1
|
Nisar H, Brauny M, Labonté FM, Schmitz C, Konda B, Hellweg CE. DNA Damage and Inflammatory Response of p53 Null H358 Non-Small Cell Lung Cancer Cells to X-Ray Exposure Under Chronic Hypoxia. Int J Mol Sci 2024; 25:12590. [PMID: 39684302 DOI: 10.3390/ijms252312590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Hypoxia-induced radioresistance limits therapeutic success in cancer. In addition, p53 mutations are widespread in tumors including non-small cell lung carcinomas (NSCLCs), and they might modify the radiation response of hypoxic tumor cells. We therefore analyzed the DNA damage and inflammatory response in chronically hypoxic (1% O2, 48 h) p53 null H358 NSCLC cells after X-ray exposure. We used the colony-forming ability assay to determine cell survival, γH2AX immunofluorescence microscopy to quantify DNA double-strand breaks (DSBs), flow cytometry of DAPI-stained cells to measure cell cycle distribution, ELISAs to quantify IL-6 and IL-8 secretion in cell culture supernatants, and RNA sequencing to determine gene expression. Chronic hypoxia increased the colony-forming ability and radioresistance of H358 cells. It did not affect the formation or resolution of X-ray-induced DSBs. It reduced the fraction of cells undergoing G2 arrest after X-ray exposure and delayed the onset of G2 arrest. Hypoxia led to an earlier enhancement in cytokines secretion rate after X-irradiation compared to normoxic controls. Gene expression changes were most pronounced after the combined exposure to hypoxia and X-rays and pertained to senescence and different cell death pathways. In conclusion, hypoxia-induced radioresistance is present despite the absence of functional p53. This resistance is related to differences in clonogenicity, cell cycle regulation, cytokine secretion, and gene expression under chronic hypoxia, but not to differences in DNA DSB repair kinetics.
Collapse
Affiliation(s)
- Hasan Nisar
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
- Department of Medical Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
| | - Melanie Brauny
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science & Faculty of Medicine, University of Tübingen, 72074 Tübingen, Germany
| | - Frederik M Labonté
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Cologne, 50923 Cologne, Germany
| | - Claudia Schmitz
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Bikash Konda
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Christine E Hellweg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| |
Collapse
|
2
|
Archer M, Begemann D, Gonzalez-Kozlova E, Nepali PR, Labanca E, Shepherd P, Dogra N, Navone N, Kyprianou N. Kinesin Facilitates Phenotypic Targeting of Therapeutic Resistance in Advanced Prostate Cancer. Mol Cancer Res 2024; 22:730-745. [PMID: 38648082 PMCID: PMC11296928 DOI: 10.1158/1541-7786.mcr-23-1047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/16/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Understanding the mechanisms underlying resistance is critical to improving therapeutic outcomes in patients with metastatic castration-resistant prostate cancer. Previous work showed that dynamic interconversions between epithelial-mesenchymal transition to mesenchymal-epithelial transition defines the phenotypic landscape of prostate tumors, as a potential driver of the emergence of therapeutic resistance. In this study, we use in vitro and in vivo preclinical MDA PCa patient-derived xenograft models of resistant human prostate cancer to determine molecular mechanisms of cross-resistance between antiandrogen therapy and taxane chemotherapy, underlying the therapeutically resistant phenotype. Transcriptomic profiling revealed that resistant and sensitive prostate cancer C4-2B cells have a unique differential gene signature response to cabazitaxel. Gene pathway analysis showed that sensitive cells exhibit an increase in DNA damage, while resistant cells express genes associated with protein regulation in response to cabazitaxel. The patient-derived xenograft model specimens are from patients who have metastatic lethal castration-resistant prostate cancer, treated with androgen deprivation therapy, antiandrogens, and chemotherapy including second-line taxane chemotherapy, cabazitaxel. Immunohistochemistry revealed high expression of E-cadherin and low expression of vimentin resulting in redifferentiation toward an epithelial phenotype. Furthermore, the mitotic kinesin-related protein involved in microtubule binding and the SLCO1B3 transporter (implicated in cabazitaxel intracellular transport) are associated with resistance in these prostate tumors. Combinational targeting of kinesins (ispinesib) with cabazitaxel was more effective than single monotherapies in inducing cell death in resistant prostate tumors. Implications: Our findings are of translational significance in identifying kinesin as a novel target of cross-resistance toward enhancing therapeutic vulnerability and improved clinical outcomes in patients with advanced prostate cancer.
Collapse
Affiliation(s)
- Maddison Archer
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diane Begemann
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Edgar Gonzalez-Kozlova
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prerna R. Nepali
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Estefania Labanca
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Shepherd
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Navneet Dogra
- Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology and Molecular & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nora Navone
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology and Molecular & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Wang Y, Zhang H, Zhang X, Mu P, Zhao L, Qi R, Zhang Y, Zhu X, Dong Y. The role of IGFBP-3 in tumor development and progression: enlightenment for diagnosis and treatment. Med Oncol 2024; 41:141. [PMID: 38714554 DOI: 10.1007/s12032-024-02373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/25/2024] [Indexed: 05/10/2024]
Abstract
IGFBP-3 is aberrantly expressed in many tumor types, and its serum and tumor tissue levels provide auxiliary information for assessing the degree of tumor malignancy and patient prognosis, making it a potential therapeutic target for human malignancies and conferring it remarkable clinical value for determining patient prognosis. In this review, we provide a comprehensive overview of the aberrant expression, diverse biological effects, and clinical implications of IGFBP-3 in tumors and its role as a potential prognostic marker and therapeutic target for tumors. In addition, we summarize the signaling pathways through which IGFBP-3 exerts its effects. IGFBP-3 comprises an N-terminal, an intermediate region, and a C-terminal structural domain, each exerting different biological effects in several tumor cell types in an IGF-dependent/non-independent manner. IGFBP-3 shares an intricate relationship with the tumor microenvironment, thereby affecting tumor growth. Overall, IGFBP-3 is an essential regulatory factor that mediates tumor occurrence and progression. Gaining deeper insights into the fundamental characteristics of IGFBP-3 and its role in various tumor types will provide new perspectives and allow for the development of novel strategies for cancer diagnosis, treatment, and prognostic evaluation.
Collapse
Affiliation(s)
- Yudi Wang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - He Zhang
- Department of Immunology, Qiqihar Medical University, Qiqihar, China
| | - Xuehua Zhang
- Department of Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Peizheng Mu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Leilei Zhao
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Ruomei Qi
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Yurui Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Xiao Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, China.
| | - Yucui Dong
- Department of Immunology, Binzhou Medical University, Yantai, China.
| |
Collapse
|
4
|
Salamini-Montemurri M, Vizoso-Vázquez Á, Barreiro-Alonso A, Lorenzo-Catoira L, Rodríguez-Belmonte E, Cerdán ME, Lamas-Maceiras M. The Effect of HMGB1 and HMGB2 on Transcriptional Regulation Differs in Neuroendocrine and Adenocarcinoma Models of Prostate Cancer. Int J Mol Sci 2024; 25:3106. [PMID: 38542079 PMCID: PMC10969884 DOI: 10.3390/ijms25063106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/25/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Human high-mobility group-B (HMGB) proteins regulate gene expression in prostate cancer (PCa), a leading cause of oncological death in men. Their role in aggressive PCa cancers, which do not respond to hormonal treatment, was analyzed. The effects of HMGB1 and HMGB2 silencing upon the expression of genes previously related to PCa were studied in the PCa cell line PC-3 (selected as a small cell neuroendocrine carcinoma, SCNC, PCa model not responding to hormonal treatment). A total of 72% of genes analyzed, using pre-designed primer panels, were affected. HMGB1 behaved mostly as a repressor, but HMGB2 as an activator. Changes in SERPINE1, CDK1, ZWINT, and FN1 expression were validated using qRT-PCR after HMGB1 silencing or overexpression in PC-3 and LNCaP (selected as an adenocarcinoma model of PCa responding to hormonal treatment) cell lines. Similarly, the regulatory role of HMGB2 upon SERPINE1, ZWINT, FN1, IGFPB3, and TYMS expression was validated, finding differences between cell lines. The correlation between the expression of HMGB1, HMGB2, and their targets was analyzed in PCa patient samples and also in PCa subgroups, classified as neuroendocrine positive or negative, in public databases. These results allow a better understanding of the role of HMGB proteins in PCa and contribute to find specific biomarkers for aggressive PCa.
Collapse
Affiliation(s)
- Martín Salamini-Montemurri
- Centro Interdisciplinar de Química e Bioloxía (CICA), Campus de Elviña, Universidade da Coruña, As Carballeiras, s/n, 15071 A Coruña, Spain; (M.S.-M.); (Á.V.-V.); (A.B.-A.); (L.L.-C.); (E.R.-B.)
- Facultade de Ciencias, Campus de A Zapateira, Universidade da Coruña, A Fraga, s/n, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Ángel Vizoso-Vázquez
- Centro Interdisciplinar de Química e Bioloxía (CICA), Campus de Elviña, Universidade da Coruña, As Carballeiras, s/n, 15071 A Coruña, Spain; (M.S.-M.); (Á.V.-V.); (A.B.-A.); (L.L.-C.); (E.R.-B.)
- Facultade de Ciencias, Campus de A Zapateira, Universidade da Coruña, A Fraga, s/n, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Aida Barreiro-Alonso
- Centro Interdisciplinar de Química e Bioloxía (CICA), Campus de Elviña, Universidade da Coruña, As Carballeiras, s/n, 15071 A Coruña, Spain; (M.S.-M.); (Á.V.-V.); (A.B.-A.); (L.L.-C.); (E.R.-B.)
- Facultade de Ciencias, Campus de A Zapateira, Universidade da Coruña, A Fraga, s/n, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Lidia Lorenzo-Catoira
- Centro Interdisciplinar de Química e Bioloxía (CICA), Campus de Elviña, Universidade da Coruña, As Carballeiras, s/n, 15071 A Coruña, Spain; (M.S.-M.); (Á.V.-V.); (A.B.-A.); (L.L.-C.); (E.R.-B.)
- Facultade de Ciencias, Campus de A Zapateira, Universidade da Coruña, A Fraga, s/n, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Esther Rodríguez-Belmonte
- Centro Interdisciplinar de Química e Bioloxía (CICA), Campus de Elviña, Universidade da Coruña, As Carballeiras, s/n, 15071 A Coruña, Spain; (M.S.-M.); (Á.V.-V.); (A.B.-A.); (L.L.-C.); (E.R.-B.)
- Facultade de Ciencias, Campus de A Zapateira, Universidade da Coruña, A Fraga, s/n, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - María-Esperanza Cerdán
- Centro Interdisciplinar de Química e Bioloxía (CICA), Campus de Elviña, Universidade da Coruña, As Carballeiras, s/n, 15071 A Coruña, Spain; (M.S.-M.); (Á.V.-V.); (A.B.-A.); (L.L.-C.); (E.R.-B.)
- Facultade de Ciencias, Campus de A Zapateira, Universidade da Coruña, A Fraga, s/n, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Mónica Lamas-Maceiras
- Centro Interdisciplinar de Química e Bioloxía (CICA), Campus de Elviña, Universidade da Coruña, As Carballeiras, s/n, 15071 A Coruña, Spain; (M.S.-M.); (Á.V.-V.); (A.B.-A.); (L.L.-C.); (E.R.-B.)
- Facultade de Ciencias, Campus de A Zapateira, Universidade da Coruña, A Fraga, s/n, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| |
Collapse
|
5
|
Song K, Ma C, Gu B, Wang B, Ma H, Deng X, Chen H. Molecular mechanism underlying epithelial-mesenchymal transformation and cisplatin resistance in esophageal squamous cell carcinoma. Thorac Cancer 2023; 14:3069-3079. [PMID: 37718469 PMCID: PMC10626249 DOI: 10.1111/1759-7714.15094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Esophageal cancer (EC) occupies the seventh spot of the most prevalent malignancy cancer ailments worldwide and the sixth leading cause of cancer-related death. Esophageal squamous cell carcinoma (ESCC) is also the most predominant histological subtype of EC, and cisplatin (DDP) is commonly used as a first-line chemotherapeutic drug for the late advanced stages of the disease. However, the emergence of drug resistance during clinical treatment possesses a significant challenge to the therapeutic success and patient outcomes. Collectively, the epithelial-mesenchymal transformation (EMT) is a process in which transcription factors are induced to regulate the expression of epithelial and stromal markers to promote the differentiation of epithelial cells into stromal cells. Recent studies have demonstrated a close association between EMT and chemotherapy resistance in tumor cells, with concrete evidence of reciprocal reinforcement. Therefore, in this review, we elucidate the molecular mechanism underlying ESCC, shed light on the mechanisms driving DDP resistance, and provide insights into the intricate interplay between EMT and ESCC. We have aimed to provide some new hypotheses and perspectives that may address-inform future therapeutic strategies for ESCC treatment.
Collapse
Affiliation(s)
- Kewei Song
- The Second Clinical Medical College, Lanzhou UniversityLanzhouChina
- Department of Public HealthJining No.1 People's HospitalJiningChina
| | - Chenhui Ma
- The Second Clinical Medical College, Lanzhou UniversityLanzhouChina
| | - Baohong Gu
- The Second Clinical Medical College, Lanzhou UniversityLanzhouChina
| | - Bofang Wang
- The Second Clinical Medical College, Lanzhou UniversityLanzhouChina
| | - Huanhuan Ma
- The Second Clinical Medical College, Lanzhou UniversityLanzhouChina
| | - Xiaobo Deng
- The Second Clinical Medical College, Lanzhou UniversityLanzhouChina
| | - Hao Chen
- Department of Tumor SurgeryLanzhou University Second HospitalLanzhouChina
- Key Laboratory of Digestive System Tumors of Gansu ProvinceLanzhouChina
| |
Collapse
|
6
|
Parikh AS, Yu VX, Flashner S, Okolo OB, Lu C, Henick BS, Momen-Heravi F, Puram SV, Teknos T, Pan Q, Nakagawa H. Patient-derived three-dimensional culture techniques model tumor heterogeneity in head and neck cancer. Oral Oncol 2023; 138:106330. [PMID: 36773387 PMCID: PMC10126876 DOI: 10.1016/j.oraloncology.2023.106330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/08/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) outcomes remain stagnant, in part due to a poor understanding of HNSCC biology. The importance of tumor heterogeneity as an independent predictor of outcomes and treatment failure in HNSCC has recently come to light. With this understanding, 3D culture systems, including patient derived organoids (PDO) and organotypic culture (OTC), that capture this heterogeneity may allow for modeling and manipulation of critical subpopulations, such as p-EMT, as well as interactions between cancer cells and immune and stromal cells in the microenvironment. Here, we review work that has been done using PDO and OTC models of HNSCC, which demonstrates that these 3D culture models capture in vivo tumor heterogeneity and can be used to model tumor biology and treatment response in a way that faithfully recapitulates in vivo characteristics. As such, in vitro 3D culture models represent an important bridge between 2D monolayer culture and in vivo models such as patient derived xenografts.
