1
|
Zand H, Hosseini SA, Cheraghpour M, Alipour M, Sedaghat F. TNF-α-Induced NF-κB Alter the Methylation Status of Some Stemness Genes in HT-29 Human Colon Cancer Cell. Adv Biomed Res 2024; 13:114. [PMID: 39717245 PMCID: PMC11665177 DOI: 10.4103/abr.abr_75_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 12/25/2024] Open
Abstract
Background Acquisition of stem-like properties requires overcoming the epigenetic barrier of differentiation and re-expression of several genes involved in stemness and the cell cycle. DNA methylation is the classic epigenetic mechanism for de/differentiation. The writers and erasers of DNA methylation are not site-specific enzymes for altering specific gene methylation. Thus, the aim of the present study is investigation of the in vitro interaction of ten eleven translocations (TETs) with nuclear factor kappa B (NF-κB) in hypomethylation of stemness genes. Materials and Methods This experimental study was performed on HT-29 cells as human colorectal cancer cell lines. The interaction between TETs and DNA-methyltransferases 3 beta (DNMT3s) with p65 was achieved by coimmunoprecipitation. TETs were knocked down using siRNA, and the efficacy was analyzed by reverse-transcriptase polymerase chain reaction. The promoter methylation status of the target genes (NANOG, MYC) was determined by the methylation-sensitive high-resolution melting method. Results TET3 and DNMT3b functionally interacted with p65 in samples through 25 ng/ml TNF-α treatment for 48 h in HT-29 cells. Transfection with siRNA significantly decreased the expression of TET enzymes after 72 h. Interestingly, treatment with TET siRNAs enhanced methylation of MYC and NANOG genes in samples with 25 ng/ml TNF-α treatment for 72 h in HT-29 cells. Moreover, methylation effects of TET3 were stronger than those of TET1 and TET2. Conclusions These results suggest that inflammation may alter the methylation status of genes required for stemness and predispose the cells to neoplastic alterations.
Collapse
Affiliation(s)
- Hamid Zand
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ahmad Hosseini
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Makan Cheraghpour
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Meysam Alipour
- Department of Nutrition, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Fatemeh Sedaghat
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Jun YK, Kim N, Yoon H, Park JH, Kim HK, Choi Y, Lee JA, Shin CM, Park YS, Lee DH. Molecular Activity of Inflammation and Epithelial-Mesenchymal Transition in the Microenvironment of Ulcerative Colitis. Gut Liver 2024; 18:1037-1047. [PMID: 38384179 PMCID: PMC11565011 DOI: 10.5009/gnl230283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 02/23/2024] Open
Abstract
Background/Aims : The genetic expression in the active inflammatory regions is increased in ulcerative colitis (UC) with endoscopic activity. The aim of this study was to investigate the molecular activity of inflammation and tissue remodeling markers in endoscopically inflamed and uninflamed regions of UC. Methods : Patients with UC (n=47) and controls (n=20) were prospectively enrolled at the Seoul National University Bundang Hospital. Inflamed tissue was obtained at the most active lesion, and uninflamed tissue was collected from approximately 15 cm above the upper end of the active lesion via colonoscopic biopsies. The messenger RNA expression levels of transforming growth factor β (TGF-β), interleukin (IL)-1β, IL-6, IL-17A, E-cadherin, olfactomedin-4 (OLFM4), leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), vimentin, fibroblast-specific protein-1 (FSP1), and α-smooth muscle actin (SMA) were evaluated. Mucosal healing (MH) was defined according to a Mayo endoscopic score of 0, 1 or non-MH (Mayo endoscopic score of 2 or 3). Results : The messenger RNA expressions of TGF-β, IL-1β, OLFM4, FSP1, vimentin, and α-SMA were significantly higher, and that of E-cadherin was significantly lower in inflamed and uninflamed regions of patients with UC than those in controls. In the inflamed regions, patients in the non-MH group had significantly increased genetic expression of TGF-β, FSP1, vimentin, and α-SMA compared to patients in the MH group. Similarly, the non-MH group had significantly higher genetic expression of TGF-β, IL-1β, IL-6, vimentin, and α-SMA than the MH group in the uninflamed regions. Conclusions : Endoscopic activity in UC suggests inflammation and tissue remodeling of uninflamed regions similar to inflamed regions (ClinicalTrials.gov, NCT05653011).
Collapse
Affiliation(s)
- Yu Kyung Jun
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyung Kyung Kim
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Pathology and Translational Genomics, Samsung Medical Center, Seoul, Korea
| | - Yonghoon Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ji Ae Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Young Soo Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Li Q, Sun Y, Zhai K, Geng B, Dong Z, Ji L, Chen H, Cui Y. Microbiota-induced inflammatory responses in bladder tumors promote epithelial-mesenchymal transition and enhanced immune infiltration. Physiol Genomics 2024; 56:544-554. [PMID: 38808774 DOI: 10.1152/physiolgenomics.00032.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024] Open
Abstract
The intratumoral microbiota can modulate the tumor immune microenvironment (TIME); however, the underlying mechanism by which intratumoral microbiota influences the TIME in urothelial carcinoma of the bladder (UCB) remains unclear. To address this, we collected samples from 402 patients with UCB, including paired host transcriptome and tumor microbiome data, from The Cancer Genome Atlas (TCGA). We found that the intratumoral microbiome profiles were significantly correlated with the expression pattern of epithelial-mesenchymal transition (EMT)-related genes. Furthermore, we detected that the genera Lachnoclostridium and Sutterella in tumors could indirectly promote the EMT program by inducing an inflammatory response. Moreover, the inflammatory response induced by these two intratumoral bacteria further enhanced intratumoral immune infiltration, affecting patient survival and response to immunotherapy. In addition, an independent immunotherapy cohort of 348 patients with bladder cancer was used to validate our results. Collectively, our study elucidates the potential mechanism by which the intratumoral microbiota influences the TIME of UCB and provides a new guiding strategy for the targeted therapy of UCB.NEW & NOTEWORTHY The intratumoral microbiota may mediate the bladder tumor inflammatory response, thereby promoting the epithelial-mesenchymal transition program and influencing tumor immune infiltration.
Collapse
Affiliation(s)
- Qiang Li
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Yichao Sun
- Department of Operating Room, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Kun Zhai
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Bingzhi Geng
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Zhenkun Dong
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Lei Ji
- Geneis Beijing Co., Ltd., Beijing, People's Republic of China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, People's Republic of China
| | - Hui Chen
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Yan Cui
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| |
Collapse
|
4
|
Moradi L, Tajik F, Saeednejad Zanjani L, Panahi M, Gheytanchi E, Biabanaki ZS, Kazemi-Sefat GE, Hashemi F, Dehghan Manshadi M, Madjd Z. Clinical significance of CD166 and HER-2 in different types of gastric cancer. Clin Transl Oncol 2024; 26:664-681. [PMID: 37537510 DOI: 10.1007/s12094-023-03297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
INTRODUCTION Cluster of differentiation 166 (CD166), a cancer stem cell (CSC) marker, and human epidermal growth factor receptor 2 (HER-2) are expressed in a diversity of malignancies and is associated with tumor progression. Although studies regarding the importance of CSC markers and HER-2 in gastric cancer (GC) have rapidly developed, their clinicopathological, prognosis, and diagnosis value still remain unsatisfying in GC. Therefore, the present study aims to investigate the clinical, prognostic, and diagnostic significance of CD166 and HER-2 in different histological types of GC. MATERIALS AND METHODS Bioinformatic analysis was applied to determine the clinical importance of CD166 and HER-2 expression based on their tissue localization in primary GC tumors and the normal adjacent samples. The expression patterns, clinical significance, prognosis, and diagnosis value of CD166 and HER-2 proteins in tissue microarrays (TMAs) of 206 GC samples, including Signet Ring Cell (SRC) and intestinal types and also 28 adjacent normal tissues were evaluated using immunohistochemistry (IHC). RESULTS The results indicated that the expression of CD166 (membranous and cytoplasmic) and HER-2 were significantly up-regulated in tumor cells compared to adjacent normal tissues (P = 0.010, P < 0.001, and P = 0.011, respectively). A statistically significant association was detected between a high level of membranous expression of CD166 and lymphovascular invasion (P = 0.006); We also observed a statistically significant association between high cytoplasmic expression of CD166 protein and more invasion of the subserosa (P = 0.040) in the SRC type. In contrast, there was no correlation between the expression of HER-2 and clinicopathologic characteristics. Both CD166 and HER-2 showed reasonable accuracy and high specificity as diagnostic markers. CONCLUSION Our results confirmed that increased membranous and cytoplasmic expression of CD166 showed clinical significance in the SRC type and is associated with the progression of the disease and more aggressive tumor behaviors. These findings can be used to assist in designating subgroups of patients that require different follow-up strategies, and also, they might be utilized as the prognostic or diagnostic biomarkers in these types of GC for prospective clinical application.
Collapse
Affiliation(s)
- Leila Moradi
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mahshid Panahi
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elmira Gheytanchi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Sadat Biabanaki
- Faculty of Biological Sciences, Department of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Golnaz Ensieh Kazemi-Sefat
- Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farideh Hashemi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Dehghan Manshadi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Singh S, Parthasarathi KTS, Bhat MY, Gopal C, Sharma J, Pandey A. Profiling Kinase Activities for Precision Oncology in Diffuse Gastric Cancer. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:76-89. [PMID: 38271566 DOI: 10.1089/omi.2023.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Gastric cancer (GC) remains a leading cause of cancer-related mortality globally. This is due to the fact that majority of the cases of GC are diagnosed at an advanced stage when the treatment options are limited and prognosis is poor. The diffuse subtype of gastric cancer (DGC) under Lauren's classification is more aggressive and usually occurs in younger patients than the intestinal subtype. The concept of personalized medicine is leading to the identification of multiple biomarkers in a large variety of cancers using different combinations of omics technologies. Proteomic changes including post-translational modifications are crucial in oncogenesis. We analyzed the phosphoproteome of DGC by using paired fresh frozen tumor and adjacent normal tissue from five patients diagnosed with DGC. We found proteins involved in the epithelial-to-mesenchymal transition (EMT), c-MYC pathway, and semaphorin pathways to be differentially phosphorylated in DGC tissues. We identified three kinases, namely, bromodomain adjacent to the zinc finger domain 1B (BAZ1B), WNK lysine-deficient protein kinase 1 (WNK1), and myosin light-chain kinase (MLCK) to be hyperphosphorylated, and one kinase, AP2-associated protein kinase 1 (AAK1), to be hypophosphorylated. LMNA hyperphosphorylation at serine 392 (S392) was demonstrated in DGC using immunohistochemistry. Importantly, we have detected heparin-binding growth factor (HDGF), heat shock protein 90 (HSP90), and FTH1 as potential therapeutic targets in DGC, as drugs targeting these proteins are currently under investigation in clinical trials. Although these new findings need to be replicated in larger study samples, they advance our understanding of signaling alterations in DGC, which could lead to potentially novel actionable targets in GC.
