions across different catfish species, we reconstructed the 29 ancestral chromosomes of catfish, including two microchromosomes (28 and 29) that show different fusion and breakage patterns across species. Our analysis shows that the Amazon sailfin catfish genome is notably larger (1.58 Gb) with more than 40,000 coding genes. The genome expansion was linked to early repetitive sequence expansions and recent gene duplications. Several expanded genes are associated with immune functions, including antigen recognition domains like the Ig-v-set domain and the tandem expansion of the CD300 gene family. We also identified specific insertions in CNEs (conserved non-coding elements) near genes involved in cellular processes and neural development. Additionally, rapidly evolving and positively selected genes in the Amazon sailfin catfish genome were found to be associated with collagen formation. Moreover, we identified multiple positively selected codons in hoxb9, which may lead to functional alterations. These findings provide insights into molecular adaptations in an invasive catfish that may underlie its widespread invasion success.
Collapse
Affiliation(s)
- Yunyun Lv
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang, 641100, China.
| | - Yanping Li
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Miao Fang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yi Liu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yuanyuan Wang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yexin Yang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yuanchao Zou
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Qiong Shi
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang, 641100, China.
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518067, China.
| | - Xidong Mu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.
| |
Collapse
|
2
|
Ebding J, Mazzone F, Kins S, Pielage J, Maritzen T. How neurons cope with oxidative stress. Biol Chem 2025:hsz-2024-0146. [PMID: 39988910 DOI: 10.1515/hsz-2024-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/31/2025] [Indexed: 02/25/2025]
Abstract
Neurons are highly dependent on mitochondrial respiration for energy, rendering them vulnerable to oxidative stress. Reactive oxygen species (ROS), by-products of oxidative phosphorylation, can damage lipids, proteins, and DNA, potentially triggering cell death pathways. This review explores the neuronal vulnerability to ROS, highlighting metabolic adaptations and antioxidant systems that mitigate oxidative damage. Balancing metabolic needs and oxidative stress defenses is critical for neurons, as disruptions are implicated in neurodegenerative diseases. Neurons uniquely modulate metabolic pathways, favoring glycolysis over oxidative phosphorylation in cell bodies, to minimize harmful ROS production. Key antioxidants, including superoxide dismutases and glutathione peroxidases, play crucial roles in neuronal protection, as evident from genetic studies linking deficiencies to neurodegeneration. Notably, neurons have the ability to adapt to oxidative conditions in compartment-specific manners and also utilize ROS as a signaling molecule to promote adaptive synaptic plasticity. Future research should aim to elucidate differential ROS signaling and antioxidant responses across neuronal compartments for improved therapeutic strategies.
Collapse
Affiliation(s)
- Johannes Ebding
- Department for Neurobiology and Zoology, 2026562 RPTU University Kaiserslautern-Landau, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| | - Fiorella Mazzone
- Department for Nanophysiology, 2026562 RPTU University Kaiserslautern-Landau, Paul-Ehrlich-Straße 23, D-67663 Kaiserslautern, Germany
| | - Stefan Kins
- Department for Human Biology, 2026562 RPTU University Kaiserslautern-Landau, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| | - Jan Pielage
- Department for Neurobiology and Zoology, 2026562 RPTU University Kaiserslautern-Landau, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| | - Tanja Maritzen
- Department for Nanophysiology, 2026562 RPTU University Kaiserslautern-Landau, Paul-Ehrlich-Straße 23, D-67663 Kaiserslautern, Germany
| |
Collapse
|
3
|
Karuntu JS, Almushattat H, Nguyen XTA, Plomp AS, Wanders RJA, Hoyng CB, van Schooneveld MJ, Schalij-Delfos NE, Brands MM, Leroy BP, van Karnebeek CDM, Bergen AA, van Genderen MM, Boon CJF. Syndromic Retinitis Pigmentosa. Prog Retin Eye Res 2024:101324. [PMID: 39733931 DOI: 10.1016/j.preteyeres.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy, characterized by the degeneration of photoreceptors, presenting as a rod-cone dystrophy. Approximately 20-30% of patients with RP also exhibit extra-ocular manifestations in the context of a syndrome. This manuscript discusses the broad spectrum of syndromes associated with RP, pathogenic mechanisms, clinical manifestations, differential diagnoses, clinical management approaches, and future perspectives. Given the diverse clinical and genetic landscape of syndromic RP, the diagnosis may be challenging. However, an accurate and timely diagnosis is essential for optimal clinical management, prognostication, and potential treatment. Broadly, the syndromes associated with RP can be categorized into ciliopathies, inherited metabolic disorders, mitochondrial disorders, and miscellaneous syndromes. Among the ciliopathies associated with RP, Usher syndrome and Bardet-Biedl syndrome are the most well-known. Less common ciliopathies include Cohen syndrome, Joubert syndrome, cranioectodermal dysplasia, asphyxiating thoracic dystrophy, Mainzer-Saldino syndrome, and RHYNS syndrome. Several inherited metabolic disorders can present with RP including Zellweger spectrum disorders, adult Refsum disease, α-methylacyl-CoA racemase deficiency, certain mucopolysaccharidoses, ataxia with vitamin E deficiency, abetalipoproteinemia, several neuronal ceroid lipofuscinoses, mevalonic aciduria, PKAN/HARP syndrome, PHARC syndrome, and methylmalonic acidaemia with homocystinuria type cobalamin (cbl) C disease. Due to the mitochondria's essential role in supplying continuous energy to the retina, disruption of mitochondrial function can lead to RP, as seen in Kearns-Sayre syndrome, NARP syndrome, primary coenzyme Q10 deficiency, SSBP1-associated disease, and long chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Lastly, Cockayne syndrome and PERCHING syndrome can present with RP, but they do not fit the abovementioned hierarchy and are thus categorized as 'Miscellaneous'. Several first-in-human clinical trials are underway or in preparation for some of these syndromic forms of RP.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hind Almushattat
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands
| | - Ronald J A Wanders
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Marion M Brands
- Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands; Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, The Netherlands
| | - Bart P Leroy
- Department of Ophthalmology & Center for Medical Genetics, Ghent University, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Clara D M van Karnebeek
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands; Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Shi X, He L, Wang Y, Wu Y, Lin D, Chen C, Yang M, Huang S. Mitochondrial dysfunction is a key link involved in the pathogenesis of sick sinus syndrome: a review. Front Cardiovasc Med 2024; 11:1488207. [PMID: 39534498 PMCID: PMC11554481 DOI: 10.3389/fcvm.2024.1488207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Sick sinus syndrome (SSS) is a grave medical condition that can precipitate sudden death. The pathogenesis of SSS remains incompletely understood. Existing research postulates that the fundamental mechanism involves increased fibrosis of the sinoatrial node and its surrounding tissues, as well as disturbances in the coupled-clock system, comprising the membrane clock and the Ca2+ clock. Mitochondrial dysfunction exacerbates regional tissue fibrosis and disrupts the functioning of both the membrane and calcium clocks. This plays a crucial role in the underlying pathophysiology of SSS, including mitochondrial energy metabolism disorders, mitochondrial oxidative stress damage, calcium overload, and mitochondrial quality control disorders. Elucidating the mitochondrial mechanisms involved in the pathophysiology of SSS and further investigating the disease's mechanisms is of great significance.
Collapse
Affiliation(s)
- Xinxin Shi
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liming He
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yucheng Wang
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Wu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dongming Lin
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Chao Chen
- Department of Cardiology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ming Yang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuwei Huang
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
5
|
Brachet C, Laemmle A, Cools M, Sauter KS, De Baere E, Vanlander A, Pandey AV, du Toit T, Voegel CD, Heinrichs C, Verdin H, Flück CE. Insight into the role of TXNRD2 in steroidogenesis through a novel homozygous TXNRD2 splice variant. Eur J Endocrinol 2024; 191:144-155. [PMID: 39097530 DOI: 10.1093/ejendo/lvae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 06/24/2024] [Indexed: 08/05/2024]
Abstract
OBJECTIVE Adrenal cortisol production occurs through a biosynthetic pathway which depend on NADH and NADPH for energy supply. The mitochondrial respiratory chain and the reactive oxygen species (ROS) detoxification system are therefore important for steroidogenesis. Mitochondrial dysfunction leading to oxidative stress has been implicated in the pathogenesis of several adrenal conditions. Nonetheless, only very few patients with variants in one gene of the ROS detoxification system, Thioredoxin Reductase 2 (TXNRD2), have been described with variable phenotypes. DESIGN Clinical, genetic, structural, and functional characterization of a novel, biallelic TXNRD2 splice variant. METHODS On human biomaterial, we performed whole exome sequencing to identify and RNA analysis to characterize the specific TXNRD2 splice variant. Amino acid conservation analysis and protein structure modeling were performed in silico. Using patient's fibroblast-derived human induced pluripotent stem cells, we generated adrenal-like cells (iALC) to study the impact of wild-type (WT) and mutant TXNRD2 on adrenal steroidogenesis and ROS production. RESULTS The patient had a complex phenotype of primary adrenal insufficiency (PAI), combined with genital, ophthalmological, and neurological features. He carried a homozygous splice variant c.1348-1G > T in TXNRD2 which leads to a shorter protein lacking the C-terminus and thereby affecting homodimerization and flavin adenine dinucleotide binding. Patient-derived iALC showed a loss of cortisol production with overall diminished adrenal steroidogenesis, while ROS production was significantly increased. CONCLUSION Lack of TXNRD2 activity for mitochondrial ROS detoxification affects adrenal steroidogenesis and predominantly cortisol production.
Collapse
Affiliation(s)
- Cécile Brachet
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Paediatric Endocrinology Unit, Avenue J.J. Crocq 15, 1020 Bruxelles, Belgium
| | - Alexander Laemmle
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Institute of Clinical Chemistry, University of Bern, 3010 Bern, Switzerland
| | - Martine Cools
- Department of Internal Medicine and Pediatrics, Ghent University; Department of Pediatrics, Division of Pediatric Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Kay-Sara Sauter
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University Hospital; Department of Biomolecular Medicine, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Arnaud Vanlander
- Mitochondrial Investigations Laboratory, Ghent University C. Heymanslaan 10, 9000 Ghent, Ghent, Belgium and Department of Internal Medicine and Paediatrics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Amit V Pandey
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Therina du Toit
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Clarissa D Voegel
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Claudine Heinrichs
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Paediatric Endocrinology Unit, Avenue J.J. Crocq 15, 1020 Bruxelles, Belgium
| | - Hannah Verdin
- Center for Medical Genetics, Ghent University Hospital; Department of Biomolecular Medicine, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
6
|
Song N, Mei S, Wang X, Hu G, Lu M. Focusing on mitochondria in the brain: from biology to therapeutics. Transl Neurodegener 2024; 13:23. [PMID: 38632601 PMCID: PMC11022390 DOI: 10.1186/s40035-024-00409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Mitochondria have multiple functions such as supplying energy, regulating the redox status, and producing proteins encoded by an independent genome. They are closely related to the physiology and pathology of many organs and tissues, among which the brain is particularly prominent. The brain demands 20% of the resting metabolic rate and holds highly active mitochondrial activities. Considerable research shows that mitochondria are closely related to brain function, while mitochondrial defects induce or exacerbate pathology in the brain. In this review, we provide comprehensive research advances of mitochondrial biology involved in brain functions, as well as the mitochondria-dependent cellular events in brain physiology and pathology. Furthermore, various perspectives are explored to better identify the mitochondrial roles in neurological diseases and the neurophenotypes of mitochondrial diseases. Finally, mitochondrial therapies are discussed. Mitochondrial-targeting therapeutics are showing great potentials in the treatment of brain diseases.
Collapse
Affiliation(s)
- Nanshan Song
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shuyuan Mei
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangxu Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Gang Hu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
7
|
Zhou L, Lu X, Wang X, Huang Z, Wu Y, Zhou L, Meng L, Fu Q, Xia L, Meng S. A Pilot Urinary Proteome Study Reveals Widespread Influences of Circadian Rhythm Disruption by Sleep Deprivation. Appl Biochem Biotechnol 2024; 196:1992-2011. [PMID: 37458940 DOI: 10.1007/s12010-023-04666-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 04/23/2024]
Abstract
It is widely accepted that circadian rhythm disruption caused short- or long-term adverse effects on health. Although many previous studies have focused on exploration of the molecular mechanisms, there is no rapid, convenient, and non-invasive method to reveal the influence on health after circadian rhythm disruption. Here, we performed a high-resolution mass spectrometry-based data-independent acquisition (DIA) quantitative urinary proteomic approach in order to explore whether urine could reveal stress changes to those brought about by circadian rhythm disruption after sleep deprivation. After sleep deprivation, the subjects showed a significant increase in both systolic and diastolic blood pressure compared with routine sleep. More than 2000 proteins were quantified and they contained specific proteins for various organs throughout the body. And a total of 177 significantly up-regulated proteins and 68 significantly down-regulated proteins were obtained after sleep deprivation. These differentially expressed proteins (DEPs) were associated with multiple organs and pathways, which reflected widespread influences of sleep deprivation. Besides, machine learning identified a panel of five DEPs (CD300A, SCAMP3, TXN2, EFEMP1, and MYH11) that can effectively discriminate circadian rhythm disruption. Taken together, our results validate the value of urinary proteome in predicting and diagnosing the changes by circadian rhythm disruption.
Collapse
Affiliation(s)
- Li Zhou
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinyu Lu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoling Wang
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhixi Huang
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunzhe Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liyang Zhou
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liyuan Meng
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qin Fu
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Xia
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Shuang Meng
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
8
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
9
|
Grüning NM, Ralser M. Monogenic Disorders of ROS Production and the Primary Anti-Oxidative Defense. Biomolecules 2024; 14:206. [PMID: 38397443 PMCID: PMC10887155 DOI: 10.3390/biom14020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Oxidative stress, characterized by an imbalance between the production of reactive oxygen species (ROS) and the cellular anti-oxidant defense mechanisms, plays a critical role in the pathogenesis of various human diseases. Redox metabolism, comprising a network of enzymes and genes, serves as a crucial regulator of ROS levels and maintains cellular homeostasis. This review provides an overview of the most important human genes encoding for proteins involved in ROS generation, ROS detoxification, and production of reduced nicotinamide adenine dinucleotide phosphate (NADPH), and the genetic disorders that lead to dysregulation of these vital processes. Insights gained from studies on inherited monogenic metabolic diseases provide valuable basic understanding of redox metabolism and signaling, and they also help to unravel the underlying pathomechanisms that contribute to prevalent chronic disorders like cardiovascular disease, neurodegeneration, and cancer.