Collapse
Affiliation(s)
- Anuraag S Parikh
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, NY, United States; Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Victoria X Yu
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, NY, United States
| | - Samuel Flashner
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, United States
| | - Ogoegbunam B Okolo
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Chao Lu
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
| | - Brian S Henick
- Division of Hematology/Oncology, Department of Medicine, Columbia Unversity, New York, NY, United States
| | - Fatemeh Momen-Heravi
- Columbia University College of Dental Medicine, Columbia University, New York, NY, United States
| | - Sidharth V Puram
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, United States; Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Theodoros Teknos
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, United States
| | - Quintin Pan
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, United States
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, United States.
| |
Collapse
|
7
|
Hasan R, Srivastava G, Alyass A, Sharma R, Saraya A, Chattopadhyay TK, DattaGupta S, Walfish PG, Chauhan SS, Ralhan R. Prediction of recurrence free survival for esophageal cancer patients using a protein signature based risk model. Oncotarget 2022; 13:1020-1032. [PMID: 36128326 PMCID: PMC9477219 DOI: 10.18632/oncotarget.10656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/16/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Biomarkers to predict the risk of disease recurrence in Esophageal squamous cell carcinoma (ESCC) patients are urgently needed to improve treatment. We developed proteins expression-based risk model to predict recurrence free survival for ESCC patients. METHODS Alterations in Wnt pathway components expression and subcellular localization were analyzed by immunohistochemistry in 80 ESCCs, 61 esophageal dysplastic and 47 normal tissues; correlated with clinicopathological parameters and clinical outcome over 86 months by survival analysis. Significant prognostic factors were identified by multivariable Cox regression analysis. RESULTS Biomarker signature score based on cytoplasmic β-catenin, nuclear c-Myc, nuclear DVL and membrane α-catenin was associated with recurrence free survival [Hazard ratio = 1.11 (95% CI = 1.05, 1.17), p < 0.001, C-index = 0.68] and added significant prognostic value over clinical parameters (p < 0.001). The inclusion of Slug further improved prognostic utility (p < 0.001, C-index = 0.71). Biomarker Signature Scoreslug improved risk classification abilities for clinical outcomes at 3 years, accurately predicting recurrence in 79% patients in 1 year and 97% in 3 years in high risk group; 73% patients within low risk group did not have recurrence in 1 year, with AUC of 0.76. CONCLUSIONS Our comprehensive risk model predictive for recurrence allowed us to determine the robustness of our biomarker panel in stratification of ESCC patients at high or low risk of disease recurrence; high risk patients are stratified for more rigorous personalized treatment while the low risk patients may be spared from harmful side effects of toxic therapy.
Collapse
Affiliation(s)
- Raghibul Hasan
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Gunjan Srivastava
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Akram Alyass
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - Rinu Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha Univesity, Dwarka, New Delhi, India
| | - Anoop Saraya
- Department of Gastroenterology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Tushar K. Chattopadhyay
- Department of Gastrointestinal Surgery, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Siddartha DattaGupta
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Paul G. Walfish
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Medicine, Endocrine Division, Mount Sinai Hospital and University of Toronto, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Department of Otolaryngology – Head and Neck Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Shyam S. Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Ranju Ralhan
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Department of Otolaryngology – Head and Neck Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Otolaryngology – Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Ng EFY, Kaida A, Nojima H, Miura M. Roles of IGFBP-3 in cell migration and growth in an endophytic tongue squamous cell carcinoma cell line. Sci Rep 2022; 12:11503. [PMID: 35798794 PMCID: PMC9262895 DOI: 10.1038/s41598-022-15737-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/28/2022] [Indexed: 11/20/2022] Open
Abstract
Insulin-like growth factor binding protein-3 (IGFBP-3) is a member of the IGFBP family that has high affinity for IGFs and functions as either an oncogene or tumor suppressor in various types of cancer. We previously found that IGFBP3 mRNA levels are higher in endophytic-type human tongue squamous cell carcinoma (TSCC) that is more invasive and more prone to metastasis than exophytic and superficial types. This finding prompted us to investigate the roles of IGFBP-3 in TSCC using SAS cells, which were originally derived from endophytic-type TSCC. Specifically, we used SAS cells that express a fluorescent ubiquitination-based cell-cycle indicator (Fucci). RNA-sequencing analysis indicated that IGFBP-3 is associated with cell migration and cell growth. In fact, IGFBP-3 knockdown downregulates cell migration and causes cells to arrest in G1. This migratory potential appears to be cell cycle–independent. IGFBP-3 knockdown also reduced levels of secreted IGFBP-3; however, decreased migratory potential was not rescued by exogenous recombinant human IGFBP-3. Furthermore, ERK activity was downregulated by IGFBP-3 depletion, which suggests that MEK/ERK signaling may be involved in IGFBP-3-mediated cell migration. We therefore conclude that intracellular IGFBP-3 enhances cell migration independently of the cell cycle in TSCC with a higher metastatic potential.
Collapse
Affiliation(s)
- Esther Feng Ying Ng
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical & Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Atsushi Kaida
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical & Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Hitomi Nojima
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical & Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Masahiko Miura
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical & Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
9
|
Font A, Ruiz de Porras V, Valderrama BP, Ramirez JL, Nonell L, Virizuela JA, Anido U, González-del-Alba A, Lainez N, Llorente MDM, Jiménez N, Mellado B, García-Donas J, Bellmunt J. Epithelial-to-Mesenchymal Transition Mediates Resistance to Maintenance Therapy with Vinflunine in Advanced Urothelial Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13246235. [PMID: 34944855 PMCID: PMC8699401 DOI: 10.3390/cancers13246235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Platinum-based chemotherapy is the first-line treatment for advanced urothelial cell carcinoma (aUCC). After first-line treatment, we previously showed that maintenance therapy with vinflunine improves progression-free survival. However, some patients are resistant to vinflunine and the specific mechanisms of resistance in aUCC are unclear. We analyzed the genomic landscape and the biological processes potentially related to vinflunine activity and found that epithelial-to-mesenchymal transition (EMT) plays a pivotal role as a resistance mechanism. In experiments with cell lines, curcumin reversed EMT and sensitized cells to vinflunine. We suggest that EMT mediates resistance to vinflunine and that the reversion of this process could enhance the effect of vinflunine in aUCC patients. Abstract In the phase II MAJA trial, maintenance therapy with vinflunine resulted in longer progression-free survival compared to best supportive care in advanced urothelial cell carcinoma (aUCC) patients who did not progress after first-line platinum-based chemotherapy. However, despite an initial benefit observed in some patients, unequivocal resistance appears which underlying mechanisms are presently unknown. We have performed gene expression and functional enrichment analyses to shed light on the discovery of these underlying resistance mechanisms. Differential gene expression profile of eight patients with poor outcome and nine with good outcome to vinflunine administered in the MAJA trial were analyzed. RNA was isolated from tumor tissue and gene expression was assessed by microarray. Differential expression was determined with linear models for microarray data. Gene Set Enrichment Analysis (GSEA) was used for the functional classification of the genes. In vitro functional studies were performed using UCC cell lines. Hierarchical clustering showed a differential gene expression pattern between patients with good and poor outcome to vinflunine treatment. GSEA identified epithelial-to-mesenchymal transition (EMT) as the top negatively enriched hallmark in patients with good outcome. In vitro analyses showed that the polyphenol curcumin downregulated EMT markers and sensitized UCC cells to vinflunine. We conclude that EMT mediates resistance to vinflunine and suggest that the reversion of this process could enhance the effect of vinflunine in aUCC patients.
Collapse
Affiliation(s)
- Albert Font
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Vicenç Ruiz de Porras
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
| | - Begoña P. Valderrama
- Department of Medical Oncology, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain;
| | - Jose Luis Ramirez
- Department of Haematology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Lara Nonell
- MARGenomics, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain;
| | - José Antonio Virizuela
- Department of Medical Oncology, Hospital Universitario Virgen de Macarena, 41009 Seville, Spain;
| | - Urbano Anido
- Department of Medical Oncology, Complejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, Spain;
| | - Aránzazu González-del-Alba
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro-Majadahonda, 28222 Madrid, Spain;
| | - Nuria Lainez
- Department of Medical Oncology, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain;
| | - Maria del Mar Llorente
- Department of Medical Oncology, Hospital General Universitario de Elda, 03600 Alicante, Spain;
| | - Natalia Jiménez
- Translational Genomics and Targeted Therapeutics in Solid Tumors Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
| | - Begoña Mellado
- Department of Medical Oncology, Hospital Clinic de Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain;
| | - Jesus García-Donas
- Division of Medical Oncology, HM Hospitales-Centro Integral Oncológico Hospital de Madrid Clara Campal, 28050 Madrid, Spain
- Correspondence: (J.G.D.); (J.B.)
| | - Joaquim Bellmunt
- Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Correspondence: (J.G.D.); (J.B.)
| |
Collapse
|
10
|
SMARCA4 Depletion Induces Cisplatin Resistance by Activating YAP1-Mediated Epithelial-to-Mesenchymal Transition in Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13215474. [PMID: 34771636 PMCID: PMC8582548 DOI: 10.3390/cancers13215474] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary SMARCA4 mutations were over-representative in cisplatin resistance and metastatic triple-negative breast cancer (TNBC). Additionally, SMARCA4 inactivation induced the mesenchymal-like subtype TNBC. The epithelial-to-mesenchymal transition and Hippo-YAP/TAZ pathways were activated in SMARCA4 inactivation samples of both SMARCA4 knockout cell lines and TNBC patients. In SMARCA4 knockout cells, the YAP1 inhibitor verteporfin suppressed YAP1 target genes. This study depicts the clinical importance of SMARCA4 depletion in TNBC and suggests YAP/TAZ as a novel target for cisplatin-resistant patients. Abstract The role of SMARCA4, an ATPase subunit of the SWI/SNF chromatin remodeling complex, in genomic organization is well studied in various cancer types. However, its oncogenic role and therapeutic implications are relatively unknown in triple-negative breast cancer (TNBC). We investigated the clinical implication and downstream regulation induced by SMARCA4 inactivation using large-scale genome and transcriptome profiles. Additionally, SMARCA4 was knocked out in MDA-MB-468 and MDA-MB-231 using CRISPR/Cas9 to identify gene regulation and a targetable pathway. First, we observed an increase in SMARCA4 mutations in cisplatin resistance and metastasis in TNBC patients. Its inactivation was associated with the mesenchymal-like (MSL) subtype. Gene expression analysis showed that the epithelial-to-mesenchymal transition (EMT) pathway was activated in SMARCA4-deficient patients. Next, the Hippo pathway was activated in the SMARCA4 inactivation group, as evidenced by the higher CTNNB1, TGF-β, and YAP1 oncogene signature scores. In SMARCA4 knockout cells, EMT was upregulated, and the cell line transcriptome changed from the SL to the MSL subtype. SMARCA4 knockout cells showed cisplatin resistance and Hippo-YAP/TAZ target gene activation. The YAP1 inhibitor verteporfin suppressed the expression of YAP1 target genes, and decreased cell viability and invasiveness on SMARCA4 knockout cells. SMARCA4 inactivation in TNBC endowed the resistance to cisplatin via EMT activation. The YAP1 inhibitor could become a novel strategy for patients with SMARCA4-inactivated TNBC.
Collapse
|
11
|
Xu Y, Tsai CW, Chang WS, Xiong GY, Huang M, Torres KE, Bau DT, Gu J. Genetically predicted high circulating insulin-like growth factor-1 and insulin-like growth factor binding protein-3 increase the risks of soft tissue sarcoma. Am J Cancer Res 2021; 11:3980-3989. [PMID: 34522462 PMCID: PMC8414386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/13/2021] [Indexed: 06/13/2023] Open
Abstract
Insulin growth factor-1 (IGF-1) plays important roles in carcinogenesis. Previous studies have linked circulating IGF-1 and its main binding protein, insulin-like growth factor-binding protein-3 (IGFBP-3), to cancer risks. However, no study has been conducted in soft tissue sarcoma (STS). In this study, we investigated the relationship of genetically predicted circulating IGF-1 and IGFBP-3 with STS risks. Recent large genome-wide association studies (GWAS) have identified 413 single nucleotide polymorphisms (SNPs) associated with IGF-1 and 4 SNPs associated with IGFBP-3. We genotyped these SNPs in 821 patients and 851 healthy controls. We constructed weighted genetic risk scores (GRS) to predict circulating IGF-1 and IGFBP-3. We determined the associations of individual SNPs and GRS with the risks of STS using multivariate logistic regression analysis. We found high genetically predicted circulating IGF-1 and IGFBP-3 were both associated with increased STS risks. Dichotomized at the median values of IGF-1 and IGFBP-3 in controls, individuals with high level of IGF-1 exhibited a 27% increased risk of STS (odds ratio [OR]=1.27, 95% confidence interval [CI]=1.04-1.54, P=0.017), whereas the OR for high IGFBP-3 was 1.45 (95% CI=1.20-1.77, P<0.001). Interestingly, the significant association between IGFBP-3 and STS risk was only evident in women (OR=1.88, 95% CI=1.42-2.49, P<0.001), but not in men (OR=1.00, 95% CI=0.75-1.33, P=0.992). In stratified analyses by major STS subtypes, the strongest associations were observed in angiosarcoma for IGF-1, leiomyosarcoma for IGFBP-3, and gastrointestinal stromal tumors for IGFBP-3 in women. In conclusion, high circulating IGF-1 and IGFBP-3 levels were both associated with increased STS risks.
Collapse
Affiliation(s)
- Yifan Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Chia-Wen Tsai
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Terry Fox Cancer Research Laboratory, China Medical University HospitalTaichung, Taiwan
| | - Wen-Shin Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Terry Fox Cancer Research Laboratory, China Medical University HospitalTaichung, Taiwan
| | - Grace Y Xiong
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Keila E Torres
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University HospitalTaichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia UniversityTaichung, Taiwan
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| |
Collapse
|
12
|
Liu Y, Lv H, Li X, Liu J, Chen S, Chen Y, Jin Y, An R, Yu S, Wang Z. Cyclovirobuxine inhibits the progression of clear cell renal cell carcinoma by suppressing the IGFBP3-AKT/STAT3/MAPK-Snail signalling pathway. Int J Biol Sci 2021; 17:3522-3537. [PMID: 34512163 PMCID: PMC8416721 DOI: 10.7150/ijbs.62114] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Of all pathological types of renal cell cancer (RCC), clear cell renal cell carcinoma (ccRCC) has the highest incidence. Cyclovirobuxine (CVB), a triterpenoid alkaloid isolated from Buxus microphylla, exhibits antitumour activity against gastric cancer and breast cancer; however, the mechanism by which CVB inhibits ccRCC remains unclear. The aim of our study was to explore the antitumour effects of CVB on ccRCC and to elucidate its exact mechanism. Cell viability, proliferation, cell cycle distribution, apoptosis, wound healing and invasion were evaluated. Furthermore, Western blotting, immunofluorescence staining, immunohistochemical staining, and bioinformatics analyses were utilized to comprehensively probe the molecular mechanisms. The in vivo curative effect of CVB was explored using a 786-O xenograft model established in nude mice. CVB reduced cell viability, proliferation, angiogenesis, the epithelial-mesenchymal transition (EMT), migration and invasion. In addition, CVB induced cell cycle arrest in S phase and promoted apoptosis. The expression of the EMT-related transcription factor Snail was significantly downregulated by CVB via the inhibition of the AKT, STAT3 and MAPK pathways. We revealed that insulin-like growth factor binding protein 3 (IGFBP3) was the true therapeutic target of CVB. CVB exerted anti-ccRCC effects by blocking the IGFBP3-AKT/STAT3/MAPK-Snail pathway. Targeted inhibition of IGFBP3 with CVB treatment may become a promising therapeutic regimen for ccRCC.