Collapse
Affiliation(s)
- Smrita Singh
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Center for Molecular Medicine, National Institute of Mental Health and Neuro-Sciences (NIMHANS), Bangalore, India
| | - K T Shreya Parthasarathi
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Mohd Younis Bhat
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwapeetham University, Kollam, India
| | - Champaka Gopal
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Jyoti Sharma
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Akhilesh Pandey
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Center for Molecular Medicine, National Institute of Mental Health and Neuro-Sciences (NIMHANS), Bangalore, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Yang S, Hao S, Ye H, Zhang X. Cross-talk between Helicobacter pylori and gastric cancer: a scientometric analysis. Front Cell Infect Microbiol 2024; 14:1353094. [PMID: 38357448 PMCID: PMC10864449 DOI: 10.3389/fcimb.2024.1353094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Background Helicobacter pylori (HP) is considered a leading risk factor for gastric cancer (GC). The aim of this article is to conduct bibliometric and visual analysis to assess scientific output, identify highly cited papers, summarize current knowledge, and explore recent hotspots and trends in HP/GC research. Methods A bibliographic search was conducted on October 24, 2023, to retrieve relevant studies on HP/GC research between 2003 and 2022. The search terms were attached to HP and GC. The main data were from the Web of Science Core Collection (WoSCC). Data visualization was performed using Biblioshiny, VOSviewer, and Microsoft Excel. Results In HP/GC research, 1970 papers were retrieved. The total number of papers (Np) in HP/GC was growing from 2003 to 2022. China and Japan were in the leading position and made the most contributions to HP/GC. Vanderbilt University and the US Department of Veterans Affairs had the highest Np. The most productive authors were Peek Jr Richard M. and Piazuelo M Blanca. Helicobacter received the most Np, while Gastroenterology had the most total citations (TC). High-cited publications and keyword clustering were used to identify the current status and trends in HP/GC research, while historical citation analysis provided insight into the evolution of HP/GC research. The hot topics included the effect of HP on gastric tumorigenesis and progression, the pathogenesis of HP-induced GC (HP factors), and the mechanisms by which HP affects GC (host factors). Research in the coming years could focus on topics such as autophagy, gut microbiota, immunotherapy, exosomes, epithelial-mesenchymal transition (EMT), and gamma-glutamyl transpeptidase (GGT). Conclusion This study evaluated the global scientific output in HP/GC research and its quantitative characteristics, identified the essential works, and collected information on the current status, main focuses and emerging trends in HP/GC research to provide academics with guidance for future paths.
Collapse
Affiliation(s)
- Shanshan Yang
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China
| | - Shaodong Hao
- Spleen-Stomach Department, Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Ye
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China
| | - Xuezhi Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
7
|
Pachathundikandi SK, Tegtmeyer N, Backert S. Masking of typical TLR4 and TLR5 ligands modulates inflammation and resolution by Helicobacter pylori. Trends Microbiol 2023; 31:903-915. [PMID: 37012092 DOI: 10.1016/j.tim.2023.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Abstract
Helicobacter pylori is a paradigm of chronic bacterial infection and is associated with peptic ulceration and malignancies. H. pylori uses specific masking mechanisms to avoid canonical ligands from activating Toll-like receptors (TLRs), such as lipopolysaccharide (LPS) modification and specific flagellin sequences that are not detected by TLR4 and TLR5, respectively. Thus, it was believed for a long time that H. pylori evades TLR recognition as a crucial strategy for immune escape and bacterial persistence. However, recent data indicate that multiple TLRs are activated by H. pylori and play a role in the pathology. Remarkably, H. pylori LPS, modified through changes in acylation and phosphorylation, is mainly sensed by other TLRs (TLR2 and TLR10) and induces both pro- and anti-inflammatory responses. In addition, two structural components of the cag pathogenicity island-encoded type IV secretion system (T4SS), CagL and CagY, were shown to contain TLR5-activating domains. These domains stimulate TLR5 and enhance immunity, while LPS-driven TLR10 signaling predominantly activates anti-inflammatory reactions. Here, we discuss the specific roles of these TLRs and masking mechanisms during infection. Masking of typical TLR ligands combined with evolutionary shifting to other TLRs is unique for H. pylori and has not yet been described for any other species in the bacterial kingdom. Finally, we highlight the unmasked T4SS-driven activation of TLR9 by H. pylori, which mainly triggers anti-inflammatory responses.
Collapse
Affiliation(s)
- Suneesh Kumar Pachathundikandi
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Dept. of Biology, Chair of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany; Babasaheb Bhimrao Ambedkar University, Dept. of Environmental Microbiology, School of Earth and Environmental Sciences, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Nicole Tegtmeyer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Dept. of Biology, Chair of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Steffen Backert
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Dept. of Biology, Chair of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany.
| |
Collapse
|
8
|
Shirani M, Pakzad R, Haddadi MH, Akrami S, Asadi A, Kazemian H, Moradi M, Kaviar VH, Zomorodi AR, Khoshnood S, Shafieian M, Tavasolian R, Heidary M, Saki M. The global prevalence of gastric cancer in Helicobacter pylori-infected individuals: a systematic review and meta-analysis. BMC Infect Dis 2023; 23:543. [PMID: 37598157 PMCID: PMC10439572 DOI: 10.1186/s12879-023-08504-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/31/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Helicobacter pylori is a gastrointestinal pathogen that infects around half of the world's population. H. pylori infection is the most severe known risk factor for gastric cancer (GC), which is the second highest cause of cancer-related deaths globally. We conducted a systematic review and meta-analysis to assess the global prevalence of GC in H. pylori-infected individuals. METHODS We performed a systematic search of the PubMed, Web of Science, and Embase databases for studies of the prevalence of GC in H. pylori-infected individuals published from 1 January 2011 to 20 April 2021. Metaprop package were used to calculate the pooled prevalence with 95% confidence interval. Random-effects model was applied to estimate the pooled prevalence. We also quantified it with the I2 index. Based on the Higgins classification approach, I2 values above 0.7 were determined as high heterogeneity. RESULTS Among 17,438 reports screened, we assessed 1053 full-text articles for eligibility; 149 were included in the final analysis, comprising data from 32 countries. The highest and lowest prevalence was observed in America (pooled prevalence: 18.06%; 95% CI: 16.48 - 19.63; I2: 98.84%) and Africa (pooled prevalence: 9.52%; 95% CI: 5.92 - 13.12; I2: 88.39%). Among individual countries, Japan had the highest pooled prevalence of GC in H. pylori positive patients (Prevalence: 90.90%:95% CI: 83.61-95.14), whereas Sweden had the lowest prevalence (Prevalence: 0.07%; 95% CI: 0.06-0.09). The highest and lowest prevalence was observed in prospective case series (pooled prevalence: 23.13%; 95% CI: 20.41 - 25.85; I2: 97.70%) and retrospective cohort (pooled prevalence: 1.17%; 95% CI: 0.55 - 1.78; I 2: 0.10%). CONCLUSIONS H. pylori infection in GC patients varied between regions in this systematic review and meta-analysis. We observed that large amounts of GCs in developed countries are associated with H. pylori. Using these data, regional initiatives can be taken to prevent and eradicate H. pylori worldwide, thus reducing its complications.
Collapse
Affiliation(s)
- Maryam Shirani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Pakzad
- Department of Epidemiology, Faculty of Health, Ilam University Medical Sciences, Ilam, Iran
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Sousan Akrami
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arezoo Asadi
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Melika Moradi
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahab Hassan Kaviar
- Department of Medical Microbiology, Faculty of Medicine, Ilam University of Medical Science, Ilam, Iran
| | - Abolfazl Rafati Zomorodi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Khoshnood
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mahnaz Shafieian
- Department of Midwifery, Faculty of Nursing and Midwifery, Ilam University of Medical Sciences, Ilam, Iran
| | - Ronia Tavasolian
- Department of Medicine, Faculty of Nutrition Science, University of Cheste, Chester, UK
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran.
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
9
|
Temba GS, Vadaq N, Kullaya V, Pecht T, Lionetti P, Cavalieri D, Schultze JL, Kavishe R, Joosten LAB, van der Ven AJ, Mmbaga BT, Netea MG, de Mast Q. Differences in the inflammatory proteome of East African and Western European adults and associations with environmental and dietary factors. eLife 2023; 12:e82297. [PMID: 37555575 PMCID: PMC10473835 DOI: 10.7554/elife.82297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/08/2023] [Indexed: 08/10/2023] Open
Abstract
Non-communicable diseases (NCDs) are rising rapidly in urbanizing populations in sub-Saharan Africa. Assessment of inflammatory and metabolic characteristics of a urbanizing African population and the comparison with populations outside Africa could provide insight in the pathophysiology of the rapidly increasing epidemic of NCDs, including the role of environmental and dietary changes. Using a proteomic plasma profiling approach comprising 92 inflammation-related molecules, we examined differences in the inflammatory proteome in healthy Tanzanian and healthy Dutch adults. We show that healthy Tanzanians display a pro-inflammatory phenotype compared to Dutch subjects, with enhanced activity of the Wnt/β-catenin signalling pathway and higher concentrations of different metabolic regulators such as 4E-BP1 and fibroblast growth factor 21. Among the Tanzanian volunteers, food-derived metabolites were identified as an important driver of variation in inflammation-related molecules, emphasizing the potential importance of lifestyle changes. These findings endorse the importance of the current dietary transition and the inclusion of underrepresented populations in systems immunology studies.
Collapse
Affiliation(s)
- Godfrey S Temba
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboudumc Research Institute for Medical innovation (RIMI), Radboud University Medical CenterNijmegenNetherlands
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University CollegeMoshiUnited Republic of Tanzania
| | - Nadira Vadaq
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboudumc Research Institute for Medical innovation (RIMI), Radboud University Medical CenterNijmegenNetherlands
| | - Vesla Kullaya
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University CollegeMoshiUnited Republic of Tanzania
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical CenterMoshiUnited Republic of Tanzania
| | - Tal Pecht
- Department for Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Paolo Lionetti
- Departement NEUROFARBA, University of Florence – Gastroenterology and Nutrition Unit, Meyer Children's HospitalFlorenceItaly
| | | | - Joachim L Schultze
- Department for Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE)BonnGermany
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases (DZNE) and University of BonnBonnGermany
| | - Reginald Kavishe
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University CollegeMoshiUnited Republic of Tanzania
| | - Leo AB Joosten
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboudumc Research Institute for Medical innovation (RIMI), Radboud University Medical CenterNijmegenNetherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and PharmacyCluj-NapocaRomania
| | - Andre J van der Ven
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboudumc Research Institute for Medical innovation (RIMI), Radboud University Medical CenterNijmegenNetherlands
| | - Blandina T Mmbaga
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical CenterMoshiUnited Republic of Tanzania
- Department of Paediatrics, Kilimanjaro Christian Medical University CollegeMoshiUnited Republic of Tanzania
| | - Mihai G Netea
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboudumc Research Institute for Medical innovation (RIMI), Radboud University Medical CenterNijmegenNetherlands
- Department of Immunology and Metabolism, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - Quirijn de Mast
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboudumc Research Institute for Medical innovation (RIMI), Radboud University Medical CenterNijmegenNetherlands
| |
Collapse
|
10
|
Jamal Eddin TM, Nasr SM, Gupta I, Zayed H, Al Moustafa AE. Helicobacter pylori and epithelial mesenchymal transition in human gastric cancers: An update of the literature. Heliyon 2023; 9:e18945. [PMID: 37609398 PMCID: PMC10440535 DOI: 10.1016/j.heliyon.2023.e18945] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
Gastric cancer, a multifactorial disease, is considered one of the most common malignancies worldwide. In addition to genetic and environmental risk factors, infectious agents, such as Epstein-Barr virus (EBV) and Helicobacter pylori (H.pylori) contribute to the onset and development of gastric cancer. H. pylori is a type I carcinogen that colonizes the gastric epithelium of approximately 50% of the world's population, thus increasing the risk of gastric cancer development. On the other hand, epithelial mesenchymal transition (EMT) is a fundamental process crucial to embryogenic growth, wound healing, organ fibrosis and cancer progression. Several studies associate gastric pathogen infection of the epithelium with EMT initiation, provoking cancer metastasis in the gastric mucosa through various molecular signaling pathways. Additionally, EMT is implicated in the progression and development of H. pylori-associated gastric cancer. In this review, we recapitulate recent findings elucidating the association between H. pylori infection in EMT promotion leading to gastric cancer progression and metastasis.