Collapse
Affiliation(s)
- Nana-Maria Grüning
- Department of Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Markus Ralser
- Department of Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany;
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|
10
|
Kanduc D. Molecular Mimicry between Meningococcal B Factor H-Binding Protein and Human Proteins. Glob Med Genet 2023; 10:311-314. [PMID: 38025196 PMCID: PMC10653992 DOI: 10.1055/s-0043-1776985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
This study calls attention on molecular mimicry and the consequent autoimmune cross reactivity as the molecular mechanism that can cause adverse events following meningococcal B vaccination and warns against active immunizations based on entire antigen.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
11
|
Hughes DJ, Schomburg L, Jenab M, Biessy C, Méplan C, Moskal A, Sun Q, Demircan K, Fedirko V, Weiderpass E, Mukhtar M, Olsen A, Tjønneland A, Overvad K, Schulze M, Nøst TH, Skeie G, Olsen KS, Ricceri F, Grioni S, Palli D, Masala G, Tumino R, Pasanisi F, Amiano P, Colorado Yohar SM, Agudo A, Sánchez MJ, Ardanaz E, Sund M, Andersson A, Perez-Cornago A, Travis R, Heath AK, Dossus L. Prediagnostic selenium status, selenoprotein gene variants and association with breast cancer risk in a European cohort study. Free Radic Biol Med 2023; 209:381-393. [PMID: 37923090 DOI: 10.1016/j.freeradbiomed.2023.10.401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Selenium (Se) may help prevent breast cancer (BC) development. Owing to limited observational evidence, we investigated whether prediagnostic Se status and/or variants in the selenoprotein genes are associated with BC risk in a large European cohort. Se status was assessed by plasma measures of Se and its major circulating proteins, selenoprotein P (SELENOP) and glutathione peroxidase 3 (GPX3), in matched BC case-control pairs (2208 for SELENOP; 1785 for GPX3 and Se) nested within the European Prospective Investigation into Cancer and Nutrition (EPIC). Single nucleotide polymorphisms (SNPs, n = 452) in 55 selenoprotein and Se metabolic pathway genes and an additional 18 variants previously associated with Se concentrations were extracted from existing genotyping data within EPIC for 1564 case-control pairs. Multivariable-adjusted logistic regression models were used to calculate the odds ratios (ORs) and 95 % confidence intervals (CIs) of the association between Se status markers, SNP variants and BC risk. Overall, there was no statistically significant association of Se status with BC risk. However, higher GPX3 activity was associated with lower risk of premenopausal BC (4th versus 1st quartile, OR = 0.54, 95 % CI: 0.30-0.98, Ptrend = 0.013). While none of the genetic variant associations (P ≤ 0.05) retained significance after multiple testing correction, rs1004243 in the SELENOM selenoprotein gene and two SNPs in the related antioxidant TXN2 gene (rs4821494 and rs5750261) were associated with respective lower and higher risks of BC at a significance threshold of P ≤ 0.01. Fourteen SNPs in twelve Se pathway genes (P ≤ 0.01) in interaction with Se status were also associated with BC risk. Higher Se status does not appear to be associated with BC risk, although activity of the selenoenzyme GPX3 may be inversely associated with premenopausal BC risk, and SNPs in the Se pathway alone or in combination with suboptimal Se status may influence BC risk.
Collapse
Affiliation(s)
- David J Hughes
- Cancer Biology and Therapeutics Group, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland.
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charité - Medical University, Berlin, Germany
| | - Mazda Jenab
- International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Carine Biessy
- International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Catherine Méplan
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Aurelie Moskal
- International Agency for Research on Cancer (IARC-WHO), Lyon, France; Research on Healthcare Performance (RESHAPE), INSERM U1290, Université Claude Bernard Lyon 1, Lyon, France
| | - Qian Sun
- Institute for Experimental Endocrinology, Charité - Medical University, Berlin, Germany
| | - Kamil Demircan
- Institute for Experimental Endocrinology, Charité - Medical University, Berlin, Germany
| | - Veronika Fedirko
- Department of Epidemiology, MD Anderson Cancer Centre, Houston, TX, USA
| | | | - Maryam Mukhtar
- Cancer Biology and Therapeutics Group, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Anja Olsen
- Diet, Genes, and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark; Institute of Public Health, Aarhus University, Aarhus, Denmark
| | - Anne Tjønneland
- Diet, Genes, and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark; Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Kim Overvad
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark; Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Matthias Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition, 14558, Nuthetal, Germany
| | - Therese Haugdahl Nøst
- Department of Community Medicine, UiT the Arctic University of Norway, N-9037, Tromsø, Norway
| | - Guri Skeie
- Department of Community Medicine, UiT the Arctic University of Norway, N-9037, Tromsø, Norway
| | - Karina Standahl Olsen
- Department of Community Medicine, UiT the Arctic University of Norway, N-9037, Tromsø, Norway
| | - Fulvio Ricceri
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy; Unit of Epidemiology, Regional Health Service ASL TO3, Grugliasco, TO, Italy
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori di Milano, 20133, Milano, Italy
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Rosario Tumino
- Hyblean Association for Epidemiological Research, AIRE ONLUS Ragusa, Italy
| | - Fabrizio Pasanisi
- Departiment Di Medicina Clinica E Chirurgia Federico Ii University, Naples, Italy
| | - Pilar Amiano
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain; Biodonostia Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, San Sebastián, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra M Colorado Yohar
- Department of Epidemiology, Murcia Regional Health Council, IMIB, Murcia, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain; Nutrition and Cancer Group, Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Maria-Jose Sánchez
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Escuela Andaluza de Salud Pública (EASP), 18011, Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, 18012, Granada, Spain; Department of Preventive Medicine and Public Health, University of Granada, 18071, Granada, Spain
| | - Eva Ardanaz
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Navarra Public Health Institute, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Malin Sund
- Department of Surgery and Perioperative Sciences, Umeå University, Umeå, Sweden; Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne Andersson
- Department of Radiation Sciences/Oncology, Umeå University, Umeå, Sweden
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Ruth Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Laure Dossus
- International Agency for Research on Cancer (IARC-WHO), Lyon, France
| |
Collapse
|
12
|
León-Reyes G, Argoty-Pantoja AD, Becerra-Cervera A, López-Montoya P, Rivera-Paredez B, Velázquez-Cruz R. Oxidative-Stress-Related Genes in Osteoporosis: A Systematic Review. Antioxidants (Basel) 2023; 12:antiox12040915. [PMID: 37107290 PMCID: PMC10135393 DOI: 10.3390/antiox12040915] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Osteoporosis is characterized by a decline in bone mineral density (BMD) and increased fracture risk. Free radicals and antioxidant systems play a central role in bone remodeling. This study was conducted to illustrate the role of oxidative-stress-related genes in BMD and osteoporosis. A systematic review was performed following the PRISMA guidelines. The search was computed in PubMed, Web of Sciences, Scopus, EBSCO, and BVS from inception to November 1st, 2022. The risk of bias was evaluated using the Joanna Briggs Institute Critical Appraisal Checklist tool. A total of 427 potentially eligible articles exploring this search question were detected. After removing duplicates (n = 112) and excluding irrelevant manuscripts based on screenings of their titles and abstracts (n = 317), 19 articles were selected for full-text review. Finally, 14 original articles were included in this systematic review after we applied the exclusion and inclusion criteria. Data analyzed in this systematic review indicated that oxidative-stress-related genetic polymorphisms are associated with BMD at different skeletal sites in diverse populations, influencing the risk of osteoporosis or osteoporotic fracture. However, it is necessary to look deep into their association with bone metabolism to determine if the findings can be translated into the clinical management of osteoporosis and its progression.
Collapse
Affiliation(s)
- Guadalupe León-Reyes
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| | - Anna D Argoty-Pantoja
- Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Adriana Becerra-Cervera
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
- National Council of Science and Technology (CONACYT), Mexico City 03940, Mexico
| | - Priscilla López-Montoya
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| | - Berenice Rivera-Paredez
- Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Rafael Velázquez-Cruz
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| |
Collapse
|
13
|
Distelmaier F, Klopstock T. Neuroimaging in mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:173-185. [PMID: 36813312 DOI: 10.1016/b978-0-12-821751-1.00016-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The anatomic complexity of the brain in combination with its high energy demands makes this organ specifically vulnerable to defects of mitochondrial oxidative phosphorylation. Therefore, neurodegeneration is a hallmark of mitochondrial diseases. The nervous system of affected individuals typically shows selective regional vulnerability leading to distinct patterns of tissue damage. A classic example is Leigh syndrome, which causes symmetric alterations of basal ganglia and brain stem. Leigh syndrome can be caused by different genetic defects (>75 known disease genes) with variable disease onset ranging from infancy to adulthood. Other mitochondrial diseases are characterized by focal brain lesions, which is a core feature of MELAS syndrome (mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes). Apart from gray matter, also white matter can be affected by mitochondrial dysfunction. White matter lesions vary depending on the underlying genetic defect and may progress into cystic cavities. In view of the recognizable patterns of brain damage in mitochondrial diseases, neuroimaging techniques play a key role in diagnostic work-up. In the clinical setting, magnetic resonance imaging (MRI) and MR spectroscopy (MRS) are the mainstay of diagnostic work-up. Apart from visualization of brain anatomy, MRS allows the detection of metabolites such as lactate, which is of specific interest in the context of mitochondrial dysfunction. However, it is important to note that findings like symmetric basal ganglia lesions on MRI or a lactate peak on MRS are not specific, and that there is a broad range of disorders that can mimic mitochondrial diseases on neuroimaging. In this chapter, we will review the spectrum of neuroimaging findings in mitochondrial diseases and discuss important differential diagnoses. Moreover, we will give an outlook on novel biomedical imaging tools that may provide interesting insights into mitochondrial disease pathophysiology.
Collapse
Affiliation(s)
- Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Network for mitochondrial disorders (mitoNET), Munich, Germany
| |
Collapse
|
14
|
Jia J, Xu G, Zhu D, Liu H, Zeng X, Li L. Advances in the Functions of Thioredoxin System in Central Nervous System Diseases. Antioxid Redox Signal 2023; 38:425-441. [PMID: 35761787 DOI: 10.1089/ars.2022.0079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: The thioredoxin system comprises thioredoxin (Trx), thioredoxin reductase (TrxR), and nicotinamide adenine dinucleotide phosphate, besides an endogenous Trx inhibitor, the thioredoxin-interacting protein (TXNIP). The Trx system plays critical roles in maintaining the redox homeostasis in the central nervous system (CNS), in which oxidative stress damage is prone to occurrence due to its high-energy demand. Recent Advances: Increasing studies have demonstrated that the expression or activity of Trx/TrxR is usually decreased and that TXNIP expression is increased in patients with CNS diseases, including neurodegenerative diseases, cerebral ischemia, traumatic brain injury, and depression, as well as in their cellular and animal models. The compromise of Trx/TrxR enhances the susceptibility of neurons to related pathological state. Increased TXNIP not only enhances the inhibition of Trx activity, but also activates the NOD-like receptor protein 3 inflammasome, resulting in neuroinflammation in the brain. Critical Issues: In this review, we highlight the sources of oxidative stress in the CNS. The expression and function of the Trx system are summarized in different CNS diseases. This review also mentions that some inducers of Trx show neuroprotection in CNS diseases. Future Directions: Accumulating evidence has demonstrated the important roles of the Trx system in CNS diseases, suggesting that the Trx system may be a promising therapeutic target for CNS diseases. Further study should aim to develop the most effective inducers of Trx and specific inhibitors of TXNIP and to apply them in the clinical trials for the treatment of CNS diseases. Antioxid. Redox Signal. 38, 425-441.
Collapse
Affiliation(s)
- Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
- Department of Physiology, Jiaxing University Medical College, Jiaxing, China
| | - Guangtao Xu
- Department of Forensic and Pathology, Jiaxing University Medical College, Jiaxing, China
| | - Dongsheng Zhu
- Department of Neurology, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hongjun Liu
- Department of Neurology, Affiliated Xin'an International Hospital, Jiaxing University, Jiaxing, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
- Department of Biochemistry, Jiaxing University Medical College, Jiaxing, China
| | - Li Li
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
- Department of Physiology, Jiaxing University Medical College, Jiaxing, China
| |
Collapse
|
15
|
Jacobs LJHC, Riemer J. Maintenance of small molecule redox homeostasis in mitochondria. FEBS Lett 2023; 597:205-223. [PMID: 36030088 DOI: 10.1002/1873-3468.14485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 01/26/2023]
Abstract
Compartmentalisation of eukaryotic cells enables fundamental otherwise often incompatible cellular processes. Establishment and maintenance of distinct compartments in the cell relies not only on proteins, lipids and metabolites but also on small redox molecules. In particular, small redox molecules such as glutathione, NAD(P)H and hydrogen peroxide (H2 O2 ) cooperate with protein partners in dedicated machineries to establish specific subcellular redox compartments with conditions that enable oxidative protein folding and redox signalling. Dysregulated redox homeostasis has been directly linked with a number of diseases including cancer, neurological disorders, cardiovascular diseases, obesity, metabolic diseases and ageing. In this review, we will summarise mechanisms regulating establishment and maintenance of redox homeostasis in the mitochondrial subcompartments of mammalian cells.
Collapse
Affiliation(s)
- Lianne J H C Jacobs
- Institute for Biochemistry and Center of Excellence for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Jan Riemer
- Institute for Biochemistry and Center of Excellence for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| |
Collapse
|
16
|
A novel biallelic variant further delineates PRDX3-related autosomal recessive cerebellar ataxia. Neurogenetics 2023; 24:55-60. [PMID: 36190665 DOI: 10.1007/s10048-022-00701-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/23/2022] [Indexed: 01/01/2023]
Abstract
Cerebellar ataxias (CAs) comprise a rare group of neurological disorders characterized by extensive phenotypic and genetic heterogeneity. In the last several years, our understanding of the CA etiology has increased significantly and resulted in the discoveries of numerous ataxia-associated genes. Herein, we describe a single affected individual from a consanguineous family segregating a recessive neurodevelopmental disorder. The proband showed features such as global developmental delay, cerebellar atrophy, hypotonia, speech issues, dystonia, and profound hearing impairment. Whole-exome sequencing and Sanger sequencing revealed a biallelic nonsense variant (c.496A > T; p.Lys166*) in the exon 5 of the PRDX3 gene that segregated perfectly within the family. This is the third report that associates the PRDX3 gene variant with cerebellar ataxia. In addition, associated hearing impairment further delineates the PRDX3 associated gene phenotypes.
