1
|
Tomas L, Katra P, Badn W, Andersson L, Nilsson J, Schiopu A, Engelbertsen D, Gonçalves I, Bengtsson E, Björkbacka H. Invariant natural killer T cells and incidence of first-time coronary events: a nested case-control study. EUROPEAN HEART JOURNAL OPEN 2023; 3:oead094. [PMID: 38025652 PMCID: PMC10630548 DOI: 10.1093/ehjopen/oead094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/17/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023]
Abstract
Aims Invariant natural killer T (iNKT) cells, a T cell subset that is CD1d-restricted and expresses a semi-invariant T cell receptor, have been proposed to contribute to dyslipidaemia-driven cardiovascular disease due to their ability to specifically recognize lipid antigens. Studies in mice have attributed pro-atherogenic properties to iNKT cells, but studies in humans investigating associations of iNKT cells with incident coronary events (CE) are lacking. Methods and results Here, we used flow cytometry to enumerate circulating iNKT cells (CD3+ CD1d-PBS57-Tetramer+) in a case-control cohort nested within the prospective population-based Malmö Diet and Cancer Study (n = 416) to explore associations with incident first-time CE during a median follow-up of 14 years. We found a significant inverse association between CD4- and CD8- double negative (DN) iNKT cells and incident CE, with an odds ratio of 0.62 [95% confidence interval (CI) 0.38-0.99; P = 0.046] comparing the highest vs. the lowest tertile of DN iNKT cells. The association remained significant after adjustment for cardiovascular risk factors with an odds ratio of 0.57 (95% CI 0.33-0.99; P = 0.046). In contrast, total iNKT cells were not significantly associated with incident CE after adjustment, with an odds ratio of 0.74 (95% CI 0.43-1.27; P = 0.276). Conclusion Our findings indicate that animal studies suggesting an atherosclerosis-promoting role for iNKT cells may not translate to human cardiovascular disease as our data show an association between high circulating numbers of DN iNKT cells and decreased risk of incident CE.
Collapse
Affiliation(s)
- Lukas Tomas
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-214 28, Malmö, Sweden
| | - Pernilla Katra
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-214 28, Malmö, Sweden
| | - Wiaam Badn
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-214 28, Malmö, Sweden
| | - Linda Andersson
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-214 28, Malmö, Sweden
| | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-214 28, Malmö, Sweden
| | - Alexandru Schiopu
- Department of Translational Medicine, Lund University, Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, Lund, Sweden
| | - Daniel Engelbertsen
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-214 28, Malmö, Sweden
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-214 28, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Eva Bengtsson
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-214 28, Malmö, Sweden
- Faculty of Health and Society, Malmö University, Malmö, Sweden
- Biofilms – Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Harry Björkbacka
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-214 28, Malmö, Sweden
| |
Collapse
|
2
|
Chakrabarti R, Duddu S, Tiwari A, Naidu KT, Sharma P, Chakravorty N, Shukla PC. Natural Killer T cells and the invariant subset promote atherosclerosis: A meta-analysis. Life Sci 2023; 321:121620. [PMID: 37011534 DOI: 10.1016/j.lfs.2023.121620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
AIMS Natural Killer T (NKT) cells are reported to be both pro- and anti-atherosclerotic. With this meta-analysis, we evaluated the NKT population and their subsets in regulating the atherosclerotic disease in mice. MAIN METHODS Eighteen pre-clinical (mice, n = 1276) and 6 clinical observational studies (humans, n = 116) met the eligibility criteria for inclusion. Random effects model was used and standard mean difference (SMD) was calculated for the cell counts and aortic lesion area. KEY FINDINGS Lesion area decreased in the absence of whole NKT cell population (-1.33[95%CI, -2.14, -0.52]), and in the absence of only iNKT subset (-0.66[95%CI, -1.69, 0.37]). However, lesion area increased after over-expression/activation of iNKTs (1.40[95%CI, 0.28, 2.52]). Atherogenic diet (AD) or high fat diet (HFD) increased the number of NKT cells (2.51[95%CI, 1.42, 3.61]), whereas the iNKT cell numbers and iNKT cell-specific gene expression decreased in mice (-2.04[95%CI, -3.34, -0.75]) and atherosclerotic patients (-1.81[95 % CI, -2.89, -0.74]). SIGNIFICANCE Here we show that, NKT and iNKT cells promote atherosclerosis. In general, NKT cell population increases with the progression of the plaque in mice and the numbers of iNKT cells reduce once the disease is established both in mice and humans.
Collapse
|
3
|
Dounousi E, Duni A, Naka KK, Vartholomatos G, Zoccali C. The Innate Immune System and Cardiovascular Disease in ESKD: Monocytes and Natural Killer Cells. Curr Vasc Pharmacol 2021; 19:63-76. [PMID: 32600233 DOI: 10.2174/1570161118666200628024027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
Adverse innate immune responses have been implicated in several disease processes, including cardiovascular disease (CVD) and chronic kidney disease (CKD). The monocyte subsets natural killer (NK) cells and natural killer T (NKT) cells are involved in innate immunity. Monocytes subsets are key in atherogenesis and the inflammatory cascade occurring in heart failure. Upregulated activity and counts of proinflammatory CD16+ monocyte subsets are associated with clinical indices of atherosclerosis, heart failure syndromes and CKD. Advanced CKD is a complex state of persistent systemic inflammation characterized by elevated expression of proinflammatory and pro-atherogenic CD14++CD16+ monocytes, which are associated with cardiovascular events and death both in the general population and among patients with CKD. Diminished NK cells and NKT cells counts and aberrant activity are observed in both coronary artery disease and end-stage kidney disease. However, evidence of the roles of NK cells and NKT cells in atherogenesis in advanced CKD is circumstantial and remains to be clarified. This review describes the available evidence regarding the roles of specific immune cell subsets in the pathogenesis of CVD in patients with CKD. Future research is expected to further uncover the links between CKD associated innate immune system dysregulation and accelerated CVD and will ideally be translated into therapeutic targets.