Collapse
Affiliation(s)
- Tala M. Jamal Eddin
- College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Shahd M.O. Nasr
- College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Ishita Gupta
- College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Hatem Zayed
- College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
- Biomedical Research Center, Qatar University, PO Box 2713, Doha, Qatar
- Oncology Department, Faculty of Medicine, McGill University, Montreal, QC, H3G 2M1, Canada
| |
Collapse
|
11
|
Kim N, Yoon H. Atrophic Gastritis and Intestinal Metaplasia. HELICOBACTER PYLORI 2023:641-659. [DOI: 10.1007/978-981-97-0013-4_55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Ding Y, Ge Y, Wang D, Liu Q, Sun S, Hua L, Deng J, Luan S, Cheng H, Xie Q, Gong Y, Zhang T. LncRNA-IMAT1 Promotes Invasion of Meningiomas by Suppressing KLF4/hsa-miR22-3p/Snai1 Pathway. Mol Cells 2022; 45:388-402. [PMID: 35680373 PMCID: PMC9200663 DOI: 10.14348/molcells.2022.2232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/18/2021] [Accepted: 12/26/2021] [Indexed: 11/27/2022] Open
Abstract
Malignant meningiomas often show invasive growth that makes complete tumor resection challenging, and they are more prone to recur after radical resection. Invasive meningioma associated transcript 1 (IMAT1) is a long noncoding RNA located on Homo sapiens chromosome 17 that was identified by our team based on absolute expression differences in invasive and non-invasive meningiomas. Our studies indicated that IMAT1 was highly expressed in invasive meningiomas compared with non-invasive meningiomas. In vitro studies showed that IMAT1 promoted meningioma cell invasion through the inactivation of the Krüppel-like factor 4 (KLF4)/hsa-miR22-3p/Snai1 pathway by acting as a sponge for hsa-miR22-3p, and IMAT1 knockdown effectively restored the tumor suppressive properties of KLF4 by preserving its tumor suppressor pathway. In vivo experiments confirmed that IMAT1 silencing could significantly inhibit the growth of subcutaneous tumors and prolong the survival period of tumor-bearing mice. Our findings demonstrated that the high expression of IMAT1 is the inherent reason for the loss of the tumor suppressive properties of KLF4 during meningioma progression. Therefore, we believe that IMAT1 may be a potential biological marker and treatment target for meningiomas.
Collapse
Affiliation(s)
- Yaodong Ding
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Ge
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Daijun Wang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qin Liu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shuchen Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiaojiao Deng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shihai Luan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Haixia Cheng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qing Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Tao Zhang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
13
|
Muhammad JS, Khan NA, Maciver SK, Alharbi AM, Alfahemi H, Siddiqui R. Epigenetic-Mediated Antimicrobial Resistance: Host versus Pathogen Epigenetic Alterations. Antibiotics (Basel) 2022; 11:809. [PMID: 35740215 PMCID: PMC9220109 DOI: 10.3390/antibiotics11060809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Since the discovery of antibiotics, humans have been benefiting from them by decreasing the morbidity and mortality associated with bacterial infections. However, in the past few decades, misuse of antibiotics has led to the emergence of bacterial infections resistant to multiple drugs, a significant health concern. Bacteria exposed to inappropriate levels of antibiotics lead to several genetic changes, enabling them to survive in the host and become more resistant. Despite the understanding and targeting of genetic-based biochemical changes in the bacteria, the increasing levels of antibiotic resistance are not under control. Many reports hint at the role of epigenetic modifications in the bacterial genome and host epigenetic reprogramming due to interaction with resistant pathogens. Epigenetic changes, such as the DNA-methylation-based regulation of bacterial mutation rates or bacteria-induced histone modification in human epithelial cells, facilitate its long-term survival. In this review article, epigenetic changes leading to the development of antibiotic resistance in clinically relevant bacteria are discussed. Additionally, recent lines of evidence focusing on human host epigenetic changes due to the human-pathogen interactions are presented. As genetic mechanisms cannot explain the transient nature of antimicrobial resistance, we believe that epigenetics may provide new frontiers in antimicrobial discovery.
Collapse
Affiliation(s)
- Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Naveed Ahmed Khan
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Sutherland K. Maciver
- Centre for Discovery Brain Sciences, Edinburgh Medical School-Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, Scotland, UK;
| | - Ahmad M. Alharbi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia;
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, P.O. Box 1988, Al-Baha 65799, Saudi Arabia;
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| |
Collapse
|
14
|
He J, Hu W, Ouyang Q, Zhang S, He L, Chen W, Li X, Hu C. Helicobacter pylori infection induces stem cell-like properties in Correa cascade of gastric cancer. Cancer Lett 2022; 542:215764. [PMID: 35654291 DOI: 10.1016/j.canlet.2022.215764] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 02/09/2023]
Abstract
Gastric cancer (GC) is the fourth leading cause of cancer-related death. Its poor prognosis is attributed to unclear pathogenesis. Currently, the most widely accepted model for elucidating the mechanism of GC is the Correa cascade, which covers several histological lesions of the gastric mucosa. GC stem cells (CSCs) are crucial for oncogenesis in the Correa cascade and GC progression. As Helicobacter pylori (H. pylori) is the etiological factor in the Correa cascade, growing evidence suggests that enhancement of gastric stem cell-like properties and increase in CSCs correlate with H. pylori infection. In this paper, we review recent studies that present pathogenic mechanisms by which H. pylori induces gastric stem cell-like properties and CSCs, which may supplement the existing Correa model of GC. First, the dysfunction of developmental signaling pathways associated with H. pylori infection leads to the enhancement of gastric stemness. Second, H. pylori infection promotes alteration of the gastric mucosal microenvironment. In addition, epithelial-mesenchymal transition (EMT) may contribute to H. pylori-induced gastric stemness. Taken together, understanding these pathogeneses will provide potential therapeutic targets for the treatment of CSCs and malignant GC in H. pylori induced-Correa cascade of GC.
Collapse
Affiliation(s)
- JunJian He
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - WeiChao Hu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - ShengWei Zhang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - LiJiao He
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - WeiYan Chen
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - XinZhe Li
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - ChangJiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
15
|
Mohammadi A, Khanbabaei H, Zandi F, Ahmadi A, Haftcheshmeh SM, Johnston TP, Sahebkar A. Curcumin: A therapeutic strategy for targeting the Helicobacter pylori-related diseases. Microb Pathog 2022; 166:105552. [DOI: 10.1016/j.micpath.2022.105552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022]
|
16
|
Otaegi-Ugartemendia M, Matheu A, Carrasco-Garcia E. Impact of Cancer Stem Cells on Therapy Resistance in Gastric Cancer. Cancers (Basel) 2022; 14:cancers14061457. [PMID: 35326607 PMCID: PMC8946717 DOI: 10.3390/cancers14061457] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
Gastric cancer (GC) is the fourth leading cause of cancer death worldwide, with an average 5-year survival rate of 32%, being of 6% for patients presenting distant metastasis. Despite the advances made in the treatment of GC, chemoresistance phenomena arise and promote recurrence, dissemination and dismal prognosis. In this context, gastric cancer stem cells (gCSCs), a small subset of cancer cells that exhibit unique characteristics, are decisive in therapy failure. gCSCs develop different protective mechanisms, such as the maintenance in a quiescent state as well as enhanced detoxification procedures and drug efflux activity, that make them insusceptible to current treatments. This, together with their self-renewal capacity and differentiation ability, represents major obstacles for the eradication of this disease. Different gCSC regulators have been described and used to isolate and characterize these cell populations. However, at the moment, no therapeutic strategy has achieved the effective targeting of gCSCs. This review will focus on the properties of cancer stem cells in the context of therapy resistance and will summarize current knowledge regarding the impact of the gCSC regulators that have been associated with GC chemoradioresistance.
Collapse
Affiliation(s)
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (M.O.-U.); (A.M.)
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Estefania Carrasco-Garcia
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (M.O.-U.); (A.M.)
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-943-006296
| |
Collapse
|
17
|
Han L, Shu X, Wang J. Helicobacter pylori-Mediated Oxidative Stress and Gastric Diseases: A Review. Front Microbiol 2022; 13:811258. [PMID: 35211104 PMCID: PMC8860906 DOI: 10.3389/fmicb.2022.811258] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is considered to be a type of gastrointestinal tumor and is mostly accompanied by Helicobacter pylori (HP) infection at the early stage. Hence, the long-term colonization of the gastric mucosa by HP as a causative factor for gastrointestinal diseases cannot be ignored. The virulence factors secreted by the bacterium activate the signaling pathway of oxidative stress and mediate chronic inflammatory response in the host cells. The virulence factors also thwart the antibacterial effect of neutrophils. Subsequently, DNA methylation is induced, which causes continuous cell proliferation and evolution toward low-grade-differentiated gastric cells. This process provides the pathological basis for the occurrence of progressive gastric cancer. Therefore, this review aims to summarize the oxidative stress response triggered by HP in the gastric mucosa and the subsequent signaling pathways. The findings are expected to help in the formulation of new targeted drugs for preventing the occurrence of early gastric cancer and its progression to middle and advanced cancer.
Collapse
Affiliation(s)
- Lu Han
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu Shu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Wilczyński JR. Cancer Stem Cells: An Ever-Hiding Foe. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:219-251. [PMID: 35165866 DOI: 10.1007/978-3-030-91311-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cancer stem cells are a population of cells enable to reproduce the original phenotype of the tumor and capable to self-renewal, which is crucial for tumor proliferation, differentiation, recurrence, and metastasis, as well as chemoresistance. Therefore, the cancer stem cells (CSCs) have become one of the main targets for anticancer therapy and many ongoing clinical trials test anti-CSCs efficacy of plenty of drugs. This chapter describes CSCs starting from general description of this cell population, through CSCs markers, signaling pathways, genetic and epigenetic regulation, role of epithelial-mesenchymal transition (EMT) transition and autophagy, cooperation with microenvironment (CSCs niche), and finally role of CSCs in escaping host immunosurveillance against cancer.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecologic Surgery and Gynecologic Oncology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
19
|
Senchukova MA, Tomchuk O, Shurygina EI. Helicobacter pylori in gastric cancer: Features of infection and their correlations with long-term results of treatment. World J Gastroenterol 2021; 27:6290-6305. [PMID: 34712033 PMCID: PMC8515796 DOI: 10.3748/wjg.v27.i37.6290] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is a spiral-shaped bacterium responsible for the development of chronic gastritis, gastric ulcer, gastric cancer (GC), and MALT-lymphoma of the stomach. H. pylori can be present in the gastric mucosa (GM) in both spiral and coccoid forms. However, it is not known whether the severity of GM contamination by various vegetative forms of H. pylori is associated with clinical and morphological characteristics and long-term results of GC treatment. AIM To establish the features of H. pylori infection in patients with GC and their correlations with clinical and morphological characteristics of diseases and long-term results of treatment. METHODS Of 109 patients with GC were included in a prospective cohort study. H. pylori in the GM and tumor was determined by rapid urease test and by immunohistochemically using the antibody to H. pylori. The results obtained were compared with the clinical and morphological characteristics and prognosis of GC. Statistical analysis was performed using the Statistica 10.0 software. RESULTS H. pylori was detected in the adjacent to the tumor GM in 84.5% of cases, of which a high degree of contamination was noted in 50.4% of the samples. Coccoid forms of H. pylori were detected in 93.4% of infected patients, and only coccoid-in 68.9%. It was found that a high degree of GM contamination by the coccoid forms of H. pylori was observed significantly more often in diffuse type of GC (P = 0.024), in poorly differentiated GC (P = 0.011), in stage T3-4 (P = 0.04) and in N1 (P = 0.011). In cases of moderate and marked concentrations of H. pylori in GM, a decrease in 10-year relapse free and overall survival from 55.6% to 26.3% was observed (P = 0.02 and P = 0.07, respectively). The relationship between the severity of the GM contamination by the spiral-shaped forms of H. pylori and the clinical and morphological characteristics and prognosis of GC was not revealed. CONCLUSION The data obtained indicates that H. pylori may be associated not only with induction but also with the progression of GC.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| | - Olesya Tomchuk
- Department of Histology, Cytology, Embryology, Orenburg State Medical University, Orenburg 460000, Russia
| | - Elena I Shurygina
- Department of Pathology, Orenburg State Medical University, Orenburg 460000, Russia
| |
Collapse
|
20
|
Zhu H, Liu X. Advances of Tumorigenesis, Diagnosis at Early Stage, and Cellular Immunotherapy in Gastrointestinal Malignancies. Front Oncol 2021; 11:666340. [PMID: 34434889 PMCID: PMC8381364 DOI: 10.3389/fonc.2021.666340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Globally, in 2018, 4.8 million new patients have a diagnosis of gastrointestinal (GI) cancers, while 3.4 million people died of such disorders. GI malignancies are tightly relevant to 26% of the world-wide cancer incidence and occupies 35% of all cancer-associated deaths. In this article, we principally investigated molecular and cellular mechanisms of tumorigenesis in five major GI cancers occurring at esophagus, stomach, liver, pancreas, and colorectal region that illustrate high morbidity in Eastern and Western countries. Moreover, through this investigation, we not only emphasize importance of the tumor microenvironment in development and treatment of malignant tumors but also identify significance of M2PK, miRNAs, ctDNAs, circRNAs, and CTCs in early detection of GI cancers, as well as systematically evaluate contribution of personalized precision medicine including cellular immunotherapy, new antigen and vaccine therapy, and oncolytic virotherapy in treatment of GI cancers.