Collapse
|
17
|
Behl S, Mehta S, Pandey MK. The role of selenoproteins in neurodevelopment and neurological function: Implications in autism spectrum disorder. Front Mol Neurosci 2023; 16:1130922. [PMID: 36969558 PMCID: PMC10034371 DOI: 10.3389/fnmol.2023.1130922] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/17/2023] [Indexed: 03/29/2023] Open
Abstract
Selenium and selenoproteins play a role in many biological functions, particularly in brain development and function. This review outlines the role of each class of selenoprotein in human brain function. Most selenoproteins play a large antioxidant role within the brain. Autism spectrum disorder (ASD) has been shown to correlate with increased oxidative stress, and the presumption of selenoproteins as key players in ASD etiology are discussed. Further, current literature surrounding selenium in ASD and selenium supplementation studies are reviewed. Finally, perspectives are given for future directions of selenoprotein research in ASD.
Collapse
Affiliation(s)
- Supriya Behl
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Sunil Mehta
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Mukesh K. Pandey
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Mukesh K. Pandey,
| |
Collapse
|
18
|
Baker MJ, Crameri JJ, Thorburn DR, Frazier AE, Stojanovski D. Mitochondrial biology and dysfunction in secondary mitochondrial disease. Open Biol 2022; 12:220274. [PMID: 36475414 PMCID: PMC9727669 DOI: 10.1098/rsob.220274] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial diseases are a broad, genetically heterogeneous class of metabolic disorders characterized by deficits in oxidative phosphorylation (OXPHOS). Primary mitochondrial disease (PMD) defines pathologies resulting from mutation of mitochondrial DNA (mtDNA) or nuclear genes affecting either mtDNA expression or the biogenesis and function of the respiratory chain. Secondary mitochondrial disease (SMD) arises due to mutation of nuclear-encoded genes independent of, or indirectly influencing OXPHOS assembly and operation. Despite instances of novel SMD increasing year-on-year, PMD is much more widely discussed in the literature. Indeed, since the implementation of next generation sequencing (NGS) techniques in 2010, many novel mitochondrial disease genes have been identified, approximately half of which are linked to SMD. This review will consolidate existing knowledge of SMDs and outline discrete categories within which to better understand the diversity of SMD phenotypes. By providing context to the biochemical and molecular pathways perturbed in SMD, we hope to further demonstrate the intricacies of SMD pathologies outside of their indirect contribution to mitochondrial energy generation.
Collapse
Affiliation(s)
- Megan J. Baker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jordan J. Crameri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - David R. Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia,Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Ann E. Frazier
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
19
|
Thioredoxin deficiency increases oxidative stress and causes bilateral symmetrical degeneration in rat midbrain. Neurobiol Dis 2022; 175:105921. [DOI: 10.1016/j.nbd.2022.105921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
|
20
|
Chakraborty S, Sircar E, Bhattacharyya C, Choudhuri A, Mishra A, Dutta S, Bhatta S, Sachin K, Sengupta R. S-Denitrosylation: A Crosstalk between Glutathione and Redoxin Systems. Antioxidants (Basel) 2022; 11:1921. [PMID: 36290644 PMCID: PMC9598160 DOI: 10.3390/antiox11101921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 08/27/2023] Open
Abstract
S-nitrosylation of proteins occurs as a consequence of the derivatization of cysteine thiols with nitric oxide (NO) and is often associated with diseases and protein malfunction. Aberrant S-nitrosylation, in addition to other genetic and epigenetic factors, has gained rapid importance as a prime cause of various metabolic, respiratory, and cardiac disorders, with a major emphasis on cancer and neurodegeneration. The S-nitrosoproteome, a term used to collectively refer to the diverse and dynamic repertoire of S-nitrosylated proteins, is relatively less explored in the field of redox biochemistry, in contrast to other covalently modified versions of the same set of proteins. Advancing research is gradually unveiling the enormous clinical importance of S-nitrosylation in the etiology of diseases and is opening up new avenues of prompt diagnosis that harness this phenomenon. Ever since the discovery of the two robust and highly conserved S-nitrosoglutathione reductase and thioredoxin systems as candidate denitrosylases, years of rampant speculation centered around the identification of specific substrates and other candidate denitrosylases, subcellular localization of both substrates and denitrosylases, the position of susceptible thiols, mechanisms of S-denitrosylation under basal and stimulus-dependent conditions, impact on protein conformation and function, and extrapolating these findings towards the understanding of diseases, aging and the development of novel therapeutic strategies. However, newer insights in the ever-expanding field of redox biology reveal distinct gaps in exploring the crucial crosstalk between the redoxins/major denitrosylase systems. Clarifying the importance of the functional overlap of the glutaredoxin, glutathione, and thioredoxin systems and examining their complementary functions as denitrosylases and antioxidant enzymatic defense systems are essential prerequisites for devising a rationale that could aid in predicting the extent of cell survival under high oxidative/nitrosative stress while taking into account the existence of the alternative and compensatory regulatory mechanisms. This review thus attempts to highlight major gaps in our understanding of the robust cellular redox regulation system, which is upheld by the concerted efforts of various denitrosylases and antioxidants.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Esha Sircar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Camelia Bhattacharyya
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Ankita Choudhuri
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Akansha Mishra
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Sreejita Dutta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Sneha Bhatta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Kumar Sachin
- Department of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| |
Collapse
|
21
|
Martínez-Rubio D, Rodríguez-Prieto Á, Sancho P, Navarro-González C, Gorría-Redondo N, Miquel-Leal J, Marco-Marín C, Jenkins A, Soriano-Navarro M, Hernández A, Pérez-Dueñas B, Fazzari P, AƗguilera-Albesa S, Espinós C. Protein misfolding and clearance in the pathogenesis of a new infantile onset ataxia caused by mutations in PRDX3. Hum Mol Genet 2022; 31:3897-3913. [PMID: 35766882 DOI: 10.1093/hmg/ddac146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxiredoxin 3 (PRDX3) encodes a mitochondrial antioxidant protein which is essential for the control of reactive oxidative species (ROS) homeostasis. So far, PRDX3 mutations are involved in mild-to-moderate progressive juvenile onset cerebellar ataxia. We aimed to unravel the molecular bases underlying the disease in an infant suffering from cerebellar ataxia that started at 19 months old and presented severe cerebellar atrophy and peripheral neuropathy early in the course of disease. By whole exome sequencing, we identified a novel homozygous mutation, PRDX3 p.D163E, which impaired the mitochondrial ROS defense system. In mouse primary cortical neurons, the exogenous expression of PRDX3 p.D163E was reduced and triggered alterations in neurite morphology and in mitochondria. Mitochondrial computational parameters showed that p.D163E led to serious mitochondrial alterations. In transfected HeLa cells expressing the mutation, mitochondria accumulation was detected by correlative light electron microscopy (CLEM). Mitochondrial morphology showed severe changes, including extremely damaged outer and inner membranes with a notable cristae disorganization. Moreover, spherical structures compatible with lipid droplets were identified, which can be associated with a generalized response to stress and can be involved in the removal of unfolded proteins. In the patient's fibroblasts, PRDX3 expression was nearly absent. The biochemical analysis suggested that the mutation p.D163E would result in an unstable structure tending to form aggregates that trigger unfolded protein responses via mitochondria and endoplasmic reticulum. Altogether, our findings broaden the clinical spectrum of the recently described PRDX3-associated neurodegeneration and provide new insight into the pathological mechanisms underlying this new form of cerebellar ataxia.
Collapse
Affiliation(s)
- Dolores Martínez-Rubio
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain.,Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 Valencia, Spain
| | - Ángela Rodríguez-Prieto
- Cortical Circuits in Health and Disease Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Paula Sancho
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Carmen Navarro-González
- Cortical Circuits in Health and Disease Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Nerea Gorría-Redondo
- Pediatric Neurology Unit, Department of Pediatrics, Complejo Hospitalario de Navarra, Navarrabiomed, 31008 Pamplona, Spain
| | - Javier Miquel-Leal
- Cortical Circuits in Health and Disease Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Clara Marco-Marín
- Structural Enzymopathology Unit, Instituto de Biomedicina de Valencia (IBV), Consejo Superior de Investigaciones Científicas (CSIC), CIBER de Enfermedades Raras (CIBERER-ISCIII), 46010 Valencia, Spain
| | - Alison Jenkins
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Mario Soriano-Navarro
- Electron Microscopy Core Facility, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Alberto Hernández
- Service of Advanced Light Microscopy, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Belén Pérez-Dueñas
- Department of Pediatric Neurology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, 08035 Barcelona, Spain
| | - Pietro Fazzari
- Cortical Circuits in Health and Disease Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Sergio AƗguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Complejo Hospitalario de Navarra, Navarrabiomed, 31008 Pamplona, Spain
| | - Carmen Espinós
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain.,Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 Valencia, Spain.,Biotechnology Department, Faculty of Veterinary and Experimental Sciences, Universidad Católica de Valencia, 46001 Valencia, Spain
| |
Collapse
|
22
|
TRX2/Rab35 Interaction Impairs Exosome Secretion by Inducing Rab35 Degradation. Int J Mol Sci 2022; 23:ijms23126557. [PMID: 35743001 PMCID: PMC9224307 DOI: 10.3390/ijms23126557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Given that exosomes mediate intercellular communication by delivering cellular components to recipient cells or tissue, they have the potential to be engineered to deliver therapeutic payloads. However, the regulatory mechanism of exosome secretion is poorly understood. In addition, mitochondrial components have been found in exosomes, suggesting communication between mitochondria and exosomes. However, the molecular mechanism of the mitochondria and vesicle interaction remains unclear. Here, we showed that mitochondrial thioredoxin 2 (TRX2) decreased exosome concentrations and inhibited HCT116 cell migration. Coimmunoprecipitation/mass spectrometry (Co-IP/MS) showed that TRX2 interacted with Rab35. TRX2 and Rab35 bound to each other at their N-terminal motifs and colocalized on mitochondria. Furthermore, TRX2 induced Rab35 degradation, resulting in impaired exosome secretion. Additionally, Rab35 mediated the suppressive effects of TRX2 on cell migration, and TRX2 suppressed cell migration through exosomes. Taken together, this study first found an interaction between TRX2 and Rab35. These results revealed a new role for TRX2 in the regulation of exosome secretion and cell migration and explained the upstream regulatory mechanism of Rab35. Furthermore, these findings also provide new molecular evidence for communication between mitochondria and vesicles.
Collapse
|
23
|
Usategui-Martín R, Puertas-Neyra K, Galindo-Cabello N, Hernández-Rodríguez LA, González-Pérez F, Rodríguez-Cabello JC, González-Sarmiento R, Pastor JC, Fernandez-Bueno I. Retinal Neuroprotective Effect of Mesenchymal Stem Cells Secretome Through Modulation of Oxidative Stress, Autophagy, and Programmed Cell Death. Invest Ophthalmol Vis Sci 2022; 63:27. [PMID: 35486068 PMCID: PMC9055551 DOI: 10.1167/iovs.63.4.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Purpose Degenerative mechanisms of retinal neurodegenerative diseases (RND) share common cellular and molecular signalization pathways. Curative treatment does not exist and cell-based therapy, through the paracrine properties of mesenchymal stem cells (MSC), is a potential unspecific treatment for RND. This study aimed to evaluate the neuroprotective capability of human bone marrow (bm) MSC secretome and its potential to modulate retinal responses to neurodegeneration. Methods An in vitro model of spontaneous retinal neurodegeneration was used to compare three days of monocultured neuroretina (NR), NR cocultured with bmMSC, and NR cultured with bmMSC secretome. We evaluated retinal morphology markers (Lectin peanut agglutinin, rhodopsin, protein kinase C α isoform, neuronal-specific nuclear protein, glial fibrillary acidic protein, TdT-mediated dUTP nick-end labeling, and vimentin) and proteins involved in apoptosis (apoptosis-inductor factor, caspase-3), necroptosis (MLKL), and autophagy (p62). Besides, we analyzed the relative mRNA expression through qPCR of genes involved in apoptosis (BAX, BCL2, CASP3, CASP8, CASP9), necroptosis (MLKL, RIPK1, RIPK3), autophagy (ATG7, BCLIN1, LC3B, mTOR, SQSTM1), oxidative stress (COX2, CYBA, CYBB, GPX6, SOD1, TXN2, TXNRD1) and inflammation (IL1, IL6, IL10, TGFb1, TNFa). Results The bmMSC secretome preserves retinal morphology, limits pro-apoptotic- and pro-necroptotic-related gene and protein expression, modulates autophagy-related genes and proteins, and stimulates the activation of antioxidant-associated genes. Conclusions The neuroprotective ability of the bmMSC secretome is associated with activation of antioxidant machinery, modulation of autophagy, and inhibition of apoptosis and necroptosis during retinal degeneration. The neuroprotective effect of bmMSC secretomes in the presence/absence of MSC looks similar. Our current results reinforce the hypothesis that the human bmMSC secretome slows retinal neurodegeneration and may be a therapeutic option for treating RND.
