1
|
What are the roles of global DNA and APC 2 gene promotor hypermethylation in multiple myeloma? Mol Biol Rep 2021; 48:7875-7882. [PMID: 34637096 PMCID: PMC8505470 DOI: 10.1007/s11033-021-06813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022]
Abstract
Background In today's practice, gene-based approaches come to the fore in the determination of prognosis and treatment preferences of multiple myeloma (MM). DNA methylation is one of the new approach parameters. DNA methylation occurs by the addition of a methyl group to cytosines in CpG dinucleotides. In this study, besides comparing the global DNA and APC 2 gene promotor hypermethylation between our patients with MM and healthy control group, we aimed to demonstrate the effect of hypermethylation on MM treatment responses and survival. Methods and results 38 patients diagnosed with MM between January 2016 and January 2020 and 50 healthy controls were included in the study. The initial hypermethylation of the patients and the healthy control group were statistically analyzed. In addition, the increase in hypermethylation in the MM group before and after the first series of treatments were analyzed within themselves. There is a significant difference between the patients with MM diagnosis and the healthy control group in terms of the initial global hypermethylation (P = 0.001). In patients with MM, hypermethylation was significantly higher. Global hypermethylation in the post-treatment measurements was significantly increased in comparison to the pre-treatment state (P = 0.012). In terms of APC 2 promotor gene-specific hypermethylation, no significant differences were detected between pre- and post-treatment values (P = 0.368). Conclusions This study represents valuable data with the initial global DNA hypermethylation results in the MM patient group and the increase in hypermethylation post-treatment. it will shed light on future studies.
Collapse
|
2
|
RGL2 Drives the Metastatic Progression of Colorectal Cancer via Preventing the Protein Degradation of β-Catenin and KRAS. Cancers (Basel) 2021; 13:cancers13081763. [PMID: 33917100 PMCID: PMC8067854 DOI: 10.3390/cancers13081763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Aberrant activation of the Wnt/β-catenin pathway due to APC (adenomatous polyposis coli) loss and Kirsten ras (KRAS) mutation is highly associated with malignant evolution, e.g., metastasis, of colorectal cancer (CRC). Ral guanine nucleotide dissociation stimulator-like (RGL) proteins, such as RGL2, regulate RAS activity via controlling the exchange between GTP and GDP. Although the cross-talk between β-catenin and KRAS has been reported to promote cancer metastasis, the functional role of RGL2 remains largely unknown. Here we show that RGL2 is significantly upregulated in primary tumors compared to normal tissues and serves as a poor prognostic marker in CRC patients. Cell-based and animal experiments further demonstrate that RGL2 acts as a driver to promote the metastatic progression of CRC, most likely via preventing the protein degradation of β-catenin and KRAS. Our findings not only unveil the oncogenic function of RGL2 but also provide a new strategy to combat metastatic CRC by targeting RGL2 activity. Abstract Colorectal cancer (CRC) is one of the most common cancers and results in high mortality worldwide, owing to cancer progression, i.e., metastasis. However, the molecular mechanism underlying the metastatic evolution of CRC remains largely unknown. Here, we find that the upregulation of Ral Guanine Nucleotide Dissociation Stimulator Like 2 (RGL2) is commonly detected in primary tumors compared normal tissues and is significantly associated with a poorer prognosis in CRC patients. Moreover, RGL2 expression appeared to positively correlate with the metastatic potentials of CRC cells. Whereas RGL2 knockdown dramatically suppresses the metastatic potentials of CRC cells in vitro and in vivo, RGL2 overexpression in the poorly metastatic CRC cells and reconstitution in the RGL2-silenced CRC cells enhanced and rescued the cellular metastatic ability, respectively. Computational simulation using Gene Set Enrichment Analysis program and cell-based assays demonstrated that RGL2 expression causally associated with the activity of Wnt/β-catenin signaling axis and Kirsten ras (KRAS)S, as well as the progression of epithelial-mesenchymal transition (EMT) in the detected CRC cells. Importantly, RGL2 upregulation was capable of preventing the protein degradation of β-catenin and KRAS in CRC cells. These findings suggest that RGL2 acts as a driver to promote the metastatic progression of CRC and also serves as a poor prognostic biomarker in CRC patients.
Collapse
|
3
|
Saelee P, Pongtheerat T. APC Promoter Hypermethylation as a Prognostic Marker in Breast Cancer Patients. Asian Pac J Cancer Prev 2020; 21:3627-3632. [PMID: 33369461 PMCID: PMC8046330 DOI: 10.31557/apjcp.2020.21.12.3627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Adenomatous polyposis coli (APC) promoter hypermethylation implicated in breast cancer development through Wnt signaling pathway, hypermethylation may result in inactivation of APC expression. This study aimed to investigated whether hypermethylation of APC promoter, the aggressive behavior of breast cancer cells, and correlated them with clinicopathological parameters and survival. Methods: Sixty-one fresh tissues of breast tumor were evaluated for APC promoter hypermethylation with methylation-specific PCR techniques (MS-PCR) and APC mRNA expression level analysis by quantitative real-time reverse transcription-PCR. Results: Our results show aberrant APC hypermethylation status was founded in 27 of 61 cases (44%), and significantly associated with chemotherapy treatment (OR= 6.9, 95%CI=1.5-31.01, P = 0.01), distant metastasis (OR = 5.52, 95%CI = 1.27-24.08, P = 0.04) as well as APC methylated status also associated with shorter overall survival than those without (8.4 and 11.0 years respectively, P = 0.02). Conclusion: The findings indicated hypermethylation of APC promoter may be used as a useful prognostic biomarker in breast cancer patients.
Collapse
Affiliation(s)
- Pensri Saelee
- Research Division, National Cancer Institute, Bangkok 10400, Thailand
| | - Tanett Pongtheerat
- Unit of Biochemistry, Department of Medical Sciences, Faculty of Science, Rangsit University, Patumthani, Thailand
| |
Collapse
|
4
|
Kawaguchi Y, Lillemoe HA, Panettieri E, Chun YS, Tzeng CWD, Aloia TA, Kopetz S, Vauthey JN. Conditional Recurrence-Free Survival after Resection of Colorectal Liver Metastases: Persistent Deleterious Association with RAS and TP53 Co-Mutation. J Am Coll Surg 2019; 229:286-294.e1. [PMID: 31054911 DOI: 10.1016/j.jamcollsurg.2019.04.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/19/2019] [Accepted: 04/22/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Conditional recurrence-free survival (RFS) probability, that is, the probability of remaining recurrence-free after a given interval without recurrence, has not been reported after resection of colorectal liver metastases (CLMs). We aimed to estimate conditional RFS and identify factors affecting conditional RFS. STUDY DESIGN Patients undergoing initial resection of CLMs during 2000-2016 with mutation data were identified. The RFS and risk factors for recurrence were evaluated at the time of resection for all patients and at 1 year and 2 years after resection for patients who remained recurrence-free. RESULTS Of 2,118 patients, 485 met the inclusion criteria, of which 225 were recurrence-free at 1 year and 109 were recurrence-free at 2 years. The 5-year RFS rates were 17.3%, 36.8%, and 70.7% for all patients and the 1-year and 2-year recurrence-free groups, respectively, when assessed from the time of initial CLM resection. RAS/TP53 co-mutation was the only factor independently associated with increased risk of recurrence for all groups (all patients, hazard ratio 1.47; 95% CI 1.19 to 1.82; p < 0.001; 1-year recurrence-free, hazard ratio 1.69; 95% CI 1.17 to 2.43; p = 0.005; 2-year recurrence-free, hazard ratio 2.41; 95% CI 1.12 to 5.17; p = 0.024). T category, extrahepatic disease, multiple CLMs, largest CLM diameter, and surgical margin status were risk factors for recurrence in all patients and/or the 1-year recurrence-free group, but not the 2-year recurrence-free group. Median RFS was lower for patients with RAS/TP53 co-mutation than for those with RAS/TP53 wild-type in the 1-year (1.5 vs 2.8 years; p = 0.006) and 2-year recurrence-free groups (3.0 vs 5.9 years; p = 0.024). CONCLUSIONS Conditional RFS is useful for updating prognosis after a given time interval without recurrence after CLM resection. Importantly, RAS/TP53 co-mutation has a persistent deleterious association with recurrence.
Collapse
Affiliation(s)
- Yoshikuni Kawaguchi
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Heather A Lillemoe
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elena Panettieri
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yun Shin Chun
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ching-Wei D Tzeng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Thomas A Aloia
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jean-Nicolas Vauthey
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
5
|
Ashktorab H, Rahi H, Nouraie M, Shokrani B, Lee E, Haydari T, Laiyemo AO, Siegel P, Brim H. GPNMB methylation: a new marker of potentially carcinogenic colon lesions. BMC Cancer 2018; 18:1068. [PMID: 30400781 PMCID: PMC6219212 DOI: 10.1186/s12885-018-4903-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 10/04/2018] [Indexed: 01/09/2023] Open
Abstract
Background Epigenetic plays an important role in colorectal neoplasia process. There is a need to determine sound biomarkers of colorectal cancer (CRC) progression with clinical and therapeutic implications. Therefore, we aimed to examine the role and methylation status of Glyco Protein Non-Metastatic GPNM B (GPNMB) gene in normal, adenoma and CRC in African American (AA) patients. Methods The methylation status of 13 CpG sites (chr7: 23287345–23,287,426) in GPNMB gene’s promoter, was analyzed by pyrosequencing in human CRC cell lines (HCT116, SW480, and HT29) and microdissected African American paraffin embedded samples (20 normal, 21 non-advanced adenoma (NA), 48 advanced adenoma (AD), and 20 cancer tissues. GPNMB expression was analyzed by immunohistochemistry (IHC) on tissue microarrays (TMA). Correlations between GPNMB methylation and expression with clinicopathological features were analyzed. GPNMB functional analysis was performed in triplicates using cell proliferation, migration and invasion assays in HCT116 colon cell line after stable transfection with a GPNMB-cDNA expression vector. Results GPNMB methylation was lower in normal mucosa compared to CRC samples (1/20 [5%] vs. 18/20 [90%]; P < 0.001). AD also had a significantly higher GPNMB methylation frequency than normal colon samples (42/48 [88%] vs 1/20 [5%]; P < 0.001). GPNMB was more frequently methylated in AD than in matched normal mucosa from three patients (3/3 [100%] vs 1/3 [33.3%]; P < 0.001). The frequency of GPNMB methylation in NA differed significantly from that in the normal mucosa (16/21 [76%] vs 1/20 [5%]; P = 0.008). There was statistically significant correlation of higher methylation at advanced stages and lower methylation at stage 1 CRCs (P < 0.05). In agreement with these findings, GPNMB protein expression decreased in CRC tissues compared with AD and NA colon mucosa (p < 0.05). GPNMB overexpression in HCT116 colon cancer cell line decreased cell proliferation [(24 h, P = 0.02), (48 h, P < 0.001, 72 h, P = 0.007)], invasion (p < 0.05) and migration (p > 0.05) compared to the mock-transfected cells. Conclusion Our data indicate a high methylation profile leading to a lower GPNMB expression in adenoma and CRC samples. The functional analysis established GPNMB as a potential tumor suppressor gene. As such, GPNMB might be useful as a biomarker of adenomas with high carcinogenic potential.
Collapse
Affiliation(s)
- Hassan Ashktorab
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060, USA.
| | - Hamed Rahi
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060, USA
| | - Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Babak Shokrani
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060, USA
| | - Edward Lee
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060, USA
| | - Tahmineh Haydari
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060, USA
| | - Adeyinka O Laiyemo
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060, USA
| | - Peter Siegel
- Goodman Cancer Research Centre, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Hassan Brim
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060, USA
| |
Collapse
|
6
|
Nunes SP, Moreira-Barbosa C, Salta S, Palma de Sousa S, Pousa I, Oliveira J, Soares M, Rego L, Dias T, Rodrigues J, Antunes L, Henrique R, Jerónimo C. Cell-Free DNA Methylation of Selected Genes Allows for Early Detection of the Major Cancers in Women. Cancers (Basel) 2018; 10:cancers10100357. [PMID: 30261643 PMCID: PMC6210550 DOI: 10.3390/cancers10100357] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Abstract
Background: Breast (BrC), colorectal (CRC) and lung (LC) cancers are the three most common and deadly cancers in women. Cancer screening entails an increase in early stage disease detection but is hampered by high false-positive rates and overdiagnosis/overtreatment. Aberrant DNA methylation occurs early in cancer and may be detected in circulating cell-free DNA (ccfDNA), constituting a valuable biomarker and enabling non-invasive testing for cancer detection. We aimed to develop a ccfDNA methylation-based test for simultaneous detection of BrC, CRC and LC. Methods: CcfDNA from BrC, CRC and LC patients and asymptomatic controls were extracted from plasma, sodium-bisulfite modified and whole-genome amplified. APC, FOXA1, MGMT, RARβ2, RASSF1A, SCGB3A1, SEPT9, SHOX2 and SOX17 promoter methylation levels were determined by multiplex quantitative methylation-specific PCR. Associations between methylation and standard clinicopathological parameters were assessed. Biomarkers’ diagnostic performance was also evaluated. Results: A “PanCancer” panel (APC, FOXA1, RASSF1A) detected the three major cancers with 72% sensitivity and 74% specificity, whereas a “CancerType” panel (SCGB3A1, SEPT9 and SOX17) indicated the most likely cancer topography, with over 80% specificity, although with limited sensitivity. Conclusions: CcfDNA’s methylation assessment allows for simultaneous screening of BrC, CRC and LC, complementing current modalities, perfecting cancer suspects’ triage, increasing compliance and cost-effectiveness.