Collapse
Affiliation(s)
- Evangelia Dounousi
- Department of Nephrology, Medical School, University of Ioannina, Ioannina, Greece
| | - Anila Duni
- Department of Nephrology, Medical School, University of Ioannina, Ioannina, Greece
| | - Katerina K Naka
- 2nd Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Georgios Vartholomatos
- Laboratory of Haematology - Unit of Molecular Biology, University Hospital of Ioannina, Ioannina, Greece
| | - Carmine Zoccali
- Institute of Clinical Physiology-Reggio Cal Unit, National Research Council, Reggio Calabria, Italy
| |
Collapse
|
4
|
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall and the primary underlying cause of cardiovascular disease. Data from in vivo imaging, cell-lineage tracing and knockout studies in mice, as well as clinical interventional studies and advanced mRNA sequencing techniques, have drawn attention to the role of T cells as critical drivers and modifiers of the pathogenesis of atherosclerosis. CD4+ T cells are commonly found in atherosclerotic plaques. A large body of evidence indicates that T helper 1 (TH1) cells have pro-atherogenic roles and regulatory T (Treg) cells have anti-atherogenic roles. However, Treg cells can become pro-atherogenic. The roles in atherosclerosis of other TH cell subsets such as TH2, TH9, TH17, TH22, follicular helper T cells and CD28null T cells, as well as other T cell subsets including CD8+ T cells and γδ T cells, are less well understood. Moreover, some T cells seem to have both pro-atherogenic and anti-atherogenic functions. In this Review, we summarize the knowledge on T cell subsets, their functions in atherosclerosis and the process of T cell homing to atherosclerotic plaques. Much of our understanding of the roles of T cells in atherosclerosis is based on findings from experimental models. Translating these findings into human disease is challenging but much needed. T cells and their specific cytokines are attractive targets for developing new preventive and therapeutic approaches including potential T cell-related therapies for atherosclerosis.
Collapse
Affiliation(s)
- Ryosuke Saigusa
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Holger Winkels
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Takahashi M, Kinugawa S, Takada S, Kakutani N, Furihata T, Sobirin MA, Fukushima A, Obata Y, Saito A, Ishimori N, Iwabuchi K, Tsutsui H. The disruption of invariant natural killer T cells exacerbates cardiac hypertrophy and failure caused by pressure overload in mice. Exp Physiol 2020; 105:489-501. [PMID: 31957919 DOI: 10.1113/ep087652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 01/17/2020] [Indexed: 12/18/2022]
Abstract
NEW FINDINGS What is the central question of this study? We questioned whether the disruption of invariant natural killer T (iNKT) cells exacerbates left ventricular (LV) remodelling and heart failure after transverse aortic constriction in mice. What are the main findings and their importance? Pressure overload induced by transverse aortic constriction increased the infiltration of iNKT cells in mouse hearts. The disruption of iNKT cells exacerbated LV remodelling and hastened the transition from hypertrophy to heart failure, in association with the activation of mitogen-activated protein kinase signalling. Activation of iNKT cells modulated the immunological balance in this process and played a protective role against LV remodelling and failure. ABSTRACT Chronic inflammation is involved in the development of cardiac remodelling and heart failure (HF). Invariant natural killer T (iNKT) cells, a subset of T lymphocytes, have been shown to produce various cytokines and orchestrate tissue inflammation. The pathophysiological role of iNKT cells in HF caused by pressure overload has not been studied. In the present study, we investigated whether the disruption of iNKT cells affected this process in mice. Transverse aortic constriction (TAC) and a sham operation were performed in male C57BL/6J wild-type (WT) and iNKT cell-deficient Jα18 knockout (KO) mice. The infiltration of iNKT cells was increased after TAC. The disruption of iNKT cells exacerbated left ventricular (LV) remodelling and hastened the transition to HF after TAC. Histological examinations also revealed that the disruption of iNKT cells induced greater myocyte hypertrophy and a greater increase in interstitial fibrosis after TAC. The expressions of interleukin-10 and tumour necrosis factor-α mRNA and their ratio in the LV after TAC were decreased in the KO compared with WT mice, which might indicate that the disruption of iNKT cells leads to an imbalance between T-helper type 1 and type 2 cytokines. The phosphorylation of extracellular signal-regulated kinase was significantly increased in the KO mice. The disruption of iNKT cells exacerbated the development of cardiac remodelling and HF after TAC. The activation of iNKT cells might play a protective role against HF caused by pressure overload. Targeting the activation of iNKT cells might thus be a promising candidate as a new therapeutic strategy for HF.
Collapse
Affiliation(s)
- Masashige Takahashi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shingo Takada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Kakutani
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takaaki Furihata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | - Arata Fukushima
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshikuni Obata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akimichi Saito
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoki Ishimori
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuya Iwabuchi
- Department of Immunobiology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
VanderLaan PA, Reardon CA, Cabana VG, Wang CR, Getz GS. Invariant Natural Killer T-Cells and Total CD1d Restricted Cells Differentially Influence Lipid Metabolism and Atherosclerosis in Low Density Receptor Deficient Mice. Int J Mol Sci 2019; 20:ijms20184566. [PMID: 31540125 PMCID: PMC6770011 DOI: 10.3390/ijms20184566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 11/16/2022] Open
Abstract
Natural killer T (NKT) cells are a distinct subset of lymphocytes that bridge the innate and adaptive immune response and can be divided into type I invariant NKT cells (iNKT) and type II NKT cells. The objective of this study is to examine the effects of NKT cell on lipid metabolism and the initiation and progression of atherosclerosis in LDL receptor deficient (LDLR−/−) mice. Mice were fed an atherogenic diet for 4 or 8 weeks and plasma lipids, lipoproteins, and atherosclerosis were measured. The selective absence of iNKT cells in Jα18−/−LDLR−/− mice led to an increase in plasma cholesterol levels in female mice. Transgenic Vα14tg/LDLR−/− mice with elevated numbers of iNKT cells had increased late atherosclerosis of the innominate artery, though absence of either iNKT cells or all NKT cells and other CD1d expressing cells had varying effects on atherosclerotic lesion burden in the ascending aortic arch and aortic root. These studies not only highlight the potential modulatory role played by NKT cells in atherosclerosis and lipid metabolism, but also raise the possibility that divergent roles may be played by iNKT and CD1d restricted cells such as type II NKT cells or other CD1d expressing cells.