Collapse
Affiliation(s)
- Ricardo Usategui-Martín
- Instituto Universitario de Oftalmobiología Aplicada, Retina Group, Universidad de Valladolid, Valladolid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain.,Red Temática de Investigación Cooperativa en Salud, Oftared, Instituto de Salud Carlos III, Valladolid, Spain.,RetiBrain (RED2018-102499-T), Ministerio de Ciencia, Innovación y Universidades, Valladolid, Spain
| | - Kevin Puertas-Neyra
- Instituto Universitario de Oftalmobiología Aplicada, Retina Group, Universidad de Valladolid, Valladolid, Spain
| | - Nadia Galindo-Cabello
- Instituto Universitario de Oftalmobiología Aplicada, Retina Group, Universidad de Valladolid, Valladolid, Spain.,Postgraduate Unit, Faculty of Biological Sciences, National University of San Marcos, Lima, Peru
| | | | - Fernando González-Pérez
- Group for Advanced Materials and Nanobiotechnology (GIR BIOFORGE), CIBER-BBN, Edificio LUCIA, Universidad de Valladolid, Paseo Belén 19, Valladolid, Spain
| | - José Carlos Rodríguez-Cabello
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain.,Group for Advanced Materials and Nanobiotechnology (GIR BIOFORGE), CIBER-BBN, Edificio LUCIA, Universidad de Valladolid, Paseo Belén 19, Valladolid, Spain
| | - Rogelio González-Sarmiento
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Institute of Molecular and Cellular Biology of Cancer, University of Salamanca-CSIC, Salamanca, Spain
| | - José Carlos Pastor
- Instituto Universitario de Oftalmobiología Aplicada, Retina Group, Universidad de Valladolid, Valladolid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain.,Red Temática de Investigación Cooperativa en Salud, Oftared, Instituto de Salud Carlos III, Valladolid, Spain.,RetiBrain (RED2018-102499-T), Ministerio de Ciencia, Innovación y Universidades, Valladolid, Spain
| | - Ivan Fernandez-Bueno
- Instituto Universitario de Oftalmobiología Aplicada, Retina Group, Universidad de Valladolid, Valladolid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain.,Red Temática de Investigación Cooperativa en Salud, Oftared, Instituto de Salud Carlos III, Valladolid, Spain.,RetiBrain (RED2018-102499-T), Ministerio de Ciencia, Innovación y Universidades, Valladolid, Spain
| |
Collapse
|
24
|
Morris G, Walder K, Berk M, Carvalho AF, Marx W, Bortolasci CC, Yung AR, Puri BK, Maes M. Intertwined associations between oxidative and nitrosative stress and endocannabinoid system pathways: Relevance for neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2022; 114:110481. [PMID: 34826557 DOI: 10.1016/j.pnpbp.2021.110481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/19/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) appears to regulate metabolic, cardiovascular, immune, gastrointestinal, lung, and reproductive system functions, as well as the central nervous system. There is also evidence that neuropsychiatric disorders are associated with ECS abnormalities as well as oxidative and nitrosative stress pathways. The goal of this mechanistic review is to investigate the mechanisms underlying the ECS's regulation of redox signalling, as well as the mechanisms by which activated oxidative and nitrosative stress pathways may impair ECS-mediated signalling. Cannabinoid receptor (CB)1 activation and upregulation of brain CB2 receptors reduce oxidative stress in the brain, resulting in less tissue damage and less neuroinflammation. Chronically high levels of oxidative stress may impair CB1 and CB2 receptor activity. CB1 activation in peripheral cells increases nitrosative stress and inducible nitric oxide (iNOS) activity, reducing mitochondrial activity. Upregulation of CB2 in the peripheral and central nervous systems may reduce iNOS, nitrosative stress, and neuroinflammation. Nitrosative stress may have an impact on CB1 and CB2-mediated signalling. Peripheral immune activation, which frequently occurs in response to nitro-oxidative stress, may result in increased expression of CB2 receptors on T and B lymphocytes, dendritic cells, and macrophages, reducing the production of inflammatory products and limiting the duration and intensity of the immune and oxidative stress response. In conclusion, high levels of oxidative and nitrosative stress may compromise or even abolish ECS-mediated redox pathway regulation. Future research in neuropsychiatric disorders like mood disorders and deficit schizophrenia should explore abnormalities in these intertwined signalling pathways.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Wolf Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Alison R Yung
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia; School of Health Science, University of Manchester, UK.
| | - Basant K Puri
- University of Winchester, UK, and C.A.R., Cambridge, UK.
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
25
|
Piao X, Ma Y, Liu S, Hou N, Chen Q. A Novel Thioredoxin-Like Protein of Babesia microti Involved in Parasite Pathogenicity. Front Cell Infect Microbiol 2022; 12:826818. [PMID: 35252036 PMCID: PMC8892138 DOI: 10.3389/fcimb.2022.826818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Babesiosis poses a serious threat to immunocompromised individuals and the major etiological species of Babesia for human babesiosis is Babesia microti. Merozoites are a critical stage in the life cycle of Babesia microti. Several merozoite proteins have been demonstrated to play important roles in this process; however, most of the merozoite proteins of B. microti remain unknown. In the present study, we identified a novel merozoite protein of B. microti with similar structure to the thioredoxin (Trx)-like domain of the Trx family, which was named as B. microti Trx-like protein (BmTLP). Western blot assays demonstrated that this protein was expressed by B. microti during the erythrocytic infection process, and its expression peaked on day 7 post-infection in vivo. Immunofluorescence assay further showed that this protein is mainly expressed in B. microti merozoites. BmTLP hold both heparin- and erythrocyte-binding properties, which are critical functions of invasion-related proteins. Immunization with recombinant BmTLP imparted significant protection against B. microti infection in mice. Taken together, these results suggest that the novel merozoite protein, BmTLP, is an important pathogenic molecule of B. microti and may be a possible target for the design of babesiosis control strategy.
Collapse
Affiliation(s)
- Xianyu Piao
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Ma
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuai Liu
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Nan Hou
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- *Correspondence: Nan Hou, ; Qijun Chen,
| | - Qijun Chen
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
- *Correspondence: Nan Hou, ; Qijun Chen,
| |
Collapse
|
26
|
Usategui-Martín R, Pérez-Castrillón JL, Mansego ML, Lara-Hernández F, Manzano I, Briongos L, Abadía-Otero J, Martín-Vallejo J, García-García AB, Martín-Escudero JC, Chaves FJ. Association between genetic variants in oxidative stress-related genes and osteoporotic bone fracture. The Hortega follow-up study. Gene 2022; 809:146036. [PMID: 34688818 DOI: 10.1016/j.gene.2021.146036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022]
Abstract
The most widely accepted etiopathogenesis hypothesis of the origin of osteoporosis and its complications is that they are a consequence of bone aging and other environmental factors, together with a genetic predisposition. Evidence suggests that oxidative stress is crucial in bone pathologies associated with aging. The aim of this study was to determine whether genetic variants in oxidative stress-related genes modified the risk of osteoporotic fracture. We analysed 221 patients and 354 controls from the HORTEGA sample after 12-14 years of follow up. We studied the genotypic and allelic distribution of 53 SNPs in 24 genes involved in oxidative stress. The results showed that being a carrier of the variant allele of the SNP rs4077561 within TXNRD1 was the principal genetic risk factor associated with osteoporotic fracture and that variant allele of the rs1805754 M6PR, rs4964779 TXNRD1, rs406113 GPX6, rs2281082 TXN2 and rs974334 GPX6 polymorphisms are important genetic risk factors for fracture. This study provides information on the genetic factors associated with oxidative stress which are involved in the risk of osteoporotic fracture and reinforces the hypothesis that genetic factors are crucial in the etiopathogenesis of osteoporosis and its complications.
Collapse
Affiliation(s)
- Ricardo Usategui-Martín
- IOBA, University of Valladolid, Valladolid. Spain; Cooperative Health Network for Research (RETICS), Oftared, National Institute of Health Carlos III, ISCIII, Madrid. Spain.
| | - José Luis Pérez-Castrillón
- Department of Internal Medicine, Rio Hortega Universitary Hospital, Valladolid, Spain; Department of Medicine. Faculty of Medicine. University of Valladolid, Valladolid, Spain.
| | - María L Mansego
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute, Valencia, Spain; Department of Bioinformatics. Making Genetics S.L. Pamplona. Spain
| | | | - Iris Manzano
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Laisa Briongos
- Department of Internal Medicine, Rio Hortega Universitary Hospital, Valladolid, Spain; Department of Medicine. Faculty of Medicine. University of Valladolid, Valladolid, Spain
| | - Jesica Abadía-Otero
- Department of Internal Medicine, Rio Hortega Universitary Hospital, Valladolid, Spain
| | - Javier Martín-Vallejo
- Department of Statistics. University of Salamanca. Salamanca Biomedical Research Institute (IBSAL), Salamanca. Spain
| | - Ana B García-García
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute, Valencia, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid. Spain
| | - Juan Carlos Martín-Escudero
- Department of Internal Medicine, Rio Hortega Universitary Hospital, Valladolid, Spain; Department of Medicine. Faculty of Medicine. University of Valladolid, Valladolid, Spain
| | - Felipe J Chaves
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute, Valencia, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid. Spain
| |
Collapse
|
27
|
Tang H, Kim M, Lee M, Baumann K, Olguin F, He H, Wang Y, Jiang B, Fang S, Zhu J, Wang K, Xia H, Gao Y, Konsker HB, Fatodu EA, Quarta M, Blonigan J, Rando TA, Shrager JB. Overexpression of thioredoxin-2 attenuates age-related muscle loss by suppressing mitochondrial oxidative stress and apoptosis. JCSM RAPID COMMUNICATIONS 2022; 5:130-145. [PMID: 40236683 PMCID: PMC11995840 DOI: 10.1002/rco2.57] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 04/17/2025]
Abstract
Background Skeletal muscle mass is regulated by intracellular anabolic and catabolic activities. Increased catabolic activity can shift the balance towards net protein breakdown and muscle atrophy. Mitochondrial oxidative stress activates catabolism and is linked to muscle loss. Reducing mitochondrial oxidative stress is thus a plausible approach to prevent muscle atrophy. We tested this concept in age-dependent muscle atrophy by genetically overexpressing the mitochondrial antioxidant thioredoxin-2 (TXN2). Methods We tested the functional role of TXN2 using ageing (n = 7-10 per group) and denervation (n = 3 per group) models in a transgenic mouse line that overexpresses TXN2. We investigated if overexpression of TXN2 blocks muscle loss in these models by examination of muscle weight, fibre size, and fibre number in young (~7 months) and aged (~26 months) TXN2-transgenic mice and controls. We studied the underlying mechanisms by mRNA and protein assays including transcriptomic profiling, western blot analysis, immunostaining, as well as succinate dehydrogenase, dihydroethidium, and terminal deoxynucleotidyl transferase dUTP nick end labelling staining. Results Overexpression of TXN2 did not significantly alter the baseline skeletal muscle size, weight, fibre type distribution, or expression of mitochondrial respiratory chain components, but it did preserve muscle mass during ageing. The hindlimb muscle mass in aged TXN-transgenic mice was ~21-24% greater (in tibialis anterior, gastrocnemius/soleus combined, and tibialis anterior/extensor digitorum longus combined) than in age-matched controls (all P < 0.05). The reduction in both muscle fibre number (872 ± 206 vs, 637 ± 256 fibres in extensor digitorum longus muscle, P < 0.05) and muscle fibre size (1959 ± 296 vs. 1477 ± 564 μm2 in tibialis anterior muscle, P < 0.05) seen in young vs. aged control muscles was not significant in young vs. aged TXN-transgenic mice (both P > 0.05). Transcriptomic analysis revealed that catabolic genes that are up-regulated in ageing muscle, including those subserving apoptosis and the ubiquitin-like conjugation system, were normalized by TXN2 overexpression. Further, overexpressing TXN2 suppressed oxidative stress and caspase-9/3-mediated apoptotic signalling in the aged muscle at the protein level. Although denervation and its effects have been considered a component of age-related muscle atrophy, TXN2 overexpression failed to attenuate atrophy in an acute denervation model (TXN-transgenic vs. control mice, P > 0.05), despite preventing denervation-induced oxidative stress and apoptosis. Conclusions Mitochondrial oxidative stress appears to play a crucial role in effecting chronic age-dependent, but not acute neurogenic, muscle atrophy. Increased TXN2 protects muscle against oxidative stress-associated catabolic activity in ageing muscle and thus is a potential therapeutic approach to attenuate age-related muscle atrophy.
