1
|
Shen Y, Fan N, Ma S, Cheng X, Yang X, Wang G. Gut Microbiota Dysbiosis: Pathogenesis, Diseases, Prevention, and Therapy. MedComm (Beijing) 2025; 6:e70168. [PMID: 40255918 PMCID: PMC12006732 DOI: 10.1002/mco2.70168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/22/2025] Open
Abstract
Dysbiosis refers to the disruption of the gut microbiota balance and is the pathological basis of various diseases. The main pathogenic mechanisms include impaired intestinal mucosal barrier function, inflammation activation, immune dysregulation, and metabolic abnormalities. These mechanisms involve dysfunctions in the gut-brain axis, gut-liver axis, and others to cause broader effects. Although the association between diseases caused by dysbiosis has been extensively studied, many questions remain regarding the specific pathogenic mechanisms and treatment strategies. This review begins by examining the causes of gut microbiota dysbiosis and summarizes the potential mechanisms of representative diseases caused by microbiota imbalance. It integrates clinical evidence to explore preventive and therapeutic strategies targeting gut microbiota dysregulation, emphasizing the importance of understanding gut microbiota dysbiosis. Finally, we summarized the development of artificial intelligence (AI) in the gut microbiota research and suggested that it will play a critical role in future studies on gut dysbiosis. The research combining multiomics technologies and AI will further uncover the complex mechanisms of gut microbiota dysbiosis. It will drive the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Yao Shen
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
| | - Nairui Fan
- Basic Medical College of Jiamusi UniversityHeilongjiangChina
| | - Shu‐xia Ma
- Basic Medical College of Jiamusi UniversityHeilongjiangChina
| | - Xin Cheng
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
- International SchoolGuangzhou Huali College, ZengchengGuangzhouChina
| | - Guang Wang
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
- Guangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryGuangdong Second Provincial General HospitalSchool of MedicineJinan UniversityGuangzhouChina
| |
Collapse
|
2
|
Chen S, Qin Z, Zhou S, Xu Y, Zhu Y. The emerging role of intestinal stem cells in ulcerative colitis. Front Med (Lausanne) 2025; 12:1569328. [PMID: 40201327 PMCID: PMC11975877 DOI: 10.3389/fmed.2025.1569328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic idiopathic inflammatory disease affecting the colon and rectum. Characterized by recurrent attacks, UC is often resistant to traditional anti-inflammatory therapies, imposing significant physiological, psychological, and economic burdens on patients. In light of these challenges, innovative targeted therapies have become a new expectation for patients with UC. A crucial pathological feature of UC is the impairment of the intestinal mucosal barrier, which underlies aberrant immune responses and inflammation. Intestinal stem cells (ISCs), which differentiate into intestinal epithelial cells, play a central role in maintaining this barrier. Growing studies have proved that regulating the regeneration and differentiation of ISC is a promising approach to treating UC. Despite this progress, there is a dearth of comprehensive articles describing the role of ISCs in UC. This review focuses on the importance of ISCs in maintaining the intestinal mucosal barrier in UC and discusses the latest findings on ISC functions, markers, and their regulatory mechanisms. Key pathways involved in ISC regulation, including the Wnt, Notch, Hedgehog (HH), Hippo/Yap, and autophagy pathways, are explored in detail. Additionally, this review examines recent advances in ISC-targeted therapies for UC, such as natural or synthetic compounds, microbial preparations, traditional Chinese medicine (TCM) extracts and compounds, and transplantation therapy. This review aims to offer novel therapeutic insights and strategies for patients who have long struggled with UC.
Collapse
Affiliation(s)
- Siqing Chen
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhang Qin
- The Fourth Hospital of Changsha (Changsha Hospital Affiliated with Hunan Normal University), Changsha, Hunan, China
| | - Sainan Zhou
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
3
|
Huang HJ, Liu Y, Li DW, Wang X, Feng NX, Li HY, Mo CH, Yang WD. Polystyrene Microplastics Can Aggravate the Damage of the Intestinal Microenvironment Caused by Okadaic Acid: A Prevalent Algal Toxin. Mar Drugs 2025; 23:129. [PMID: 40137315 PMCID: PMC11943709 DOI: 10.3390/md23030129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025] Open
Abstract
As emerging contaminants, microplastics (MPs) may pose a threat to human health. Their co-exposure with the widespread phycotoxin okadaic acid (OA), a marine toxin known to cause gastrointestinal toxicity, may exacerbate health risk and raise public safety concern. In this study, the toxicity mechanisms of MPs and OA on intestinal microenvironment was explored using human Caco-2 cells as the model, which was combined with an in vitro fecal fermentation experiment. Our results showed that co-exposure to MPs (80 μg/mL) and OA (20 ng/mL) significantly decreased cell viability, increased intracellular reactive oxygen species (ROS) production, elevated lactate dehydrogenase release, impaired ABC transporter activity, promoted OA accumulation, and triggered inflammatory response compared to the control, MPs, and OA groups, indicating that co-exposure directly compromises intestinal epithelial integrity. In vitro fermentation experiments revealed that co-exposure disrupted gut microbial composition, decreasing the relative abundance of some bacteria, such as Parasutterella and Adlercreutzia, while increasing opportunistic pathogens, such as Escherichia-Shigella, increased. These findings provide new insights into the impact and underlying mechanisms of MPs and OA co-exposure on intestinal homeostasis, highlighting the potential health risks associated with MPs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ce-Hui Mo
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (H.-J.H.)
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (H.-J.H.)
| |
Collapse
|
4
|
Staun-Ram E, Volkowich A, Miller A. Immunotherapy-mediated modulation of the gut microbiota in multiple sclerosis and associations with diet and clinical response-the effect of dimethyl fumarate therapy. Ther Adv Neurol Disord 2025; 18:17562864241306565. [PMID: 40092554 PMCID: PMC11907610 DOI: 10.1177/17562864241306565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/18/2024] [Indexed: 03/19/2025] Open
Abstract
Background Accumulating evidence supports a role of the microbiota in health and disease, including in multiple sclerosis (MS). How MS drugs affect the microbiota and whether this is part of their mode of action is yet unknown. Objectives To assess how dimethyl fumarate (DMF) affects the gut microbiota and whether the microbiota is associated with clinical response or adverse events (AEs) to DMF or diet. Design An observational cohort study, in which the microbiota from 45 patients with relapsing-remitting MS pre-DMF initiation and following 6 months of DMF therapy, and from 47 matched healthy controls, were compared, and associations with clinical and dietary data assessed. Data sources and methods Microbial DNA was sequenced and analyzed using MicrobiomeAnalyst. The clinical response was assessed after 1-year DMF therapy based upon evidence of disease activity (relapse, ΔEDSS increase >1, or MRI activity compared to pre-treatment). Dietary data were obtained by food questionnaires. Results Alterations in relative abundance of several microbes were identified post 6-month DMF therapy compared to pre-treatment, including an increase in Firmicutes, Lachnospiraceae, and Ruminococcaceae, while reduction in Bacteroidetes and Proteobacteria. Patients who showed disease activity within 1 year from DMF initiation had pre-treatment higher abundance of Proteobacteria, Flavonifractor, and Acidaminococcaceae, while lower abundance of Firmicutes, Ruminococcaceae, Butyricicoccus, and Massiliprevotella massiliensis, compared to patients without disease activity. Patients who discontinued DMF therapy due to AEs had pre-treatment higher abundance of Proteobacteria, Bacteroidetes, Eggerthella, and Lachnoclostridium and lower abundance of Ruminococcaceae, Megamonas, and Holdemanella, among others. Differentially abundant microbes correlated with intake of several nutrients. Conclusion DMF immunotherapy is associated with modifications of the microbiota. The microbiota may affect the severity of AEs and the clinical response to DMF, and is potentially modulated by diet. Microbiota-based, personalized treatment approach, integrating pharmacotherapy with dietary components, carries potential to improved clinical outcome.
Collapse
Affiliation(s)
- Elsebeth Staun-Ram
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Neuroimmunology Unit and Multiple Sclerosis Center, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Anat Volkowich
- Neuroimmunology Unit and Multiple Sclerosis Center, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Ariel Miller
- Neuroimmunology Unit and Multiple Sclerosis Center, Lady Davis Carmel Medical Center, Michal St. 7, Haifa 3436212, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
- Department of Neurology, Lady Davis Carmel Medical Center, Haifa 3436212, Israel
| |
Collapse
|
5
|
Hu Y, Zhou J, Lin X. Akkermansia muciniphila helps in the recovery of lipopolysaccharide-fed mice with mild intestinal dysfunction. Front Microbiol 2025; 16:1523742. [PMID: 40143870 PMCID: PMC11938125 DOI: 10.3389/fmicb.2025.1523742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/03/2025] [Indexed: 03/28/2025] Open
Abstract
Background Mild intestinal dysfunction, linked to subtle yet significant health issues, can be induced by lipopolysaccharide (LPS), a Gram-negative bacterial component that disrupts gut function and triggers inflammation. Akkermansia muciniphila has shown promise as a probiotic for gut health due to its roles in mucin degradation and short-chain fatty acid production. This study explores the therapeutic effects of Akkermansia muciniphila on LPS-induced mild intestinal dysfunction in mice. Methods Thirty-eight 6-week-old C57BL/6 mice were split into control (n = 19) and LPS-treated (n = 19) groups. LPS-treated mice received 300 μg/kg/day of LPS for 4 weeks, followed by Akkermansia muciniphila supplementation at 41 mg/kg/day (Akk1) or 82 mg/kg/day (Akk2) for another 4 weeks. Gut microbiota was analyzed via metagenomic sequencing, and gene expression was evaluated through transcriptomics. Results LPS significantly altered gut microbiota, reducing diversity and increasing pathogenic genera like Lachnoclostridium. Akkermansia muciniphila supplementation, particularly at higher doses, partially restored gut microbiota by increasing beneficial genera such as Muribaculum. Transcriptomics showed that LPS induced immune and inflammatory responses, while Akkermansia muciniphila reduced these effects by modulating pathways like TNF and NF-kappa B signaling. Conclusion Akkermansia muciniphila mitigates LPS-induced gut dysfunction by restoring microbiota balance and modulating immune responses, highlighting its potential as a therapeutic agent for gut health.
Collapse
Affiliation(s)
- Yue Hu
- Department of Physiology, Basic Medical College, Shenzhen University, Shenzhen, China
- Shenzhen InnoStar Institute of Biomedical Safety Evaluation and Research Co., Ltd., Shenzhen, China
| | - Jun Zhou
- Shenzhen InnoStar Institute of Biomedical Safety Evaluation and Research Co., Ltd., Shenzhen, China
| | - Xiaoqi Lin
- Shenzhen InnoStar Institute of Biomedical Safety Evaluation and Research Co., Ltd., Shenzhen, China
| |
Collapse
|
6
|
Schumacher SM, Doyle WJ, Hill K, Ochoa-Repáraz J. Gut microbiota in multiple sclerosis and animal models. FEBS J 2025; 292:1330-1356. [PMID: 38817090 PMCID: PMC11607183 DOI: 10.1111/febs.17161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
Multiple sclerosis (MS) is a chronic central nervous system (CNS) neurodegenerative and neuroinflammatory disease marked by a host immune reaction that targets and destroys the neuronal myelin sheath. MS and correlating animal disease models show comorbidities, including intestinal barrier disruption and alterations of the commensal microbiome. It is accepted that diet plays a crucial role in shaping the microbiota composition and overall gastrointestinal (GI) tract health, suggesting an interplay between nutrition and neuroinflammation via the gut-brain axis. Unfortunately, poor host health and diet lead to microbiota modifications that could lead to significant responses in the host, including inflammation and neurobehavioral changes. Beneficial microbial metabolites are essential for host homeostasis and inflammation control. This review will highlight the importance of the gut microbiota in the context of host inflammatory responses in MS and MS animal models. Additionally, microbial community restoration and how it affects MS and GI barrier integrity will be discussed.