Collapse
Affiliation(s)
- Haipeng Zhu
- Precision and Personalized Cancer Treatment Center, Division of Cancer Diagnosis & Therapy, Ciming Boao International Hospital, Boao Lecheng International Medical Tourism Pilot Zone, Qionghai, China.,Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical College, Xinxiang, China
| | - Xiaojun Liu
- Division of Cellular & Biomedical Science, Ciming Boao International Hospital, Boao Lecheng International Medical Tourism Pilot Zone, Qionghai, China
| |
Collapse
|
21
|
Kim HJ, Kim N, Park JH, Choi S, Shin CM, Lee OJ. Helicobacter pylori Eradication Induced Constant Decrease in Interleukin- 1B Expression over More Than 5 Years in Patients with Gastric Cancer and Dysplasia. Gut Liver 2021; 14:735-745. [PMID: 32703913 PMCID: PMC7667922 DOI: 10.5009/gnl19312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022] Open
Abstract
Background/Aims Helicobacter pylori (Hp) suppresses gastric acid secretion by repressing the expression of the H+, K+-adenosine triphosphatase (H+, K+-ATPase) and stimulating interleukin-1 (IL-1β; encoded by IL-1B). This study was aimed at evaluating the expression of the H+, K+-ATPase and IL-1β after Hp eradication. Methods Two hundred twenty-one subjects were categorized as Hp-negative (n=84) or Hp-positive (n=137) according to the results of Hp tests (histology, CLO test, culturing, and serology). The mRNA expression levels of IL-1B and ATP4A (the gene encoding the α-subunit of H+, K+-ATPase) were measured in biopsy specimens from the gastric corpus using real-time polymerase chain reaction. Results The Hp-positive group had significantly higher IL-1B mRNA levels than the whole Hp-negative group and the intestinal metaplasia (IM)-negative subgroup. After Hp eradication, the difference between the Hp-negative and Hp-eradicated groups disappeared, including in the IM-negative subgroup. The IL-1B mRNA level did not significantly change from the baseline level. Within the gastric cancer (GC)/dysplasia subgroup, the IL-1B mRNA levels at 1, 2, 3–4, and ≥5 years after Hp eradication were significantly lower than the baseline level. The difference in ATP4A mRNA levels between the Hp-negative and Hp-positive groups was not significant at baseline, and the changes in the ATP4A mRNA levels after Hp eradication compared to the baseline levels in the whole group and subgroups stratified by the presence of IM and GC/dysplasia were not significant. Conclusions Infection with Hp has an effect on the level of IL-1B mRNA in IM-negative subjects. The continuous reduction in the IL-1B mRNA level in patients with GC/dysplasia after Hp eradication contributes to the prevention of metachronous GC after Hp eradication.
Collapse
Affiliation(s)
- Hee Jin Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine, Gyeongsang National University College of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University, Seoul, Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University, Seoul, Korea
| | - Sunkyu Choi
- Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University, Seoul, Korea
| | - Ok Jae Lee
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine and Gyeongsang National University Hospital, Jinju, Korea
| |
Collapse
|
22
|
Li Y, Zhong X, Zhang Y, Lu X. Mesenchymal Stem Cells in Gastric Cancer: Vicious but Hopeful. Front Oncol 2021; 11:617677. [PMID: 34046337 PMCID: PMC8144497 DOI: 10.3389/fonc.2021.617677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
Tumor progression depends on the collaborative interactions between tumor cells and the surrounding stroma. First-line therapies direct against cancer cells may not reach a satisfactory outcome, such as gastric cancer (GC), with high risk of recurrence and metastasis. Therefore, novel treatments and drugs target the effects of stroma components are to be promising alternatives. Mesenchymal stem cells (MSC) represent the decisive components of tumor stroma that are found to strongly affect GC development and progression. MSC from bone marrow or adjacent normal tissues express homing profiles in timely response to GC-related inflammation signals and anchor into tumor bulks. Then the newly recruited “naïve” MSC would achieve phenotype and functional alternations and adopt the greater tumor-supporting potential under the reprogramming of GC cells. Conversely, both new-comers and tumor-resident MSC are able to modulate the tumor biology via aberrant activation of oncogenic signals, metabolic reprogramming and epithelial-to-mesenchymal transition. And they also engage in remodeling the stroma better suited for tumor progression through immunosuppression, pro-angiogenesis, as well as extracellular matrix reshaping. On the account of tumor tropism, MSC could be engineered to assist earlier diagnosis of GC and deliver tumor-killing agents precisely to the tumor microenvironment. Meanwhile, intercepting and abrogating vicious signals derived from MSC are of certain significance for the combat of GC. In this review, we mainly summarize current advances concerning the reciprocal metabolic interactions between MSC and GC and their underlying therapeutic implications in the future.
Collapse
Affiliation(s)
- Yuyi Li
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingwei Zhong
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunzhu Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinliang Lu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Sentani K, Imai T, Kobayashi G, Hayashi T, Sasaki N, Oue N, Yasui W. Histological diversity and molecular characteristics in gastric cancer: relation of cancer stem cell-related molecules and receptor tyrosine kinase molecules to mixed histological type and more histological patterns. Gastric Cancer 2021; 24:368-381. [PMID: 33118117 DOI: 10.1007/s10120-020-01133-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancers (GCs) are still one of the leading causes of cancer-related mortality. The histological and molecular features of GC may differ widely from area to area within the same tumor. Intratumoral heterogeneity has been considered a major obstacle to an efficient diagnosis and successful molecular treatment. METHODS We selected and reevaluated 842 GC cases and analyzed the relationship between numbers or composites of histological patterns within tumors, and clinicopathological parameters in mucosal and invasive areas. In addition, we searched for the GC-associated molecules or molecular subtypes marking histological diversities. RESULTS GC cases with more histological numbers or mixed types in invasive areas showed significantly higher T grade and staging, whereas those in mucosal areas did not show any significant associations. GCs with histological diversities showed poorer prognosis and characteristically expressed cancer stem cell-related molecules (CD44, CD133 or ALDH1) and receptor tyrosine kinase molecules (HER2, EGFR or c-MET) as well as Helicobacter pylori infection. Expressions of CD44, HER2, c-MET, laminin 5·2 or retained E-cadherin in mucosal areas were predictive of more histological numbers and mixed types in invasive areas. In addition, the chromosomal instability subtype of GC showed significant associations with more histological numbers and mixed histological type, whereas the genomic stability subtype of GC showed a significant relationship with pure type. CONCLUSIONS We displayed the relationship between histological diversity and molecular features in GC, and we hope that the present data can contribute to the early diagnosis and prevention, and effective treatment of GC.
Collapse
Affiliation(s)
- Kazuhiro Sentani
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Takeharu Imai
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Go Kobayashi
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Tetsutaro Hayashi
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naomi Sasaki
- Department of Pathology, Kure-Kyosai Hospital, Federation of National Public Service Personnel Mutual Aid Associations, Hiroshima, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
24
|
Ouyang Y, Liu G, Xu W, Yang Z, Li N, Xie C, Zhou C, Chen J, Zhu Y, Hong J, Lu N. Helicobacter pylori induces epithelial-mesenchymal transition in gastric carcinogenesis via the AKT/GSK3β signaling pathway. Oncol Lett 2021; 21:165. [PMID: 33552283 PMCID: PMC7798028 DOI: 10.3892/ol.2021.12426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/19/2020] [Indexed: 11/10/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a main risk factor for gastric cancer (GC). Epithelial-mesenchymal transition (EMT) is involved in the development and progression of H. pylori-associated GC. However, the exact molecular mechanism of this process remains unclear. The AKT/GSK3β signaling pathway has been demonstrated to promote EMT in several types of cancer. The present study investigated whether H. pylori infection induced EMT, and promoted the development and metastasis of cancer in the normal gastric mucosa, and whether this process was dependent on AKT activation. The expression levels of the EMT-associated proteins, including E-cadherin and N-cadherin, were determined in 165 gastric mucosal samples of different disease stages by immunohistochemical analysis. The expression levels of E-cadherin, N-cadherin, AKT, phosphorylated (p-)AKT (Ser473), GSK3β and p-GSK3β (Ser9) were further determined in H. pylori-infected Mongolian gerbil gastric tissues and cells co-cultured with H. pylori by immunohistochemical analysis and western blotting. The results indicated that the expression levels of the epithelial marker E-cadherin were decreased, whereas the expression levels of the mesenchymal marker N-cadherin were increased during gastric carcinogenesis. Their expression levels were associated with H. pylori infection. Furthermore, H. pylori infection resulted in downregulation of E-cadherin expression and upregulation of N-cadherin expression in Mongolian gerbils and GES-1 cells. In addition, an investigation of the associated mechanism of action revealed that p-AKT (Ser473) and p-GSK3β (Ser9) were activated in GES-1 cells following co-culture with H. pylori. Furthermore, following pretreatment of the cells with the AKT inhibitor VIII, the expression levels of E-cadherin, N-cadherin, p-AKT and p-GSK3β did not show significant differences between GES-1 cells that were co-cultured with or without H. pylori. The levels of p-AKT and p-GSK3β were increased in H. pylori-infected Mongolian gerbils. In conclusion, the present study demonstrated that H. pylori infection activated AKT and resulted in the phosphorylation and inactivation of GSK3β, which in turn promoted early stage EMT. These effects were AKT-dependent. This mechanism may serve as a prerequisite for GC development.