Collapse
Affiliation(s)
- Huibin Tang
- Division of Thoracic Surgery, Department of Cardiothoracic SurgeryStanford University School of Medicine291 Campus DriveStanfordCA94305USA
- VA Palo Alto Healthcare SystemPalo AltoCAUSA
| | - Michael Kim
- Division of Thoracic Surgery, Department of Cardiothoracic SurgeryStanford University School of Medicine291 Campus DriveStanfordCA94305USA
- VA Palo Alto Healthcare SystemPalo AltoCAUSA
| | - Myung Lee
- Division of Thoracic Surgery, Department of Cardiothoracic SurgeryStanford University School of Medicine291 Campus DriveStanfordCA94305USA
- VA Palo Alto Healthcare SystemPalo AltoCAUSA
| | - Kellie Baumann
- Division of Thoracic Surgery, Department of Cardiothoracic SurgeryStanford University School of Medicine291 Campus DriveStanfordCA94305USA
- VA Palo Alto Healthcare SystemPalo AltoCAUSA
| | - Francesca Olguin
- Division of Thoracic Surgery, Department of Cardiothoracic SurgeryStanford University School of Medicine291 Campus DriveStanfordCA94305USA
- VA Palo Alto Healthcare SystemPalo AltoCAUSA
| | - Hao He
- Division of Thoracic Surgery, Department of Cardiothoracic SurgeryStanford University School of Medicine291 Campus DriveStanfordCA94305USA
- VA Palo Alto Healthcare SystemPalo AltoCAUSA
| | - Yoyo Wang
- Division of Thoracic Surgery, Department of Cardiothoracic SurgeryStanford University School of Medicine291 Campus DriveStanfordCA94305USA
- VA Palo Alto Healthcare SystemPalo AltoCAUSA
| | - Bowen Jiang
- Division of Thoracic Surgery, Department of Cardiothoracic SurgeryStanford University School of Medicine291 Campus DriveStanfordCA94305USA
- VA Palo Alto Healthcare SystemPalo AltoCAUSA
| | - Shuhuan Fang
- Division of Thoracic Surgery, Department of Cardiothoracic SurgeryStanford University School of Medicine291 Campus DriveStanfordCA94305USA
- VA Palo Alto Healthcare SystemPalo AltoCAUSA
| | - Jinguo Zhu
- Division of Thoracic Surgery, Department of Cardiothoracic SurgeryStanford University School of Medicine291 Campus DriveStanfordCA94305USA
- VA Palo Alto Healthcare SystemPalo AltoCAUSA
| | - Kun Wang
- Division of Thoracic Surgery, Department of Cardiothoracic SurgeryStanford University School of Medicine291 Campus DriveStanfordCA94305USA
- VA Palo Alto Healthcare SystemPalo AltoCAUSA
| | - Hui Xia
- Division of Thoracic Surgery, Department of Cardiothoracic SurgeryStanford University School of Medicine291 Campus DriveStanfordCA94305USA
- VA Palo Alto Healthcare SystemPalo AltoCAUSA
| | - Yang Gao
- Division of Thoracic Surgery, Department of Cardiothoracic SurgeryStanford University School of Medicine291 Campus DriveStanfordCA94305USA
- VA Palo Alto Healthcare SystemPalo AltoCAUSA
| | - Harrison B. Konsker
- Division of Thoracic Surgery, Department of Cardiothoracic SurgeryStanford University School of Medicine291 Campus DriveStanfordCA94305USA
- VA Palo Alto Healthcare SystemPalo AltoCAUSA
| | - Emmanuel A. Fatodu
- Division of Thoracic Surgery, Department of Cardiothoracic SurgeryStanford University School of Medicine291 Campus DriveStanfordCA94305USA
- VA Palo Alto Healthcare SystemPalo AltoCAUSA
| | - Marco Quarta
- Paul F. Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCAUSA
| | - Justin Blonigan
- Paul F. Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCAUSA
| | - Thomas A. Rando
- VA Palo Alto Healthcare SystemPalo AltoCAUSA
- Paul F. Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCAUSA
| | - Joseph B. Shrager
- Division of Thoracic Surgery, Department of Cardiothoracic SurgeryStanford University School of Medicine291 Campus DriveStanfordCA94305USA
- VA Palo Alto Healthcare SystemPalo AltoCAUSA
| |
Collapse
|
28
|
Chandrasekaran A, Dittlau KS, Corsi GI, Haukedal H, Doncheva NT, Ramakrishna S, Ambardar S, Salcedo C, Schmidt SI, Zhang Y, Cirera S, Pihl M, Schmid B, Nielsen TT, Nielsen JE, Kolko M, Kobolák J, Dinnyés A, Hyttel P, Palakodeti D, Gorodkin J, Muddashetty RS, Meyer M, Aldana BI, Freude KK. Astrocytic reactivity triggered by defective autophagy and metabolic failure causes neurotoxicity in frontotemporal dementia type 3. Stem Cell Reports 2021; 16:2736-2751. [PMID: 34678206 PMCID: PMC8581052 DOI: 10.1016/j.stemcr.2021.09.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022] Open
Abstract
Frontotemporal dementia type 3 (FTD3), caused by a point mutation in the charged multivesicular body protein 2B (CHMP2B), affects mitochondrial ultrastructure and the endolysosomal pathway in neurons. To dissect the astrocyte-specific impact of mutant CHMP2B expression, we generated astrocytes from human induced pluripotent stem cells (hiPSCs) and confirmed our findings in CHMP2B mutant mice. Our data provide mechanistic insights into how defective autophagy causes perturbed mitochondrial dynamics with impaired glycolysis, increased reactive oxygen species, and elongated mitochondrial morphology, indicating increased mitochondrial fusion in FTD3 astrocytes. This shift in astrocyte homeostasis triggers a reactive astrocyte phenotype and increased release of toxic cytokines, which accumulate in nuclear factor kappa b (NF-κB) pathway activation with increased production of CHF, LCN2, and C3 causing neurodegeneration. FTD3 iPSC-derived astrocytes display impaired autophagy Impaired autophagy affects mitochondria turnover, glucose hypometabolism and TCA cycle FTD3 astrocytes contribute to reactive gliosis by increased C3, LCN2, IL6, and IL8 Reactive astrocyte phenotypes are present in both in vitro and in vivo models
Collapse
Affiliation(s)
- Abinaya Chandrasekaran
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Katarina Stoklund Dittlau
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Giulia I Corsi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark; Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Henriette Haukedal
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Nadezhda T Doncheva
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark; Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg 1871, Denmark; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sarayu Ramakrishna
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India; The University of Trans-Disciplinary Health Sciences and Technology, Bangalore 560064, India
| | - Sheetal Ambardar
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India; National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Claudia Salcedo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Sissel I Schmidt
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Yu Zhang
- Department of Experimental Medical Science, Wallenberg Center for Molecular Medicine and Lund Stem Cell Center, Lund University, Lund 22184, Sweden
| | - Susanna Cirera
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Maria Pihl
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | | | - Troels Tolstrup Nielsen
- Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jørgen E Nielsen
- Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark; Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen 2100, Denmark
| | | | | | - Poul Hyttel
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Dasaradhi Palakodeti
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
| | - Jan Gorodkin
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark; Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Ravi S Muddashetty
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Kristine K Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark.
| |
Collapse
|
29
|
da Fonseca-Pereira P, Souza PVL, Fernie AR, Timm S, Daloso DM, Araújo WL. Thioredoxin-mediated regulation of (photo)respiration and central metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5987-6002. [PMID: 33649770 DOI: 10.1093/jxb/erab098] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Thioredoxins (TRXs) are ubiquitous proteins engaged in the redox regulation of plant metabolism. Whilst the light-dependent TRX-mediated activation of Calvin-Benson cycle enzymes is well documented, the role of extraplastidial TRXs in the control of the mitochondrial (photo)respiratory metabolism has been revealed relatively recently. Mitochondrially located TRX o1 has been identified as a regulator of alternative oxidase, enzymes of, or associated with, the tricarboxylic acid (TCA) cycle, and the mitochondrial dihydrolipoamide dehydrogenase (mtLPD) involved in photorespiration, the TCA cycle, and the degradation of branched chain amino acids. TRXs are seemingly a major point of metabolic regulation responsible for activating photosynthesis and adjusting mitochondrial photorespiratory metabolism according to the prevailing cellular redox status. Furthermore, TRX-mediated (de)activation of TCA cycle enzymes contributes to explain the non-cyclic flux mode of operation of this cycle in illuminated leaves. Here we provide an overview on the decisive role of TRXs in the coordination of mitochondrial metabolism in the light and provide in silico evidence for other redox-regulated photorespiratory enzymes. We further discuss the consequences of mtLPD regulation beyond photorespiration and provide outstanding questions that should be addressed in future studies to improve our understanding of the role of TRXs in the regulation of central metabolism.
Collapse
Affiliation(s)
| | - Paulo V L Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Stefan Timm
- University of Rostock, Plant Physiology Department, Albert- Einstein-Str. 3, Rostock, Germany
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
30
|
Cao X, He W, Pang Y, Cao Y, Qin A. Redox-dependent and independent effects of thioredoxin interacting protein. Biol Chem 2021; 401:1215-1231. [PMID: 32845855 DOI: 10.1515/hsz-2020-0181] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Thioredoxin interacting protein (TXNIP) is an important physiological inhibitor of the thioredoxin (TXN) redox system in cells. Regulation of TXNIP expression and/or activity not only plays an important role in redox regulation but also exerts redox-independent physiological effects that exhibit direct pathophysiological consequences including elevated inflammatory response, aberrant glucose metabolism, cellular senescence and apoptosis, cellular immunity, and tumorigenesis. This review provides a brief overview of the current knowledge concerning the redox-dependent and independent roles of TXNIP and its relevance to various disease states. The implications for the therapeutic targeting of TXNIP will also be discussed.
Collapse
Affiliation(s)
- Xiankun Cao
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011,People's Republic of China
| | - Wenxin He
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011,People's Republic of China
| | - Yichuan Pang
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011,People's Republic of China
| | - Yu Cao
- Department of Orthopaedics and Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011,People's Republic of China
| | - An Qin
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011,People's Republic of China
| |
Collapse
|
31
|
Shi L, Gao LL, Cai SZ, Xiong QW, Ma ZR. A novel selective mitochondrial-targeted curcumin analog with remarkable cytotoxicity in glioma cells. Eur J Med Chem 2021; 221:113528. [PMID: 34020339 DOI: 10.1016/j.ejmech.2021.113528] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
Naturally occurring polyphenol curcumin (4) or demethoxycurcumin (5) and their synthetic derivatives display promising anticancer activities. However, their further development is limited by low bioavailability and poor selectivity. Thus, a mitochondria-targeted compound 14 (DMC-TPP) was prepared in the present study by conjugating a triphenylphosphine moiety to the phenolic hydroxyl group of demethoxycurcumin to enhance its bioavailability and treatment efficacy. The in vitro biological experiments of DMC-TPP showed that it not only displayed higher cytotoxicity as compared with its parent compound 5, but also exhibited superior mitochondria accumulation ability. Glioma cells were more sensitive to DMC-TPP, which inhibited the proliferation of U251 cells with an IC50 of 0.42 μM. The mechanism studies showed that DMC-TPP triggers mitochondria-dependent apoptosis, caused by caspase activation, production of reactive oxygen species (ROS) and decrease of mitochondrial membrane potential (MMP). In addition, DMC-TPP efficiently inhibited cellular thioredoxin reductase, which contributed to its cytotoxicity. Significantly, DMC-TPP delayed tumor progression in a mouse xenograft model of human glioma cancer. Taken together, the potent in vitro and in vivo antitumor activity of DMC-TPP warrant further comprehensive evaluation as a novel anti-glioma agent.
Collapse
Affiliation(s)
- Lei Shi
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, First People's Hospital of Kunshan, Suzhou, 215300, PR China
| | - Li-Li Gao
- Department of Oncology, The People's Hospital of Funing County in Yancheng City, Yancheng, 224400, Jiang Su, PR China
| | - Shi-Zhong Cai
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, Suzhou, 215021, PR China.
| | - Qian-Wei Xiong
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, 215021, PR China
| | - Zhou-Rui Ma
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, 215021, PR China.
| |
Collapse
|
32
|
Rebelo AP, Eidhof I, Cintra VP, Guillot-Noel L, Pereira CV, Timmann D, Traschütz A, Schöls L, Coarelli G, Durr A, Anheim M, Tranchant C, van de Warrenburg B, Guissart C, Koenig M, Howell J, Moraes CT, Schenck A, Stevanin G, Züchner S, Synofzik M. Biallelic loss-of-function variations in PRDX3 cause cerebellar ataxia. Brain 2021; 144:1467-1481. [PMID: 33889951 DOI: 10.1093/brain/awab071] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/13/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Peroxiredoxin 3 (PRDX3) belongs to a superfamily of peroxidases that function as protective antioxidant enzymes. Among the six isoforms (PRDX1-PRDX6), PRDX3 is the only protein exclusively localized to the mitochondria, which are the main source of reactive oxygen species. Excessive levels of reactive oxygen species are harmful to cells, inducing mitochondrial dysfunction, DNA damage, lipid and protein oxidation and ultimately apoptosis. Neuronal cell damage induced by oxidative stress has been associated with numerous neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Leveraging the large aggregation of genomic ataxia datasets from the PREPARE (Preparing for Therapies in Autosomal Recessive Ataxias) network, we identified recessive mutations in PRDX3 as the genetic cause of cerebellar ataxia in five unrelated families, providing further evidence for oxidative stress in the pathogenesis of neurodegeneration. The clinical presentation of individuals with PRDX3 mutations consists of mild-to-moderate progressive cerebellar ataxia with concomitant hyper- and hypokinetic movement disorders, severe early-onset cerebellar atrophy, and in part olivary and brainstem degeneration. Patient fibroblasts showed a lack of PRDX3 protein, resulting in decreased glutathione peroxidase activity and decreased mitochondrial maximal respiratory capacity. Moreover, PRDX3 knockdown in cerebellar medulloblastoma cells resulted in significantly decreased cell viability, increased H2O2 levels and increased susceptibility to apoptosis triggered by reactive oxygen species. Pan-neuronal and pan-glial in vivo models of Drosophila revealed aberrant locomotor phenotypes and reduced survival times upon exposure to oxidative stress. Our findings reveal a central role for mitochondria and the implication of oxidative stress in PRDX3 disease pathogenesis and cerebellar vulnerability and suggest targets for future therapeutic approaches.
Collapse
Affiliation(s)
- Adriana P Rebelo
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA
| | - Ilse Eidhof
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Vivian P Cintra
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA
| | - Léna Guillot-Noel
- Sorbonne Université, Paris Brain Institute, AP-HP, INSERM, CNRS, Pitié-Salpêtrière University Hospital, Paris, France.,Neurogenetics Team, EPHE, PSL University, Paris, France
| | - Claudia V Pereira
- Departments of Neurology and Cell Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dagmar Timmann
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Andreas Traschütz
- Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Ludger Schöls
- Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Giulia Coarelli
- Sorbonne Université, Paris Brain Institute, AP-HP, INSERM, CNRS, Pitié-Salpêtrière University Hospital, Paris, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute, AP-HP, INSERM, CNRS, Pitié-Salpêtrière University Hospital, Paris, France.,Department of genetics, Hôpital de La Pitié-Salpétrière, Paris, France
| | - Mathieu Anheim
- Département de Neurologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institute of Genetics and Molecular and Cellular Biology, INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch, France
| | - Christine Tranchant
- Département de Neurologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institute of Genetics and Molecular and Cellular Biology, INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch, France
| | - Bart van de Warrenburg
- Department of Neurology, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Claire Guissart
- EA7402 Institut Universitaire de Recherche Clinique and Laboratoire de Génétique Moléculaire, CHU and Université de Montpellier, Montpellier, France
| | - Michel Koenig
- EA7402 Institut Universitaire de Recherche Clinique and Laboratoire de Génétique Moléculaire, CHU and Université de Montpellier, Montpellier, France
| | - Jack Howell
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA
| | - Carlos T Moraes
- Departments of Neurology and Cell Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Giovanni Stevanin
- Sorbonne Université, Paris Brain Institute, AP-HP, INSERM, CNRS, Pitié-Salpêtrière University Hospital, Paris, France.,Neurogenetics Team, EPHE, PSL University, Paris, France
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA
| | - Matthis Synofzik
- Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
33
|
Rydning SL, Wedding IM. Monogenic mysteries unravel mitochondrial mechanisms. Brain 2021; 144:1286-1288. [PMID: 33712815 DOI: 10.1093/brain/awab098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This scientific commentary refers to ‘Biallelic loss-of-function variations in PRDX3 cause cerebellar ataxia’, by Rebelo et al. (doi: 10.1093/brain/awab071).
Collapse
|
34
|
Koňaříková E, Marković A, Korandová Z, Houštěk J, Mráček T. Current progress in the therapeutic options for mitochondrial disorders. Physiol Res 2020; 69:967-994. [PMID: 33129249 PMCID: PMC8549882 DOI: 10.33549/physiolres.934529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial disorders manifest enormous genetic and clinical heterogeneity - they can appear at any age, present with various phenotypes affecting any organ, and display any mode of inheritance. What mitochondrial diseases do have in common, is impairment of respiratory chain activity, which is responsible for more than 90% of energy production within cells. While diagnostics of mitochondrial disorders has been accelerated by introducing Next-Generation Sequencing techniques in recent years, the treatment options are still very limited. For many patients only a supportive or symptomatic therapy is available at the moment. However, decades of basic and preclinical research have uncovered potential target points and numerous compounds or interventions are now subjects of clinical trials. In this review, we focus on current and emerging therapeutic approaches towards the treatment of mitochondrial disorders. We focus on small compounds, metabolic interference, such as endurance training or ketogenic diet and also on genomic approaches.
