1
|
Imamura M, Kadowaki T, Shiro M. Genetic studies on metabolic disorder associated kidney diseases. Kidney Int 2025:S0085-2538(25)00321-7. [PMID: 40252921 DOI: 10.1016/j.kint.2025.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/17/2024] [Accepted: 01/03/2025] [Indexed: 04/21/2025]
Abstract
Diabetic kidney disease (DKD) and obesity-related kidney diseases are the representative chronic kidney diseases related to metabolic disorders. Genome-wide association studies (GWAS) have been extensively performed, and a substantial number of confirmed loci have been identified to be associated with many common diseases or quantitative traits, including type 2 diabetes, obesity, and chronic kidney diseases. By contrast, GWAS for DKD have identified limited number of susceptible loci, and the robust replication of these loci in independent studies has not yet been accomplished. As of 2024, no GWAS have been reported on obesity-related kidney diseases. Therefore, the genetic studies on DKD or obesity-related kidney diseases have not provided satisfiable results. However, by genetic correlation studies and Mendelian Randomization studies, that were performed using multi-traits GWAS data suggested that DKD, obesity-related kidney diseases, and obesity share common genetic mechanisms. Since obesity or overweight is a reversible condition, the effective interventions to reduce body weights might contribute to the prevention of the development of not only obesity-related kidney diseases, but also DKD or other types of chronic kidney diseases. Further genetic studies are necessary to understand the genetic architecture of DKD and obesity-related kidney diseases, and should be expanded.
Collapse
Affiliation(s)
- Minako Imamura
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan; Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | | | - Maeda Shiro
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan; Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan.
| |
Collapse
|
2
|
Hosain O, Clinkenbeard EL. Adiposity and Mineral Balance in Chronic Kidney Disease. Curr Osteoporos Rep 2024; 22:561-575. [PMID: 39394545 DOI: 10.1007/s11914-024-00884-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/13/2024]
Abstract
PURPOSE OF REVIEW Bone homeostasis is balanced between formation and resorption activities and remain in relative equilibrium. Under disease states this process is disrupted, favoring more resorption over formation, leading to significant bone loss and fracture incidence. This aspect is a hallmark for patients with chronic kidney disease mineral and bone disorder (CKD-MBD) affecting a significant portion of the population, both in the United States and worldwide. Further study into the underlying effects of the uremic microenvironment within bone during CKD-MBD are critical as fracture incidence in this patient population not only leads to increased morbidity, but also increased mortality. Lack of bone homeostasis also leads to mineral imbalance contributing to cardiovascular calcifications. One area understudied is the possible involvement of bone marrow adipose tissue (BMAT) during the progression of CKD-MBD. RECENT FINDINGS BMAT accumulation is found during aging and in several disease states, some of which overlap as CKD etiologies. Importantly, research has found presence of BMAT inversely correlates with bone density and volume. Understanding the underlying molecular mechanisms for BMAT formation and accumulation during CKD-MBD may offer a potential therapeutic avenue to improve bone homeostasis and ultimately mineral metabolism.
Collapse
Affiliation(s)
- Ozair Hosain
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN, 46022, USA
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Erica L Clinkenbeard
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
3
|
Hu S, Chen Y, He M, Wen J, Zhong A, Zhan D, Ye Z. The role of moderate to vigorous physical activity level and number of treatments/medications in mediating the effect of body mass index on diabetic nephropathy: a Mendelian randomization study. Ren Fail 2024; 46:2417738. [PMID: 39466707 PMCID: PMC11520093 DOI: 10.1080/0886022x.2024.2417738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Body mass index (BMI) is associated with diabetic nephropathy (DN). However, the mediator factors in the BMI-DN effects remain unclear. METHODS Univariate and multivariate Mendelian randomization (MR) analysis were performed to estimate the association between six lifestyles (moderate to vigorous physical activity levels, years of schooling, BMI, nap during day, number of treatments/medications taken and coffee intake) and DN. MR Egger, Weighted median, Simple mode, and Weighted mode was supplemental methods to Inverse variance weighted. Sensitivity analysis included heterogeneity test, horizontal pleiotropy test, and Leave-One-Out. Additionally, mediation MR was conducted to evaluate the mediating role of lifestyles between BMI and DN. Finally, functional enrichment analysis based on the mediation MR results was performed. RESULTS univariate and multivariate Mendelian randomization (MR) analysis were performed to estimate the association between six lifestyles (moderate to vigorous physical activity levels, years of schooling, BMI, nap during day, number of treatments/medications taken and coffee intake) and DN. MR Egger, Weighted median, Simple mode, and Weighted mode was supplemental methods to Inverse variance weighted. Sensitivity analysis included heterogeneity test, horizontal pleiotropy test, and Leave-One-Out. Additionally, mediation MR was conducted to evaluate the mediating role of lifestyles between BMI and DN. Finally, functional enrichment analysis based on the mediation MR results was performed. CONCLUSION our results supported mediation role of vigorous physical activity level and number of treatments/medications in BMI-DN effects.
Collapse
Affiliation(s)
- Shasha Hu
- Department of Nephrology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yuling Chen
- Department of Nephrology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Mingjie He
- Department of Nephrology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Jun Wen
- Department of Nephrology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Aimin Zhong
- Department of Nephrology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Dandan Zhan
- Department of Nephrology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Zhibin Ye
- Department of Nephrology, Huadong Hospital affiliated to Fudan University, Shanghai, China
| |
Collapse
|
4
|
Sulicka-Grodzicka J, Wizner B, Zdrojewski T, Mossakowska M, Puzianowska-Kuźnicka M, Chudek J, Więcek A, Korkosz M, Caiazzo E, Maffia P, Siedlinski M, Messerli FH, Guzik TJ. Sex-specific relationships of inflammatory biomarkers with blood pressure in older adults. GeroScience 2024; 46:4603-4614. [PMID: 38720047 PMCID: PMC11335980 DOI: 10.1007/s11357-024-01170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 08/22/2024] Open
Abstract
Emerging evidence indicates an association between blood pressure and inflammation, yet this relationship remains unclear in older adults, despite the elevated prevalence of hypertension. We investigated the association between blood pressure, high sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), and white blood cell (WBC) count in a cohort of 3571 older adults aged 65 and above, and 587 middle-aged participants (55-59 years old). In women aged 65 and above, the relationship between inflammatory markers and blood pressure was consistent, with hs-CRP and WBC emerging as predictors of high blood pressure. For hs-CRP, the adjusted odds ratio (OR) was 1.5 (95% CI, 1.07 to 2.10, P = 0.02), and for WBC, the adjusted OR was 1.41 (95% CI, 1.02 to 1.94, P = 0.04), comparing the highest to the lowest quartiles. In men, only the WBC count was significantly associated with an increased OR for high BP (adjusted OR 1.49, 95% CI, 1.09 to 2.02, P = 0.01) across quartiles. Across the entire study population, in a fully adjusted model, all inflammatory markers were modestly associated with blood pressure levels, while the effect of being over 65 years was the most significant predictor of high blood pressure (OR 1.84, 95% CI, 1.50 to 2.25, P < 0.001). The link between key inflammation markers and blood pressure in older adults varies by sex and biomarker type and may differ from the relationship observed in younger individuals. These relationships are likely to be affected by factors linked to age.