Collapse
Affiliation(s)
- Yadong Liu
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, No.23 You Zheng Street, Harbin 150001, Heilongjiang, China
| | - Huiyan Lv
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, No.23 You Zheng Street, Harbin 150001, Heilongjiang, China
| | - Xingyi Li
- Department of Ultrasonic Imaging, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jiannan Liu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, No.23 You Zheng Street, Harbin 150001, Heilongjiang, China
| | - Song Chen
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, No.23 You Zheng Street, Harbin 150001, Heilongjiang, China
| | - Yaodong Chen
- Department of Ultrasonic Imaging, First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Yinshan Jin
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, No.23 You Zheng Street, Harbin 150001, Heilongjiang, China
| | - Ruihua An
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, No.23 You Zheng Street, Harbin 150001, Heilongjiang, China
| | - Shiliang Yu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, No.23 You Zheng Street, Harbin 150001, Heilongjiang, China
| | - Zhigang Wang
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
13
|
Shigesawa T, Maehara O, Suda G, Natsuizaka M, Kimura M, Shimazaki T, Yamamoto K, Yamada R, Kitagataya T, Nakamura A, Suzuki K, Ohara M, Kawagishi N, Umemura M, Nakai M, Sho T, Morikawa K, Ogawa K, Ohnishi S, Sugiyama M, Mizokami M, Takeda H, Sakamoto N. Lenvatinib suppresses cancer stem-like cells in HCC by inhibiting FGFR1-3 signaling, but not FGFR4 signaling. Carcinogenesis 2021; 42:58-69. [PMID: 32449510 DOI: 10.1093/carcin/bgaa049] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/04/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
In hepatocellular carcinoma (HCC), a subset of cells defined by high CD44 and CD133 expression has been reported to possess cancer stem-like cell (CSC) characteristics and to be associated with a poor prognosis. Since the approval of the multikinase inhibitor, lenvatinib, for patients with unresectable HCC, two such inhibitors (sorafenib and lenvatinib) have been employed as first-line systemic chemotherapeutics for these patients. Based on differences in the kinase-affinity profiles between these two drugs, evidence has suggested that both exert different effects on HCC, although these differences are not fully characterized. In this study, using in vitro and a preclinical in vivo xenograft mouse model, we showed that lenvatinib alone (not sorafenib or the cytotoxic agent, 5-fluorouracil) diminished CD44High/CD133High CSCs in HCC. Furthermore, western blotting and reverse transcriptase-polymerase chain reaction analysis revealed that the expression of fibroblast growth factor receptor (FGFR)-1-4 differed between CD44High/CD133High CSCs and control cells. Analysis of the effects of selective FGFR inhibitors and FGFR small interfering RNAs on CSCs in HCC revealed that lenvatinib diminished CSCs in HCC by inhibiting FGFR1-3 signaling, however, FGFR4 signaling was not impacted. Finally, we showed that FGF2 and FGF19 were involved in maintaining CD44High/CD133High CSCs in HCC, potentially, via FGFR1-3. The findings provide novel mechanistic insights into the effects of lenvatinib on CSCs in HCC and provide clues for developing effective targeted therapies against CSCs in HCC.
Collapse
Affiliation(s)
- Taku Shigesawa
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Osamu Maehara
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences Hokkaido University, Sapporo, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Mitsuteru Natsuizaka
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Department of Internal Medicine, Natsuizaka Clinic, Sapporo, Japan
| | - Megumi Kimura
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tomoe Shimazaki
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koji Yamamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ren Yamada
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takashi Kitagataya
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akihisa Nakamura
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kazuharu Suzuki
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masatsugu Ohara
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Naoki Kawagishi
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Machiko Umemura
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masato Nakai
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takuya Sho
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kenichi Morikawa
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koji Ogawa
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shunsuke Ohnishi
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health Medicine, Tokyo, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health Medicine, Tokyo, Japan
| | - Hiroshi Takeda
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences Hokkaido University, Sapporo, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
14
|
Maehara O, Suda G, Natsuizaka M, Shigesawa T, Kanbe G, Kimura M, Sugiyama M, Mizokami M, Nakai M, Sho T, Morikawa K, Ogawa K, Ohashi S, Kagawa S, Kinugasa H, Naganuma S, Okubo N, Ohnishi S, Takeda H, Sakamoto N. FGFR2 maintains cancer cell differentiation via AKT signaling in esophageal squamous cell carcinoma. Cancer Biol Ther 2021; 22:372-380. [PMID: 34224333 PMCID: PMC8386746 DOI: 10.1080/15384047.2021.1939638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/27/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) are important for signaling to maintain cancer stem-like cells (CSCs) in esophageal squamous cell carcinoma (ESCC). However, which FGF receptor, 1, 2, 3, 4, and L1, is essential or whether FGFRs have distinct different roles in ESCC-CSCs is still in question. This study shows that FGFR2, particularly the IIIb isoform, is highly expressed in non-CSCs. Non-CSCs have an epithelial phenotype, and such cells are more differentiated in ESCC. Further, FGFR2 induces keratinocyte differentiation through AKT but not MAPK signaling and diminishes CSC populations. Conversely, knockdown of FGFR2 induces epithelial-mesenchymal transition (EMT) and enriches CSC populations in ESCC. Finally, data analysis using The Cancer Genome Atlas (TCGA) dataset shows that expression of FGFR2 significantly correlated with cancer cell differentiation in clinical ESCC samples. The present study shows that each FGFR has a distinct role and FGFR2-AKT signaling is a key driver of keratinocyte differentiation in ESCC. Activation of FGFR2-AKT signaling could be a future therapeutic option targeting CSC in ESCC.
Collapse
Affiliation(s)
- Osamu Maehara
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Mitsuteru Natsuizaka
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Department of Internal Medicine, Natsuizaka Clinic, Sapporo, Japan
| | - Taku Shigesawa
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Gouki Kanbe
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Megumi Kimura
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health Medicine, Tokyo, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health Medicine, Tokyo, Japan
| | - Masato Nakai
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takuya Sho
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kenichi Morikawa
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koji Ogawa
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shinya Ohashi
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shingo Kagawa
- Department of General Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hideaki Kinugasa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Seiji Naganuma
- Department of Pathology, Kochi Medical School, Kochi, Japan
| | - Naoto Okubo
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shunsuke Ohnishi
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroshi Takeda
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
15
|
Lorenzo PI, Martin Vazquez E, López-Noriega L, Fuente-Martín E, Mellado-Gil JM, Franco JM, Cobo-Vuilleumier N, Guerrero Martínez JA, Romero-Zerbo SY, Perez-Cabello JA, Rivero Canalejo S, Campos-Caro A, Lachaud CC, Crespo Barreda A, Aguilar-Diosdado M, García Fuentes E, Martin-Montalvo A, Álvarez Dolado M, Martin F, Rojo-Martinez G, Pozo D, Bérmudez-Silva FJ, Comaills V, Reyes JC, Gauthier BR. The metabesity factor HMG20A potentiates astrocyte survival and reactive astrogliosis preserving neuronal integrity. Theranostics 2021; 11:6983-7004. [PMID: 34093866 PMCID: PMC8171100 DOI: 10.7150/thno.57237] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Rationale: We recently demonstrated that the 'Metabesity' factor HMG20A regulates islet beta-cell functional maturity and adaptation to physiological stress such as pregnancy and pre-diabetes. HMG20A also dictates central nervous system (CNS) development via inhibition of the LSD1-CoREST complex but its expression pattern and function in adult brain remains unknown. Herein we sought to determine whether HMG20A is expressed in the adult CNS, specifically in hypothalamic astrocytes that are key in glucose homeostasis and whether similar to islets, HMG20A potentiates astrocyte function in response to environmental cues. Methods: HMG20A expression profile was assessed by quantitative PCR (QT-PCR), Western blotting and/or immunofluorescence in: 1) the hypothalamus of mice exposed or not to either a high-fat diet or a high-fat high-sucrose regimen, 2) human blood leukocytes and adipose tissue obtained from healthy or diabetic individuals and 3) primary mouse hypothalamic astrocytes exposed to either high glucose or palmitate. RNA-seq and cell metabolic parameters were performed on astrocytes treated or not with a siHMG20A. Astrocyte-mediated neuronal survival was evaluated using conditioned media from siHMG20A-treated astrocytes. The impact of ORY1001, an inhibitor of the LSD1-CoREST complex, on HMG20A expression, reactive astrogliosis and glucose metabolism was evaluated in vitro and in vivo in high-fat high-sucrose fed mice. Results: We show that Hmg20a is predominantly expressed in hypothalamic astrocytes, the main nutrient-sensing cell type of the brain. HMG20A expression was upregulated in diet-induced obesity and glucose intolerant mice, correlating with increased transcript levels of Gfap and Il1b indicative of inflammation and reactive astrogliosis. Hmg20a transcript levels were also increased in adipose tissue of obese non-diabetic individuals as compared to obese diabetic patients. HMG20A silencing in astrocytes resulted in repression of inflammatory, cholesterol biogenesis and epithelial-to-mesenchymal transition pathways which are hallmarks of reactive astrogliosis. Accordingly, HMG20A depleted astrocytes exhibited reduced mitochondrial bioenergetics and increased susceptibility to apoptosis. Neuron viability was also hindered in HMG20A-depleted astrocyte-derived conditioned media. ORY1001 treatment rescued expression of reactive astrogliosis-linked genes in HMG20A ablated astrocytes while enhancing cell surface area, GFAP intensity and STAT3 expression in healthy astrocytes, mimicking the effect of HMG20A. Furthermore, ORY1001 treatment protected against obesity-associated glucose intolerance in mice correlating with a regression of hypothalamic HMG20A expression, indicative of reactive astrogliosis attenuation with improved health status. Conclusion: HMG20A coordinates the astrocyte polarization state. Under physiological pressure such as obesity and insulin resistance that induces low grade inflammation, HMG20A expression is increased to induce reactive astrogliosis in an attempt to preserve the neuronal network and re-establish glucose homeostasis. Nonetheless, a chronic metabesity state or functional mutations will result in lower levels of HMG20A, failure to promote reactive astrogliosis and increase susceptibility of neurons to stress-induced apoptosis. Such effects could be reversed by ORY1001 treatment both in vitro and in vivo, paving the way for a new therapeutic approach for Type 2 Diabetes Mellitus.
Collapse
Affiliation(s)
- Petra I. Lorenzo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Eugenia Martin Vazquez
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Livia López-Noriega
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Esther Fuente-Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - José M. Mellado-Gil
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Jaime M. Franco
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Nadia Cobo-Vuilleumier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - José A. Guerrero Martínez
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Silvana Y. Romero-Zerbo
- Unidad de Gestión Clínica Intercentros de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Spain
| | - Jesús A. Perez-Cabello
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Sabrina Rivero Canalejo
- Department of Normal and Pathological Histology and Cytology, University of Seville School of Medicine, Seville, Spain
| | - Antonio Campos-Caro
- University Hospital “Puerta del Mar”, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
| | - Christian Claude Lachaud
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Alejandra Crespo Barreda
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Manuel Aguilar-Diosdado
- University Hospital “Puerta del Mar”, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
- Endocrinology and Metabolism Department, University Hospital “Puerta del Mar”, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
| | - Eduardo García Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Spain
| | - Alejandro Martin-Montalvo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Manuel Álvarez Dolado
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Franz Martin
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Gemma Rojo-Martinez
- Unidad de Gestión Clínica Intercentros de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - David Pozo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Francisco J. Bérmudez-Silva
- Unidad de Gestión Clínica Intercentros de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Valentine Comaills
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - José C. Reyes
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Benoit R. Gauthier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
16
|
Wang SH, Chen YL, Hsiao JR, Tsai FY, Jiang SS, Lee AYL, Tsai HJ, Chen YW. Insulin-like growth factor binding protein 3 promotes radiosensitivity of oral squamous cell carcinoma cells via positive feedback on NF-κB/IL-6/ROS signaling. J Exp Clin Cancer Res 2021; 40:95. [PMID: 33712045 PMCID: PMC7955639 DOI: 10.1186/s13046-021-01898-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background Ectopic insulin-like growth factor binding protein 3 (IGFBP3) expression has been shown to enhance cell migration and lymph node metastasis of oral squamous cell carcinoma (OSCC) cells. However, OSCC patients with high IGFBP3 expression had improved survival compared with those with low expression. Therefore, we speculated that IGFBP3 expression may play a role in response to conventional OSCC therapies, such as radiotherapy. Methods We used in vitro and in vivo analyses to explore IGFBP3-mediated radiosensitivity. Reactive oxygen species (ROS) detection by flow cytometry was used to confirm IGFBP3-mediated ionizing radiation (IR)-induced apoptosis. Geneset enrichment analysis (GSEA) and ingenuity pathway analysis (IPA) were used to analyze the relationship between IGFBP3 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling. Assays involving an NF-κB inhibitor, ROS scavenger or interleukin 6 (IL-6) were used to evaluate the NF-κB/IL-6/ROS signaling in IGFBP3-mediated radiosensitivity. Results Ectopic IGFBP3 expression enhanced IR-induced cell-killing in vitro. In vivo, IGFBP3 reduced tumor growth and increased apoptotic signals of tumor tissues in immunocompromised mice treated with IR. Combined with IR, ectopic IGFBP3 expression induced mitochondria-dependent apoptosis, which was apparent through mitochondrial destruction and increased ROS production. Ectopic IGFBP3 expression enhanced NK-κB activation and downstream cytokine expression. After IR exposure, IGFBP3-induced NF-κB activation was inhibited by the ROS scavenger N-acetyl-L-cysteine (NAC). IGFBP3-mediated ROS production was reduced by the NF-κB inhibitor BMS-345541, while exogenous IL-6 rescued the NF-κB-inhibited, IGFBP3-mediated ROS production. Conclusions Our data demonstrate that IGFBP3, a potential biomarker for radiosensitivity, promotes IR-mediated OSCC cell death by increasing ROS production through NF-κB activation and cytokine production. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01898-7.
Collapse
Affiliation(s)
- Ssu-Han Wang
- National Institute of Cancer Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan
| | - Yu-Lin Chen
- National Institute of Cancer Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Fang-Yu Tsai
- National Institute of Cancer Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan
| | - Shih Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan
| | - Hui-Jen Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Ya-Wen Chen
- National Institute of Cancer Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan. .,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
17
|
Lamarche É, AlSudais H, Rajgara R, Fu D, Omaiche S, Wiper-Bergeron N. SMAD2 promotes myogenin expression and terminal myogenic differentiation. Development 2021; 148:dev.195495. [PMID: 33462116 DOI: 10.1242/dev.195495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/24/2020] [Indexed: 11/20/2022]
Abstract
SMAD2 is a transcription factor, the activity of which is regulated by members of the transforming growth factor β (TGFβ) superfamily. Although activation of SMAD2 and SMAD3 downstream of TGFβ or myostatin signaling is known to inhibit myogenesis, we found that SMAD2 in the absence of TGFβ signaling promotes terminal myogenic differentiation. We found that, during myogenic differentiation, SMAD2 expression is induced. Knockout of SMAD2 expression in primary myoblasts did not affect the efficiency of myogenic differentiation but produced smaller myotubes with reduced expression of the terminal differentiation marker myogenin. Conversely, overexpression of SMAD2 stimulated myogenin expression, and enhanced both differentiation and fusion, and these effects were independent of classical activation by the TGFβ receptor complex. Loss of Smad2 in muscle satellite cells in vivo resulted in decreased muscle fiber caliber and impaired regeneration after acute injury. Taken together, we demonstrate that SMAD2 is an important positive regulator of myogenic differentiation, in part through the regulation of Myog.
Collapse
Affiliation(s)
- Émilie Lamarche
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Rm 3106Q, Ottawa, Ontario K1H 8M5, Canada
| | - Hamood AlSudais
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Rm 3106Q, Ottawa, Ontario K1H 8M5, Canada
| | - Rashida Rajgara
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Rm 3106Q, Ottawa, Ontario K1H 8M5, Canada
| | - Dechen Fu
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Rm 3106Q, Ottawa, Ontario K1H 8M5, Canada
| | - Saadeddine Omaiche
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Rm 3106Q, Ottawa, Ontario K1H 8M5, Canada
| | - Nadine Wiper-Bergeron
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Rm 3106Q, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
18
|
Navarro R, Tapia‐Galisteo A, Martín‐García L, Tarín C, Corbacho C, Gómez‐López G, Sánchez‐Tirado E, Campuzano S, González‐Cortés A, Yáñez‐Sedeño P, Compte M, Álvarez‐Vallina L, Sanz L. TGF-β-induced IGFBP-3 is a key paracrine factor from activated pericytes that promotes colorectal cancer cell migration and invasion. Mol Oncol 2020; 14:2609-2628. [PMID: 32767843 PMCID: PMC7530788 DOI: 10.1002/1878-0261.12779] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/30/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
The crosstalk between cancer cells and the tumor microenvironment has been implicated in cancer progression and metastasis. Fibroblasts and immune cells are widely known to be attracted to and modified by cancer cells. However, the role of pericytes in the tumor microenvironment beyond endothelium stabilization is poorly understood. Here, we report that pericytes promoted colorectal cancer (CRC) cell proliferation, migration, invasion, stemness, and chemoresistance in vitro, as well as tumor growth in a xenograft CRC model. We demonstrate that coculture with human CRC cells induced broad transcriptomic changes in pericytes, mostly associated with TGF-β receptor activation. The prognostic value of a TGF-β response signature in pericytes was analyzed in CRC patient data sets. This signature was found to be a good predictor of CRC relapse. Moreover, in response to stimulation by CRC cells, pericytes expressed high levels of TGF-β1, initiating an autocrine activation loop. Investigation of secreted mediators and underlying molecular mechanisms revealed that IGFBP-3 is a key paracrine factor from activated pericytes affecting CRC cell migration and invasion. In summary, we demonstrate that the interplay between pericytes and CRC cells triggers a vicious cycle that stimulates pericyte cytokine secretion, in turn increasing CRC cell tumorigenic properties. Overall, we provide another example of how cancer cells can manipulate the tumor microenvironment.