Collapse
Affiliation(s)
- Yaobin Ouyang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Gongmeizi Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Endocrinology, The First Affiliated Hospital of Tsinghua University, Beijing 100700, P.R. China
| | - Wenting Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhen Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Nianshuang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chun Zhou
- Department of Urology, The Haidian Hospital of Beijing, Beijing 100700, P.R. China
| | - Jiang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Junbo Hong
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
25
|
Tsugawa H, Suzuki H. Oxidative stress in stomach cancer. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
A decade in unravelling the etiology of gastric carcinogenesis in Kashmir, India – A high risk region. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Baj J, Korona-Głowniak I, Forma A, Maani A, Sitarz E, Rahnama-Hezavah M, Radzikowska E, Portincasa P. Mechanisms of the Epithelial-Mesenchymal Transition and Tumor Microenvironment in Helicobacter pylori-Induced Gastric Cancer. Cells 2020; 9:1055. [PMID: 32340207 PMCID: PMC7225971 DOI: 10.3390/cells9041055] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) is one of the most common human pathogens, affecting half of the world's population. Approximately 20% of the infected patients develop gastric ulcers or neoplastic changes in the gastric stroma. An infection also leads to the progression of epithelial-mesenchymal transition within gastric tissue, increasing the probability of gastric cancer development. This paper aims to review the role of H. pylori and its virulence factors in epithelial-mesenchymal transition associated with malignant transformation within the gastric stroma. The reviewed factors included: CagA (cytotoxin-associated gene A) along with induction of cancer stem-cell properties and interaction with YAP (Yes-associated protein pathway), tumor necrosis factor α-inducing protein, Lpp20 lipoprotein, Afadin protein, penicillin-binding protein 1A, microRNA-29a-3p, programmed cell death protein 4, lysosomal-associated protein transmembrane 4β, cancer-associated fibroblasts, heparin-binding epidermal growth factor (HB-EGF), matrix metalloproteinase-7 (MMP-7), and cancer stem cells (CSCs). The review summarizes the most recent findings, providing insight into potential molecular targets and new treatment strategies for gastric cancer.
Collapse
Affiliation(s)
- Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology with Laboratory for Microbiological Diagnostics, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland;
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Amr Maani
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Elżbieta Sitarz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland;
| | - Mansur Rahnama-Hezavah
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Elżbieta Radzikowska
- Department of Plastic Surgery, Central Clinical Hospital of the MSWiA in Warsaw, 01-211 Warsaw, Poland;
| | - Piero Portincasa
- Clinica Medica A. Murri, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, 70126 Bari, Italy;
| |
Collapse
|
28
|
Baj J, Brzozowska K, Forma A, Maani A, Sitarz E, Portincasa P. Immunological Aspects of the Tumor Microenvironment and Epithelial-Mesenchymal Transition in Gastric Carcinogenesis. Int J Mol Sci 2020; 21:2544. [PMID: 32268527 PMCID: PMC7177728 DOI: 10.3390/ijms21072544] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Infection with Helicobacter pylori, a Gram-negative, microaerophilic pathogen often results in gastric cancer in a subset of affected individuals. This explains why H. pylori is the only bacterium classified as a class I carcinogen by the World Health Organization. Several studies have pinpointed mechanisms by which H. pylori alters signaling pathways in the host cell to cause diseases. In this article, the authors have reviewed 234 studies conducted over a span of 18 years (2002-2020). The studies investigated the various mechanisms associated with gastric cancer induction. For the past 1.5 years, researchers have discovered new mechanisms contributing to gastric cancer linked to H. pylori etiology. Alongside alteration of the host signaling pathways using oncogenic CagA pathways, H. pylori induce DNA damage in the host and alter the methylation of DNA as a means of perturbing downstream signaling. Also, with H. pylori, several pathways in the host cell are activated, resulting in epithelial-to-mesenchymal transition (EMT), together with the induction of cell proliferation and survival. Studies have shown that H. pylori enhances gastric carcinogenesis via a multifactorial approach. What is intriguing is that most of the targeted mechanisms and pathways appear common with various forms of cancer.
Collapse
Affiliation(s)
- Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (A.M.)
| | - Karolina Brzozowska
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Alicja Forma
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (A.M.)
| | - Amr Maani
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (A.M.)
| | - Elżbieta Sitarz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|
29
|
Shen E, Wang X, Liu X, Lv M, Zhang L, Zhu G, Sun Z. MicroRNA-93-5p promotes epithelial-mesenchymal transition in gastric cancer by repressing tumor suppressor AHNAK expression. Cancer Cell Int 2020; 20:76. [PMID: 32190000 PMCID: PMC7066804 DOI: 10.1186/s12935-019-1092-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/28/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common cause of cancer-related mortality worldwide, and microRNAs (miRNAs) have been shown to play an important role in GC development. This study aims to explore the effect of microRNA-93-5p (miR-93-5p) on the epithelial-mesenchymal transition (EMT) in GC, via AHNAK and the Wnt signaling pathway. METHODS Microarray-based gene expression analysis was performed to identify GC-related differentially expressed miRNAs and genes. Then the expression of the miR-93-5p was examined in GC tissues and GC cell lines. The targeting relationship between miR-93-5p and AHNAK was verified by a dual luciferase reporter gene assay. In an attempt to ascertain the contributory role of miR-93-5p in GC, miR-93-5p mimic or inhibitor, as well as an AHNAK overexpression vector, were introduced to HGC-27 cells. HGC-27 cell migration and invasive ability, and EMT were assayed using Transwell assay and western blot analysis. Regulation of the Wnt signaling pathway was also assessed using TOP/FOP flash luciferase assay. RESULTS miR-93-5p was highly expressed in GC tissue samples and cells. Notably, miR-93-5p could target and negatively regulate AHNAK. Down-regulation of miR-93-5p or overexpression of AHNAK could suppress the migration and invasion abilities, in addition to EMT in GC cells via inactivation of the Wnt signaling pathway. CONCLUSION Taken together, downregulation of miR-93-5p attenuated GC development via the Wnt signaling pathway by targeting AHNAK. These findings provide an enhanced understanding of miR-93-5p as a therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Erdong Shen
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Road, Heping District, Shenyang, 110001 Liaoning People’s Republic of China
- Department of Oncology, Yueyang First People’s Hospital, Yueyang, 414000 P. R. China
| | - Xin Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Road, Heping District, Shenyang, 110001 Liaoning People’s Republic of China
| | - Xin Liu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Road, Heping District, Shenyang, 110001 Liaoning People’s Republic of China
| | - Mingyue Lv
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Road, Heping District, Shenyang, 110001 Liaoning People’s Republic of China
| | - Liang Zhang
- Department of Thoracic Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital, Shenyang, 110001 P. R. China
| | - Guolian Zhu
- Department of Oncology, Shenyang Fifth People Hospital, Shenyang, 110001 P. R. China
| | - Zhe Sun
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Road, Heping District, Shenyang, 110001 Liaoning People’s Republic of China
| |
Collapse
|
30
|
Gupta MK, Rajeswari J, Reddy PR, Kumar KS, Chamundeswaramma KV, Vadde R. Genetic Marker Identification for the Detection of Early-Onset Gastric Cancer Through Genome-Wide Association Studies. RECENT ADVANCEMENTS IN BIOMARKERS AND EARLY DETECTION OF GASTROINTESTINAL CANCERS 2020:191-211. [DOI: https:/doi.org/10.1007/978-981-15-4431-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
31
|
Gupta MK, Rajeswari J, Reddy PR, Kumar KS, Chamundeswaramma KV, Vadde R. Genetic Marker Identification for the Detection of Early-Onset Gastric Cancer Through Genome-Wide Association Studies. RECENT ADVANCEMENTS IN BIOMARKERS AND EARLY DETECTION OF GASTROINTESTINAL CANCERS 2020:191-211. [DOI: 10.1007/978-981-15-4431-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
32
|
Krzysiek-Maczka G, Wrobel T, Targosz A, Szczyrk U, Strzalka M, Ptak-Belowska A, Czyz J, Brzozowski T. Helicobacter pylori-activated gastric fibroblasts induce epithelial-mesenchymal transition of gastric epithelial cells in vitro in a TGF-β-dependent manner. Helicobacter 2019; 24:e12653. [PMID: 31411795 DOI: 10.1111/hel.12653] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Colonization of the gastric mucosa with Helicobacter pylori (Hp) leads to the cascade of pathologic events including local inflammation, gastric ulceration, and adenocarcinoma formation. Paracrine loops between tissue cells and Hp contribute to the formation of gastric cancerous loci; however, the specific mechanisms underlying existence of these loops remain unknown. We determined the phenotypic properties of gastric fibroblasts exposed to Hp (cagA+vacA+) infection and their influence on normal epithelial RGM-1 cells. MATERIALS AND METHODS RGM-1 cells were cultured in the media conditioned with Hp-activated gastric fibroblasts. Their morphology and phenotypical changes associated with epithelial-mesenchymal transition (EMT) were assessed by Nomarski and fluorescence microscopy and Western blot analysis. Motility pattern of RGM-1 cells was examined by time-lapse video microscopy and transwell migration assay. The content of TGF-β in Hp-activated fibroblast-conditioned media was determined by ELISA. RESULTS The supernatant from Hp-activated gastric fibroblasts caused the EMT-like phenotypic diversification of RGM-1 cells. The formation of fibroblastoid cell sub-populations, the disappearance of their collective migration, an increase in transmigration potential with downregulation of E-cadherin and upregulation of N-cadherin proteins, prominent stress fibers, and decreased proliferation were observed. The fibroblast (CAF)-like transition was manifested by increased secretome TGF-β level, α-SMA protein expression, and its incorporation into stress fibers, and the TGF-βR1 kinase inhibitor reduced the rise in Snail, Twist, and E-cadherin mRNA and increased E-cadherin expression induced by CAFs. CONCLUSION Gastric fibroblasts which are one of the main targets for Hp infection contribute to the paracrine interactions between Hp, gastric fibroblasts, and epithelial cells. TGF-β secreted by Hp-activated gastric fibroblasts prompting their differentiation toward CAF-like phenotype promotes the EMT-related phenotypic shifts in normal gastric epithelial cell populations. This mechanism may serve as the prerequisite for GC development.
Collapse
Affiliation(s)
- Gracjana Krzysiek-Maczka
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Tomasz Wrobel
- Department of Cell Biology, The Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | - Aneta Targosz
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Urszula Szczyrk
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Malgorzata Strzalka
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Agata Ptak-Belowska
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Jaroslaw Czyz
- Department of Cell Biology, The Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
33
|
Kim N. Chemoprevention of gastric cancer by Helicobacter pylori eradication and its underlying mechanism. J Gastroenterol Hepatol 2019; 34:1287-1295. [PMID: 30828872 DOI: 10.1111/jgh.14646] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/23/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
The cascade of gastric cancer, a leading cause of cancer incidence and mortality, is multifactorial. Helicobacter pylori (HP) infection plays a major role in gastric cancer (GC), and there has been an accumulation of data regarding the chemopreventive effect of HP eradication. However, it remains unclear how HP infection causes GC and how HP eradication prevents GC. To clarify this issue, the following approaches were performed in this review article. First, how HP-induced atrophic gastritis (AG) and intestinal metaplasia (IM) provoke the development of GC is shown, followed by how long HP eradication takes to induce a reversible change in AG and IM. Second, epigenetic studies of PTPN6, MOS, DCC, CRK, and VAV1 were performed in noncancerous gastric specimens in terms of HP status. Among these genes, MOS was found to be a possible surrogate marker for GC development. HP eradication decreased aberrant DNA methylation in a gene-specific manner, and MOS played a role in metachronous gastric neoplasms. Third, transforming growth factor-β1 (TGF-β1) and TGF-β1-induced epithelial-mesenchymal transition (EMT) markers were investigated in gastric mucosa. HP infection triggered the TGF-β1-induced EMT pathway and caused the emergence of GC stem cells, such as CD44v8-10. When HP was eradicated, these two pathways were inhibited. Finally, a 2222 cohort study showed that HP eradication significantly decreased the risk of noncardiac GC. Taken together, HP eradication is effective as a primary GC prevention method, and its underlying mechanism includes reversibility of AG and IM, methylation, EMT, and stem cells.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
34
|
Kountouras J, Doulberis M, Papaefthymiou A, Polyzos SA, Touloumtzi M, Elisabeth V, Kapetanakis N, Liatsos C, Gavalas E, Katsinelos P. Helicobacter pylori infection and gastrointestinal tract cancer biology: considering a double-edged sword reflection. Cell Mol Life Sci 2019; 76:2487-2488. [PMID: 31006036 PMCID: PMC11105426 DOI: 10.1007/s00018-019-03106-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 02/08/2023]
Affiliation(s)
- Jannis Kountouras
- Department of Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, 8 Fanariou St, Byzantio, 551 33, Thessaloniki, Macedonia, Greece.