Collapse
Affiliation(s)
| | | | - Kristina Hill
- Department of Biological Sciences, Boise State University, Boise, ID 83725
| | | |
Collapse
|
7
|
Ma G, Chen Z, Xie Z, Liu J, Xiao X. Mechanisms underlying changes in intestinal permeability during pregnancy and their implications for maternal and infant health. J Reprod Immunol 2025; 168:104423. [PMID: 39793281 DOI: 10.1016/j.jri.2025.104423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/01/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Proper regulation of intestinal permeability is essential for maintaining the integrity of the intestinal mucosal barrier. An abnormal increase in permeability can significantly contribute to the onset and progression of various diseases, including autoimmune disorders, metabolic conditions, allergies, and inflammatory bowel diseases. The potential connection between intestinal permeability and maternal health during pregnancy is increasingly recognized, yet a comprehensive review remains lacking. Pregnancy triggers a series of physiological structural adaptations and significant hormonal fluctuations that collectively contribute to an increase in intestinal permeability. Although an increase in intestinal permeability is typically a normal physiological response during pregnancy, an abnormal rise is associated with immune dysregulation, metabolic disorders, and various pregnancy-related complications, such as recurrent pregnancy loss, gestational diabetes mellitus, overweight and obesity during pregnancy, intrahepatic cholestasis of pregnancy, and preeclampsia. This paper discusses the components of the intestinal mucosal barrier, the concept of intestinal permeability and its measurement methods, and the mechanisms and physiological significance of increased intestinal permeability during pregnancy. It thoroughly explores the association between abnormal intestinal permeability during pregnancy and maternal diseases, aiming to provide evidence for the pathophysiology of disease development in pregnant women. Additionally, the paper examines intervention methods, such as gut microbiota modulation and nutritional interventions, to regulate intestinal permeability during pregnancy, improve immune and metabolic states, and offer feasible strategies for the prevention and adjuvant treatment of clinical pregnancy complications.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Zhongsheng Chen
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Zhuojun Xie
- General Medicine Department, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - JinXiang Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.
| |
Collapse
|
8
|
Ülfer G, Polat B, Yabalak A, Çakıcı Ç. Evaluation of zonulin levels in patients with migraine. BMC Neurol 2025; 25:46. [PMID: 39905280 PMCID: PMC11792365 DOI: 10.1186/s12883-025-04058-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Zonulin regulates permeability in blood-brain and intestinal barriers. The pathophysiology of migraine is based on the effect of neurogenic inflammation. The aim of the current investigation was to examine the serum zonulin level in individuals suffering from migraine. METHODS The sample comprised 40 individuals who had migraine and 40 controls. Disease duration, attack duration, attack frequency, Visual Analog Scale (VAS) scores, and comorbidities were available for the migraine group. Serum zonulin levels were evaluated by using the ELISA method. RESULTS There were no statistically significant differences between the two groups concerning age or gender (p > 0.05). The zonulin value of patients with migraine was higher when compared to the controls, indicating a significant difference (p = 0.037; p < 0.05). The zonulin level did not correlate with disease duration, attack duration, VAS score, or attack frequency (p > 0.05). The receiver operating characteristic curve analysis of zonulin revealed a cut-off value of 30.58 and above, at which it had 52.50% sensitivity, 77.5% specificity, 70% positive predictive value, and 62% a negative predictive value. The area under the curve was 63.6%, and the standard error value was 6.3%. The analysis also showed a statistically significant correlation between migraine diagnosis and a zonulin level of 30.58 (p = 0.006; p < 0.01). CONCLUSIONS Elevated zonulin levels in patients with migraine support the disruption of the intestinal barrier and neuroinflammation in these patients. The zonulin level may be a predictive biomarker of migraine. Multicenter, randomized trials are needed to evaluate treatments for intestinal permeability and zonulin levels in migraine patients.
Collapse
Affiliation(s)
- Gözde Ülfer
- Faculty of Medicine, Department of Biochemistry, İstanbul Medipol University, İstanbul, Turkey.
| | - Burcu Polat
- Department of Neurology, Duzce University Faculty of Medicine, Düzce, Turkey
| | - Ahmet Yabalak
- Department of Neurology, Duzce University Faculty of Medicine, Düzce, Turkey
| | - Çağrı Çakıcı
- Faculty of Medicine, Department of Biochemistry, İstanbul Medipol University, İstanbul, Turkey
| |
Collapse
|
9
|
Tu Y, Tang E, Ye H, Xiang Q, Ye Z, Hao Y, Liao W. Flammulina Velutipes polysaccharides ameliorate cisplatin-induced acute kidney injury in mice via regulation of gut microbiota and Ferroptosis pathway. Int J Biol Macromol 2025; 290:138526. [PMID: 39706410 DOI: 10.1016/j.ijbiomac.2024.138526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 11/17/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024]
Abstract
Acute kidney injury (AKI) is a common and serious clinical complication with high incidence. Polysaccharides extracted from Flammulina velutipes (FVPs) have been proven to possess anti-inflammatory and antioxidant properties. The present study aimed to investigate the ameliorative effect and mechanism of FVPs on cisplatin (CDPP)-induced AKI. The results of our study revealed that FVPs improved CDPP-induced AKI in mice as indicated by decreasing serum creatinine and urea levels and down-regulating the mRNA expression of IL-6 and TNF-α. Moreover, FVPs modified the composition of gut microorganisms and increased the content of short-chain fatty acids (SCFAs). Additionally, kidney metabolomics analysis demonstrated enrichment of the ferroptosis metabolic pathway. Furthermore, FVPs suppressed ferroptosis as shown by increasing levels of GSH, GPX4, and SLC7A11, while reducing the arachidonic acid level. In conclusion, FVPs were confirmed to ameliorate CDPP-induced AKI in the present study. FVPs can modify the composition of the gut microbiota to promote the production of SCFAs, as well as modulate renal metabolism and inhibit ferroptosis.
Collapse
Affiliation(s)
- Yali Tu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China; Leshan Vocational and Technical College, Leshan, China
| | - Enhui Tang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Huarui Ye
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qianru Xiang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zichong Ye
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuting Hao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Guerrero Aznar MD, Villanueva Guerrero MD, Beltrán García M, Hernández Cruz B. Specific Composition Diets and Improvement of Symptoms of Immune-Mediated Inflammatory Diseases in Adulthood-Could the Comparison Between Diets Be Improved? Nutrients 2025; 17:493. [PMID: 39940351 PMCID: PMC11819864 DOI: 10.3390/nu17030493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Diet is considered a possible cofactor, which affects the immune system and potentially causes dysregulation of intestinal homeostasis and inflammation. This study aimed to review the quality of evidence on the effects of specific diet composition on symptoms of immune-mediated inflammatory diseases (IMIDs), including rheumatoid arthritis (RA), spondyloarthritis, multiple sclerosis (MS), inflammatory bowel disease (IBD) [remission maintenance of Crohn's disease and ulcerative colitis], psoriasis and psoriatic arthritis in adult patients. We conducted a review of meta-analyses and Cochrane systematic reviews using PubMed and EMBASE, from inception to September 2024, and Google Scholar. The methodological quality of the meta-analyses was assessed using the AMSTAR 2 rating system. Three Cochrane systematic reviews and eight meta-analyses were evaluated. Some specific composition diets have been shown to reduce the symptoms of RA, IBD, and MS and improve activity parameters in IBD and RA, with critically low or low levels of evidence. The reduction in inflammatory biomarker levels is unclear. This review summarizes the global evidence for specific dietary interventions, mostly with anti-inflammatory properties due to their components, to improve IMID symptoms, clarifying the weaknesses of clinical trials and dietary meta-analyses with critically low or low levels of evidence; and shows the need to use indices such as the Dietary Inflammatory Index, which allows diets to be classified by their pro-inflammatory or anti-inflammatory food content, to better compare diet groups in clinical trials. The difficulty of obtaining high-level evidence from dietary studies is apparent and may delay the application of the results. Clinicians should be aware of the role of diets with anti-inflammatory properties as a complement to pharmacological treatments in IMIDs.
Collapse
Affiliation(s)
- M. Dolores Guerrero Aznar
- Pharmacy Health Management Unit, Virgen Macarena University Hospital, 41009 Seville, Spain; (M.D.V.G.); (M.B.G.)
| | | | - Margarita Beltrán García
- Pharmacy Health Management Unit, Virgen Macarena University Hospital, 41009 Seville, Spain; (M.D.V.G.); (M.B.G.)
| | - Blanca Hernández Cruz
- Rheumatology Health Management Unit, Virgen Macarena University Hospital, 41009 Seville, Spain;
| |
Collapse
|
11
|
Jian J, Wei J. Ferroptosis: A New Pathway in the Interaction between Gut Microbiota and Multiple Sclerosis. FRONT BIOSCI-LANDMRK 2025; 30:26265. [PMID: 39862079 DOI: 10.31083/fbl26265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 01/27/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS. Concurrently, the gut microbiota, known to affect systemic immunity and neurological health, emerges as an important regulator of iron homeostasis and inflammatory responses, thereby influencing ferroptotic pathways. This review investigates how gut microbiota dysbiosis and ferroptosis impact MS, emphasizing their potential as therapeutic targets. Through an integrated examination of mechanistic pathways and clinical evidence, we discuss how targeting these interactions could lead to novel interventions that not only modulate disease progression but also offer personalized treatment strategies based on gut microbiota profiling. This synthesis aims at deepening insights into the microbial contributions to ferroptosis and their implications in MS, setting the stage for future research and therapeutic exploration.
Collapse
Affiliation(s)
- Junjie Jian
- The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
- Department of Neurology, Yichang Central People's Hospital, 443003 Yichang, Hubei, China
| | - Jun Wei
- The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
- Department of Neurology, Yichang Central People's Hospital, 443003 Yichang, Hubei, China
| |
Collapse
|
12
|
Ahrend H, Buchholtz A, Stope MB. Microbiome and Mucosal Immunity in the Intestinal Tract. In Vivo 2025; 39:17-24. [PMID: 39740876 PMCID: PMC11705094 DOI: 10.21873/invivo.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/11/2024] [Accepted: 11/06/2024] [Indexed: 01/02/2025]
Abstract
The human bowel is exposed to numerous biotic and abiotic external noxious agents. Accordingly, the digestive tract is frequently involved in malfunctions within the organism. Together with the commensal intestinal flora, it regulates the immunological balance between inflammatory defense processes and immune tolerance. Pathological changes in this system often cause chronic inflammatory bowel diseases including Crohn's disease and ulcerative colitis. This review article highlights the complex interaction between commensal microorganisms, the intestinal microbiome, and the intestinal epithelium-localized local immune system. The main functions of the human intestinal microbiome include (i) protection against pathogenic microbial colonization, (ii) maintenance of the barrier function of the intestinal epithelium, (iii) degradation and absorption of nutrients and (iv) active regulation of the intestinal immunity. The local intestinal immune system consists primarily of macrophages, antigen-presenting cells, and natural killer cells. These cells regulate the commensal intestinal microbiome and are in turn regulated by signaling factors of the epithelial cells and the microbiome. Deregulated immune responses play an important role and can lead to both reduced activity of the commensal microbiome and pathologically increased activity of harmful microorganisms. These aspects of chronic inflammatory bowel disease have become the focus of attention in recent years. It is therefore important to consider the immunological-microbial context in both the diagnosis and treatment of inflammatory bowel diseases. A promising holistic approach would include the most comprehensive possible diagnosis of the immune and microbiome status of the patient, both at the time of diagnostics and during therapy.
Collapse
Affiliation(s)
- Hannes Ahrend
- Department of Medicine, Israelite Hospital Hamburg, Hamburg, Germany
| | - Anja Buchholtz
- Department of Medicine, Israelite Hospital Hamburg, Hamburg, Germany
| | - Matthias B Stope
- Department of Gynecology and Gynecological Oncology, Research Laboratories, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
13
|
Mao N, Yu Y, Cui J, He J, Yang Y, Wang D. Effect of Matrine on growth performance, gut health, and gut microbiota in chickens infected with avian pathogenic Escherichia coli. Poult Sci 2025; 104:104520. [PMID: 39546922 PMCID: PMC11609370 DOI: 10.1016/j.psj.2024.104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a major cause of avian colibacillosis. Matrine, a natural component derived from Sophora flavescens, exhibits various pharmacological effects, including anti-inflammatory and antioxidant activities. However, its role in mitigating APEC-induced intestinal damage in chickens remains insufficiently understood. This study aimed to explore the protective effects and potential mechanisms of matrine against APEC-induced intestinal damage. Chickens were administered matrine (10 or 20 mg/kg) from 6 days old for 5 days, followed by an APEC intraperitoneal injection on day 10. After 72 h of APEC infection, tissues were collected for analysis. Results indicated that pretreatment with matrine alleviated the symptoms of APEC infection in chickens, improving survival rates and promoting weight gain. Additionally, pretreatment with matrine reduced the secretion and gene expression of IL-1β, IL-6, and TNF-α in intestinal tissues, while enhancing serum SOD, GSH, and CAT activity, as well as gene expression levels in the intestine. Pretreatment with matrine reduced the levels of TLR4, MyD88, and NF-κB in intestinal tissues. Moreover, pretreatment with matrine ameliorated intestinal inflammation and pathological damage, restoring the expression of ZO-1, Occludin, and MUC2 in the intestine during APEC infection. Furthermore, pretreatment with matrine alleviated gut microbiota dysbiosis by lowering the abundance of harmful bacteria. In summary, matrine alleviated APEC-induced intestinal inflammation and damage, potentially by inhibiting NF-κB signaling pathway and reshaping the gut microbiota. These findings provide promising insights into the prevention and treatment of avian colibacillosis.
Collapse
Affiliation(s)
- Ningning Mao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yaming Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiqin Cui
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jin He
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
14
|
Vilmane A, Kolesova O, Nora-Krukle Z, Kolesovs A, Pastare D, Jaunozolina L, Kande L, Egle J, Kromane D, Micule M, Liepina S, Zeltina E, Gravelsina S, Rasa-Dzelzkaleja S, Viksna L, Karelis G. Association of Baseline Lipopolysaccharide-Binding Protein with Expanded Disability Status Score Dynamics in Patients with Relapsing-Remitting Multiple Sclerosis: A Pilot Study. Int J Mol Sci 2024; 26:298. [PMID: 39796152 PMCID: PMC11720422 DOI: 10.3390/ijms26010298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
Forecasting the progression of the disease in the early inflammatory stage of the most prevalent type of multiple sclerosis (MS), referred to as relapsing-remitting multiple sclerosis (RRMS), is essential for making prompt treatment modifications, aimed to reduce clinical relapses and disability. In total, 58 patients with RRMS, having an Expanded Disability Status Scale (EDSS) score less than 4, were included in this study. Baseline magnetic resonance imaging (MRI) was performed, and brain and spinal cord lesions were evaluated. The disability of the patients was evaluated using EDSS at baseline and follow-up; enzyme-linked immunosorbent assays (ELISAs) were also used to determine the level of blood-based inflammation markers in plasma at baseline. The main results demonstrated that the baseline level of LBP was correlated with an increase in EDSS in a short (8-10 months) follow-up period. Furthermore, the prognostic significance of LBP was only observed in patients who received disease-modifying treatment (DMT) before the study. Our results suggest that the baseline level of LBP may be among the predictors of disability progression in RRMS over short follow-up periods, particularly in those receiving treatment. It highlights the effect of endotoxins in the pathogenesis of RRMS.