Collapse
Affiliation(s)
- Paul A VanderLaan
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University, 633 Clark St, Evanston, IL 60208, USA.
| | - Godfrey S Getz
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
7
|
Kim EY, Oldham WM. Innate T cells in the intensive care unit. Mol Immunol 2019; 105:213-223. [PMID: 30554082 PMCID: PMC6331274 DOI: 10.1016/j.molimm.2018.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/22/2018] [Accepted: 09/29/2018] [Indexed: 12/15/2022]
Abstract
Rapid onset of acute inflammation is a hallmark of critical illnesses that bring patients to the intensive care unit (ICU). In critical illness, innate T cells rapidly reach full activation and drive a robust acute inflammatory response. As "cellular adjuvants," innate T cells worsen inflammation and mortality in several common critical illnesses including sepsis, ischemia-reperfusion injury, stroke, and exacerbations of respiratory disease. Interestingly, innate T cell subsets can also promote a protective and anti-inflammatory response in sepsis, ischemia-reperfusion injury, and asthma. Therapies that target innate T cells have been validated in several models of critical illness. Here, we review the role of natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells and γδ T cells in clinical and experimental critical illness.
Collapse
Affiliation(s)
- Edy Yong Kim
- Brigham and Women's Hospital, Pulmonary and Critical Care Medicine, Boston, MA, 02115, United States; Harvard Medical School, Boston, MA, 02115, United States.
| | - William M Oldham
- Brigham and Women's Hospital, Pulmonary and Critical Care Medicine, Boston, MA, 02115, United States; Harvard Medical School, Boston, MA, 02115, United States
| |
Collapse
|
8
|
Discovery, synthesis and anti-atherosclerotic activities of a novel selective sphingomyelin synthase 2 inhibitor. Eur J Med Chem 2018; 163:864-882. [PMID: 30580239 DOI: 10.1016/j.ejmech.2018.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 02/03/2023]
Abstract
The sphingomyelin synthase 2 (SMS2) is a potential target for pharmacological intervention in atherosclerosis. However, so far, few selective SMS2 inhibitors and their pharmacological activities were reported. In this study, a class of 2-benzyloxybenzamides were discovered as novel SMS2 inhibitors through scaffold hopping and structural optimization. Among them, Ly93 as one of the most potent inhibitors exhibited IC50 values of 91 nM and 133.9 μM against purified SMS2 and SMS1 respectively. The selectivity ratio of Ly93 was more than 1400-fold for purified SMS2 over SMS1. The in vitro studies indicated that Ly93 not only dose-dependently diminished apoB secretion from Huh7 cells, but also significantly reduced the SMS activity and increased cholesterol efflux from macrophages. Meanwhile, Ly93 inhibited the secretion of LPS-mediated pro-inflammatory cytokine and chemokine in macrophages. The pharmacokinetic profiles of Ly93 performed on C57BL/6J mice demonstrated that Ly93 was orally efficacious. As a potent selective SMS2 inhibitor, Ly93 significantly decreased the plasma SM levels of C57BL/6J mice. Furthermore, Ly93 was capable of dose-dependently attenuating the atherosclerotic lesions in the root and the entire aorta as well as macrophage content in lesions, in apolipoprotein E gene knockout mice treated with Ly93. In conclusion, we discovered a novel selective SMS2 inhibitor Ly93 and demonstrated its anti-atherosclerotic activities in vivo. The preliminary molecular mechanism-of-action studies revealed its function in lipid homeostasis and inflammation process, which indicated that the selective inhibition of SMS2 would be a promising treatment for atherosclerosis.
Collapse
|
9
|
Subramanian S, Goodspeed L, Wang S, Ding Y, O'Brien KD, Getz GS, Chait A, Reardon CA. Deficiency of Invariant Natural Killer T Cells Does Not Protect Against Obesity but Exacerbates Atherosclerosis in Ldlr -/- Mice. Int J Mol Sci 2018; 19:ijms19020510. [PMID: 29419749 PMCID: PMC5855732 DOI: 10.3390/ijms19020510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/27/2018] [Accepted: 01/29/2018] [Indexed: 12/30/2022] Open
Abstract
Obesity is a chronic inflammatory state characterized by altered levels of adipose tissue immune cell populations. Natural killer T (NKT) cells are CD1d restricted lymphocyte subsets that recognize lipid antigens whose level decreases in obese adipose tissue. However, studies in mice with deficiency or increased levels of NKT cells have yielded contradictory results, so the exact role of these cells in obesity and adipose tissue inflammation is not yet established. We previously showed that Ldlr−/− mice with excess invariant NKT (iNKT) cells demonstrate significant weight gain, adiposity, metabolic abnormalities, and atherosclerosis. The current study evaluates the effects of NKT cell deficiency on obesity, associated metabolic changes, and atherosclerosis in Jα18−/−Ldlr−/− (lacking iNKT cells) and Cd1d−/−Ldlr−/− (lacking invariant and type II NKT cells) mice, and control mice were fed an obesogenic diet (high fat, sucrose, cholesterol) for 16 weeks. Contrary to expectations, Ja18−/−Ldlr−/− mice gained significantly more weight than Ldlr−/− or Cd1d−/−Ldlr−/− mice, developed hypertriglyceridemia, and had worsened adipose tissue inflammation. All the mice developed insulin resistance and hepatic triglyceride accumulation. Ja18−/−Ldlr−/− mice also had increased atherosclerotic lesion area. Our findings suggest that iNKT cells exacerbates the metabolic, inflammatory, and atherosclerotic features of diet-induced obesity. Further work is required to unravel the paradox of an apparently similar effect of iNKT cell surplus and depletion on obesity.