Collapse
Affiliation(s)
- Sandra P Nunes
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal.
- Master in Oncology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal.
| | - Catarina Moreira-Barbosa
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal.
| | - Sofia Salta
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal.
| | - Susana Palma de Sousa
- Breast Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.
| | - Inês Pousa
- Lung Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.
| | - Júlio Oliveira
- Lung Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.
| | - Marta Soares
- Lung Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.
| | - Licínio Rego
- Digestive Tract Pathology Clinic and Surgical Oncology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.
| | - Teresa Dias
- Digestive Tract Pathology Clinic and Surgical Oncology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.
| | - Jéssica Rodrigues
- Department of Epidemiology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.
| | - Luís Antunes
- Department of Epidemiology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.
| | - Rui Henrique
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal.
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal.
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal.
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal.
| |
Collapse
|
7
|
Liang TJ, Wang HX, Zheng YY, Cao YQ, Wu X, Zhou X, Dong SX. APC hypermethylation for early diagnosis of colorectal cancer: a meta-analysis and literature review. Oncotarget 2018; 8:46468-46479. [PMID: 28515349 PMCID: PMC5542282 DOI: 10.18632/oncotarget.17576] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 04/02/2017] [Indexed: 12/27/2022] Open
Abstract
Adenomatous polyposis coli (APC) promoter hypermethylation has been frequently observed in colorectal cancer (CRC). The association between APC promoter methylation and clinicopathological significance in CRC is under investigation. We performed a meta-analysis to quantitatively evaluate the significance of APC methylation in CRC. The study included a total of 24 articles and 2025 CRC patients. The frequency of APC promoter hypermethylation was significantly higher in colorectal adenoma than in normal colorectal tissue, OR was 5.76, 95% CI, 2.45-13.56; p<0.0001, I2=0%. APC promoter more frequently hypermethylated in CRC stage I compared to normal colorectal tissue, OR was 13.42, 95% CI, 3.66-49.20; p<0.0001, I2=31%. The risk of incidence of CRC was significantly correlated to APC promoter hypermethylation, pooled OR was 9.80, 95%CI, 6.07-15.81; p<0.00001, I2=43%. APC methylation was not associated with grade, stage of CRC as well as tumor location, patients’ gender, and smoking behavior. The results indicate that APC promoter hypermethylation is an early event in carcinogenesis of CRC, could be a valuable diagnostic marker for early-stage CRC. APC methylation is not significantly associated with overall survival in patients with CRC. APC is a potential drug target for development of personalized treatment.
Collapse
Affiliation(s)
- Tie-Jun Liang
- Department of Digestive Disease, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Hong-Xu Wang
- Department of General Surgery, Jiyang People's Hospital, Jiyang, Shandong, China
| | - Yan-Yan Zheng
- Department of Medical Imaging, Jiyang People's Hospital, Jiyang, Shandong, China
| | - Ying-Qing Cao
- Department of Anus & Intestine Surgery, Taian City Central Hospital, Taian, Shandong, China
| | - Xiaoyu Wu
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Zhou
- Department of General Surgery, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shu-Xiao Dong
- Department of Gastrointestinal Surgery, Linyi People's Hospital, Linyi, Shandong, China
| |
Collapse
|
8
|
Yamashita S, Chun YS, Kopetz SE, Vauthey JN. Biomarkers in colorectal liver metastases. Br J Surg 2018; 105:618-627. [PMID: 29579319 DOI: 10.1002/bjs.10834] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Despite a 5-year overall survival rate of 58 per cent after liver resection for colorectal liver metastases (CLMs), more than half of patients develop recurrence, highlighting the need for accurate risk stratification and prognostication. Traditional prognostic factors have been superseded by newer outcome predictors, including those defined by the molecular origin of the primary tumour. METHODS This review synthesized findings in the literature using the PubMed database of articles in the English language published between 1998 and 2017 on prognostic and predictive biomarkers in patients undergoing resection of CLMs. RESULTS Responses to preoperative chemotherapy define prognosis in patients undergoing CLM resection. There are differences by embryological origin too. Somatic mutations in the proto-oncogenes KRAS and NRAS are associated with positive surgical margins and tumour regrowth after ablation. Other mutations (such as BRAF) and co-occurring mutations in RAS/TP53 and APC/PIK3CA have emerged as important biomarkers that determine an individual patient's tumour biology and may be used to predict outcome after CLM resection. CONCLUSION Knowledge of somatic mutations can guide the use of preoperative therapy, extent of surgical margin and selection for ablation alone.
Collapse
Affiliation(s)
- S Yamashita
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Y S Chun
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - S E Kopetz
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - J-N Vauthey
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
9
|
Jayaprakash C, Varghese VK, Bellampalli R, Radhakrishnan R, Ray S, Kabekkodu SP, Satyamoorthy K. Hypermethylation of Death-Associated Protein Kinase (DAPK1) and its association with oral carcinogenesis - An experimental and meta-analysis study. Arch Oral Biol 2017; 80:117-129. [PMID: 28412611 DOI: 10.1016/j.archoralbio.2017.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 03/25/2017] [Accepted: 03/31/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVES The value of abnormal DNA methylation of DAPK1 promoter and its association with various cancers have been suggested in the literature. To establish the significance of DNA methylation of DAPK1 promoter in oral squamous cell carcinoma (OSCC), we a) performed a case-control study, b) evaluated published data for its utility in the diagnosis and prognosis of OSCC and c) identified the association of DAPK1 gene expression with promoter DNA methylation status. DESIGN Bisulfite gene sequencing of DAPK1 promoter region was performed on non-malignant and malignant oral samples. Further, using a systematic search, 330 publications were retrieved from PubMed, Scopus, and Google Scholar and 11 relevant articles were identified. RESULTS Significant association of DAPK1 promoter methylation with OSCC (p<0.0001) was observed in the case-control study. The studies chosen for meta-analysis showed prognostic and predictive significance of DAPK1 gene promoter, despite defined inconsistencies in few studies. Overall, we obtained a statistically significant (p-value<0.001) association for both sensitivity and specificity of DAPK1 DNA promoter methylation in oral cancer cases, without publication bias. CONCLUSION DNA hypermethylation of DAPK1 gene promoter is a promising biomarker for OSCC prediction/prognostics and suggests further validation in large distinct cohorts to facilitate translation to clinics.
Collapse
Affiliation(s)
- Chinchu Jayaprakash
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, 576104, India.
| | - Vinay Koshy Varghese
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, 576104, India.
| | - Ravishankara Bellampalli
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, 576104, India.
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal University, Manipal, 576104, India.
| | - Satadru Ray
- Department of Surgical Oncology, Kasturba Medical College, Manipal University, Manipal, 576104, India.
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, 576104, India.
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, 576104, India.
| |
Collapse
|
10
|
Li BQ, Liu PP, Zhang CH. Correlation between the methylation of APC gene promoter and colon cancer. Oncol Lett 2017; 14:2315-2319. [PMID: 28781669 PMCID: PMC5530209 DOI: 10.3892/ol.2017.6455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/08/2017] [Indexed: 11/21/2022] Open
Abstract
The present study was planned to explore the correlation between the methylation of APC (adenomatous polyposis coli) and colon carcinogenesis. Colon cancer tissues and tumor-adjacent normal tissues of 60 colon cancer patients (who received surgical operation in our hospital from January 2012 to December 2014) were collected. SW1116 cells in human colon cancer tissues were selected for culturing. 5-aza-2c-deoxycytidine (5-aza-dC) was utilized as an inhibitor of the methylation for APC gene. Methylation specific PCR (MSP) was utilized for detection of APC methylation in SW1116 cells. The MTT and Transwell assays were performed to detect the effect of the methylation of APC gene on the proliferation and invasive abilities of SW1116 cells. The correlation between the methylation of APC gene and pathological parameters of colon cancer patients was analyzed. MSP results revealed that 41 cases (68.33%) showed methylation of APC gene in colon cancer tissues. No methylation of APC gene was found in tumor-adjacent normal tissues. 5-aza-dC was able to inhibit the methylation of APC gene in SW1116 cells. APC gene methylation was correlated with tumor size, differentiation degree, lymph node metastasis and Dukes staging. In conclusion, the levels of the methylation of APC in colon cancer tissues and SW1116 cells are relatively high. The methylation of APC promoted the proliferation and invasion abilities of SW1116 cells. Furthermore, methylation is correlated with a variety of clinicopathological features of colon cancer patients.
Collapse
Affiliation(s)
- Bing-Qiang Li
- Department of Gastrointestinal Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Peng-Peng Liu
- Department of Hepatobiliary Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Cai-Hua Zhang
- Department of Gastrointestinal Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
11
|
Wang H, Ke H, Zheng Y, Lai J, Luo Q, Chen Q. A modified bisulfite conversion method for the detection of DNA methylation. Epigenomics 2017; 9:955-969. [PMID: 28548583 DOI: 10.2217/epi-2016-0174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AIM Our purpose is to improve the conventional procedures for bisulfite conversion used to detect 5-methylcytosine in DNA. METHODS Impacts of different bisulfite salts, bisulfite conversion temperature, antioxidants and denaturants on DNA conversion and degradation were assessed by methylation-sensitive melt curve analysis. The modified method was tested on different genes and the conversion efficiency was analyzed by bisulfite sequencing. RESULTS We developed a modified bisulfite conversion method that completes this process within 2 h. We demonstrate that high temperature denaturation is the major cause for DNA degradation, and the addition of ethylene glycol dimethyl ether is an effective way to accelerate the bisulfite conversion. The conversion efficiency is comparable to many other commercial kits. CONCLUSION Our modified bisulfite conversion method is simple, cost efficient and less time consuming and is compatible with different genes and samples, thus has a great potential for the future research and clinical applications.
Collapse
Affiliation(s)
- Hanze Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, 1 Keji Road, College Town, Fuzhou, Fujian 350117, China
| | - Huican Ke
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, 1 Keji Road, College Town, Fuzhou, Fujian 350117, China
| | - Yansong Zheng
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Junzhong Lai
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, 1 Keji Road, College Town, Fuzhou, Fujian 350117, China
| | - Qianping Luo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, 1 Keji Road, College Town, Fuzhou, Fujian 350117, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, 1 Keji Road, College Town, Fuzhou, Fujian 350117, China
| |
Collapse
|
12
|
Yong BC, Lu JC, Xie XB, Su Q, Tan PX, Tang QL, Wang J, Huang G, Han J, Xu HW, Shen JN. LDOC1 regulates Wnt5a expression and osteosarcoma cell metastasis and is correlated with the survival of osteosarcoma patients. Tumour Biol 2017; 39:1010428317691188. [PMID: 28240050 DOI: 10.1177/1010428317691188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Osteosarcomas are common bone malignancies in children and adolescents. LDOC1 (leucine zipper, down-regulated in cancer 1), a tumor suppressor, is down-regulated in many cancers. In this study, we investigated the role of LDOC1 in tumor metastasis and its prognostic significance in osteosarcomas. We established osteosarcoma cells stably expressing LDOC1, driven by an HIV-based lentiviral system. We investigated the impact of LDOC1 on migration and invasion abilities in these cells using a transwell assay. LDOC1-associated changes in expression of metastasis-promoting genes were analyzed with a quantitative real-time polymerase chain reaction primer array. A xenograft tumor model (n = 7 mice/group) was used to assess the effect of LDOC1 on osteosarcoma metastasis in vivo. The overall survival and disease-free survival of osteosarcoma patients (n = 74) were analyzed retrospectively based on immunohistochemical analysis of LDOC1 levels in tumors and Kaplan-Meier analysis. LDOC1-expressing osteosarcoma cells displayed decreased migration and invasion in vitro. The quantitative real-time polymerase chain reaction primer array data showed that increased LDOC1 expression up-regulated many metastasis-suppressor genes. In the xenograft model, micro-computed tomography imaging data indicated that increased LDOC1 expression is associated with weaker lung metastasis ability. The Wnt5a signaling pathway promotes osteosarcoma metastasis; LDOC1 expression decreased Wnt5a levels in osteosarcoma cells. Kaplan-Meier analysis showed that higher LDOC1 expression was associated with improved osteosarcoma patient overall survival and disease free survival (p = 0.022). Our data show that LDOC1 is a tumor suppressor in osteosarcoma, and that it regulates metastasis of osteosarcoma cells. Furthermore, LDOC1 might be a valuable prognostic marker in osteosarcomas.