Collapse
Affiliation(s)
- Anda Vilmane
- Institute of Microbiology and Virology, Rīga Stradiņš University Research Center, LV-1067 Riga, Latvia
| | - Oksana Kolesova
- Institute of Microbiology and Virology, Rīga Stradiņš University Research Center, LV-1067 Riga, Latvia
- Department of Infectology, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Zaiga Nora-Krukle
- Institute of Microbiology and Virology, Rīga Stradiņš University Research Center, LV-1067 Riga, Latvia
| | | | - Daina Pastare
- Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1038 Riga, Latvia
- Department of Neurology and Neurosurgery, Rīga Stradiņš University, LV-1002 Riga, Latvia
| | - Liga Jaunozolina
- Center of Radiology, Riga East University Hospital, LV-1038 Riga, Latvia
- Department of Radiology, Rīga Stradiņš University, LV-1079 Riga, Latvia
| | - Linda Kande
- Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1038 Riga, Latvia
| | - Jelena Egle
- Institute of Microbiology and Virology, Rīga Stradiņš University Research Center, LV-1067 Riga, Latvia
| | - Daniela Kromane
- Faculty of Medicine, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Madara Micule
- Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1038 Riga, Latvia
- Department of Neurology and Neurosurgery, Rīga Stradiņš University, LV-1002 Riga, Latvia
| | - Sintija Liepina
- Department of Residency, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Estere Zeltina
- Department of Residency, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Sabine Gravelsina
- Institute of Microbiology and Virology, Rīga Stradiņš University Research Center, LV-1067 Riga, Latvia
| | - Santa Rasa-Dzelzkaleja
- Institute of Microbiology and Virology, Rīga Stradiņš University Research Center, LV-1067 Riga, Latvia
| | - Ludmila Viksna
- Department of Infectology, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Riga East University Hospital, LV-1038 Riga, Latvia
| | - Guntis Karelis
- Department of Infectology, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1038 Riga, Latvia
| |
Collapse
|
15
|
Wang X, Yao DS, Xu L, Yan DM, Zhao Y, Peng JH, Fu QL, Hu YY, Feng Q. Jianpi Huoxue Decoction Ameliorates Alcohol-associated Liver Disease by Improving Intestinal Barrier Function in Rats. Curr Med Sci 2024; 44:1241-1248. [PMID: 39617866 DOI: 10.1007/s11596-024-2955-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/08/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVE Jianpi huoxue decoction (JHD), a Chinese herbal formula, is commonly used for treating alcohol-associated liver disease (ALD). This study aimed to investigate the mechanism by which JHD affects intestinal barrier function in ALD rats. METHODS The Sprague-Dawley rats were randomly divided into three groups: control group, model group and JHD group. They were pair-fed a modified Lieber-DeCarli liquid diet containing alcohol (model group, n=10; JHD group, n=10) or isocaloric maltose dextrin (control group, n=10) for 6 weeks. After 3 weeks of feeding, the mice in the JHD group were given JHD (10 mL/kg/day) by gavage for 3 weeks, and those in the control and model groups received equal amounts of double-distilled water for the same period of time. Afterwards, all the rats were given lipopolysaccharide (LPS) by gavage and sacrificed 3.5 h later. LPS levels were measured in the portal blood to evaluate gut leakage. Transmission electron microscopy (TEM) was used to observe ultrastructural changes in the intestinal tract. Adherens junction (AJ) and tight junction (TJ) proteins were detected by Western blotting, immunofluorescence or immunohistochemistry. RESULTS JHD ameliorated Lieber-DeCarli liquid diet-induced hepatic steatosis, inflammation and LPS expression. It improved pathological changes in the liver and alleviated intestinal ultrastructure injury. Moreover, it significantly enhanced the integrity of tight junctions by increasing the expression of zonula occludens-1 (ZO-1) and occludin. It suppressed the activation of myosin light chain (MLC) phosphorylation. CONCLUSION JHD improves intestinal barrier function and reduces gut leakiness in ALD rats.
Collapse
Affiliation(s)
- Xin Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dong-Sheng Yao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lin Xu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dong-Ming Yan
- Clinical Pharmacokinetics Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu Zhao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing-Hua Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qi-Lin Fu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yi-Yang Hu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China.
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Clinical Pharmacokinetics Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China.
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
16
|
Sun N, Ogulur I, Mitamura Y, Yazici D, Pat Y, Bu X, Li M, Zhu X, Babayev H, Ardicli S, Ardicli O, D'Avino P, Kiykim A, Sokolowska M, van de Veen W, Weidmann L, Akdis D, Ozdemir BG, Brüggen MC, Biedermann L, Straumann A, Kreienbühl A, Guttman-Yassky E, Santos AF, Del Giacco S, Traidl-Hoffmann C, Jackson DJ, Wang DY, Lauerma A, Breiteneder H, Zhang L, O'Mahony L, Pfaar O, O'Hehir R, Eiwegger T, Fokkens WJ, Cabanillas B, Ozdemir C, Kistler W, Bayik M, Nadeau KC, Torres MJ, Akdis M, Jutel M, Agache I, Akdis CA. The epithelial barrier theory and its associated diseases. Allergy 2024; 79:3192-3237. [PMID: 39370939 DOI: 10.1111/all.16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
The prevalence of many chronic noncommunicable diseases has been steadily rising over the past six decades. During this time, over 350,000 new chemical substances have been introduced to the lives of humans. In recent years, the epithelial barrier theory came to light explaining the growing prevalence and exacerbations of these diseases worldwide. It attributes their onset to a functionally impaired epithelial barrier triggered by the toxicity of the exposed substances, associated with microbial dysbiosis, immune system activation, and inflammation. Diseases encompassed by the epithelial barrier theory share common features such as an increased prevalence after the 1960s or 2000s that cannot (solely) be accounted for by the emergence of improved diagnostic methods. Other common traits include epithelial barrier defects, microbial dysbiosis with loss of commensals and colonization of opportunistic pathogens, and circulating inflammatory cells and cytokines. In addition, practically unrelated diseases that fulfill these criteria have started to emerge as multimorbidities during the last decades. Here, we provide a comprehensive overview of diseases encompassed by the epithelial barrier theory and discuss evidence and similarities for their epidemiology, genetic susceptibility, epithelial barrier dysfunction, microbial dysbiosis, and tissue inflammation.
Collapse
Affiliation(s)
- Na Sun
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Xiangting Bu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Xueyi Zhu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Division of Food Processing, Milk and Dairy Products Technology Program, Karacabey Vocational School, Bursa Uludag University, Bursa, Turkey
| | - Paolo D'Avino
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ayca Kiykim
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Lukas Weidmann
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Deniz Akdis
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | | | - Marie Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Luc Biedermann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Alex Straumann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Kreienbühl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Emma Guttman-Yassky
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St. Thomas' Hospital, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - David J Jackson
- Guy's Severe Asthma Centre, Guy's Hospital, Guy's & St Thomas' NHS Trust, London, UK
- School of Immunology & Microbial Sciences, King's College London, London, UK
| | - De-Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore City, Singapore
| | - Antti Lauerma
- Department of Dermatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Robyn O'Hehir
- Allergy, Asthma & Clinical Immunology, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Department of Pediatric and Adolescent Medicine, University Hospital St. Pölten, St. Pölten, Austria
| | - Wytske J Fokkens
- Department of Otorhinolaryngology & Head and Neck Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Beatriz Cabanillas
- Department of Allergy, Instituto de Investigación Biosanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Cevdet Ozdemir
- Department of Pediatric Basic Sciences, Institute of Child Health, Istanbul University, Istanbul, Turkey
- Istanbul Faculty of Medicine, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Istanbul University, Istanbul, Turkey
| | - Walter Kistler
- Department of Sports Medicine, Davos Hospital, Davos, Switzerland
- Swiss Research Institute for Sports Medicine (SRISM), Davos, Switzerland
- Medical Committee International Ice Hockey Federation (IIHF), Zurich, Switzerland
| | - Mahmut Bayik
- Department of Internal Medicine and Hematology, Marmara University, Istanbul, Turkey
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Maria J Torres
- Allergy Unit, IBIMA-Hospital Regional Universitario de Málaga-ARADyAL, UMA, Málaga, Spain
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University, Wroclaw, Poland
| | - Ioana Agache
- Faculty of Medicine, Department of Allergy and Clinical Immunology, Transylvania University, Brasov, Romania
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
17
|
Liu X, Zhang M, Chen S, Liu H, Ma H, Hu T, Luo P, Wei S. Grifola frondosa polysaccharide's therapeutic potential in oxazolone-induced ulcerative colitis. Carbohydr Polym 2024; 344:122517. [PMID: 39218542 DOI: 10.1016/j.carbpol.2024.122517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Grifola frondosa polysaccharide (GFP) is a consumable fungus recognized for its potential health advantages. The present study aimed to investigate the development and potential etiologies of ulcerative colitis (UC) utilizing oxazolone (OXZ) as an inducer in mice, along with assessing the therapeutic effects of GFP at varying doses in UC mice, with sulfasalazine (SASP) serving as the positive control. The obtained results indicated that OXZ intervention in mice induced numerous physical manifestations of UC, including increased disease activity index (DAI), decreased goblet cell division, enhanced fibrosis, reduced expression of Claudin1 and Zona encludens protein1 (ZO-1), decreased proliferative activity of colonic mucosal epithelial cells, disturbed oxidation balance, and alterations in intestinal flora. Nonetheless, GFP intervention significantly ameliorated or even resolved these abnormal indicators to a considerable extent. Consequently, this study suggests that GFP might serve as a prebiotic to regulate intestinal flora, mitigate enterotoxin production, restore oxidative balance, thereby reducing the generation of inflammatory mediators, restoring the intestinal barrier, and ultimately improving OXZ-induced UC in mice. GFP demonstrates promising potential as a candidate drug for colitis treatment and as a dietary supplement for alleviating intestinal inflammatory issues.
Collapse
Affiliation(s)
- Xiaoyi Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China; Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, 510632 Guangzhou, China
| | - Mingjun Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Shuai Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Huijuan Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Haoran Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Ting Hu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China.
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China.
| |
Collapse
|
18
|
El-Hakim Y, Mani KK, Pickle KA, Akbari Z, Samiya N, Pham C, Salas G, Pilla R, Sohrabji F. Peripheral, but not central, IGF-1 treatment attenuates stroke-induced cognitive impairment in middle-aged female Sprague Dawley rats: The gut as a therapeutic target. Brain Behav Immun 2024; 122:150-166. [PMID: 39142422 PMCID: PMC11972691 DOI: 10.1016/j.bbi.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
Stroke results in immediate sensory or motor disability and increases the risk for long term cognitive-affective impairments. Thus, therapies are urgently needed to improve quality of life for stroke survivors, especially women who are at a greater risk for severe stroke after menopause. Most current research on stroke therapies target the central nervous system; however, stroke also impacts peripheral organ systems. Our studies using acyclic (estrogen-deficient) middle aged female Sprague Dawley rats show that this group not only displays worse outcomes after stroke as compared to adult females, but also has lower levels of the neuroprotective peptide Insulin-like Growth Factor (IGF1) in circulation. Intracerebroventricular (ICV) administration of IGF1 to this group decreases infarct volume and improves sensory motor performance in the acute phase. In this study, we show that, despite this neuroprotection, ICV-IGF1 did not reduce peripheral inflammation or improve post stroke cognitive impairment in the chronic phase. In view of the evidence that stroke induces rapid gut dysfunction, we tested whether systemic delivery of IGF1 (intraperitoneal, IP) would promote gut health and consequently improve long-term behavioral outcomes. Surprisingly, while IP-IGF1, delivered 4 h and 24 h after ischemic stroke, did not reduce infarct volume or acute sensory motor impairment, it significantly attenuated circulating levels of pro-inflammatory cytokines, and attenuated stroke-induced cognitive impairment. In addition, IP-IGF1 treatment reduced gut dysmorphology and gut dysbiosis. Our data support the conclusion that therapeutics targeting peripheral targets are critical for long-term stroke recovery, and that gut repair is a novel therapeutic target to improve brain health in aging females.
Collapse
Affiliation(s)
- Yumna El-Hakim
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Kathiresh Kumar Mani
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Kaylin A Pickle
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Zara Akbari
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Nadia Samiya
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Chloe Pham
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Gianna Salas
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Rachel Pilla
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine Texas A&M University, College Station, TX Brazos
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA.
| |
Collapse
|
19
|
Dinger TF, Chihi M, Gümüs M, Rieß C, Santos AN, Moskopp ML, Rodemerk J, Schüßler M, Darkwah Oppong M, Li Y, Wrede KH, Dammann PR, Sure U, Jabbarli R. Patients' Characteristics Associated With Size of Ruptured and Unruptured Intracranial Aneurysms. Brain Behav 2024; 14:e70161. [PMID: 39607092 PMCID: PMC11603431 DOI: 10.1002/brb3.70161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVE The size of unruptured intracranial aneurysms (UIA) remains the most crucial risk factor for treatment decisions. On the other side, there is a non-negligible portion of small ruptured IA and large stable UIA. This study aimed to identify the patients' characteristics related to IA size in the context of IA rupture status. METHODS A total of 2152 patients, with 1002 being hospitalized for an acute aneurysmal subarachnoid hemorrhage (SAH), were included from our institutional IA database. Different demographic and clinical characteristics of patients and IA were collected. IA size was the study endpoint, assessed as continuous variable in univariate and multivariable linear regression analysis, separately for ruptured (R) IA and UIA. RESULTS The mean IA size was 8.3 and 7.3 mm in the UIA and RIA subpopulations, respectively. Higher age (p = 0.003) and baseline blood urea level (p < 0.001) were independently associated with increasing UIA size. In contrast, location at the posterior circulation (p < 0.001), familiar intracranial aneurysms (p < 0.001), serum potassium (p = 0.006), and total serum protein (p = 0.019) were related to smaller UIA size in the multivariate analysis. For RIA, a statistically significant and independent association was detected for location (p = 0.019), history of gastrointestinal diseases (p = 0.042), and levothyroxine intake (p = 0.002). CONCLUSIONS Identification of clinical characteristics related to the size of ruptured and unruptured IA allows a more differentiated view on the genesis of RIA and UIA and the value of sack size as a basis for therapeutic decision-making. More research is needed to verify the identified risk factors.