Collapse
Affiliation(s)
- Joanna Sulicka-Grodzicka
- Department of Rheumatology and Immunology, Jagiellonian University Medical College, Jakubowskiego 2, 30-698, Cracow, Poland.
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Barbara Wizner
- Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Cracow, Poland
| | - Tomasz Zdrojewski
- Department of Preventive Medicine and Education, Medical University of Gdansk, Gdansk, Poland
| | - Małgorzata Mossakowska
- Study On Ageing and Longevity, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Monika Puzianowska-Kuźnicka
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, Warsaw, Poland
| | - Jerzy Chudek
- Department of Internal Medicine and Oncological Chemotherapy, Medical University of Silesia, Katowice, Poland
| | - Andrzej Więcek
- Department of Nephrology, Transplantation and Internal Medicine Medical, University of Silesia, Katowice, Poland
| | - Mariusz Korkosz
- Department of Rheumatology and Immunology, Jagiellonian University Medical College, Jakubowskiego 2, 30-698, Cracow, Poland
| | - Elisabetta Caiazzo
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Pasquale Maffia
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mateusz Siedlinski
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, Cracow, Poland
- Medical Genomics Laboratory Omicron, Jagiellonian University Medical College, Cracow, Poland
| | - Franz H Messerli
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Tomasz J Guzik
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, Cracow, Poland.
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
5
|
Chen J, Li YT, Niu Z, He Z, Xie YJ, Hernandez J, Huang W, Wang HHX. Investigating the causal association of generalized and abdominal obesity with microvascular complications in patients with type 2 diabetes: A community-based prospective study. Diabetes Obes Metab 2024; 26:2796-2810. [PMID: 38695216 DOI: 10.1111/dom.15598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 06/05/2024]
Abstract
AIM The paradoxical protective association between overweight/obesity and diabetic microvascular complications (DMC), a phenomenon well-known as the obesity paradox, has been considered a non-causal association based on methodological influences. We aimed to investigate the association of generalized and abdominal obesity, as measured by body mass index (BMI) and waist circumference (WC), respectively, with DMC in patients with type 2 diabetes (T2D), using a causal inference approach. MATERIALS AND METHODS We enrolled 1436 patients with clinically diagnosed T2D but not DMC at baseline in a community-based prospective cohort in China between 2017 and 2019 and followed them annually until 2022 with new-onset DMC recorded. Marginal structural Cox models with inverse probability weighting were constructed to determine the causal association. Subgroup analyses were performed to identify potential effect modifiers. RESULTS We observed 360 incident DMC cases, including 109 cases of diabetic nephropathy (DN) and 277 cases of diabetic retinopathy (DR) during four follow-up visits. Multivariable-adjusted hazard ratios (95% confidence intervals) for overall DMC, DN and DR were 1.037 (1.005-1.071), 1.117 (1.062-1.175) and 1.018 (0.980-1.059) for 1 kg/m2 increase in BMI, and 1.005 (0.994-1.017), 1.034 (1.018-1.051) and 1.000 (0.987-1.014) for 1 cm increase in WC, respectively. Similar patterns were observed across the BMI and WC categories, while the positive association appeared to be more pronounced in women. CONCLUSIONS Generalized but not abdominal obesity was associated with an increased risk for the overall DMC, whereas both obesities were causally related to DN, albeit not DR, in T2D. Routine weight management should not be neglected in diabetes care, particularly in women.