Collapse
Affiliation(s)
- Bi-Cheng Yong
- 1 Department of Pediatric Orthopedics, Guangzhou Women and Children's Hospital, Guangzhou, China
| | - Jin-Chang Lu
- 2 Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xian-Biao Xie
- 2 Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qiao Su
- 3 Animal Experiment Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ping-Xian Tan
- 4 Department of Spine Surgery, Shen Zhen Long Gang Zhong Xin Hospital, Guangzhou, China
| | - Qing-Lian Tang
- 2 Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jing Wang
- 2 Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Gang Huang
- 2 Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ju Han
- 5 Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hong-Wen Xu
- 1 Department of Pediatric Orthopedics, Guangzhou Women and Children's Hospital, Guangzhou, China
| | - Jing-Nan Shen
- 2 Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
13
|
Schell MJ, Yang M, Teer JK, Lo FY, Madan A, Coppola D, Monteiro ANA, Nebozhyn MV, Yue B, Loboda A, Bien-Willner GA, Greenawalt DM, Yeatman TJ. A multigene mutation classification of 468 colorectal cancers reveals a prognostic role for APC. Nat Commun 2016; 7:11743. [PMID: 27302369 PMCID: PMC4912618 DOI: 10.1038/ncomms11743] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 04/25/2016] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is a highly heterogeneous disease, for which prognosis has been relegated to clinicopathologic staging for decades. There is a need to stratify subpopulations of CRC on a molecular basis to better predict outcome and assign therapies. Here we report targeted exome-sequencing of 1,321 cancer-related genes on 468 tumour specimens, which identified a subset of 17 genes that best classify CRC, with APC playing a central role in predicting overall survival. APC may assume 0, 1 or 2 truncating mutations, each with a striking differential impact on survival. Tumours lacking any APC mutation carry a worse prognosis than single APC mutation tumours; however, two APC mutation tumours with mutant KRAS and TP53 confer the poorest survival among all the subgroups examined. Our study demonstrates a prognostic role for APC and suggests that sequencing of APC may have clinical utility in the routine staging and potential therapeutic assignment for CRC.
Collapse
Affiliation(s)
- Michael J Schell
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, USA
| | - Mingli Yang
- Gibbs Cancer Center and Research Institute, 380 Serpentine Drive, Spartanburg, South Carolina 29303, USA
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, USA
| | - Fang Yin Lo
- Genomic Services, LabCorp Clinical Trials, 401 Terry Avenue North, Suite 200, Seattle, Washington 98109, USA
| | - Anup Madan
- Genomic Services, LabCorp Clinical Trials, 401 Terry Avenue North, Suite 200, Seattle, Washington 98109, USA
| | - Domenico Coppola
- Department of Anatomic Pathology, Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, USA
| | - Alvaro N A Monteiro
- Department of Epidemiology, Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, USA
| | - Michael V Nebozhyn
- Genetics and Pharmacogenomics, Merck, Sharp and Dohme, PO Box 4, 770 Sumneytown Pike, Building 53, West Point, Pennsylvania 19486, USA
| | - Binglin Yue
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, USA
| | - Andrey Loboda
- Genetics and Pharmacogenomics, Merck, Sharp and Dohme, PO Box 4, 770 Sumneytown Pike, Building 53, West Point, Pennsylvania 19486, USA
| | | | - Danielle M Greenawalt
- Genetics and Pharmacogenomics, Merck, Sharp and Dohme, PO Box 4, 770 Sumneytown Pike, Building 53, West Point, Pennsylvania 19486, USA
| | - Timothy J Yeatman
- Gibbs Cancer Center and Research Institute, 380 Serpentine Drive, Spartanburg, South Carolina 29303, USA
| |
Collapse
|
14
|
Hashimoto Y, Zumwalt TJ, Goel A. DNA methylation patterns as noninvasive biomarkers and targets of epigenetic therapies in colorectal cancer. Epigenomics 2016; 8:685-703. [PMID: 27102979 DOI: 10.2217/epi-2015-0013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aberrant DNA methylation is frequently detected in gastrointestinal tumors, and can therefore potentially be used to screen, diagnose, prognosticate, and predict colorectal cancers (CRCs). Although colonoscopic screening remains the gold standard for CRC screening, this procedure is invasive, expensive, and suffers from poor patient compliance. Methylated DNA is an attractive choice for a biomarker substrate because CRCs harbor hundreds of aberrantly methylated genes. Furthermore, abundance in extracellular environments and resistance to degradation and enrichment in serum, stool, and other noninvasive bodily fluids, allows quantitative measurements of methylated DNA biomarkers. This article describes the most important studies that investigated the efficacy of serum- or stool-derived methylated DNA as population-based screening biomarkers in CRC, details several mechanisms and factors that control DNA methylation, describes a better use of prevailing technologies that discover novel DNA methylation biomarkers, and illustrates the diversity of demethylating agents and their applicability toward clinical impact.
Collapse
Affiliation(s)
- Yutaka Hashimoto
- Center for Translational Genomics & Oncology, Baylor Scott & White Research Institute & Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Timothy J Zumwalt
- Center for Translational Genomics & Oncology, Baylor Scott & White Research Institute & Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Ajay Goel
- Center for Translational Genomics & Oncology, Baylor Scott & White Research Institute & Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| |
Collapse
|
15
|
Savio AJ, Daftary D, Dicks E, Buchanan DD, Parfrey PS, Young JP, Weisenberger D, Green RC, Gallinger S, McLaughlin JR, Knight JA, Bapat B. Promoter methylation of ITF2, but not APC, is associated with microsatellite instability in two populations of colorectal cancer patients. BMC Cancer 2016; 16:113. [PMID: 26884349 PMCID: PMC4756469 DOI: 10.1186/s12885-016-2149-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/08/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Aberrant Wnt signaling activation occurs commonly in colorectal carcinogenesis, leading to upregulation of many target genes. APC (adenomatous polyposis coli) is an important component of the β-catenin destruction complex, which regulates Wnt signaling, and is often mutated in colorectal cancer (CRC). In addition to mutational events, epigenetic changes arise frequently in CRC, specifically, promoter hypermethylation which silences tumor suppressor genes. APC and the Wnt signaling target gene ITF2 (immunoglobulin transcription factor 2) incur hypermethylation in various cancers, however, methylation-dependent regulation of these genes in CRC has not been studied in large, well-characterized patient cohorts. The microsatellite instability (MSI) subtype of CRC, featuring DNA mismatch repair deficiency and often promoter hypermethylation of MutL homolog 1 (MLH1), has a favorable outcome and is characterized by different chemotherapeutic responses than microsatellite stable (MSS) tumors. Other epigenetic events distinguishing these subtypes have not yet been fully elucidated. METHODS Here, we quantify promoter methylation of ITF2 and APC by MethyLight in two case-case studies nested in population-based CRC cohorts from the Ontario Familial Colorectal Cancer Registry (n = 330) and the Newfoundland Familial Colorectal Cancer Registry (n = 102) comparing MSI status groups. RESULTS ITF2 and APC methylation are significantly associated with tumor versus normal state (both P < 1.0 × 10(-6)). ITF2 is methylated in 45.8% of MSI cases and 26.9% of MSS cases and is significantly associated with MSI in Ontario (P = 0.002) and Newfoundland (P = 0.005) as well as the MSI-associated feature of MLH1 promoter hypermethylation (P = 6.72 × 10(-4)). APC methylation, although tumor-specific, does not show a significant association with tumor subtype, age, gender, or stage, indicating it is a general tumor-specific CRC biomarker. CONCLUSIONS This study demonstrates, for the first time, MSI-associated ITF2 methylation, and further reveals the subtype-specific epigenetic events modulating Wnt signaling in CRC.
Collapse
Affiliation(s)
- Andrea J Savio
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada.
| | - Darshana Daftary
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada.
- Ontario Familial Colorectal Cancer Registry, Toronto, ON, Canada.
| | - Elizabeth Dicks
- Faculty of Medicine, Memorial University of Newfoundland, St John's, Newfoundland, Canada.
| | - Daniel D Buchanan
- Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, VIC, Australia.
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia.
| | - Patrick S Parfrey
- Faculty of Medicine, Memorial University of Newfoundland, St John's, Newfoundland, Canada.
| | - Joanne P Young
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville, South Australia, Australia.
| | - Daniel Weisenberger
- USC Epigenome Center, University of Southern California, Los Angeles, CA, USA.
| | - Roger C Green
- Faculty of Medicine, Memorial University of Newfoundland, St John's, Newfoundland, Canada.
| | - Steven Gallinger
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada.
- Ontario Familial Colorectal Cancer Registry, Toronto, ON, Canada.
- Department of Surgery, University of Toronto, Toronto, ON, Canada.
| | - John R McLaughlin
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada.
- Ontario Familial Colorectal Cancer Registry, Toronto, ON, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| | - Julia A Knight
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| | - Bharati Bapat
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada.
- Department of Pathology, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
16
|
Michailidi C, Theocharis S, Tsourouflis G, Pletsa V, Kouraklis G, Patsouris E, Papavassiliou AG, Troungos C. Expression and promoter methylation status of hMLH1, MGMT, APC, and CDH1 genes in patients with colon adenocarcinoma. Exp Biol Med (Maywood) 2015; 240:1599-1605. [PMID: 25908636 PMCID: PMC4935349 DOI: 10.1177/1535370215583800] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/12/2015] [Indexed: 01/14/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer in men and the second in women worldwide. CRC development is the result of genetic and epigenetic alterations accumulation in the epithelial cells of colon mucosa. In the present study, DNA methylation, an epigenetic event, was evaluated in tumoral and matching normal epithelium in a cohort of 61 CRC patients. The results confirmed and expanded knowledge for the tumor suppressor genes hMLH1, MGMT, APC, and CDH1. Promoter methylation was observed for all the examined genes in different percentage. A total of 71% and 10% of the examined cases were found to be methylated in two or more and in all genes, respectively. mRNA and protein levels were also evaluated. Promoter methylation of hMLH1, MGMT, APC, and CDH1 genes was present at the early stages of tumor's formation and it could also be detected in the normal mucosa. Correlations of the methylated genes with patient's age and tumor's clinicopathological characteristics were also observed. Our findings suggest that DNA methylation is a useful marker for tumor progression monitoring and that promoter methylation in certain genes is associated with more advanced tumor stage, poor differentiation, and metastasis.
Collapse
Affiliation(s)
- Christina Michailidi
- Department of Biological Chemistry, University of Athens Medical School, Athens 11527, Greece
| | - Stamatios Theocharis
- First Department of Pathology, University of Athens Medical School, Athens 11527, Greece
| | - Gerasimos Tsourouflis
- Second Department of Propedeutic Surgery, University of Athens Medical School, Athens 11527, Greece
| | - Vasiliki Pletsa
- Institute of Biology, Medicinal Chemistry and Biotechnology, Division of Biological Research & Biotechnology, National Hellenic Research Foundation, Athens 11635, Greece
| | - Gregorios Kouraklis
- Second Department of Propedeutic Surgery, University of Athens Medical School, Athens 11527, Greece
| | - Efstratios Patsouris
- First Department of Pathology, University of Athens Medical School, Athens 11527, Greece
| | | | - Constantinos Troungos
- Department of Biological Chemistry, University of Athens Medical School, Athens 11527, Greece
| |
Collapse
|
17
|
Abstract
The approval of DNA methylation inhibitors azacytidine and decitabine for the treatment of myelodysplastic syndromes and acute myeloid leukaemia has demonstrated that modulation of relatively broad epigenetic regulatory processes can show beneficial efficacy/safety profiles in defined patient groups. This chapter will focus on the biochemical mechanisms controlling DNA methylation, consequences of aberrant DNA methylation in complex chronic diseases, existing modulators of DNA methylation used in the clinic, and opportunities for new drugs targeting this central epigenetic mechanism.