Collapse
Affiliation(s)
- Savitha Subramanian
- Diabetes Obesity Center for Excellence, Division of Metabolism, Endocrinology and Nutrition, University of Washington, 850 Republican Street Box 35805, Seattle, WA 98109, USA.
| | - Leela Goodspeed
- Diabetes Obesity Center for Excellence, Division of Metabolism, Endocrinology and Nutrition, University of Washington, 850 Republican Street Box 35805, Seattle, WA 98109, USA.
| | - Shari Wang
- Diabetes Obesity Center for Excellence, Division of Metabolism, Endocrinology and Nutrition, University of Washington, 850 Republican Street Box 35805, Seattle, WA 98109, USA.
| | - Yilei Ding
- Diabetes Obesity Center for Excellence, Division of Metabolism, Endocrinology and Nutrition, University of Washington, 850 Republican Street Box 35805, Seattle, WA 98109, USA.
| | - Kevin D O'Brien
- Division of Cardiology, University of Washington, Seattle, WA 98195, USA.
| | - Godfrey S Getz
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA.
| | - Alan Chait
- Diabetes Obesity Center for Excellence, Division of Metabolism, Endocrinology and Nutrition, University of Washington, 850 Republican Street Box 35805, Seattle, WA 98109, USA.
| | | |
Collapse
|
10
|
van Puijvelde GH, Kuiper J. NKT cells in cardiovascular diseases. Eur J Pharmacol 2017; 816:47-57. [DOI: 10.1016/j.ejphar.2017.03.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/10/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
|
11
|
Kyaw T, Peter K, Li Y, Tipping P, Toh BH, Bobik A. Cytotoxic lymphocytes and atherosclerosis: significance, mechanisms and therapeutic challenges. Br J Pharmacol 2017; 174:3956-3972. [PMID: 28471481 DOI: 10.1111/bph.13845] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 04/02/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Cytotoxic lymphocytes encompass natural killer lymphocytes (cells) and cytotoxic T cells that include CD8+ T cells, natural killer (NK) T cells, γ, δ (γδ)-T cells and human CD4 + CD28- T cells. These cells play critical roles in inflammatory diseases and in controlling cancers and infections. Cytotoxic lymphocytes can be activated via a number of mechanisms that may involve dendritic cells, macrophages, cytokines or surface proteins on stressed cells. Upon activation, they secrete pro-inflammatory cytokines as well as anti-inflammatory cytokines, chemokines and cytotoxins to promote inflammation and the development of atherosclerotic lesions including vulnerable lesions, which are strongly implicated in myocardial infarctions and strokes. Here, we review the mechanisms that activate and regulate cytotoxic lymphocyte activity, including activating and inhibitory receptors, cytokines, chemokine receptors-chemokine systems utilized to home to inflamed lesions and cytotoxins and cytokines through which they affect other cells within lesions. We also examine their roles in human and mouse models of atherosclerosis and the mechanisms by which they exert their pathogenic effects. Finally, we discuss strategies for therapeutically targeting these cells to prevent the development of atherosclerotic lesions and vulnerable plaques and the challenge of developing highly targeted therapies that only minimally affect the body's immune system, avoiding the complications, such as increased susceptibility to infections, which are currently associated with many immunotherapies for autoimmune diseases. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- Tin Kyaw
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Immunology, Monash University, Melbourne, Vic, Australia
| | - Yi Li
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Peter Tipping
- Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Ban-Hock Toh
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Alex Bobik
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Immunology, Monash University, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| |
Collapse
|
12
|
Li L, Tu J, Jiang Y, Zhou J, Schust DJ. Regulatory T cells decrease invariant natural killer T cell-mediated pregnancy loss in mice. Mucosal Immunol 2017; 10:613-623. [PMID: 27706127 DOI: 10.1038/mi.2016.84] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 08/26/2016] [Indexed: 02/04/2023]
Abstract
Pregnancy loss is the commonest complication of pregnancy. The causes of pregnancy loss are poorly understood. It has been reported that stimulation of invariant natural killer T (iNKT) cells using α-galactosylceramide (αGC) induces pregnancy loss in mice. Here we investigated the mechanisms, especially the role of regulatory T (Treg) cells, in iNKT cell-mediated pregnancy loss. We found that injection of αGC rapidly induced fetal resorption, activated decidual iNKT cells, decreased the percentage of decidual Treg cells and their interleukin (IL)-10 and transforming growth factor (TGF)-β production, and upregulated the levels of interferon (IFN)-γ, tumor necrosis factor-α, IL-4, and IL-10 in serum. Adoptive transfer of iNKT cells from wild-type (WT) and IL-4-/- mice but not IFN-γ-/- mice into αGC-treated iNKT cell-deficient Jα18-/- mice restored αGC-induced pregnancy loss. Adoptive transfer of Treg cells downregulated α-GC-induced pregnancy loss in WT mice. Finally, co-culture with αGC-stimulated decidual iNKT cells decreased the production of IL-10 and TGF-β in decidual Treg cells and inhibited their suppressive activity. These findings suggest that activation of iNKT cells induces pregnancy loss in mice in an IFN-γ-dependent manner. In addition, inhibition of the function of decidual Treg cells has an important role in iNKT cell-mediated pregnancy loss.