Collapse
Affiliation(s)
- Jiaheng Chen
- School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yu Ting Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zimin Niu
- School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhanpeng He
- Liwan Central Hospital of Guangzhou, Guangzhou, People's Republic of China
| | - Yao Jie Xie
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR
| | - Jose Hernandez
- Faculty of Medicine and Health, EDU, Digital Education Holdings Ltd., Kalkara, Malta
- Green Templeton College, University of Oxford, Oxford, UK
| | - Wenyong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Harry H X Wang
- School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
- Usher Institute, Deanery of Molecular, Genetic & Population Health Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Nosalski R, Lemoli M. The epigenetic legacy of renin-angiotensin system inhibition in preventing hypertension. Cardiovasc Res 2024; 120:675-677. [PMID: 38634882 DOI: 10.1093/cvr/cvae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Affiliation(s)
- Ryszard Nosalski
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Matteo Lemoli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
7
|
Trevisani F, Laurenti F, Fiorio F, Paccagnella M, Floris M, Capitanio U, Ghidini M, Garrone O, Abbona A, Salonia A, Montorsi F, Bettiga A. Effects of a Personalized Diet on Nutritional Status and Renal Function Outcome in Nephrectomized Patients with Renal Cancer. Nutrients 2024; 16:1386. [PMID: 38732632 PMCID: PMC11085466 DOI: 10.3390/nu16091386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Nutritional therapy (NT) based on a controlled protein intake represents a cornerstone in managing chronic kidney disease (CKD). However, if a CKD patient is at the same time affected by cancer, oncologists and nutritionists tend to suggest a dietary regimen based on high protein intake to avoid catabolism and malnutrition. International guidelines are not clear when we consider onco-nephrological patients and, as a consequence, no clinical shared strategy is currently applied in clinical practice. In particular, no precise nutritional management is established in nephrectomized patients for renal cell carcinoma (RCC), a specific oncological cohort of patients whose sudden kidney removal forces the remnant one to start a compensatory mechanism of adaptive hyperfiltration. Our study aimed to investigate the efficacy of a low-normal-protein high-calorie (LNPHC) diet based on a Mediterranean model in a consecutive cohort of nephrectomized RCC patients using an integrated nephrologist and nutritionist approach. A consecutive cohort of 40 nephrectomized RCC adult (age > 18) patients who were screened for malnutrition (malnutrition screening tool, MST < 2) were enrolled in a tertiary institution between 2020 and 2022 after signing a specific informed consent form. Each patient underwent an initial nephrological and nutritional evaluation and was subsequently subjected to a conventional CKD LNPHC diet integrated with aproteic foods (0.8 g/Kg/die: calories: 30-35 kcal per kg body weight/die) for a period of 6 months (±2 months). The diet was structured after considering eGFR (CKD-EPI 2021 creatinine formula), comorbidities, and nutritional status. MST, body mass index (BMI), phase angle (PA), fat mass percentage (FM%), fat-free mass index (FFMI), body cell mass index (BCMI), extracellular/intracellular water ratio (ECW/ICW), extracellular matrix/body cell mass ratio (ECM/BCM), waist/hip circumference ratio (WHC), lab test exams, and clinical variables were examined at baseline and after the study period. Our results clearly highlighted that the LNPHC diet was able to significantly improve several nutritional parameters, avoiding malnutrition and catabolism. In particular, the LNPHC diet preserved the BCM index (delta on median, ΔM + 0.3 kg/m2) and reduced the ECM/BCM ratio (ΔM - 0.03 *), with a significant reduction in the ECW/ICW ratio (ΔM - 0.02 *), all while increasing TBW (ΔM + 2.3% *). The LNPHC diet was able to preserve FFM while simultaneously depleting FM and, moreover, it led to a significant reduction in urea (ΔM - 11 mg/dL **). In conclusion, the LNPHC diet represents a new important therapeutic strategy that should be considered when treating onco-nephrological patients with solitary kidney due to renal cancer.
Collapse
Affiliation(s)
- Francesco Trevisani
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.F.); (U.C.); (A.S.); (F.M.)
- Department of Urology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Fabiana Laurenti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Francesco Fiorio
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.F.); (U.C.); (A.S.); (F.M.)
| | - Matteo Paccagnella
- Translational Oncology Fondazione Arco Cuneo, 12100 Cuneo, Italy; (M.P.); (A.A.)
| | - Matteo Floris
- Department of Nephrology, Dialysis, and Transplantation, G. Brotzu Hospital, 09134 Cagliari, Italy;
| | - Umberto Capitanio
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.F.); (U.C.); (A.S.); (F.M.)
- Department of Urology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Michele Ghidini
- Department of Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.G.); (O.G.)
| | - Ornella Garrone
- Department of Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.G.); (O.G.)
| | - Andrea Abbona
- Translational Oncology Fondazione Arco Cuneo, 12100 Cuneo, Italy; (M.P.); (A.A.)
| | - Andrea Salonia
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.F.); (U.C.); (A.S.); (F.M.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milano, Italy
| | - Francesco Montorsi
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.F.); (U.C.); (A.S.); (F.M.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milano, Italy
| | - Arianna Bettiga
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.F.); (U.C.); (A.S.); (F.M.)
| |
Collapse
|
8
|
Xu X, Khunsriraksakul C, Eales JM, Rubin S, Scannali D, Saluja S, Talavera D, Markus H, Wang L, Drzal M, Maan A, Lay AC, Prestes PR, Regan J, Diwadkar AR, Denniff M, Rempega G, Ryszawy J, Król R, Dormer JP, Szulinska M, Walczak M, Antczak A, Matías-García PR, Waldenberger M, Woolf AS, Keavney B, Zukowska-Szczechowska E, Wystrychowski W, Zywiec J, Bogdanski P, Danser AHJ, Samani NJ, Guzik TJ, Morris AP, Liu DJ, Charchar FJ, Tomaszewski M. Genetic imputation of kidney transcriptome, proteome and multi-omics illuminates new blood pressure and hypertension targets. Nat Commun 2024; 15:2359. [PMID: 38504097 PMCID: PMC10950894 DOI: 10.1038/s41467-024-46132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Genetic mechanisms of blood pressure (BP) regulation remain poorly defined. Using kidney-specific epigenomic annotations and 3D genome information we generated and validated gene expression prediction models for the purpose of transcriptome-wide association studies in 700 human kidneys. We identified 889 kidney genes associated with BP of which 399 were prioritised as contributors to BP regulation. Imputation of kidney proteome and microRNAome uncovered 97 renal proteins and 11 miRNAs associated with BP. Integration with plasma proteomics and metabolomics illuminated circulating levels of myo-inositol, 4-guanidinobutanoate and angiotensinogen as downstream effectors of several kidney BP genes (SLC5A11, AGMAT, AGT, respectively). We showed that genetically determined reduction in renal expression may mimic the effects of rare loss-of-function variants on kidney mRNA/protein and lead to an increase in BP (e.g., ENPEP). We demonstrated a strong correlation (r = 0.81) in expression of protein-coding genes between cells harvested from urine and the kidney highlighting a diagnostic potential of urinary cell transcriptomics. We uncovered adenylyl cyclase activators as a repurposing opportunity for hypertension and illustrated examples of BP-elevating effects of anticancer drugs (e.g. tubulin polymerisation inhibitors). Collectively, our studies provide new biological insights into genetic regulation of BP with potential to drive clinical translation in hypertension.