Collapse
Affiliation(s)
- Tom D. Heightman
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - Michael McCullar
- Astex Pharmaceuticals Inc. 4140 Dublin Boulevard, Suite 200 Dublin CA 94568 USA
| |
Collapse
|
18
|
Kraus S, Vay C, Baldus S, Knoefel WT, Stoecklein NH, Vallbohmer D. Expression of wingless-type mouse mammary tumor virus integration site family pathway effectors in lymphatic and hepatic metastases of patients with colorectal cancer: Associations with the primary tumor. Oncol Lett 2015; 10:863-868. [PMID: 26622584 DOI: 10.3892/ol.2015.3291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 02/05/2015] [Indexed: 12/13/2022] Open
Abstract
The wingless-type mouse mammary tumor virus integration site family (Wnt) pathway plays a major role in the carcinogenesis of colorectal cancer (CRC). Its most important effector, the nuclear β-catenin, influences not only transcription but also the proliferation and dedifferentiation of the colonic mucosa. This induces an epithelial-mesenchymal transition which ultimately can lead to the development of cancer and the formation of metastases. However, little is known about the exact interaction and context-sensitive expression of Wnt-pathway effectors in the primary tumor and corresponding metastasis. Therefore, this study assessed the expression of the three most important effectors of the Wnt pathway, β-catenin, adenomatous polyposis coli (APC) and Wnt-1, in the primary tumor and corresponding metastasis of patients with CRC. Immunohistochemical staining of β-catenin, APC and Wnt-1 was performed in paraffin-embedded tissue samples of the primary tumor, and the corresponding hepatic and nodal metastasis samples from 24 patients with metastatic CRC. Isotype antibodies were used as negative controls. The results were visualized using the ABC-method. Analysis of the primary tumor comprised of a separate evaluation of the central tumor area as well as the invasion front. There was a significant overexpression of nuclear β-catenin at the tumor invasion front (P<0.001). Compared to normal colonic mucosa, expression of cytoplasmic β-catenin was significantly higher in the primary tumor (P<0.001) as well as all the corresponding hepatic and lymphatic metastases (hepatic metastases, P=0.001; nodal metastases, P=0.017). By contrast, APC expression was significantly lower in all analyzed tumor compartments compared with normal colonic mucosa (primary tumor, P=0.022; hepatic metastases, P=0.006; nodal metastases, P=0.012). Finally, Wnt-1 protein expression was significantly lower in liver metastases but not in the primary tumor or lymphatic metastases compared with normal colonic mucosa (P=0.003). The present study demonstrates that the major Wnt-effector proteins, β-catenin, APC and Wnt-1, are heterogeneously expressed in the primary tumor and corresponding hepatic as well as nodal metastases of patients with CRC. This context-sensitive diverse expression of Wnt-effector proteins may be important for future individualized targeted therapies.
Collapse
Affiliation(s)
- Sebastian Kraus
- Department of General, Visceral and Pediatric Surgery, University of Düsseldorf, Düsseldorf D-40225, Germany
| | - Christian Vay
- Department of General, Visceral and Pediatric Surgery, University of Düsseldorf, Düsseldorf D-40225, Germany
| | - Stephan Baldus
- Institute of Pathology, University of Düsseldorf, Düsseldorf D-40225, Germany
| | - Wolfram T Knoefel
- Department of General, Visceral and Pediatric Surgery, University of Düsseldorf, Düsseldorf D-40225, Germany
| | - Nikolas H Stoecklein
- Department of General, Visceral and Pediatric Surgery, University of Düsseldorf, Düsseldorf D-40225, Germany
| | - Daniel Vallbohmer
- Department of General, Visceral and Pediatric Surgery, University of Düsseldorf, Düsseldorf D-40225, Germany
| |
Collapse
|
19
|
Ding Z, Jiang T, Piao Y, Han T, Han Y, Xie X. Meta-analysis of the association between APC promoter methylation and colorectal cancer. Onco Targets Ther 2015; 8:211-22. [PMID: 25632237 PMCID: PMC4304602 DOI: 10.2147/ott.s75827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Previous studies investigating the association between adenomatous polyposis coli (APC) gene promoter methylation and colorectal cancer (CRC) have yielded conflicting results. The aim of this study was to comprehensively evaluate the potential application of the detection of APC promoter methylation to the prevention and treatment of CRC. PubMed, Embase, and MEDLINE (results updated to October 2014) were searched for relevant studies. The effect size was defined as the weighted odds ratio (OR), which was calculated using either the fixed-effects or random-effects model. Prespecified subgroup and sensitivity analyses were conducted to evaluate potential heterogeneity among the included studies. Nineteen studies comprising 2,426 participants were selected for our meta-analysis. The pooled results of nine studies comprising a total of 740 subjects indicated that APC promoter methylation was significantly associated with CRC risk (pooled OR 5.53; 95% confidence interval [CI] 3.50–8.76; P<0.01). Eleven studies with a total of 1,219 patients evaluated the association between APC promoter methylation and the presence of CRC metastasis, and the pooled OR was 0.80 (95% CI 0.44–1.46; P=0.47). A meta-analysis conducted with four studies with a total of 467 patients found no significant correlation between APC promoter methylation and the presence of colorectal adenoma (pooled OR 1.85; 95% CI 0.67–5.10; P=0.23). No significant correlation between APC promoter methylation and patients’ Dukes’ stage, TNM stage, differentiation grade, age, or sex was identified. In conclusion, APC promoter methylation was found to be significantly associated with a higher risk of developing CRC. The findings indicate that APC promoter methylation may be a potential biomarker for the carcinogenesis of CRC.
Collapse
Affiliation(s)
- Zhenyu Ding
- Department of Oncology, General Hospital of Shenyang Military Region, Shenyang City, Liaoning Province, People's Republic of China
| | - Tong Jiang
- Laboratory of Military Health in Cold Region, Center for Disease Control and Prevention of Shenyang Military Region, Shenyang City, Liaoning Province, People's Republic of China
| | - Ying Piao
- Department of Oncology, General Hospital of Shenyang Military Region, Shenyang City, Liaoning Province, People's Republic of China
| | - Tao Han
- Department of Oncology, General Hospital of Shenyang Military Region, Shenyang City, Liaoning Province, People's Republic of China
| | - Yaling Han
- Institute of Cardiovascular Disease, General Hospital of Shenyang Military Region, Shenyang City, Liaoning Province, People's Republic of China
| | - Xiaodong Xie
- Department of Oncology, General Hospital of Shenyang Military Region, Shenyang City, Liaoning Province, People's Republic of China
| |
Collapse
|
20
|
Al-Shabanah OA, Hafez MM, Hassan ZK, Sayed-Ahmed MM, Abozeed WN, Alsheikh A, Al-Rejaie SS. Methylation of SFRPs and APC genes in ovarian cancer infected with high risk human papillomavirus. Asian Pac J Cancer Prev 2015; 15:2719-25. [PMID: 24761891 DOI: 10.7314/apjcp.2014.15.6.2719] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Secreted frizzled-related protein (SFRP) genes, new tumor suppressor genes, are negative regulators of the Wnt pathway whose alteration is associated with various tumors. In ovarian cancer, SFRPs genes promoter methylation can lead to gene inactivation. This study investigated mechanisms of SFRP and adenomatous polyposis coli (APC) genes silencing in ovarian cancer infected with high risk human papillomavirus. MATERIALS AND METHODS DNA was extracted from 200 formalin-fixed paraffin-embedded ovarian cancer and their normal adjacent tissues (NAT) and DNA methylation was detected by methylation specific PCR (MSP). High risk human papillomavirus (HPV) was detected by nested PCR with consensus primers to amplify a broad spectrum of HPV genotypes. RESULTS The percentages of SFRP and APC genes with methylation were significantly higher in ovarian cancer tissues infected with high risk HPV compared to NAT. The methylated studied genes were associated with suppression in their gene expression. CONCLUSION This finding highlights the possible role of the high risk HPV virus in ovarian carcinogenesis or in facilitating cancer progression by suppression of SFRP and APC genes via DNA methylation.
Collapse
Affiliation(s)
- Othman Abdulla Al-Shabanah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia E-mail :
| | | | | | | | | | | | | |
Collapse
|
21
|
Samaei NM, Yazdani Y, Alizadeh-Navaei R, Azadeh H, Farazmandfar T. Promoter methylation analysis of WNT/β-catenin pathway regulators and its association with expression of DNMT1 enzyme in colorectal cancer. J Biomed Sci 2014; 21:73. [PMID: 25107489 PMCID: PMC4237828 DOI: 10.1186/s12929-014-0073-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 07/27/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Aberrant DNA methylation as the most important reason making epigenetic silencing of genes is a main mechanism of gene inactivation in patients with colorectal cancer. In this study, we decided to identify promoter methylation status of ten genes encoding WNT negative regulators, and measure the expression of DNMT1 enzyme in colorectal cancer samples. RESULTS Aberrant methylation of APC gene was statistically significant associated with age over 50 (p = 0.017), DDK3 with male (p < 0.0001), SFRP4, WIF1, and WNT5a with increasing tumor stage (p = 0.004, p = 0.029, and p = 0.004), SFRP4 and WIF1 with tumor differentiation (p = 0.009 and p = 0.031) and SFRP2 and SFRP5 with histological type (p = 0.001 and p = 0.025). The increasing number of methylated genes correlated with the expression levels of the DNMT1 mRNA. CONCLUSIONS The rate of gene promoter methylation of WNT pathway regulators is high in colorectal cancer cells. Hyper-methylation is associated with increased expression of the DNMT1 enzyme.
Collapse
Affiliation(s)
- Nader Mansour Samaei
- Golestan Research Center of Gastroenterology and Hepatology-GRCGH, Golestan University of Medical Sciences, Gorgan, Iran
| | - Yaghoub Yazdani
- Golestan Research Center of Gastroenterology and Hepatology-GRCGH, Golestan University of Medical Sciences, Gorgan, Iran
| | - Reza Alizadeh-Navaei
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Azadeh
- Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Touraj Farazmandfar
- Golestan Research Center of Gastroenterology and Hepatology-GRCGH, Golestan University of Medical Sciences, Gorgan, Iran
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
22
|
Qiu Y, Fu X, Zhang W, Xu Y, Xiao L, Chen X, Shi L, Zhou X, Xia G, Peng Y, Deng M. Prevalence and molecular characterisation of the sessile serrated adenoma in a subset of the Chinese population. J Clin Pathol 2014; 67:491-8. [PMID: 24570042 DOI: 10.1136/jclinpath-2013-202092] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AIMS The incidence and mortality rates from right-sided colorectal cancers (CRCs) have not decreased in recent years. It is very likely that a significant proportion of these cancers evolve from undetected sessile serrated adenomas (SSAs). The prevalence and molecular features of the SSAs in the Chinese population have seldom been investigated. METHODS We retrospectively reviewed the colonoscopy database and pathology archives in our medical centre. Adenomatous polyposis coli (APC) and β-catenin expressions were examined in 28 right hyperplastic polyps (RHPs) and 21 SSAs by immunohistochemical staining. The mutations of BRAF, KRAS, APC and β-CATENIN were analysed by direct sequencing. The methylation status of APC promoter in these polyps was analysed by methylation-specific PCR and bisulfite sequencing. Samples of left hyperplastic polyps, traditional adenomas and CRC were used as controls. RESULTS SSAs accounted for 4.9% of serrated polyps and 1.0% of all colorectal polyps. BRAF((V600E)) mutations were found in 14.3% of SSAs and 7.1% of RHPs. Nuclear accumulation of β-catenin was seen in 28.6% of SSAs and 17.9% of RHPs. APC mutations were detected in 57.1% of SSAs and 67.9% of RHPs. APC methylation was detected in 14.3% of RHPs and 23.8% of SSAs. CONCLUSIONS The prevalence of SSAs in a subset of the Chinese population is much lower than that in the Western population. BRAF((V600E)) mutation is not a frequent event in right colon serrated polyps in a subset of the Chinese population. APC mutation is possibly the main cause for the Wnt signalling activation in right colon serrated polyps.