Collapse
Affiliation(s)
- L Li
- Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - J Tu
- Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Y Jiang
- Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - J Zhou
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - D J Schust
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
13
|
|
14
|
Felley LE, Sharma A, Theisen E, Romero-Masters JC, Sauer JD, Gumperz JE. Human Invariant NKT Cells Induce IL-1β Secretion by Peripheral Blood Monocytes via a P2X7-Independent Pathway. THE JOURNAL OF IMMUNOLOGY 2016; 197:2455-64. [PMID: 27534556 DOI: 10.4049/jimmunol.1600790] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/19/2016] [Indexed: 01/02/2023]
Abstract
The cytokine IL-1β plays a central role in inflammatory responses that are initiated by microbial challenges, as well as in those that are due to endogenous processes (often called sterile inflammation). IL-1β secretion that occurs independently of microbial stimulation is typically associated with the presence of endogenous alarmins, such as extracellular ATP (an indicator of cytopathic damage). In this study, we show that IL-2-activated human invariant NKT (iNKT) cells stimulate the secretion of IL-1β protein by human peripheral blood monocytes in a manner that requires neither the presence of microbial compounds nor signaling through the extracellular ATP receptor P2X7 Monocyte IL-1β production was specifically induced by iNKT cells, because similarly activated polyclonal autologous T cells did not have this effect. Secretion of IL-1β protein occurred rapidly (within 3-4 h) and required cell contact between the iNKT cells and monocytes. Similar to IL-1β production induced by TLR stimulation, the iNKT-induced pathway appeared to entail a two-step process involving NF-κB signaling and IL1B gene transcription, as well as assembly of the NLRP3 inflammasome and activation of caspase-1. However, in contrast to the classical inflammasome-mediated pathway of IL-1β production, activation of monocytes via P2X7 was dispensable for iNKT-induced IL-1β secretion, and potassium efflux was not required. Moreover, the iNKT-induced effect involved caspase-8 activity, yet it induced little monocyte death. These results suggest that IL-2-activated human iNKT cells induce monocytes to produce IL-1β through a distinctive pathway that does not require the presence of microbial danger signals or alarmins associated with cytopathic damage.
Collapse
Affiliation(s)
- Laura E Felley
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706; and
| | - Akshat Sharma
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706; and
| | - Erin Theisen
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706; and
| | - James C Romero-Masters
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706; and
| | - Jenny E Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706; and
| |
Collapse
|
15
|
Felley L, Gumperz JE. Are human iNKT cells keeping tabs on lipidome perturbations triggered by oxidative stress in the blood? Immunogenetics 2016; 68:611-22. [PMID: 27393663 DOI: 10.1007/s00251-016-0936-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/25/2016] [Indexed: 01/26/2023]
Abstract
The central paradigm of conventional MHC-restricted T cells is that they respond specifically to foreign peptides, while displaying tolerance to self-antigens. In contrast, it is now becoming clear that a number of innate-like T cell subsets-CD1-restricted T cells, Vγ9Vδ2 T cells, and MAIT cells-may operate by different rules: rather than focusing on the recognition of specific foreign antigens, these T cells all appear to respond to alterations to lipid-related pathways. By monitoring perturbations to the "lipidome," these T cells may be able to spring into action to deal with physiological situations that are of self as well as microbial origin. iNKT cells are a prime example of this type of lipidome-reactive T cell. As a result of their activation by self lyso-phospholipid species that are generated downstream of blood lipid oxidation, human iNKT cells in the vasculature may respond sensitively to a variety of oxidative stresses. Some of the cytokines produced by activated iNKT cells have angiogenic effects (e.g., GM-CSF, IL-8), whereas others (e.g., IFN-γ) are pro-inflammatory factors that can propagate vascular pathology by influencing the functions of macrophages and dendritic cells. Consistent with this, evidence is accumulating that iNKT cells contribute to atherosclerosis, which is one of the most common inflammatory pathologies, and one that is integrally related to characteristics of the lipidome.
Collapse
Affiliation(s)
- Laura Felley
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Jenny E Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA.
| |
Collapse
|
16
|
Immune-inflammatory responses in atherosclerosis: Role of an adaptive immunity mainly driven by T and B cells. Immunobiology 2016; 221:1014-33. [PMID: 27262513 DOI: 10.1016/j.imbio.2016.05.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/06/2016] [Accepted: 05/23/2016] [Indexed: 01/22/2023]
Abstract
Adaptive immune response plays an important role in atherogenesis. In atherosclerosis, the proinflammatory immune response driven by Th1 is predominant but the anti-inflammatory response mediated mainly by regulatory T cells is also present. The role of Th2 and Th17 cells in atherogenesis is still debated. In the plaque, other T helper cells can be observed such as Th9 and Th22 but is little is known about their impact in atherosclerosis. Heterogeneity of CD4(+) T cell subsets presented in the plaque may suggest for plasticity of T cell that can switch the phenotype dependening on the local microenvironment and activating/blocking stimuli. Effector T cells are able to recognize self-antigens released by necrotic and apoptotic vascular cells and induce a humoral immune reaction. Tth cells resided in the germinal centers help B cells to switch the antibody class to the production of high-affinity antibodies. Humoral immunity is mediated by B cells that release antigen-specific antibodies. A variety of B cell subsets were found in human and murine atherosclerotic plaques. In mice, B1 cells could spontaneously produce atheroprotective natural IgM antibodies. Conventional B2 lymphocytes secrete either proatherogenic IgG, IgA, and IgE or atheroprotective IgG and IgM antibodies reactive with oxidation-specific epitopes on atherosclerosis-associated antigens. A small population of innate response activator (IRA) B cells, which is phenotypically intermediate between B1 and B2 cells, produces IgM but possesses proatherosclerotic properties. Finally, there is a minor subset of splenic regulatory B cells (Bregs) that protect against atherosclerotic inflammation through support of generation of Tregs and production of anti-inflammatory cytokines IL-10 and TGF-β and proapoptotic molecules.