Collapse
Affiliation(s)
- Xiaoguang Xu
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | | | - James M Eales
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Sebastien Rubin
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - David Scannali
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Sushant Saluja
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - David Talavera
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Havell Markus
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Lida Wang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Maciej Drzal
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Akhlaq Maan
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Abigail C Lay
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Priscilla R Prestes
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Jeniece Regan
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Avantika R Diwadkar
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Matthew Denniff
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Grzegorz Rempega
- Department of Urology, Medical University of Silesia, Katowice, Poland
| | - Jakub Ryszawy
- Department of Urology, Medical University of Silesia, Katowice, Poland
| | - Robert Król
- Department of General, Vascular and Transplant Surgery, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - John P Dormer
- Department of Cellular Pathology, University Hospitals of Leicester, Leicester, UK
| | - Monika Szulinska
- Department of Obesity, Metabolic Disorders Treatment and Clinical Dietetics, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Marta Walczak
- Department of Internal Diseases, Metabolic Disorders and Arterial Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Antczak
- Department of Urology and Uro-oncology, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Pamela R Matías-García
- Institute of Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Royal Manchester Children's Hospital and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust Manchester, Manchester Royal Infirmary, Manchester, UK
| | | | - Wojciech Wystrychowski
- Department of General, Vascular and Transplant Surgery, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Zywiec
- Department of Internal Medicine, Diabetology and Nephrology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Pawel Bogdanski
- Department of Obesity, Metabolic Disorders Treatment and Clinical Dietetics, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - A H Jan Danser
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Tomasz J Guzik
- Department of Internal Medicine, Jagiellonian University Medical College, Kraków, Poland
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Dajiang J Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Fadi J Charchar
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK.
- Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust Manchester, Manchester Royal Infirmary, Manchester, UK.
| |
Collapse
|
9
|
Caiazzo E, Sharma M, Rezig AOM, Morsy MI, Czesnikiewicz-Guzik M, Ialenti A, Sulicka-Grodzicka J, Pellicori P, Crouch SH, Schutte AE, Bruzzese D, Maffia P, Guzik TJ. Circulating cytokines and risk of developing hypertension: A systematic review and meta-analysis. Pharmacol Res 2024; 200:107050. [PMID: 38159784 DOI: 10.1016/j.phrs.2023.107050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Immune responses play a significant role in hypertension, though the importance of key inflammatory mediators remains to be defined. We used a systematic literature review and meta-analysis to study the associations between key cytokines and incident hypertension. METHODS We performed a systematic search of Pubmed/Medline, Embase, Web of Science, and the Cochrane Central Register of Controlled Trials (CENTRAL), for peer-reviewed studies published up to August 2022. Incident hypertension was defined as systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg and/or the use of antihypertensive medications. Random effects meta-analyses were used to calculate pooled hazard ratios (HRs)/risk ratios (RRs) and 95% confidence intervals by cytokine levels (highest vs. lowest quartile). RESULTS Only IL-6 and IL-1β levels have evidence allowing for quantitative evaluation concerning the onset of hypertension. Six studies (10406 participants, 2932 incident cases) examined the association of IL-6 with incident hypertension. The highest versus lowest quartile of circulating IL-6 was associated with a significant HR/RR of hypertension (1.61, 95% CI: 1.00 to 2.60; I2 =87%). After adjusting for potential confounders, including body mass index (BMI), HR/RR was no longer significant (HR/RR: 1.24; 95% CI, 0.96 to 1.61; I2 = 56%). About IL-1β, neither the crude (HR/RR: 1.03; 95% CI, 0.60 to 1.76; n = 2) nor multivariate analysis (HR/RR: 0.97, 95% CI, 0.60 to 1.56; n = 2) suggested a significant association with the risk of developing hypertension. CONCLUSIONS A limited number of studies suggest that higher IL-6, but not IL-1β, might be associated with the development of hypertension.
Collapse
Affiliation(s)
- Elisabetta Caiazzo
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Malvika Sharma
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Asma O M Rezig
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Moustafa I Morsy
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Marta Czesnikiewicz-Guzik
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; Department of Periodontology, Prophylaxis and Oral Medicine, Jagiellonian University, Krakow, Poland
| | - Armando Ialenti
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Joanna Sulicka-Grodzicka
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; Department of Rheumatology and Immunology, Jagiellonian University Medical College, Kracow, Poland
| | - Pierpaolo Pellicori
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Simone H Crouch
- SA MRC/Wits Developmental Pathways for Health Research Unit (DPHRU), School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, South Africa
| | - Aletta E Schutte
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa; MRC Research Unit: Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa; The George Institute for Global Health, Sydney, Australia; School of Population Health, University of New South Wales, Sydney, Australia
| | - Dario Bruzzese
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Pasquale Maffia
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy; Africa-Europe Cluster of Research Excellence in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance (ARUA) & The Guild of European Research-intensive Universities, South Africa.
| | - Tomasz J Guzik
- Africa-Europe Cluster of Research Excellence in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance (ARUA) & The Guild of European Research-intensive Universities, South Africa; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; Department of Internal and Agricultural Medicine and Omicron Medical Genomics Laboratory, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
10
|
Charchar FJ, Prestes PR, Mills C, Ching SM, Neupane D, Marques FZ, Sharman JE, Vogt L, Burrell LM, Korostovtseva L, Zec M, Patil M, Schultz MG, Wallen MP, Renna NF, Islam SMS, Hiremath S, Gyeltshen T, Chia YC, Gupta A, Schutte AE, Klein B, Borghi C, Browning CJ, Czesnikiewicz-Guzik M, Lee HY, Itoh H, Miura K, Brunström M, Campbell NR, Akinnibossun OA, Veerabhadrappa P, Wainford RD, Kruger R, Thomas SA, Komori T, Ralapanawa U, Cornelissen VA, Kapil V, Li Y, Zhang Y, Jafar TH, Khan N, Williams B, Stergiou G, Tomaszewski M. Lifestyle management of hypertension: International Society of Hypertension position paper endorsed by the World Hypertension League and European Society of Hypertension. J Hypertens 2024; 42:23-49. [PMID: 37712135 PMCID: PMC10713007 DOI: 10.1097/hjh.0000000000003563] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Hypertension, defined as persistently elevated systolic blood pressure (SBP) >140 mmHg and/or diastolic blood pressure (DBP) at least 90 mmHg (International Society of Hypertension guidelines), affects over 1.5 billion people worldwide. Hypertension is associated with increased risk of cardiovascular disease (CVD) events (e.g. coronary heart disease, heart failure and stroke) and death. An international panel of experts convened by the International Society of Hypertension College of Experts compiled lifestyle management recommendations as first-line strategy to prevent and control hypertension in adulthood. We also recommend that lifestyle changes be continued even when blood pressure-lowering medications are prescribed. Specific recommendations based on literature evidence are summarized with advice to start these measures early in life, including maintaining a healthy body weight, increased levels of different types of physical activity, healthy eating and drinking, avoidance and cessation of smoking and alcohol use, management of stress and sleep levels. We also discuss the relevance of specific approaches including consumption of sodium, potassium, sugar, fibre, coffee, tea, intermittent fasting as well as integrated strategies to implement these recommendations using, for example, behaviour change-related technologies and digital tools.
