1
|
Bougnères P, Le Stunff C. Revisiting the Pathogenesis of X-Linked Adrenoleukodystrophy. Genes (Basel) 2025; 16:590. [PMID: 40428412 DOI: 10.3390/genes16050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Revised: 05/11/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND X-ALD is a white matter (WM) disease caused by mutations in the ABCD1 gene encoding the transporter of very-long-chain fatty acids (VLCFAs) into peroxisomes. Strikingly, the same ABCD1 mutation causes either devastating brain inflammatory demyelination during childhood or, more often, progressive spinal cord axonopathy starting in middle-aged adults. The accumulation of undegraded VLCFA in glial cell membranes and myelin has long been thought to be the central mechanism of X-ALD. METHODS This review discusses studies in mouse and drosophila models that have modified our views of X-ALD pathogenesis. RESULTS In the Abcd1 knockout (KO) mouse that mimics the spinal cord disease, the late manifestations of axonopathy are rapidly reversed by ABCD1 gene transfer into spinal cord oligodendrocytes (OLs). In a peroxin-5 KO mouse model, the selective impairment of peroxisomal biogenesis in OLs achieves an almost perfect phenocopy of cerebral ALD. A drosophila knockout model revealed that VLCFA accumulation in glial myelinating cells causes the production of a toxic lipid able to poison axons and activate inflammatory cells. Other mouse models showed the critical role of OLs in providing energy substrates to axons. In addition, studies on microglial changing substates have improved our understanding of neuroinflammation. CONCLUSIONS Animal models supporting a primary role of OLs and axonal pathology and a secondary role of microglia allow us to revisit of X-ALD mechanisms. Beyond ABCD1 mutations, pathogenesis depends on unidentified contributors, such as genetic background, cell-specific epigenomics, potential environmental triggers, and stochasticity of crosstalk between multiple cell types among billions of glial cells and neurons.
Collapse
Affiliation(s)
- Pierre Bougnères
- MIRCen Institute, Commissariat à l'Energie Atomique, Laboratoire des Maladies Neurodégénératives, 92260 Fontenay-aux-Roses, France
- NEURATRIS, 92260 Fontenay-aux-Roses, France
- Therapy Design Consulting, 94300 Vincennes, France
| | - Catherine Le Stunff
- MIRCen Institute, Commissariat à l'Energie Atomique, Laboratoire des Maladies Neurodégénératives, 92260 Fontenay-aux-Roses, France
- NEURATRIS, 92260 Fontenay-aux-Roses, France
- UMR1195 Inserm, University Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
2
|
Weinhofer I, Rommer P, Berger J. Blood Biomarkers Reflecting Brain Pathology-From Common Grounds to Rare Frontiers. J Inherit Metab Dis 2025; 48:e70032. [PMID: 40325881 PMCID: PMC12053231 DOI: 10.1002/jimd.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/18/2025] [Accepted: 04/11/2025] [Indexed: 05/07/2025]
Abstract
Understanding pathological changes in the brain is essential for guiding treatment decisions in brain injuries and diseases. Despite significant advances in brain imaging techniques, clinical practice still faces challenges due to infrastructure reliance and high resource demands. This review explores the current knowledge on blood-based biomarkers that indicate brain pathology, which can assist in identifying at-risk patients, diagnosing patients, predicting disease progression, and treatment response. We focus on the inherited metabolic disorders X-linked adrenoleukodystrophy (X-ALD) and metachromatic leukodystrophy (MLD) which share remarkable phenotypic variability. Disease-specific increases in the lipid metabolites lyso-PC26:0 in X-ALD and sulfatides in MLD might contribute to predicting clinical manifestation. Disease-unspecific biomarkers for axonal damage (neurofilament light chain protein, NfL) and glial degeneration (glial fibrillary acidic protein, GFAP) are able to distinguish X-ALD and MLD phenotypes at the group level. The implementation of X-ALD into newborn screening programs in various countries, including several U.S. states, has increased the demand for predictive blood-based biomarkers capable of detecting the early conversion from the pre-symptomatic to the early neuroinflammatory cerebral form of X-ALD. Among different biomarkers, NfL has proven most effective in reflecting neuroinflammation and correlating with brain lesion volume and the magnetic resonance imaging (MRI)-based severity scores. We discuss how NfL has moved from initial proof-of-principle towards proof-of-concept studies in brain disorders such as multiple sclerosis and how this knowledge could be applied for the clinical implementation of NfL in rare inherited metabolic disorders such as X-ALD.
Collapse
Affiliation(s)
- Isabelle Weinhofer
- Department Pathobiology of the Nervous System, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Paulus Rommer
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Johannes Berger
- Department Pathobiology of the Nervous System, Center for Brain ResearchMedical University of ViennaViennaAustria
| |
Collapse
|
3
|
Manor J, Jangam SV, Chung HL, Bhagwat P, Andrews J, Chester H, Kondo S, Srivastav S, Botas J, Moser AB, Huguenin SM, Wangler MF. Genetic analysis of the X-linked Adrenoleukodystrophy ABCD1 gene in Drosophila uncovers a role in Peroxisomal dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614586. [PMID: 39386423 PMCID: PMC11463603 DOI: 10.1101/2024.09.23.614586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a progressive neurodegenerative disorder caused by a loss-of-function (LOF) mutation in the ATP-binding cassette subfamily D member 1 (ABCD1) gene, leading to the accumulation of very long-chain fatty acids (VLCFAs). This disorder exhibits striking heterogeneity; some male patients develop an early childhood neuroinflammatory demyelination disorder, while other patients, including adult males and most affected female carriers, experience a chronic progressive myelopathy. Adrenocortical failure is observed in almost all male patients, with age of onset varying sometimes being the first diagnostic finding. The gene underlying this spectrum of disease encodes an ATP-binding cassette (ABC) transporter that localizes to peroxisomes and facilitates VLCFA transport. X-ALD is considered a single peroxisomal component defect and does not play a direct role in peroxisome assembly. Drosophila models of other peroxisomal genes have provided mechanistic insight into some of the neurodegenerative mechanisms with reduced lifespan, retinal degeneration, and VLCFA accumulation. Here, we perform a genetic analysis of the fly ABCD1 ortholog Abcd1 (CG2316). Knockdown or deficiency of Abcd1 leads to VLCFA accumulation, salivary gland defects, locomotor impairment and retinal lipid abnormalities. Interestingly, there is also evidence of reduced peroxisomal numbers. Flies overexpressing the human cDNA for ABCD1 display a wing crumpling phenotype characteristic of the pex2 loss-of-function. Surprisingly, overexpression of human ABCD1 appears to inhibit or overwhelm peroxisomal biogenesis to levels similar to null mutations in fly pex2, pex16 and pex3. Drosophila Abcd1 is therefore implicated in peroxisomal number, and overexpression of the human ABCD1 gene acts a potent inhibitor of peroxisomal biogenesis in flies.
Collapse
Affiliation(s)
- Joshua Manor
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Sharayu V Jangam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Hyung-lok Chung
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurology, Weill Cornell Medical College, New York, NY, USA
| | - Pranjali Bhagwat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Jonathan Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Hillary Chester
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Shu Kondo
- Tokyo University of Science, Faculty of Advanced Engineering, Department of Biological Science and Technology, Tokyo, Japan
| | - Saurabh Srivastav
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Ann B. Moser
- Hugo W Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Suzette M. Huguenin
- Hugo W Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
4
|
Yska HAF, Engelen M, Bugiani M. The pathology of X-linked adrenoleukodystrophy: tissue specific changes as a clue to pathophysiology. Orphanet J Rare Dis 2024; 19:138. [PMID: 38549180 PMCID: PMC10976706 DOI: 10.1186/s13023-024-03105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
Although the pathology of X-linked adrenoleukodystrophy (ALD) is well described, it represents the end-stage of neurodegeneration. It is still unclear what cell types are initially involved and what their role is in the disease process. Revisiting the seminal post-mortem studies from the 1970s can generate new hypotheses on pathophysiology. This review describes (histo)pathological changes of the brain and spinal cord in ALD. It aims at integrating older works with current insights and at providing an overarching theory on the pathophysiology of ALD. The data point to an important role for axons and glia in the pathology of both the myelopathy and leukodystrophy of ALD. In-depth pathological analyses with new techniques could help further unravel the sequence of events behind the pathology of ALD.
Collapse
Affiliation(s)
- Hemmo A F Yska
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Marc Engelen
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Pathology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Sevin C, Mochel F. Hematopoietic stem cell transplantation in leukodystrophies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:355-366. [PMID: 39322389 DOI: 10.1016/b978-0-323-99209-1.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
More than 50 leukodystrophies have been described. This group of inherited disorders affects myelin development and/or maintenance and can manifest from birth to adulthood. Neuroinflammation is a hallmark of some leukodystrophies, explaining in part the therapeutic benefit of hematopoietic stem cell transplantation (HSCT). Indeed, in addition to supplying the CNS with myelomonocyte donor cells expressing the deficient protein or enzyme, HSCT allows the restoration of normal microglia function, which may act on neuroinflammation. In this chapter, we explore the rationale, indication, and outcome of HSCT in Cerebral Adrenoleukodystrophy (CALD), Metachromatic Leukodystrophy (MLD), Krabbe Disease (KD), and Adult-onset Leukoencephalopathy with Axonal Spheroids and Pigmented Glia (ALSP), which are among the most frequent leukodystrophies. For these leukodystrophies, HSCT may modify notably the natural history and improve CNS-related deficits, provided that the procedure is performed early into the disease course. In addition, we discuss the recent development of ex vivo gene therapy for CALD and MLD as a promising alternative to allograft.
Collapse
Affiliation(s)
- Caroline Sevin
- AP-HP, Kremlin-Bicêtre University Hospital, Department of Neuropediatrics, Reference Center for Pediatric Leukodystrophies, Paris, France; INSERM U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau, ICM, Paris, France
| | - Fanny Mochel
- INSERM U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau, ICM, Paris, France; AP-HP, Pitié-Salpêtrière University Hospital, Department of Medical Genetics, Reference Centers for Adult Neurometabolic Diseases and Adult Leukodystrophies, Paris, France.
| |
Collapse
|
6
|
Tawbeh A, Raas Q, Tahri-Joutey M, Keime C, Kaiser R, Trompier D, Nasser B, Bellanger E, Dessard M, Hamon Y, Benani A, Di Cara F, Cunha Alves T, Berger J, Weinhofer I, Mandard S, Cherkaoui-Malki M, Andreoletti P, Gondcaille C, Savary S. Immune response of BV-2 microglial cells is impacted by peroxisomal beta-oxidation. Front Mol Neurosci 2023; 16:1299314. [PMID: 38164407 PMCID: PMC10757945 DOI: 10.3389/fnmol.2023.1299314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Microglia are crucial for brain homeostasis, and dysfunction of these cells is a key driver in most neurodegenerative diseases, including peroxisomal leukodystrophies. In X-linked adrenoleukodystrophy (X-ALD), a neuroinflammatory disorder, very long-chain fatty acid (VLCFA) accumulation due to impaired degradation within peroxisomes results in microglial defects, but the underlying mechanisms remain unclear. Using CRISPR/Cas9 gene editing of key genes in peroxisomal VLCFA breakdown (Abcd1, Abcd2, and Acox1), we recently established easily accessible microglial BV-2 cell models to study the impact of dysfunctional peroxisomal β-oxidation and revealed a disease-associated microglial-like signature in these cell lines. Transcriptomic analysis suggested consequences on the immune response. To clarify how impaired lipid degradation impacts the immune function of microglia, we here used RNA-sequencing and functional assays related to the immune response to compare wild-type and mutant BV-2 cell lines under basal conditions and upon pro-inflammatory lipopolysaccharide (LPS) activation. A majority of genes encoding proinflammatory cytokines, as well as genes involved in phagocytosis, antigen presentation, and co-stimulation of T lymphocytes, were found differentially overexpressed. The transcriptomic alterations were reflected by altered phagocytic capacity, inflammasome activation, increased release of inflammatory cytokines, including TNF, and upregulated response of T lymphocytes primed by mutant BV-2 cells presenting peptides. Together, the present study shows that peroxisomal β-oxidation defects resulting in lipid alterations, including VLCFA accumulation, directly reprogram the main cellular functions of microglia. The elucidation of this link between lipid metabolism and the immune response of microglia will help to better understand the pathogenesis of peroxisomal leukodystrophies.