Collapse
Affiliation(s)
- Rocío Navarro
- Molecular Immunology UnitBiomedical Research Institute Puerta de Hierro‐Segovia de AranaMadridSpain
| | - Antonio Tapia‐Galisteo
- Molecular Immunology UnitBiomedical Research Institute Puerta de Hierro‐Segovia de AranaMadridSpain
| | - Laura Martín‐García
- Molecular Immunology UnitBiomedical Research Institute Puerta de Hierro‐Segovia de AranaMadridSpain
| | - Carlos Tarín
- Bioinformatics UnitBiomedical Research Institute Puerta de Hierro‐Segovia de AranaMadridSpain
- Basic Medical Sciences DepartmentFaculty of MedicineUniversidad San Pablo CEUMadridSpain
| | - Cesáreo Corbacho
- Pathology DepartmentHospital Universitario Puerta de Hierro MajadahondaMadridSpain
| | - Gonzalo Gómez‐López
- Bioinformatics UnitSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Esther Sánchez‐Tirado
- Department of Analytical ChemistryFaculty of ChemistryUniversidad Complutense de Madrid (UCM)MadridSpain
| | - Susana Campuzano
- Department of Analytical ChemistryFaculty of ChemistryUniversidad Complutense de Madrid (UCM)MadridSpain
| | - Araceli González‐Cortés
- Department of Analytical ChemistryFaculty of ChemistryUniversidad Complutense de Madrid (UCM)MadridSpain
| | - Paloma Yáñez‐Sedeño
- Department of Analytical ChemistryFaculty of ChemistryUniversidad Complutense de Madrid (UCM)MadridSpain
| | - Marta Compte
- Molecular Immunology UnitBiomedical Research Institute Puerta de Hierro‐Segovia de AranaMadridSpain
| | - Luis Álvarez‐Vallina
- Immunotherapy and Cell Engineering LaboratoryDepartment of EngineeringAarhus UniversityAarhusDenmark
- Cancer Immunotherapy Unit (UNICA)Hospital Universitario 12 de OctubreMadridSpain
- Immuno‐oncology and Immunotherapy GroupBiomedical Research Institute 12 de OctubreMadridSpain
| | - Laura Sanz
- Molecular Immunology UnitBiomedical Research Institute Puerta de Hierro‐Segovia de AranaMadridSpain
| |
Collapse
|
19
|
Hsa_circ_0046263 functions as a ceRNA to promote nasopharyngeal carcinoma progression by upregulating IGFBP3. Cell Death Dis 2020; 11:562. [PMID: 32703944 PMCID: PMC7378203 DOI: 10.1038/s41419-020-02785-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023]
Abstract
Accumulating evidences indicate that circular RNAs (circRNAs), a subclass of noncoding RNAs, play important role in regulating gene expression in eukaryotes. Hsa_circ_0046263 (circ-0046263) was found aberrantly expressed in nasopharyngeal carcinoma (NPC), but its role in tumor growth and metastasis remains largely unclear. Sanger sequencing, RNase R assay, and nucleic acid electrophoresis were conducted to verify the identification of circ-0046263. Nuclear separation and fluorescence in situ hybridization (FISH) assays were used to determine the localization of circ-004263. Dual luciferase reporter and RNA immunoprecipitation (RIP) were employed to confirm the binding of circ-0046263 with miR-133a-5p. Colony formation, proliferation, wound healing, transwell, western blot, and in vivo tumor growth and metastasis assays were performed to assess the roles of circ-0046263, miR-133a-5p, IGFBP3 and their interactions in NPC cells. Circ-0046263 was upregulated in both NPC cell lines and tissues. The in vitro functional studies revealed that knockdown of circ-0046263 inhibited the proliferation, invasion, and migration of NPC cells, whereas its overexpression produced the opposite result. In vivo experiments indicated that knockdown or overexpression of circ-0046263 attenuated or promoted tumor growth and metastasis, respectively. Mechanistically, circ-0046263 could act as a miRNA sponge to absorb miR-133a-5p and upregulate the expression of miRNA downstream target IGFBP3. In addition, miR-133a-5p inhibition or IGFBP3 overexpression could rescue the malignant behavior induced by circ-0046263 silencing. Finally, circ-0046263 plays a tumor-promoting role in NPC to enhance malignant behavior through the miR-133a-5p/IGFBP3 axis, which could be a potential target for NPC therapy.
Collapse
|
20
|
Devarasetty M, Forsythe SD, Shelkey E, Soker S. In Vitro Modeling of the Tumor Microenvironment in Tumor Organoids. Tissue Eng Regen Med 2020; 17:759-771. [PMID: 32399776 DOI: 10.1007/s13770-020-00258-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The tumor microenvironment (TME) represents the many components occupying the space within and surrounding a tumor, including cells, signaling factors, extracellular matrix, and vasculature. Each component has the potential to assume many forms and functions which in turn contribute to the overall state of the TME, and further contribute to the progression and disposition of the tumor itself. The sum of these components can drive a tumor towards progression, keep a migratory tumor at bay, or even control chemotherapeutic response. The wide potential for interaction that the TME is an integral part of a tumor's ecosystem, and it is imperative to include it when studying and modeling cancer in vitro. Fortunately, the development of tissue engineering and biofabrication technologies and methodologies have allowed widespread inclusion of TME-based factors into in vitro tissue-equivalent models. METHODS In this review, we compiled contemporary literature sources to provide an overview of the field of TME models, ranging from simple to complex. RESULTS We have identified important components of the TME, how they can be included in in vitro study, and cover examples across a range of cancer types. CONCLUSION Our goal with this text is to provide a foundation for prospective research into the TME.
Collapse
Affiliation(s)
- Mahesh Devarasetty
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Steven D Forsythe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Ethan Shelkey
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
21
|
Zhao H, Klausen C, Zhu H, Chang H, Li Y, Leung PCK. Bone morphogenetic protein 2 promotes human trophoblast cell invasion and endothelial‐like tube formation through ID1‐mediated upregulation of IGF binding protein‐3. FASEB J 2020; 34:3151-3164. [PMID: 31908038 DOI: 10.1096/fj.201902168rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Hong‐Jin Zhao
- Department of Cardiology Shandong Provincial Hospital affiliated to Shandong University Jinan P.R. China
- Department of Obstetrics and Gynaecology BC Children's Hospital Research Institute University of British Columbia Vancouver BC Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology BC Children's Hospital Research Institute University of British Columbia Vancouver BC Canada
| | - Hua Zhu
- Department of Obstetrics and Gynaecology BC Children's Hospital Research Institute University of British Columbia Vancouver BC Canada
| | - Hsun‐Ming Chang
- Department of Obstetrics and Gynaecology BC Children's Hospital Research Institute University of British Columbia Vancouver BC Canada
| | - Yan Li
- School of Medicine Shandong University Jinan China
- Center for Reproductive Medicine Shandong University Jinan China
- The Key Laboratory of Reproductive Endocrinology Ministry of Education Jinan China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics Jinan China
| | - Peter C. K. Leung
- Department of Obstetrics and Gynaecology BC Children's Hospital Research Institute University of British Columbia Vancouver BC Canada
| |
Collapse
|
22
|
Hensley PJ, Cao Z, Pu H, Dicken H, He D, Zhou Z, Wang C, Koochekpour S, Kyprianou N. Predictive and targeting value of IGFBP-3 in therapeutically resistant prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2019; 7:188-202. [PMID: 31317059 PMCID: PMC6627542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Our previous studies demonstrated that a novel quinazoline derivative, DZ-50, inhibited prostate cancer epithelial cell invasion and survival by targeting insulin-like-growth factor binding protein-3 (IGFBP-3) and mediating epithelial-mesenchymal transition (EMT) conversion to mesenchymal-epithelial transition (MET). This study investigated the therapeutic value of DZ-50 agent in in vitro and in vivo models of advanced prostate cancer and the ability of the compound to overcome resistance to antiandrogen (enzalutamide) in prostate tumors. APPROACH LNCaP and LNCaP-enzalutamide resistant human prostate cancer (LNCaP-ER) cells, as well as 22Rv1 and enzalutamide resistant, 22Rv1-ER were used as cell models. The effects of DZ-50 and the antiandrogen, enzalutamide (as single agents or in combination) on cell death, EMT-MET interconversion, and expression of IGFBP3 and the androgen receptor (AR), were examined. The TRAMP mouse model of prostate cancer progression was used as a pre-clinical model. Transgenic mice (20-wks of age) were treated with DZ-50 (100 mg/kg for 2 wks, oral gavage daily) and prostate tumors were subjected to immunohistochemical assessment of apoptosis, cell proliferation, markers of EMT and differentiation and IGFBP-3 and AR expression. A tissue microarray (TMA) was analyzed for expression of IGBP-3, the target of DZ-50 and its association with tumor progression and biochemical recurrence. RESULTS We found that treatment with DZ-50 enhanced the anti-tumor response to the antiandrogen via promoting EMT to MET interconversion, in vitro. This DZ-50-mediated phenotypic reversal to MET leads to prostate tumor re-differentiation in vivo, by targeting nuclear IGFBP-3 expression (without affecting AR). Analysis of human prostate cancer specimens and TCGA patient cohorts revealed that overexpression of IGBP-3 protein correlated with tumor recurrence and poor patient survival. CONCLUSIONS These findings provide significant new insights into (a) the predictive value of IGFBP-3 in prostate cancer progression and (b) the antitumor action of DZ-50, [in combination or sequencing with enzalutamide] as a novel approach for the treatment of therapeutically resistant prostate cancer.
Collapse
Affiliation(s)
| | - Zheng Cao
- Department of Urology, University of KentuckyLexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of KentuckyLexington, KY, USA
| | - Hong Pu
- Department of Urology, University of KentuckyLexington, KY, USA
| | - Haley Dicken
- Department of Toxicology and Cancer Biology, University of KentuckyLexington, KY, USA
| | - Daheng He
- Department of Markey Cancer Center, University of KentuckyLexington, KY, USA
| | - Zhaohe Zhou
- Department of Markey Cancer Center, University of KentuckyLexington, KY, USA
| | - Chi Wang
- Department of Markey Cancer Center, University of KentuckyLexington, KY, USA
| | | | - Natasha Kyprianou
- Department of Urology, University of KentuckyLexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of KentuckyLexington, KY, USA
- Department of Toxicology and Cancer Biology, University of KentuckyLexington, KY, USA
| |
Collapse
|
23
|
Maehara O, Ohnishi S, Asano A, Suda G, Natsuizaka M, Nakagawa K, Kobayashi M, Sakamoto N, Takeda H. Metformin Regulates the Expression of CD133 Through the AMPK-CEBPβ Pathway in Hepatocellular Carcinoma Cell Lines. Neoplasia 2019; 21:545-556. [PMID: 31042624 PMCID: PMC6488768 DOI: 10.1016/j.neo.2019.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023]
Abstract
CD133 is a cellular surface protein, which has been reported to be a cancer stem cell marker, and thus is considered a potential target for cancer treatment. Metformin, one of the biguanides used for the treatment of diabetes, is also known to reduce the risk of cancer development and cancer stem-like cells (CSCs), including the expression of CD133. However, the mechanism underlying the reduction of the expression of CD133 by metformin is not yet understood. This study shows that metformin suppressed CD133 expression mainly by affecting the CD133 P1 promoter via adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling but not the mammalian target of rapamycin (mTOR). AMPK inhibition rescued the reduction of CD133 by metformin. Further experiments demonstrated that CCAAT/enhancer-binding protein beta (CEBPβ) was upregulated by metformin and that two isoforms of CEBPβ reciprocally regulated the expression of CD133. Specifically, the liver-enriched activator protein (LAP) isoform increased the expression of CD133 by directly binding to the P1 promoter region, whereas the liver-enriched inhibitory protein (LIP) isoform suppressed the expression of CD133. Consistent with these findings, a three dimensional (3D) culture assay and drug sensitivity assay demonstrated that LAP-overexpressing cells formed large spheroids and were more resistant to 5-fluorouracil (5-FU) treatment, whereas LIP-overexpressing cells were more sensitive to 5-FU and showed combined effects with metformin. Our results indicated that metformin-AMPK-CEBPβ signaling plays a crucial role in regulating the gene expression of CD133. Additionally, regulating the ratio of LAP/LIP may be a novel strategy for targeting CSCs for the treatment of cancer.
Collapse
Key Words
- acc, acetyl-coa-carboxylase
- ampk, amp-activated protein kinase
- csc, cancer stem-like cells
- cebpβ, ccaat/enhancer-binding protein beta
- dmem, dulbecco's modified eagle's medium
- facs, fluorescence activated cell sorting
- h&e, hematoxylin and eosin
- lap, liver-enriched activator protein
- lip, liver-enriched inhibitory protein
- sds, sodium dodecyl sulfate
- tbs, tris-buffered saline
Collapse
Affiliation(s)
- Osamu Maehara
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shunsuke Ohnishi
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Ayaka Asano
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Mitsuteru Natsuizaka
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koji Nakagawa
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Masanobu Kobayashi
- Department of Nursing, Health Sciences University of Hokkaido, Tobetsu, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroshi Takeda
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
24
|
Yang L, Li J, Fu S, Ren P, Tang J, Wang N, Shi X, Wu J, Lin S. Up-regulation of Insulin-like Growth Factor Binding Protein-3 Is Associated with Brain Metastasis in Lung Adenocarcinoma. Mol Cells 2019; 42:321-332. [PMID: 31085806 PMCID: PMC6530643 DOI: 10.14348/molcells.2019.2441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/16/2018] [Accepted: 02/12/2019] [Indexed: 01/23/2023] Open
Abstract
The brain is the most common metastatic site of lung adenocarcinoma; however, the mechanism of this selective metastasis remains unclear. We aimed to verify the hypothesis that exposure of tumor cells to the brain microenvironment leads to changes in their gene expression, which promotes their oriented transfer to the brain. A549 and H1299 lung adenocarcinoma cells were exposed to human astrocyte-conditioned medium to simulate the brain microenvironment. Microarray analysis was used to identify differentially expressed genes, which were confirmed by quantitative real-time PCR and western blotting. Knockdown experiments using microRNAs and the overexpression of genes by cell transfection were performed in addition to migration and invasion assays. In vitro findings were confirmed in clinical specimens using immunohistochemistry. We found and confirmed a significant increase in insulin-like growth factor binding protein-3 (IGFBP3) levels. Our results also showed that the up-regulation of IGFBP3 promoted A549 cell epithelial-mesenchymal transition, migration, and invasion, while the knockdown of IGFBP3 resulted in decreased cell motility. We also found that Transforming growth factor-β (TGF-β)/Mothers against decapentaplegic homolog 4 (Smad4)-induced epithelial-mesenchymal transition was likely IGFBP3-dependent in A549 cells. Finally, expression of IGFBP3 was significantly elevated in pulmonary cancer tissues and intracranial metastatic tissues. Our data indicate that up-regulation of IGFBP3 might mediate brain metastasis in lung adenocarcinoma, which makes it a potential therapeutic target.