Collapse
Affiliation(s)
- Fadi J. Charchar
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
- Department of Physiology, University of Melbourne, Melbourne, Australia
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Priscilla R. Prestes
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Charlotte Mills
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Siew Mooi Ching
- Department of Family Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang
- Department of Medical Sciences, School of Medical and Live Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Dinesh Neupane
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Francine Z. Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne
| | - James E. Sharman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Liffert Vogt
- Department of Internal Medicine, Section Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Louise M. Burrell
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Lyudmila Korostovtseva
- Department of Hypertension, Almazov National Medical Research Centre, St Petersburg, Russia
| | - Manja Zec
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, USA
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Mansi Patil
- Department of Nutrition and Dietetics, Asha Kiran JHC Hospital, Chinchwad
- Hypertension and Nutrition, Core Group of IAPEN India, India
| | - Martin G. Schultz
- Department of Internal Medicine, Section Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | | | - Nicolás F. Renna
- Unit of Hypertension, Hospital Español de Mendoza, School of Medicine, National University of Cuyo, IMBECU-CONICET, Mendoza, Argentina
| | | | - Swapnil Hiremath
- Department of Medicine, University of Ottawa and the Ottawa Hospital, Ottawa, Canada
| | - Tshewang Gyeltshen
- Graduate School of Public Health, St. Luke's International University, Tokyo, Japan
| | - Yook-Chin Chia
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Selangor
- Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Abhinav Gupta
- Department of Medicine, Acharya Shri Chander College of Medical Sciences and Hospital, Jammu, India
| | - Aletta E. Schutte
- School of Population Health, University of New South Wales, The George Institute for Global Health, Sydney, New South Wales, Australia
- Hypertension in Africa Research Team, SAMRC Unit for Hypertension and Cardiovascular Disease, North-West University
- SAMRC Developmental Pathways for Health Research Unit, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Britt Klein
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Claudio Borghi
- Department of Medical and Surgical Sciences, Faculty of Medicine, University of Bologna, Bologna, Italy
| | - Colette J. Browning
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Marta Czesnikiewicz-Guzik
- School of Medicine, Dentistry and Nursing-Dental School, University of Glasgow, UK
- Department of Periodontology, Prophylaxis and Oral Medicine; Jagiellonian University, Krakow, Poland
| | - Hae-Young Lee
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hiroshi Itoh
- Department of Internal Medicine (Nephrology, Endocrinology and Metabolism), Keio University, Tokyo
| | - Katsuyuki Miura
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Mattias Brunström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Norm R.C. Campbell
- Libin Cardiovascular Institute, Department of Medicine, University of Calgary, Calgary, Canada
| | | | - Praveen Veerabhadrappa
- Kinesiology, Division of Science, The Pennsylvania State University, Reading, Pennsylvania
| | - Richard D. Wainford
- Department of Pharmacology and Experimental Therapeutics, The Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston
- Division of Cardiology, Emory University, Atlanta, USA
| | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Shane A. Thomas
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Takahiro Komori
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Udaya Ralapanawa
- Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - Vikas Kapil
- William Harvey Research Institute, Centre for Cardiovascular Medicine and Devices, NIHR Barts Biomedical Research Centre, BRC, Faculty of Medicine and Dentistry, Queen Mary University London
- Barts BP Centre of Excellence, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Yan Li
- Department of Cardiovascular Medicine, Shanghai Institute of Hypertension, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai
| | - Yuqing Zhang
- Department of Cardiology, Fu Wai Hospital, Chinese Academy of Medical Sciences, Chinese Hypertension League, Beijing, China
| | - Tazeen H. Jafar
- Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| | - Nadia Khan
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Bryan Williams
- University College London (UCL), Institute of Cardiovascular Science, National Institute for Health Research (NIHR), UCL Hospitals Biomedical Research Centre, London, UK
| | - George Stergiou
- Hypertension Centre STRIDE-7, School of Medicine, Third Department of Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester
- Manchester Academic Health Science Centre, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
11
|
Do T, Van A, Ataei A, Sharma S, Mohandas R. Microvascular Dysfunction in Obesity-Hypertension. Curr Hypertens Rep 2023; 25:447-453. [PMID: 37837517 DOI: 10.1007/s11906-023-01272-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/16/2023]
Abstract
PURPOSE OF REVIEW This review aims to explore the role of microvascular dysfunction in obesity-hypertension, discuss the effects obesity has on renal microvasculature, review the current methods for assessing microvascular dysfunction and available therapeutic options, and identify critical areas for further research. RECENT FINDINGS There is a strong association between obesity and hypertension. However, the pathophysiology of obesity-hypertension is not clear. Microvascular dysfunction has been linked to hypertension and obesity and could be an important mediator of obesity-related hypertension. Newer therapies for hypertension and obesity could have ameliorating effects on microvascular dysfunction, including GLP-1 agonists and SGLT-2 inhibitors. There is still much progress to be made in our understanding of the complex interplay between obesity, hypertension, and microvascular dysfunction. Continued efforts to understand microvascular dysfunction and its role in obesity-hypertension are crucial to develop precision therapy to target obesity-hypertension.