Collapse
Affiliation(s)
- Ye Qiu
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Sichuan, China
| | - Xiangsheng Fu
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Sichuan, China
| | - Wei Zhang
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Sichuan, China
| | - Yong Xu
- Department of Endocrinology, The Affiliated Hospital of Luzhou Medical College, Sichuan, China
| | - Lanyue Xiao
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Sichuan, China
| | - Xia Chen
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Sichuan, China
| | - Lei Shi
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Sichuan, China
| | - Xian Zhou
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Sichuan, China
| | - Guodong Xia
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Sichuan, China
| | - Yan Peng
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Sichuan, China
| | - Mingming Deng
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Sichuan, China
| |
Collapse
|
23
|
Modlin IM, Oberg K, Taylor A, Drozdov I, Bodei L, Kidd M. Neuroendocrine tumor biomarkers: current status and perspectives. Neuroendocrinology 2014; 100:265-77. [PMID: 25300695 DOI: 10.1159/000368363] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/10/2014] [Indexed: 12/20/2022]
Abstract
The identification of accurate harbingers of disease status and therapeutic efficacy are critical requirements in precise diagnosis and effective management. Initially, tissue analysis was regarded as ideal but invasive strategies represent risk compared with peripheral blood sampling. Thus far, most biomarkers, whether in tissue or blood/urine, have been single analytes with varying degrees of sensitivity and specificity. Some analytes have not exhibited robust metrics or have lacked methodological rigor. Neuroendocrine disease represents an area of dire biomarker paucity since the individual biomarkers (gastrin, insulin, etc.) are not widely applicable to the diverse types of neuroendocrine neoplasia. Broad-spectrum markers such as chromogranin A have limitations in sensitivity, specificity and reproducibility. Monoanalytes cannot define the multiple variables (proliferation, metabolic activity, invasive potential, metastatic propensity) that constitute tumor growth. The restricted status of the neuroendocrine neoplasia field has resulted in a lack of comprehensive knowledge of the molecular and cellular biology of the disease, with tardy application of innovative technology. This overview examines limitations in current practice and describes contemporary viable strategies under evaluation, including the identification of novel analytes (gene transcripts, microRNA), circulating tumor cells and metabolic imaging agents that identify disease. Novel requirements are necessary to develop biomathematical algorithms for synchronous calibration of multiple molecular markers and predictive nomograms that interface biological variables to delineate disease progress or treatment efficacy. Optimally, the application of novel techniques and amalgamations of multianalyte assessment will provide a personalized molecular disease signature extrapolative of neuroendocrine neoplasia status and likelihood of progression and predictive of therapeutic opportunity.
Collapse
|
24
|
Sameer AS. Colorectal cancer: a researcher’s perspective of the molecular angel’s gone eccentric in the Vale of Kashmir. Tumour Biol 2013; 34:1301-1315. [PMID: 23417859 DOI: 10.1007/s13277-013-0692-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/03/2013] [Indexed: 02/06/2023] Open
|
25
|
Li L, Fu X, Zhang W, Xiao L, Qiu Y, Peng Y, Shi L, Chen X, Zhou X, Deng M. Wnt signaling pathway is activated in right colon serrated polyps correlating to specific molecular form of β-catenin. Hum Pathol 2013; 44:1079-88. [DOI: 10.1016/j.humpath.2012.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 12/31/2022]
|
26
|
Sameer AS. Colorectal cancer: molecular mutations and polymorphisms. Front Oncol 2013; 3:114. [PMID: 23717813 PMCID: PMC3651991 DOI: 10.3389/fonc.2013.00114] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 04/25/2013] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer (CRC) is one of the major causes of mortality and morbidity, and is the third most common cancer in men and the second most common cancer in women worldwide. The incidence of CRC shows considerable variation among racially or ethnically defined populations in multiracial/ethnic countries. The tumorigenesis of CRC is either because of the chromosomal instability (CIN) or microsatellite instability (MIN) or involving various proto-oncogenes, tumor-suppressor genes, and also epigenetic changes in the DNA. In this review I have focused on the mutations and polymorphisms of various important genes of the CIN and MIN pathways which have been implicated in the development of CRC.
Collapse
Affiliation(s)
- Aga Syed Sameer
- Department of Biochemistry, Sher-I-Kashmir Institute of Medical Sciences Associated Medical College, Bemina, SrinagarKashmir, India
| |
Collapse
|
27
|
Roy S, Majumdar APN. Cancer Stem Cells in Colorectal Cancer: Genetic and Epigenetic Changes. ACTA ACUST UNITED AC 2013; Suppl 7. [PMID: 23565347 DOI: 10.4172/2157-7633.s7-006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Colorectal cancer (CRC), an age-related disease, is the third most common cancer in the world. Although sporadic CRC, that affects 80-85% of CRC patients, is a multi-step process initiated by APC gene mutation, it is becoming increasingly evident that a small sub-population of cells termed cancer stem/stem-like cells (CSCs/CSLCs) plays critical roles in the progression of this malignancy specially the recurrence and drug resistance. The current review will summarize genetic and epigenetic changes observed at different stages in the progression of sporadic CRC. In addition, roles of miRNAs that control gene expression and CSCs/CSLCs in regulating proliferation, differentiation, and survival of the colon cancer cells will be summarized.
Collapse
Affiliation(s)
- Sanchita Roy
- John D Dingell VA Medical Centre, 4646 John R Street, Detroit, MI-48201, USA ; Department of Internal Medicine, Wayne State University, Detroit, MI-48201, USA
| | | |
Collapse
|
28
|
Wang ZK, Liu J, Liu C, Wang FY, Chen CY, Zhang XH. Hypermethylation of adenomatous polyposis coli gene promoter is associated with novel Wnt signaling pathway in gastric adenomas. J Gastroenterol Hepatol 2012; 27:1629-34. [PMID: 22741528 DOI: 10.1111/j.1440-1746.2012.07219.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND AIM Gastric adenomas (GAs) are considered as premalignant lesions of gastric adenocarcinoma. The role of Wnt signaling pathway in GAs is rarely identified. In the present study, we aimed to determine whether Wnt signaling plays a role in the pathogenesis of GAs, and to clarify the mechanism of Wnt signaling in GAs. METHODS The study investigated the relationship between clinicopathological characteristics, Helicobacter pylori (Hp) infection, adenomatous polyposis coli (APC) promoter methylation, APC and β-catenin immunohistochemistry expression and mutation status, compared with 38 gastric adenoma and periadenomatous tissues (PTs). RESULTS The abnormal expression of β-catenin in PTs, low-grade adenomas (LGAs) and high-grade adenomas (HGAs) was 0%, 9.09% and 81.25%. For APC, immunoreactive score (IRS) was 5.50 ± 0.5 in PTs, 3.59 ± 1.4 in LGAs and 1.8 ± 2.0 in HGAs. The scores in LGAs and HGAs were significantly lower than those in PTs (P = 0.000). IRS reflected significantly reduced expression of APC in HGAs (P = 0.002). The absent expression of APC had a correlation with the expression of β-catenin (P = 0.000). Four LGAs (18.18%) and nine HGAs (56.25%) had methylation of APC. APC promoter methylation correlated with the grade (P = 0.014) and the expression of β-catenin and APC (P = 0.000). Genes mutation was detected in only two adenomas (5.3%). The presence of Hp in HGAs (43.8%) was significantly higher than in LGAs (13.6%) (P = 0.038). But there was no statistical correlation to growth pattern, size, APC hypermethylation and gene mutation. CONCLUSION Hypermethylation of APC promoter, instead of mutations involving APC and β-catenin, may play a role in the development and progression of GAs contributing to moderate activation of Wnt signaling. Helicobacter pylori may accelerate the progress of gastric adenoma, but the pathogenesis needs further research.
Collapse
Affiliation(s)
- Zhen-Kai Wang
- Department of Gastroenterology, Jinling Hospital, Nanjing, Jiangsu Province, China
| | | | | | | | | | | |
Collapse
|
29
|
Fu X, Li L, Peng Y. Wnt signalling pathway in the serrated neoplastic pathway of the colorectum: possible roles and epigenetic regulatory mechanisms. J Clin Pathol 2012; 65:675-679. [PMID: 22412046 DOI: 10.1136/jclinpath-2011-200602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The role of Wnt signalling in the serrated neoplastic pathway of colorectal tumourigenesis appears to be heterogeneous. Wnt pathway abnormalities contribute to the progression of at least a subset of traditional serrated adenomas of the colorectum, but may play a less active role in its pathogenesis compared with that in conventional adenoma-carcinoma. However, immunohistochemical studies of β-catenin in sessile serrated adenomas have shown wide variability, producing conflicting results on Wnt signalling activation in sessile serrated adenomas. DNA methylation, involving APC, SFRPs and mutated in colorectal cancer (MCC), may bridge the mutational gap of APC or β-catenin for activating Wnt signalling in serrated adenomas of the colorectum.
Collapse
Affiliation(s)
- Xiangsheng Fu
- Department of Gastroenterology, Affiliated Hospital of Luzhou Medical College, Sichuan, China.
| | | | | |
Collapse
|
30
|
Kang HJ, Kim EJ, Kim BG, You CH, Lee SY, Kim DI, Hong YS. Quantitative analysis of cancer-associated gene methylation connected to risk factors in Korean colorectal cancer patients. J Prev Med Public Health 2012; 45:251-8. [PMID: 22880157 PMCID: PMC3412988 DOI: 10.3961/jpmph.2012.45.4.251] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 03/14/2012] [Indexed: 12/20/2022] Open
Abstract
Objectives The purpose of this paper was to elucidate the potential methylation levels of adjacent normal and cancer tissues by comparing them with normal colorectal tissues, and to describe the correlations between the methylation and clinical parameters in Korean colorectal cancer (CRC) patients. Methods Hypermethylation profiles of nine genes (RASSF1, APC, p16INK4a, Twist1, E-cadherin, TIMP3, Smad4, COX2, and ABCB1) were examined with 100 sets of cancer tissues and 14 normal colorectal tissues. We determined the hypermethylation at a given level by a percent of methylation ratio value of 10 using quantitative methylation real-time polymerase chain reaction. Results Nine genes' hypermethylation levels in Korean CRC patient tissues were increased more higher than normal colorectal tissues. However, the amounts of p16INK4a and E-cadherin gene hypermethylation in normal and CRC tissues were not significantly different nor did TIMP3 gene hypermethylation in adjacent normal and cancer tissues differ significantly. The hypermethylation of TIMP3, E-cadherin, ABCB1, and COX2 genes among other genes were abundantly found in normal colorectal tissues. The hypermethylation of nine genes' methylation in cancer tissues was not significantly associated with any clinical parameters. In Cohen's kappa test, it was moderately observed that RASSF1 was related with E-cadherin, and Smad4 with ABCB1 and COX2. Conclusions This study provides evidence for different hypermethylation patterns of cancer-associated genes in normal and CRC tissues, which may serve as useful information on CRC cancer progression.
Collapse
Affiliation(s)
- Ho-Jin Kang
- Department of Preventive Medicine, Dong-A University College of Medicine, Busan, Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Foulks JM, Parnell KM, Nix RN, Chau S, Swierczek K, Saunders M, Wright K, Hendrickson TF, Ho KK, McCullar MV, Kanner SB. Epigenetic drug discovery: targeting DNA methyltransferases. ACTA ACUST UNITED AC 2011; 17:2-17. [PMID: 21965114 DOI: 10.1177/1087057111421212] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigenetic modification of DNA leads to changes in gene expression. DNA methyltransferases (DNMTs) comprise a family of nuclear enzymes that catalyze the methylation of CpG dinucleotides, resulting in an epigenetic methylome distinguished between normal cells and those in disease states such as cancer. Disrupting gene expression patterns through promoter methylation has been implicated in many malignancies and supports DNMTs as attractive therapeutic targets. This review focuses on the rationale of targeting DNMTs in cancer, the historical approach to DNMT inhibition, and current marketed hypomethylating therapeutics azacytidine and decitabine. In addition, we address novel DNMT inhibitory agents emerging in development, including CP-4200 and SGI-110, analogs of azacytidine and decitabine, respectively; the oligonucleotides MG98 and miR29a; and a number of reversible inhibitors, some of which appear to be selective against particular DNMT isoforms. Finally, we discuss future opportunities and challenges for next-generation therapeutics.