Collapse
Affiliation(s)
- Ali Tawbeh
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Quentin Raas
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Mounia Tahri-Joutey
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, University Hassan I, Settat, Morocco
| | - Céline Keime
- Plateforme GenomEast, IGBMC, CNRS UMR 7104, Inserm U1258, University of Strasbourg, Illkirch, France
| | - Romain Kaiser
- Plateforme GenomEast, IGBMC, CNRS UMR 7104, Inserm U1258, University of Strasbourg, Illkirch, France
| | - Doriane Trompier
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, University Hassan I, Settat, Morocco
| | - Emma Bellanger
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Marie Dessard
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Yannick Hamon
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Alexandre Benani
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | - Francesca Di Cara
- Department of Microbiology and Immunology, Dalhousie University, IWK Health Centre, Halifax, NS, Canada
| | - Tânia Cunha Alves
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Stéphane Mandard
- LipSTIC LabEx, University of Bourgogne, INSERM LNC UMR1231, Dijon, France
| | | | | | | | - Stéphane Savary
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| |
Collapse
|
7
|
Villoria-González A, Zierfuss B, Parzer P, Heuböck E, Zujovic V, Waidhofer-Söllner P, Ponleitner M, Rommer P, Göpfert J, Forss-Petter S, Berger J, Weinhofer I. Efficacy of HDAC Inhibitors in Driving Peroxisomal β-Oxidation and Immune Responses in Human Macrophages: Implications for Neuroinflammatory Disorders. Biomolecules 2023; 13:1696. [PMID: 38136568 PMCID: PMC10741867 DOI: 10.3390/biom13121696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Elevated levels of saturated very long-chain fatty acids (VLCFAs) in cell membranes and secreted lipoparticles have been associated with neurotoxicity and, therefore, require tight regulation. Excessive VLCFAs are imported into peroxisomes for degradation by β-oxidation. Impaired VLCFA catabolism due to primary or secondary peroxisomal alterations is featured in neurodegenerative and neuroinflammatory disorders such as X-linked adrenoleukodystrophy and multiple sclerosis (MS). Here, we identified that healthy human macrophages upregulate the peroxisomal genes involved in β-oxidation during myelin phagocytosis and pro-inflammatory activation, and that this response is impaired in peripheral macrophages and phagocytes in brain white matter lesions in MS patients. The pharmacological targeting of VLCFA metabolism and peroxisomes in innate immune cells could be favorable in the context of neuroinflammation and neurodegeneration. We previously identified the epigenetic histone deacetylase (HDAC) inhibitors entinostat and vorinostat to enhance VLCFA degradation and pro-regenerative macrophage polarization. However, adverse side effects currently limit their use in chronic neuroinflammation. Here, we focused on tefinostat, a monocyte/macrophage-selective HDAC inhibitor that has shown reduced toxicity in clinical trials. By using a gene expression analysis, peroxisomal β-oxidation assay, and live imaging of primary human macrophages, we assessed the efficacy of tefinostat in modulating VLCFA metabolism, phagocytosis, chemotaxis, and immune function. Our results revealed the significant stimulation of VLCFA degradation with the upregulation of genes involved in peroxisomal β-oxidation and interference with immune cell recruitment; however, tefinostat was less potent than the class I HDAC-selective inhibitor entinostat in promoting a regenerative macrophage phenotype. Further research is needed to fully explore the potential of class I HDAC inhibition and downstream targets in the context of neuroinflammation.
Collapse
Affiliation(s)
- Andrea Villoria-González
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
| | - Bettina Zierfuss
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
- Department of Neuroscience, Centre de Recherche du CHUM, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Patricia Parzer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
| | - Elisabeth Heuböck
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
| | - Violetta Zujovic
- Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière—University Hospital, Sorbonne University, DMU Neuroscience 6, 75013 Paris, France
| | - Petra Waidhofer-Söllner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Ponleitner
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Paulus Rommer
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Jens Göpfert
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute, University of Tübingen, 72770 Reutlingen, Germany
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
| | - Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
| |
Collapse
|
8
|
Weinhofer I, Rommer P, Gleiss A, Ponleitner M, Zierfuss B, Waidhofer-Söllner P, Fourcade S, Grabmeier-Pfistershammer K, Reinert MC, Göpfert J, Heine A, Yska HAF, Casasnovas C, Cantarín V, Bergner CG, Mallack E, Forss-Petter S, Aubourg P, Bley A, Engelen M, Eichler F, Lund TC, Pujol A, Köhler W, Kühl JS, Berger J. Biomarker-based risk prediction for the onset of neuroinflammation in X-linked adrenoleukodystrophy. EBioMedicine 2023; 96:104781. [PMID: 37683329 PMCID: PMC10497986 DOI: 10.1016/j.ebiom.2023.104781] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND X-linked adrenoleukodystrophy (X-ALD) is highly variable, ranging from slowly progressive adrenomyeloneuropathy to severe brain demyelination and inflammation (cerebral ALD, CALD) affecting males with childhood peak onset. Risk models integrating blood-based biomarkers to indicate CALD onset, enabling timely interventions, are lacking. Therefore, we evaluated the prognostic value of blood biomarkers in addition to current neuroimaging predictors for early detection of CALD. METHODS We measured blood biomarkers in a retrospective, male CALD risk-assessment cohort consisting of 134 X-ALD patients and 66 controls and in a phenotype-blinded validation set (25 X-ALD boys, 4-13 years) using Simoa®and Luminex® technologies. FINDINGS Among 25 biomarkers indicating axonal damage, astrocye/microglia activation, or immune-cell recruitment, neurofilament light chain (NfL) had the highest prognostic value for early indication of childhood/adolescent CALD. A plasma NfL cut-off level of 8.33 pg/mL, determined in the assessment cohort, correctly discriminated CALD with an accuracy of 96% [95% CI: 80-100] in the validation group. Multivariable logistic regression models revealed that combining NfL with GFAP or cytokines/chemokines (IL-15, IL-12p40, CXCL8, CCL11, CCL22, and IL-4) that were significantly elevated in CALD vs healthy controls had no additional benefit for detecting neuroinflammation. Some cytokines/chemokines were elevated only in childhood/adolescent CALD and already upregulated in asymptomatic X-ALD children (IL-15, IL-12p40, and CCL7). In adults, NfL levels distinguished CALD but were lower than in childhood/adolescent CALD patients with similar (MRI) lesion severity. Blood GFAP did not differentiate CALD from non-inflammatory X-ALD. INTERPRETATION Biomarker-based risk prediction with a plasma NfL cut-off value of 8.33 pg/mL, determined by ROC analysis, indicates CALD onset with high sensitivity and specificity in childhood X-ALD patients. A specific pro-inflammatory cytokine/chemokine profile in asymptomatic X-ALD boys may indicate a primed, immanent inflammatory state aligning with peak onset of CALD. Age-related differences in biomarker levels in adult vs childhood CALD patients warrants caution in predicting onset and progression of CALD in adults. Further evaluations are needed to assess clinical utility of the NfL cut-off for risk prognosis of CALD onset. FUNDING Austrian Science Fund, European Leukodystrophy Association.
Collapse
Affiliation(s)
- Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | - Paulus Rommer
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Andreas Gleiss
- Institute of Clinical Biometrics, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Markus Ponleitner
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Bettina Zierfuss
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria; Department of Neuroscience, Centre de Recherche du CHUM, Université de Montréal, Montréal, Canada
| | - Petra Waidhofer-Söllner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain; Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Katharina Grabmeier-Pfistershammer
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Marie-Christine Reinert
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Göpfert
- Applied Biomarkers and Immunoassays Working Group, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Anne Heine
- Applied Biomarkers and Immunoassays Working Group, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Hemmo A F Yska
- Department of Pediatric Neurology, Amsterdam Public Health, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain; Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Madrid, Spain; Neuromuscular Unit, Neurology Department, Hospital Universitario Bellvitge, Bellvitge Biomedical Research Unit, Barcelona, Spain
| | - Verónica Cantarín
- Infant Jesus Children´s Hospital and Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Caroline G Bergner
- Department of Neurology, Leukodystrophy Clinic, University of Leipzig Medical Center, Leipzig, Germany
| | - Eric Mallack
- Leukodystrophy Center, Division of Child Neurology, Department of Pediatrics, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Patrick Aubourg
- Kremlin-Bicêtre-Hospital, University Paris-Saclay, Paris, France
| | - Annette Bley
- Department of Pediatrics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Marc Engelen
- Department of Pediatric Neurology, Amsterdam Public Health, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Florian Eichler
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Troy C Lund
- Pediatric Blood and Marrow Transplant Program, Global Pediatrics, Division of Pediatric Blood and Marrow Transplantation, MCRB, University of Minnesota, Minneapolis, MN, USA
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain; Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Wolfgang Köhler
- Department of Neurology, Leukodystrophy Clinic, University of Leipzig Medical Center, Leipzig, Germany
| | - Jörn-Sven Kühl
- Department of Pediatric Oncology, Hematology and Hemostaseology, University Hospital Leipzig, Leipzig, Germany
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Buda A, Forss-Petter S, Hua R, Jaspers Y, Lassnig M, Waidhofer-Söllner P, Kemp S, Kim P, Weinhofer I, Berger J. ABCD1 Transporter Deficiency Results in Altered Cholesterol Homeostasis. Biomolecules 2023; 13:1333. [PMID: 37759733 PMCID: PMC10526550 DOI: 10.3390/biom13091333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD), the most common peroxisomal disorder, is caused by mutations in the peroxisomal transporter ABCD1, resulting in the accumulation of very long-chain fatty acids (VLCFA). Strongly affected cell types, such as oligodendrocytes, adrenocortical cells and macrophages, exhibit high cholesterol turnover. Here, we investigated how ABCD1 deficiency affects cholesterol metabolism in human X-ALD patient-derived fibroblasts and CNS tissues of Abcd1-deficient mice. Lipidome analyses revealed increased levels of cholesterol esters (CE), containing both saturated VLCFA and mono/polyunsaturated (V)LCFA. The elevated CE(26:0) and CE(26:1) levels remained unchanged in LXR agonist-treated Abcd1 KO mice despite reduced total C26:0. Under high-cholesterol loading, gene expression of SOAT1, converting cholesterol to CE and lipid droplet formation were increased in human X-ALD fibroblasts versus healthy control fibroblasts. However, the expression of NCEH1, catalysing CE hydrolysis and the cholesterol transporter ABCA1 and cholesterol efflux were also upregulated. Elevated Soat1 and Abca1 expression and lipid droplet content were confirmed in the spinal cord of X-ALD mice, where expression of the CNS cholesterol transporter Apoe was also elevated. The extent of peroxisome-lipid droplet co-localisation appeared low and was not impaired by ABCD1-deficiency in cholesterol-loaded primary fibroblasts. Finally, addressing steroidogenesis, progesterone-induced cortisol release was amplified in X-ALD fibroblasts. These results link VLCFA to cholesterol homeostasis and justify further consideration of therapeutic approaches towards reducing VLCFA and cholesterol levels in X-ALD.
Collapse
Affiliation(s)
- Agnieszka Buda
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Rong Hua
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Yorrick Jaspers
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Mark Lassnig
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Petra Waidhofer-Söllner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Peter Kim
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
10
|
Martinović K, Bauer J, Kunze M, Berger J, Forss-Petter S. Abcd1 deficiency accelerates cuprizone-induced oligodendrocyte loss and axonopathy in a demyelinating mouse model of X-linked adrenoleukodystrophy. Acta Neuropathol Commun 2023; 11:98. [PMID: 37331971 PMCID: PMC10276915 DOI: 10.1186/s40478-023-01595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD), the most frequent, inherited peroxisomal disease, is caused by mutations in the ABCD1 gene encoding a peroxisomal lipid transporter importing very long-chain fatty acids (VLCFAs) from the cytosol into peroxisomes for degradation via β-oxidation. ABCD1 deficiency results in accumulation of VLCFAs in tissues and body fluids of X-ALD patients with a wide range of phenotypic manifestations. The most severe variant, cerebral X-ALD (CALD) is characterized by progressive inflammation, loss of the myelin-producing oligodendrocytes and demyelination of the cerebral white matter. Whether the oligodendrocyte loss and demyelination in CALD are caused by a primary cell autonomous defect or injury to oligodendrocytes or by a secondary effect of the inflammatory reaction remains unresolved. To address the role of X-ALD oligodendrocytes in demyelinating pathophysiology, we combined the Abcd1 deficient X-ALD mouse model, in which VLCFAs accumulate without spontaneous demyelination, with the cuprizone model of toxic demyelination. In mice, the copper chelator cuprizone induces reproducible demyelination in the corpus callosum, followed by remyelination upon cuprizone removal. By immunohistochemical analyses of oligodendrocytes, myelin, axonal damage and microglia activation during de-and remyelination, we found that the mature oligodendrocytes of Abcd1 KO mice are more susceptible to cuprizone-induced cell death compared to WT mice in the early demyelinating phase. Furthermore, this effect was mirrored by a greater extent of acute axonal damage during demyelination in the KO mice. Abcd1 deficiency did not affect the function of microglia in either phase of the treatment. Also, the proliferation and differentiation of oligodendrocyte precursor cells and remyelination progressed at similar rates in both genotypes. Taken together, our findings point to an effect of Abcd1 deficiency on mature oligodendrocytes and the oligodendrocyte-axon unit, leading to increased vulnerability in the context of a demyelinating insult.
Collapse
Affiliation(s)
- Ksenija Martinović
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Markus Kunze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| |
Collapse
|
11
|
Inoue Y, Kamiya T, Hara H. Increased expression of ELOVL7 contributes to production of inflammatory cytokines in THP-1 cell-derived M1-like macrophages. J Clin Biochem Nutr 2023; 72:215-224. [PMID: 37251958 PMCID: PMC10209594 DOI: 10.3164/jcbn.22-69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/05/2022] [Indexed: 08/06/2023] Open
Abstract
The elevation of intracellular very long-chain fatty acids (VLCFAs) augments pro-inflammatory activity of macrophages. VLCFAs are considered to function as regulators in macrophage inflammatory responses; however, the precise mechanism of regulating the production of VLCFAs is unclear. In this study, we focused on elongation of the very‑long‑chain fatty acid protein (ELOVL) family, rate-determining enzymes for VLCFA synthesis, in macrophages. ELOVL7 mRNA was upregulated in human monocytic THP-1 cell-derived M1-like macrophages. Metascape analysis using the RNA-seq data set showed the involvement of NF-κB and STAT1 in transcriptional regulation of ELOVL7 highly correlated genes. Gene ontology (GO) enrichment analysis suggested that ELOVL7 highly correlated genes were closely associated with multiple pro-inflammatory responses, including response to virus and positive regulation of NF-κB signaling. Consistent with RNA-seq analysis, the NF-κB inhibitor BAY11-7082, but not the STAT1 inhibitor fludarabine, canceled ELOVL7 upregulation in M1-like macrophages. ELOVL7 knockdown decreased interleukin (IL)-6 and IL-12/IL-23 p40 production. Moreover, RNA-seq analysis of plasmacytoid dendritic cells (pDCs) revealed that ELOVL7 was upregulated in pDCs treated with TLR7 and TLR9 agonists. In conclusion, we propose that ELOVL7 is a novel pro-inflammatory gene that is upregulated by inflammatory stimuli, and regulates M1-like macrophage and pDC functions.