Collapse
Affiliation(s)
- E Koňaříková
- Laboratory of Bioenergetics, Institute of Physiology Czech Acad. Sci., Prague, Czech Republic. ,
| | | | | | | | | |
Collapse
|
35
|
Schlieben LD, Prokisch H. The Dimensions of Primary Mitochondrial Disorders. Front Cell Dev Biol 2020; 8:600079. [PMID: 33324649 PMCID: PMC7726223 DOI: 10.3389/fcell.2020.600079] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022] Open
Abstract
The concept of a mitochondrial disorder was initially described in 1962, in a patient with altered energy metabolism. Over time, mitochondrial energy metabolism has been discovered to be influenced by a vast number of proteins with a multitude of functional roles. Amongst these, defective oxidative phosphorylation arose as the hallmark of mitochondrial disorders. In the premolecular era, the diagnosis of mitochondrial disease was dependent on biochemical criteria, with inherent limitations such as tissue availability and specificity, preanalytical and analytical artifacts, and secondary effects. With the identification of the first mitochondrial disease-causing mutations, the genetic complexity of mitochondrial disorders began to unravel. Mitochondrial dysfunctions can be caused by pathogenic variants in genes encoded by the mitochondrial DNA or the nuclear DNA, and can display heterogenous phenotypic manifestations. The application of next generation sequencing methodologies in diagnostics is proving to be pivotal in finding the molecular diagnosis and has been instrumental in the discovery of a growing list of novel mitochondrial disease genes. In the molecular era, the diagnosis of a mitochondrial disorder, suspected on clinical grounds, is increasingly based on variant detection and associated statistical support, while invasive biopsies and biochemical assays are conducted to an ever-decreasing extent. At present, there is no uniform biochemical or molecular definition for the designation of a disease as a “mitochondrial disorder”. Such designation is currently dependent on the criteria applied, which may encompass clinical, genetic, biochemical, functional, and/or mitochondrial protein localization criteria. Given this variation, numerous gene lists emerge, ranging from 270 to over 400 proposed mitochondrial disease genes. Herein we provide an overview of the mitochondrial disease associated genes and their accompanying challenges.
Collapse
Affiliation(s)
- Lea D Schlieben
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Holger Prokisch
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
36
|
Antioxidants Targeting Mitochondrial Oxidative Stress: Promising Neuroprotectants for Epilepsy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6687185. [PMID: 33299529 PMCID: PMC7710440 DOI: 10.1155/2020/6687185] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Mitochondria are major sources of reactive oxygen species (ROS) within the cell and are especially vulnerable to oxidative stress. Oxidative damage to mitochondria results in disrupted mitochondrial function and cell death signaling, finally triggering diverse pathologies such as epilepsy, a common neurological disease characterized with aberrant electrical brain activity. Antioxidants are considered as promising neuroprotective strategies for epileptic condition via combating the deleterious effects of excessive ROS production in mitochondria. In this review, we provide a brief discussion of the role of mitochondrial oxidative stress in the pathophysiology of epilepsy and evidences that support neuroprotective roles of antioxidants targeting mitochondrial oxidative stress including mitochondria-targeted antioxidants, polyphenols, vitamins, thiols, and nuclear factor E2-related factor 2 (Nrf2) activators in epilepsy. We point out these antioxidative compounds as effectively protective approaches for improving prognosis. In addition, we specially propose that these antioxidants exert neuroprotection against epileptic impairment possibly by modulating cell death interactions, notably autophagy-apoptosis, and autophagy-ferroptosis crosstalk.
Collapse
|
37
|
Bottani E, Lamperti C, Prigione A, Tiranti V, Persico N, Brunetti D. Therapeutic Approaches to Treat Mitochondrial Diseases: "One-Size-Fits-All" and "Precision Medicine" Strategies. Pharmaceutics 2020; 12:E1083. [PMID: 33187380 PMCID: PMC7696526 DOI: 10.3390/pharmaceutics12111083] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Primary mitochondrial diseases (PMD) refer to a group of severe, often inherited genetic conditions due to mutations in the mitochondrial genome or in the nuclear genes encoding for proteins involved in oxidative phosphorylation (OXPHOS). The mutations hamper the last step of aerobic metabolism, affecting the primary source of cellular ATP synthesis. Mitochondrial diseases are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. The limited information of the natural history, the limitations of currently available preclinical models, coupled with the large variability of phenotypical presentations of PMD patients, have strongly penalized the development of effective therapies. However, new therapeutic strategies have been emerging, often with promising preclinical and clinical results. Here we review the state of the art on experimental treatments for mitochondrial diseases, presenting "one-size-fits-all" approaches and precision medicine strategies. Finally, we propose novel perspective therapeutic plans, either based on preclinical studies or currently used for other genetic or metabolic diseases that could be transferred to PMD.
Collapse
Affiliation(s)
- Emanuela Bottani
- Department of Diagnostics and Public Health, Section of Pharmacology, University of Verona, 37134 Verona, Italy
| | - Costanza Lamperti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Clinic Düsseldorf (UKD), Heinrich Heine University (HHU), 40225 Dusseldorf, Germany;
| | - Valeria Tiranti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Nicola Persico
- Department of Clinical Science and Community Health, University of Milan, 20122 Milan, Italy;
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dario Brunetti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| |
Collapse
|
38
|
Saneto RP. Mitochondrial diseases: expanding the diagnosis in the era of genetic testing. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2020; 4:384-428. [PMID: 33426505 PMCID: PMC7791531 DOI: 10.20517/jtgg.2020.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases are clinically and genetically heterogeneous. These diseases were initially described a little over three decades ago. Limited diagnostic tools created disease descriptions based on clinical, biochemical analytes, neuroimaging, and muscle biopsy findings. This diagnostic mechanism continued to evolve detection of inherited oxidative phosphorylation disorders and expanded discovery of mitochondrial physiology over the next two decades. Limited genetic testing hampered the definitive diagnostic identification and breadth of diseases. Over the last decade, the development and incorporation of massive parallel sequencing has identified approximately 300 genes involved in mitochondrial disease. Gene testing has enlarged our understanding of how genetic defects lead to cellular dysfunction and disease. These findings have expanded the understanding of how mechanisms of mitochondrial physiology can induce dysfunction and disease, but the complete collection of disease-causing gene variants remains incomplete. This article reviews the developments in disease gene discovery and the incorporation of gene findings with mitochondrial physiology. This understanding is critical to the development of targeted therapies.
Collapse
Affiliation(s)
- Russell P. Saneto
- Center for Integrative Brain Research, Neuroscience Institute, Seattle, WA 98101, USA
- Department of Neurology/Division of Pediatric Neurology, Seattle Children’s Hospital/University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
39
|
Traschütz A, Schirinzi T, Laugwitz L, Murray NH, Bingman CA, Reich S, Kern J, Heinzmann A, Vasco G, Bertini E, Zanni G, Durr A, Magri S, Taroni F, Malandrini A, Baets J, de Jonghe P, de Ridder W, Bereau M, Demuth S, Ganos C, Basak AN, Hanagasi H, Kurul SH, Bender B, Schöls L, Grasshoff U, Klopstock T, Horvath R, van de Warrenburg B, Burglen L, Rougeot C, Ewenczyk C, Koenig M, Santorelli FM, Anheim M, Munhoz RP, Haack T, Distelmaier F, Pagliarini DJ, Puccio H, Synofzik M. Clinico-Genetic, Imaging and Molecular Delineation of COQ8A-Ataxia: A Multicenter Study of 59 Patients. Ann Neurol 2020; 88:251-263. [PMID: 32337771 PMCID: PMC7877690 DOI: 10.1002/ana.25751] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To foster trial-readiness of coenzyme Q8A (COQ8A)-ataxia, we map the clinicogenetic, molecular, and neuroimaging spectrum of COQ8A-ataxia in a large worldwide cohort, and provide first progression data, including treatment response to coenzyme Q10 (CoQ10). METHODS Cross-modal analysis of a multicenter cohort of 59 COQ8A patients, including genotype-phenotype correlations, 3D-protein modeling, in vitro mutation analyses, magnetic resonance imaging (MRI) markers, disease progression, and CoQ10 response data. RESULTS Fifty-nine patients (39 novel) with 44 pathogenic COQ8A variants (18 novel) were identified. Missense variants demonstrated a pleiotropic range of detrimental effects upon protein modeling and in vitro analysis of purified variants. COQ8A-ataxia presented as variable multisystemic, early-onset cerebellar ataxia, with complicating features ranging from epilepsy (32%) and cognitive impairment (49%) to exercise intolerance (25%) and hyperkinetic movement disorders (41%), including dystonia and myoclonus as presenting symptoms. Multisystemic involvement was more prevalent in missense than biallelic loss-of-function variants (82-93% vs 53%; p = 0.029). Cerebellar atrophy was universal on MRI (100%), with cerebral atrophy or dentate and pontine T2 hyperintensities observed in 28%. Cross-sectional (n = 34) and longitudinal (n = 7) assessments consistently indicated mild-to-moderate progression of ataxia (SARA: 0.45/year). CoQ10 treatment led to improvement by clinical report in 14 of 30 patients, and by quantitative longitudinal assessments in 8 of 11 patients (SARA: -0.81/year). Explorative sample size calculations indicate that ≥48 patients per arm may suffice to demonstrate efficacy for interventions that reduce progression by 50%. INTERPRETATION This study provides a deeper understanding of the disease, and paves the way toward large-scale natural history studies and treatment trials in COQ8A-ataxia. ANN NEUROL 2020;88:251-263.
Collapse
Affiliation(s)
- Andreas Traschütz
- Department of Neurodegenerative Diseases, Hertie‐Institute for Clinical Brain Research and Center of NeurologyUniversity of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)University of TübingenTübingenGermany
| | - Tommaso Schirinzi
- Neurorehabilitation Unit, Department of NeurosciencesIRCCS Bambino Gesù Children HospitalRomeItaly
- Department of Systems MedicineUniversity of Roma Tor VergataRomeItaly
| | - Lucia Laugwitz
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
- Department of Pediatric NeurologyUniversity Children’s HospitalTübingenGermany
| | - Nathan H. Murray
- Morgridge Institute for ResearchMadisonWIUSA
- Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Craig A. Bingman
- Morgridge Institute for ResearchMadisonWIUSA
- Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Selina Reich
- Department of Neurodegenerative Diseases, Hertie‐Institute for Clinical Brain Research and Center of NeurologyUniversity of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)University of TübingenTübingenGermany
| | - Jan Kern
- Department of Pediatric NeurologyUniversity Children’s HospitalTübingenGermany
| | - Anna Heinzmann
- Brain and Spine Institute (ICM)Sorbonne Université, Pitié‐Salpêtrière University HospitalParisFrance
- AP‐HP, Department of GeneticsPitié‐Salpêtrière University HospitalParisFrance
| | - Gessica Vasco
- Neurorehabilitation Unit, Department of NeurosciencesIRCCS Bambino Gesù Children HospitalRomeItaly
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of NeurosciencesBambino Gesù Children’s Hospital, IRCCSRomeItaly
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of NeurosciencesBambino Gesù Children’s Hospital, IRCCSRomeItaly
| | - Alexandra Durr
- Brain and Spine Institute (ICM)Sorbonne Université, Pitié‐Salpêtrière University HospitalParisFrance
- AP‐HP, Department of GeneticsPitié‐Salpêtrière University HospitalParisFrance
| | - Stefania Magri
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Franco Taroni
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Alessandro Malandrini
- Department of Medicine, Surgery, and NeurosciencesUniversity of Siena, Unit of Neurology and Neurometabolic Disorders, Azienda Ospedaliera Universitaria SeneseSienaItaly
| | - Jonathan Baets
- Neurogenetics Group, University of AntwerpAntwerpBelgium
- Institute Born‐BungeUniversity of AntwerpAntwerpBelgium
- Department of NeurologyAntwerp University HospitalAntwerpBelgium
| | - Peter de Jonghe
- Neurogenetics Group, University of AntwerpAntwerpBelgium
- Institute Born‐BungeUniversity of AntwerpAntwerpBelgium
- Department of NeurologyAntwerp University HospitalAntwerpBelgium
| | - Willem de Ridder
- Neurogenetics Group, University of AntwerpAntwerpBelgium
- Institute Born‐BungeUniversity of AntwerpAntwerpBelgium
- Department of NeurologyAntwerp University HospitalAntwerpBelgium
| | - Matthieu Bereau
- Service de Neurologie, Université de Franche‐Comté, CHRU de BesançonBesançonFrance
- Unité Extrapyramidale, Département des Neurosciences CliniquesHUG, Faculté de Médecine, Université de GenèveGenevaSwitzerland
| | | | - Christos Ganos
- Department of NeurologyCharité University Medicine BerlinBerlinGermany
| | - A. Nazli Basak
- Suna and Inan Kıraç Foundation, Neurodegeneration Research LaboratoryKUTTAM, Koç University School of MedicineIstanbulTurkey
| | - Hasmet Hanagasi
- Behavioural Neurology and Movement Disorders Unit, Department of NeurologyIstanbul Faculty of Medicine, Istanbul UniversityIstanbulTurkey
| | - Semra Hiz Kurul
- Departments of Pediatric NeurologyDokuz Eylül University Faculty of MedicineİzmirTurkey
| | - Benjamin Bender
- Department of Diagnostic and Interventional NeuroradiologyUniversity of TübingenTübingenGermany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie‐Institute for Clinical Brain Research and Center of NeurologyUniversity of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)University of TübingenTübingenGermany
| | - Ute Grasshoff
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
| | - Thomas Klopstock
- Department of Neurology, Friedrich‐Baur‐InstituteLudwig‐Maximilians University of MunichMunichGermany
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Rita Horvath
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Institute of Genetic MedicineNewcastle UniversityNewcastleUK
| | - Bart van de Warrenburg
- Department of NeurologyRadboud University Medical Centre, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
| | - Lydie Burglen
- Centre de Référence Maladies Rares “Malformations et Maladies Congénitales du Cervelet”Paris‐Lyon‐LilleFrance
- Département de Génétique et Embryologie MédicaleAPHP, GHUEP, Hôpital Armand TrousseauParisFrance
- Developmental Brain Disorders LaboratoryImagine Institute, INSERM UMR 1163ParisFrance
| | - Christelle Rougeot
- Centre de Référence Maladies Rares “Malformations et Maladies Congénitales du Cervelet”Paris‐Lyon‐LilleFrance
- Hôpital Femme Mère EnfantService de NeuropédiatrieBronFrance
| | - Claire Ewenczyk
- Brain and Spine Institute (ICM)Sorbonne Université, Pitié‐Salpêtrière University HospitalParisFrance
- AP‐HP, Department of GeneticsPitié‐Salpêtrière University HospitalParisFrance
- Hôpitaux universitaires Pitié Salpêtrière ‐ Charles Foix, Service de GénétiqueParisFrance
| | - Michel Koenig
- EA7402 Institut Universitaire de Recherche Clinique, and Laboratoire de Génétique MoléculaireCHU and Université de MontpellierMontpellierFrance
| | | | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de StrasbourgHôpital de HautepierreStrasbourgFrance
- Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)INSERM‐U964/CNRS‐UMR7104/Université de StrasbourgIllkirchFrance
| | - Renato P. Munhoz
- Movement Disorders Centre, Toronto Western HospitalUniversity of Toronto, Krembil Research InstituteTorontoOntarioCanada
| | - Tobias Haack
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology, and Pediatric CardiologyUniversity Children's Hospital Duesseldorf, Medical Faculty, Heinrich Heine UniversityDuesseldorfGermany
| | - David J. Pagliarini
- Morgridge Institute for ResearchMadisonWIUSA
- Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)IllkirchFrance
- INSERM, U1258IllkirchFrance
- CNRS, UMR7104IIllkirchFrance
- Université de StrasbourgStrasbourgFrance
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie‐Institute for Clinical Brain Research and Center of NeurologyUniversity of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)University of TübingenTübingenGermany
| |
Collapse
|
40
|
The interplay between oxidative stress and bioenergetic failure in neuropsychiatric illnesses: can we explain it and can we treat it? Mol Biol Rep 2020; 47:5587-5620. [PMID: 32564227 DOI: 10.1007/s11033-020-05590-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
Nitro-oxidative stress and lowered antioxidant defences play a key role in neuropsychiatric disorders such as major depression, bipolar disorder and schizophrenia. The first part of this paper details mitochondrial antioxidant mechanisms and their importance in reactive oxygen species (ROS) detoxification, including details of NO networks, the roles of H2O2 and the thioredoxin/peroxiredoxin system, and the relationship between mitochondrial respiration and NADPH production. The second part highlights and identifies the causes of the multiple pathological sequelae arising from self-amplifying increases in mitochondrial ROS production and bioenergetic failure. Particular attention is paid to NAD+ depletion as a core cause of pathology; detrimental effects of raised ROS and reactive nitrogen species on ATP and NADPH generation; detrimental effects of oxidative and nitrosative stress on the glutathione and thioredoxin systems; and the NAD+-induced signalling cascade, including the roles of SIRT1, SIRT3, PGC-1α, the FOXO family of transcription factors, Nrf1 and Nrf2. The third part discusses proposed therapeutic interventions aimed at mitigating such pathology, including the use of the NAD+ precursors nicotinamide mononucleotide and nicotinamide riboside, both of which rapidly elevate levels of NAD+ in the brain and periphery following oral administration; coenzyme Q10 which, when given with the aim of improving mitochondrial function and reducing nitro-oxidative stress in the brain, may be administered via the use of mitoquinone, which is in essence ubiquinone with an attached triphenylphosphonium cation; and N-acetylcysteine, which is associated with improved mitochondrial function in the brain and produces significant decreases in oxidative and nitrosative stress in a dose-dependent manner.