Collapse
Affiliation(s)
- Tammy Do
- Department of Medicine, LSU Health Sciences Center - New Orleans, New Orleans, LA, USA
| | - Ashley Van
- Department of Medicine, LSU Health Sciences Center - New Orleans, New Orleans, LA, USA
| | - Arash Ataei
- Department of Medicine, LSU Health Sciences Center - New Orleans, New Orleans, LA, USA
| | - Swati Sharma
- Section of Nephrology and Hypertension, LSU Health Sciences Center - New Orleans, 2021 Perdido Street, Ste 4325, New Orleans, LA, 70112, USA
| | - Rajesh Mohandas
- Section of Nephrology and Hypertension, LSU Health Sciences Center - New Orleans, 2021 Perdido Street, Ste 4325, New Orleans, LA, 70112, USA.
| |
Collapse
|
12
|
Ba R, Durand A, Mauduit V, Chauveau C, Le Bas-Bernardet S, Salle S, Guérif P, Morin M, Petit C, Douillard V, Rousseau O, Blancho G, Kerleau C, Vince N, Giral M, Gourraud PA, Limou S. KiT-GENIE, the French genetic biobank of kidney transplantation. Eur J Hum Genet 2023; 31:1291-1299. [PMID: 36737541 PMCID: PMC10620190 DOI: 10.1038/s41431-023-01294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
KiT-GENIE is a monocentric DNA biobank set up to consolidate the very rich and homogeneous DIVAT French cohort of kidney donors and recipients (D/R) in order to explore the molecular factors involved in kidney transplantation outcomes. We collected DNA samples for kidney transplantations performed in Nantes, and we leveraged GWAS genotyping data for securing high-quality genetic data with deep SNP and HLA annotations through imputations and for inferring D/R genetic ancestry. Overall, the biobank included 4217 individuals (n = 1945 D + 2,272 R, including 1969 D/R pairs), 7.4 M SNPs and over 200 clinical variables. KiT-GENIE represents an accurate snapshot of kidney transplantation clinical practice in Nantes between 2002 and 2018, with an enrichment in living kidney donors (17%) and recipients with focal segmental glomerulosclerosis (4%). Recipients were predominantly male (63%), of European ancestry (93%), with a mean age of 51yo and 86% experienced their first graft over the study period. D/R pairs were 93% from European ancestry, and 95% pairs exhibited at least one HLA allelic mismatch. The mean follow-up time was 6.7 years with a hindsight up to 25 years. Recipients experienced biopsy-proven rejection and graft loss for 16.6% and 21.3%, respectively. KiT-GENIE constitutes one of the largest kidney transplantation genetic cohorts worldwide to date. It includes homogeneous high-quality clinical and genetic data for donors and recipients, hence offering a unique opportunity to investigate immunogenetic and genetic factors, as well as donor-recipient interactions and mismatches involved in rejection, graft survival, primary disease recurrence and other comorbidities.
Collapse
Affiliation(s)
- Rokhaya Ba
- Nantes Université, Centrale Nantes, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
| | - Axelle Durand
- Nantes Université, Centrale Nantes, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
| | - Vincent Mauduit
- Nantes Université, Centrale Nantes, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
| | - Christine Chauveau
- Nantes Université, Centrale Nantes, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
| | - Stéphanie Le Bas-Bernardet
- Nantes Université, Centrale Nantes, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
| | - Sonia Salle
- Nantes Université, Centrale Nantes, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
| | - Pierrick Guérif
- CHU Nantes, Nantes Université, Service de Néphrologie-Immunologie Clinique, ITUN, F-44000, Nantes, France
| | - Martin Morin
- Nantes Université, Centrale Nantes, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
| | - Clémence Petit
- Nantes Université, Centrale Nantes, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
- CHU Nantes, Nantes Université, Service de Néphrologie-Immunologie Clinique, ITUN, F-44000, Nantes, France
| | - Venceslas Douillard
- Nantes Université, Centrale Nantes, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
| | - Olivia Rousseau
- Nantes Université, Centrale Nantes, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
| | - Gilles Blancho
- Nantes Université, Centrale Nantes, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
- CHU Nantes, Nantes Université, Service de Néphrologie-Immunologie Clinique, ITUN, F-44000, Nantes, France
| | - Clarisse Kerleau
- CHU Nantes, Nantes Université, Service de Néphrologie-Immunologie Clinique, ITUN, F-44000, Nantes, France
| | - Nicolas Vince
- Nantes Université, Centrale Nantes, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
| | - Magali Giral
- Nantes Université, Centrale Nantes, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
- CHU Nantes, Nantes Université, Service de Néphrologie-Immunologie Clinique, ITUN, F-44000, Nantes, France
| | - Pierre-Antoine Gourraud
- Nantes Université, Centrale Nantes, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
| | - Sophie Limou
- Nantes Université, Centrale Nantes, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France.
| |
Collapse
|
13
|
Wong ND, Sattar N. Cardiovascular risk in diabetes mellitus: epidemiology, assessment and prevention. Nat Rev Cardiol 2023; 20:685-695. [PMID: 37193856 DOI: 10.1038/s41569-023-00877-z] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 05/18/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of morbidity and mortality in individuals with type 2 diabetes mellitus (T2DM). Secular changes in CVD outcomes have occurred over the past few decades, mainly due to a decline in the incidence of ischaemic heart disease. The onset of T2DM at a young age (<40 years), leading to a greater number of life-years lost, has also become increasingly common. Researchers are now looking beyond established risk factors in patients with T2DM towards the role of ectopic fat and, potentially, haemodynamic abnormalities in mediating important outcomes (such as heart failure). T2DM confers a wide spectrum of risk and is not necessarily a CVD risk equivalent, indicating the importance of risk assessment strategies (such as global risk scoring, consideration of risk-enhancing factors and assessment of subclinical atherosclerosis) to inform treatment. Data from epidemiological studies and clinical trials demonstrate that successful control of multiple risk factors can reduce the risk of CVD events by ≥50%; however, only ≤20% of patients achieve targets for risk factor reduction (plasma lipid levels, blood pressure, glycaemic control, body weight and non-smoking status). Improvements in composite risk factor control with lifestyle management (including a greater emphasis on weight loss interventions) and evidence-based generic and novel pharmacological therapies are therefore needed when the risk of CVD is high.