Collapse
Affiliation(s)
- Yuki Inoue
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
12
|
Pizcueta P, Vergara C, Emanuele M, Vilalta A, Rodríguez-Pascau L, Martinell M. Development of PPARγ Agonists for the Treatment of Neuroinflammatory and Neurodegenerative Diseases: Leriglitazone as a Promising Candidate. Int J Mol Sci 2023; 24:ijms24043201. [PMID: 36834611 PMCID: PMC9961553 DOI: 10.3390/ijms24043201] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Increasing evidence suggests that the peroxisome proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, plays an important role in physiological processes in the central nervous system (CNS) and is involved in cellular metabolism and repair. Cellular damage caused by acute brain injury and long-term neurodegenerative disorders is associated with alterations of these metabolic processes leading to mitochondrial dysfunction, oxidative stress, and neuroinflammation. PPARγ agonists have demonstrated the potential to be effective treatments for CNS diseases in preclinical models, but to date, most drugs have failed to show efficacy in clinical trials of neurodegenerative diseases including amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease. The most likely explanation for this lack of efficacy is the insufficient brain exposure of these PPARγ agonists. Leriglitazone is a novel, blood-brain barrier (BBB)-penetrant PPARγ agonist that is being developed to treat CNS diseases. Here, we review the main roles of PPARγ in physiology and pathophysiology in the CNS, describe the mechanism of action of PPARγ agonists, and discuss the evidence supporting the use of leriglitazone to treat CNS diseases.
Collapse
Affiliation(s)
- Pilar Pizcueta
- Minoryx Therapeutics SL, 08302 Barcelona, Spain
- Correspondence:
| | | | - Marco Emanuele
- Minoryx Therapeutics BE, Gosselies, 6041 Charleroi, Belgium
| | | | | | - Marc Martinell
- Minoryx Therapeutics SL, 08302 Barcelona, Spain
- Minoryx Therapeutics BE, Gosselies, 6041 Charleroi, Belgium
| |
Collapse
|
13
|
Moore JM, Bell EL, Hughes RO, Garfield AS. ABC transporters: human disease and pharmacotherapeutic potential. Trends Mol Med 2023; 29:152-172. [PMID: 36503994 DOI: 10.1016/j.molmed.2022.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are a 48-member superfamily of membrane proteins that actively transport a variety of biological substrates across lipid membranes. Their functional diversity defines an expansive involvement in myriad aspects of human biology. At least 21 ABC transporters underlie rare monogenic disorders, with even more implicated in the predisposition to and symptomology of common and complex diseases. Such broad (patho)physiological relevance places this class of proteins at the intersection of disease causation and therapeutic potential, underlining them as promising targets for drug discovery, as exemplified by the transformative CFTR (ABCC7) modulator therapies for cystic fibrosis. This review will explore the growing relevance of ABC transporters to human disease and their potential as small-molecule drug targets.
Collapse
|
14
|
Raas Q, Tawbeh A, Tahri-Joutey M, Gondcaille C, Keime C, Kaiser R, Trompier D, Nasser B, Leoni V, Bellanger E, Boussand M, Hamon Y, Benani A, Di Cara F, Truntzer C, Cherkaoui-Malki M, Andreoletti P, Savary S. Peroxisomal defects in microglial cells induce a disease-associated microglial signature. Front Mol Neurosci 2023; 16:1170313. [PMID: 37138705 PMCID: PMC10149961 DOI: 10.3389/fnmol.2023.1170313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Microglial cells ensure essential roles in brain homeostasis. In pathological condition, microglia adopt a common signature, called disease-associated microglial (DAM) signature, characterized by the loss of homeostatic genes and the induction of disease-associated genes. In X-linked adrenoleukodystrophy (X-ALD), the most common peroxisomal disease, microglial defect has been shown to precede myelin degradation and may actively contribute to the neurodegenerative process. We previously established BV-2 microglial cell models bearing mutations in peroxisomal genes that recapitulate some of the hallmarks of the peroxisomal β-oxidation defects such as very long-chain fatty acid (VLCFA) accumulation. In these cell lines, we used RNA-sequencing and identified large-scale reprogramming for genes involved in lipid metabolism, immune response, cell signaling, lysosome and autophagy, as well as a DAM-like signature. We highlighted cholesterol accumulation in plasma membranes and observed autophagy patterns in the cell mutants. We confirmed the upregulation or downregulation at the protein level for a few selected genes that mostly corroborated our observations and clearly demonstrated increased expression and secretion of DAM proteins in the BV-2 mutant cells. In conclusion, the peroxisomal defects in microglial cells not only impact on VLCFA metabolism but also force microglial cells to adopt a pathological phenotype likely representing a key contributor to the pathogenesis of peroxisomal disorders.
Collapse
Affiliation(s)
- Quentin Raas
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Ali Tawbeh
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Mounia Tahri-Joutey
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, University Hassan I, Settat, Morocco
| | | | - Céline Keime
- Plateforme GenomEast, IGBMC, CNRS UMR 7104, Inserm U1258, University of Strasbourg, Illkirch, France
| | - Romain Kaiser
- Plateforme GenomEast, IGBMC, CNRS UMR 7104, Inserm U1258, University of Strasbourg, Illkirch, France
| | - Doriane Trompier
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, University Hassan I, Settat, Morocco
| | - Valerio Leoni
- Laboratory of Clinical Biochemistry, Hospital of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Emma Bellanger
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Maud Boussand
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Yannick Hamon
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Alexandre Benani
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro Dijon, University of Bourgogne Franche-Comté, Dijon, France
| | - Francesca Di Cara
- Department of Microbiology and Immunology, IWK Health Centre, Dalhousie University, Halifax, NS, Canada
| | - Caroline Truntzer
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center–Unicancer, Dijon, France
| | | | | | - Stéphane Savary
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
- *Correspondence: Stéphane Savary,
| |
Collapse
|
15
|
He R, Zhang J, Huang T, Cai G, Zou Z, Ye Q. Novel mutations in the ABCD1 gene caused adrenomyeloneuropathy in the Chinese population. Front Neurol 2023; 14:1126729. [PMID: 36925939 PMCID: PMC10011709 DOI: 10.3389/fneur.2023.1126729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/01/2023] [Indexed: 03/08/2023] Open
Abstract
Background As a rare genetic disease, adrenomyeloneuropathy (AMN) is the most common adult phenotype of X-linked adrenoleukodystrophy (X-ALD). Mutations in the ABCD1 gene have been identified to cause AMN. Methods We applied clinical evaluation, laboratory tests, and neuroimaging on three patients with progressive spastic paraparesis. In genetic analysis, we investigated ABCD1 gene mutations by whole-exome sequencing and Sanger sequencing. Bioinformatics tools were used to predict the effects of identified ABCD1 mutations on the protein. Results All three patients were men with adult-onset disease, mainly characterized by progressive spastic paraparesis. Among them, two patients had peripheral neuropathy and one patient had signs of adrenal insufficiency. All three patients showed cerebral involvement on brain MRI, while two patients were found with diffuse cord atrophy on spinal MRI. High-VLCFA levels in plasma, as well as C24:0/C22:0 and C26:0/C22:0 ratios, were found in all three patients. In addition, three different ABCD1 mutations were identified in three unrelated Chinese families, including one known mutation (c.1415_1416delAG) and two novel mutations (c.217C>T and c.160_170delACGCAGGAGGC). Based on the clinical assessment, radiographic, biochemical, and genetic testing, the final diagnosis was AMN in these patients with spastic paraparesis. Conclusion This study reported three patients with AMN and identified two novel mutations in the ABCD1 in the Chinese population. Our finding emphasized that X-ALD is an important cause of adult-onset spastic paraplegia. Thus, neuroimaging, VLCFA testing, and especially the detection of the ABCD1 gene have important implications for the etiological diagnosis of adult patients with spastic paraplegia.
Collapse
Affiliation(s)
- Raoli He
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.,Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Jian Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.,Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Tianwen Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.,Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Guoen Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.,Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhangyu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.,Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Qinyong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.,Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
16
|
Wanders RJA, Baes M, Ribeiro D, Ferdinandusse S, Waterham HR. The physiological functions of human peroxisomes. Physiol Rev 2023; 103:957-1024. [PMID: 35951481 DOI: 10.1152/physrev.00051.2021] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peroxisomes are subcellular organelles that play a central role in human physiology by catalyzing a range of unique metabolic functions. The importance of peroxisomes for human health is exemplified by the existence of a group of usually severe diseases caused by an impairment in one or more peroxisomal functions. Among others these include the Zellweger spectrum disorders, X-linked adrenoleukodystrophy, and Refsum disease. To fulfill their role in metabolism, peroxisomes require continued interaction with other subcellular organelles including lipid droplets, lysosomes, the endoplasmic reticulum, and mitochondria. In recent years it has become clear that the metabolic alliance between peroxisomes and other organelles requires the active participation of tethering proteins to bring the organelles physically closer together, thereby achieving efficient transfer of metabolites. This review intends to describe the current state of knowledge about the metabolic role of peroxisomes in humans, with particular emphasis on the metabolic partnership between peroxisomes and other organelles and the consequences of genetic defects in these processes. We also describe the biogenesis of peroxisomes and the consequences of the multiple genetic defects therein. In addition, we discuss the functional role of peroxisomes in different organs and tissues and include relevant information derived from model systems, notably peroxisomal mouse models. Finally, we pay particular attention to a hitherto underrated role of peroxisomes in viral infections.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Zierfuss B, Buda A, Villoria-González A, Logist M, Fabjan J, Parzer P, Battin C, Vandersteene S, Dijkstra IME, Waidhofer-Söllner P, Grabmeier-Pfistershammer K, Steinberger P, Kemp S, Forss-Petter S, Berger J, Weinhofer I. Saturated very long-chain fatty acids regulate macrophage plasticity and invasiveness. J Neuroinflammation 2022; 19:305. [PMID: 36528616 PMCID: PMC9759912 DOI: 10.1186/s12974-022-02664-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022] Open
Abstract
Saturated very long-chain fatty acids (VLCFA, ≥ C22), enriched in brain myelin and innate immune cells, accumulate in X-linked adrenoleukodystrophy (X-ALD) due to inherited dysfunction of the peroxisomal VLCFA transporter ABCD1. In its severest form, X-ALD causes cerebral myelin destruction with infiltration of pro-inflammatory skewed monocytes/macrophages. How VLCFA levels relate to macrophage activation is unclear. Here, whole transcriptome sequencing of X-ALD macrophages indicated that VLCFAs prime human macrophage membranes for inflammation and increased expression of factors involved in chemotaxis and invasion. When added externally to mimic lipid release in demyelinating X-ALD lesions, VLCFAs did not activate toll-like receptors in primary macrophages. In contrast, VLCFAs provoked pro-inflammatory responses through scavenger receptor CD36-mediated uptake, cumulating in JNK signalling and expression of matrix-degrading enzymes and chemokine release. Following pro-inflammatory LPS activation, VLCFA levels increased also in healthy macrophages. With the onset of the resolution, VLCFAs were rapidly cleared in control macrophages by increased peroxisomal VLCFA degradation through liver-X-receptor mediated upregulation of ABCD1. ABCD1 deficiency impaired VLCFA homeostasis and prolonged pro-inflammatory gene expression upon LPS treatment. Our study uncovers a pivotal role for ABCD1, a protein linked to neuroinflammation, and associated peroxisomal VLCFA degradation in regulating macrophage plasticity.
Collapse
Affiliation(s)
- Bettina Zierfuss
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
- Department of Neuroscience, Centre de Recherche du CHUM, Université de Montréal, Montréal, H2X 0A9, Canada
| | - Agnieszka Buda
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Andrea Villoria-González
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Maxime Logist
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
- Department of Chronic Diseases and Metabolism, Translational Research in GastroIntestinal Disorders, KU Leuven, 3000, Leuven, Belgium
| | - Jure Fabjan
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Patricia Parzer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Claire Battin
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Streggi Vandersteene
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Inge M E Dijkstra
- Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Petra Waidhofer-Söllner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Katharina Grabmeier-Pfistershammer
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Stephan Kemp
- Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria.
| |
Collapse
|
18
|
Wang P, Du X, Shen Q, Jiang W, Shen C, Wang H, Zhou S, Wang Y, Qian X, Zhai X. Unrelated umbilical cord blood transplantation for children with hereditary leukodystrophy: A retrospective study. Front Neurol 2022; 13:999919. [PMID: 36247778 PMCID: PMC9561100 DOI: 10.3389/fneur.2022.999919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Objective To analyze the efficiency of unrelated umbilical cord blood transplantation (UCBT) in the treatment of hereditary leukodystrophy following busulfan- and cyclophosphamide-based myeloablative chemotherapy. Methods A retrospective study was performed in patients with hereditary leukodystrophy who underwent UCBT after myeloablative chemotherapy between April 2015 and March 2020. Results The study cohort included 12 pediatric patients (ten males), nine with cerebral adrenoleukodystrophy (ALD) and three with juvenile globoid cell leukodystrophy (GLD). All received HLA-matched or partially mismatched unrelated UCBT. There were no cases of graft rejection. Median neutrophil engraftment time was 20 days [12–33 days] and median platelet engraftment time was 29 days [14–65 days]. Median follow-up was 36 months [1–86 months], and the overall survival rate for patients with cerebral ALD and juvenile GLD after UCBT was 77.8% (7/9) and 100% (3/3), respectively. In patients with ALD, although lipid profiles (serum very-long-chain fatty acid) were improved post-UCBT, six patients demonstrated worse neurologic function score and performance status post-UCBT, and six patients had higher Loes scores at last follow-up compared with baseline. In patients with juvenile GLD, all patients showed stable neurologic function score and performance status despite the Loes score of one patient increased slightly after transplantation. Conclusion In patients with cerebral ALD, patients with no or mild neurological symptoms can benefit from UCBT, while UCBT cannot reverse advanced disease. In patients with juvenile GLD, UCBT is safe and contributes to stabilize neurological function.