Collapse
Affiliation(s)
- Lishi Yang
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000,
China
| | - Junyang Li
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000,
China
| | - Shaozhi Fu
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000,
China
| | - Peirong Ren
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000,
China
| | - Juan Tang
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000,
China
| | - Na Wang
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000,
China
| | - Xiangxiang Shi
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000,
China
| | - Jingbo Wu
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000,
China
| | - Sheng Lin
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000,
China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou 646000,
China
| |
Collapse
|
25
|
Han SM, Ryu HM, Suh J, Lee KJ, Choi SY, Choi S, Kim YL, Huh JY, Ha H. Network-based integrated analysis of omics data reveal novel players of TGF-β1-induced EMT in human peritoneal mesothelial cells. Sci Rep 2019; 9:1497. [PMID: 30728376 PMCID: PMC6365569 DOI: 10.1038/s41598-018-37101-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022] Open
Abstract
Long-term peritoneal dialysis is associated with progressive fibrosis of the peritoneum. Epithelial-mesenchymal transition (EMT) of mesothelial cells is an important mechanism involved in peritoneal fibrosis, and TGF-β1 is considered central in this process. However, targeting currently known TGF-β1-associated pathways has not proven effective to date. Therefore, there are still gaps in understanding the mechanisms underlying TGF-β1-associated EMT and peritoneal fibrosis. We conducted network-based integrated analysis of transcriptomic and proteomic data to systemically characterize the molecular signature of TGF-β1-stimulated human peritoneal mesothelial cells (HPMCs). To increase the power of the data, multiple expression datasets of TGF-β1-stimulated human cells were employed, and extended based on a human functional gene network. Dense network sub-modules enriched with differentially expressed genes by TGF-β1 stimulation were prioritized and genes of interest were selected for functional analysis in HPMCs. Through integrated analysis, ECM constituents and oxidative stress-related genes were shown to be the top-ranked genes as expected. Among top-ranked sub-modules, TNFAIP6, ZC3H12A, and NNT were validated in HPMCs to be involved in regulation of E-cadherin, ZO-1, fibronectin, and αSMA expression. The present data shows the validity of network-based integrated analysis in discovery of novel players in TGF-β1-induced EMT in peritoneal mesothelial cells, which may serve as new prognostic markers and therapeutic targets for peritoneal dialysis patients.
Collapse
Affiliation(s)
- Soo Min Han
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea.,Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye-Myung Ryu
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Seoul, Republic of Korea
| | - Jinjoo Suh
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Kong-Joo Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Soon-Youn Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Seoul, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Yong-Lim Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Seoul, Republic of Korea.
| | - Joo Young Huh
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea.
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Protein-Bound Solute Clearance During Hemodialysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1153:69-77. [DOI: 10.1007/5584_2019_336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
27
|
Li Y, Yang Y, Li J, Liu H, Chen F, Li B, Cui B, Liu Y. USP22 drives colorectal cancer invasion and metastasis via epithelial-mesenchymal transition by activating AP4. Oncotarget 2018; 8:32683-32695. [PMID: 28427243 PMCID: PMC5464819 DOI: 10.18632/oncotarget.15950] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/22/2017] [Indexed: 12/20/2022] Open
Abstract
Ubiquitin specific peptidase 22 (USP22), a putative cancer stem cell marker, is overexpressed in liver metastases of colorectal cancer (CRC). However, the mechanism by which USP22 promotes CRC metastasis remains largely unknown. Here, we report that USP22 and AP4 are simultaneously overexpressed during TGF-β1-induced CRC cell epithelial-mesenchymal transition (EMT). USP22 up-regulation enhances CRC cell migration and invasion and EMT-related marker and AP4 expression, but these effects are partly blocked by AP4 knockdown. In addition, USP22 binds to the promoter region of AP4 to activate its transcription. In vivo, elevated USP22 expression promotes CRC cell metastasis to the lungs in nude mice, as evidenced by the fact that CRC metastatic nodules stain deeply positive for USP22 and AP4. In human CRC tissues, the genes encoding USP22 and AP4 are overexpressed in metastatic liver lesions compared with primary cancer tissues, and their overexpression is significantly associated with poor CRC patient survival. These findings indicate that USP22 and AP4 may serve as prognostic markers for predicting the risk of developing distant metastases in CRC.
Collapse
Affiliation(s)
- Yongmin Li
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin 150081, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Jingwen Li
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin 150081, China
| | - He Liu
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin 150081, China
| | - Fuxun Chen
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Bingyang Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Binbin Cui
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin 150081, China
| | - Yanlong Liu
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin 150081, China
| |
Collapse
|
28
|
Whelan KA, Muir AB, Nakagawa H. Esophageal 3D Culture Systems as Modeling Tools in Esophageal Epithelial Pathobiology and Personalized Medicine. Cell Mol Gastroenterol Hepatol 2018; 5:461-478. [PMID: 29713660 PMCID: PMC5924738 DOI: 10.1016/j.jcmgh.2018.01.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
The stratified squamous epithelium of the esophagus shows a proliferative basal layer of keratinocytes that undergo terminal differentiation in overlying suprabasal layers. Esophageal pathologies, including eosinophilic esophagitis, gastroesophageal reflux disease, Barrett's esophagus, squamous cell carcinoma, and adenocarcinoma, cause perturbations in the esophageal epithelial proliferation-differentiation gradient. Three-dimensional (3D) culture platforms mimicking in vivo esophageal epithelial tissue architecture ex vivo have emerged as powerful experimental tools for the investigation of esophageal biology in the context of homeostasis and pathology. Herein, we describe types of 3D culture that are used to model the esophagus, including organotypic, organoid, and spheroid culture systems. We discuss the development and optimization of various esophageal 3D culture models; highlight the applications, strengths, and limitations of each method; and summarize how these models have been used to evaluate the esophagus under homeostatic conditions as well as under the duress of inflammation and precancerous/cancerous conditions. Finally, we present future perspectives regarding the use of esophageal 3D models in basic science research as well as translational studies with the potential for personalized medicine.
Collapse
Key Words
- 3D, 3-dimensional
- BE, Barrett’s esophagus
- COX, cyclooxygenase
- CSC, cancer stem cell
- EADC, esophageal adenocarcinoma
- EGF, epidermal growth factor
- EGFR, epidermal growth factor receptor
- EMT, epithelial-mesenchymal transition
- ESCC, esophageal squamous cell carcinoma
- EoE, eosinophilic esophagitis
- Esophageal Disease
- FEF3, primary human fetal esophageal fibroblast
- GERD, gastroesophageal reflux disease
- OTC, organotypic 3-dimensional culture
- Organoid
- Organotypic Culture
- STAT3, signal transducer and activator of transcription-3
- Spheroid Culture
Collapse
Affiliation(s)
- Kelly A. Whelan
- Pathology and Laboratory Medicine, Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Amanda B. Muir
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Correspondence Address correspondence to: Amanda B. Muir, MD, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center 902E, Philadelphia, Pennsylvania 19103. fax: (267) 426–7814.
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Natsuizaka M, Whelan KA, Kagawa S, Tanaka K, Giroux V, Chandramouleeswaran PM, Long A, Sahu V, Darling DS, Que J, Yang Y, Katz JP, Wileyto EP, Basu D, Kita Y, Natsugoe S, Naganuma S, Klein-Szanto AJ, Diehl JA, Bass AJ, Wong KK, Rustgi AK, Nakagawa H. Interplay between Notch1 and Notch3 promotes EMT and tumor initiation in squamous cell carcinoma. Nat Commun 2017; 8:1758. [PMID: 29170450 PMCID: PMC5700926 DOI: 10.1038/s41467-017-01500-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/21/2017] [Indexed: 12/15/2022] Open
Abstract
Notch1 transactivates Notch3 to drive terminal differentiation in stratified squamous epithelia. Notch1 and other Notch receptor paralogs cooperate to act as a tumor suppressor in squamous cell carcinomas (SCCs). However, Notch1 can be stochastically activated to promote carcinogenesis in murine models of SCC. Activated form of Notch1 promotes xenograft tumor growth when expressed ectopically. Here, we demonstrate that Notch1 activation and epithelial–mesenchymal transition (EMT) are coupled to promote SCC tumor initiation in concert with transforming growth factor (TGF)-β present in the tumor microenvironment. We find that TGFβ activates the transcription factor ZEB1 to repress Notch3, thereby limiting terminal differentiation. Concurrently, TGFβ drives Notch1-mediated EMT to generate tumor initiating cells characterized by high CD44 expression. Moreover, Notch1 is activated in a small subset of SCC cells at the invasive tumor front and predicts for poor prognosis of esophageal SCC, shedding light upon the tumor promoting oncogenic aspect of Notch1 in SCC. Notch receptors can exert different roles in cancer. In this manuscript, the authors reveal that Notch1 activation and EMT promote tumor initiation and cancer cell heterogeneity in squamous cell carcinoma, while the repression of Notch3 by ZEB1 limits Notch1-induced differentiation, permitting Notch1-mediated EMT.
Collapse
Affiliation(s)
- Mitsuteru Natsuizaka
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8638, Japan
| | - Kelly A Whelan
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Shingo Kagawa
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of General Surgery, Chiba University Graduate School of Medicine, Chiba, Chiba, 260-0856, Japan
| | - Koji Tanaka
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of Surgery, Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Veronique Giroux
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Prasanna M Chandramouleeswaran
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Apple Long
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Varun Sahu
- Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Douglas S Darling
- Department of Oral Immunology and Infectious Diseases, and Center for Genetics and Molecular Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Jianwen Que
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University, New York, NY, 10032, USA
| | - Yizeng Yang
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jonathan P Katz
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - E Paul Wileyto
- Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Devraj Basu
- Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8520, Japan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8520, Japan
| | - Seiji Naganuma
- Department of Pathology, Kochi Medical School, Nankoku-shi, Kochi, 783-8505, Japan
| | - Andres J Klein-Szanto
- Histopathology Facility and Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - J Alan Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Adam J Bass
- Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Kwok-Kin Wong
- Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA. .,Division of Hematology and Medical Oncology, New York University, New York, NY, 10016, USA.
| | - Anil K Rustgi
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hiroshi Nakagawa
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
30
|
Cao Z, Livas T, Kyprianou N. Anoikis and EMT: Lethal "Liaisons" during Cancer Progression. Crit Rev Oncog 2017; 21:155-168. [PMID: 27915969 DOI: 10.1615/critrevoncog.2016016955] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anoikis is a unique mode of apoptotic cell death that occurs consequentially to insufficient cell-matrix interactions. Resistance to anoikis is a critical contributor to tumor invasion and metastasis. The phenomenon is regulated by integrins, which upon engagement with components of the extracellular matrix (ECM) form adhesion complexes and the actin cytoskeleton drives the formation of cell protrusions used to adhere to ECM, directing cell migration. The epithelial-mesenchymal transition (EMT) confers stem cell properties and leads to acquisition of a migratory and invasive phenotype by causing adherens junction breakdown and circumventing anoikis in the tumor microenvironment. The investigation of drug discovery platforms for apoptosis-driven therapeutics identified several novel agents with antitumor action via reversing resistance to anoikis, inhibiting survival pathways and impacting the EMT landscape in human cancer. In this review, we discuss current evidence on the contribution of the anoikis phenomenon functionally linked to EMT to cancer metastasis and the therapeutic value of antitumor drugs that selectively reverse anoikis resistance and/or EMT to impair tumor progression toward the development/optimization of apoptosis-driven therapeutic targeting of metastatic disease.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Urology, Molecular Biochemistry, Pathology, Toxicology & Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, U.S.A
| | - Theodore Livas
- Department of Urology, Molecular Biochemistry, Pathology, Toxicology & Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, U.S.A
| | - Natasha Kyprianou
- Department of Urology, Molecular Biochemistry, Pathology, Toxicology & Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, U.S.A
| |
Collapse
|
31
|
Distinct effects of EGFR inhibitors on epithelial- and mesenchymal-like esophageal squamous cell carcinoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:101. [PMID: 28764725 PMCID: PMC5540425 DOI: 10.1186/s13046-017-0572-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023]
Abstract
Background Epidermal growth factor receptor (EGFR) plays a pivotal role in the pathophysiology of esophageal squamous cell carcinoma (ESCC). However, the clinical effects of EGFR inhibitors on ESCC are controversial. This study sought to identify the factors determining the therapeutic efficacy of EGFR inhibitors in ESCC cells. Methods Immortalized-human esophageal epithelial cells (EPC2-hTERT), transformed-human esophageal epithelial cells (T-Epi and T-Mes), and ESCC cells (TE-1, TE-5, TE-8, TE-11, TE-11R, and HCE4) were treated with the EGFR inhibitors erlotinib or cetuximab. Inhibitory effects on cell growth were assessed by cell counting or cell-cycle analysis. The expression levels of genes and proteins such as involucrin and cytokeratin13 (a squamous differentiation marker), E-cadherin, and vimentin were evaluated by real-time polymerase chain reaction or western blotting. To examine whether mesenchymal phenotype influenced the effects of EGFR inhibitors, we treated T-Epi cells with TGF-β1 to establish a mesenchymal phenotype (mesenchymal T-Epi cells). We then compared the effects of EGFR inhibitors on parental T-Epi cells and mesenchymal T-Epi cells. TE-8 (mesenchymal-like ESCC cells)- or TE-11R (epithelial-like ESCC cells)-derived xenograft tumors in mice were treated with cetuximab, and the antitumor effects of EGFR inhibitors were evaluated. Results Cells were classified as epithelial-like or mesenchymal-like phenotypes, determined by the expression levels of E-cadherin and vimentin. Both erlotinib and cetuximab reduced cell growth and the ratio of cells in cell-cycle S phase in epithelial-like but not mesenchymal-like cells. Additionally, EGFR inhibitors induced squamous cell differentiation (defined as increased expression of involucrin and cytokeratin13) in epithelial-like but not mesenchymal-like cells. We found that EGFR inhibitors did not suppress the phosphorylation of EGFR in mesenchymal-like cells, while EGFR dephosphorylation was observed after treatment with EGFR inhibitors in epithelial-like cells. Furthermore, mesenchymal T-Epi cells showed resistance to EGFR inhibitors by circumventing the dephosphorylation of EGFR signaling. Cetuximab consistently showed antitumor effects, and increased involucrin expression in TE-11R (epithelial-like)-derived xenograft tumors but not TE-8 (mesenchymal-like)-derived xenograft tumors. Conclusions The factor determining the therapeutic effects of EGFR inhibitors in ESCC cells is the phenotype representing the epithelial-like or mesenchymal-like cells. Mesenchymal-like ESCC cells are resistant to EGFR inhibitors because EGFR signaling is not blocked. EGFR inhibitors show antitumor effects on epithelial-like ESCC cells accompanied by promotion of squamous cell differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0572-7) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Cao Z, Koochekpour S, Strup SE, Kyprianou N. Reversion of epithelial-mesenchymal transition by a novel agent DZ-50 via IGF binding protein-3 in prostate cancer cells. Oncotarget 2017; 8:78507-78519. [PMID: 29108245 PMCID: PMC5667978 DOI: 10.18632/oncotarget.19659] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/05/2017] [Indexed: 01/10/2023] Open
Abstract
Dysregulation of transforming growth factor-β1 (TGF-β1) and insulin-like growth factor (IGF) axis has been linked to reactive stroma dynamics in prostate cancer progression. IGF binding protein-3 (IGFBP3) induction is initiated by stroma remodeling and could represent a potential therapeutic target for prostate cancer. In previous studies a lead quinazoline-based Doxazosin® derivative, DZ-50, impaired prostate tumor growth by targeting proteins involved in focal adhesion, anoikis resistance and epithelial-mesenchymal-transition (EMT). This study demonstrates that DZ-50 increased expression of the epithelial marker E-cadherin, and decreased the mesenchymal marker N-cadherin in human prostate cancer cells. In DU-145 cells, the effect of DZ-50 on EMT towards mesenchymal epithelial transition (MET) was inhibited by talin1 overexpression, a focal adhesion regulator promoting anoikis resistance and tumor invasion. DZ-50 treatment of human prostate cancer cells and cancer-associated fibroblasts (CAFs) downregulated IGFBP3 expression at mRNA and protein level. In TGF-β1 responsive LNCaPTβRII, TGF-β1 reversed DZ-50-induced MET by antagonizing the drug-induced decrease of nuclear IGFBP3. Furthermore, co-culture with CAFs promoted prostate cancer epithelial cell invasion, an effect that was significantly inhibited by DZ-50. Our findings demonstrate that the lead compound, DZ-50, inhibited the invasive properties of prostate cancer epithelial cells by targeting IGFBP3 and mediating EMT conversion to MET. This study integrated the mechanisms underlying the effect of DZ-50 and further supported the therapeutic value of this compound in the treatment of advanced metastatic prostate cancer.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Urology, University of Kentucky, Lexington, KY, USA
| | - Shahriar Koochekpour
- Department of Genetics and Genomic and Urology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Stephen E Strup
- Department of Urology, University of Kentucky, Lexington, KY, USA
| | - Natasha Kyprianou
- Department of Urology, University of Kentucky, Lexington, KY, USA.,Departments of Biochemistry and Toxicology & Cancer Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
33
|
Khalafalla FG, Khan MW. Inflammation and Epithelial-Mesenchymal Transition in Pancreatic Ductal Adenocarcinoma: Fighting Against Multiple Opponents. CANCER GROWTH AND METASTASIS 2017; 10:1179064417709287. [PMID: 28579826 PMCID: PMC5436837 DOI: 10.1177/1179064417709287] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer and one of the most lethal human cancers. Inflammation is a critical component in PDAC initiation and progression. Inflammation also contributes to the aggressiveness of PDAC indirectly via induction of epithelial-mesenchymal transition (EMT), altogether leading to enhanced resistance to chemotherapy and poor survival rates. This review gives an overview of the key pro-inflammatory signaling pathways involved in PDAC pathogenesis and discusses the role of inflammation in induction of EMT and development of chemoresistance in patients with PDAC.