Collapse
Affiliation(s)
- Nathan D Wong
- Heart Disease Prevention Program, Division of Cardiology, University of California, Irvine, CA, USA.
| | - Naveed Sattar
- Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK.
| |
Collapse
|
14
|
Yu F, Liu A, Deng Z, Gan S, Zhou Q, Long H. Association Between Chinese Visceral Adipose Index and Albuminuria in Chinese Adults: A Cross-Sectional Study. Int J Gen Med 2023; 16:2271-2283. [PMID: 37304903 PMCID: PMC10254699 DOI: 10.2147/ijgm.s411416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023] Open
Abstract
Purpose To explore the correlation between Chinese visceral adipose index (CVAI) and urinary microalbumin/creatinine ratio (UACR) and urinary albumin, and whether there is any difference in correlation between Han and Tujia ethnicity. Methods This cross-sectional study was conducted in Changde, Hunan, China from May 2021 to December 2021. Biochemical indicators including anthropometric parameters, blood pressure, blood glucose, blood lipids, and UACR of the participants were measured. Univariate analysis, multivariate analyses and multinomial logistic regression analysis were carried out to assess the association between CVAI and albuminuria. In addition, curve fitting and threshold effect analysis were used to explore the nonlinear association between CVAI and albuminuria, and to observe whether there were ethnic differences in this association. Results A total of 2026 adult residents were enrolled in this study, 500 of whom had albuminuria. Population-standardized prevalence of albuminuria is 19.06%. In the multivariable model adjusted for confounding factors, the odds ratio (OR) of albuminuria for pre-unit increase of CVAI and pre-SD increase of CVAI were 1.007 (1.003-1.010) and 1.298 (1.127-1.496), respectively. Multinomial logistic regression analysis confirmed the robustness and consistency of the results.The generalized additive model showed that CVAI and albuminuria had a nonlinear relationship with inflection point at 97.201 using the threshold effect. Compared with Han ethnic groups, the threshold between CVAI and albuminuria in Tujia people moved backward. The thresholds were 159.785 and 98.527, respectively. Conclusion There was a positive nonlinear dose-response relationship between increased CVAI and higher levels of albuminuria. Maintaining appropriate CVAI levels may be important for the prevention of albuminuria.
Collapse
Affiliation(s)
- Fang Yu
- Department of Endocrinology, The First People’s Hospital of Changde City, Changde, Hunan, People’s Republic of China
| | - Aizhong Liu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zhiming Deng
- Department of Endocrinology, The First People’s Hospital of Changde City, Changde, Hunan, People’s Republic of China
| | - Shenglian Gan
- Department of Endocrinology, The First People’s Hospital of Changde City, Changde, Hunan, People’s Republic of China
| | - Quan Zhou
- Department of Science and Education Section, The First People’s Hospital of Changde City, Changde, Hunan, People’s Republic of China
| | - Haowen Long
- Department of Radiology, The First People’s Hospital of Changde City, Changde, Hunan, People’s Republic of China
| |
Collapse
|
15
|
Lam BCC, Lim AYL, Chan SL, Yum MPS, Koh NSY, Finkelstein EA. The impact of obesity: a narrative review. Singapore Med J 2023; 64:163-171. [PMID: 36876622 PMCID: PMC10071857 DOI: 10.4103/singaporemedj.smj-2022-232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Obesity is a disease with a major negative impact on human health. However, people with obesity may not perceive their weight to be a significant problem and less than half of patients with obesity are advised by their physicians to lose weight. The purpose of this review is to highlight the importance of managing overweight and obesity by discussing the adverse consequences and impact of obesity. In summary, obesity is strongly related to >50 medical conditions, with many of them having evidence from Mendelian randomisation studies to support causality. The clinical, social and economic burdens of obesity are considerable, with these burdens potentially impacting future generations as well. This review highlights the adverse health and economic consequences of obesity and the importance of an urgent and concerted effort towards the prevention and management of obesity to reduce the burden of obesity.
Collapse
Affiliation(s)
- Benjamin Chih Chiang Lam
- Family and Community Medicine, Khoo Teck Puat Hospital; Integrated Care for Obesity and Diabetes, Khoo Teck Puat Hospital, Singapore
| | - Amanda Yuan Ling Lim
- Singapore Association for the Study of Obesity; Division of Endocrinology, Department of Medicine, National University Hospital, Singapore
| | - Soo Ling Chan
- Division of Endocrinology, Department of Medicine, Ng Teng Fong General Hospital, Singapore
| | | | | | | |
Collapse
|
16
|
Kjaergaard AD, Krakauer J, Krakauer N, Teumer A, Winkler TW, Ellervik C. Allometric body shape indices, type 2 diabetes and kidney function: A two-sample Mendelian randomization study. Diabetes Obes Metab 2023. [PMID: 36855799 DOI: 10.1111/dom.15037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
AIM To examine the association between body mass index (BMI)-independent allometric body shape indices and kidney function. MATERIALS AND METHODS We performed a two-sample Mendelian randomization (MR) analysis, using summary statistics from UK Biobank, CKDGen and DIAGRAM. BMI-independent allometric body shape indices were: A Body Shape Index (ABSI), Waist-Hip Index (WHI) and Hip Index (HI). Kidney function outcomes were: urinary albumin-to-creatinine ratio (UACR), estimated glomerular filtration rate and blood urea nitrogen. Furthermore, we investigated type 2 diabetes (T2D) as a potential mediator on the pathway to albuminuria. The main analysis was inverse variance-weighted random-effects MR in participants of European ancestry. We also performed several sensitivity MR analyses. RESULTS A 1-standard deviation (SD) increase in genetically predicted ABSI and WHI levels was associated with higher UACR (β = 0.039 [95% confidence interval: 0.016, 0.063] log [UACR], P = 0.001 for ABSI, and β = 0.028 [0.012, 0.044] log [UACR], P = 6 x 10-4 for WHI) in women, but not in men. Meanwhile, a 1-SD increase in genetically predicted HI was associated with lower UACR in women (β = -0.021 [-0.041, 0.000] log [UACR], P = 0.05) and in men (β = -0.026 [-0.058, 0.005] log [UACR], P = 0.10). Corresponding estimates in individuals with diabetes were substantially augmented. Risk of T2D increased for genetically high ABSI and WHI in women (P < 6 x 10-19 ) only, but decreased for genetically high HI in both sexes (P < 9 x 10-3 ). No other associations were observed. CONCLUSIONS Genetically high HI was associated with decreased risk of albuminuria, mediated through decreased T2D risk in both sexes. Opposite associations applied to genetically high ABSI and WHI in women only.