Collapse
Affiliation(s)
- Ping Wang
- Department of Hematology and Oncology, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaonan Du
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Quanli Shen
- Department of Radiology, Children's Hospital of Fudan University, Shanghai, China
| | - Wenjin Jiang
- Department of Hematology and Oncology, Children's Hospital of Fudan University, Shanghai, China
| | - Chen Shen
- Department of Hematology and Oncology, Children's Hospital of Fudan University, Shanghai, China
| | - Hongsheng Wang
- Department of Hematology and Oncology, Children's Hospital of Fudan University, Shanghai, China
| | - Shuizhen Zhou
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaowen Qian
- Department of Hematology and Oncology, Children's Hospital of Fudan University, Shanghai, China
- Xiaowen Qian
| | - Xiaowen Zhai
- Department of Hematology and Oncology, Children's Hospital of Fudan University, Shanghai, China
- *Correspondence: Xiaowen Zhai
| |
Collapse
|
19
|
Weinhofer I, Buda A, Kunze M, Palfi Z, Traunfellner M, Hesse S, Villoria-Gonzalez A, Hofmann J, Hametner S, Regelsberger G, Moser AB, Eichler F, Kemp S, Bauer J, Kühl JS, Forss-Petter S, Berger J. Peroxisomal very long-chain fatty acid transport is targeted by herpesviruses and the antiviral host response. Commun Biol 2022; 5:944. [PMID: 36085307 PMCID: PMC9462615 DOI: 10.1038/s42003-022-03867-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Very long-chain fatty acids (VLCFA) are critical for human cytomegalovirus replication and accumulate upon infection. Here, we used Epstein-Barr virus (EBV) infection of human B cells to elucidate how herpesviruses target VLCFA metabolism. Gene expression profiling revealed that, despite a general induction of peroxisome-related genes, EBV early infection decreased expression of the peroxisomal VLCFA transporters ABCD1 and ABCD2, thus impairing VLCFA degradation. The mechanism underlying ABCD1 and ABCD2 repression involved RNA interference by the EBV-induced microRNAs miR-9-5p and miR-155, respectively, causing significantly increased VLCFA levels. Treatment with 25-hydroxycholesterol, an antiviral innate immune modulator produced by macrophages, restored ABCD1 expression and reduced VLCFA accumulation in EBV-infected B-lymphocytes, and, upon lytic reactivation, reduced virus production in control but not ABCD1-deficient cells. Finally, also other herpesviruses and coronaviruses target ABCD1 expression. Because viral infection might trigger neuroinflammation in X-linked adrenoleukodystrophy (X-ALD, inherited ABCD1 deficiency), we explored a possible link between EBV infection and cerebral X-ALD. However, neither immunohistochemistry of post-mortem brains nor analysis of EBV seropositivity in 35 X-ALD children supported involvement of EBV in the onset of neuroinflammation. Collectively, our findings indicate a previously unrecognized, pivotal role of ABCD1 in viral infection and host defence, prompting consideration of other viral triggers in cerebral X-ALD.
Collapse
Affiliation(s)
- Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | - Agnieszka Buda
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Markus Kunze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Zsofia Palfi
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Matthäus Traunfellner
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Sarah Hesse
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Andrea Villoria-Gonzalez
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jörg Hofmann
- Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Günther Regelsberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Ann B Moser
- Department of Neurogenetics, Hugo W. Moser Research Institute at Kennedy Krieger, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Florian Eichler
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Stephan Kemp
- Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jörn-Sven Kühl
- Department of Pediatric Oncology, Hematology, and Hemostaseology, University Hospital Leipzig, Leipzig, Germany
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
20
|
de Vasconcelos P, Lacerda JF. Hematopoietic Stem Cell Transplantation for Neurological Disorders: A Focus on Inborn Errors of Metabolism. Front Cell Neurosci 2022; 16:895511. [PMID: 35693884 PMCID: PMC9178264 DOI: 10.3389/fncel.2022.895511] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
Abstract
Hematopoietic stem cells have been investigated and applied for the treatment of certain neurological disorders for a long time. Currently, their therapeutic potential is harnessed in autologous and allogeneic hematopoietic stem cell transplantation (HSCT). Autologous HSCT is helpful in immune-mediated neurological diseases such as Multiple Sclerosis. However, clinical benefits derive more from the immunosuppressive conditioning regimen than the interaction between stem cells and the nervous system. Mainly used for hematologic malignancies, allogeneic HSCT explores the therapeutic potential of donor-derived hematopoietic stem cells. In the neurological setting, it has proven to be most valuable in Inborn Errors of Metabolism, a large spectrum of multisystem disorders characterized by congenital deficiencies in enzymes involved in metabolic pathways. Inborn Errors of Metabolism such as X-linked Adrenoleukodystrophy present with brain accumulation of enzymatic substrates that result in progressive inflammatory demyelination. Allogeneic HSCT can halt ongoing inflammatory neural destruction by replacing hematopoietic-originated microglia with donor-derived myeloid precursors. Microglia, the only neural cells successfully transplanted thus far, are the most valuable source of central nervous system metabolic correction and play a significant role in the crosstalk between the brain and hematopoietic stem cells. After transplantation, engrafted donor-derived myeloid cells modulate the neural microenvironment by recapitulating microglial functions and enhancing repair mechanisms such as remyelination. In some disorders, additional benefits result from the donor hematopoietic stem cell secretome that cross-corrects neighboring neural cells via mannose-6-phosphatase paracrine pathways. The limitations of allogeneic HSCT in this setting relate to the slow turnover of microglia and complications such as graft-vs.-host disease. These restraints have accelerated the development of hematopoietic stem cell gene therapy, where autologous hematopoietic stem cells are collected, manipulated ex vivo to overexpress the missing enzyme, and infused back into the patient. With this cellular drug vehicle strategy, the brain is populated by improved cells and exposed to supraphysiological levels of the flawed protein, resulting in metabolic correction. This review focuses on the mechanisms of brain repair resulting from HSCT and gene therapy in Inborn Errors of Metabolism. A brief mention will also be made on immune-mediated nervous system diseases that are treated with this approach.
Collapse
Affiliation(s)
- Pedro de Vasconcelos
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - João F. Lacerda
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
- JLacerda Lab, Hematology and Transplantation Immunology, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
21
|
Yu J, Chen T, Guo X, Zafar MI, Li H, Wang Z, Zheng J. The Role of Oxidative Stress and Inflammation in X-Link Adrenoleukodystrophy. Front Nutr 2022; 9:864358. [PMID: 35463999 PMCID: PMC9024313 DOI: 10.3389/fnut.2022.864358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is an inherited disease caused by a mutation in the ABCD1 gene encoding a peroxisomal transmembrane protein. It is characterized by the accumulation of very-long-chain fatty acids (VLCFAs) in body fluids and tissues, leading to progressive demyelination and adrenal insufficiency. ALD has various phenotypes, among which the most common and severe is childhood cerebral adrenoleukodystrophy (CCALD). The pathophysiological mechanisms of ALD remain unclear, but some in vitro/in vivo research showed that VLCFA could induce oxidative stress and inflammation, leading to damage. In addition, the evidence that oxidative stress and inflammation are increased in patients with X-ALD also proves that it is a potential mechanism of brain and adrenal damage. Therefore, normalizing the redox balance becomes a critical therapeutic target. This study focuses on the possible predictors of the severity and progression of X-ALD, the potential mechanisms of pathogenesis, and the promising targeted drugs involved in oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jiayu Yu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Ting Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mohammad Ishraq Zafar
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiqing Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Zhihua Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
- *Correspondence: Juan Zheng,
| |
Collapse
|
22
|
Mekhaeil M, Dev KK, Conroy MJ. Existing Evidence for the Repurposing of PARP-1 Inhibitors in Rare Demyelinating Diseases. Cancers (Basel) 2022; 14:cancers14030687. [PMID: 35158955 PMCID: PMC8833351 DOI: 10.3390/cancers14030687] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors are successful cancer therapeutics that impair DNA repair machinery, leading to an accumulation of DNA damage and consequently cell death. The shared underlying mechanisms driving malignancy and demyelinating disease, together with the success of anticancer drugs as repurposed therapeutics, makes the repurposing of PARP-1 inhibitors for demyelinating diseases a worthy concept to consider. In addition, PARP-1 inhibitors demonstrate notable neuroprotective effects in demyelinating disorders, including multiple sclerosis which is considered the archetypical demyelinating disease. Abstract Over the past decade, Poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors have arisen as a novel and promising targeted therapy for breast cancer gene (BRCA)-mutated ovarian and breast cancer patients. Therapies targeting the enzyme, PARP-1, have since established their place as maintenance drugs for cancer. Here, we present existing evidence that implicates PARP-1 as a player in the development and progression of both malignancy and demyelinating disease. These findings, together with the proven clinical efficacy and marketed success of PARP-1 inhibitors in cancer, present the repurposing of these drugs for demyelinating diseases as a desirable therapeutic concept. Indeed, PARP-1 inhibitors are noted to demonstrate neuroprotective effects in demyelinating disorders such as multiple sclerosis and Parkinson’s disease, further supporting the use of these drugs in demyelinating, neuroinflammatory, and neurodegenerative diseases. In this review, we discuss the potential for repurposing PARP-1 inhibitors, with a focus on rare demyelinating diseases. In particular, we address the possible use of PARP-1 inhibitors in examples of rare leukodystrophies, for which there are a paucity of treatment options and an urgent need for novel therapeutic approaches.
Collapse
Affiliation(s)
- Marianna Mekhaeil
- Drug Development Research Group, Department of Physiology, School of Medicine, Trinity College Dublin, D18 DH50 Dublin, Ireland; (M.M.); (K.K.D.)
- Cancer Immunology Research Group, Department of Physiology, School of Medicine, Trinity College Dublin, D18 DH50 Dublin, Ireland
| | - Kumlesh Kumar Dev
- Drug Development Research Group, Department of Physiology, School of Medicine, Trinity College Dublin, D18 DH50 Dublin, Ireland; (M.M.); (K.K.D.)
| | - Melissa Jane Conroy
- Cancer Immunology Research Group, Department of Physiology, School of Medicine, Trinity College Dublin, D18 DH50 Dublin, Ireland
- Correspondence:
| |
Collapse
|
23
|
Ma CY, Li C, Zhou X, Zhang Z, Jiang H, Liu H, Chen HJ, Tse HF, Liao C, Lian Q. Management of adrenoleukodystrophy: From pre-clinical studies to the development of new therapies. Biomed Pharmacother 2021; 143:112214. [PMID: 34560537 DOI: 10.1016/j.biopha.2021.112214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is an inherited neurodegenerative disorder associated with mutations of the ABCD1 gene that encodes a peroxisomal transmembrane protein. It results in accumulation of very long chain fatty acids in tissues and body fluid. Along with other factors such as epigenetic and environmental involvement, ABCD1 mutation-provoked disorders can present different phenotypes including cerebral adrenoleukodystrophy (cALD), adrenomyeloneuropathy (AMN), and peripheral neuropathy. cALD is the most severe form that causes death in young childhood. Bone marrow transplantation and hematopoietic stem cell gene therapy are only effective when performed at an early stage of onsets in cALD. Nonetheless, current research and development of novel therapies are hampered by a lack of in-depth understanding disease pathophysiology and a lack of reliable cALD models. The Abcd1 and Abcd1/Abcd2 knock-out mouse models as well as the deficiency of Abcd1 rabbit models created in our lab, do not develop cALD phenotypes observed in human beings. In this review, we summarize the clinical and biochemical features of X-ALD, the progress of pre-clinical and clinical studies. Challenges and perspectives for future X-ALD studies are also discussed.
Collapse
Affiliation(s)
- Chui Yan Ma
- HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Hong Kong
| | - Cheng Li
- HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Hong Kong
| | - Xiaoya Zhou
- Prenatal Diagnostic Centre and Cord Blood Bank, China
| | - Zhao Zhang
- HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Hong Kong
| | - Hua Jiang
- Department of Haematology, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Hongsheng Liu
- Department of Radiology, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Huanhuan Joyce Chen
- The Pritzker School of Molecular Engineering, the University of Chicago, IL 60637, USA
| | - Hung-Fat Tse
- HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Hong Kong
| | - Can Liao
- Prenatal Diagnostic Centre and Cord Blood Bank, China
| | - Qizhou Lian
- HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Hong Kong; State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong; Prenatal Diagnostic Centre and Cord Blood Bank, China.
| |
Collapse
|
24
|
Ozaki K, Irioka T, Uchihara T, Yamada A, Nakamura A, Majima T, Igarashi S, Shintaku H, Yakeishi M, Tsuura Y, Okazaki Y, Ishikawa K, Yokota T. Neuropathology of SCA34 showing widespread oligodendroglial pathology with vacuolar white matter degeneration: a case study. Acta Neuropathol Commun 2021; 9:172. [PMID: 34689836 PMCID: PMC8543940 DOI: 10.1186/s40478-021-01272-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/10/2021] [Indexed: 12/19/2022] Open
Abstract
Spinocerebellar ataxia type 34 (SCA34) is an autosomal dominant inherited ataxia due to mutations in ELOVL4, which encodes one of the very long-chain fatty acid elongases. SCA38, another spinocerebellar ataxia, is caused by mutations in ELOVL5, a gene encoding another elongase. However, there have been no previous studies describing the neuropathology of either SCA34 or 38. This report describes the neuropathological findings of an 83-year-old man with SCA34 carrying a pathological ELOVL4 mutation (NM_022726, c.736T>G, p.W246G). Macroscopic findings include atrophies in the pontine base, cerebellum, and cerebral cortices. Microscopically, marked neuronal and pontocerebellar fiber loss was observed in the pontine base. In addition, in the pontine base, accumulation of CD68-positive macrophages laden with periodic acid-Schiff (PAS)-positive material was observed. Many vacuolar lesions were found in the white matter of the cerebral hemispheres and, to a lesser extent, in the brainstem and spinal cord white matter. Immunohistological examination and ultrastructural observations with an electron microscope suggest that these vacuolar lesions are remnants of degenerated oligodendrocytes. Electron microscopy also revealed myelin sheath destruction. Unexpectedly, aggregation of the four-repeat tau was observed in a spatial pattern reminiscent of progressive supranuclear palsy. The tau lesions included glial fibrillary tangles resembling tuft-shaped astrocytes and neurofibrillary tangles and pretangles. This is the first report to illustrate that a heterozygous missense mutation in ELOVL4 leads to neuronal loss accompanied by macrophages laden with PAS-positive material in the pontine base and oligodendroglial degeneration leading to widespread vacuoles in the white matter in SCA34.