| | - Michael Doulberis
- Department of Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, 8 Fanariou St, Byzantio, 551 33, Thessaloniki, Macedonia, Greece
- Department of Gastroenterology and Hepatology, University of Zurich, 8091, Zurich, Switzerland
| | - Apostolis Papaefthymiou
- Department of Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, 8 Fanariou St, Byzantio, 551 33, Thessaloniki, Macedonia, Greece
| | - Stergios A Polyzos
- First Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, 54642, Thessaloniki, Macedonia, Greece
| | - Maria Touloumtzi
- Department of Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, 8 Fanariou St, Byzantio, 551 33, Thessaloniki, Macedonia, Greece
| | - Vardaka Elisabeth
- Department of Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, 8 Fanariou St, Byzantio, 551 33, Thessaloniki, Macedonia, Greece
| | - Nikolaos Kapetanakis
- Department of Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, 8 Fanariou St, Byzantio, 551 33, Thessaloniki, Macedonia, Greece
| | - Christos Liatsos
- Department of Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, 8 Fanariou St, Byzantio, 551 33, Thessaloniki, Macedonia, Greece
| | - Emmanouel Gavalas
- Department of Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, 8 Fanariou St, Byzantio, 551 33, Thessaloniki, Macedonia, Greece
| | - Panagiotis Katsinelos
- Department of Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, 8 Fanariou St, Byzantio, 551 33, Thessaloniki, Macedonia, Greece
| |
Collapse
|
35
|
Jung HJ, Hong SJ, Kim SH. Immunohistochemical Expression of Epithelial-Mesenchymal Transition Markers in Early Gastric Cancer: Cancer Tissue versus Noncancer Tissue. Clin Endosc 2019; 52:464-471. [PMID: 31113168 PMCID: PMC6785414 DOI: 10.5946/ce.2018.181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/29/2018] [Indexed: 12/18/2022] Open
Abstract
Background/Aims Epithelial-mesenchymal transition (EMT) is a developmental process, wherein the epithelial cells show reduced intercellular adhesions and acquire migratory fibroblastic properties. EMT is associated with downregulation in epithelial marker expression, abnormal translocation of E-cadherin, and upregulation in mesenchymal marker expression. Here, we investigated the immunohistochemical (IHC) expression of EMT markers in early gastric cancer (EGC) between cancer and noncancer tissues.
Methods Tissue samples were prospectively obtained from 19 patients with EGC that underwent endoscopic submucosal dissection (ESD). We compared the expression level of transforming growth factor (TGF)-β, vascular endothelial growth factor (VEGF), E-cadherin, α-smooth muscle actin (α-SMA), and vimentin between cancer and noncancer tissues using IHC. Among the 19 patients, 15 patients had follow-up biopsy at 3 months after ESD for EGC.
Results Cancer tissues presented higher values of EMT mesenchymal markers (α-SMA/vimentin/TGF-β/VEGF) than the noncancerous tissues (p<0.05) that were significantly low after ESD (p<0.05). No significant correlation was reported for tumor location and initial Helicobacter pylori infection.
Conclusions The mesenchymal expression of EMT markers was higher in the cancerous tissues than in the noncancer tissues.
Collapse
Affiliation(s)
- Hee Jae Jung
- Digestive Disease Center and Research Institute, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Su Jin Hong
- Digestive Disease Center and Research Institute, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Shin Hee Kim
- Digestive Disease Center and Research Institute, Soonchunhyang University College of Medicine, Bucheon, Korea
| |
Collapse
|
36
|
The Role of MicroRNAs in the Regulation of Gastric Cancer Stem Cells: A Meta-Analysis of the Current Status. J Clin Med 2019; 8:jcm8050639. [PMID: 31075910 PMCID: PMC6572052 DOI: 10.3390/jcm8050639] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) remains one of the major causes of cancer-related mortality worldwide. As for other types of cancers, several limitations to the success of current therapeutic GC treatments may be due to cancer drug resistance that leads to tumor recurrence and metastasis. Increasing evidence suggests that cancer stem cells (CSCs) are among the major causative factors of cancer treatment failure. The research of molecular CSC mechanisms and the regulation of their properties have been intensively studied. To date, molecular gastric cancer stem cell (GCSC) characterization remains largely incomplete. Among the GCSC-targeting approaches to overcome tumor progression, recent studies have focused their attention on microRNA (miRNA). The miRNAs are short non-coding RNAs which play an important role in the regulation of numerous cellular processes through the modulation of their target gene expression. In this review, we summarize and discuss recent findings on the role of miRNAs in GCSC regulation. In addition, we perform a meta-analysis aimed to identify novel miRNAs involved in GCSC homeostasis.
Collapse
|
37
|
Zhu Y, Liu L, Hu L, Dong W, Zhang M, Liu Y, Li P. Effect of Celastrus orbiculatus in inhibiting Helicobacter pylori induced inflammatory response by regulating epithelial mesenchymal transition and targeting miR-21/PDCD4 signaling pathway in gastric epithelial cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:91. [PMID: 31035975 PMCID: PMC6489279 DOI: 10.1186/s12906-019-2504-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The extract of Celastrus orbiculatus (COE) have been studied for anti-Helicobacter pylori (H. pylori) activity and anti-cancer effects in vitro and in vivo. However, the molecular mechanism by which COE inhibits H. pylori-induced inflammatory response has not been fully elucidated so far. METHODS The effects of COE on viability, morphological changes, inflammatory cytokine secretion, protein and mRNA expression were analyzed by MTT assay, enzyme-linked immunosorbent assay (ELISA), immunofluorescence, western blot and real-time PCR (RT-PCR), respectively. The methylation level of programmed cell death 4 (PDCD4) promoter was investigated by methylation-specific PCR. (MSP) . RESULTS COE effectively inhibited the H.pylori-induced inflammatory response by regulating epithelial-mesenchymal transition (EMT). The methylation level of PDCD4 promoter was suppressed by COE, which increased the expression ofPDCD4. Moreover, COE could inhibit microRNA-21 (miR-21) expression, as shown by an enhancement of its target gene PDCD4. Furthermore, both miR-21 over-expression and PDCD4 silencing attenuated the anti-inflammatory effect. of COE. CONCLUSIONS COE inhibits H. pylori induced inflammatory response through regulating EMT, correlating with inhibition of miR-21/PDCD4 signal pathways in gastric epithelial cells.
Collapse
Affiliation(s)
- Yaodong Zhu
- Chinese Integrative Medicine Oncology Department, First Affiliated Hospital of Medical University of Anhui, Hefei, 230000 Anhui China
| | - Lei Liu
- General Surgery Department, First Affiliated Hospital of Medical University of Anhui, Hefei, 230000 Anhui China
| | - Lei Hu
- Emergency Department, First Affiliated Hospital of Medical University of Anhui, Hefei, 230000 Anhui China
| | - Wenqing Dong
- Chinese Integrative Medicine Oncology Department, First Affiliated Hospital of Medical University of Anhui, Hefei, 230000 Anhui China
| | - Mei Zhang
- Chinese Integrative Medicine Oncology Department, First Affiliated Hospital of Medical University of Anhui, Hefei, 230000 Anhui China
| | - Yanqing Liu
- Institute of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Ping Li
- Chinese Integrative Medicine Oncology Department, First Affiliated Hospital of Medical University of Anhui, Hefei, 230000 Anhui China
| |
Collapse
|
38
|
Rezalotfi A, Ahmadian E, Aazami H, Solgi G, Ebrahimi M. Gastric Cancer Stem Cells Effect on Th17/Treg Balance; A Bench to Beside Perspective. Front Oncol 2019; 9:226. [PMID: 31024835 PMCID: PMC6464032 DOI: 10.3389/fonc.2019.00226] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 03/13/2019] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer stem cells (GCSCs), a small population among tumor cells, are responsible for tumor initiation, development, metastasis, and recurrence. They play a crucial role in immune evasion, immunomodulation, and impairment of effector immunity and believed to be emerged to change the balance of the immune system, importantly CD4+ T cells in the chronic inflamed tumor site. However, different subtypes of innate and adaptive immune cells are involved in the formation of the immune system in the tumor microenvironment, we would look at T cells in this study. Tumor microenvironment induces differentiation of CD4+ T cells into different subsets of T cells, mainly suppressive regulatory T cells (Treg), and T helper 17 (Th17) cells, although their exact role in tumor immunity is still under debate depending on tumor types and stages. Counterbalance between Th17 and Treg cells in the gastrointestinal system result in the homeostasis and normal function of the immune system, particularly mucosal immunity. Recent data demonstrated a high infiltration of Th17 and Treg cells into the gastric tumor site and proved that tumor microenvironment might disturb the balance between Th17 and Treg. It is possible to assume an association between activation of CSCs which contribute to metastasis in late stages, and the imbalanced Th17/Treg cells observed in advanced gastric cancer patients. This review intends to clarify the importance of gastric tumor microenvironment specifically CSCs in relation to Th17/Tregs balance firstly and to highlight the relevance of imbalanced Th17/Treg subsets in determining the stages and behavior of the tumor secondly. Finally, the present study suggests a clinical approach looking at the plasticity of T cells with a focus on Th17 as a promising dedicated arm in cancer immunotherapy.
Collapse
Affiliation(s)
- Alaleh Rezalotfi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Elmira Ahmadian
- Faculty of Biological Sciences and Technology, Department of Animal Sciences, Shahid Beheshti University, Tehran, Iran
| | - Hossein Aazami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Solgi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
39
|
Yoon K, Kim N, Park Y, Kim BK, Park JH, Shin CM, Lee DH, Surh YJ. Correlation between macrophage migration inhibitory factor and autophagy in Helicobacter pylori-associated gastric carcinogenesis. PLoS One 2019; 14:e0211736. [PMID: 30742638 PMCID: PMC6370197 DOI: 10.1371/journal.pone.0211736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
The role of macrophage migration inhibitory factor (MIF) and autophagy in gastric cancer is not clear. We determined H. pylori infection status of the subjects and investigated the expression of MIF and autophagy markers (Atg5, LC3A and LC3B) in human gastric tissue at baseline. Then H. pylori eradication was done for H. pylori positive patients and MIF and Atg5 levels were investigated on each follow-up for both H. pylori-eradicated and H. pylori negative patients. Baseline tissue mRNA expression of MIF, Atg5, LC3A and LC3B was measured by real-time PCR in 453 patients (control 165, gastric dysplasia 82, and gastric cancer 206). Three hundred three patients (66.9%) had H. pylori infection at the time of enrollment. Only within H. pylori-positive group, MIF level was significantly elevated in patients with cancer than in control or dysplasia groups (P<0.05). LC3A and LC3B levels also showed significant differences within H. pylori-positive subgroups. H. pylori-positive dysplasia subgroup showed significantly lower (LC3A) (P<0.05) and higher (LC3B) mRNA levels (P<0.05) than in other subgroups. On follow-up, within H. pylori-eradicated group, Atg5 expression increased sequentially from control to dysplasia and cancer subgroups. Multiple linear regression showed autophagy markers (LC3A, LC3B, and Atg5) directly predicted MIF level (adjusted R2 = 0.492, P<0.001). Serial follow-up showed longitudinal increase in Atg5 level in general, with constantly higher levels in H. pylori-eradicated group than in -negative group. Intestinal metaplasia (IM) group initially showed higher Atg5 expression than the IM-negative group. However, it was reversed between the groups eventually because of the lower rate of increase in IM group. These results suggest a role of MIF and autophagy markers and their interaction in H. pylori-associated gastric carcinogenesis.