Collapse
|
17
|
Li Y, Kanellakis P, Hosseini H, Cao A, Deswaerte V, Tipping P, Toh BH, Bobik A, Kyaw T. A CD1d-dependent lipid antagonist to NKT cells ameliorates atherosclerosis in ApoE −/−mice by reducing lesion necrosis and inflammation. Cardiovasc Res 2016; 109:305-317. [DOI: 10.1093/cvr/cvv259] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
18
|
Lluberas N, Trías N, Brugnini A, Mila R, Vignolo G, Trujillo P, Durán A, Grille S, Lluberas R, Lens D. Lymphocyte subpopulations in myocardial infarction: a comparison between peripheral and intracoronary blood. SPRINGERPLUS 2015; 4:744. [PMID: 26693103 PMCID: PMC4666876 DOI: 10.1186/s40064-015-1532-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/12/2015] [Indexed: 11/29/2022]
Abstract
The frequency and profile of lymphocyte subsets within the culprit coronary artery were investigated in 33 patients with myocardial infarction and compared to their systemic circulating counterparts. T cell subsets including CD4+CD28null, activated and regulatory T-cells, TH1/TH2/TH17 phenotypes, NK and B-cells were studied in intracoronary (IC) and arterial peripheral blood (PB) samples. CD4+CD28null T-lymphocytes were significantly increased in IC compared to PB (3.7 vs. 2.9 %, p < 0.0001). Moreover, patients with more than 6 h of evolution of STEMI exhibited higher levels of CD4+CD28null T-cells suggesting that this subset may be associated with more intense myocardial damage. The rare NK subpopulation CD3−CD16+CD56− was also increased in IC samples (5.6 vs. 3.9 %, p = 0.006). CD4+CD28null T-cells and CD3−CD16+CD56− NK subpopulations were also associated with higher CK levels. Additionally, IFN-γ and IL10 were significantly higher in IC CD4+ lymphocytes. Particular immune cell populations with a pro-inflammatory profile at the site of onset were increased relative to their circulating counterparts suggesting a pathophysiological role of these cells in plaque instability, thrombi and myocardial damage.
Collapse
Affiliation(s)
- Natalia Lluberas
- Flow Cytometry and Molecular Biology Laboratory, Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Av. Italia s/n., Montevideo, 11600 Uruguay ; Department of Cardiology, Facultad de Medicina, University Cardiovascular Center, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Natalia Trías
- Flow Cytometry and Molecular Biology Laboratory, Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Av. Italia s/n., Montevideo, 11600 Uruguay
| | - Andreína Brugnini
- Flow Cytometry and Molecular Biology Laboratory, Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Av. Italia s/n., Montevideo, 11600 Uruguay
| | - Rafael Mila
- Department of Cardiology, Facultad de Medicina, University Cardiovascular Center, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Gustavo Vignolo
- Department of Cardiology, Facultad de Medicina, University Cardiovascular Center, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Pedro Trujillo
- Department of Cardiology, Facultad de Medicina, University Cardiovascular Center, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Ariel Durán
- Department of Cardiology, Facultad de Medicina, University Cardiovascular Center, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Sofía Grille
- Flow Cytometry and Molecular Biology Laboratory, Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Av. Italia s/n., Montevideo, 11600 Uruguay
| | - Ricardo Lluberas
- Department of Cardiology, Facultad de Medicina, University Cardiovascular Center, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Daniela Lens
- Flow Cytometry and Molecular Biology Laboratory, Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Av. Italia s/n., Montevideo, 11600 Uruguay
| |
Collapse
|
19
|
Affiliation(s)
- Catherine C Hedrick
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA.
| |
Collapse
|
20
|
Rosales C, Tang D, Geng YJ. CD1d serves as a surface receptor for oxidized cholesterol induction of peroxisome proliferator-activated receptor-γ. Atherosclerosis 2015; 239:224-31. [PMID: 25618030 DOI: 10.1016/j.atherosclerosis.2015.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/17/2014] [Accepted: 01/05/2015] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The cluster of differentiation-1d (CD1d) recognizes and presents the lipid antigens to NK-T lymphocytes. Atherosclerotic lesions contain atherogenic lipids, mainly cholesterol and its oxides. Peroxisome proliferator-activated receptor-γ (PPARγ) is also known to exist in atherosclerotic lesions, participating in regulation of lipid metabolism. The current study tested whether CD1d acts as a surface receptor that mediates induction and activation of PPARγ by oxysterols commonly found in atherosclerotic lesions. METHODS AND RESULTS CD1d overexpression in HEK 293 cells transfected with CD1d cDNA was confirmed by fluorescence, flow cytometry, Western blotting and mRNA expression. Tritiated ((3)H) 7-ketocholesterol (7K) was used for lipid binding assays. Radioactive assessment demonstrated an increased 7K-binding activity HEK 293 cells with CD1d overexpression. The 7K binding could be blocked by another oxysterol, 25-hydroxycholesterol, but not by native free cholesterol. Addition of CD1d:IgG dimer protein or an anti-CD1d antibody, but not control IgG, significantly diminished 7K binding to CD1d-expressing HEK 293 cells. CD1d deficiency markedly diminished the 7K-binding in macrophages and smooth muscle cells. Western blot and gel shift assays demonstrated that CD1d-mediated 7K binding induced expression and activation of PPARγ. The PPARγ agonist PGJ2 enhances the 7K stimulatory effect on PPARγ expression and activity but the antagonist GW9662 inhibits the 7K effect on the CD1d-expressing cells. CONCLUSIONS CD1d acts as a cell surface receptor that recognizes and binds oxysterols and initializes a pathway connecting oxysterol binding to PPARγ activation.