Collapse
|
25
|
Lotz-Havla AS, Woidy M, Guder P, Friedel CC, Klingbeil JM, Bulau AM, Schultze A, Dahmen I, Noll-Puchta H, Kemp S, Erdmann R, Zimmer R, Muntau AC, Gersting SW. iBRET Screen of the ABCD1 Peroxisomal Network and Mutation-Induced Network Perturbations. J Proteome Res 2021; 20:4366-4380. [PMID: 34383492 DOI: 10.1021/acs.jproteome.1c00330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mapping the network of proteins provides a powerful means to investigate the function of disease genes and to unravel the molecular basis of phenotypes. We present an automated informatics-aided and bioluminescence resonance energy transfer-based approach (iBRET) enabling high-confidence detection of protein-protein interactions in living mammalian cells. A screen of the ABCD1 protein, which is affected in X-linked adrenoleukodystrophy (X-ALD), against an organelle library of peroxisomal proteins demonstrated applicability of iBRET for large-scale experiments. We identified novel protein-protein interactions for ABCD1 (with ALDH3A2, DAO, ECI2, FAR1, PEX10, PEX13, PEX5, PXMP2, and PIPOX), mapped its position within the peroxisomal protein-protein interaction network, and determined that pathogenic missense variants in ABCD1 alter the interaction with selected binding partners. These findings provide mechanistic insights into pathophysiology of X-ALD and may foster the identification of new disease modifiers.
Collapse
Affiliation(s)
- Amelie S Lotz-Havla
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Mathias Woidy
- University Children's Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Philipp Guder
- University Children's Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Caroline C Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, 80538 Munich, Germany
| | - Julian M Klingbeil
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Ana-Maria Bulau
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Anja Schultze
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Ilona Dahmen
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Heidi Noll-Puchta
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Stephan Kemp
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, 1105 WX Amsterdam, The Netherlands
| | - Ralf Erdmann
- Systems Biochemistry, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Ralf Zimmer
- Institute of Informatics, Ludwig-Maximilians-Universität München, 80538 Munich, Germany
| | - Ania C Muntau
- University Children's Hospital, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Søren W Gersting
- University Children's Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
26
|
Rodríguez-Pascau L, Vilalta A, Cerrada M, Traver E, Forss-Petter S, Weinhofer I, Bauer J, Kemp S, Pina G, Pascual S, Meya U, Musolino PL, Berger J, Martinell M, Pizcueta P. The brain penetrant PPARγ agonist leriglitazone restores multiple altered pathways in models of X-linked adrenoleukodystrophy. Sci Transl Med 2021; 13:13/596/eabc0555. [PMID: 34078742 DOI: 10.1126/scitranslmed.abc0555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/06/2020] [Accepted: 03/18/2021] [Indexed: 12/19/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD), a potentially fatal neurometabolic disorder with no effective pharmacological treatment, is characterized by clinical manifestations ranging from progressive spinal cord axonopathy [adrenomyeloneuropathy (AMN)] to severe demyelination and neuroinflammation (cerebral ALD-cALD), for which molecular mechanisms are not well known. Leriglitazone is a recently developed brain penetrant full PPARγ agonist that could modulate multiple biological pathways relevant for neuroinflammatory and neurodegenerative diseases, and particularly for X-ALD. We found that leriglitazone decreased oxidative stress, increased adenosine 5'-triphosphate concentration, and exerted neuroprotective effects in primary rodent neurons and astrocytes after very long chain fatty acid-induced toxicity simulating X-ALD. In addition, leriglitazone improved motor function; restored markers of oxidative stress, mitochondrial function, and inflammation in spinal cord tissues from AMN mouse models; and decreased the neurological disability in the EAE neuroinflammatory mouse model. X-ALD monocyte-derived patient macrophages treated with leriglitazone were less skewed toward an inflammatory phenotype, and the adhesion of human X-ALD monocytes to brain endothelial cells decreased after treatment, suggesting the potential of leriglitazone to prevent the progression to pathologically disrupted blood-brain barrier. Leriglitazone increased myelin debris clearance in vitro and increased myelination and oligodendrocyte survival in demyelination-remyelination in vivo models, thus promoting remyelination. Last, leriglitazone was clinically tested in a phase 1 study showing central nervous system target engagement (adiponectin increase) and changes on inflammatory biomarkers in plasma and cerebrospinal fluid. The results of our study support the use of leriglitazone in X-ALD and, more generally, in other neuroinflammatory and neurodegenerative conditions.
Collapse
Affiliation(s)
| | - Anna Vilalta
- Minoryx Therapeutics S.L., Barcelona 08302, Spain
| | - Marc Cerrada
- Minoryx Therapeutics S.L., Barcelona 08302, Spain
| | | | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna 1090, Austria
| | - Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna 1090, Austria
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna 1090, Austria
| | - Stephan Kemp
- Department of Clinical Chemistry and Pediatrics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Guillem Pina
- Minoryx Therapeutics S.L., Barcelona 08302, Spain
| | | | - Uwe Meya
- Minoryx Therapeutics S.L., Barcelona 08302, Spain
| | - Patricia L Musolino
- Neurosciences Intensive Care Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna 1090, Austria
| | | | | |
Collapse
|
27
|
Ranea-Robles P, Galino J, Espinosa L, Schlüter A, Ruiz M, Calingasan NY, Villarroya F, Naudí A, Pamplona R, Ferrer I, Beal MF, Portero-Otín M, Fourcade S, Pujol A. Modulation of mitochondrial and inflammatory homeostasis through RIP140 is neuroprotective in an adrenoleukodystrophy mouse model. Neuropathol Appl Neurobiol 2021; 48:e12747. [PMID: 34237158 DOI: 10.1111/nan.12747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/12/2021] [Accepted: 05/23/2021] [Indexed: 12/11/2022]
Abstract
AIMS Mitochondrial dysfunction and inflammation are at the core of axonal degeneration in several multifactorial neurodegenerative diseases, including multiple sclerosis, Alzheimer's disease, and Parkinson's disease. The transcriptional coregulator RIP140/NRIP1 (receptor-interacting protein 140) modulates these functions in liver and adipose tissue, but its role in the nervous system remains unexplored. Here, we investigated the impact of RIP140 in the Abcd1- mouse model of X-linked adrenoleukodystrophy (X-ALD), a genetic model of chronic axonopathy involving the convergence of redox imbalance, bioenergetic failure, and chronic inflammation. METHODS AND RESULTS We provide evidence that RIP140 is modulated through a redox-dependent mechanism driven by very long-chain fatty acids (VLCFAs), the levels of which are increased in X-ALD. Genetic inactivation of RIP140 prevented mitochondrial depletion and dysfunction, bioenergetic failure, inflammatory dysregulation, axonal degeneration and associated locomotor disabilities in vivo in X-ALD mouse models. CONCLUSIONS Together, these findings show that aberrant overactivation of RIP140 promotes neurodegeneration in X-ALD, underscoring its potential as a therapeutic target for X-ALD and other neurodegenerative disorders that present with metabolic and inflammatory dyshomeostasis.
Collapse
Affiliation(s)
- Pablo Ranea-Robles
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,CIBERER U759, Center for Biomedical Research on Rare Diseases, ISCIII, Madrid, Spain.,Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jorge Galino
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,CIBERER U759, Center for Biomedical Research on Rare Diseases, ISCIII, Madrid, Spain
| | - Lluís Espinosa
- Institut Municipal d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,CIBERER U759, Center for Biomedical Research on Rare Diseases, ISCIII, Madrid, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,CIBERER U759, Center for Biomedical Research on Rare Diseases, ISCIII, Madrid, Spain
| | - Noel Ylagan Calingasan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine and Institut de Biomedicina, University of Barcelona, Barcelona, Catalonia, Spain.,Fisiopatología de la Obesidad y Nutrición, CIBER, Madrid, Spain
| | - Alba Naudí
- Experimental Medicine Department, University of Lleida-IRBLleida, Lleida, Spain
| | - Reinald Pamplona
- Experimental Medicine Department, University of Lleida-IRBLleida, Lleida, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Neuropathology, Bellvitge University Hospital-Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - M Flint Beal
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Manuel Portero-Otín
- Experimental Medicine Department, University of Lleida-IRBLleida, Lleida, Spain
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,CIBERER U759, Center for Biomedical Research on Rare Diseases, ISCIII, Madrid, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,CIBERER U759, Center for Biomedical Research on Rare Diseases, ISCIII, Madrid, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
28
|
Paunovic S, Koehler W, Knechtle B. [X-Linked Adrenoleukodystrophy or the Management of Rare Diseases in the General Practice]. PRAXIS 2021; 110:529-535. [PMID: 34231380 DOI: 10.1024/1661-8157/a003674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
X-Linked Adrenoleukodystrophy or the Management of Rare Diseases in the General Practice Abstract. We report on a 48-year-old patient with X-linked adrenoleukodystrophy with slowly progressive leg-accentuated spastic paraparesis, vegetative dysfunction with bladder and sexual dysfunction, and primary adrenal insufficiency. The diagnosis of adrenomyeloneuropathy, the adult form of adrenoleukodystrophy, and Addison's disease was made at the age of 20 by evidence of an increased concentration of long-chain fatty acids in the plasma. The therapy is symptom-oriented.
Collapse
Affiliation(s)
| | - Wolfgang Koehler
- Klinik und Poliklinik für Neurologie, Leukodystrophie Ambulanz, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - Beat Knechtle
- Medbase St. Gallen Am Vadianplatz, St. Gallen
- Institut für Hausarztmedizin, Universität Zürich, Zürich
| |
Collapse
|
29
|
Bergner CG, Genc N, Hametner S, Franz J, van der Meer F, Mitkovski M, Weber MS, Stoltenburg-Didinger G, Kühl JS, Köhler W, Brück W, Gärtner J, Stadelmann C. Concurrent axon and myelin destruction differentiates X-linked adrenoleukodystrophy from multiple sclerosis. Glia 2021; 69:2362-2377. [PMID: 34137074 DOI: 10.1002/glia.24042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
Cerebral disease manifestation occurs in about two thirds of males with X-linked adrenoleukodystrophy (CALD) and is fatally progressive if left untreated. Early histopathologic studies categorized CALD as an inflammatory demyelinating disease, which led to repeated comparisons to multiple sclerosis (MS). The aim of this study was to revisit the relationship between axonal damage and myelin loss in CALD. We applied novel immunohistochemical tools to investigate axonal damage, myelin loss and myelin repair in autopsy brain tissue of eight CALD and 25 MS patients. We found extensive and severe acute axonal damage in CALD already in prelesional areas defined by microglia loss and relative myelin preservation. In contrast to MS, we did not observe selective phagocytosis of myelin, but a concomitant decay of the entire axon-myelin unit in all CALD lesion stages. Using a novel marker protein for actively remyelinating oligodendrocytes, breast carcinoma-amplified sequence (BCAS) 1, we show that repair pathways are activated in oligodendrocytes in CALD. Regenerating cells, however, were affected by the ongoing disease process. We provide evidence that-in contrast to MS-selective myelin phagocytosis is not characteristic of CALD. On the contrary, our data indicate that acute axonal injury and permanent axonal loss are thus far underestimated features of the disease that must come into focus in our search for biomarkers and novel therapeutic approaches.
Collapse
Affiliation(s)
- Caroline G Bergner
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.,Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Nafiye Genc
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University Vienna, Vienna, Austria
| | - Jonas Franz
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany
| | | | - Miso Mitkovski
- Light Microscopy Facility, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Martin S Weber
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Jörn-Sven Kühl
- Department of Pediatric Oncology, Hematology, and Hemostaseology, University of Leipzig Medical Center, Leipzig, Germany
| | - Wolfgang Köhler
- Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
30
|
Peroxisomal ABC Transporters: An Update. Int J Mol Sci 2021; 22:ijms22116093. [PMID: 34198763 PMCID: PMC8201181 DOI: 10.3390/ijms22116093] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
ATP-binding cassette (ABC) transporters constitute one of the largest superfamilies of conserved proteins from bacteria to mammals. In humans, three members of this family are expressed in the peroxisomal membrane and belong to the subfamily D: ABCD1 (ALDP), ABCD2 (ALDRP), and ABCD3 (PMP70). These half-transporters must dimerize to form a functional transporter, but they are thought to exist primarily as tetramers. They possess overlapping but specific substrate specificity, allowing the transport of various lipids into the peroxisomal matrix. The defects of ABCD1 and ABCD3 are responsible for two genetic disorders called X-linked adrenoleukodystrophy and congenital bile acid synthesis defect 5, respectively. In addition to their role in peroxisome metabolism, it has recently been proposed that peroxisomal ABC transporters participate in cell signaling and cell control, particularly in cancer. This review presents an overview of the knowledge on the structure, function, and mechanisms involving these proteins and their link to pathologies. We summarize the different in vitro and in vivo models existing across the species to study peroxisomal ABC transporters and the consequences of their defects. Finally, an overview of the known and possible interactome involving these proteins, which reveal putative and unexpected new functions, is shown and discussed.