Collapse
Affiliation(s)
- Kichul Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- * E-mail:
| | - Youngmi Park
- Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Bo Kyung Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|
40
|
Zhang L, Li W, Cao L, Xu J, Qian Y, Chen H, Zhang Y, Kang W, Gou H, Wong CC, Yu J. PKNOX2 suppresses gastric cancer through the transcriptional activation of IGFBP5 and p53. Oncogene 2019; 38:4590-4604. [PMID: 30745575 PMCID: PMC6756047 DOI: 10.1038/s41388-019-0743-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/31/2018] [Accepted: 01/21/2019] [Indexed: 01/06/2023]
Abstract
Promoter methylation plays a vital role in tumorigenesis through transcriptional silencing of tumor suppressive genes. Using genome-wide methylation array, we first identified PBX/Knotted Homeobox 2 (PKNOX2) as a candidate tumor suppressor in gastric cancer. PKNOX2 mRNA expression is largely silenced in gastric cancer cell lines and primary gastric cancer via promoter methylation. Promoter methylation of PKNOX2 was associated with poor survival in gastric cancer patients. A series of in vitro and in vivo functional studies revealed that PKNOX2 functions as a tumor suppressor. Ectopic PKNOX2 expression inhibited cell proliferation in GC cell lines and suppressed growth of tumor xenografts in mice via induction of apoptosis and cell cycle arrest; and suppressed cell migration and invasion by blocking epithelial-to-mesenchymal transition. On the other hand, knockdown PKNOX2 in normal gastric epithelial cells triggered diverse malignant phenotypes. Mechanistically, PKNOX2 exerts its tumor suppressive effect by promoting the up-regulation of Insulin like Growth Factor Binding Protein 5 (IGFBP5) and TP53. PKNOX2 binds to the promoter regions of IGFBP5 and TP53 and transcriptionally activated their expression by chromatin immunoprecipitation (ChIP)-PCR assay. IGFBP5 knockdown partly abrogated tumor suppressive effect of PKNOX2, indicating that the function(s) of PKNOX2 are dependent on IGFBP5. IGFBP5 promoted PKNOX2-mediated up-regulation of p53. As a consequence, p53 transcription target genes were coordinately up-regulated in PKNOX2-expressing GC cells, leading to tumor suppression. In summary, our results identified PKNOX2 as a tumor suppressor in gastric cancer by activation of IGFBP5 and p53 signaling pathways. PKNOX2 promoter hypermethylation might be a biomarker for the poor survival of gastric cancer patients.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Weilin Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Lei Cao
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jiaying Xu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Yun Qian
- Department of Gastroenterology, Shenzhen University Hospital, Shenzhen, China
| | - Huarong Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Yanquan Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
41
|
O'Rourke F, Kempf VAJ. Interaction of bacteria and stem cells in health and disease. FEMS Microbiol Rev 2019; 43:162-180. [DOI: 10.1093/femsre/fuz003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Fiona O'Rourke
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, University Hospital, Goethe University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| | - Volkhard A J Kempf
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, University Hospital, Goethe University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| |
Collapse
|
42
|
Li S, Cong X, Gao H, Lan X, Li Z, Wang W, Song S, Wang Y, Li C, Zhang H, Zhao Y, Xue Y. Tumor-associated neutrophils induce EMT by IL-17a to promote migration and invasion in gastric cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:6. [PMID: 30616627 PMCID: PMC6323742 DOI: 10.1186/s13046-018-1003-0] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/13/2018] [Indexed: 12/24/2022]
Abstract
PURPOSE Epithelial to mesenchymal transition (EMT) can contribute to gastric cancer (GC) progression and recurrence following therapy. Tumor-associated neutrophils (TANs) are associated with poor outcomes in a variety of cancers. However, it is not clear whether TANs interact with the EMT process during GC development. METHODS Immunohistochemistry was performed to examine the distribution and levels of CD66 + neutrophils in samples from 327 patients with GC. CD66b + TANs were isolated either directly from GC cell suspensions or were conditioned from healthy donor peripheral blood polymorphonuclear neutrophils (PMNs) stimulated with tumor tissue culture supernatants (TTCS) and placed into co-culture with MKN45 or MKN74 cells, after which migration, invasion and EMT were measured. Interleukin-17a (IL-17a) was blocked with a polyclonal antibody, and the STAT3 pathway was blocked with the specific inhibitor AG490. RESULTS Neutrophils were widely distributed in gastric tissues of patients with GC and were enriched predominantly at the invasion margin. Neutrophil levels at the invasion margin were an independent predictor of poor disease-free survival (DFS) and disease-specific survival (DSS). IL-17a + neutrophils constituted a large portion of IL-17a-producing cells in GC, and IL-17a was produced at the highest levels in co-culture compared with that in TANs not undergoing co-culture. TANs enhanced the migration, invasion and EMT of GC cells through the secretion of IL-17a, which activated the Janus kinase 2/signal transducers and activators of transcription (JAK2/STAT3) pathway in GC cells, while deprivation of IL-17a using a neutralizing antibody or inhibition of the JAK2/STAT3 pathway with AG490 markedly reversed these TAN-induced phenotypes in GC cells induced by TANs. CONCLUSIONS Neutrophils correlate with tumor stage and predict poor prognosis in GC. TANs produce IL-17a, which promotes EMT of GC cells through JAK2/STAT3 signalling. Blockade of IL-17a signalling with a neutralizing antibody inhibits TAN-stimulated activity in GC cells. Therefore, IL-17a-targeted therapy might be used to treat patients with GC.
Collapse
Affiliation(s)
- Sen Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, 127 Dong Ming Road, Zhengzhou, 450008, China.,Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Xiliang Cong
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Hongyu Gao
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Xiuwen Lan
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Zhiguo Li
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Wenpeng Wang
- Department of Gynecologic Oncology, Cancer Hospital Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shubin Song
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Yimin Wang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Chunfeng Li
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Hongfeng Zhang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Yuzhou Zhao
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, 127 Dong Ming Road, Zhengzhou, 450008, China.
| | - Yingwei Xue
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China.
| |
Collapse
|
43
|
Krzysiek‐Maczka G, Targosz A, Szczyrk U, Strzałka M, Sliwowski Z, Brzozowski T, Czyz J, Ptak‐Belowska A. Role of Helicobacter pylori infection in cancer-associated fibroblast-induced epithelial-mesenchymal transition in vitro. Helicobacter 2018; 23:e12538. [PMID: 30246423 PMCID: PMC6282800 DOI: 10.1111/hel.12538] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Major human gastrointestinal pathogen Helicobacter pylori (H. pylori) colonizes the gastric mucosa causing inflammation and severe complications including cancer, but the involvement of fibroblasts in the pathogenesis of these disorders in H. pylori-infected stomach has been little studied. Normal stroma contains few fibroblasts, especially myofibroblasts. Their number rapidly increases in the reactive stroma surrounding inflammatory region and neoplastic tissue; however, the interaction between H. pylori and fibroblasts remains unknown. We determined the effect of coincubation of normal rat gastric fibroblasts with alive H. pylori (cagA+vacA+) and H. pylori (cagA-vacA-) strains on the differentiation of these fibroblasts into cells possessing characteristics of cancer-associated fibroblasts (CAFs) able to induce epithelial-mesenchymal transition (EMT) of normal rat gastric epithelial cells (RGM-1). MATERIALS AND METHODS The panel of CAFs markers mRNA was analyzed in H. pylori (cagA+vacA+)-infected fibroblasts by RT-PCR. After insert coculture of differentiated fibroblasts with RGM-1 cells from 24 up to 48, 72, and 96 hours, the mRNA expression for EMT-associated genes was analyzed by RT-PCR. RESULTS The mRNA expression for CAFs markers was significantly increased after 72 hours of infection with H. pylori (cagA+vacA+) but not H. pylori (cagA-vacA-) strain. Following coculture with CAFs, RGM-1 cells showed significant decrease in E-cadherin mRNA, and the parallel increase in the expression of Twist and Snail transcription factors mRNA was observed along with the overexpression of mRNAs for TGFβR, HGFR, FGFR, N-cadherin, vimentin, α-SMA, VEGF, and integrin-β1. CONCLUSION Helicobacter pylori (cagA+vacA+) strain induces differentiation of normal fibroblasts into CAFs, likely to initiate the EMT process in RGM-1 epithelial cell line.
Collapse
Affiliation(s)
- Gracjana Krzysiek‐Maczka
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Aneta Targosz
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Urszula Szczyrk
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Malgorzata Strzałka
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Zbigniew Sliwowski
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Tomasz Brzozowski
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Jarosław Czyz
- Department of Cell BiologyThe Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityCracowPoland
| | - Agata Ptak‐Belowska
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| |
Collapse
|
44
|
Wu X, Yu N, Zhang Y, Ye Y, Sun W, Ye L, Wu H, Yang Z, Wu L, Wang F. Radix Tetrastigma hemsleyani flavone exhibits antitumor activity in colorectal cancer via Wnt/β-catenin signaling pathway. Onco Targets Ther 2018; 11:6437-6446. [PMID: 30323621 PMCID: PMC6177378 DOI: 10.2147/ott.s172048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Radix Tetrastigma hemsleyani flavone (RTHF) is extracted from a traditional Chinese medicinal herb T. hemsleyani, which is conventionally used as a folk medicine for its anti-inflammation activity and antiviral activity. In this study, the effects of RTHF on inhibiting malignant biological properties in colorectal cancer (CRC) were evaluated by conducting both in vitro and in vivo experiments, and the underlying mechanism was investigated. Materials and methods Cell Counting Kit-8, colony formation, and flow cytometry assays were performed to evaluate the proliferation of RTHF-treated colon tumor cells. Migration and invasion capacities were also tested by cell wound scratch assay and Transwell invasion assay. Moreover, the antitumor effects of RTHF on azoxymethane/dextran sulfate sodium-induced colitis-related CRC were investigated in C57BL/6 mice. In addition, Western blot and/or quantitative reverse transcription polymerase chain reaction analysis were used to evaluate the expressions of Lgr5, Cyclin D1, c-Myc, and E-cadherin. Results These experiments showed that RTHF could decrease the cell growth kinetics and clone-forming capacity. RTHF could also dose dependently induce cell cycle arrest at G0/G1 phase and inhibit epithelial-mesenchymal transition process. Furthermore, downregulation of β-catenin activation and downstream protein expression were detected in CRC cells after being treated with RTHF. RTHF daily gavage suppressed the number and size of CRC in mice and inhibited Lgr5 and Cyclin D1 expressions in tumor tissue. Conclusion In conclusion, RTHF treatment inhibits colorectal tumor growth, decreases Wnt/β-catenin pathway activity, and downregulates target genes’ expression.
Collapse
Affiliation(s)
- Xiaowei Wu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Nanjing, China
| | - Na Yu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Nanjing, China
| | - Yuping Zhang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Southern Medical University, Guangzhou, China
| | - Yuanning Ye
- Department of Gastroenterology and Hepatology, Jinling Hospital, Southern Medical University, Guangzhou, China
| | - Wenrong Sun
- Department of Gastroenterology and Hepatology, Jinling Hospital, Nanjing, China
| | - Lei Ye
- Department of Gastroenterology and Hepatology, Jinling Hospital, Nanjing, China
| | - Huimin Wu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China,
| | - Zhao Yang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Southern Medical University, Guangzhou, China
| | - Lin Wu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Nanjing, China
| | - Fangyu Wang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China,
| |
Collapse
|
45
|
Molina-Castro S, Ramírez-Mayorga V, Alpízar-Alpízar W. Priming the seed: Helicobacter pylori alters epithelial cell invasiveness in early gastric carcinogenesis. World J Gastrointest Oncol 2018; 10:231-243. [PMID: 30254719 PMCID: PMC6147766 DOI: 10.4251/wjgo.v10.i9.231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is a well-established risk factor for the development of gastric cancer (GC), one of the most common and deadliest neoplasms worldwide. H. pylori infection induces chronic inflammation in the gastric mucosa that, in the absence of treatment, may progress through a series of steps to GC. GC is only one of several clinical outcomes associated with this bacterial infection, which may be at least partially attributed to the high genetic variability of H. pylori. The biological mechanisms underlying how and under what circumstances H. pylori alters normal physiological processes remain enigmatic. A key aspect of carcinogenesis is the acquisition of traits that equip preneoplastic cells with the ability to invade. Accumulating evidence implicates H. pylori in the manipulation of cellular and molecular programs that are crucial for conferring cells with invasive capabilities. We present here an overview of the main findings about the involvement of H. pylori in the acquisition of cell invasive behavior, specifically focusing on the epithelial-to-mesenchymal transition, changes in cell polarity, and deregulation of molecules that control extracellular matrix remodeling.