Collapse
|
41
|
Traschütz A, Schirinzi T, Laugwitz L, Murray NH, Bingman CA, Reich S, Kern J, Heinzmann A, Vasco G, Bertini E, Zanni G, Durr A, Magri S, Taroni F, Malandrini A, Baets J, de Jonghe P, de Ridder W, Bereau M, Demuth S, Ganos C, Basak AN, Hanagasi H, Kurul SH, Bender B, Schöls L, Grasshoff U, Klopstock T, Horvath R, van de Warrenburg B, Burglen L, Rougeot C, Ewenczyk C, Koenig M, Santorelli FM, Anheim M, Munhoz RP, Haack T, Distelmaier F, Pagliarini DJ, Puccio H, Synofzik M. Clinico-Genetic, Imaging and Molecular Delineation of COQ8A-Ataxia: A Multicenter Study of 59 Patients. Ann Neurol 2020. [PMID: 32337771 DOI: 10.1002/ana.25751 10.1002/ana.25751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To foster trial-readiness of coenzyme Q8A (COQ8A)-ataxia, we map the clinicogenetic, molecular, and neuroimaging spectrum of COQ8A-ataxia in a large worldwide cohort, and provide first progression data, including treatment response to coenzyme Q10 (CoQ10). METHODS Cross-modal analysis of a multicenter cohort of 59 COQ8A patients, including genotype-phenotype correlations, 3D-protein modeling, in vitro mutation analyses, magnetic resonance imaging (MRI) markers, disease progression, and CoQ10 response data. RESULTS Fifty-nine patients (39 novel) with 44 pathogenic COQ8A variants (18 novel) were identified. Missense variants demonstrated a pleiotropic range of detrimental effects upon protein modeling and in vitro analysis of purified variants. COQ8A-ataxia presented as variable multisystemic, early-onset cerebellar ataxia, with complicating features ranging from epilepsy (32%) and cognitive impairment (49%) to exercise intolerance (25%) and hyperkinetic movement disorders (41%), including dystonia and myoclonus as presenting symptoms. Multisystemic involvement was more prevalent in missense than biallelic loss-of-function variants (82-93% vs 53%; p = 0.029). Cerebellar atrophy was universal on MRI (100%), with cerebral atrophy or dentate and pontine T2 hyperintensities observed in 28%. Cross-sectional (n = 34) and longitudinal (n = 7) assessments consistently indicated mild-to-moderate progression of ataxia (SARA: 0.45/year). CoQ10 treatment led to improvement by clinical report in 14 of 30 patients, and by quantitative longitudinal assessments in 8 of 11 patients (SARA: -0.81/year). Explorative sample size calculations indicate that ≥48 patients per arm may suffice to demonstrate efficacy for interventions that reduce progression by 50%. INTERPRETATION This study provides a deeper understanding of the disease, and paves the way toward large-scale natural history studies and treatment trials in COQ8A-ataxia. ANN NEUROL 2020;88:251-263.
Collapse
Affiliation(s)
- Andreas Traschütz
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Tommaso Schirinzi
- Neurorehabilitation Unit, Department of Neurosciences, IRCCS Bambino Gesù Children Hospital, Rome, Italy.,Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Lucia Laugwitz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Department of Pediatric Neurology, University Children's Hospital, Tübingen, Germany
| | - Nathan H Murray
- Morgridge Institute for Research, Madison, WI, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Craig A Bingman
- Morgridge Institute for Research, Madison, WI, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Selina Reich
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Jan Kern
- Department of Pediatric Neurology, University Children's Hospital, Tübingen, Germany
| | - Anna Heinzmann
- Brain and Spine Institute (ICM), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,AP-HP, Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Gessica Vasco
- Neurorehabilitation Unit, Department of Neurosciences, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alexandra Durr
- Brain and Spine Institute (ICM), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,AP-HP, Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandro Malandrini
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Unit of Neurology and Neurometabolic Disorders, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Jonathan Baets
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Peter de Jonghe
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Willem de Ridder
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Matthieu Bereau
- Service de Neurologie, Université de Franche-Comté, CHRU de Besançon, Besançon, France.,Unité Extrapyramidale, Département des Neurosciences Cliniques, HUG, Faculté de Médecine, Université de Genève, Geneva, Switzerland
| | | | - Christos Ganos
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - A Nazli Basak
- Suna and Inan Kıraç Foundation, Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Hasmet Hanagasi
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Semra Hiz Kurul
- Departments of Pediatric Neurology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians University of Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Bart van de Warrenburg
- Department of Neurology, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Lydie Burglen
- Centre de Référence Maladies Rares "Malformations et Maladies Congénitales du Cervelet", Paris-Lyon-Lille, France.,Département de Génétique et Embryologie Médicale, APHP, GHUEP, Hôpital Armand Trousseau, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Christelle Rougeot
- Centre de Référence Maladies Rares "Malformations et Maladies Congénitales du Cervelet", Paris-Lyon-Lille, France.,Hôpital Femme Mère Enfant, Service de Neuropédiatrie, Bron, France
| | - Claire Ewenczyk
- Brain and Spine Institute (ICM), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,AP-HP, Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France.,Hôpitaux universitaires Pitié Salpêtrière - Charles Foix, Service de Génétique, Paris, France
| | - Michel Koenig
- EA7402 Institut Universitaire de Recherche Clinique, and Laboratoire de Génétique Moléculaire, CHU and Université de Montpellier, Montpellier, France
| | | | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
| | - Renato P Munhoz
- Movement Disorders Centre, Toronto Western Hospital, University of Toronto, Krembil Research Institute, Toronto, Ontario, Canada
| | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital Duesseldorf, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - David J Pagliarini
- Morgridge Institute for Research, Madison, WI, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM, U1258, Illkirch, France.,CNRS, UMR7104, IIllkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| |
Collapse
|
42
|
Traschütz A, Schirinzi T, Laugwitz L, Murray NH, Bingman CA, Reich S, Kern J, Heinzmann A, Vasco G, Bertini E, Zanni G, Durr A, Magri S, Taroni F, Malandrini A, Baets J, de Jonghe P, de Ridder W, Bereau M, Demuth S, Ganos C, Basak AN, Hanagasi H, Kurul SH, Bender B, Schöls L, Grasshoff U, Klopstock T, Horvath R, van de Warrenburg B, Burglen L, Rougeot C, Ewenczyk C, Koenig M, Santorelli FM, Anheim M, Munhoz RP, Haack T, Distelmaier F, Pagliarini DJ, Puccio H, Synofzik M. Clinico-Genetic, Imaging and Molecular Delineation of COQ8A-Ataxia: A Multicenter Study of 59 Patients. Ann Neurol 2020. [PMID: 32337771 DOI: 10.1002/ana.25751+10.1002/ana.25751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To foster trial-readiness of coenzyme Q8A (COQ8A)-ataxia, we map the clinicogenetic, molecular, and neuroimaging spectrum of COQ8A-ataxia in a large worldwide cohort, and provide first progression data, including treatment response to coenzyme Q10 (CoQ10). METHODS Cross-modal analysis of a multicenter cohort of 59 COQ8A patients, including genotype-phenotype correlations, 3D-protein modeling, in vitro mutation analyses, magnetic resonance imaging (MRI) markers, disease progression, and CoQ10 response data. RESULTS Fifty-nine patients (39 novel) with 44 pathogenic COQ8A variants (18 novel) were identified. Missense variants demonstrated a pleiotropic range of detrimental effects upon protein modeling and in vitro analysis of purified variants. COQ8A-ataxia presented as variable multisystemic, early-onset cerebellar ataxia, with complicating features ranging from epilepsy (32%) and cognitive impairment (49%) to exercise intolerance (25%) and hyperkinetic movement disorders (41%), including dystonia and myoclonus as presenting symptoms. Multisystemic involvement was more prevalent in missense than biallelic loss-of-function variants (82-93% vs 53%; p = 0.029). Cerebellar atrophy was universal on MRI (100%), with cerebral atrophy or dentate and pontine T2 hyperintensities observed in 28%. Cross-sectional (n = 34) and longitudinal (n = 7) assessments consistently indicated mild-to-moderate progression of ataxia (SARA: 0.45/year). CoQ10 treatment led to improvement by clinical report in 14 of 30 patients, and by quantitative longitudinal assessments in 8 of 11 patients (SARA: -0.81/year). Explorative sample size calculations indicate that ≥48 patients per arm may suffice to demonstrate efficacy for interventions that reduce progression by 50%. INTERPRETATION This study provides a deeper understanding of the disease, and paves the way toward large-scale natural history studies and treatment trials in COQ8A-ataxia. ANN NEUROL 2020;88:251-263.