Collapse
|
34
|
Liu Q, Cui X, Yu X, Bian BSJ, Qian F, Hu XG, Ji CD, Yang L, Ren Y, Cui W, Zhang X, Zhang P, Wang JM, Cui YH, Bian XW. Cripto-1 acts as a functional marker of cancer stem-like cells and predicts prognosis of the patients in esophageal squamous cell carcinoma. Mol Cancer 2017; 16:81. [PMID: 28431580 PMCID: PMC5399850 DOI: 10.1186/s12943-017-0650-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/09/2017] [Indexed: 01/09/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is highly malignant with highly invasive and metastatic capabilities and poor prognosis. It is believed that the ESCC cancer stem-like cells (ECSLCs) are critical for tumorigenicity, invasion and metastasis of ESCC. However, the properties of ECSLCs vary with different markers used in isolation, so that new and more effective markers of ECSLCs need to be identified. This study aimed to estimate the potentiality of Cripto-1 (CR-1) as an ECSLC surface marker and investigate the clinical significance of CR-1 expression in ESCC. Methods ESCC cells with CR-1 high or CR-1low were obtained by flow cytometry then their self-renewal capability and tumorigenicity were compared by colony and limiting dilution sphere formation analysis in vitro and xenograft in nude mice in vivo, respectively. Knockdown of CR-1 expression in ESCC cells was conducted with short hairpin RNA. Cell migration and invasion were examined by scratch test and matrigel transwell assay, respectively. Metastatic capability of ESCC cells was assayed by a mouse tail vein metastasis model. The levels of CR-1 expression in cancerous and paired adjacent normal tissues were assessed by IHC and qRT-RCR. Results CR-1high subpopulation of ESCC cells isolated by FACS expressed high level of genes related to stemness and epithelial-mesenchymal transition (EMT), and possessed high capacities of self-renewal, tumorigenesis, invasion and metastasis. Suppression of CR-1 expression significantly reduced the expression of stemness- and EMT-related genes and the capabilities of self-renewal in vitro, tumorigenicity and metastasis in vivo in ESCC cells. In the clinical ESCC specimens, the expression levels of CR-1 in cancerous tissues were positively correlated to TNM stage, invasive depth, and lymph node metastasis. Cox regression analysis indicated that CR-1 was an independent indicator of prognosis. The expression of CR-1 was found overlapping with aldehyde dehydrogenase 1A1 (ALDH1A1), an intracellular marker for ESCLCs, in ESCC cell lines and specimens. Conclusions CR-1 is a functional and cell surface ECSLC marker, and an independent prognostic indicator as well as a potential therapeutic target for ESCC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0650-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiang Liu
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xiang Cui
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.,Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xi Yu
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Bai-Shi-Jiao Bian
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Feng Qian
- Department of General Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xu-Gang Hu
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Cheng-Dong Ji
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Lang Yang
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yong Ren
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Wei Cui
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Peng Zhang
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
35
|
Nishimura T, Tamaoki M, Komatsuzaki R, Oue N, Taniguchi H, Komatsu M, Aoyagi K, Minashi K, Chiwaki F, Shinohara H, Tachimori Y, Yasui W, Muto M, Yoshida T, Sakai Y, Sasaki H. SIX1 maintains tumor basal cells via transforming growth factor-β pathway and associates with poor prognosis in esophageal cancer. Cancer Sci 2017; 108:216-225. [PMID: 27987372 PMCID: PMC5329162 DOI: 10.1111/cas.13135] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 12/04/2016] [Accepted: 12/08/2016] [Indexed: 12/11/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors. Although improvement in both surgical techniques and neoadjuvant chemotherapy has been achieved, the 5-year survival rate of locally advanced tumors was, at best, still 55%. Therefore, elucidation of mechanisms of the malignancy is eagerly awaited. Epithelial-mesenchymal transition (EMT) by transforming growth factor-β (TGF-β) has been reported to have critical biological roles for cancer cell stemness, whereas little is known about it in ESCC. In the current study, a transcriptional factor SIX1 was found to be aberrantly expressed in ESCCs. SIX1 cDNA transfection induced overexpression of transforming growth factors (TGFB1 and TGFB2) and its receptor (TGFBR2). Cell invasion was reduced by SIX1 knockdown and was increased in stable SIX1-transfectants. Furthermore, the SIX1-transfectants highly expressed tumor basal cell markers such as NGFR, SOX2, ALDH1A1, and PDPN. Although mock-transfectants had only a 20% PDPN-high population, SIX1-transfectants had 60-70%. In two sets of 42 and 85 ESCC patients receiving surgery alone or neoadjuvant chemoradiotherapy followed by surgery, the cases with high SIX1 mRNA and protein expression level significantly showed a poor prognosis compared with those with low levels. These SIX1 high cases also expressed the above basal cell markers, but suppressed the differentiation markers. Finally, TGF-β signaling blockade suppressed ESCC cell growth in association with the reduction of PDPN-positive tumor basal cell population. The present results suggest that SIX1 accelerates self-renewal of tumor basal cells, resulting in a poor prognosis for ESCC patients.
Collapse
Affiliation(s)
- Takao Nishimura
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan.,Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masashi Tamaoki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Rie Komatsuzaki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | | | - Masayuki Komatsu
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazuhiko Aoyagi
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Keiko Minashi
- Department of Clinical Trial Promotion, Chiba Cancer Center, Chiba, Japan
| | - Fumiko Chiwaki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hisashi Shinohara
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuji Tachimori
- Department of Esophageal Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Manabu Muto
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Teruhiko Yoshida
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroki Sasaki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
36
|
Yen YC, Hsiao JR, Jiang SS, Chang JS, Wang SH, Shen YY, Chen CH, Chang IS, Chang JY, Chen YW. Insulin-like growth factor-independent insulin-like growth factor binding protein 3 promotes cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin β1. Oncotarget 2016; 6:41837-55. [PMID: 26540630 PMCID: PMC4747192 DOI: 10.18632/oncotarget.5995] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/05/2015] [Indexed: 12/15/2022] Open
Abstract
Frequent metastasis to the cervical lymph nodes leads to poor survival of patients with oral squamous cell carcinoma (OSCC). To understand the underlying mechanisms of lymph node metastasis, two sublines were successfully isolated from cervical lymph nodes of nude mice through in vivo selection, and identified as originating from poorly metastatic parental cells. These two sublines specifically metastasized to cervical lymph nodes in 83% of mice, whereas OEC-M1 cells did not metastasize after injection into the oral cavity. After gene expression analysis, we identified insulin-like growth factor binding protein 3 (IGFBP3) as one of the significantly up-regulated genes in the sublines in comparison with their parental cells. Consistently, meta-analysis of the public microarray datasets and IGFBP3 immunohistochemical analysis revealed increased both levels of IGFBP3 mRNA and protein in human OSCC tissues when compared to normal oral or adjacent nontumorous tissues. Interestingly, the up-regulated IGFBP3 mRNA expression was significantly associated with OSCC patients with lymph node metastasis. IGFBP3 knockdown in the sublines impaired and ectopic IGFBP3 expression in the parental cells promoted migration, transendothelial migration and lymph node metastasis of orthotopic transplantation. Additionally, ectopic expression of IGFBP3 with an IGF-binding defect sustained the IGFBP3-enhanced biological functions. Results indicated that IGFBP3 regulates metastasis-related functions of OSCC cells through an IGF-independent mechanism. Furthermore, exogenous IGFBP3 was sufficient to induce cell motility and extracellular signal-regulated kinase (ERK) activation. The silencing of integrin β1 was able to impair exogenous IGFBP3-mediated migration and ERK phosphorylation, suggesting a critical role of integrin β1 in IGFBP3-enchanced functions.
Collapse
Affiliation(s)
- Yi-Chen Yen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jeffrey S Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Ssu-Han Wang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ying-Ying Shen
- Pathology Core Laboratory, National Health Research Institutes, Miaoli, Taiwan
| | - Chung-Hsing Chen
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.,Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Jang-Yang Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, Tainan, Taiwan
| | - Ya-Wen Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
37
|
Bao L, Liu H, You B, Gu M, Shi S, Shan Y, Li L, Chen J, You Y. Overexpression of IGFBP3 is associated with poor prognosis and tumor metastasis in nasopharyngeal carcinoma. Tumour Biol 2016; 37:15043-15052. [PMID: 27658775 DOI: 10.1007/s13277-016-5400-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
Insulin-like growth factor-binding protein-3 (IGFBP3) is an N-linked glycosylated, phosphorylated protein, which has been reported to regulate cancer progression and metastasis. However, the role of IGFBP3 in tumor metastasis remains under debate. Nasopharyngeal carcinoma (NPC) is a highly metastatic head and neck cancer. And it fails to achieve the desired therapeutic efficacy in patients with metastasis, while the role of IGFBP3 in NPC is still unclear. In this study, we first used immunohistochemistry to explore the expression of IGFBP3 in NPC tissues. We found that IGFBP3 was significantly elevated in NPC and its expression level was correlated with N classification, distant metastasis, and TNM clinical stage (all P < 0.05). Patients with high expression of IGFBP3 had poorer survival rate (P < 0.05). In addition, we found that downregulation of IGFBP3 inhibited cell migration and adhesion by Transwell migration assay, wounding healing assay, and cell adhesion assays in vitro. Besides, NPC cells stimulated with recombinant IGFBP3 accelerated migration and adhesion. These data suggest overexpression of IGFBP3 promotes tumor metastasis in NPC, which makes it a potential therapeutic target.
Collapse
Affiliation(s)
- Lili Bao
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226000, China
| | - Hao Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226000, China
| | - Bo You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226000, China
| | - Miao Gu
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226000, China
| | - Si Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226000, China
| | - Ying Shan
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226000, China
| | - Li Li
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226000, China
| | - Jing Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226000, China.
| | - Yiwen You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226000, China.
| |
Collapse
|
38
|
Wilson AJ, Fadare O, Beeghly-Fadiel A, Son DS, Liu Q, Zhao S, Saskowski J, Uddin MJ, Daniel C, Crews B, Lehmann BD, Pietenpol JA, Crispens MA, Marnett LJ, Khabele D. Aberrant over-expression of COX-1 intersects multiple pro-tumorigenic pathways in high-grade serous ovarian cancer. Oncotarget 2016; 6:21353-68. [PMID: 25972361 PMCID: PMC4673270 DOI: 10.18632/oncotarget.3860] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/21/2015] [Indexed: 01/25/2023] Open
Abstract
Cyclooxygenase-1 (COX-1) is implicated in ovarian cancer. However, patterns of COX expression and function have been unclear and controversial. In this report, patterns of COX-1 and COX-2 gene expression were obtained from RNA-seq data through The Cancer Genome Atlas. Our analysis revealed markedly higher COX-1 mRNA expression than COX-2 in high-grade serous ovarian cancers (HGSOC) and higher COX-1 expression in HGSOC tumors than 10 other tumor types. High expression of COX-1 in HGSOC tumors was confirmed in an independent tissue microarray. In contrast, lower or similar expression of COX-1 compared to COX-2 was observed in endometrioid, mucinous and clear cell tumors. Stable COX-1 knockdown in HGSOC-representative OVCAR-3 ovarian cancer cells reduced gene expression in multiple pro-tumorigenic pathways. Functional cell viability, clonogenicity, and migration/invasion assays were consistent with transcriptomic changes. These effects were reversed by stable over-expression of COX-1 in SKOV-3 cells. Our results demonstrate a distinct pattern of COX-1 over-expression in HGSOC tumors and strong association of COX-1 with multiple pro-tumorigenic pathways in ovarian cancer cells. These findings provide additional insight into the role of COX-1 in human ovarian cancer and support further development of methods to selectively target COX-1 in the management of HGSOC tumors.
Collapse
Affiliation(s)
- Andrew J Wilson
- Department of Obstetrics & Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Oluwole Fadare
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Alicia Beeghly-Fadiel
- Department of Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Deok-Soo Son
- Department of Biochemistry & Cancer Biology, Meharry Medical College, Nashville, TN, USA
| | - Qi Liu
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shilin Zhao
- Vanderbilt Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jeanette Saskowski
- Department of Obstetrics & Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Md Jashim Uddin
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cristina Daniel
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brenda Crews
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brian D Lehmann
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer A Pietenpol
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marta A Crispens
- Department of Obstetrics & Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lawrence J Marnett
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dineo Khabele
- Department of Obstetrics & Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
39
|
Gelfand R, Vernet D, Bruhn K, Vadgama J, Gonzalez-Cadavid NF. Long-term exposure of MCF-12A normal human breast epithelial cells to ethanol induces epithelial mesenchymal transition and oncogenic features. Int J Oncol 2016; 48:2399-414. [PMID: 27035792 PMCID: PMC4864041 DOI: 10.3892/ijo.2016.3461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/24/2016] [Indexed: 12/12/2022] Open
Abstract
Alcoholism is associated with breast cancer incidence and progression, and moderate chronic consumption of ethanol is a risk factor. The mechanisms involved in alcohol's oncogenic effects are unknown, but it has been speculated that they may be mediated by acetaldehyde. We used the immortalized normal human epithelial breast cell line MCF-12A to determine whether short- or long-term exposure to ethanol or to acetaldehyde, using in vivo compatible ethanol concentrations, induces their oncogenic transformation and/or the acquisition of epithelial mesenchymal transition (EMT). Cultures of MCF-12A cells were incubated with 25 mM ethanol or 2.5 mM acetaldehyde for 1 week, or with lower concentrations (1.0–2.5 mM for ethanol, 1.0 mM for acetaldehyde) for 4 weeks. In the 4-week incubation, cells were also tested for anchorage-independence, including isolation of soft agar selected cells (SASC) from the 2.5 mM ethanol incubations. Cells were analyzed by immunocytofluorescence, flow cytometry, western blotting, DNA microarrays, RT/PCR, and assays for miRs. We found that short-term exposure to ethanol, but not, in general, to acetaldehyde, was associated with transcriptional upregulation of the metallothionein family genes, alcohol metabolism genes, and genes suggesting the initiation of EMT, but without related phenotypic changes. Long-term exposure to the lower concentrations of ethanol or acetaldehyde induced frank EMT changes in the monolayer cultures and in SASC as demonstrated by changes in cellular phenotype, mRNA expression, and microRNA expression. This suggests that low concentrations of ethanol, with little or no mediation by acetaldehyde, induce EMT and some traits of oncogenic transformation such as anchorage-independence in normal breast epithelial cells.