Collapse
Affiliation(s)
- Thiemo Florin Dinger
- Department of Neurosurgery and Spine Surgery, and Center for Translational Neuroscience and Behavioral Science (C‐TNBS), University Hospital of EssenUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Mehdi Chihi
- Department of Neurosurgery and Spine Surgery, and Center for Translational Neuroscience and Behavioral Science (C‐TNBS), University Hospital of EssenUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Meltem Gümüs
- Department of Neurosurgery and Spine Surgery, and Center for Translational Neuroscience and Behavioral Science (C‐TNBS), University Hospital of EssenUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Christoph Rieß
- Department of Neurosurgery and Spine Surgery, and Center for Translational Neuroscience and Behavioral Science (C‐TNBS), University Hospital of EssenUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Alejandro Nicolas Santos
- Department of Neurosurgery and Spine Surgery, and Center for Translational Neuroscience and Behavioral Science (C‐TNBS), University Hospital of EssenUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Mats Leif Moskopp
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität DresdenDresdenGermany
- Institute of Physiology, Medical Faculty Carl Gustav CarusTechnische Universität DresdenDresdenGermany
| | - Jan Rodemerk
- Department of Neurosurgery and Spine Surgery, and Center for Translational Neuroscience and Behavioral Science (C‐TNBS), University Hospital of EssenUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Maximilian Schüßler
- University Hospital Essen, Institute for Diagnostic and Interventional Radiology and NeuroradiologyUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Marvin Darkwah Oppong
- Department of Neurosurgery and Spine Surgery, and Center for Translational Neuroscience and Behavioral Science (C‐TNBS), University Hospital of EssenUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Yan Li
- University Hospital Essen, Institute for Diagnostic and Interventional Radiology and NeuroradiologyUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Karsten Henning Wrede
- Department of Neurosurgery and Spine Surgery, and Center for Translational Neuroscience and Behavioral Science (C‐TNBS), University Hospital of EssenUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Philipp René Dammann
- Department of Neurosurgery and Spine Surgery, and Center for Translational Neuroscience and Behavioral Science (C‐TNBS), University Hospital of EssenUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, and Center for Translational Neuroscience and Behavioral Science (C‐TNBS), University Hospital of EssenUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Ramazan Jabbarli
- Department of Neurosurgery and Spine Surgery, and Center for Translational Neuroscience and Behavioral Science (C‐TNBS), University Hospital of EssenUniversity of Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| |
Collapse
|
20
|
Li Y, Wang GQ, Li YB. Therapeutic potential of natural coumarins in autoimmune diseases with underlying mechanisms. Front Immunol 2024; 15:1432846. [PMID: 39544933 PMCID: PMC11560467 DOI: 10.3389/fimmu.2024.1432846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Autoimmune diseases encompass a wide range of disorders characterized by disturbed immunoregulation leading to the development of specific autoantibodies, which cause inflammation and multiple organ involvement. However, its pathogenesis remains unelucidated. Furthermore, the cumulative medical and economic burden of autoimmune diseases is on the rise, making these diseases a ubiquitous global phenomenon that is predicted to further increase in the coming decades. Coumarins, a class of aromatic natural products with benzene and alpha-pyrone as their basic structures, has good therapeutic effects on autoimmune diseases. In this review, we systematically highlighted the latest evidence on coumarins and autoimmune diseases data from clinical and animal studies. Coumarin acts on immune cells and cytokines and plays a role in the treatment of autoimmune diseases by regulating NF-κB, Keap1/Nrf2, MAPKs, JAK/STAT, Wnt/β-catenin, PI3K/AKT, Notch and TGF-β/Smad signaling pathways. This systematic review will provide insight into the interaction of coumarin and autoimmune diseases, and will lay a groundwork for the development of new drugs for autoimmune diseases.
Collapse
Affiliation(s)
- Yan Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Provincial Key Medical and Health Laboratory of Neuroimmunology, Jinan, China
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guan-qing Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Provincial Key Medical and Health Laboratory of Neuroimmunology, Jinan, China
| | - Yan-bin Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Provincial Key Medical and Health Laboratory of Neuroimmunology, Jinan, China
| |
Collapse
|
21
|
Wang Z, Guo S, He C, Chen L, Wang J, Xiu W, Zhang G, Chen Y, Li A, Zhu X, Xiao X, Yu L, Lu F. Increased Intestinal Inflammation and Permeability in Glaucoma. J Inflamm Res 2024; 17:6895-6904. [PMID: 39372596 PMCID: PMC11451454 DOI: 10.2147/jir.s480809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024] Open
Abstract
Objective Evidence suggests that dysbiosis of the gut microbiota plays a pivotal role in the development of glaucoma. This dysbiosis is commonly associated with chronic intestinal inflammation and increased intestinal permeability. However, the understanding of intestinal inflammation and permeability in glaucoma remains insufficient. This study aims to investigate the potential relationship between fecal inflammation and permeability markers and glaucoma. Methods We recruited 114 glaucoma patients and 75 healthy controls. Levels of fecal lactoferrin (Lf) and alpha-1 antitrypsin (AAT) were quantified using enzyme linked immunosorbent assay (ELISA) to compare both biomarkers between groups and across different severity grades of glaucoma. Logistic regression analysis was used to assess the association between these fecal biomarkers and glaucoma. The severity of glaucoma was assessed based on the mean deviation (MD) in the visual field. Results In this study, we observed elevated levels of fecal Lf and AAT in glaucoma patients. The proportion of glaucoma patients with abnormal fecal Lf levels (≥ 7.25 µg/g) was significantly higher than that of the controls (p = 0.012). A positive correlation was noted between fecal Lf and AAT (rho = 0.20, p = 0.006). After adjusting for age and sex, multivariable logistic regression analysis indicated that both fecal Lf (OR = 1.11, 95% CI: 1.01-1.21, p = 0.026) and AAT (OR = 1.01, 95% CI: 1.01-1.02, p < 0.001) positively correlated with glaucoma. These biomarkers might reflect glaucoma severity, with significant differences in fecal Lf levels observed between moderate and severe stages, but not in the early stage. Furthermore, increasing levels of fecal AAT correlated with greater severity of glaucomatous injury and a larger vertical cup-to-disc ratio (VCDR) (p < 0.05). Conclusion This study suggests an increase in intestinal inflammation and permeability in glaucoma, further indicating the importance of the 'gut-retina axis' in the pathogenesis of the disease and potentially offering new therapeutic avenues.
Collapse
Affiliation(s)
- Zuo Wang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Siqi Guo
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, People’s Republic of China
| | - Chong He
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Lingling Chen
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Jinxia Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Wenbo Xiu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Gao Zhang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Yang Chen
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - An Li
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Xiong Zhu
- Department of Prenatal Diagnosis, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Xiao Xiao
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Ling Yu
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, People’s Republic of China
| | - Fang Lu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
- Health Management Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| |
Collapse
|
22
|
Ren X, Shi B, Chang Z, Zhang J, Wang S, Liu R, Sang M, Dong H, Wu Q. Relationship between pathogenic E.coli O78-induced intestinal epithelial barrier damage and Zonulin expression levels in yaks. Front Cell Infect Microbiol 2024; 14:1456356. [PMID: 39376662 PMCID: PMC11456573 DOI: 10.3389/fcimb.2024.1456356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
To explore whether the intestinal damage of yak colibacillosis resulted from the regulation of Zonulin expression by its pathogenic bacteria, the overexpression and interference plasmids of Zonulin were designed and cultured in Tranwell after cell transfection. Then qRT-PCR and Western blot were used to detect the results of cell transfection, 200 mL 1×105 CFU/mL E.coli O78 was added for 4 hours, transmembrane resistance was measured by transmembrane resistance meter, FD4 fluorescence concentration in the lower chamber was detected by enzyme labeling instrument, bacterial translocation was measured by CFU counting method, and epithelial mucin (MUC1, MUC2) and tight junction protein (FABP2, Occludin, ZO-1) were detected by qRT-PCR. Results The Zonulin gene overexpression and knockout cell lines were successfully constructed, the TEER value of the barrier of Zonulin overexpression cell lines began to decrease at 1 h after the addition of E.coli O78 and reached the lowest value at 4 h, and the TEER value of Zonulin interference cell lines decreased within 1-4 h after the addition of E.coli O78. At 4 h, the FD4 passing capacity of Zonulin overexpression cell lines was significantly higher than that of interfering cell lines, reaching twice as much as siRNA-1. The amount of bacterial translocation in overexpressed cell lines increased rapidly within 1-4 h, and the concentration of E.coli in the lower chamber was significantly higher than that in the siRNA-1 group at 4 h, but there was no significant change in the siRNA-1 group in the 1-4 h. There was no significant change in the mRNA level of MUC1 in Zonulin overexpression and interference cell lines after the addition of E.coli O78. In the overexpression group, the mRNA levels of MUC2, Occludin, and ZO-1 were significantly decreased, and the mRNA level of FABP2 was increased considerably. These results suggest stimulate epithelial cells to secrete Zonulin protein. Many Zonulin proteins regulate the opening of tight junction structures, reduce the transmembrane resistance of the cell barrier, and improve the permeability of the cell barrier and the amount of bacterial translocation.
Collapse
Affiliation(s)
- Xiaoli Ren
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Bin Shi
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
- Institute of Animal Science, Xizang Academy of Agricultural and Animal Husbandry Sciences, Xizang Lhasa, China
| | - Zhenyu Chang
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Jingbo Zhang
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Shuo Wang
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Ruidong Liu
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Mudan Sang
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Hailong Dong
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Qingxia Wu
- Key Laboratory of Clinical Veterinary Medicine, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| |
Collapse
|
23
|
Gong Q, Sun Y, Liu L, Pu C, Guo Y. Oral administration of tea-derived exosome-like nanoparticles protects epithelial and immune barrier of intestine from psychological stress. Heliyon 2024; 10:e36812. [PMID: 39281430 PMCID: PMC11395767 DOI: 10.1016/j.heliyon.2024.e36812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
Psychological stress disrupts the integrity of the intestinal barrier and is strongly linked to emotional disorders, behavioral changes, and gastrointestinal dysfunction. However, there are limited treatment options available for repairing the damage to the intestinal barrier. As a natural plant-based health beverage, tea (Camellia sinensis) has been shown to have various potentially advantageous effects on the intestinal barrier and immune function. In this study, we extracted bioactive molecules from tea leaves, named exosome-like nanoparticles (ELNs), and then examined their potential protective properties for the intestinal barrier. Through in vitro experimentation, we investigated whether tea-derived ELNs (TELNs) could offer a protective effect against lipopolysaccharides-induced damage to the intestinal barrier. In an in vivo experiment, rats were exposed to water avoidance stress and subsequently administered TELNs orally. The administration of TELNs resulted in the enhancement of the epithelial barrier in the intestine, effectively preventing bacterial translocation to the submucosae. Additionally, TELNs were found to improve the function of the intestinal immune barrier through the mediation of interleukin-22 and the increased secretion of antimicrobial peptide Reg3g. Notably, miR-44 and miR-54 in TELNs exhibited similar protective effects on the intestinal barrier. These findings suggest that TELNs possess the ability to restore the integrity of the intestinal barrier in the context of psychological stress.
Collapse
Affiliation(s)
- Qianyuan Gong
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yueshan Sun
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Lei Liu
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Chunlan Pu
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yuanbiao Guo
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| |
Collapse
|
24
|
Hasaniani N, Mostafa Rahimi S, Akbari M, Sadati F, Pournajaf A, Rostami-Mansoor S. The Role of Intestinal Microbiota and Probiotics Supplementation in Multiple Sclerosis Management. Neuroscience 2024; 551:31-42. [PMID: 38777135 DOI: 10.1016/j.neuroscience.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/26/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Multiple sclerosis (MS) is a neurological autoimmune disorder predominantly afflicting young adults. The etiology of MS is intricate, involving a variety of environmental and genetic factors. Current research increasingly focuses on the substantial contribution of gut microbiota in MS pathogenesis. The commensal microbiota resident within the intestinal milieu assumes a central role within the intricate network recognized as the gut-brain axis (GBA), wielding beneficial impact in neurological and psychological facets. As a result, the modulation of gut microbiota is considered a pivotal aspect in the management of neural disorders, including MS. Recent investigations have unveiled the possibility of using probiotic supplements as a promising strategy for exerting a positive impact on the course of MS. This therapeutic approach operates through several mechanisms, including the reinforcement of gut epithelial integrity, augmentation of the host's resistance against pathogenic microorganisms, and facilitation of mucosal immunomodulatory processes. The present study comprehensively explains the gut microbiome's profound influence on the central nervous system (CNS). It underscores the pivotal role played by probiotics in forming the immune system and modulating neurotransmitter function. Furthermore, the investigation elucidates various instances of probiotic utilization in MS patients, shedding light on the potential therapeutic advantages afforded by this intervention.