Collapse
Affiliation(s)
- Jason M Foulks
- Astex Pharmaceuticals, Inc., Salt Lake City, UT 84109, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sameer AS, Shah ZA, Abdullah S, Chowdri NA, Siddiqi MA. Analysis of molecular aberrations of Wnt pathway gladiators in colorectal cancer in the Kashmiri population. Hum Genomics 2011; 5:441-452. [PMID: 21807601 PMCID: PMC3525962 DOI: 10.1186/1479-7364-5-5-441] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 12/31/2022] Open
Abstract
The development and progression of colorectal cancer (CRC) is a multi-step process, and the Wnt pathways with its two molecular gladiators adenomatous polyposis coli (APC) and β-catenin plays an important role in transforming a normal tissue into a malignant one. In this study, we aimed to investigate the role of aberrations in the APC and β-catenin genes in the pathogenesis of CRC in the Kashmir valley, and to correlate it with various clinicopathological variables. We examined the paired tumour and normal-tissue specimens of 86 CRC patients for the occurrence of aberrations in the mutation cluster region (MCR) of the APC gene and exon 3 of the β-catenin gene by polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and/or PCR-direct sequencing. Analysis of promoter hypermethylation of the APC gene was also carried out using methylation-specific PCR (MS-PCR). The overall mutation rate of the MCR of the APC gene among 86 CRC cases was 12.8 per cent (11 of 86). Promoter hypermethylation of APC was observed in 54.65 per cent (47 of 86) of cases. Furthermore, we found a significant association between tumour location, tumour grade and node status and the methylation status of the APC gene (p ≤ 0.05). Although the number of mutations in the APC and β-catenin genes in our CRC cases was very low, the study confirms the role of epigenetic gene silencing of the pivotal molecular gladiator, APC, of the Wnt pathway in the development of CRC in the Kashmiri population.
Collapse
Affiliation(s)
- A Syed Sameer
- Department of Immunology and Molecular Medicine, Sher-I-Kashmir Institute of
Medical Sciences, Soura, Srinagar, Kashmir, 190011, India
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences,
Soura, Srinagar, Kashmir, 190011, India
| | - Zaffar A Shah
- Department of Immunology and Molecular Medicine, Sher-I-Kashmir Institute of
Medical Sciences, Soura, Srinagar, Kashmir, 190011, India
| | - Safiya Abdullah
- Department of Immunology and Molecular Medicine, Sher-I-Kashmir Institute of
Medical Sciences, Soura, Srinagar, Kashmir, 190011, India
| | - Nissar A Chowdri
- Department of General Surgery, Sher-I-Kashmir Institute of Medical Sciences,
Soura, Srinagar, Kashmir, 190011, India
| | - Mushtaq A Siddiqi
- Department of Immunology and Molecular Medicine, Sher-I-Kashmir Institute of
Medical Sciences, Soura, Srinagar, Kashmir, 190011, India
| |
Collapse
|
33
|
Stoczynska-Fidelus E, Szybka M, Piaskowski S, Bienkowski M, Hulas-Bigoszewska K, Banaszczyk M, Zawlik I, Jesionek-Kupnicka D, Kordek R, Liberski PP, Rieske P. Limited importance of the dominant-negative effect of TP53 missense mutations. BMC Cancer 2011; 11:243. [PMID: 21668955 PMCID: PMC3129589 DOI: 10.1186/1471-2407-11-243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 06/13/2011] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Heterozygosity of TP53 missense mutations is related to the phenomenon of the dominant-negative effect (DNE). To estimate the importance of the DNE of TP53 mutations, we analysed the percentage of cancer cases showing a single heterozygous mutation of TP53 and searched for a cell line with a single heterozygous mutation of this gene. This approach was based on the knowledge that genes with evident DNE, such as EGFR and IDH1, represent nearly 100% of single heterozygous mutations in tumour specimens and cell lines. METHODS Genetic analyses (LOH and sequencing) performed for early and late passages of several cell lines originally described as showing single heterozygous TP53 mutations (H-318, G-16, PF-382, MOLT-13, ST-486 and LS-123). Statistical analysis of IARC TP53 and SANGER databases. Genetic analyses of N-RAS, FBXW7, PTEN and STR markers to test cross-contamination and cell line identity. Cell cloning, fluorescence-activated cell sorting and SSCP performed for the PF-382 cell line. RESULTS A database study revealed TP53 single heterozygous mutations in 35% of in vivo (surgical and biopsy) samples and only 10% of cultured cells (in vitro), although those numbers appeared to be overestimated. We deem that published in vivo TP53 mutation analyses are not as rigorous as studies in vitro, and we did not find any cell line showing a stable, single heterozygous mutation. G16, PF-382 and MOLT-13 cells harboured single heterozygous mutations temporarily. ST-486, H-318 and LS-123 cell lines were misclassified. Specific mutations, such as R175H, R273H, R273L or R273P, which are reported in the literature to exert a DNE, showed the lowest percentage of single heterozygous mutations in vitro (about 5%). CONCLUSION We suggest that the currently reported percentage of TP53 single heterozygous mutations in tumour samples and cancer cell lines is overestimated. Thus, the magnitude of the DNE of TP53 mutations is questionable. This scepticism is supported by database investigations showing that retention of the wild-type allele occurs with the same frequency as either nonsense or missense TP53 mutations.
Collapse
Affiliation(s)
- Ewelina Stoczynska-Fidelus
- Department of Molecular Pathology and Neuropathology, Chair of Oncology, Medical University of Lodz, Czechoslowacka 8/10, 92-216 Lodz, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ju HX, An B, Okamoto Y, Shinjo K, Kanemitsu Y, Komori K, Hirai T, Shimizu Y, Sano T, Sawaki A, Tajika M, Yamao K, Fujii M, Murakami H, Osada H, Ito H, Takeuchi I, Sekido Y, Kondo Y. Distinct profiles of epigenetic evolution between colorectal cancers with and without metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1835-46. [PMID: 21406167 DOI: 10.1016/j.ajpath.2010.12.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 12/07/2010] [Accepted: 12/14/2010] [Indexed: 12/27/2022]
Abstract
Liver metastasis is a fatal step in the progression of colorectal cancer (CRC); however, the epigenetic evolution of this process is largely unknown. To decipher the epigenetic alterations during the development of liver metastasis, the DNA methylation status of 12 genes, including 5 classical CpG island methylator phenotype (CIMP) markers, was analyzed in 62 liver metastases and in 78 primary CRCs (53 stage I-III; 25 stage IV). Genome-wide methylation analysis was also performed in stage I-III CRCs and in paired primary and liver metastatic cancers. Methylation frequencies of MGMT and TIMP3 increased progressively from stage I-III CRCs to liver metastasis (P = 0.043 and P = 0.028, respectively). The CIMP-positive cases showed significantly earlier recurrence of disease than did CIMP-negative cases with liver metastasis (P = 0.030), whereas no such difference was found in stage I-III CRCs. Genome-wide analysis revealed that more genes were methylated in stage I-III CRCs than in paired stage IV samples (P = 0.008). Hierarchical cluster analysis showed that stage I-III CRCs and stage IV CRCs were clustered into two distinct subgroups, whereas most paired primary and metastatic cancers showed similar methylation profiles. This analysis revealed distinct methylation profiles between stage I-III CRCs and stage IV CRCs, which may reflect differences in epigenetic evolution during progression of the disease. In addition, most methylation status in stage IV CRCs seems to be established before metastasis.
Collapse
Affiliation(s)
- Hai-Xing Ju
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Colorectal cancer (CRC) arises as a consequence of the accumulation of genetic and epigenetic alterations in colonic epithelial cells during neoplastic transformation. Epigenetic modifications, particularly DNA methylation in selected gene promoters, are recognized as common molecular alterations in human tumors. Substantial efforts have been made to determine the cause and role of aberrant DNA methylation ("epigenomic instability") in colon carcinogenesis. In the colon, aberrant DNA methylation arises in tumor-adjacent, normal-appearing mucosa. Aberrant methylation also contributes to later stages of colon carcinogenesis through simultaneous methylation in key specific genes that alter specific oncogenic pathways. Hypermethylation of several gene clusters has been termed CpG island methylator phenotype and appears to define a subgroup of colon cancer distinctly characterized by pathological, clinical, and molecular features. DNA methylation of multiple promoters may serve as a biomarker for early detection in stool and blood DNA and as a tool for monitoring patients with CRC. DNA methylation patterns may also be predictors of metastatic or aggressive CRC. Therefore, the aim of this review is to understand DNA methylation as a driving force in colorectal neoplasia and its emerging value as a molecular marker in the clinic.
Collapse
Affiliation(s)
- Myoung Sook Kim
- Department of Otolaryngology, Head and Neck Surgery, The Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II-5M, Baltimore, MD, 21231, USA
| | | | | |
Collapse
|
36
|
Frequent promoter hypermethylation of the APC and RASSF1A tumour suppressors in parathyroid tumours. PLoS One 2010; 5:e9472. [PMID: 20208994 PMCID: PMC2830427 DOI: 10.1371/journal.pone.0009472] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 02/09/2010] [Indexed: 11/25/2022] Open
Abstract
Background Parathyroid adenomas constitute the most common entity in primary hyperparathyroidism, and although recent advances have been made regarding the underlying genetic cause of these lesions, very little data on epigenetic alterations in this tumour type exists. In this study, we have determined the levels of promoter methylation regarding the four tumour suppressor genes APC, RASSF1A, p16INK4A and RAR-β in parathyroid adenomas. In addition, the levels of global methylation were assessed by analyzing LINE-1 repeats. Methodology/Principal Findings The sample collection consisted of 55 parathyroid tumours with known HRPT2 and/or MEN1 genotypes. Using Pyrosequencing analysis, we demonstrate APC promoter 1A and RASSF1A promoter hypermethylation in the majority of parathyroid tumours (71% and 98%, respectively). Using TaqMan qRT-PCR, all tumours analyzed displayed lower RASSF1A mRNA expression and higher levels of total APC mRNA than normal parathyroid, the latter of which was largely conferred by augmented APC 1B transcription levels. Hypermethylation of p16INK4A was demonstrated in a single adenoma, whereas RAR-β hypermethylation was not observed in any sample. Moreover, based on LINE-1 analyses, parathyroid tumours exhibited global methylation levels within the range of non-neoplastic parathyroid tissues. Conclusions/Significance The results demonstrate that APC and RASSF1A promoter hypermethylation are common events in parathyroid tumours. While RASSF1A mRNA levels were found downregulated in all tumours investigated, APC gene expression was retained through APC 1B mRNA levels. These findings suggest the involvement of the Ras signaling pathway in parathyroid tumorigenesis. Additionally, in contrast to most other human cancers, parathyroid tumours were not characterized by global hypomethylation, as parathyroid tumours exhibited LINE-1 methylation levels similar to that of normal parathyroid tissues.
Collapse
|
37
|
The ribosomal protein L2 interacts with the RNA polymerase alpha subunit and acts as a transcription modulator in Escherichia coli. J Bacteriol 2010; 192:1882-9. [PMID: 20097853 DOI: 10.1128/jb.01503-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identification of interacting proteins in stable complexes is essential to understand the mechanisms that regulate cellular processes at the molecular level. Transcription initiation in prokaryotes requires coordinated protein-protein and protein-DNA interactions that often involve one or more transcription factors in addition to RNA polymerase (RNAP) subunits. The RNAP alpha subunit (RNAPalpha) is a key regulatory element in gene transcription and functions through direct interaction with other proteins to control all stages of this process. A clear description of the RNAPalpha protein partners should greatly increase our understanding of transcription modulation. A functional proteomics approach was employed to investigate protein components that specifically interact with RNAPalpha. A tagged form of Escherichia coli RNAPalpha was used as bait to determine the molecular partners of this subunit in a whole-cell extract. Among other interacting proteins, 50S ribosomal protein L2 (RPL2) was clearly identified by mass spectrometry. The direct interaction between RNAPalpha and RPL2 was confirmed both in vivo and in vitro by performing coimmunoprecipitation and bacterial two-hybrid experiments. The functional role of this interaction was also investigated in the presence of a ribosomal promoter by using a beta-galactosidase gene reporter assay. The results clearly demonstrated that RPL2 was able to increase beta-galactosidase expression only in the presence of a specific ribosomal promoter, whereas it was inactive when it was assayed with an unrelated promoter. Interestingly, other ribosomal proteins (L1, L3, L20, and L27) did not have any effect on rRNA expression. The findings reported here strongly suggest that in addition to its role in ribosome assembly the highly conserved RPL2 protein plays a specific and direct role in regulation of transcription.
Collapse
|
38
|
Fu X, Li J, Li K, Tian X, Zhang Y. Hypermethylation of APC promoter 1A is associated with moderate activation of Wnt signalling pathway in a subset of colorectal serrated adenomas. Histopathology 2010; 55:554-63. [PMID: 19912361 DOI: 10.1111/j.1365-2559.2009.03411.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS The role of Wnt signalling pathway in serrated adenomas (SAs) remains to be identified. The aim of this study was to determine whether Wnt signalling plays a role in the pathogenesis of SAs, and to clarify the mechanism of Wnt signalling activation in SAs. METHODS AND RESULTS This study investigated immunoreactivities of adenomatous polyposis coli (APC) and beta-catenin, mutations of APC and beta-catenin genes, methylation status of APC promoter 1A in 12 SAs, and compared the findings with normal colorectal mucosa, hyperplastic polyps, traditional adenomas (TAs) and colorectal cancers (CRCs). APC expression was moderately decreased in SAs. Cytoplasmic accumulation of beta-catenin was demonstrated in 41.7% (5/12) of SAs, but membranous immunoreactivity of beta-catenin was lost in only 8.3% (1/12) of SAs. No beta-catenin mutation was detected in any of 12 SAs, and only one SA was found to be positive for APC gene mutation. Complete methylation of APC promoter 1A was found in 41.7% (5/12) of SAs, but in no TAs or CRCs. CONCLUSIONS Hypermethylation of APC promoter 1A, instead of mutations involving APC and beta-catenin, contributes to moderate activation of Wnt signalling in a subset of SAs.