Collapse
|
31
|
Bachiocco V, Cappa M, Petroni A, Salsano E, Bizzarri C, Ceccarelli I, Cevenini G, Pensato V, Aloisi AM. Pain Study in X-Linked Adrenoleukodystrophy in Males and Females. Pain Ther 2021; 10:505-523. [PMID: 33609269 PMCID: PMC8119579 DOI: 10.1007/s40122-021-00245-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/08/2021] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION X-linked adrenoleukodystrophy (ALD) is a metabolic disorder in which very long chain fatty acids (VLCFAs) are accumulated in the nervous system and adrenal cortex, impairing their functions. Three main variants are described in males: adrenomyeloneuropathy (AMN), a cerebral form (cALD or cAMN) and Addison's disease only (AD), while for females no classification is used. To evaluate pain and the functional state of afferent fibers, a series of tests was carried out in male and female patients. METHODS Chronic pain occurrence and sensory phenotype profile were assessed in 30 patients (20 male: 10 AMN, 1 cAMN, 1 cALD, 8 AD; and 10 female). A set of instruments assessed the intensity, quality and extent of pain, while a battery of quantitative sensory testing (QST) procedures examined the functional status of Aβ and Aδ fibers. Principal component analysis and hierarchical clustering with sensory responses input were used to identify distinct clusters. RESULTS Nearly half of the subjects reported pain, with a high prevalence in females and male AMN patients. No sex differences in pain dimensions were found. The sensory responses were heterogeneous, differing among the clinical variants and between genders. Male AMN/cAMN/cALD patients showed the worst impairment. Aβ and Aδ fibers were affected in males and females, but Aβ fibers appeared undamaged in females when tactile sensitivity was tested. Abnormal responses were localized in the lower body district, according to the dying-back pattern of the neuropathy. Cluster analysis showed discrete clusters for each function examined, with well-interpretable sensory and clinical phenotypes. CONCLUSION The study of pain and of the sensory profile appears to indicate a difference in the mechanisms underlying the AMN/cAMN/cALD and AD clinical forms and in the treatment of the respective generated pain types.
Collapse
Affiliation(s)
- Valeria Bachiocco
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Marco Cappa
- Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Petroni
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Biomedicine and Nutrition Research Network, Milan, Italy
| | - Ettore Salsano
- IRCCS C. Besta Neurological Institute Foundation, Milan, Italy
| | | | - Ilaria Ceccarelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Gabriele Cevenini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Viviana Pensato
- IRCCS C. Besta Neurological Institute Foundation, Milan, Italy
| | - Anna M Aloisi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
- Biomedicine and Nutrition Research Network, Milan, Italy.
| |
Collapse
|
32
|
Yalcin K, Çelen SS, Daloglu H, Demir MK, Öztürkmen S, Pasayev D, Zhumatayev S, Uygun V, Hazar V, Karasu G, Yesilipek A. Allogeneic hematopoietic stem cell transplantation in patients with childhood cerebral adrenoleukodystrophy: A single-center experience "Better prognosis in earlier stage". Pediatr Transplant 2021; 25:e14015. [PMID: 33780114 DOI: 10.1111/petr.14015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND ALD is a rare X-linked peroxisomal metabolic disorder with many distinct phenotypes of disease that emerge on a wide scale from adrenal insufficiency to fatal cALD which progresses to a vegetative state within a few years. Currently, HSCT is the only treatment method known to stabilize disease progression in patients with cALD. In this study, we aim to report our HSCT experience in patients with cALD and the factors that determine the success of HSCT, as a single-center experience. METHODS The study cohort involves 23 boys with cALD and three patients with ALD trait and new-onset abnormal behavior who underwent allogeneic HSCT between January 2012 and September 2019 in our transplantation center. Loes scoring, NFS, scale and MFD were performed for evaluating the severity of the cerebral disease. The study cohort was divided into two groups according to baseline NFS and Loes score: early-stage (NFS ≤ 1 and Loes score <9) and advanced stage (NFS > 1 or Loes score ≥9). RESULTS The pretransplant stage of disease impacted both OS and MFD-free survival. The estimated OS and MFD-free survival at 3 years in patients with advanced disease were 46.1% (95% CI 19.0-73.2) and 23.1% (95% CI 0.2-46.0), respectively, and all patients with the early disease were alive (p: .004) and MFD-free (p < .001) at 3 years. CONCLUSION This study demonstrated that early HSCT is vital in patients with cALD. The early-stage disease had a significant survival advantage and free from disease progression after HSCT.
Collapse
Affiliation(s)
- Koray Yalcin
- Medicalpark Goztepe Hospital Pediatric Stem Cell Transplantation Unit, Istanbul, Turkey
| | - Suna S Çelen
- Medicalpark Goztepe Hospital Pediatric Stem Cell Transplantation Unit, Istanbul, Turkey
| | - Hayriye Daloglu
- Medicalpark Antalya Hospital Pediatric Stem Cell Transplantation Unit, Antalya, Turkey
| | - Mustafa Kemal Demir
- Department of Radiology, Göztepe Medical Park Training and Education Hospital, Bahçeşehir University School of Medicine, Istanbul, Turkey
| | - Seda Öztürkmen
- Medicalpark Antalya Hospital Pediatric Stem Cell Transplantation Unit, Antalya, Turkey
| | - Dayanat Pasayev
- Medicalpark Goztepe Hospital Pediatric Stem Cell Transplantation Unit, Istanbul, Turkey
| | - Suleimen Zhumatayev
- Medicalpark Goztepe Hospital Pediatric Stem Cell Transplantation Unit, Istanbul, Turkey
| | - Vedat Uygun
- Medicalpark Antalya Hospital Pediatric Stem Cell Transplantation Unit, Antalya, Turkey
| | - Volkan Hazar
- Medicalpark Goztepe Hospital Pediatric Stem Cell Transplantation Unit, Istanbul, Turkey
| | - Gulsun Karasu
- Medicalpark Goztepe Hospital Pediatric Stem Cell Transplantation Unit, Istanbul, Turkey.,Medicalpark Antalya Hospital Pediatric Stem Cell Transplantation Unit, Antalya, Turkey
| | - Akif Yesilipek
- Medicalpark Goztepe Hospital Pediatric Stem Cell Transplantation Unit, Istanbul, Turkey.,Medicalpark Antalya Hospital Pediatric Stem Cell Transplantation Unit, Antalya, Turkey
| |
Collapse
|
33
|
Weinhofer I, Rommer P, Zierfuss B, Altmann P, Foiani M, Heslegrave A, Zetterberg H, Gleiss A, Musolino PL, Gong Y, Forss-Petter S, Berger T, Eichler F, Aubourg P, Köhler W, Berger J. Neurofilament light chain as a potential biomarker for monitoring neurodegeneration in X-linked adrenoleukodystrophy. Nat Commun 2021; 12:1816. [PMID: 33753741 PMCID: PMC7985512 DOI: 10.1038/s41467-021-22114-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/19/2021] [Indexed: 01/23/2023] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD), the most frequent monogenetic disorder of brain white matter, is highly variable, ranging from slowly progressive adrenomyeloneuropathy (AMN) to life-threatening inflammatory brain demyelination (CALD). In this study involving 94 X-ALD patients and 55 controls, we tested whether plasma/serum neurofilament light chain protein (NfL) constitutes an early distinguishing biomarker. In AMN, we found moderately elevated NfL with increased levels reflecting higher grading of myelopathy-related disability. Intriguingly, NfL was a significant predictor to discriminate non-converting AMN from cohorts later developing CALD. In CALD, markedly amplified NfL levels reflected brain lesion severity. In rare cases, atypically low NfL revealed a previously unrecognized smoldering CALD disease course with slowly progressive myelin destruction. Upon halt of brain demyelination by hematopoietic stem cell transplantation, NfL gradually normalized. Together, our study reveals that blood NfL reflects inflammatory activity and progression in CALD patients, thus constituting a potential surrogate biomarker that may facilitate clinical decisions and therapeutic development.
Collapse
Affiliation(s)
- Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Paulus Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Bettina Zierfuss
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Patrick Altmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Martha Foiani
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, University College London, London, UK
| | - Amanda Heslegrave
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, University College London, London, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, University College London, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Andreas Gleiss
- Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Patricia L Musolino
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Yi Gong
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Florian Eichler
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick Aubourg
- Kremlin-Bicêtre Hospital, University Paris-Saclay, Paris, France
| | - Wolfgang Köhler
- Department of Neurology, Leukodystrophy Clinic, University of Leipzig Medical Center, Leipzig, Germany
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
34
|
Zierfuss B, Weinhofer I, Buda A, Popitsch N, Hess L, Moos V, Hametner S, Kemp S, Köhler W, Forss‐Petter S, Seiser C, Berger J. Targeting foam cell formation in inflammatory brain diseases by the histone modifier MS-275. Ann Clin Transl Neurol 2020; 7:2161-2177. [PMID: 32997393 PMCID: PMC7664285 DOI: 10.1002/acn3.51200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE To assess class I-histone deacetylase (HDAC) inhibition on formation of lipid-accumulating, disease-promoting phagocytes upon myelin load in vitro, relevant for neuroinflammatory disorders like multiple sclerosis (MS) and cerebral X-linked adrenoleukodystrophy (X-ALD). METHODS Immunohistochemistry on postmortem brain tissue of acute MS (n = 6) and cerebral ALD (n = 4) cases to analyze activation and foam cell state of phagocytes. RNA-Seq of in vitro differentiated healthy macrophages (n = 8) after sustained myelin-loading to assess the metabolic shift associated with foam cell formation. RNA-Seq analysis of genes linked to lipid degradation and export in MS-275-treated human HAP1 cells and RT-qPCR analysis of HAP1 cells knocked out for individual members of class I HDACs or the corresponding enzymatically inactive knock-in mutants. Investigation of intracellular lipid/myelin content after MS-275 treatment of myelin-laden human foam cells. Analysis of disease characteristic very long-chain fatty acid (VLCFA) metabolism and inflammatory state in MS-275-treated X-ALD macrophages. RESULTS Enlarged foam cells coincided with a pro-inflammatory, lesion-promoting phenotype in postmortem tissue of MS and cerebral ALD patients. Healthy in vitro myelin laden foam cells upregulated genes linked to LXRα/PPARγ pathways and mimicked a program associated with tissue repair. Treating these cells with MS-275, amplified this gene transcription program and significantly reduced lipid and cholesterol accumulation and, thus, foam cell formation. In macrophages derived from X-ALD patients, MS-275 improved the disease-associated alterations of VLCFA metabolism and reduced the pro-inflammatory status of these cells. INTERPRETATION These findings identify class I-HDAC inhibition as a potential novel strategy to prevent disease promoting foam cell formation in CNS inflammation.
Collapse
Affiliation(s)
- Bettina Zierfuss
- Department of Pathobiology of the Nervous SystemCentre for Brain ResearchMedical University of ViennaVienna1090Austria
| | - Isabelle Weinhofer
- Department of Pathobiology of the Nervous SystemCentre for Brain ResearchMedical University of ViennaVienna1090Austria
| | - Agnieszka Buda
- Department of Pathobiology of the Nervous SystemCentre for Brain ResearchMedical University of ViennaVienna1090Austria
| | - Niko Popitsch
- Institute of Molecular BiotechnologyVienna1030Austria
| | - Lena Hess
- Division of Cell and Developmental BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaVienna1090Austria
| | - Verena Moos
- Division of Cell and Developmental BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaVienna1090Austria
| | - Simon Hametner
- Department of Neuropathology and NeurochemistryMedical University of ViennaVienna1090Austria
| | - Stephan Kemp
- Laboratory Genetic Metabolic DiseasesAmsterdam UMCAmsterdam Gastroenterology & MetabolismAmsterdam NeuroscienceUniversity of AmsterdamAmsterdam1105AZThe Netherlands
| | - Wolfgang Köhler
- Department of NeurologyUniversity of Leipzig Medical CentreLeukodystrophy ClinicLeipzig04103Germany
| | - Sonja Forss‐Petter
- Department of Pathobiology of the Nervous SystemCentre for Brain ResearchMedical University of ViennaVienna1090Austria
| | - Christian Seiser
- Division of Cell and Developmental BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaVienna1090Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous SystemCentre for Brain ResearchMedical University of ViennaVienna1090Austria
| |
Collapse
|
35
|
Geng P, Zhu H, Zhou W, Su C, Chen M, Huang C, Xia C, Huang H, Cao Y, Shi X. Baicalin Inhibits Influenza A Virus Infection via Promotion of M1 Macrophage Polarization. Front Pharmacol 2020; 11:01298. [PMID: 33117149 PMCID: PMC7574031 DOI: 10.3389/fphar.2020.01298] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background and Aims The natural compound baicalin (BA) possesses potent antiviral properties against the influenza virus. However, the underlying molecular mechanisms of this antiviral activity and whether macrophages are involved remain unclear. In this study, we, therefore, investigated the effect of BA on macrophages. Methods We studied macrophage recruitment, functional phenotypes (M1/M2), and the cellular metabolism via flow cytometry, qRT-PCR, immunofluorescence, a cell culture transwell system, and GC-MS–based metabolomics both in vivo in H1N1 A virus-infected mice and in vitro. Results BA treatment drastically reduced macrophage recruitment (CD11b+, F4/80+) by approximately 90% while maintaining the proportion of M1-polarized macrophages in the bronchoalveolar lavage fluid of infected mice. This BA-stimulated macrophage M1 phenotype shift was further verified in vitro in ANA-1 and primary peritoneal macrophages by measuring macrophage M1 polarization signals (CD86, iNOS, TNF-α, iNOS/Arg-1 ratio, and IL-1β cleavage). Meanwhile, we observed an activation of the IFN pathway (upregulation of IFN-β and IRF-3), an inhibition of influenza virus replication (as measured by the M gene), and distinct cellular metabolic responses in BA-treated cells. Conclusion BA triggered macrophage M1 polarization, IFN activation, and other cellular reactions, which are beneficial for inhibition of H1N1 A virus infection.