Collapse
Affiliation(s)
- Nima Hasaniani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Mostafa Rahimi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Marziyeh Akbari
- Department of Genetics, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Fahimeh Sadati
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Abazar Pournajaf
- Biomedical and Microbial Advanced Technologies (BMAT) Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sahar Rostami-Mansoor
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
25
|
Zhao Y, Hu ZY, Lou M, Jiang FW, Huang YF, Chen MS, Wang JX, Liu S, Shi YS, Zhu HM, Li JL. AQP1 Deficiency Drives Phthalate-Induced Epithelial Barrier Disruption through Intestinal Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15334-15344. [PMID: 38916549 DOI: 10.1021/acs.jafc.4c03764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Di-2-ethylhexyl phthalate (DEHP) is frequently used as a plasticizer to enhance the plasticity and durability of agricultural products, which pose adverse effects to human health and the environment. Aquaporin 1 (AQP1) is a main water transport channel protein and is involved in the maintenance of intestinal integrity. However, the impact of DEHP exposure on gut health and its potential mechanisms remain elusive. Here, we determined that DEHP exposure induced a compromised duodenum structure, which was concomitant with mitochondrial structural injury of epithelial cells. Importantly, DEHP exposure caused duodenum inflammatory epithelial cell damage and strong inflammatory response accompanied by activating the TLR4/MyD88/NF-κB signaling pathway. Mechanistically, DEHP exposure directly inhibits the expression of AQP1 and thus leads to an inflammatory response, ultimately disrupting duodenum integrity and barrier function. Collectively, our findings uncover the role of AQP1 in phthalate-induced intestinal disorders, and AQP1 could be a promising therapeutic approach for treating patients with intestinal disorders or inflammatory diseases.
Collapse
Affiliation(s)
- Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Zi-Yan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Ming Lou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Fu-Wei Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yi-Feng Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Shuo Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yu-Sheng Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Hong-Mei Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
26
|
Remalante-Rayco P, Espiritu AI, Daghistani Y, Chim T, Atenafu E, Keshavarzi S, Jha M, Gladman DD, Oh J, Haroon N, Inman RD. Incidence and predictors of demyelinating disease in spondyloarthritis: data from a longitudinal cohort study. Rheumatology (Oxford) 2024; 63:1980-1986. [PMID: 37792508 DOI: 10.1093/rheumatology/kead527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/13/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023] Open
Abstract
OBJECTIVES The objectives of this study were to investigate the incidence of demyelinating disease (DD) among SpA patients and to identify risk factors that predict DD in this patient population. METHODS Axial SpA (axSpA) and PsA patients were identified from a longitudinal cohort database. Each group was analysed according to the presence or absence of DD. Incidence rates (IRs) of DD were obtained, with competing risk analysis. Cox regression analysis (with Fine and Gray's method) was used to evaluate predictors of DD development. RESULTS Among 2260 patients with follow-up data, we identified 18 DD events, corresponding to an average IR of 31 per 100 000 persons per year for SpA. The IR of DD at 20 years was higher in axSpA than in PsA (1.30% vs 0.13%, P = 0.01). The risk factors retained in the best predictive model for DD development included ever- (vs never-) smoking [hazard ratio (HR) 2.918, 95% CI 1.037-8.214, P = 0.0426], axSpA (vs PsA) (HR 8.790, 95% CI 1.242-62.182, P = 0.0294) and presence (vs absence) of IBD (HR 5.698, 95% CI 2.083-15.589, P = 0.0007). History of TNF-α inhibitor therapy was not a predictor of DD. CONCLUSION The overall incidence of DD in this SpA cohort was low. Incident DD was higher in axSpA than in PsA. A diagnosis of axSpA, the presence of IBD, and ever-smoking predicted the development of DD. History of TNF-α inhibitor use was not found to be a predictor of DD in this cohort.
Collapse
Affiliation(s)
- Patricia Remalante-Rayco
- Schroeder Arthritis Institute, Toronto Western Hospital, Spondylitis Program, University Health Network, Toronto, ON, Canada
- Department of Clinical Epidemiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Adrian I Espiritu
- Department of Clinical Epidemiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Yassir Daghistani
- Schroeder Arthritis Institute, Toronto Western Hospital, Spondylitis Program, University Health Network, Toronto, ON, Canada
- Division of Rheumatology, Department of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Tina Chim
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Eshetu Atenafu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sareh Keshavarzi
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Mayank Jha
- Schroeder Arthritis Institute, Toronto Western Hospital, Spondylitis Program, University Health Network, Toronto, ON, Canada
| | - Dafna D Gladman
- Centre for Prognosis Studies in the Rheumatic Diseases, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Nigil Haroon
- Schroeder Arthritis Institute, Toronto Western Hospital, Spondylitis Program, University Health Network, Toronto, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Robert D Inman
- Schroeder Arthritis Institute, Toronto Western Hospital, Spondylitis Program, University Health Network, Toronto, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Huang C, Li X, Li H, Chen R, Li Z, Li D, Xu X, Zhang G, Qin L, Li B, Chu XM. Role of gut microbiota in doxorubicin-induced cardiotoxicity: from pathogenesis to related interventions. J Transl Med 2024; 22:433. [PMID: 38720361 PMCID: PMC11077873 DOI: 10.1186/s12967-024-05232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Doxorubicin (DOX) is a broad-spectrum and highly efficient anticancer agent, but its clinical implication is limited by lethal cardiotoxicity. Growing evidences have shown that alterations in intestinal microbial composition and function, namely dysbiosis, are closely linked to the progression of DOX-induced cardiotoxicity (DIC) through regulating the gut-microbiota-heart (GMH) axis. The role of gut microbiota and its metabolites in DIC, however, is largely unelucidated. Our review will focus on the potential mechanism between gut microbiota dysbiosis and DIC, so as to provide novel insights into the pathophysiology of DIC. Furthermore, we summarize the underlying interventions of microbial-targeted therapeutics in DIC, encompassing dietary interventions, fecal microbiota transplantation (FMT), probiotics, antibiotics, and natural phytochemicals. Given the emergence of microbial investigation in DIC, finally we aim to point out a novel direction for future research and clinical intervention of DIC, which may be helpful for the DIC patients.
Collapse
Affiliation(s)
- Chao Huang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, No. 308 Ningxia Road, Qingdao, Shandong, 266000, China
| | - Hanqing Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Ruolan Chen
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Zhaoqing Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Xiaojian Xu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Guoliang Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Luning Qin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, No. 308 Ningxia Road, Qingdao, Shandong, 266000, China.
- Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, Qingdao, 266033, China.
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China.
- The Affiliated Cardiovascular Hospital of Qingdao University, No. 5 Zhiquan Road, Qingdao, 266071, China.
| |
Collapse
|
28
|
Paraschiv AC, Vacaras V, Nistor C, Vacaras C, Strilciuc S, Muresanu DF. The effect of multiple sclerosis therapy on gut microbiota dysbiosis: a longitudinal prospective study. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:106-115. [PMID: 38638559 PMCID: PMC11026063 DOI: 10.15698/mic2024.03.819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 04/20/2024]
Abstract
Gut microbiota has complex immune functions, related to different pathologies, including multiple sclerosis (MS).This study evaluated the influence of treatments on gut microbiota in people with MS (PwMS). The research comprised 60 participants, including 39 PwMS and 21 healthy controls (HC). Among the PwMS, 20 were prescribed a disease-modifying therapy (DMT), either interferon beta1a or teriflunomide, while 19 received a combination of classical DMT and an immunoglobulin Y (IgY) supplement. For each participant, two sets of gut samples were collected: one at the study's outset and another after two months. Alpha and beta diversity analyses revealed no significant differences between groups. In comparison to the HC, the MS group exhibited an increase in Prevotella stercorea and a decrease in Faecalibacterium prausnitzii. Following treatment, individuals with MS showed enrichment in Lachnospiraceae and Streptococcus. The second sample, compared to the first one, demonstrated an increase in Bifidobacterium angulatum and a decrease in Oscillospira for individuals with MS. Gut microbiota diversity in PwMS is not significantly different to HC.However, specific taxonomic changes indicate the presence of a dysbiosis state. The use of DMTs and immunoglobulin Y supplements may contribute to alterations in microbial composition, potentially leading to the restoration of a healthier microbiome.
Collapse
Affiliation(s)
- Andreea-Cristina Paraschiv
- Department of Neurosciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and PharmacyCluj Napoca, 400012Romania
| | - Vitalie Vacaras
- Department of Neurosciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and PharmacyCluj Napoca, 400012Romania
- Neurology Department, Cluj Emergency County HospitalClujNapoca, 400012Romania
| | - Cristina Nistor
- Department of Neurosciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and PharmacyCluj Napoca, 400012Romania
- Neurology Department, Cluj Emergency County HospitalClujNapoca, 400012Romania
| | - Cristiana Vacaras
- Faculty of Medicine, Iuliu Hațieganu University of Medicine and PharmacyCluj Napoca, 400012Romania
| | - Stefan Strilciuc
- Department of Neurosciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and PharmacyCluj Napoca, 400012Romania
| | - Dafin F Muresanu
- Department of Neurosciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and PharmacyCluj Napoca, 400012Romania
- Neurology Department, Cluj Emergency County HospitalClujNapoca, 400012Romania
| |
Collapse
|
29
|
Hayakawa K, Zhou Y, Shinton SA. B-1 derived anti-Thy-1 B cells in old aged mice develop lymphoma/leukemia with high expression of CD11b and Hamp2 that different from TCL1 transgenic mice. Immun Ageing 2024; 21:22. [PMID: 38570827 PMCID: PMC10988983 DOI: 10.1186/s12979-024-00415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/05/2024] [Indexed: 04/05/2024]
Abstract
Human old aged unmutated chronic lymphocytic leukemia U-CLL are the TCL1+ZAP70+CD5+ B cells. Since CD5 makes the BCR signaling tolerance, ZAP70 increased in U-CLL not only TCL1+ alone. In mice, TCL1 (TCL1A) is the negative from neonate to old aged, as TC-. VH8-12/Vk21-5 is the anti-thymocyte/Thy-1 autoreactive ATA B cell. When ATA μκTg generation in mice, ATA B cells are the neonate generated CD5+ B cells in B-1, and in the middle age, CD5+ can be down or continuously CD5+, then, old aged CLL/lymphoma generation with increased CD11b in TC-ZAP70-CD5- or TC-ZAP70+CD5+. In this old aged TC-ATA B microarray analysis showed most similar to human CLL and U-CLL, and TC-ZAP70+CD5+ showed certain higher present as U-CLL. Original neonate ATA B cells showed with several genes down or further increase in old aged tumor, and old aged T-bet+CD11c+, CTNNB1hi, HMGBhi, CXCR4hi, DPP4hi and decreased miR181b. These old aged increased genes and down miR181b are similar to human CLL. Also, in old age ATA B cell tumor, high CD38++CD44++, increased Ki67+ AID+, and decreased CD180- miR15Olow are similar to U-CLL. In this old aged ATA B, increased TLR7,9 and Wnt10b. TC+Tg generated with ATAμκTg mice occurred middle age tumor as TC+ZAP70-CD5+ or TC+ZAP70+CD5+, with high NF-kB1, TLR4,6 and Wnt5b,6 without increased CD11b. Since neonatal state to age with TC+Tg continuously, middle age CLL/lymphoma generation is not similar to old aged generated, however, some increased in TC+ZAP70+ are similar to the old age TC- ATA B tumor. Then, TC- ATA B old age tumor showed some difference to human CLL. ATA B cells showed CD11b+CD22++, CD24 down, and hepcidin Hamp2++ with iron down. This mouse V8-12 similar to human V2-5, and V2-5 showed several cancers with macrophages/neutrophils generated hepcidin+ ironlow or some showed hepcidin- iron+ with tumor, and mouse V8-12 with different Vk19-17 generate MZ B cells strongly increased macrophage++ in old aged and generated intestine/colon tumor. Conclusion, neonate generated TC-ATA B1 cells in old aged tumor generation are CD11b+ in the leukemia CLL together with lymphoma cancer with hepcidin-related Hamp2++ in B-1 cell generation to control iron.
Collapse
Affiliation(s)
- Kyoko Hayakawa
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA.
| | - Yan Zhou
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| | - Susan A Shinton
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| |
Collapse
|
30
|
Deng W, Yi P, Xiong Y, Ying J, Lin Y, Dong Y, Wei G, Wang X, Hua F. Gut Metabolites Acting on the Gut-Brain Axis: Regulating the Functional State of Microglia. Aging Dis 2024; 15:480-502. [PMID: 37548933 PMCID: PMC10917527 DOI: 10.14336/ad.2023.0727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023] Open
Abstract
The gut-brain axis is a communication channel that mediates a complex interplay of intestinal flora with the neural, endocrine, and immune systems, linking gut and brain functions. Gut metabolites, a group of small molecules produced or consumed by biochemical processes in the gut, are involved in central nervous system regulation via the highly interconnected gut-brain axis affecting microglia indirectly by influencing the structure of the gut-brain axis or directly affecting microglia function and activity. Accordingly, pathological changes in the central nervous system are connected with changes in intestinal metabolite levels as well as altered microglia function and activity, which may contribute to the pathological process of each neuroinflammatory condition. Here, we discuss the mechanisms by which gut metabolites, for instance, the bile acids, short-chain fatty acids, and tryptophan metabolites, regulate the structure of each component of the gut-brain axis, and explore the important roles of gut metabolites in the central nervous system from the perspective of microglia. At the same time, we highlight the roles of gut metabolites affecting microglia in the pathogenesis of neurodegenerative diseases and neurodevelopmental disorders. Understanding the relationship between microglia, gut microbiota, neuroinflammation, and neurodevelopmental disorders will help us identify new strategies for treating neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wenze Deng
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Pengcheng Yi
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Yanhong Xiong
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Yue Lin
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Yao Dong
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Gen Wei
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Xifeng Wang
- Department of Anesthesiology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| |
Collapse
|
31
|
Xu L, Zhao Q, Xie Y, Bai G, Liu H, Chen Q, Duan H, Wang L, Xu H, Sun Y, Ling G, Ge W, Zhu Y. Telmisartan loading thermosensitive hydrogel repairs gut epithelial barrier for alleviating inflammatory bowel disease. Colloids Surf B Biointerfaces 2024; 236:113799. [PMID: 38367290 DOI: 10.1016/j.colsurfb.2024.113799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Inflammatory bowel disease (IBD) remains a global health concern with a complex and incompletely understood pathogenesis. In the course of IBD development, damage to intestinal epithelial cells and a reduction in the expression of tight junction (TJ) proteins compromise the integrity of the intestinal barrier, exacerbating inflammation. Notably, the renin-angiotensin system and angiotensin II receptor type 1 (AT1R) play a crucial role in regulating the pathological progression including vascular permeability, and immune microenvironment. Thus, Telmisartan (Tel), an AT1R inhibitor, loading thermosensitive hydrogel was constructed to investigate the potential of alleviating inflammatory bowel disease through rectal administration. The constructed hydrogel exhibits an advantageous property of rapid transformation from a solution to a gel state at 37°C, facilitating prolonged drug retention within the gut while mitigating irritation associated with rectal administration. Results indicate that Tel also exhibits a beneficial effect in ameliorating colon shortening, colon wall thickening, cup cell lacking, crypt disappearance, and inflammatory cell infiltration into the mucosa in colitis mice. Moreover, it significantly upregulates the expression of TJ proteins in colonic tissues thereby repairing the intestinal barrier damage and alleviating the ulcerative colitis (UC) disease process. In conclusion, Tel-loaded hydrogel demonstrates substantial promise as a potential treatment modality for IBD.