Collapse
Affiliation(s)
- Corina Rosales
- Center for Cardiovascular Biology and Atherosclerosis Research, University of Texas Health Science Center at Houston, USA
| | - Daming Tang
- Texas Heart Institute, Houston, TX 77030, USA
| | - Yong-Jian Geng
- Center for Cardiovascular Biology and Atherosclerosis Research, University of Texas Health Science Center at Houston, USA; Texas Heart Institute, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Li L, Yang J, Jiang Y, Tu J, Schust DJ. Activation of decidual invariant natural killer T cells promotes lipopolysaccharide-induced preterm birth. Mol Hum Reprod 2015; 21:369-81. [PMID: 25589517 DOI: 10.1093/molehr/gav001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/08/2015] [Indexed: 12/14/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are crucial for host defense against a variety of microbial pathogens, but the underlying mechanisms of iNKT cells activation by microbes are not fully explained. In this study, we investigated the molecular mechanisms of iNKT cell activation in lipopolysaccharide (LPS)-stimulated preterm birth using an adoptive transfer system and diverse neutralizing antibodies (Abs) and inhibitors. We found that adoptive transfer of decidual iNKT cells to LPS-stimulated iNKT cell deficient Jα18(-/-) mice that lack invariant Vα14Jα281T cell receptor (TCR) expression significantly decreased the time to delivery and increased the percentage of decidual iNKT cells. Neutralizing Abs against Toll-like receptor 4 (TLR-4), CD1d, interleukin (IL)-12 and IL-18, and inhibitors blocking the activation of nuclear factor κB (NF-κB), mitogen-activated protein kinase (MAPK) p38 and extracellular signal-regulated kinase (ERK) significantly reduced in vivo percentages of decidual iNKT cells, their intracellular interferon (IFN)-γ production and surface CD69 expression. In vitro, in the presence of the same Abs and inhibitors used as in vivo, decidual iNKT cells co-cultured with LPS-pulsed dendritic cells (DCs) showed significantly decreased extracellular and intracellular IFN-γ secretion and surface CD69 expression. Our data demonstrate that the activation of decidual iNKT cells plays an important role in inflammation-induced preterm birth. Activation of decidual iNKT cells also requires TLR4-mediated NF-κB, MAPK p38 and ERK pathways, the proinflammatory cytokines IL-12 and IL-18, and endogenous glycolipid antigens presented by CD1d.
Collapse
Affiliation(s)
- Liping Li
- Department of Obstetrics and Gynecology, Guangzhou Medical University Affiliated Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Jing Yang
- Department of Obstetrics and Gynecology, Guangzhou Medical University Affiliated Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Yao Jiang
- Department of Obstetrics and Gynecology, Guangzhou Medical University Affiliated Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Jiaoqin Tu
- Department of Obstetrics and Gynecology, Guangzhou Medical University Affiliated Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Danny J Schust
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO 65201, USA
| |
Collapse
|
22
|
Li Y, To K, Kanellakis P, Hosseini H, Deswaerte V, Tipping P, Smyth MJ, Toh BH, Bobik A, Kyaw T. CD4+ natural killer T cells potently augment aortic root atherosclerosis by perforin- and granzyme B-dependent cytotoxicity. Circ Res 2014; 116:245-54. [PMID: 25398236 DOI: 10.1161/circresaha.116.304734] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE CD4(+) natural killer T (NKT) cells augment atherosclerosis in apolipoprotein E-deficient (ApoE)(-/-) mice but their mechanisms of action are unknown. OBJECTIVES We investigated the roles of bystander T, B, and NK cells; NKT cell-derived interferon-γ, interleukin (IL)-4, and IL-21 cytokines; and NKT cell-derived perforin and granzyme B cytotoxins in promoting CD4(+) NKT cell atherogenicity. METHODS AND RESULTS Transfer of CD4(+) NKT cells into T- and B-cell-deficient ApoE(-/-)Rag2(-/-) mice augmented aortic root atherosclerosis by ≈75% that was ≈30% of lesions in ApoE(-/-) mice; macrophage accumulation similarly increased. Transferred NKT cells were identified in the liver and atherosclerotic lesions of recipient mice. Transfer of CD4(+) NKT cells into T-, B-cell-deficient, and NK cell-deficient ApoE(-/-)Rag2(-/-)γC(-/-) mice also augmented atherosclerosis. These data indicate that CD4(+) NKT cells can exert proatherogenic effects independent of other lymphocytes. To investigate the role of NKT cell-derived interferon-γ, IL-4, and IL-21 cytokines and perforin and granzyme B cytotoxins, CD4(+) NKT cells from mice deficient in these molecules were transferred into NKT cell-deficient ApoE(-/-)Jα18(-/-) mice. CD4(+) NKT cells deficient in IL-4, interferon-γ, or IL-21 augmented atherosclerosis in ApoE(-/-)Jα18(-/-) mice by ≈95%, ≈80%, and ≈70%, respectively. Transfer of CD4(+) NKT cells deficient in perforin or granzyme B failed to augment atherosclerosis. Apoptotic cells, necrotic cores, and proinflammatory VCAM-1 (vascular cell adhesion molecule) and MCP-1 (monocyte chemotactic protein) were reduced in mice receiving perforin-deficient NKT cells. CD4(+) NKT cells are twice as potent as CD4(+) T cells in promoting atherosclerosis. CONCLUSIONS CD4(+) NKT cells potently promote atherosclerosis by perforin and granzyme B-dependent apoptosis that increases postapoptotic necrosis and inflammation.