Collapse
Affiliation(s)
- Ping Geng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Wei Zhou
- Department of Chemistry, Fudan University, Shanghai, China
| | - Chang Su
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Mingcang Chen
- Shanghai Institutes of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chenggang Huang
- Shanghai Institutes of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chengjie Xia
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Hai Huang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Yiou Cao
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Xunlong Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| |
Collapse
|
36
|
Lund TC, Ng M, Orchard PJ, Loes DJ, Raymond GV, Gupta A, Kenny-Jung D, Nascene DR. Volume of Gadolinium Enhancement and Successful Repair of the Blood-Brain Barrier in Cerebral Adrenoleukodystrophy. Biol Blood Marrow Transplant 2020; 26:1894-1899. [PMID: 32599216 DOI: 10.1016/j.bbmt.2020.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/09/2020] [Accepted: 06/21/2020] [Indexed: 11/25/2022]
Abstract
Up to 40% of boys with adrenoleukodystrophy develop a severe central nervous system demyelinating form (cALD) characterized by white matter changes and gadolinium enhancement on magnetic resonance imaging (MRI). Hematopoietic cell transplant (HCT) is the only proven means to attenuate cALD progression. The elimination of active neuroinflammation is indicated radiographically by the resolution of gadolinium (Gd) enhancement and correlates to speed of donor neutrophil recovery. We analyzed 66 boys with cALD undergoing HCT for biomarkers correlating with early (30 days post-HCT) Gd signal resolution. We found that log Gd volume (cm3) on pre-HCT MRI strongly positively correlated to day 30 Gd resolution (P = .0003) with smaller volume correlating to higher proportion resolved, as was the baseline gadolinium intensity score (P = .04), plasma chitotriosidase activity (P = .04), and faster absolute neutrophil count recovery (P = .03). In multivariate analysis, log Gd volume remained superior in determining which patients would have Gd signal resolution by 30 days post-HCT (P = .016). A final analysis indicated that early Gd resolution also correlated with less neurologic progression from baseline to 1 year following HCT (P = .006). MRI Gd volume may serve as a contributing biomarker to better delineate outcomes and an important metric in comparing therapies in the treatment of cALD.
Collapse
Affiliation(s)
- Troy C Lund
- Division of Pediatric Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.
| | - Michelle Ng
- Division of Pediatric Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Paul J Orchard
- Division of Pediatric Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Daniel J Loes
- Department of Diagnostic Radiology, University of Minnesota Medical Center, Minneapolis, Minnesota
| | - Gerald V Raymond
- Department of Genetic Medicine, Johns Hopkins, Baltimore, Maryland
| | - Ashish Gupta
- Division of Pediatric Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Dan Kenny-Jung
- Department of Neurology, University of Minnesota Medical Center, Minneapolis, Minnesota
| | - David R Nascene
- Department of Diagnostic Radiology, University of Minnesota Medical Center, Minneapolis, Minnesota
| |
Collapse
|
37
|
Zierfuss B, Weinhofer I, Kühl J, Köhler W, Bley A, Zauner K, Binder J, Martinović K, Seiser C, Hertzberg C, Kemp S, Egger G, Leitner G, Bauer J, Wiesinger C, Kunze M, Forss‐Petter S, Berger J. Vorinostat in the acute neuroinflammatory form of X-linked adrenoleukodystrophy. Ann Clin Transl Neurol 2020; 7:639-652. [PMID: 32359032 PMCID: PMC7261758 DOI: 10.1002/acn3.51015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/26/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To identify a pharmacological compound targeting macrophages, the most affected immune cells in inflammatory X-linked adrenoleukodystrophy (cerebral X-ALD) caused by ABCD1 mutations and involved in the success of hematopoietic stem cell transplantation and gene therapy. METHODS A comparative database analysis elucidated the epigenetic repressing mechanism of the related ABCD2 gene in macrophages and identified the histone deacetylase (HDAC) inhibitor Vorinostat as a compound to induce ABCD2 in these cells to compensate for ABCD1 deficiency. In these cells, we investigated ABCD2 and pro-inflammatory gene expression, restoration of defective peroxisomal β-oxidation activity, accumulation of very long-chain fatty acids (VLCFAs) and their differentiation status. We investigated ABCD2 and pro-inflammatory gene expression, restoration of defective peroxisomal ß-oxidation activity, accumulation of very long-chain fatty acids (VLCFA) and differentiation status. Three advanced cerebral X-ALD patients received Vorinostat and CSF and MRI diagnostics was carried out in one patient after 80 days of treatment. RESULTS Vorinostat improved the metabolic defects in X-ALD macrophages by stimulating ABCD2 expression, peroxisomal ß-oxidation, and ameliorating VLCFA accumulation. Vorinostat interfered with pro-inflammatory skewing of X-ALD macrophages by correcting IL12B expression and further reducing monocyte differentiation. Vorinostat normalized the albumin and immunoglobulin CSF-serum ratios, but not gadolinium enhancement upon 80 days of treatment. INTERPRETATION The beneficial effects of HDAC inhibitors on macrophages in X-ALD and the improvement of the blood-CSF/blood-brain barrier are encouraging for future investigations. In contrast with Vorinostat, less toxic macrophage-specific HDAC inhibitors might improve also the clinical state of X-ALD patients with advanced inflammatory demyelination.
Collapse
Affiliation(s)
- Bettina Zierfuss
- Department of Pathobiology of the Nervous SystemCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Isabelle Weinhofer
- Department of Pathobiology of the Nervous SystemCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Jörn‐Sven Kühl
- Department of Pediatric Oncology, Hematology, and HemostaseologyUniversity Hospital LeipzigLeipzigGermany
| | - Wolfgang Köhler
- Department of NeurologyUniversity of Leipzig Medical CenterLeukodystrophy ClinicLeipzigGermany
| | - Annette Bley
- Department of PediatricsUniversity Medical Center Hamburg EppendorfHamburgGermany
| | - Katharina Zauner
- Department of Pathobiology of the Nervous SystemCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Johannes Binder
- Department of Pathobiology of the Nervous SystemCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Ksenija Martinović
- Department of Pathobiology of the Nervous SystemCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Christian Seiser
- Division of Cell and Developmental BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaViennaAustria
| | | | - Stephan Kemp
- Department of Genetic Metabolic DiseasesAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Gerda Egger
- Department of PathologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute Applied DiagnosticsViennaAustria
| | - Gerda Leitner
- Department of Blood Group Serology and Transfusion MedicineMedical University of ViennaViennaAustria
| | - Jan Bauer
- Department of NeuroimmunologyCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Christoph Wiesinger
- Department of Pathobiology of the Nervous SystemCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Markus Kunze
- Department of Pathobiology of the Nervous SystemCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Sonja Forss‐Petter
- Department of Pathobiology of the Nervous SystemCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Johannes Berger
- Department of Pathobiology of the Nervous SystemCenter for Brain ResearchMedical University of ViennaViennaAustria
| |
Collapse
|
38
|
Gupta A, Orchard PJ, Miller WP, Nascene DR, Raymond GV, Loes DJ, McKenna DH, Lund TC. Failure of intrathecal allogeneic mesenchymal stem cells to halt progressive demyelination in two boys with cerebral adrenoleukodystrophy. Stem Cells Transl Med 2020; 9:554-558. [PMID: 32020747 PMCID: PMC7180290 DOI: 10.1002/sctm.19-0304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Cerebral adrenoleukodystrophy is an inflammatory demyelinating condition that is the result of a mutation in the X‐linked ABCD1 gene, a peroxisomal very long chain fatty acid transporter. Although mutations in this gene result in adrenal insufficiency in the majority of affected individuals, 40% of those affected develop the demyelinating cerebral form, cerebral adrenoleukodystrophy (CALD). CALD is characterized by imaging findings of demyelination and contrast enhancement on magnetic resonance imaging (MRI). Although allogeneic hematopoietic cell transplantation can arrest progression of CALD early in its course, there is no accepted therapy for patients with advanced CALD. Mesenchymal stem cells (MSCs) have been used in a variety of clinical trials to capitalize on their anti‐inflammatory properties as well as promote tissue repair. We delivered MSCs via intrathecal (IT) route to two boys with rapidly advancing CALD. The first boy received three doses 1 week apart, whereas the second boy received a single dose of IT MSCs. We note delivery of IT MSCs was feasible and without complication. Follow‐up MRI scans after IT MSC delivery showed progressive demyelination in the first patient and no change in demyelination or contrast enhancement in the second patient. Although the infusion of IT MSCs was safe, it did not halt CALD progression in this setting, and future studies should focus on patient selection and dose optimization.
Collapse
Affiliation(s)
- Ashish Gupta
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, Minnesota
| | - Paul J Orchard
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, Minnesota
| | - Weston P Miller
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, Minnesota.,Sangamo Therapeutics, Richmond, California
| | - Dave R Nascene
- Department of Diagnostic Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Gerald V Raymond
- Department of Neurology, Johns Hopkins Medicine, Baltimore, Maryland
| | - Daniel J Loes
- Department of Diagnostic Radiology, University of Minnesota, Minneapolis, Minnesota
| | - David H McKenna
- Department of Laboratory Medicine and Pathology, Transfusion Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Troy C Lund
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
39
|
Turk BR, Theda C, Fatemi A, Moser AB. X-linked adrenoleukodystrophy: Pathology, pathophysiology, diagnostic testing, newborn screening and therapies. Int J Dev Neurosci 2020; 80:52-72. [PMID: 31909500 PMCID: PMC7041623 DOI: 10.1002/jdn.10003] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Adrenoleukodystrophy (ALD) is a rare X-linked disease caused by a mutation of the peroxisomal ABCD1 gene. This review summarizes our current understanding of the pathogenic cell- and tissue-specific roles of lipid species in the context of experimental therapeutic strategies and provides an overview of critical historical developments, therapeutic trials and the advent of newborn screening in the USA. In ALD, very long-chain fatty acid (VLCFA) chain length-dependent dysregulation of endoplasmic reticulum stress and mitochondrial radical generating systems inducing cell death pathways has been shown, providing the rationale for therapeutic moiety-specific VLCFA reduction and antioxidant strategies. The continuing increase in newborn screening programs and promising results from ongoing and recent therapeutic investigations provide hope for ALD.
Collapse
Affiliation(s)
- Bela R. Turk
- Hugo W Moser Research InstituteKennedy Krieger InstituteBaltimoreMDUSA
| | - Christiane Theda
- Neonatal ServicesRoyal Women's HospitalMurdoch Children's Research Institute and University of MelbourneMelbourneVICAustralia
| | - Ali Fatemi
- Hugo W Moser Research InstituteKennedy Krieger InstituteBaltimoreMDUSA
| | - Ann B. Moser
- Hugo W Moser Research InstituteKennedy Krieger InstituteBaltimoreMDUSA
| |
Collapse
|
40
|
Potential Involvement of Peroxisome in Multiple Sclerosis and Alzheimer's Disease : Peroxisome and Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1299:91-104. [PMID: 33417210 DOI: 10.1007/978-3-030-60204-8_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Peroxisomopathies are rare diseases due to dysfunctions of the peroxisome in which this organelle is either absent or with impaired activities. These diseases, at the exception of type I hyperoxaluria and acatalasaemia, affect the central and peripheral nervous system. Due to the significant impact of peroxisomal abnormalities on the functioning of nerve cells, this has led to an interest in peroxisome in common neurodegenerative diseases, such as Alzheimer's disease and multiple sclerosis. In these diseases, a role of the peroxisome is suspected on the basis of the fatty acid and phospholipid profile in the biological fluids and the brains of patients. It is also speculated that peroxisomal dysfunctions could contribute to oxidative stress and mitochondrial alterations which are recognized as major players in the development of neurodegenerative diseases. Based on clinical and in vitro studies, the data obtained support a potential role of peroxisome in Alzheimer's disease and multiple sclerosis.
Collapse
|
41
|
Turk BR, Theda C, Fatemi A, Moser AB. X-linked Adrenoleukodystrophy: Pathology, Pathophysiology, Diagnostic Testing, Newborn Screening, and Therapies. Int J Dev Neurosci 2019:S0736-5748(19)30133-9. [PMID: 31778737 DOI: 10.1016/j.ijdevneu.2019.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/21/2019] [Accepted: 11/21/2019] [Indexed: 01/22/2023] Open
Abstract
Adrenoleukodystrophy (ALD) is a rare X-linked disease caused by a mutation of the peroxisomal ABCD1 gene. This review summarizes our current understanding of the pathogenic cell- and tissue-specific role of lipid species in the context of experimental therapeutic strategies and provides an overview of critical historical developments, therapeutic trials, and the advent of newborn screening in the United States. In ALD, very long chain fatty acid (VLCFA) chain-length-dependent dysregulation of endoplasmic reticulum stress and mitochondrial radical generating systems inducing cell death pathways has been shown, providing the rationale for therapeutic moiety-specific VLCFA reduction and antioxidant strategies. The continuing increase in newborn screening programs and promising results from ongoing and recent therapeutic investigations provide hope for ALD.
Collapse
Affiliation(s)
- Bela R Turk
- Hugo W Moser Research Institute, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, USA.
| | - Christiane Theda
- Neonatal Services, Royal Women's Hospital, Murdoch Children's Research Institute and University of Melbourne, 20 Flemington Road, Parkville, VIC, 3052, Melbourne, Australia.
| | - Ali Fatemi
- Hugo W Moser Research Institute, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, USA.
| | - Ann B Moser
- Hugo W Moser Research Institute, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, USA.
| |
Collapse
|
42
|
Rosewich H, Nessler S, Brück W, Gärtner J. B cell depletion can be effective in multiple sclerosis but failed in a patient with advanced childhood cerebral X-linked adrenoleukodystrophy. Ther Adv Neurol Disord 2019; 12:1756286419868133. [PMID: 31452685 PMCID: PMC6696829 DOI: 10.1177/1756286419868133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 07/04/2019] [Indexed: 12/20/2022] Open
Abstract
Rituximab exerts its clinical efficacy by its specific pattern of depletion of CD20+ B lymphocytes and it has been demonstrated that rituximab is an effective treatment for relapsing remitting multiple sclerosis. X-linked adrenoleukodystrophy (X-ALD), the most common monogenetic neuroinflammatory disorder, shares substantial overlap with multiple sclerosis in the neuropathological changes found in brain tissues in advanced stages of the disease. While there is no effective therapy for these patients, we hypothesized that rituximab might be effective in arresting the neuroinflammatory process. Our detailed clinical, imaging and immunological data revealed that rituximab is not effective in advanced stages of X-ALD and consequently should not be applied for compassionate use in these patients.