Collapse
Affiliation(s)
- Lu Xu
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210008, China
| | - Qin Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province 210008, China
| | - Yiqiong Xie
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210008, China
| | - Ge Bai
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210008, China
| | - Hongwen Liu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210008, China
| | - Qi Chen
- Department of Gastroenterology, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, Jiangsu Province 210008, China
| | - Hongjue Duan
- Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu Province 210008, China
| | - Lishan Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210008, China
| | - Hang Xu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China; Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yuxiang Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Gao Ling
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu Province 210008, China.
| | - Weihong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210008, China; Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu Province 210008, China.
| | - Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210008, China; Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu Province 210008, China.
| |
Collapse
|
32
|
Zeng L, Yang K, He Q, Zhu X, Long Z, Wu Y, Chen J, Li Y, Zeng J, Cui G, Xiang W, Hao W, Sun L. Efficacy and safety of gut microbiota-based therapies in autoimmune and rheumatic diseases: a systematic review and meta-analysis of 80 randomized controlled trials. BMC Med 2024; 22:110. [PMID: 38475833 PMCID: PMC10935932 DOI: 10.1186/s12916-024-03303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Previous randomized controlled trials (RCTs) suggested that gut microbiota-based therapies may be effective in treating autoimmune diseases, but a systematic summary is lacking. METHODS Pubmed, EMbase, Sinomed, and other databases were searched for RCTs related to the treatment of autoimmune diseases with probiotics from inception to June 2022. RevMan 5.4 software was used for meta-analysis after 2 investigators independently screened literature, extracted data, and assessed the risk of bias of included studies. RESULTS A total of 80 RCTs and 14 types of autoimmune disease [celiac sprue, SLE, and lupus nephritis (LN), RA, juvenile idiopathic arthritis (JIA), spondyloarthritis, psoriasis, fibromyalgia syndrome, MS, systemic sclerosis, type 1 diabetes mellitus (T1DM), oral lichen planus (OLP), Crohn's disease, ulcerative colitis] were included. The results showed that gut microbiota-based therapies may improve the symptoms and/or inflammatory factor of celiac sprue, SLE and LN, JIA, psoriasis, PSS, MS, systemic sclerosis, Crohn's disease, and ulcerative colitis. However, gut microbiota-based therapies may not improve the symptoms and/or inflammatory factor of spondyloarthritis and RA. Gut microbiota-based therapies may relieve the pain of fibromyalgia syndrome, but the effect on fibromyalgia impact questionnaire score is not significant. Gut microbiota-based therapies may improve HbA1c in T1DM, but its effect on total insulin requirement does not seem to be significant. These RCTs showed that probiotics did not increase the incidence of adverse events. CONCLUSIONS Gut microbiota-based therapies may improve several autoimmune diseases (celiac sprue, SLE and LN, JIA, psoriasis, fibromyalgia syndrome, PSS, MS, T1DM, Crohn's disease, and ulcerative colitis).
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | | | - Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yang Wu
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | | | - Yuwei Li
- Hunan University of Science and Technology, Xiangtan, China
| | - Jinsong Zeng
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ge Cui
- Department of Epidemiology and Statistics, School of Public Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
33
|
Morelli M, Cabezuelo Rodríguez M, Queiroz K. A high-throughput gut-on-chip platform to study the epithelial responses to enterotoxins. Sci Rep 2024; 14:5797. [PMID: 38461178 PMCID: PMC10925042 DOI: 10.1038/s41598-024-56520-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/07/2024] [Indexed: 03/11/2024] Open
Abstract
Enterotoxins are a type of toxins that primarily affect the intestines. Understanding their harmful effects is essential for food safety and medical research. Current methods lack high-throughput, robust, and translatable models capable of characterizing toxin-specific epithelial damage. Pressing concerns regarding enterotoxin contamination of foods and emerging interest in clinical applications of enterotoxins emphasize the need for new platforms. Here, we demonstrate how Caco-2 tubules can be used to study the effect of enterotoxins on the human intestinal epithelium, reflecting toxins' distinct pathogenic mechanisms. After exposure of the model to toxins nigericin, ochratoxin A, patulin and melittin, we observed dose-dependent reductions in barrier permeability as measured by TEER, which were detected with higher sensitivity than previous studies using conventional models. Combination of LDH release assays and DRAQ7 staining allowed comprehensive evaluation of toxin cytotoxicity, which was only observed after exposure to melittin and ochratoxin A. Furthermore, the study of actin cytoskeleton allowed to assess toxin-induced changes in cell morphology, which were only caused by nigericin. Altogether, our study highlights the potential of our Caco-2 tubular model in becoming a multi-parametric and high-throughput tool to bridge the gap between current enterotoxin research and translatable in vivo models of the human intestinal epithelium.
Collapse
|
34
|
Tsai CC, Jette S, Tremlett H. Disease-modifying therapies used to treat multiple sclerosis and the gut microbiome: a systematic review. J Neurol 2024; 271:1108-1123. [PMID: 38078977 DOI: 10.1007/s00415-023-12107-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 02/27/2024]
Abstract
BACKGROUND The gut microbiome may play a role in multiple sclerosis (MS). However, its relationship with the disease-modifying therapies (DMTs) remains unclear. We systematically reviewed the literature to examine the relationship between DMTs and the gut microbiota among persons with MS (pwMS). METHODS MEDLINE, EMBASE, Web of Science, and Scopus were searched (01/2007-09/2022) for studies evaluating potential gut microbiota differences in diversity, taxonomic relative abundances, and functional capacity between DMT-exposed/unexposed pwMS or before/after DMT initiation. All US FDA-approved MS DMTs (1993-09/2022) and rituximab were included. RESULTS Of the 410 studies, 11 were included, totalling 1243 pwMS. Of these, 821 were DMT exposed and 473 unexposed, including 51 assessed before/after DMT initiation. DMT use duration ranged from 14 days to > 6 months. No study found a difference in gut microbiota alpha-diversity between DMT exposed/unexposed (p > 0.05). One study observed a difference in beta-diversity between interferon-beta users/DMT non-users (weighted UniFrac, p = 0.006). All studies examined taxa-level differences, but most (6) combined different DMTs. Two or more studies reported eight genera (Actinomyces, Bacteroides, Clostridium sensu stricto 1, Haemophilus, Megasphaera, Pseudomonas, Ruminiclostridium 5, Turicibacter) and one species (Ruthenibacterium lactatiformans) differing in the same direction between DMT exposed/unexposed. DMT users had lower relative abundances of carbohydrate degradation and reductive tricarboxylic acid cycle I pathway than non-users (p < 0.05), but findings could not be attributed to a specific DMT. DISCUSSION While DMT use (versus no use) was not associated with gut microbiota diversity differences, taxa-level differences were observed. Further work is warranted, as most studies were cross-sectional, few examined functionality, and DMTs were combined.
Collapse
Affiliation(s)
- Chia-Chen Tsai
- Division of Neurology, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, Room S126, 2211 Wesbrook Mall, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- Faculty of Medicine, University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Sophia Jette
- Division of Neurology, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, Room S126, 2211 Wesbrook Mall, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Helen Tremlett
- Division of Neurology, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, Room S126, 2211 Wesbrook Mall, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| |
Collapse
|
35
|
Engelbert N, Rohayem R, Traidl-Hoffmann C. [Global environmental changes and the epithelial barrier hypothesis]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2024; 75:118-125. [PMID: 38212394 DOI: 10.1007/s00105-023-05286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND The global burden of noncommunicable diseases (NCD) has seen a strong increase in recent decades and attributable to the influence of environmental factors. For a multitude of diseases an association with epithelial barrier damage has been reported. OBJECTIVE This article provides an overview of the health effects of environmental pollution in the context of the epithelial barrier hypothesis of Cezmi Akdis. Additionally, exemplary mechanisms of a barrier damage are described. Finally, possible preventive and therapeutic consequences are discussed. MATERIAL AND METHODS The PubMed database was searched for the relevant topics and selected literature was reviewed. RESULTS A wide variety of substances can damage the epithelial barriers of the skin, lungs and gastrointestinal tract. The rise in the prevalences of atopic diseases could (partly) be due to an increased exposure to barrier-damaging substances, such as particulate matter and laundry detergents. A possible pathogenetic mechanism is the initiation and maintenance of an immune response by subepithelial penetration of microorganisms through damaged epithelia. CONCLUSION Based on the epithelial barrier hypothesis new therapeutic and prevention strategies can be developed. The regulation of hazardous chemicals and the fight against environmental pollution and climate change are necessary to reduce the burden of disease.
Collapse
Affiliation(s)
- Nicole Engelbert
- Lehrstuhl für Umweltmedizin - Medizinische Fakultät, Universität Augsburg, Neusässer Str. 47, 86156, Augsburg, Deutschland
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Schweiz
| | - Robin Rohayem
- Lehrstuhl für Umweltmedizin - Medizinische Fakultät, Universität Augsburg, Neusässer Str. 47, 86156, Augsburg, Deutschland
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Schweiz
| | - Claudia Traidl-Hoffmann
- Lehrstuhl für Umweltmedizin - Medizinische Fakultät, Universität Augsburg, Neusässer Str. 47, 86156, Augsburg, Deutschland.
- Institut für Umweltmedizin, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Augsburg, Deutschland.
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Schweiz.
| |
Collapse
|
36
|
Del Negro I, Pez S, Versace S, Marziali A, Gigli GL, Tereshko Y, Valente M. Impact of Disease-Modifying Therapies on Gut-Brain Axis in Multiple Sclerosis. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:6. [PMID: 38276041 PMCID: PMC10818907 DOI: 10.3390/medicina60010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Multiple sclerosis is a chronic, autoimmune-mediated, demyelinating disease whose pathogenesis remains to be defined. In past years, in consideration of a constantly growing number of patients diagnosed with multiple sclerosis, the impacts of different environmental factors in the pathogenesis of the disease have been largely studied. Alterations in gut microbiome composition and intestinal barrier permeability have been suggested to play an essential role in the regulation of autoimmunity. Thus, increased efforts are being conducted to demonstrate the complex interplay between gut homeostasis and disease pathogenesis. Numerous results confirm that disease-modifying therapies (DMTs) used for the treatment of MS, in addition to their immunomodulatory effect, could exert an impact on the intestinal microbiota, contributing to the modulation of the immune response itself. However, to date, the direct influence of these treatments on the microbiota is still unclear. This review intends to underline the impact of DMTs on the complex system of the microbiota-gut-brain axis in patients with multiple sclerosis.
Collapse
Affiliation(s)
- Ilaria Del Negro
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Sara Pez
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Salvatore Versace
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Alessandro Marziali
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Gian Luigi Gigli
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Yan Tereshko
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Mariarosaria Valente
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| |
Collapse
|
37
|
Peng HR, Qiu JQ, Zhou QM, Zhang YK, Chen QY, Yin YQ, Su W, Yu S, Wang YT, Cai Y, Gu MN, Zhang HH, Sun QQ, Hu G, Wu YW, Liu J, Chen S, Zhu ZJ, Song XY, Zhou JW. Intestinal epithelial dopamine receptor signaling drives sex-specific disease exacerbation in a mouse model of multiple sclerosis. Immunity 2023; 56:2773-2789.e8. [PMID: 37992711 DOI: 10.1016/j.immuni.2023.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/22/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023]
Abstract
Although the gut microbiota can influence central nervous system (CNS) autoimmune diseases, the contribution of the intestinal epithelium to CNS autoimmunity is less clear. Here, we showed that intestinal epithelial dopamine D2 receptors (IEC DRD2) promoted sex-specific disease progression in an animal model of multiple sclerosis. Female mice lacking Drd2 selectively in intestinal epithelial cells showed a blunted inflammatory response in the CNS and reduced disease progression. In contrast, overexpression or activation of IEC DRD2 by phenylethylamine administration exacerbated disease severity. This was accompanied by altered lysozyme expression and gut microbiota composition, including reduced abundance of Lactobacillus species. Furthermore, treatment with N2-acetyl-L-lysine, a metabolite derived from Lactobacillus, suppressed microglial activation and neurodegeneration. Taken together, our study indicates that IEC DRD2 hyperactivity impacts gut microbial abundances and increases susceptibility to CNS autoimmune diseases in a female-biased manner, opening up future avenues for sex-specific interventions of CNS autoimmune diseases.