Collapse
Affiliation(s)
- Xiangsheng Fu
- Institute for Digestive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | |
Collapse
|
39
|
Chen SP, Chiu SC, Wu CC, Lin SZ, Kang JC, Chen YL, Lin PC, Pang CY, Harn HJ. The association of methylation in the promoter of APC and MGMT and the prognosis of Taiwanese CRC patients. Genet Test Mol Biomarkers 2009; 13:67-71. [PMID: 19309276 DOI: 10.1089/gtmb.2008.0045] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS The purpose of this study was to investigate the association of methylation in the promoter regions of adenomatous polyposis coli (APC) and O(6)-methylguanine-DNA methyltransferase (MGMT) and the survival of Taiwanese colorectal cancer (CRC) subjects who received 5-fluorouracil (5-FU) adjuvant chemotherapy. RESULTS DNA isolated from tumor tissue of 117 CRC subjects was analyzed for the existence of methylation in the promoter regions of APC and MGMT by methylation-specific PCR. Various characteristics of the 117 subjects were recorded and used in the Cox proportional-hazard model analyses. Methylation in the promoter region is 62.4% (73/117) for APC and 60.7% (71/117) for MGMT in our CRC patients. Subjects presenting methylation in the APC promoter demonstrate significantly lower hazards for all causes of death (hazard ratios=0.378, p=0.011) or CRC deaths (hazard ratios=0.426, p=0.039). However, no significant correlation is found between the methylation of MGMT promoter and the prognosis of CRC subjects. In addition, no interaction between 5-FU adjuvant chemotherapy and methylation of the two genes are observed. CONCLUSIONS Methylation in the APC promoter may serve as a predictor for the prognosis of Taiwanese CRC patients.
Collapse
Affiliation(s)
- Shee-Ping Chen
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Strasák L, Bártová E, Harnicarová A, Galiová G, Krejcí J, Kozubek S. H3K9 acetylation and radial chromatin positioning. J Cell Physiol 2009; 220:91-101. [PMID: 19248079 DOI: 10.1002/jcp.21734] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Histone variants and their epigenetic modifications determine genome function, particularly transcription. However, whether regulation of gene expression can be influenced by nuclear organization or vice versa is not completely clear. Here, we analyzed the effect of epigenetic changes induced by a histone deacetylase inhibitor (HDACi) on the nuclear radial rearrangement of select genomic regions and chromosomes. The HDACi, sodium butyrate (NaBt), induced differentiation of human adenocarcinoma HT29 cells as well as a genome-wide increase in H3K9 acetylation. Three-dimensional analysis of nuclear radial distributions revealed that this increase in H3K9 acetylation was often associated with a repositioning of select loci and chromosomes toward the nuclear center. On the other hand, many centromeres resided sites more toward the nuclear periphery, similar to sites occupied by chromosome X. In more than two-thirds of events analyzed, central nuclear positioning correlated with a high level of H3K9 acetylation, while more peripheral positioning within interphase nuclei correlated with a lower level of acetylation. This was observed for the gene-rich chromosomes 17 and 19, TP53, and CCND1 genes as well as for gene-poor chromosome 18, APC gene, regions of low transcriptional activity (anti-RIDGEs), and the relatively transcriptionally less active chromosome X. These results are consistent with a role for epigenetic histone modifications in governing the nuclear radial positioning of genomic regions during differentiation.
Collapse
Affiliation(s)
- Ludek Strasák
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
41
|
McGough JM, Yang D, Huang S, Georgi D, Hewitt SM, Röcken C, Tänzer M, Ebert MPA, Liu K. DNA methylation represses IFN-gamma-induced and signal transducer and activator of transcription 1-mediated IFN regulatory factor 8 activation in colon carcinoma cells. Mol Cancer Res 2008; 6:1841-51. [PMID: 19074829 PMCID: PMC2605678 DOI: 10.1158/1541-7786.mcr-08-0280] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IFN regulatory factor 8 (IRF8) is both constitutively expressed and IFN-gamma inducible in hematopoietic and nonhematopoietic cells. We have shown that IRF8 expression is silenced by DNA methylation in human colon carcinoma cells, but the molecular mechanism underlying methylation-dependent IRF8 silencing remains elusive. In this study, we observed that IRF8 protein level is inversely correlated with the methylation status of the IRF8 promoter and the metastatic phenotype in human colorectal carcinoma specimens in vivo. Demethylation treatment or knocking down DNMT1 and DNMT3b expression rendered the tumor cells responsive to IFN-gamma to activate IRF8 transcription in vitro. Bisulfite genomic DNA sequencing revealed that the entire CpG island of the IRF8 promoter is methylated. Electrophoresis mobility shift assay revealed that DNA methylation does not directly inhibit IFN-gamma-activated phosphorylated signal transducer and activator of transcription 1 (pSTAT1) binding to the IFN-gamma activation site element in the IRF8 promoter in vitro. Chromatin immunoprecipitation assay revealed that pSTAT1 is associated with the IFN-gamma activation site element of the IRF8 promoter in vivo regardless of the methylation status of the IRF8 promoter. However, DNA methylation results in preferential association of PIAS1, a potent inhibitor of pSTAT1, with pSTAT1 in the methylated IRF8 promoter region. Silencing methyl-CpG binding domain protein 1 (MBD1) expression resulted in IRF8 activation by IFN-gamma in human colon carcinoma cells with methylated IRF8 promoter. Our data thus suggest that human colon carcinoma cells silence IFN-gamma-activated IRF8 expression through MBD1-dependent and PIAS1-mediated inhibition of pSTAT1 function at the methylated IRF8 promoter.
Collapse
Affiliation(s)
- Jon M. McGough
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912. USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912. USA
| | - Shuang Huang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912. USA
| | - David Georgi
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912. USA
| | - Stephen M. Hewitt
- Tissue Array Research Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | - Marc Tänzer
- Department of Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias P. A. Ebert
- Department of Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912. USA
| |
Collapse
|
42
|
Kawasaki T, Ohnishi M, Nosho K, Suemoto Y, Kirkner GJ, Meyerhardt JA, Fuchs CS, Ogino S. CpG island methylator phenotype-low (CIMP-low) colorectal cancer shows not only few methylated CIMP-high-specific CpG islands, but also low-level methylation at individual loci. Mod Pathol 2008; 21:245-55. [PMID: 18204436 DOI: 10.1038/modpathol.3800982] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The CpG island methylator phenotype (CIMP or CIMP-high) with widespread promoter methylation is a distinct phenotype in colorectal cancer. However, the concept of CIMP-low with less extensive CpG island methylation is still evolving. Our aim is to examine whether density of methylation in individual CpG islands was different between CIMP-low and CIMP-high tumors. Utilizing MethyLight technology and 889 population-based colorectal cancers, we quantified DNA methylation (methylation index, percentage of methylated reference) at 14 CpG islands, including 8 CIMP-high-specific loci (CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3 and SOCS1). Methylation positivity in each locus was defined as methylation index>4. Low-level methylation (methylation index>0, <20) in each CIMP-high-specific locus was significantly more common in 340 CIMP-low tumors (1/8-5/8 methylation-positive loci) than 133 CIMP-high tumors (> or =6/8 methylation-positive loci) and 416 CIMP-0 tumors (0/8 methylation-positive loci) (P< or =0.002). In the other six loci (CHFR, HIC1, IGFBP3, MGMT, MINT31 and WRN), which were not highly specific for CIMP-high, low-level methylation, was not persistently more prevalent in CIMP-low tumors. In conclusion, compared to CIMP-high and CIMP-0 tumors, CIMP-low colorectal cancers show not only few methylated CIMP-high-specific CpG islands, but also more frequent low-level methylation at individual loci. Our data may provide supporting evidence for a difference in pathogenesis of DNA methylation between CIMP-low and CIMP-high tumors.
Collapse
Affiliation(s)
- Takako Kawasaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
IGFBP3 promoter methylation in colorectal cancer: relationship with microsatellite instability, CpG island methylator phenotype, and p53. Neoplasia 2008; 9:1091-8. [PMID: 18084616 DOI: 10.1593/neo.07760] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Revised: 10/02/2007] [Accepted: 10/05/2007] [Indexed: 12/14/2022] Open
Abstract
Insulin-like growth factor binding protein 3 (IGFBP3), which is induced by wild-type p53, regulates IGF and interacts with the TGF-beta pathway. IGFBP3 promoter methylation may occur in colorectal cancer with or without the CpG island methylator phenotype (CIMP), which is associated with microsatellite instability (MSI) and TGFBR2 mutation. We examined the relationship between IGFBP3 methylation, p53 expression, CIMP and MSI in 902 population-based colorectal cancers. Utilizing real-time PCR (MethyLight), we quantified promoter methylation in IGFBP3 and eight other CIMP-high-specific promoters (CACNA1G, CDKN2A, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1). IGFBP3 methylation was far more frequent in non-MSI-high CIMP-high tumors (85% = 35/41) than in MSI-high CIMP-high (49% = 44/90, P < .0001), MSI-high non-CIMP-high (17% = 6/36, P < .0001), and non-MSI-high non-CIMP-high tumors (22% = 152/680, P < .0001). Among CIMP-high tumors, the inverse relationship between MSI and IGFBP3 methylation persisted in p53-negative tumors (P < .0001), but not in p53-positive tumors. IGFBP3 methylation was associated inversely with TGFBR2 mutation in MSI-high non-CIMP-high tumors (P = .02). In conclusion, IGFBP3 methylation is inversely associated with MSI in CIMP-high colorectal cancers, and this relationship is limited to p53-negative tumors. Our data suggest complex relationship between global genomic/epigenomic phenomena (such as MSI/CIMP), single molecular events (e.g., IGFBP3 methylation, TP53 mutation, and TGFBR2 mutation), and the related pathways.
Collapse
|
44
|
Csepregi A, Röcken C, Hoffmann J, Gu P, Saliger S, Müller O, Schneider-Stock R, Kutzner N, Roessner A, Malfertheiner P, Ebert MPA. APC promoter methylation and protein expression in hepatocellular carcinoma. J Cancer Res Clin Oncol 2007; 15:1415-28. [PMID: 20629990 PMCID: PMC4373337 DOI: 10.1111/j.1582-4934.2010.01124.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE We investigated the impact of promoter methylation on APC protein expression in patients with hepatocellular carcinoma (HCC). MATERIALS AND METHODS 50 patients [HCC (n=19), liver metastasis (n=19), cholangiocellular cancer (n=7), and benign liver tumors (n=5)] were studied for methylation using Methylight analysis. APC mutation was investigated by protein truncation test and direct sequencing of genomic DNA. The protein expression was evaluated by immunohistochemistry and Western blot analysis. RESULTS The APC promoter was hypermethylated in 81.8% of non-cancerous liver tissue samples. All HCC samples and ten patients with liver metastasis (52.6%) exhibited APC promoter methylation. The degree of methylation was significantly higher in samples from HCC compared to the non-cancerous liver tissue samples (63.1% vs. 24.98%; p=0.001). The level of APC protein expression was significantly reduced in HCC samples compared to that of the corresponding non-tumor liver tissue (p<0.05). CONCLUSIONS Promoter methylation of the APC gene seems to be of significance in hepatocarcinogenesis and results in reduced protein expression in HCC. Interestingly, APC promoter methylation is also present in the vast majority of non-cancerous liver tissue whose (patho)physiological function remains unresolved.