Collapse
Affiliation(s)
- Robert Gelfand
- Department of Medicine, Charles Drew University (CDU), Los Angeles, CA, USA
| | - Dolores Vernet
- Department of Medicine, Charles Drew University (CDU), Los Angeles, CA, USA
| | - Kevin Bruhn
- Department of Surgery, Los Angeles Biomedical Research Institute (LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jaydutt Vadgama
- Department of Medicine, Charles Drew University (CDU), Los Angeles, CA, USA
| | | |
Collapse
|
40
|
Insulin-like growth factor binding protein-3 is a new predictor of radiosensitivity on esophageal squamous cell carcinoma. Sci Rep 2015; 5:17336. [PMID: 26670461 PMCID: PMC4680797 DOI: 10.1038/srep17336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/29/2015] [Indexed: 01/04/2023] Open
Abstract
Insulin-like growth factor binding protein-3 (IGFBP-3) plays an essential role in radiosensitivity of esophageal squamous cell carcinoma (ESCC). However, the underlying mechanism is not completely understood. Here, we observed that IGFBP-3 had favorable impact on the tumorigenicity of ESCC cells in nude mice by using an in vivo imaging system (IVIS) to monitor tumor growth treated with ionizing radiation (IR). Downregulation of IGFBP-3 expression enhanced tumor growth, inhibited anti-proliferative and apoptotic activity and result in IR resistance in vivo. Cell cycle antibody array suggested that silencing IGFBP-3 promoted transition from G0/G1 to S phase, perhaps though influencing Smad3 dephosphorylation and retinoblastoma protein (Rb) phosphorylation. Downregulation of P21 and P27, and upregulation of p-P27 (phospho-Thr187), cyclin-dependent kinase 2 (CDK2), and cyclin E1 might contribute to the G0/G1 to S phase transition promoted by IGFBP-3. Our results suggest that Smad3-P27/P21-cyclin E1/CDK2-phosphorylated retinoblastoma protein pathways might be involved in this IGFBP-3 mediated radiosensitivity transition in ESCC.
Collapse
|
41
|
Ohashi S, Miyamoto S, Kikuchi O, Goto T, Amanuma Y, Muto M. Recent Advances From Basic and Clinical Studies of Esophageal Squamous Cell Carcinoma. Gastroenterology 2015; 149:1700-15. [PMID: 26376349 DOI: 10.1053/j.gastro.2015.08.054] [Citation(s) in RCA: 401] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 02/08/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive squamous cell carcinomas and is highly prevalent in Asia. Alcohol and its metabolite, acetaldehyde, are considered definite carcinogens for the esophagus. Polymorphisms in the aldehyde dehydrogenase 2 gene, which encodes an enzyme that eliminates acetaldehyde, have been associated with esophageal carcinogenesis. Studies of the mutagenic and carcinogenic effects of acetaldehyde support this observation. Several recent large-scale comprehensive analyses of the genomic alterations in ESCC have shown a high frequency of mutations in genes such as TP53 and others that regulate the cell cycle or cell differentiation. Moreover, whole genome and whole exome sequencing studies have frequently detected somatic mutations, such as G:C→A:T transitions or G:C→C:G transversions, in ESCC tissues. Genomic instability, caused by abnormalities in the Fanconi anemia DNA repair pathway, is also considered a pathogenic mechanism of ESCC. Advances in diagnostic techniques such as magnifying endoscopy with narrow band imaging or positron emission tomography have increased the accuracy of diagnosis of ESCC. Updated guidelines from the National Comprehensive Cancer Network standardize the practice for the diagnosis and treatment of esophageal cancer. Patients with ESCC are treated endoscopically or with surgery, chemotherapy, or radiotherapy, based on tumor stage. Minimally invasive treatments help improve the quality of life of patients who undergo such treatments. We review recent developments in the diagnosis and treatment of ESCC and advances gained from basic and clinical research.
Collapse
Affiliation(s)
- Shinya Ohashi
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Clinical Oncology, Kyoto University Hospital Cancer Center, Kyoto, Japan
| | - Shin'ichi Miyamoto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Osamu Kikuchi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoyuki Goto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yusuke Amanuma
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Clinical Oncology, Kyoto University Hospital Cancer Center, Kyoto, Japan
| | - Manabu Muto
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Clinical Oncology, Kyoto University Hospital Cancer Center, Kyoto, Japan.
| |
Collapse
|
42
|
Maehara O, Sato F, Natsuizaka M, Asano A, Kubota Y, Itoh J, Tsunematsu S, Terashita K, Tsukuda Y, Nakai M, Sho T, Suda G, Morikawa K, Ogawa K, Chuma M, Nakagawa K, Ohnishi S, Komatsu Y, Whelan KA, Nakagawa H, Takeda H, Sakamoto N. A pivotal role of Krüppel-like factor 5 in regulation of cancer stem-like cells in hepatocellular carcinoma. Cancer Biol Ther 2015; 16:1453-61. [PMID: 26176896 DOI: 10.1080/15384047.2015.1070992] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In hepatocellular carcinoma (HCC), there exists a highly tumorigenic subset of cells defined by high expression of CD44 and CD133 that has been reported to contain cancer stem-like cells (CSCs). Krüppel-like factor 5 (KLF5) regulates many factors involved in cell cycle, migration, inflammation, angiogenesis and stemness and has cancer-promoting effects in some cancers. While some reports have indicated that KLF5 may have important roles in regulation of CSCs, what role, if any, KLF5 plays in regulation of CSCs in HCC remains to be elucidated. Flow cytometric analysis of CD44 and CD133 in HCC cell lines revealed subpopulations of CD44(High)/CD133(High) and CD44(Low)/CD133(Low) cells. We subsequently sorted these subpopulations and identified KLF5 as a gene that is significantly upregulated in CD44(High)/CD44(High) cells via RNA sequencing using next generation sequencing technology. Moreover, KLF5 overexpression enriched the CD44(High)/CD133(High) subpopulation and, consistent with the up-regulation of CD44(High)/CD133(High) cells, KLF5 overexpressing cells were more resistant to anti-cancer drugs and displayed enhanced colony-formation capacity. By contrast, knock-down of KLF5 by siRNA diminished the CD44(High)/CD133(High) subpopulation. When KLF5 was acetylated by TGF-β1, the KLF5-mediated CD44(High)/CD133(High) subpopulation enrichment was abrogated. Oppositely, ectopic expression of an acetylation-deficient KLF5 mutant further increased CD44(High)/CD133(High) subpopulations as compared to cell expressing wild-type KLF5. These findings provide novel mechanistic insight into a pivotal role for KLF5 in the regulation of CSCs in HCC.
Collapse
Affiliation(s)
- Osamu Maehara
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan.,b Pathophysiology and Therapeutics ; Hokkaido University Graduate School of Pharmaceutical Science ; Sapporo , Japan
| | - Fumiyuki Sato
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Mitsuteru Natsuizaka
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Ayaka Asano
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan.,b Pathophysiology and Therapeutics ; Hokkaido University Graduate School of Pharmaceutical Science ; Sapporo , Japan
| | - Yoshimasa Kubota
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Jun Itoh
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Seiji Tsunematsu
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Katsumi Terashita
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Yoko Tsukuda
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Masato Nakai
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Takuya Sho
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Goki Suda
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Kenichi Morikawa
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Koji Ogawa
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Makoto Chuma
- c Gastroenterological Center ; Yokohama City University Medical Center ; Yokohama , Japan
| | - Koji Nakagawa
- b Pathophysiology and Therapeutics ; Hokkaido University Graduate School of Pharmaceutical Science ; Sapporo , Japan
| | - Shunsuke Ohnishi
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Yoshito Komatsu
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| | - Kelly A Whelan
- d Gastroenterology Division ; University of Pennsylvania ; Philadelphia , PA USA.,e Abramson Cancer Center ; Philadelphia , PA USA
| | - Hiroshi Nakagawa
- d Gastroenterology Division ; University of Pennsylvania ; Philadelphia , PA USA.,e Abramson Cancer Center ; Philadelphia , PA USA
| | - Hiroshi Takeda
- b Pathophysiology and Therapeutics ; Hokkaido University Graduate School of Pharmaceutical Science ; Sapporo , Japan
| | - Naoya Sakamoto
- a Department of Gastroenterology and Hepatology ; Hokkaido University Graduate School of Medicine ; Sapporo , Japan
| |
Collapse
|
43
|
Abstract
Genetically engineered mouse models (GEMMs) are attractive for the study of cancer; however, they can be time-consuming and expensive to produce and maintain. Thus, in certain contexts, the use of in vitro culture systems of tumor cells may provide an efficient and effective means to test hypotheses before assessment in or to complement discoveries in GEMMs. This introduction will briefly review the issues pertaining to in vitro analyses of primary cancer cells and highlight several "best practice" protocols that can be used when working with diverse types of carcinomas.
Collapse
Affiliation(s)
- Andrew D Rhim
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Martin Jechlinger
- European Molecular Biology Laboratory, Mouse Biology Unit, 00015 Monterotondo, Italy
| | - Anil K Rustgi
- Gastroenterology Division, Department of Medicine, Department of Genetics and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
44
|
Kagawa S, Natsuizaka M, Whelan KA, Facompre N, Naganuma S, Ohashi S, Kinugasa H, Egloff AM, Basu D, Gimotty PA, Klein-Szanto AJ, Bass A, Wong KK, Diehl JA, Rustgi AK, Nakagawa H. Cellular senescence checkpoint function determines differential Notch1-dependent oncogenic and tumor-suppressor activities. Oncogene 2015; 34:2347-2359. [PMID: 24931169 PMCID: PMC4268095 DOI: 10.1038/onc.2014.169] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 03/27/2014] [Accepted: 04/14/2014] [Indexed: 12/12/2022]
Abstract
Notch activity regulates tumor biology in a context-dependent and complex manner. Notch may act as an oncogene or a tumor-suppressor gene even within the same tumor type. Recently, Notch signaling has been implicated in cellular senescence. Yet, it remains unclear as to how cellular senescence checkpoint functions may interact with Notch-mediated oncogenic and tumor-suppressor activities. Herein, we used genetically engineered human esophageal keratinocytes and esophageal squamous cell carcinoma cells to delineate the functional consequences of Notch activation and inhibition along with pharmacological intervention and RNA interference experiments. When expressed in a tetracycline-inducible manner, the ectopically expressed activated form of Notch1 (ICN1) displayed oncogene-like characteristics inducing cellular senescence corroborated by the induction of G0/G1 cell-cycle arrest, Rb dephosphorylation, flat and enlarged cell morphology and senescence-associated β-galactosidase activity. Notch-induced senescence involves canonical CSL/RBPJ-dependent transcriptional activity and the p16(INK4A)-Rb pathway. Loss of p16(INK4A) or the presence of human papilloma virus (HPV) E6/E7 oncogene products not only prevented ICN1 from inducing senescence but permitted ICN1 to facilitate anchorage-independent colony formation and xenograft tumor growth with increased cell proliferation and reduced squamous-cell differentiation. Moreover, Notch1 appears to mediate replicative senescence as well as transforming growth factor-β-induced cellular senescence in non-transformed cells and that HPV E6/E7 targets Notch1 for inactivation to prevent senescence, revealing a tumor-suppressor attribute of endogenous Notch1. In aggregate, cellular senescence checkpoint functions may influence dichotomous Notch activities in the neoplastic context.
Collapse
Affiliation(s)
- Shingo Kagawa
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mitsuteru Natsuizaka
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Gastroenterology and Hepatology, Hokkaido University, Sapporo, Japan
| | - Kelly A. Whelan
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nicole Facompre
- Departments of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
- Wistar Institute, Philadelphia, Pennsylvania
| | - Seiji Naganuma
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology, Kochi University Medical School, Kochi, Japan
| | - Shinya Ohashi
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideaki Kinugasa
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ann Marie Egloff
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Devraj Basu
- Departments of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
- Wistar Institute, Philadelphia, Pennsylvania
| | - Phyllis A. Gimotty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Biostatistics, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Adam Bass
- Department of Medicine, Harvard Medical School, Boston, MA
- Division of Cellular and Molecular Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Kwok-Kin Wong
- Department of Medicine, Harvard Medical School, Boston, MA
- Division of Cellular and Molecular Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - J. Alan Diehl
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anil K. Rustgi
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hiroshi Nakagawa
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Sato F, Kubota Y, Natsuizaka M, Maehara O, Hatanaka Y, Marukawa K, Terashita K, Suda G, Ohnishi S, Shimizu Y, Komatsu Y, Ohashi S, Kagawa S, Kinugasa H, Whelan KA, Nakagawa H, Sakamoto N. EGFR inhibitors prevent induction of cancer stem-like cells in esophageal squamous cell carcinoma by suppressing epithelial-mesenchymal transition. Cancer Biol Ther 2015; 16:933-940. [PMID: 25897987 PMCID: PMC4623069 DOI: 10.1080/15384047.2015.1040959] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/27/2015] [Accepted: 04/09/2015] [Indexed: 12/28/2022] Open
Abstract
There exists a highly tumorigenic subset of esophageal squamous cell carcinoma (ESCC) cells defined by high expression of CD44. A novel therapy targeting these cancer stem-like cells (CSCs) is needed to improve prognosis of ESCC. CSCs of ESCC have a mesenchymal phenotype and epithelial-mesenchymal transition (EMT) is critical to enrich and maintain CSCs. EGFR, frequently overexpressed in ESCC, has pivotal roles in EMT induced by TGF-β in invasive fronts. Thus, EMT in invasive fronts of ESCC might be important for CSCs and EGFR could be a target of a novel therapy eliminating CSCs. However, effects of EGFR inhibitors on CSCs in ESCC have not been fully examined. EGFR inhibitors, erlotinib and cetuximab, significantly suppressed enrichment of CSCs via TGF-β1-mediated EMT. Importantly, EGFR inhibitors sharply suppressed ZEB1 that is essential for EMT in ESCC. Further, EGFR inhibitors activated Notch1 and Notch3, leading to squamous cell differentiation. EGFR inhibition may suppress expression of ZEB1 and induce differentiation, thereby blocking EMT-mediated enrichment of CSCs. In organotypic 3D culture, a form of human tissue engineering, tumor cells in invasive nests showed high expression of CD44. Erlotinib significantly blocked invasion into the matrix and CD44 high expressing CSCs were markedly suppressed by erlotinib in organotypic 3D culture. In conclusion, EMT is a critical process for generation of CSCs and the invasive front of ESCC, where EMT occurs, might form a CSC niche in ESCC. EGFR inhibitors could suppress EMT in invasive fronts and be one therapeutic option targeting against generation of CSCs in ESCC.