Collapse
Affiliation(s)
- Hai-Rong Peng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Qian Qiu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China
| | - Qin-Ming Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu-Kai Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiao-Yu Chen
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yan-Qing Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wen Su
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shui Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ya-Ting Wang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuping Cai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China
| | - Ming-Na Gu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Hao-Hao Zhang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qing-Qing Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gang Hu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yi-Wen Wu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China.
| | - Xin-Yang Song
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Jia-Wei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China; Innovation Center of Neurodegeneration, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
38
|
Yang R, Chen Z, Cai J. Fecal microbiota transplantation: Emerging applications in autoimmune diseases. J Autoimmun 2023; 141:103038. [PMID: 37117118 DOI: 10.1016/j.jaut.2023.103038] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/12/2023] [Accepted: 04/06/2023] [Indexed: 04/30/2023]
Abstract
Both genetic susceptibility and environmental factors are important contributors to autoimmune disease pathogenesis. As an environmental factor, the gut microbiome plays a crucial role in the development and progression of autoimmune diseases. Thus, strategies targeting gut microbiome alterations can potentially be used to treat autoimmune disease. Microbiota-based interventions, such as prebiotics, probiotics, dietary interventions, and fecal microbiota transplantation (FMT), have attracted growing interest as novel treatment approaches. FMT is an effective method for treating recurrent Clostridioides difficile infections; moreover, it is emerging as a promising treatment for patients with inflammatory bowel disease and other autoimmune diseases. Although the mechanisms underpinning the interaction between the gut microbiome and host are not fully understood in patients with autoimmune disease, FMT has been shown to restore altered gut microbiota composition, rebuild the intestinal microecosystem, and mediate innate and adaptive immune responses to achieve a therapeutic effect. In this review, we provide an overview of FMT and discuss how FMT can be used as a novel treatment approach for autoimmune diseases. Furthermore, we discuss recent challenges and offer future research directions.
Collapse
Affiliation(s)
- Ruixue Yang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road 167, Xicheng District, Beijing, 100037, China
| | - Zhenzhen Chen
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road 167, Xicheng District, Beijing, 100037, China
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road 167, Xicheng District, Beijing, 100037, China.
| |
Collapse
|
39
|
Torres-Chávez ME, Torres-Carrillo NM, Monreal-Lugo AV, Garnés-Rancurello S, Murugesan S, Gutiérrez-Hurtado IA, Beltrán-Ramírez JR, Sandoval-Pinto E, Torres-Carrillo N. Association of intestinal dysbiosis with susceptibility to multiple sclerosis: Evidence from different population studies (Review). Biomed Rep 2023; 19:93. [PMID: 37901876 PMCID: PMC10603378 DOI: 10.3892/br.2023.1675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Understanding the relationship between microorganisms that live in our intestines and neuroinflammatory and neurodegenerative pathologies of the central nervous system (CNS) is essential, since they have been shown to have an immunomodulatory effect in neurological disorders, such as multiple sclerosis (MS). The gut microbiota can be affected by several environmental factors, including infections, physical and emotional stress and diet, the latter known as the main modulator of intestinal bacteria. An abrupt shift in the gut microbiota composition and function is known as dysbiosis, a state of local and systemic inflammation produced by pathogenic bacteria and its metabolites responsible for numerous neurological symptoms. It may also trigger neuronal damage in patients diagnosed with MS. Intestinal dysbiosis affects the permeability of the intestine, allowing chronic low-grade bacterial translocation from the intestine to the circulation, which may overstimulate immune cells and cells resident in the CNS, break immune tolerance and, in addition, alter the permeability of the blood-brain barrier (BBB). This way, toxins, inflammatory molecules and oxidative stress molecules can pass freely into the CNS and cause extensive damage to the brain. However, commensal bacteria, such as the Lactobacillus genus and Bacteroides fragilis, and their metabolites (with anti-inflammatory potential), produce neurotransmitters such as γ-aminobutyric acid, histamine, dopamine, norepinephrine, acetylcholine and serotonin, which are important for neurological regulation. In addition, reprogramming the gut microbiota of patients with MS with a healthy gut microbiota may help improve the integrity of the gut and BBB, by providing clinically protective anti-inflammatory effects and reducing the disease's degenerative progression. The present review provides valuable information about the relationship between gut microbiota and neuroinflammatory processes of the CNS. Most importantly, it highlights the importance of intestinal bacteria as an environmental factor that may mediate the clinical course of MS, or even predispose to the outbreak of this disease.
Collapse
Affiliation(s)
- María Eugenia Torres-Chávez
- Department of Microbiology and Pathology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Nora Magdalena Torres-Carrillo
- Department of Microbiology and Pathology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Ana Victoria Monreal-Lugo
- Department of Nutrition and Health Research Center, National Institute of Public Health, Cuernavaca, Morelos 62100, Mexico
- Department of Nutrition and Bioprogramming Coordination, Isidro Espinosa de los Reyes National Institute of Perinatology, Mexico City 11000, Mexico
| | - Sandra Garnés-Rancurello
- Department of Nutrition, Technological Institute of Higher Studies of Monterrey, Zapopan, Jalisco 45201, Mexico
| | | | - Itzae Adonai Gutiérrez-Hurtado
- Department of Molecular Biology and Genomics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Jesús Raúl Beltrán-Ramírez
- Department of Information Systems, University Center of Administrative Economic Sciences, University of Guadalajara, Zapopan, Jalisco 45100, Mexico
| | - Elena Sandoval-Pinto
- Department of Cellular and Molecular Biology, University Center for Biological and Agricultural Sciences, University of Guadalajara, Zapopan, Jalisco 45200, Mexico
| | - Norma Torres-Carrillo
- Department of Microbiology and Pathology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| |
Collapse
|
40
|
Laeeq T, Vongsavath T, Tun KM, Hong AS. The Potential Role of Fecal Microbiota Transplant in the Reversal or Stabilization of Multiple Sclerosis Symptoms: A Literature Review on Efficacy and Safety. Microorganisms 2023; 11:2840. [PMID: 38137984 PMCID: PMC10745313 DOI: 10.3390/microorganisms11122840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple sclerosis (MS) affects millions of people worldwide, and recent data have identified the potential role of the gut microbiome in inducing autoimmunity in MS patients. To investigate the potential of fecal microbiota transplant (FMT) as a treatment option for MS, we conducted a comprehensive literature search (PubMed/Medline, Embase, Web of Science, Scopus, and Cochrane) and identified five studies that involved 15 adult MS patients who received FMT for gastrointestinal symptoms. The primary outcome of this review was to assess the effect of FMT in reversing and improving motor symptoms in MS patients, while the secondary outcome was to evaluate the safety of FMT in this patient population. Our findings suggest that all 15 patients who received FMT experienced improved and reversed neurological symptoms secondary to MS. This improvement was sustained even in follow-up years, with no adverse effects observed. These results indicate that FMT may hold promise as a treatment option for MS, although further research is necessary to confirm these findings.
Collapse
Affiliation(s)
- Tooba Laeeq
- Department of Internal Medicine, University of Nevada, Las Vegas, NV 89154, USA
| | - Tahne Vongsavath
- Department of Internal Medicine, University of Nevada, Las Vegas, NV 89154, USA
| | - Kyaw Min Tun
- Department of Internal Medicine, University of Nevada, Las Vegas, NV 89154, USA
| | - Annie S. Hong
- Department of Gastroenterology, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
41
|
Simão DO, Vieira VS, Tosatti JAG, Gomes KB. Lipids, Gut Microbiota, and the Complex Relationship with Alzheimer's Disease: A Narrative Review. Nutrients 2023; 15:4661. [PMID: 37960314 PMCID: PMC10649859 DOI: 10.3390/nu15214661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's Disease (AD) is a multifactorial, progressive, and chronic neurodegenerative disorder associated with the aging process. Memory deficits, cognitive impairment, and motor dysfunction are characteristics of AD. It is estimated that, by 2050, 131.5 million people will have AD. There is evidence that the gastrointestinal microbiome and diet may contribute to the development of AD or act preventively. Communication between the brain and the intestine occurs through immune cells in the mucosa and endocrine cells, or via the vagus nerve. Aging promotes intestinal dysbiosis, characterized by an increase in pro-inflammatory pathogenic bacteria and a reduction in anti-inflammatory response-mediating bacteria, thus contributing to neuroinflammation and neuronal damage, ultimately leading to cognitive decline. Therefore, the microbiota-gut-brain axis has a significant impact on neurodegenerative disorders. Lipids may play a preventive or contributory role in the development of AD. High consumption of saturated and trans fats can increase cortisol release and lead to other chronic diseases associated with AD. Conversely, low levels of omega-3 polyunsaturated fatty acids may be linked to neurodegenerative diseases. Unlike other studies, this review aims to describe, in an integrative way, the interaction between the gastrointestinal microbiome, lipids, and AD, providing valuable insights into how the relationship between these factors affects disease progression, contributing to prevention and treatment strategies.
Collapse
Affiliation(s)
- Daiane Oliveira Simão
- Faculty of Medicine, Federal University of Minas Gerais, Professor Alfredo Balena Avenue, 190, Santa Efigênia, Belo Horizonte 30130-100, MG, Brazil;
| | - Vitoria Silva Vieira
- Department of Nutrition, School of Nursing, Federal University of Minas Gerais, Professor Alfredo Balena Avenue, 190, Santa Efigênia, Belo Horizonte 30130-100, MG, Brazil;
| | - Jéssica Abdo Gonçalves Tosatti
- Department of Clinical and Toxicological Analyzes, Faculty of Pharmacy, Federal University of Minas Gerais, Presidente Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil;
| | - Karina Braga Gomes
- Faculty of Medicine, Federal University of Minas Gerais, Professor Alfredo Balena Avenue, 190, Santa Efigênia, Belo Horizonte 30130-100, MG, Brazil;
- Department of Clinical and Toxicological Analyzes, Faculty of Pharmacy, Federal University of Minas Gerais, Presidente Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil;
| |
Collapse
|
42
|
Xie Y, Li J, Liu D, Wu B, Zhao H, Liu G, Tian G, Cai J, Wu C, Tang J, Jia G. Dietary ethylenediamine dihydroiodide improves intestinal health in Cherry Valley ducks. Poult Sci 2023; 102:103022. [PMID: 37639753 PMCID: PMC10477681 DOI: 10.1016/j.psj.2023.103022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
This study investigated the effect of ethylenediamine dihydroiodide (EDDI) on the growth performance, thyroid function, immune function, intestinal development, intestinal permeability, intestinal barrier functions and microbial characteristics of Cherry Valley ducks. The results showed that the addition of EDDI significantly increased body weight, average daily gain, serum level of lymphocytes, basophils, triiodothyronine, thyroxine and thyrotropin, villus height, and villus height-to-crypt depth ratio, and significantly decreased crypt depth, diamine oxidase, serum D-Lactic acid of ducks (P < 0.05). EDDI also significantly up-regulated the mRNA expression of zonula occludens-1, zonula occludens-2, zonula occludens-3, mucin 2, secretory immunoglobulin A, interleukin-10 and avian β-defensin 2 in the jejunum and ileum (P < 0.05), and down-regulated the mRNA expression of occludin and interleukin-6 in the jejunum and ileum. Additionally, the addition of EDDI significantly increased cecal level of acetic acid, propionic acid, butyric acid (P < 0.05). Cecal microbiome analysis indicated that the addition of EDDI significantly increased the relative abundance of these microorganisms that can produce short-chain fatty acids, mainly including Actinobacteria, Verrucomicrobia, Clostridiales and Lactobacillales, and decreased the relative abundance of pathogenic bacteria Deferribactere. Interestingly, triiodothyronine and thyroxine levels were highly positively correlated with the relative abundance of Actinobacteria. These results revealed that the addition of EDDI could promote the growth and development of meat ducks by improving their thyroid function, immune function, intestinal development and intestinal barrier functions of ducks.
Collapse
Affiliation(s)
- Yueqin Xie
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jing Li
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Dongyun Liu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Bing Wu
- Sichuan Jilongda Co., Ltd, Mianyang, Sichuan, 618000, China
| | - Hua Zhao
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Tian
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Caimei Wu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jiayong Tang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Jia
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
43
|
VURALLI D, DAĞIDIR HGÖK, TOPA EABBASOĞLU, BELEN HBOLAY. Leaky gut and inflammatory biomarkers in a medication overuse headache model in male rats. Turk J Med Sci 2023; 54:33-41. [PMID: 38812640 PMCID: PMC11031181 DOI: 10.55730/1300-0144.5763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/15/2024] [Accepted: 10/25/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim Medication overuse is common among chronic migraine patients and nonsteroidal antiinflammatory drugs (NSAIDs) are the most frequently overused drugs. The pathophysiological mechanisms underlying medication overuse headache (MOH) are not completely understood. Intestinal hyperpermeability and leaky gut are reported in patients using NSAIDs. The aim of the study is to investigate the role of leaky gut and inflammation in an MOH model MOH model in male rats. Methods The study was conducted in male Sprague Dawley rats. There were two experimental groups. The first group was the chronic NSAID group in which the rats received mefenamic acid (n = 8) for four weeks intraperitoneally (ip) and the second group was the vehicle group (n = 8) that received 5% dimethyl sulfoxide+sesame oil (ip) for 4 weeks. We assessed spontaneous pain-like behavior, periorbital mechanical withdrawal thresholds, and anxiety-like behavior using an elevated plus maze test. After behavioral testing, serum levels of occludin and lipopolysaccharide-binding protein (LBP) and brain levels of IL-17, IL-6, and high mobility group box 1 protein (HMGB1) were evaluated with ELISA.Results: Serum LBP and occludin levels and brain IL-17 and HMGB1 levels were significantly elevated in the chronic NSAID group compared to its vehicle (p = 0.006, p = 0.016, p = 0.016 and p = 0.016 respectively) while brain IL-6 levels were comparable (p = 0.67) between the groups. The chronic NSAID group showed pain-like and anxiety-like behavior in behavioral tests. Brain IL-17 level was positively correlated with number of head shakes (r = 0.64, p = 0.045), brain IL-6 level was negatively correlated with periorbital mechanical withdrawal thresholds (r = -0.71, p = 0.049), and serum occludin level was positively correlated with grooming duration (r = 0.73, p = 0.032) in chronic NSAID group. Conclusion Elevated serum occludin and LBP levels and brain IL-17 and HMGB1 levels indicate a possible role of leaky gut and inflammation in an MOH model in male rats. Additionally, a significant correlation between pain behavior and markers of inflammation and intestinal hyperpermeability, supports the role of inflammation and leaky gut in MOH pathophysiology.