Collapse
Affiliation(s)
- Andreas Traschütz
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Tommaso Schirinzi
- Neurorehabilitation Unit, Department of Neurosciences, IRCCS Bambino Gesù Children Hospital, Rome, Italy.,Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Lucia Laugwitz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Department of Pediatric Neurology, University Children's Hospital, Tübingen, Germany
| | - Nathan H Murray
- Morgridge Institute for Research, Madison, WI, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Craig A Bingman
- Morgridge Institute for Research, Madison, WI, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Selina Reich
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Jan Kern
- Department of Pediatric Neurology, University Children's Hospital, Tübingen, Germany
| | - Anna Heinzmann
- Brain and Spine Institute (ICM), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,AP-HP, Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Gessica Vasco
- Neurorehabilitation Unit, Department of Neurosciences, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alexandra Durr
- Brain and Spine Institute (ICM), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,AP-HP, Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandro Malandrini
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Unit of Neurology and Neurometabolic Disorders, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Jonathan Baets
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Peter de Jonghe
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Willem de Ridder
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Matthieu Bereau
- Service de Neurologie, Université de Franche-Comté, CHRU de Besançon, Besançon, France.,Unité Extrapyramidale, Département des Neurosciences Cliniques, HUG, Faculté de Médecine, Université de Genève, Geneva, Switzerland
| | | | - Christos Ganos
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - A Nazli Basak
- Suna and Inan Kıraç Foundation, Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Hasmet Hanagasi
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Semra Hiz Kurul
- Departments of Pediatric Neurology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians University of Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Bart van de Warrenburg
- Department of Neurology, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Lydie Burglen
- Centre de Référence Maladies Rares "Malformations et Maladies Congénitales du Cervelet", Paris-Lyon-Lille, France.,Département de Génétique et Embryologie Médicale, APHP, GHUEP, Hôpital Armand Trousseau, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Christelle Rougeot
- Centre de Référence Maladies Rares "Malformations et Maladies Congénitales du Cervelet", Paris-Lyon-Lille, France.,Hôpital Femme Mère Enfant, Service de Neuropédiatrie, Bron, France
| | - Claire Ewenczyk
- Brain and Spine Institute (ICM), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,AP-HP, Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France.,Hôpitaux universitaires Pitié Salpêtrière - Charles Foix, Service de Génétique, Paris, France
| | - Michel Koenig
- EA7402 Institut Universitaire de Recherche Clinique, and Laboratoire de Génétique Moléculaire, CHU and Université de Montpellier, Montpellier, France
| | | | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
| | - Renato P Munhoz
- Movement Disorders Centre, Toronto Western Hospital, University of Toronto, Krembil Research Institute, Toronto, Ontario, Canada
| | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital Duesseldorf, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - David J Pagliarini
- Morgridge Institute for Research, Madison, WI, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM, U1258, Illkirch, France.,CNRS, UMR7104, IIllkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| |
Collapse
|
43
|
Blanco LP, Pedersen HL, Wang X, Lightfoot YL, Seto N, Carmona-Rivera C, Yu ZX, Hoffmann V, Yuen PS, Kaplan MJ. Improved Mitochondrial Metabolism and Reduced Inflammation Following Attenuation of Murine Lupus With Coenzyme Q10 Analog Idebenone. Arthritis Rheumatol 2020; 72:454-464. [PMID: 31566908 PMCID: PMC7050361 DOI: 10.1002/art.41128] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 09/26/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE A role for mitochondrial dysfunction has been proposed in the immune dysregulation and organ damage characteristic of systemic lupus erythematosus (SLE). Idebenone is a coenzyme Q10 synthetic quinone analog and an antioxidant that has been used in humans to treat diverse diseases in which mitochondrial function is impaired. This study was undertaken to assess whether idebenone ameliorates lupus in murine models. METHODS Idebenone was administered orally to MRL/lpr mice at 2 different doses (1 gm/kg or 1.5 gm/kg idebenone-containing diet) for 8 weeks. At peak disease activity, clinical, immunologic, and metabolic parameters were analyzed and compared to those in untreated mice (n = 10 per treatment group). Results were confirmed in the lupus-prone NZM2328 mouse model. RESULTS In MRL/lpr mice, idebenone-treated mice showed a significant reduction in mortality incidence (P < 0.01 versus untreated mice), and the treatment attenuated several disease features, including glomerular inflammation and fibrosis (each P < 0.05 versus untreated mice), and improved renal function in association with decreased renal expression of interleukin-17A (IL-17A) and mature IL-18. Levels of splenic proinflammatory cytokines and inflammasome-related genes were significantly decreased (at least P < 0.05 and some with higher significance) in mice treated with idebenone, while no obvious drug toxicity was observed. Idebenone inhibited neutrophil extracellular trap formation in neutrophils from lupus-prone mice (P < 0.05) and human patients with SLE. Idebenone also improved mitochondrial metabolism (30% increase in basal respiration and ATP production), reduced the extent of heart lipid peroxidation (by one-half that of untreated mice), and significantly improved endothelium-dependent vasorelaxation (P < 0.001). NZM2328 mice exposed to idebenone also displayed improvements in renal and systemic inflammation, reducing the kidney pathology score (P < 0.05), IgG/C3 deposition (P < 0.05), and the gene expression of interferon, proinflammatory, and inflammasome-related genes (at least P < 0.05 and some with higher significance). CONCLUSION Idebenone ameliorates murine lupus disease activity and the severity of organ damage, supporting the hypothesis that agents that modulate mitochondrial biologic processes may have a therapeutic role in human SLE.
Collapse
Affiliation(s)
- Luz P. Blanco
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Hege L. Pedersen
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Xinghao Wang
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Yaíma L. Lightfoot
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Nickie Seto
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Zu-Xi Yu
- Pathology Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Victoria Hoffmann
- Office of the Director, Division of Veterinary Resources, Diagnostic and Research Services Branch, NIH, Bethesda, Maryland, USA
| | - Peter S.T. Yuen
- Renal Diagnostics and Therapeutic Unit, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
44
|
Ibhazehiebo K, Rho JM, Kurrasch DM. Metabolism-based drug discovery in zebrafish: An emerging strategy to uncover new anti-seizure therapies. Neuropharmacology 2020; 167:107988. [PMID: 32070912 DOI: 10.1016/j.neuropharm.2020.107988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
Abstract
As one of the most common neurological disorders, epilepsy can occur throughout the lifespan and from a multiplicity of causes, including genetic mutations, inflammation, neurotrauma, or brain malformations. Although pharmacological agents are the mainstay of treatment for seizure control, an unyielding 30-40% of patients remain refractory to these medications and continue to experience spontaneous recurrent seizures with attendant life-long cognitive, behavioural, and mental health issues, as well as an increased risk for sudden unexpected death. Despite over eight decades of antiseizure drug (ASD) discovery and the approval of dozens of new medications, the percentage of this refractory population remains virtually unchanged, suggesting that drugs with new and unexpected mechanisms of action are needed. In this brief review, we discuss the need for new animal models of epilepsy, with a particular focus on the advantages and disadvantages of zebrafish. We also outline the evidence that epilepsy is characterized by derangements in mitochondrial function and introduce the rationale and promise of bioenergetics as a functional readout assay to uncover novel ASDs. We also consider limitations of a zebrafish metabolism-based drug screening approach. Our goal is to discuss the opportunities and challenges of further development of mitochondrial screening strategies for the development of novel ASDs. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Kingsley Ibhazehiebo
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Jong M Rho
- Alberta Children's Hospital Research Institute, University of Calgary, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Canada; Department of Neurosciences and Pediatrics, University of California San Diego, Rady Children's Hospital San Diego, California, USA
| | - Deborah M Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada.
| |
Collapse
|
45
|
Expression analysis of NNT and NNT-AS1 in epileptic patients. Meta Gene 2020. [DOI: 10.1016/j.mgene.2019.100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
46
|
Modified expression of antioxidant genes in lobster cockroach, Nauphoeta cinerea exposed to methylmercury and monosodium glutamate. Chem Biol Interact 2020; 318:108969. [DOI: 10.1016/j.cbi.2020.108969] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/19/2020] [Accepted: 01/27/2020] [Indexed: 12/21/2022]
|
47
|
Jia JJ, Geng WS, Wang ZQ, Chen L, Zeng XS. The role of thioredoxin system in cancer: strategy for cancer therapy. Cancer Chemother Pharmacol 2019; 84:453-470. [PMID: 31079220 DOI: 10.1007/s00280-019-03869-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/04/2019] [Indexed: 01/16/2023]
Abstract
PURPOSE Cancer, a major public health problem, exhibits significant redox alteration. Thioredoxin (Trx) system, including Trx and Trx reductase (TrxR), as well as Trx-interacting protein (TXNIP) play important roles in controlling the cellular redox balance in cancer cells. In most cancers, Trx and TrxR are usually overexpressed and TXNIP is underexpressed. In recent years, some agents targeting Trx, TrxR, and TXNIP were used to explore a therapy approach for cancer patients. METHODS A systematic search of PMC and the PubMed Database was conducted to summarize the potential of Trx system inhibitors for cancer treatment. RESULTS In this article, we first summarize the functions of Trx, TrxR, and TXNIP in cancers. We also review some small molecule inhibitors of Trx/TrxR and D-allose (TXNIP inducer) and discuss their antitumor mechanisms. We highlight the combined inhibition of Trx system and GSH system in cancer therapy. We expect that a highly specific and selective antitumor agent with no cytotoxicity on human normal cells could be developed in the future. CONCLUSION In conclusion, Trx system may be very promising for clinical therapy of cancer in the future.
Collapse
Affiliation(s)
- Jin-Jing Jia
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Wen-Shuo Geng
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Zhan-Qi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000, China
| | - Lei Chen
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Xian-Si Zeng
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China.
| |
Collapse
|
48
|
Chen C, Wang K, Zhang H, Zhou HJ, Chen Y, Min W. A Unique SUMO-Interacting Motif of Trx2 Is Critical for Its Mitochondrial Presequence Processing and Anti-oxidant Activity. Front Physiol 2019; 10:1089. [PMID: 31555141 PMCID: PMC6727865 DOI: 10.3389/fphys.2019.01089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Mitochondrial thioredoxin 2 (Trx2) is a vital mitochondrial redox protein that mediates normal protein thiol reduction and provides electrons to peroxiredoxin 3 (Prx3) to scavenge H2O2 in mitochondria. It has been widely reported that Trx2 deletion in cells or mice generates massive reactive oxygen species (ROS) which have been implicated in many pathological processes. On the contrary, how ROS regulate Trx2 processing and activity remains to be elucidated. APPROACH AND RESULTS Here we show that excess ROS induce endothelial cell senescence concomitant with an attenuation of Trx2 processing in which Trx2 presequence [i.e., mitochondrial targeting signal peptide (MTS)] is cleaved to generate a mature form. Mutation analyses indicate that Trx2 processing is mediated by mitochondrial processing peptidase (MPP) and mitochondrial intermediate peptidase (MIP)-recognition sites within the MTS. Interestingly, a mutation at a SUMO- interacting motif (SIM), but not the catalytic sites within the mature Trx2 protein, completely blocks Trx2 processing with no effect on Trx2 mitochondrial targeting. Consistently, chemical inhibition of protein SUMOylation attenuates, while SUMOylation agonist promotes, Trx2 processing. Moreover, we identify the α-MPP subunit is a SUMOylated protein that potentially mediates Trx2-binding and cleavage. Furthermore, the unprocessed form of Trx2-SIM is unable to protect cells from both ROS generation and oxidative stress-induced cellular senescence. CONCLUSION Our study reveals that a unique SUMO-interacting motif of Trx2 is critical for its mitochondrial processing and subsequent anti-oxidant/antisenescence activities.
Collapse
Affiliation(s)
- Chaofei Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, Vascular Biology and Therapeutics Program, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Kang Wang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, Vascular Biology and Therapeutics Program, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Haifeng Zhang
- Department of Pathology, Vascular Biology and Therapeutics Program, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Huanjiao Jenny Zhou
- Department of Pathology, Vascular Biology and Therapeutics Program, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Wang Min
- Department of Pathology, Vascular Biology and Therapeutics Program, Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
49
|
Schmelter C, Fomo KN, Perumal N, Manicam C, Bell K, Pfeiffer N, Grus FH. Synthetic Polyclonal-Derived CDR Peptides as an Innovative Strategy in Glaucoma Therapy. J Clin Med 2019; 8:jcm8081222. [PMID: 31443184 PMCID: PMC6723090 DOI: 10.3390/jcm8081222] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022] Open
Abstract
The pathogenesis of glaucoma is strongly associated with the occurrence of autoimmune-mediated loss of retinal ganglion cells (RGCs) and additionally, recent evidence shows that specific antibody-derived signature peptides are significantly differentially expressed in sera of primary-open angle glaucoma patients (POAG) compared to healthy controls. Synthetically antibody-derived peptides can modulate various effector functions of the immune system and act as antimicrobial or antiviral molecules. In an ex vivo adolescent glaucoma model, this study, for the first time, demonstrates that polyclonal-derived complementarity-determining regions (CDRs) can significantly increase the survival rate of RGCs (p = 0.013). We subsequently performed affinity capture experiments that verified the mitochondrial serine protease HTRA2 (gene name: HTRA2) as a high-affinity retinal epitope target of CDR1 sequence motif ASGYTFTNYGLSWVR. Quantitative proteomic analysis of the CDR-treated retinal explants revealed increased expression of various anti-apoptotic and anti-oxidative proteins (e.g., VDAC2 and TXN) compared to untreated controls (p < 0.05) as well as decreased expression levels of cellular stress response markers (e.g., HSPE1 and HSP90AA1). Mitochondrial dysfunction, the protein ubiquitination pathway and oxidative phosphorylation were annotated as the most significantly affected signaling pathways and possibly can be traced back to the CDR-induced inhibition or modulation of the master regulator HTRA2. These findings emphasize the great potential of synthetic polyclonal-derived CDR peptides as therapeutic agents in future glaucoma therapy and provide an excellent basis for affinity-based biomarker discovery purposes.
Collapse
Affiliation(s)
- Carsten Schmelter
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Kristian Nzogang Fomo
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Natarajan Perumal
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Caroline Manicam
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Katharina Bell
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Norbert Pfeiffer
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Franz H Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| |
Collapse
|
50
|
Guney E, Buyuktaskin D, Tas Torun Y, Arslan B, Gulbahar O, Ozaslan A, Isik Taner Y, Iseri E. Increased serum thioredoxin levels are not correlated with executive functions in children with attention deficit hyperactivity disorder. Neurosci Lett 2019; 705:118-123. [PMID: 31028843 DOI: 10.1016/j.neulet.2019.04.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/04/2019] [Accepted: 04/23/2019] [Indexed: 11/24/2022]
Abstract
The first step of this study aims to determine whether thioredoxin (Trx) has a potential role in attention deficit hyperactivity disorder (ADHD) by measuring serum Trx levels in children with ADHD. In the second step, this study aims to reveal whether there is any relationship between Trx and executive functions. This is the first study investigating the serum levels of Trx in children with ADHD. This study sample included 45 patients diagnosed with ADHD and 30 healthy controls. Conners Teacher Rating Scale (CTRS) and Behavior Rating Inventory of Executive Function (BRIEF) are used to evaluate ADHD presentation, severity and executive functions, respectively. Trx levels were measured using an enzyme-linked immunosorbent assay (ELISA) kit. Significantly higher Trx levels were found in children with ADHD. No significant correlations were found between serum Trx levels and executive functions for controls or ADHD group; although hyperactive/impulsive ADHD presentation showed positive correlations with some subdomains of executive function. Serum Trx levels and disease severity, measured by CTRS, showed non-significant correlations. This study may be the first step in the study of the role played by Trx and oxidative stress in ADHD, further research is needed to support these preliminary findings.
Collapse
Affiliation(s)
- Esra Guney
- Child and Adolescent Psychiatry Department, Gazi University Medical Faculty, Ankara, Turkey.
| | - Dicle Buyuktaskin
- Child and Adolescent Psychiatry Department, Gazi University Medical Faculty, Ankara, Turkey
| | - Yasemin Tas Torun
- Child and Adolescent Psychiatry Department, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Burak Arslan
- Medical Biochemistry Department, Gazi University Medical Faculty, Ankara, Turkey
| | - Ozlem Gulbahar
- Medical Biochemistry Department, Gazi University Medical Faculty, Ankara, Turkey
| | - Ahmet Ozaslan
- Child and Adolescent Psychiatry Department, Yildirim Beyazit Univesity Yenimahalle Training and Research Hospital, Ankara, Turkey
| | - Yasemen Isik Taner
- Child and Adolescent Psychiatry Department, Gazi University Medical Faculty, Ankara, Turkey
| | - Elvan Iseri
- Child and Adolescent Psychiatry Department, Gazi University Medical Faculty, Ankara, Turkey
| |
Collapse
|