Collapse
Affiliation(s)
- Fumiyuki Sato
- Department of Gastroenterology and Hepatology; Hokkaido University Graduate School of Medicine; Sapporo, Japan
| | - Yoshimasa Kubota
- Department of Gastroenterology and Hepatology; Hokkaido University Graduate School of Medicine; Sapporo, Japan
| | - Mitsuteru Natsuizaka
- Department of Gastroenterology and Hepatology; Hokkaido University Graduate School of Medicine; Sapporo, Japan
| | - Osamu Maehara
- Pathophysiology and Therapeutics; Hokkaido University Graduate School of Pharmaceutical Science; Sapporo, Japan
| | - Yutaka Hatanaka
- Department of Surgical Pathology; Hokkaido University Hospital; Sapporo, Japan
| | - Katsuji Marukawa
- Department of Surgical Pathology; Hokkaido University Hospital; Sapporo, Japan
| | - Katsumi Terashita
- Department of Surgical Pathology; Hokkaido University Hospital; Sapporo, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology; Hokkaido University Graduate School of Medicine; Sapporo, Japan
| | - Shunsuke Ohnishi
- Department of Gastroenterology and Hepatology; Hokkaido University Graduate School of Medicine; Sapporo, Japan
| | - Yuichi Shimizu
- Department of Gastroenterology and Hepatology; Hokkaido University Graduate School of Medicine; Sapporo, Japan
| | - Yoshito Komatsu
- Department of Gastroenterology and Hepatology; Hokkaido University Graduate School of Medicine; Sapporo, Japan
| | - Shinya Ohashi
- Department of Therapeutic Oncology; Kyoto University Graduate School of Medicine; Kyoto, Japan
| | - Shingo Kagawa
- Department of General Surgery; Chiba University Graduate School of Medicine; Chiba, Japan
| | - Hideaki Kinugasa
- Department of Gastroenterology and Hepatology; Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences; Okayama, Japan
| | - Kelly A Whelan
- Gastroenterology Division; University of Pennsylvania; Philadelphia, PA USA
- Abramson Cancer Center; Philadelphia, PA USA
| | - Hiroshi Nakagawa
- Gastroenterology Division; University of Pennsylvania; Philadelphia, PA USA
- Abramson Cancer Center; Philadelphia, PA USA
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology; Hokkaido University Graduate School of Medicine; Sapporo, Japan
| |
Collapse
|
46
|
Pang L, Li Q, Wei C, Zou H, Li S, Cao W, He J, Zhou Y, Ju X, Lan J, Wei Y, Wang C, Zhao W, Hu J, Jia W, Qi Y, Liu F, Jiang J, Li L, Zhao J, Liang W, Xie J, Li F. TGF-β1/Smad signaling pathway regulates epithelial-to-mesenchymal transition in esophageal squamous cell carcinoma: in vitro and clinical analyses of cell lines and nomadic Kazakh patients from northwest Xinjiang, China. PLoS One 2014; 9:e112300. [PMID: 25464508 PMCID: PMC4251902 DOI: 10.1371/journal.pone.0112300] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 10/07/2014] [Indexed: 12/02/2022] Open
Abstract
Invasion and metastasis are the major causes of death in patients with esophageal squamous cell carcinoma (ESCC). Epithelial-mesenchymal transition (EMT) is a critical step in tumor progression and transforming growth factor-β1 (TGF-β1) signaling has been shown to play an important role in EMT. In this study, we investigated how TGF-β1 signaling pathways contributed to EMT in three ESCC cell lines as well as 100 patients of nomadic ethnic Kazakhs residing in northwest Xinjiang Province of China. In vitro analyses included Western blotting to detect the expression of TGF-β1/Smad and EMT-associated proteins in Eca109, EC9706 and KYSE150 cell lines following stimulation with recombinant TGF-β1 and SB431542, a potent inhibitor of ALK5 that also inhibits TGF-β type II receptor. TGF-β-activated Smad2/3 signaling in EMT was significantly upregulated as indicated by mesenchymal markers of N-cadherin and Vimentin, and in the meantime, epithelial marker, E-cadherin, was markedly downregulated. In contrast, SB431542 addition downregulated the expression of N-cadherin and Vimentin, but upregulated the expression of E-cadherin. Moreover, the TGF-β1-induced EMT promoted invasion capability of Eca109 cells. Tumor cells undergoing EMT acquire fibroblastoid-like phenotype. Expressed levels of TGF-β1/Smad signaling molecules and EMT-associated proteins were examined using immunohistochemical analyses in 100 ESCC tissues of Kazakh patients and 58 matched noncancerous adjacent tissues. The results showed that ESCC tissues exhibited upregulated expression of TGF-β1/Smad. We also analyzed the relationship between the above proteins and the patients' clinicopathological characteristics. The TGF-β1/Smad signaling pathway in human Eca109 ESCC cells may carry similar features as in Kazakh ESCC patients, suggesting that TGF-β1/Smad signaling pathway may be involved in the regulation of EMT in ethnic Kazakh patients with ESCC from Xinjiang, China.
Collapse
Affiliation(s)
- Lijuan Pang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Qiuxiang Li
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Oncology, People's Hospital of Lianyuan, Lianyuan, Hunan Province, China
| | - Cuilei Wei
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Hong Zou
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Shugang Li
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Weiwei Cao
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jianwei He
- Department of Clinical Diagnosis Laboratory, First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yang Zhou
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xinxin Ju
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jiaojiao Lan
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yutao Wei
- Department of Thoracic and Cardiovascular Surgery, Hospital of Xingjian Production and Construction Corps, Wulumuqi, Xinjiang, China
| | - Chengyan Wang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Wei Zhao
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jianming Hu
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Wei Jia
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yan Qi
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Fudong Liu
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Oncology, People's Hospital of Lianyuan, Lianyuan, Hunan Province, China
| | - Jinfang Jiang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Li Li
- Department of Pathology, First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jin Zhao
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Weihua Liang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jianxin Xie
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
- * E-mail: (F. Li); (JX)
| | - Feng Li
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
- * E-mail: (F. Li); (JX)
| |
Collapse
|
47
|
Niwa Y, Yamada S, Koike M, Kanda M, Fujii T, Nakayama G, Sugimoto H, Nomoto S, Fujiwara M, Kodera Y. Epithelial to mesenchymal transition correlates with tumor budding and predicts prognosis in esophageal squamous cell carcinoma. J Surg Oncol 2014; 110:764-9. [PMID: 24975035 DOI: 10.1002/jso.23694] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/14/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Epithelial to mesenchymal transition (EMT) is considered to play an important role in cancer invasion. Tumor budding is a prognostic factor in esophageal squamous cell carcinoma (ESCC). The aim of this study was to explore the correlation between EMT and tumor budding. METHODS Surgical specimens from 78 cases of ESCC resected without preoperative treatment between 2001 and 2013 were enrolled in the study. The mRNA expressions of E-cadherin and vimentin were measured in cancerous tissues using real-time PCR, and each tumor was classified into either epithelial or mesenchymal group. Tumor budding was evaluated in H&E-stained slides and divided into two groups; low-grade budding (<3) and high-grade budding (≥3). RESULTS The 5-year survival rate in the epithelial group was significantly higher than that in the mesenchymal group (62.0% vs. 31.5%, P = 0.021). Survival rate of patients in the low-grade budding group was significantly higher than that of patients in the high-grade budding group (75.1% vs. 25.9%, P < 0.001). High-grade tumor budding was significantly associated with the mesenchymal group (P = 0.009). CONCLUSION EMT was found to occur in ESCC and was significantly associated with tumor budding. Tumor budding was identified as a significant independent prognostic factor among the current population of ESCC.
Collapse
Affiliation(s)
- Yukiko Niwa
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Thota B, Arimappamagan A, Kandavel T, Shastry AH, Pandey P, Chandramouli BA, Hegde AS, Kondaiah P, Santosh V. STAT-1 expression is regulated by IGFBP-3 in malignant glioma cells and is a strong predictor of poor survival in patients with glioblastoma. J Neurosurg 2014; 121:374-83. [PMID: 24878287 DOI: 10.3171/2014.4.jns131198] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECT Insulin-like growth factor binding proteins (IGFBPs) have been implicated in the pathogenesis of glioma. In a previous study the authors demonstrated that IGFBP-3 is a novel glioblastoma biomarker associated with poor survival. Since signal transducer and activator of transcription 1 (STAT-1) has been shown to be regulated by IGFBP-3 during chondrogenesis and is a prosurvival and radioresistant molecule in different tumors, the aim in the present study was to explore the functional significance of IGFBP-3 in malignant glioma cells, to determine if STAT-1 is indeed regulated by IGFBP-3, and to study the potential of STAT-1 as a biomarker in glioblastoma. METHODS The functional significance of IGFBP-3 was investigated using the short hairpin (sh)RNA gene knockdown approach on U251MG cells. STAT-1 regulation by IGFBP-3 was tested on U251MG and U87MG cells by shRNA gene knockdown and exogenous treatment with recombinant IGFBP-3 protein. Subsequently, the expression of STAT-1 was analyzed with real-time reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) in glioblastoma and control brain tissues. Survival analyses were done on a uniformly treated prospective cohort of adults with newly diagnosed glioblastoma (136 patients) using Kaplan-Meier and Cox regression models. RESULTS IGFBP-3 knockdown significantly impaired proliferation, motility, migration, and invasive capacity of U251MG cells in vitro (p < 0.005). Exogenous overexpression of IGFBP-3 in U251MG and U87MG cells demonstrated STAT-1 regulation. The mean transcript levels (by real-time RT-PCR) and the mean labeling index of STAT-1 (by IHC) were significantly higher in glioblastoma than in control brain tissues (p = 0.0239 and p < 0.001, respectively). Multivariate survival analysis revealed that STAT-1 protein expression (HR 1.015, p = 0.033, 95% CI 1.001-1.029) along with patient age (HR 1.025, p = 0.005, 95% CI 1.008-1.042) were significant predictors of shorter survival in patients with glioblastoma. CONCLUSIONS IGFBP-3 influences tumor cell proliferation, migration, and invasion and regulates STAT-1 expression in malignant glioma cells. STAT-1 is overexpressed in human glioblastoma tissues and emerges as a novel prognostic biomarker.
Collapse
|
49
|
Wei JH, Cao JZ, Zhang D, Liao B, Zhong WM, Lu J, Zhao HW, Zhang JX, Tong ZT, Fan S, Liang CZ, Liao YB, Pang J, Wu RH, Fang Y, Chen ZH, Li B, Xie D, Chen W, Luo JH. EIF5A2 predicts outcome in localised invasive bladder cancer and promotes bladder cancer cell aggressiveness in vitro and in vivo. Br J Cancer 2014; 110:1767-77. [PMID: 24504366 PMCID: PMC3974079 DOI: 10.1038/bjc.2014.52] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/19/2013] [Accepted: 01/10/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND EIF5A2, eukaryotic translation initiation factor 5A2, is associated with several human cancers. In this study, we investigated the role of EIF5A2 in the metastatic potential of localised invasive bladder cancer (BC) and its underlying molecular mechanisms were explored. METHODS The expression pattern of EIF5A2 in localised invasive BC was determined by immunohistochemistry. In addition, the function of EIF5A2 in BC and its underlying mechanisms were elucidated with a series of in vitro and in vivo assays. RESULTS Overexpression of EIF5A2 was an independent predictor for poor metastasis-free survival of localised invasive BC patients treated with radical cystectomy. Knockdown of EIF5A2 inhibited BC cell migratory and invasive capacities in vitro and metastatic potential in vivo and reversed epithelial-mesenchymal transition (EMT), whereas overexpression of EIF5A2 promoted BC cells motility and invasiveness in vitro and metastatic potential in vivo and induced EMT. In addition, we found that EIF5A2 might activate TGF-β1 expression to induce EMT and drive aggressiveness in BC cells. EIF5A2 stabilized STAT3 and stimulated nuclear localisation of STAT3, which resulted in increasing enrichment of STAT3 onto TGF-β1 promoter to enhance the transcription of TGF-β1. CONCLUSIONS EIF5A2 overexpression predicts tumour metastatic potential in patients with localised invasive BC treated with radical cystectomy. Furthermore, EIF5A2 elevated TGF-β1 expression through STAT3 to induce EMT and promotes aggressiveness in BC.
Collapse
Affiliation(s)
- J-H Wei
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - J-Z Cao
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Urology, Jiangmen Hospital, Sun Yat-Sen University, Jiangmen, China
| | - D Zhang
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - B Liao
- Department of Pathology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - W-M Zhong
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - J Lu
- Department of Urology, Jiangmen Hospital, Sun Yat-Sen University, Jiangmen, China
| | - H-W Zhao
- Department of Urology, Yuhuangding Hospital, Qingdao University Medical College, Yantai, China
| | - J-X Zhang
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Z-T Tong
- Department of Urology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - S Fan
- Department of Urology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - C-Z Liang
- Department of Urology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Y-B Liao
- Department of Urology, Jiangmen Hospital, Sun Yat-Sen University, Jiangmen, China
| | - J Pang
- Department of Urology, Jiangmen Hospital, Sun Yat-Sen University, Jiangmen, China
| | - R-H Wu
- Department of Urology, Jiangmen Hospital, Sun Yat-Sen University, Jiangmen, China
| | - Y Fang
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Z-H Chen
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - B Li
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - D Xie
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - W Chen
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - J-H Luo
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
50
|
Natsuizaka M, Kinugasa H, Kagawa S, Whelan KA, Naganuma S, Subramanian H, Chang S, Nakagawa KJ, Rustgi NL, Kita Y, Natsugoe S, Basu D, Gimotty PA, Klein-Szanto AJ, Diehl JA, Nakagawa H. IGFBP3 promotes esophageal cancer growth by suppressing oxidative stress in hypoxic tumor microenvironment. Am J Cancer Res 2014; 4:29-41. [PMID: 24482736 PMCID: PMC3902230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/09/2013] [Indexed: 06/03/2023] Open
Abstract
Insulin-like growth factor binding protein 3 (IGFBP3), a hypoxia-inducible gene, regulates a variety of cellular processes including cell proliferation, senescence, apoptosis and epithelial-mesenchymal transition (EMT). IGFBP3 has been linked to the pathogenesis of cancers. Most previous studies focus upon proapoptotic tumor suppressor activities of IGFBP3. Nevertheless, IGFBP3 is overexpressed in certain cancers including esophageal squamous cell carcinoma (ESCC), one of the most aggressive forms of squamous cell carcinomas (SCCs). The tumor-promoting activities of IGFBP3 remain poorly understood in part due to a lack of understanding as to how the tumor microenvironment may influence IGFBP3 expression and how IGFBP3 may in turn influence heterogeneous intratumoral cell populations. Here, we show that IGFBP3 overexpression is associated with poor postsurgical prognosis in ESCC patients. In xenograft transplantation models with genetically engineered ESCC cells, IGFBP3 contributes to tumor progression with a concurrent induction of a subset of tumor cells showing high expression of CD44 (CD44H), a major cell surface receptor for hyaluronic acid, implicated in invasion, metastasis and drug resistance. Our gain-of-function and loss-of-function experiments reveal that IGFBP3 mediates the induction of intratumoral CD44H cells. IGFBP3 cooperates with hypoxia to mediate the induction of CD44H cells by suppressing reactive oxygen species (ROS) in an insulin-like growth factor-independent fashion. Thus, our study sheds light on the growth stimulatory functions of IGFPB3 in cancer, gaining a novel mechanistic insight into the functional interplay between the tumor microenvironment and IGFBP3.
Collapse
Affiliation(s)
- Mitsuteru Natsuizaka
- Division of Gastroenterology, Department of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Abramson Cancer Center, University of PennsylvaniaPhiladelphia, PA, USA
- Department of Gastroenterology and Hepatology, Hokkaido UniversitySapporo, Japan
| | - Hideaki Kinugasa
- Division of Gastroenterology, Department of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Abramson Cancer Center, University of PennsylvaniaPhiladelphia, PA, USA
| | - Shingo Kagawa
- Division of Gastroenterology, Department of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Abramson Cancer Center, University of PennsylvaniaPhiladelphia, PA, USA
| | - Kelly A Whelan
- Division of Gastroenterology, Department of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Abramson Cancer Center, University of PennsylvaniaPhiladelphia, PA, USA
| | - Seiji Naganuma
- Division of Gastroenterology, Department of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Abramson Cancer Center, University of PennsylvaniaPhiladelphia, PA, USA
- Department of pathology, Kochi University School of MedicineNankoku, Kochi, Japan
| | - Harry Subramanian
- Division of Gastroenterology, Department of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Abramson Cancer Center, University of PennsylvaniaPhiladelphia, PA, USA
| | - Sanders Chang
- Division of Gastroenterology, Department of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Abramson Cancer Center, University of PennsylvaniaPhiladelphia, PA, USA
| | - Kei J Nakagawa
- Division of Gastroenterology, Department of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Abramson Cancer Center, University of PennsylvaniaPhiladelphia, PA, USA
| | - Naryan L Rustgi
- Division of Gastroenterology, Department of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Abramson Cancer Center, University of PennsylvaniaPhiladelphia, PA, USA
| | - Yoshiaki Kita
- Department of Digestive Surgery, Kagoshima UniversityKagoshima, Japan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Kagoshima UniversityKagoshima, Japan
| | - Devraj Basu
- Departments of Otorhinolaryngology-Head and Neck Surgery, University of PennsylvaniaPhiladelphia, PA, USA
| | - Phyllis A Gimotty
- Abramson Cancer Center, University of PennsylvaniaPhiladelphia, PA, USA
- Division of Biostatistics, Center for Clinical Epidemiology and Biostatistics, University of PennsylvaniaPhiladelphia, PA, USA
| | | | - J Alan Diehl
- Abramson Cancer Center, University of PennsylvaniaPhiladelphia, PA, USA
- Department of Cancer Biology, University of PennsylvaniaPhiladelphia, PA, USA
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Abramson Cancer Center, University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|