Collapse
Affiliation(s)
- Alisa D Kjaergaard
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Jesse Krakauer
- Associated Physicians/Endocrinology, Berkley, Michigan, USA
| | - Nir Krakauer
- Department of Civil Engineering, City College of New York and Earth and Environmental Sciences, Graduate Center, City University of New York, New York, New York, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Christina Ellervik
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Data and Development, Sorø, Denmark
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Liu YF, Wang HH, Geng YH, Han L, Tu SH, Wang H. Advances of berberine against metabolic syndrome-associated kidney disease: Regarding effect and mechanism. Front Pharmacol 2023; 14:1112088. [PMID: 36814494 PMCID: PMC9939707 DOI: 10.3389/fphar.2023.1112088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
The prevalence of metabolic syndrome (MetS) is drastically growing worldwide, resulting in MetS-associated kidney disease. According to traditional theories, preventing blood pressure, lipid, glycose, and obesity and improving insulin resistance (IR), a couple of medications are required for MetS. It not only lowers patients' compliance but also elevates adverse reactions. Accordingly, we attempted to seek answers from complementary and alternative medicine. Ultimately, berberine (BBR) was chosen due to its efficacy and safety on MetS through multi-pathways and multi-targets. The effects and mechanisms of BBR on obesity, IR, diabetic nephropathy, hypertension, hyperlipidemia, and hyperuricemia were elaborated. In addition, the overall properties of BBR and interventions for various kidney diseases were also collected. However, more clinical trials are expected to further identify the beneficial effects of BBR.
Collapse
Affiliation(s)
- Ya-Fei Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan-Huan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yin-Hong Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Han
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng-Hao Tu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Nephrology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
18
|
Tomaszewski M, Morris AP, Howson JMM, Franceschini N, Eales JM, Xu X, Dikalov S, Guzik TJ, Humphreys BD, Harrap S, Charchar FJ. Kidney omics in hypertension: from statistical associations to biological mechanisms and clinical applications. Kidney Int 2022; 102:492-505. [PMID: 35690124 PMCID: PMC9886011 DOI: 10.1016/j.kint.2022.04.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023]
Abstract
Hypertension is a major cardiovascular disease risk factor and contributor to premature death globally. Family-based investigations confirmed a significant heritable component of blood pressure (BP), whereas genome-wide association studies revealed >1000 common and rare genetic variants associated with BP and/or hypertension. The kidney is not only an organ of key relevance to BP regulation and the development of hypertension, but it also acts as the tissue mediator of genetic predisposition to hypertension. The identity of kidney genes, pathways, and related mechanisms underlying the genetic associations with BP has started to emerge through integration of genomics with kidney transcriptomics, epigenomics, and other omics as well as through applications of causal inference, such as Mendelian randomization. Single-cell methods further enabled mapping of BP-associated kidney genes to cell types, and in conjunction with other omics, started to illuminate the biological mechanisms underpinning associations of BP-associated genetic variants and kidney genes. Polygenic risk scores derived from genome-wide association studies and refined on kidney omics hold the promise of enhanced diagnostic prediction, whereas kidney omics-informed drug discovery is likely to contribute new therapeutic opportunities for hypertension and hypertension-mediated kidney damage.
Collapse
Affiliation(s)
- Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK; Manchester Heart Centre and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK.
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, UK
| | - Joanna M M Howson
- Department of Genetics, Novo Nordisk Research Centre Oxford, Novo Nordisk Ltd, Oxford, UK
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - James M Eales
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Xiaoguang Xu
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Sergey Dikalov
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Department of Internal and Agricultural Medicine, Jagiellonian University College of Medicine, Kraków, Poland
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Stephen Harrap
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Fadi J Charchar
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia; Health Innovation and Transformation Centre, School of Science, Psychology and Sport, Federation University Australia, Ballarat, Victoria, Australia; Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
19
|
Feng L, Chen T, Wang X, Xiong C, Chen J, Wu S, Ning J, Zou H. Metabolism Score for Visceral Fat (METS-VF): A New Predictive Surrogate for CKD Risk. Diabetes Metab Syndr Obes 2022; 15:2249-2258. [PMID: 35936056 PMCID: PMC9346409 DOI: 10.2147/dmso.s370222] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Metabolic disorders are closely related to the occurrence and development of chronic kidney disease (CKD). We explored the prospective association between the Metabolic Score for Visceral Fat (METS-VF) and CKD in a 5-year follow-up study. PATIENTS AND METHODS In this cohort study, 631 adults not suffering from CKD from Wanzhai Town, in China in 2012 were included at baseline and followed up in 2017 and 2018. Multivariable logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between METS-VF and CKD risk. Area under the receiver operating characteristic curve (AUC) analyses were used to evaluate the ability of METS-VF, waist-to-height ratio (WhtR), visceral adiposity index (VAI), homeostatic model assessment of insulin resistance (HOMA-IR), body mass index (BMI) to predict CKD risk. RESULTS We identified 103 CKD cases during follow-up. After adjustment for confounding factors, comparing the lowest quartile of METS-VF, the OR (95% CI) of CKD risk in the highest quartile was 3.04 (1.39-6.64). The per Standard deviation (SD) increase in METS-VF was positively correlated with CKD risk. The AUC of METS-VF for predicting CKD risk was, in general, higher than that for WhtR, VAI, HOMA-IR, and BMI. CONCLUSION METS-VF may be an indicator for predicting CKD risk.
Collapse
Affiliation(s)
- Ling Feng
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Nephrology, Shenzhen Hospital, Southern Medical University, Shenzhen, People’s Republic of China
| | - Tong Chen
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, People’s Republic of China
| | - Xuan Wang
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Chongxiang Xiong
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Nephrology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People’s Republic of China
| | - Jianhui Chen
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Shiquan Wu
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, People’s Republic of China
| | - Jing Ning
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, People’s Republic of China
| | - Hequn Zou
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, People’s Republic of China
- Correspondence: Hequn Zou, Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, 183, Zhongshan West Avenue, Tianhe District, Guangzhou, 510630, People’s Republic of China, Email
| |
Collapse
|