Collapse
Affiliation(s)
- Antal Csepregi
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University, Leipziger Strasse 44, 39120 Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Csepregi A, Röcken C, Hoffmann J, Gu P, Saliger S, Müller O, Schneider-Stock R, Kutzner N, Roessner A, Malfertheiner P, Ebert MPA. APC promoter methylation and protein expression in hepatocellular carcinoma. J Cancer Res Clin Oncol 2007; 134:579-89. [PMID: 17973119 PMCID: PMC2757596 DOI: 10.1007/s00432-007-0321-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2006] [Accepted: 09/24/2007] [Indexed: 01/03/2023]
Abstract
PURPOSE We investigated the impact of promoter methylation on APC protein expression in patients with hepatocellular carcinoma (HCC). MATERIALS AND METHODS 50 patients [HCC (n=19), liver metastasis (n=19), cholangiocellular cancer (n=7), and benign liver tumors (n=5)] were studied for methylation using Methylight analysis. APC mutation was investigated by protein truncation test and direct sequencing of genomic DNA. The protein expression was evaluated by immunohistochemistry and Western blot analysis. RESULTS The APC promoter was hypermethylated in 81.8% of non-cancerous liver tissue samples. All HCC samples and ten patients with liver metastasis (52.6%) exhibited APC promoter methylation. The degree of methylation was significantly higher in samples from HCC compared to the non-cancerous liver tissue samples (63.1% vs. 24.98%; p=0.001). The level of APC protein expression was significantly reduced in HCC samples compared to that of the corresponding non-tumor liver tissue (p<0.05). CONCLUSIONS Promoter methylation of the APC gene seems to be of significance in hepatocarcinogenesis and results in reduced protein expression in HCC. Interestingly, APC promoter methylation is also present in the vast majority of non-cancerous liver tissue whose (patho)physiological function remains unresolved.
Collapse
Affiliation(s)
- Antal Csepregi
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University, Leipziger Strasse 44, 39120 Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kawasaki T, Nosho K, Ohnishi M, Suemoto Y, Kirkner GJ, Dehari R, Meyerhardt JA, Fuchs CS, Ogino S. Correlation of beta-catenin localization with cyclooxygenase-2 expression and CpG island methylator phenotype (CIMP) in colorectal cancer. Neoplasia 2007; 9:569-77. [PMID: 17710160 PMCID: PMC1939932 DOI: 10.1593/neo.07334] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 05/21/2007] [Accepted: 05/21/2007] [Indexed: 11/18/2022] Open
Abstract
The WNT/beta-catenin (CTNNB1) pathway is commonly activated in the carcinogenic process. Cross-talks between the WNT and cyclooxygenase-2 (COX-2 or PTGS2)/prostaglandin pathways have been suggested. The relationship between beta-catenin activation and microsatellite instability (MSI) in colorectal cancer has been controversial. The CpG island methylator phenotype (CIMP or CIMP-high) with widespread promoter methylation is a distinct epigenetic phenotype in colorectal cancer, which is associated with MSI-high. However, no study has examined the relationship between beta-catenin activation and CIMP status. Using 832 population-based colorectal cancer specimens, we assessed beta-catenin localization by immunohistochemistry. We quantified DNA methylation in eight CIMP-specific promoters [CACNA1G, CDKN2A(p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1] by real-time polymerase chain reaction (MethyLight). MSI-high, CIMP-high, and BRAF mutation were associated inversely with cytoplasmic and nuclear beta-catenin expressions (i.e., beta-catenin activation) and associated positively with membrane expression. The inverse relation between beta-catenin activation and CIMP was independent of MSI. COX-2 overexpression correlated with cytoplasmic beta-catenin expression (even after tumors were stratified by CIMP status), but did not correlate significantly with nuclear or membrane expression. In conclusion, beta-catenin activation is inversely associated with CIMP-high independent of MSI status. Cytoplasmic beta-catenin is associated with COX-2 overexpression, supporting the role of cytoplasmic beta-catenin in stabilizing PTGS2 (COX-2) mRNA.
Collapse
Affiliation(s)
- Takako Kawasaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Katsuhiko Nosho
- Department of Internal Medicine, Sapporo Medical University, Sapporo, Japan
| | - Mutsuko Ohnishi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Yuko Suemoto
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Gregory J Kirkner
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Reiko Dehari
- Department of Pathology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Charles S Fuchs
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
47
|
Wu Q, Lothe RA, Ahlquist T, Silins I, Tropé CG, Micci F, Nesland JM, Suo Z, Lind GE. DNA methylation profiling of ovarian carcinomas and their in vitro models identifies HOXA9, HOXB5, SCGB3A1, and CRABP1 as novel targets. Mol Cancer 2007; 6:45. [PMID: 17623056 PMCID: PMC1964763 DOI: 10.1186/1476-4598-6-45] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Accepted: 07/10/2007] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The epigenetics of ovarian carcinogenesis remains poorly described. We have in the present study investigated the promoter methylation status of 13 genes in primary ovarian carcinomas (n = 52) and their in vitro models (n = 4; ES-2, OV-90, OVCAR-3, and SKOV-3) by methylation-specific polymerase chain reaction (MSP). Direct bisulphite sequencing analysis was used to confirm the methylation status of individual genes. The MSP results were compared with clinico- pathological features. RESULTS Eight out of the 13 genes were hypermethylated among the ovarian carcinomas, and altogether 40 of 52 tumours were methylated in one or more genes. Promoter hypermethylation of HOXA9, RASSF1A, APC, CDH13, HOXB5, SCGB3A1 (HIN-1), CRABP1, and MLH1 was found in 51% (26/51), 49% (23/47), 24% (12/51), 20% (10/51), 12% (6/52), 10% (5/52), 4% (2/48), and 2% (1/51) of the carcinomas, respectively, whereas ADAMTS1, MGMT, NR3C1, p14ARF, and p16INK4a were unmethylated in all samples. The methylation frequencies of HOXA9 and SCGB3A1 were higher among relatively early-stage carcinomas (FIGO I-II) than among carcinomas of later stages (FIGO III-IV; P = 0.002, P = 0.020, respectively). The majority of the early-stage carcinomas were of the endometrioid histotype. Additionally, HOXA9 hypermethylation was more common in tumours from patients older than 60 years of age (15/21) than among those of younger age (11/30; P = 0.023). Finally, there was a significant difference in HOXA9 methylation frequency among the histological types (P = 0.007). CONCLUSION DNA hypermethylation of tumour suppressor genes seems to play an important role in ovarian carcinogenesis and HOXA9, HOXB5, SCGB3A1, and CRABP1 are identified as novel hypermethylated target genes in this tumour type.
Collapse
Affiliation(s)
- Qinghua Wu
- Department of Pathology, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
- Department of Cancer Prevention, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Cancer Prevention, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Terje Ahlquist
- Department of Cancer Prevention, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Ilvars Silins
- Department of Gynecologic Oncology, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | - Claes G Tropé
- Department of Gynecologic Oncology, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | - Francesca Micci
- Department of Medical Genetics, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | - Jahn M Nesland
- Department of Pathology, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | - Zhenhe Suo
- Department of Pathology, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | - Guro E Lind
- Department of Cancer Prevention, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| |
Collapse
|
48
|
Baran AA, Silverman KA, Zeskand J, Koratkar R, Palmer A, McCullen K, Curran WJ, Edmonston TB, Siracusa LD, Buchberg AM. The modifier of Min 2 (Mom2) locus: embryonic lethality of a mutation in the Atp5a1 gene suggests a novel mechanism of polyp suppression. Genome Res 2007; 17:566-76. [PMID: 17387143 PMCID: PMC1855180 DOI: 10.1101/gr.6089707] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Inactivation of the APC gene is considered the initiating event in human colorectal cancer. Modifier genes that influence the penetrance of mutations in tumor-suppressor genes hold great potential for preventing the development of cancer. The mechanism by which modifier genes alter adenoma incidence can be readily studied in mice that inherit mutations in the Apc gene. We identified a new modifier locus of ApcMin-induced intestinal tumorigenesis called Modifier of Min 2 (Mom2). The polyp-resistant Mom2R phenotype resulted from a spontaneous mutation and linkage analysis localized Mom2 to distal chromosome 18. To obtain recombinant chromosomes for use in refining the Mom2 interval, we generated congenic DBA.B6 ApcMin/+, Mom2R/+ mice. An intercross revealed that Mom2R encodes a recessive embryonic lethal mutation. We devised an exclusion strategy for mapping the Mom2 locus using embryonic lethality as a method of selection. Expression and sequence analyses of candidate genes identified a duplication of four nucleotides within exon 3 of the alpha subunit of the ATP synthase (Atp5a1) gene. Tumor analyses revealed a novel mechanism of polyp suppression by Mom2R in Min mice. Furthermore, we show that more adenomas progress to carcinomas in Min mice that carry the Mom2R mutation. The absence of loss of heterozygosity (LOH) at the Apc locus, combined with the tendency of adenomas to progress to carcinomas, indicates that the sequence of events leading to tumors in ApcMin/+ Mom2R/+ mice is consistent with the features of human tumor initiation and progression.
Collapse
Affiliation(s)
- Amy A. Baran
- Kimmel Cancer Center, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | - Karen A. Silverman
- Kimmel Cancer Center, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | - Joseph Zeskand
- Kimmel Cancer Center, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | - Revati Koratkar
- Kimmel Cancer Center, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | - Ashley Palmer
- Kimmel Cancer Center, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | - Kristen McCullen
- Department of Obstetrics and Gynecology, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | - Walter J. Curran
- Kimmel Cancer Center, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | - Tina Bocker Edmonston
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | - Linda D. Siracusa
- Kimmel Cancer Center, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | - Arthur M. Buchberg
- Kimmel Cancer Center, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
- Corresponding author.E-mail ; fax (215) 923-4153
| |
Collapse
|
49
|
Bortlik M, Vitkova I, Papezova M, Kohoutova M, Novotny A, Adamec S, Chalupna P, Lukas M. Deficiency of Adenomatous Polyposis Coli protein in sporadic colorectal adenomas and its associations with clinical phenotype and histology. World J Gastroenterol 2006; 12:3901-5. [PMID: 16804979 PMCID: PMC4087942 DOI: 10.3748/wjg.v12.i24.3901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the frequency of the loss of the Adenomatous Polyposis Coli (APC) protein and to compare the APC status with the characteristics of colorectal adenomas.
METHODS: Immunohistochemical analysis of the APC protein was performed on 118 adenomas and the results were compared with parameters of malignant potential, location of adenomas, macroscopic appearance and age of the patients.
RESULTS: A complete loss of the APC protein was found in 28 (24%) adenomas, while 90 (76%) were APC positive. The mean size of adenomas was 13.5 ± 14.2 mm (95% CI 10.5-16.5) in APC-positive, and 13.8 ± 15.5 mm (95% CI 7.8-19.8) in APC-negative adenomas (P = 0.364). Statistical analysis revealed no difference between APC-positive and negative adenomas as to the histological type (P = 0.327) and grade of dysplasia (P =0.494). We found that even advanced adenomas did not differ in their APC status from the non-advanced tumors (P = 0.414). Finally, no difference was found when the location (P = 0.157), macroscopic appearance (P = 0.571) and age of patients (P = 0.438) were analysed and compared between both APC positive and negative adenomas.
CONCLUSION: Most adenomas expressed full-length APC protein, suggesting that protein expression is not a reliable marker for assessment of APC gene mutation. Complete loss of APC protein did not influence morphology, location, or appearance of adenomas, nor was it affected by the patient’s age.
Collapse
Affiliation(s)
- Martin Bortlik
- Gastroenterology Center, 4th Internal Department, General Faculty Hospital, 1st School of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Schatz P, Distler J, Berlin K, Schuster M. Novel method for high throughput DNA methylation marker evaluation using PNA-probe library hybridization and MALDI-TOF detection. Nucleic Acids Res 2006; 34:e59. [PMID: 16670426 PMCID: PMC1456329 DOI: 10.1093/nar/gkl218] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The methylation of CpG dinucleotides has become a topic of great interest in cancer research, and the methylation of promoter regions of several tumor suppressor genes has been identified as a marker of tumorigenesis. Evaluation of DNA methylation markers in tumor tissue requires hundreds of samples, which must be analyzed quantitatively due to the heterogeneous composition of biological material. Therefore novel, fast and inexpensive methods for high throughput analysis are needed. Here we introduce a new assay based on peptide nucleic acid (PNA)-library hybridization and subsequent MALDI-TOF analysis. This method is multiplexable, allows the use of standard 384 well automated pipetting, and is more specific and flexible than established methods, such as microarrays and MS-SNuPE. The approach was used to evaluate three candidate colon cancer methylation markers previously identified in a microarray study. The methylation of the genes Ade-nomatous polyposis coli (APC), glycogen synthase kinase-beta-3 (GSK3beta) and eyes absent 4 (EYA4) was analyzed in 12 colon cancer and 12 normal tissues. APC and EYA4 were confirmed as being differentially methylated in colon cancer patients whereas GSK3beta did not show differential methylation.
Collapse
Affiliation(s)
| | | | | | - Matthias Schuster
- To whom correspondence should be addressed. Tel: +49 30 24345100; Fax: +49 30 24345555;
| |
Collapse
|