Collapse
Affiliation(s)
- Hendrik Rosewich
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Georg August University, Robert Koch Strasse 40, Göttingen, 37075, Germany
| | - Stefan Nessler
- Institute of Neuropathology, University Medical Center Göttingen, Georg August University, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center Göttingen, Georg August University, Germany
| | - Jutta Gärtner
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Georg August University, Germany
| |
Collapse
|
43
|
Di Cara F, Andreoletti P, Trompier D, Vejux A, Bülow MH, Sellin J, Lizard G, Cherkaoui-Malki M, Savary S. Peroxisomes in Immune Response and Inflammation. Int J Mol Sci 2019; 20:ijms20163877. [PMID: 31398943 PMCID: PMC6721249 DOI: 10.3390/ijms20163877] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/24/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
The immune response is essential to protect organisms from infection and an altered self. An organism’s overall metabolic status is now recognized as an important and long-overlooked mediator of immunity and has spurred new explorations of immune-related metabolic abnormalities. Peroxisomes are essential metabolic organelles with a central role in the synthesis and turnover of complex lipids and reactive species. Peroxisomes have recently been identified as pivotal regulators of immune functions and inflammation in the development and during infection, defining a new branch of immunometabolism. This review summarizes the current evidence that has helped to identify peroxisomes as central regulators of immunity and highlights the peroxisomal proteins and metabolites that have acquired relevance in human pathologies for their link to the development of inflammation, neuropathies, aging and cancer. This review then describes how peroxisomes govern immune signaling strategies such as phagocytosis and cytokine production and their relevance in fighting bacterial and viral infections. The mechanisms by which peroxisomes either control the activation of the immune response or trigger cellular metabolic changes that activate and resolve immune responses are also described.
Collapse
Affiliation(s)
- Francesca Di Cara
- Department of Microbiology and Immunology, Dalhousie University, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Pierre Andreoletti
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Doriane Trompier
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Anne Vejux
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Margret H Bülow
- Molecular Developmental Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Julia Sellin
- Molecular Developmental Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Gérard Lizard
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Mustapha Cherkaoui-Malki
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Stéphane Savary
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France.
| |
Collapse
|
44
|
Ciftciler R, Goker H, Buyukasık Y, Topcu M, Gevher N, Demiroglu H. The experience of allogeneic hematopoietic stem cell transplantation in a patient with X-linked adrenoleukodystrophy. Transfus Apher Sci 2019; 59:102583. [PMID: 31350055 DOI: 10.1016/j.transci.2019.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 11/18/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD), a progressive neurometabolic disorder that is caused by a defect in the gene ABCD1 (ATP-binding cassette, subfamily D, member 1), which encodes the peroxisomal ABC half-transporter ALD protein. Recently, allogeneic hematopoietic stem cell transplantation (alloHSCT) is the only therapy known to prevent disease progression. In this study, we would like to present our experience of alloHSCT for X-ALD from a HLA matched related sibling by the use of reduced intensity conditioning regimen composed of fludarabine, busulfan and ATG which allows us to reduce procedure-related toxicity and prevent mortality while achieving a curative effect.
Collapse
Affiliation(s)
- Rafiye Ciftciler
- Hacettepe Universty, Faculty of Medicine, Department of Hematology, Turkey.
| | - Hakan Goker
- Hacettepe Universty, Faculty of Medicine, Department of Hematology, Turkey
| | - Yahya Buyukasık
- Hacettepe Universty, Faculty of Medicine, Department of Hematology, Turkey
| | - Meral Topcu
- Hacettepe Universty, Faculty of Medicine, Department of Pediatric Neurology, Turkey
| | - Nesive Gevher
- Hacettepe Universty, Faculty of Medicine, Department of Pediatric Neurology, Turkey
| | - Haluk Demiroglu
- Hacettepe Universty, Faculty of Medicine, Department of Hematology, Turkey
| |
Collapse
|
45
|
Geric I, Schoors S, Claes C, Gressens P, Verderio C, Verfaillie CM, Van Veldhoven PP, Carmeliet P, Baes M. Metabolic Reprogramming during Microglia Activation. IMMUNOMETABOLISM 2019; 1. [DOI: 10.20900/immunometab20190002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
AbstractMicroglia, the specialized macrophages of the brain, can adopt different shapes and functions, some of which may be detrimental for nervous tissue. Similar to other immune cells, the metabolic program may determine the phenotypic features of microglia, and could constitute a therapeutic target in neurological diseases. Because the knowledge on microglial metabolism was sparse we here employed mouse primary microglia cells polarized into a pro- or anti-inflammatory state to define their metabolic features. After stimulation with either IL1β/IFNγ or IL4, the activity of glycolysis, glucose oxidation, glutamine oxidation, mitochondrial and peroxisomal fatty acid β-oxidation, and fatty acid synthesis, was assessed by using radiolabeled substrates. We complemented these data with transcriptome analysis of key enzymes orchestrating these metabolic pathways. Pro-inflammatory microglia exhibit increased glucose and glutamine metabolism and suppress both fatty acid oxidation and to a lesser extent fatty acid synthesis. On the other hand, anti-inflammatory microglia display changes only in fatty acid metabolism upregulating both fatty acid oxidation and fatty acid synthesis. Importantly, also human microglia-like cells differentiated from pluripotent stem cells upregulate glycolysis in pro-inflammatory conditions. Finally, we show that glycolytic enzymes are induced in a pro-inflammatory brain environment in vivo in mice. Taken together, the distinct metabolism in pro- and anti-inflammatory microglia can constitute a target to direct the microglial phenotype.
Collapse
Affiliation(s)
- Ivana Geric
- Lab of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven–University of Leuven, 3000 Leuven, Belgium
| | - Sandra Schoors
- Laboratory of Angiogenesis and Vascular Metabolism, KU Leuven–University of Leuven, 3000 Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, VIB, 3000 Leuven, Belgium
| | - Christel Claes
- Stem Cell Institute, KU Leuven-University of Leuven, 3000 Leuven, Belgium
- Center for Brain and Disease Research, VIB, 3000 Leuven, Belgium
| | - Pierre Gressens
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, 75019 Paris, France
| | - Claudia Verderio
- CNR Institute of Neuroscience, via Vanvitelli 32, 20129 Milan, Italy
| | | | - Paul P. Van Veldhoven
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven – University of Leuven, 3000 Leuven, Belgium
| | - Peter Carmeliet
- Lab of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven–University of Leuven, 3000 Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, KU Leuven–University of Leuven, 3000 Leuven, Belgium
| | - Myriam Baes
- Lab of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven–University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
46
|
Raas Q, Gondcaille C, Hamon Y, Leoni V, Caccia C, Ménétrier F, Lizard G, Trompier D, Savary S. CRISPR/Cas9-mediated knockout of Abcd1 and Abcd2 genes in BV-2 cells: novel microglial models for X-linked Adrenoleukodystrophy. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:704-714. [DOI: 10.1016/j.bbalip.2019.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/24/2019] [Accepted: 02/09/2019] [Indexed: 01/08/2023]
|
47
|
In ALD, I feel the need for speed. Blood 2019; 133:1275-1277. [DOI: 10.1182/blood-2019-02-897629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
48
|
Waldhüter N, Köhler W, Hemmati PG, Jehn C, Peceny R, Vuong GL, Arnold R, Kühl JS. Allogeneic hematopoietic stem cell transplantation with myeloablative conditioning for adult cerebral X-linked adrenoleukodystrophy. J Inherit Metab Dis 2019; 42:313-324. [PMID: 30746707 DOI: 10.1002/jimd.12044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The adult cerebral form of X-linked adrenoleukodystrophy (ACALD), an acute inflammatory demyelinating disease, results in a rapidly progressive neurodegeneration, typically leading to severe disability or death within a few years after onset. We have treated 15 men who had developed ACALD with allogeneic hematopoietic stem cell transplantation (HSCT) from matched donors after myeloablative conditioning with busulfan and cyclophosphamide. All patients engrafted and 11 survived (estimated survival 73 ± 11%), 8 with stable cognition and 7 of them with stable motor function (estimated event-free survival 36 ± 17%). Death after transplantation occurred within the first year after HSCT and was caused either primarily by infection (N = 3) or due to disease progression triggered by infection (N = 1). Patients with minor myelopathic symptoms (N = 4) or with no or mild cerebral symptoms pre-transplant (N = 7) had an excellent outcome. In contrast, no patient with major neurological symptoms associated with an extensive involvement of pyramidal tract fibres in the internal capsule (N = 5) survived without cognitive deterioration. Notably, early leukocyte recovery was associated with dismal outcome for yet unknown reasons. All 10 tested survivors showed a reduction of plasma hexacosanoic acid (C26:0) in the absence of Lorenzo's oil. Over time, the event-free survival could be improved from 2 out of 8 patients (25%) before 2013 to 5 out of 7 patients (71%) thereafter. Therefore, allogeneic HSCT appears to be a suitable treatment option for carefully selected ACALD patients when transplanted from matched donors after myeloablative, busulfan-based conditioning.
Collapse
Affiliation(s)
- Nils Waldhüter
- Department Hematology, Oncology and Tumorimmunology, Charité Campus Virchow-Klinikum, Berlin, Germany
| | - Wolfgang Köhler
- Department Neurology, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Philipp G Hemmati
- Department Hematology, Oncology and Tumorimmunology, Charité Campus Virchow-Klinikum, Berlin, Germany
| | - Christian Jehn
- Department Hematology, Oncology and Tumorimmunology, Charité Campus Virchow-Klinikum, Berlin, Germany
| | - Rudolf Peceny
- Department Oncology/Hematology/SCT, Klinikum Osnabrück, Osnabrück, Germany
| | - Giang L Vuong
- Department Hematology, Oncology and Tumorimmunology, Charité Campus Virchow-Klinikum, Berlin, Germany
| | - Renate Arnold
- Department Hematology, Oncology and Tumorimmunology, Charité Campus Virchow-Klinikum, Berlin, Germany
| | - Jörn-Sven Kühl
- Department Pediatric Oncology/Hematology/SCT, Charité Campus Virchow-Klinikum, Berlin, Germany
| |
Collapse
|
49
|
Bergner CG, van der Meer F, Winkler A, Wrzos C, Türkmen M, Valizada E, Fitzner D, Hametner S, Hartmann C, Pfeifenbring S, Stoltenburg-Didinger G, Brück W, Nessler S, Stadelmann C. Microglia damage precedes major myelin breakdown in X-linked adrenoleukodystrophy and metachromatic leukodystrophy. Glia 2019; 67:1196-1209. [PMID: 30980503 PMCID: PMC6594046 DOI: 10.1002/glia.23598] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 12/28/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) and metachromatic leukodystrophy (MLD) are two relatively common examples of hereditary demyelinating diseases caused by a dysfunction of peroxisomal or lysosomal lipid degradation. In both conditions, accumulation of nondegraded lipids leads to the destruction of cerebral white matter. Because of their high lipid content, oligodendrocytes are considered key to the pathophysiology of these leukodystrophies. However, the response to allogeneic stem cell transplantation points to the relevance of cells related to the hematopoietic lineage. In the present study, we aimed to better characterize the pathogenetic role of microglia in the above-mentioned diseases. Applying recently established microglia markers to human autopsy cases of X-ALD and MLD we were able to delineate distinct lesion stages in evolving demyelinating lesions. The immune-phenotype of microglia was altered already early in lesion evolution, and microglia loss preceded full-blown myelin degeneration both in X-ALD and MLD. DNA fragmentation indicating phagocyte death was observed in areas showing microglia loss. The morphology and dynamics of phagocyte decay differed between the diseases and between lesion stages, hinting at distinct pathways of programmed cell death. In summary, the present study shows an early and severe damage to microglia in the pathogenesis of X-ALD and MLD. This hints at a central pathophysiologic role of these cells in the diseases and provides evidence for an ongoing transfer of toxic substrates primarily enriched in myelinating cells to microglia.
Collapse
Affiliation(s)
- Caroline G Bergner
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Anne Winkler
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Claudia Wrzos
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Mevlude Türkmen
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.,Department of Cardiology, University Medical Center Göttingen, Göttingen, Germany
| | - Emil Valizada
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Dirk Fitzner
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Simon Hametner
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.,Institute of Neurology, Medical University Vienna, Vienna, Austria
| | - Christian Hartmann
- Institute of Pathology, Section of Neuropathology, Hannover Medical School, Hannover, Germany
| | - Sabine Pfeifenbring
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Wolfgang Brück
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Nessler
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Christine Stadelmann
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
50
|
Successful donor engraftment and repair of the blood-brain barrier in cerebral adrenoleukodystrophy. Blood 2019; 133:1378-1381. [PMID: 30635285 DOI: 10.1182/blood-2018-11-887240] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/06/2019] [Indexed: 11/20/2022] Open
Abstract
Adrenoleukodystrophy (ALD) is caused by mutations within the X-linked ABCD1 gene, resulting in the inability to transport acylated very long chain fatty acids (VLCFAs) into the peroxisome for degradation. VLCFAs subsequently accumulate in tissues, including the central nervous system. Up to 40% of boys develop a severe progressive demyelinating form of ALD, cerebral ALD, resulting in regions of demyelination observed on brain magnetic resonance imaging that are associated with a "garland ring" of gadolinium contrast enhancement. Gadolinium enhancement indicates blood-brain barrier (BBB) disruption and an active inflammatory disease process. Only hematopoietic cell transplant (HCT) has been shown to halt neurologic progression, although the mechanism of disease arrest is unknown. We evaluated imaging- and transplant-related biomarkers in 66 males who underwent HCT. In 77% of patients, gadolinium contrast resolved by 60 days post-HCT. We determined that time to neutrophil recovery and extent of donor chimerism correlated significantly with time to contrast resolution post-HCT. Graft failure was associated with a significantly slower rate of contrast resolution (P < .0001). Time to neutrophil recovery remained significant in multivariate analysis with other biomarkers (P = .03). Our data suggest that robust donor myeloid recovery is necessary for timely repair of the BBB.
Collapse
|