Collapse
Affiliation(s)
- Silvia Molina-Castro
- Cancer Epidemiology Research Program, Health Research Institute, University of Costa Rica, San José 2060, Costa Rica
- Clinical Department, School of Medicine, University of Costa Rica, San José 2060, Costa Rica
| | - Vanessa Ramírez-Mayorga
- Cancer Epidemiology Research Program, Health Research Institute, University of Costa Rica, San José 2060, Costa Rica
- Public Nutrition Section, School of Nutrition, University of Costa Rica, San José 2060, Costa Rica
| | - Warner Alpízar-Alpízar
- Center for Research in Microscopic Structures, University of Costa Rica, San José 2060, Costa Rica
- Department of Biochemistry, School of Medicine, University of Costa Rica, San José 2060, Costa Rica
| |
Collapse
|
46
|
Carrasco-Garcia E, García-Puga M, Arevalo S, Matheu A. Towards precision medicine: linking genetic and cellular heterogeneity in gastric cancer. Ther Adv Med Oncol 2018; 10:1758835918794628. [PMID: 30181784 PMCID: PMC6116075 DOI: 10.1177/1758835918794628] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Molecular and cellular heterogeneity are phenomena that are revolutionizing
oncology research and becoming critical to the idea of personalized medicine.
Recent comprehensive molecular profiling has identified molecular subtypes of
gastric cancer (GC) and linked them to clinical information. Moreover, GC stem
cells (gCSCs) have been identified and found to be responsible for GC initiation
and progression, Helicobacter pylori oncogenic action and
therapy resistance. Addressing molecular heterogeneity is critical for achieving
an optimal therapeutic approach against GC as well as targeting gCSCs. In this
review, we outline the implications of molecular and cellular heterogeneity in
the treatment of GC and we summarize the clinical impact of the most important
regulators of gCSCs.
Collapse
Affiliation(s)
- Estefania Carrasco-Garcia
- Cellular Oncology Group, Biodonostia Health Research Institute, Gipuzkoa, Spain CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain
| | - Mikel García-Puga
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Sara Arevalo
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, Paseo Dr. Beguiristain s/n, Gipuzkoa, 20014, Spain IKERBASQUE, Basque Foundation, Bilbao, Spain CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) Madrid, Spain
| |
Collapse
|
47
|
Molaei F, Forghanifard MM, Fahim Y, Abbaszadegan MR. Molecular Signaling in Tumorigenesis of Gastric Cancer. IRANIAN BIOMEDICAL JOURNAL 2018; 22:217-230. [PMID: 29706061 PMCID: PMC5949124 DOI: 10.22034/ibj.22.4.217] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/28/2018] [Accepted: 02/03/2018] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) is regarded as the fifth most common cancer and the third cause of cancer-related deaths worldwide. Mechanism of GC pathogenesis is still unclear and relies on multiple factors, including environmental and genetic characteristics. One of the most important environmental factors of GC occurrence is infection with Helicobacter pylori that is classified as class one carcinogens. Dysregulation of several genes and pathways play an essential role during gastric carcinogenesis. Dysregulation of developmental pathways such as Wnt/β-catenin signaling, Hedgehog signaling, Hippo pathway, Notch signaling, nuclear factor-kB, and epidermal growth factor receptor have been found in GC. Epithelial-mesenchymal transition, as an important process during embryogenesis and tumorigenesis, is supposed to play a role in initiation, invasion, metastasis, and progression of GC. Although surgery is the main therapeutic modality of the disease, the understanding of biological processes of cell signaling pathways may help to develop new therapeutic targets for GC.
Collapse
Affiliation(s)
- Fatemeh Molaei
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Yasaman Fahim
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
48
|
Gao JP, Xu W, Liu WT, Yan M, Zhu ZG. Tumor heterogeneity of gastric cancer: From the perspective of tumor-initiating cell. World J Gastroenterol 2018; 24:2567-2581. [PMID: 29962814 PMCID: PMC6021770 DOI: 10.3748/wjg.v24.i24.2567] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/30/2018] [Accepted: 05/26/2018] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) remains one of the most common and malignant types of cancer due to its rapid progression, distant metastasis, and resistance to conventional chemotherapy, although efforts have been made to understand the underlying mechanism of this resistance and to improve clinical outcome. It is well recognized that tumor heterogeneity, a fundamental feature of malignancy, plays an essential role in the cancer development and chemoresistance. The model of tumor-initiating cell (TIC) has been proposed to explain the genetic, histological, and phenotypical heterogeneity of GC. TIC accounts for a minor subpopulation of tumor cells with key characteristics including high tumorigenicity, maintenance of self-renewal potential, giving rise to both tumorigenic and non-tumorigenic cancer cells, and resistance to chemotherapy. Regarding tumor-initiating cell of GC (GATIC), substantial studies have been performed to (1) identify the putative specific cell markers for purification and functional validation of GATICs; (2) trace the origin of GATICs; and (3) decode the regulatory mechanism of GATICs. Furthermore, recent studies demonstrate the plasticity of GATIC and the interaction between GATIC and its surrounding factors (TIC niche or tumor microenvironment). All these investigations pave the way for the development of GATIC-targeted therapy, which is in the phase of preclinical studies and clinical trials. Here, we interpret the heterogeneity of GC from the perspectives of TIC by reviewing the above-mentioned fundamental and clinical studies of GATICs. Problems encountered during the GATIC investigations and the potential solutions are also discussed.
Collapse
Affiliation(s)
- Jian-Peng Gao
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Wei Xu
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Wen-Tao Liu
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Min Yan
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zheng-Gang Zhu
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
49
|
Zou Z, Zhao L, Su S, Liu Q, Yu L, Wei J, Yang Y, Du J, Shen J, Qian X, Fan X, Guan W, Liu B. The plasma levels of 12 cytokines and growth factors in patients with gastric cancer. Medicine (Baltimore) 2018; 97:e0413. [PMID: 29742685 PMCID: PMC5959396 DOI: 10.1097/md.0000000000010413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To assess the association of plasma cytokines and growth factor levels with clinical characteristics and inflammatory indices in patients with gastric cancer.Plasma samples derived from 99 gastric cancer patients were used for analysis. Levels of interferon (IFN)-γ, tumor growth factor (TGF)-β1, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p40, IL-12p70, and vascular endothelial growth factor (VEGF) were measured by Luminex suspension array technology. The association between cytokine/growth factor levels and demographic/clinical characteristics was assessed. Correlation between cytokines and growth factor levels was assessed by Pearson's correlation analysis.Male patients had significant higher levels of plasma TNF-α, IL-12p70, IL-4, IL-10, and VEGF as compared with those in women (P < .05). Plasma levels of TNF-α in older patients with gastric cancer (≥60 years) were higher than those in young patients (P < .05). Elevated plasma levels of IL-8 and IL-10 were identified as risk factors for increased tumor size (diameter ≥5 cm). Higher plasma levels of TGF-β1 were associated with increased risk of vascular or nerve invasion and advanced tumor stage. The levels of systemic inflammatory markers, including white blood cell counts, neutrophil/lymphocyte proportion, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio (PLR), C-reactive protein and modified Glasgow prognostic score (mGPS) were closely associated with a series of plasma cytokines. A prominent correlation was observed between the plasma IL-12p70 and IFN-γ levels (r = 0.729, P < .01).Our findings suggest that plasma cytokines and growth factor levels may help predict the development and progression of gastric cancer. Our findings need to be validated by larger studies.
Collapse
Affiliation(s)
- Zhengyun Zou
- The Comprehensive Cancer Center of Drum-Tower Hospital Affiliated to Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University
| | - Lianjun Zhao
- The Comprehensive Cancer Center of Drum-Tower Hospital Affiliated to Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University
| | - Shu Su
- The Comprehensive Cancer Center of Drum-Tower Hospital Affiliated to Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University
| | - Qin Liu
- The Comprehensive Cancer Center of Drum-Tower Hospital Affiliated to Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University
| | - Lixia Yu
- The Comprehensive Cancer Center of Drum-Tower Hospital Affiliated to Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University
| | - Jia Wei
- The Comprehensive Cancer Center of Drum-Tower Hospital Affiliated to Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University
| | - Yang Yang
- The Comprehensive Cancer Center of Drum-Tower Hospital Affiliated to Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University
| | - Juan Du
- The Comprehensive Cancer Center of Drum-Tower Hospital Affiliated to Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University
| | - Jie Shen
- The Comprehensive Cancer Center of Drum-Tower Hospital Affiliated to Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University
| | - Xiaoping Qian
- The Comprehensive Cancer Center of Drum-Tower Hospital Affiliated to Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University
| | - Xiangshan Fan
- The Pathology Department of Drum-Tower Hospital Affiliated to Medical School of Nanjing University
| | - Wenxian Guan
- The General Surgery Department of Drum-Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum-Tower Hospital Affiliated to Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University
| |
Collapse
|
50
|
Takahashi Y, Uno K, Iijima K, Abe Y, Koike T, Asano N, Asanuma K, Shimosegawa T. Acidic bile salts induces mucosal barrier dysfunction through let-7a reduction during gastric carcinogenesis after Helicobacter pylori eradication. Oncotarget 2018; 9:18069-18083. [PMID: 29719591 PMCID: PMC5915058 DOI: 10.18632/oncotarget.24725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/24/2018] [Indexed: 12/28/2022] Open
Abstract
Gastric cancer (GC) after eradication for Helicobacter pylori (H.pylori) increases, but its carcinogenesis is not elucidated. It is mainly found in acid non-secretion areas (ANA), as mucosal regeneration in acid secretory areas (AA) after eradication changes the acidity and bile toxicity of gastric juice. We aimed to clarify the role of barrier dysfunction of ANA by the stimulation of pH3 bile acid cocktail (ABC) during carcinogenesis. We collected 18 patients after curative endoscopic resection for GC, identified later than 24 months after eradication, and took biopsies by Congo-red chromoendoscopy to distinguish AA and ANA (UMIN00018967). The mucosal barrier function was investigated using a mini-Ussing chamber system and molecular biological methods. The reduction in mucosal impedance in ANA after stimulation was significantly larger than that in AA, 79.6% vs. 87.9%, respectively. The decrease of zonula occludens-1 (ZO-1) and let-7a and the increase of snail in ANA were significant compared to those in AA. In an in vitro study, the restoration of ZO-1 and let-7a as well as the induction of snail were observed after stimulation. High mobility group A2 (HMGA2)-snail activation, MTT proliferation, and cellular infiltration capacity were significantly increased in AGS transfected with let-7a inhibitor, and vice versa. Accordingly, using a mini-Ussing chamber system for human biopsy specimens followed by an in vitro study, we demonstrated for the first time that the exposure of acidic bile salts to ANA might cause serious barrier dysfunction through the let-7a reduction, promoting epithelial-mesenchymal transition during inflammation-associated carcinogenesis even after eradication.
Collapse
Affiliation(s)
| | - Kaname Uno
- Division of Gastroenterology, Tohoku University, Miyagi, Japan
| | | | - Yasuhiko Abe
- Department of The Second Internal Medicine, Yamagata University, Miyagi, Japan
| | - Tomoyuki Koike
- Division of Gastroenterology, Tohoku University, Miyagi, Japan
| | - Naoki Asano
- Division of Gastroenterology, Tohoku University, Miyagi, Japan
| | | | | |
Collapse
|