Collapse
Affiliation(s)
- Doğa VURALLI
- Department of Neurology and Algology, Faculty of Medicine, Gazi University, Ankara,
Turkiye
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara,
Turkiye
- Neuropsychiatry Center, Gazi University, Ankara,
Turkiye
| | - Hale GÖK DAĞIDIR
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara,
Turkiye
| | | | - Hayrunnisa BOLAY BELEN
- Department of Neurology and Algology, Faculty of Medicine, Gazi University, Ankara,
Turkiye
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara,
Turkiye
- Neuropsychiatry Center, Gazi University, Ankara,
Turkiye
| |
Collapse
|
44
|
Stolzer I, Scherer E, Süß P, Rothhammer V, Winner B, Neurath MF, Günther C. Impact of Microbiome-Brain Communication on Neuroinflammation and Neurodegeneration. Int J Mol Sci 2023; 24:14925. [PMID: 37834373 PMCID: PMC10573483 DOI: 10.3390/ijms241914925] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
The gut microbiome plays a pivotal role in maintaining human health, with numerous studies demonstrating that alterations in microbial compositions can significantly affect the development and progression of various immune-mediated diseases affecting both the digestive tract and the central nervous system (CNS). This complex interplay between the microbiota, the gut, and the CNS is referred to as the gut-brain axis. The role of the gut microbiota in the pathogenesis of neurodegenerative diseases has gained increasing attention in recent years, and evidence suggests that gut dysbiosis may contribute to disease development and progression. Clinical studies have shown alterations in the composition of the gut microbiota in multiple sclerosis patients, with a decrease in beneficial bacteria and an increase in pro-inflammatory bacteria. Furthermore, changes within the microbial community have been linked to the pathogenesis of Parkinson's disease and Alzheimer's disease. Microbiota-gut-brain communication can impact neurodegenerative diseases through various mechanisms, including the regulation of immune function, the production of microbial metabolites, as well as modulation of host-derived soluble factors. This review describes the current literature on the gut-brain axis and highlights novel communication systems that allow cross-talk between the gut microbiota and the host that might influence the pathogenesis of neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Iris Stolzer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Eveline Scherer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Patrick Süß
- Department of Molecular Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Veit Rothhammer
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Center of Rare Diseases Erlangen (ZSEER), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
45
|
Nasirzadeh A, Jahanshahi R, Ghajarzadeh M, Mohammadi A, Moghadasi AN. The Prevalence of Inflammatory Bowel Disease (IBD) in Patients with Multiple Sclerosis (MS): A Systematic Review and Meta-Analysis. Int J Prev Med 2023; 14:81. [PMID: 37854988 PMCID: PMC10580199 DOI: 10.4103/ijpvm.ijpvm_44_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 10/27/2022] [Indexed: 10/20/2023] Open
Abstract
Background This systematic review and meta-analysis aim to update the pooled prevalence of Inflammatory bowel disease (IBD) in patients with multiple sclerosis (MS). Methods Two researchers independently and systematically searched PubMed, Scopus, EMBASE, Web of Science, and google scholar. They also searched for references of the included studies, and conference abstracts that were published up to September 2021. Results The literature search revealed 5719 articles, after deleting duplicates 3616 remained. Finally, 17 studies were included. The pooled prevalence of IBD in MS was 1% (I2 = 96.3%, P < 0.001). The pooled odds ratio of developing IBD in MS cases was 1.36 (95% CI: 1.1-1.6) (I2 = 58.3, P = 0.01). Conclusions The results of this systematic review and meta-analysis show that the pooled prevalence of IBD in MS patients was 1% and the pooled odds ratio of developing IBD in MS cases was 1.36.
Collapse
Affiliation(s)
- Amirreza Nasirzadeh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Jahanshahi
- Department of Neurology, University of Medical Sciences, Gorgan, Iran
| | - Mahsa Ghajarzadeh
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Mohammadi
- Universal Council of Epidemiology (UCE), Universal Scientific Education and Research Network (USERN), Tehran University of Medical Sciences, Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Wu Y, Dong Z, Jiang X, Qu L, Zhou W, Sun X, Hou J, Xu H, Cheng M. Gut Microbiota Taxon-Dependent Transformation of Microglial M1/M2 Phenotypes Underlying Mechanisms of Spatial Learning and Memory Impairment after Chronic Methamphetamine Exposure. Microbiol Spectr 2023; 11:e0030223. [PMID: 37212669 PMCID: PMC10269813 DOI: 10.1128/spectrum.00302-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023] Open
Abstract
Methamphetamine (METH) exposure may lead to cognitive impairment. Currently, evidence suggests that METH exposure alters the configuration of the gut microbiota. However, the role and mechanism of the gut microbiota in cognitive impairment after METH exposure are still largely unknown. Here, we investigated the impact of the gut microbiota on the phenotype status of microglia (microglial phenotypes M1 and microglial M2) and their secreting factors, the subsequent hippocampal neural processes, and the resulting influence on spatial learning and memory of chronically METH-exposed mice. We determined that gut microbiota perturbation triggered the transformation of microglial M2 to M1 and a subsequent change of pro-brain-derived neurotrophic factor (proBDNF)-p75NTR-mature BDNF (mBDNF)-TrkB signaling, which caused reduction of hippocampal neurogenesis and synaptic plasticity-related proteins (SYN, PSD95, and MAP2) and, consequently, deteriorated spatial learning and memory. More specifically, we found that Clostridia, Bacteroides, Lactobacillus, and Muribaculaceae might dramatically affect the homeostasis of microglial M1/M2 phenotypes and eventually contribute to spatial learning and memory decline after chronic METH exposure. Finally, we found that fecal microbial transplantation could protect against spatial learning and memory decline by restoring the microglial M1/M2 phenotype status and the subsequent proBDNF-p75NTR/mBDNF-TrkB signaling in the hippocampi of chronically METH-exposed mice. IMPORTANCE Our study indicated that the gut microbiota contributes to spatial learning and memory dysfunction after chronic METH exposure, in which microglial phenotype status plays an intermediary role. The elucidated "specific microbiota taxa-microglial M1/M2 phenotypes-spatial learning and memory impairment" pathway would provide a novel mechanism and elucidate potential gut microbiota taxon targets for the no-drug treatment of cognitive deterioration after chronic METH exposure.
Collapse
Affiliation(s)
- Yulong Wu
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Zhouyan Dong
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Xinze Jiang
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Lei Qu
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Wei Zhou
- Department of Health and Disease Management, Binzhou Medical University, Yantai, China
| | - Xu Sun
- Department of Health and Disease Management, Binzhou Medical University, Yantai, China
| | - Jiangshan Hou
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Hongmei Xu
- Department of Health and Disease Management, Binzhou Medical University, Yantai, China
| | - Mei Cheng
- Department of Health and Disease Management, Binzhou Medical University, Yantai, China
| |
Collapse
|
47
|
Liu L, Wang H, Chen X, Xie P. Gut microbiota: a new insight into neurological diseases. Chin Med J (Engl) 2023; 136:1261-1277. [PMID: 35830286 PMCID: PMC10309523 DOI: 10.1097/cm9.0000000000002212] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT In the last decade, it has become increasingly recognized that a balanced gut microbiota plays an important role in maintaining the health of the host. Numerous clinical and preclinical studies have shown that changes in gut microbiota composition are associated with a variety of neurological diseases, e.g., Parkinson's disease, Alzheimer's disease, and myasthenia gravis. However, the underlying molecular mechanisms are complex and remain unclear. Behavioral phenotypes can be transmitted from humans to animals through gut microbiota transplantation, indicating that the gut microbiota may be an important regulator of neurological diseases. However, further research is required to determine whether animal-based findings can be extended to humans and to elucidate the relevant potential mechanisms by which the gut microbiota regulates neurological diseases. Such investigations may aid in the development of new microbiota-based strategies for diagnosis and treatment and improve the clinical management of neurological disorders. In this review, we describe the dysbiosis of gut microbiota and the corresponding mechanisms in common neurological diseases, and discuss the potential roles that the intestinal microbiome may play in the diagnosis and treatment of neurological disorders.
Collapse
Affiliation(s)
- Lanxiang Liu
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Haiyang Wang
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xueyi Chen
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
48
|
Hoffman K, Brownell Z, Doyle WJ, Ochoa-Repáraz J. The immunomodulatory roles of the gut microbiome in autoimmune diseases of the central nervous system: Multiple sclerosis as a model. J Autoimmun 2023; 137:102957. [PMID: 36435700 PMCID: PMC10203067 DOI: 10.1016/j.jaut.2022.102957] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
The gut-associated lymphoid tissue is a primary activation site for immune responses to infection and immunomodulation. Experimental evidence using animal disease models suggests that specific gut microbes significantly regulate inflammation and immunoregulatory pathways. Furthermore, recent clinical findings indicate that gut microbes' composition, collectively named gut microbiota, is altered under disease state. This review focuses on the functional mechanisms by which gut microbes promote immunomodulatory responses that could be relevant in balancing inflammation associated with autoimmunity in the central nervous system. We also propose therapeutic interventions that target the composition of the gut microbiota as immunomodulatory mechanisms to control neuroinflammation.
Collapse
Affiliation(s)
- Kristina Hoffman
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
| | - Zackariah Brownell
- Department of Biological Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - William J Doyle
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
| | - Javier Ochoa-Repáraz
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA.
| |
Collapse
|
49
|
Öz Tunçer G, Akbaş Y, Köker A, Aydın Köker S, Tural Kara T, Çoban Y, Kömüroğlu AU. Serum Zonulin Levels in Pediatric Migraine. Pediatr Neurol 2023; 144:80-83. [PMID: 37196600 DOI: 10.1016/j.pediatrneurol.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 02/05/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Migraine is a complex neurogenic inflammatory disorder. There are strong neuronal, endocrine, and immunologic connections between the brain and gastrointestinal system. Damage to the intestinal barrier is thought to cause systemic immune dysregulation. Zonulin is a protein produced by the small intestine epithelium in humans that regulates intestinal permeability through intracellular tight junctions and is a potential marker for inflammation. Zonulin increases in positive correlation with permeability. In our study, we aimed to research the correlation between serum zonulin levels in the period between attacks in pediatric patients with migraine. METHODS The study included 30 patients with migraine and 24 healthy controls, matched in terms of sex and age. Demographic and clinical characteristics were recorded. Serum zonulin levels were studied with the enzyme-linked immunosorbent assay method. RESULTS Patients had a mean of 5.6 ± 3.5 attacks per month. The mean serum zonulin was 5.68 ± 1.21 ng/mL in the migraine group and 5.72 ± 2.1 ng/mL in the control group with no significant difference found (P = 0.084). In the migraine group, no correlations were identified between serum zonulin levels and age, body mass index, pain frequency, pain duration, onset time, visual analog scale score, and presence of gastrointestinal systems apart from nausea-vomiting. CONCLUSIONS More than 50 proteins were identified to affect the intestinal permeability apart from zonulin. There is a need for prospective studies encompassing the time of attack, but our study is important as it is the first study about zonulin levels in pediatric migraine.
Collapse
Affiliation(s)
- Gökçen Öz Tunçer
- Department of Pediatric Neurology, Hatay State Hospital, Hatay, Turkey.
| | - Yılmaz Akbaş
- Department of Pediatric Neurology, Hatay State Hospital, Hatay, Turkey
| | - Alper Köker
- Department of Pediatrics, Hatay State Hospital, Hatay, Turkey
| | | | | | - Yasemin Çoban
- Department of Pediatrics, Hatay State Hospital, Hatay, Turkey
| | | |
Collapse
|
50
|
Kang TH, Shin S, Park J, Lee BR, Lee SI. Pyroptosis-Mediated Damage Mechanism by Deoxynivalenol in Porcine Small Intestinal Epithelial Cells. Toxins (Basel) 2023; 15:toxins15040300. [PMID: 37104238 PMCID: PMC10146237 DOI: 10.3390/toxins15040300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Deoxynivalenol (DON) is known as a vomitoxin, which frequently contaminates feedstuffs, such as corn, wheat, and barley. Intake of DON-contaminated feed has been known to cause undesirable effects, including diarrhea, emesis, reduced feed intake, nutrient malabsorption, weight loss, and delay in growth, in livestock. However, the molecular mechanism of DON-induced damage of the intestinal epithelium requires further investigation. Treatment with DON triggered ROS in IPEC-J2 cells and increased the mRNA and protein expression levels of thioredoxin interacting protein (TXNIP). To investigate the activation of the inflammasome, we confirmed the mRNA and protein expression levels of the NLR family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and caspase-1 (CASP-1). Moreover, we confirmed that caspase mediates the mature form of interleukin-18, and the cleaved form of Gasdermin D (GSDMD) was increased. Based on these results, our study suggests that DON can induce damage through oxidative stress and pyroptosis in the epithelial cells of the porcine small intestine via NLRP3 inflammasome.
Collapse
Affiliation(s)
- Tae Hong Kang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Sangsu Shin
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
| | - JeongWoong Park
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Bo Ram Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Sang In Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
| |
Collapse
|