Collapse
Affiliation(s)
- Yi Li
- From the BakerIDI Heart and Diabetes Institute, Melbourne, Australia (L.Y., K.T., P.K., H.H., V.D., A.B., T.K.); Department of Medicine, Centre for Inflammatory Diseases, Southern Clinical School (L.Y., K.T., P.T., B.-H.T., T.K.) and Department of Immunology, Central Clinical School, Faculty of Medicine Nursing and Health Sciences (A.B.), Monash University, Melbourne, Australia; Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia (M.J.S.); and School of Medicine, University of Queensland, Herston, Queensland, Australia (M.J.S.)
| | - Kelly To
- From the BakerIDI Heart and Diabetes Institute, Melbourne, Australia (L.Y., K.T., P.K., H.H., V.D., A.B., T.K.); Department of Medicine, Centre for Inflammatory Diseases, Southern Clinical School (L.Y., K.T., P.T., B.-H.T., T.K.) and Department of Immunology, Central Clinical School, Faculty of Medicine Nursing and Health Sciences (A.B.), Monash University, Melbourne, Australia; Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia (M.J.S.); and School of Medicine, University of Queensland, Herston, Queensland, Australia (M.J.S.)
| | - Peter Kanellakis
- From the BakerIDI Heart and Diabetes Institute, Melbourne, Australia (L.Y., K.T., P.K., H.H., V.D., A.B., T.K.); Department of Medicine, Centre for Inflammatory Diseases, Southern Clinical School (L.Y., K.T., P.T., B.-H.T., T.K.) and Department of Immunology, Central Clinical School, Faculty of Medicine Nursing and Health Sciences (A.B.), Monash University, Melbourne, Australia; Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia (M.J.S.); and School of Medicine, University of Queensland, Herston, Queensland, Australia (M.J.S.)
| | - Hamid Hosseini
- From the BakerIDI Heart and Diabetes Institute, Melbourne, Australia (L.Y., K.T., P.K., H.H., V.D., A.B., T.K.); Department of Medicine, Centre for Inflammatory Diseases, Southern Clinical School (L.Y., K.T., P.T., B.-H.T., T.K.) and Department of Immunology, Central Clinical School, Faculty of Medicine Nursing and Health Sciences (A.B.), Monash University, Melbourne, Australia; Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia (M.J.S.); and School of Medicine, University of Queensland, Herston, Queensland, Australia (M.J.S.)
| | - Virginie Deswaerte
- From the BakerIDI Heart and Diabetes Institute, Melbourne, Australia (L.Y., K.T., P.K., H.H., V.D., A.B., T.K.); Department of Medicine, Centre for Inflammatory Diseases, Southern Clinical School (L.Y., K.T., P.T., B.-H.T., T.K.) and Department of Immunology, Central Clinical School, Faculty of Medicine Nursing and Health Sciences (A.B.), Monash University, Melbourne, Australia; Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia (M.J.S.); and School of Medicine, University of Queensland, Herston, Queensland, Australia (M.J.S.)
| | - Peter Tipping
- From the BakerIDI Heart and Diabetes Institute, Melbourne, Australia (L.Y., K.T., P.K., H.H., V.D., A.B., T.K.); Department of Medicine, Centre for Inflammatory Diseases, Southern Clinical School (L.Y., K.T., P.T., B.-H.T., T.K.) and Department of Immunology, Central Clinical School, Faculty of Medicine Nursing and Health Sciences (A.B.), Monash University, Melbourne, Australia; Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia (M.J.S.); and School of Medicine, University of Queensland, Herston, Queensland, Australia (M.J.S.)
| | - Mark J Smyth
- From the BakerIDI Heart and Diabetes Institute, Melbourne, Australia (L.Y., K.T., P.K., H.H., V.D., A.B., T.K.); Department of Medicine, Centre for Inflammatory Diseases, Southern Clinical School (L.Y., K.T., P.T., B.-H.T., T.K.) and Department of Immunology, Central Clinical School, Faculty of Medicine Nursing and Health Sciences (A.B.), Monash University, Melbourne, Australia; Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia (M.J.S.); and School of Medicine, University of Queensland, Herston, Queensland, Australia (M.J.S.)
| | - Ban-Hock Toh
- From the BakerIDI Heart and Diabetes Institute, Melbourne, Australia (L.Y., K.T., P.K., H.H., V.D., A.B., T.K.); Department of Medicine, Centre for Inflammatory Diseases, Southern Clinical School (L.Y., K.T., P.T., B.-H.T., T.K.) and Department of Immunology, Central Clinical School, Faculty of Medicine Nursing and Health Sciences (A.B.), Monash University, Melbourne, Australia; Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia (M.J.S.); and School of Medicine, University of Queensland, Herston, Queensland, Australia (M.J.S.)
| | - Alexander Bobik
- From the BakerIDI Heart and Diabetes Institute, Melbourne, Australia (L.Y., K.T., P.K., H.H., V.D., A.B., T.K.); Department of Medicine, Centre for Inflammatory Diseases, Southern Clinical School (L.Y., K.T., P.T., B.-H.T., T.K.) and Department of Immunology, Central Clinical School, Faculty of Medicine Nursing and Health Sciences (A.B.), Monash University, Melbourne, Australia; Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia (M.J.S.); and School of Medicine, University of Queensland, Herston, Queensland, Australia (M.J.S.)
| | - Tin Kyaw
- From the BakerIDI Heart and Diabetes Institute, Melbourne, Australia (L.Y., K.T., P.K., H.H., V.D., A.B., T.K.); Department of Medicine, Centre for Inflammatory Diseases, Southern Clinical School (L.Y., K.T., P.T., B.-H.T., T.K.) and Department of Immunology, Central Clinical School, Faculty of Medicine Nursing and Health Sciences (A.B.), Monash University, Melbourne, Australia; Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia (M.J.S.); and School of Medicine, University of Queensland, Herston, Queensland, Australia (M.J.S.).
| |
Collapse
|
23
|
Winkels H, Weber C, Lutgens E, Gerdes N. Atherosclerosis: cell biology and lipoproteins focus on iNKT cells and CD40/CD40L in atherosclerosis and metabolic disorders. Curr Opin Lipidol 2014; 25:408-9. [PMID: 25186203 DOI: 10.1097/mol.0000000000000120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Holger Winkels
- aInstitute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University (LMU), Munich, Germany bDepartment of Medical Biochemistry, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
24
|
Ait-Oufella H, Sage AP, Mallat Z, Tedgui A. Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis. Circ Res 2014; 114:1640-60. [PMID: 24812352 DOI: 10.1161/circresaha.114.302761] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic inflammation in response to lipoprotein accumulation in the arterial wall is central in the development of atherosclerosis. Both innate and adaptive immunity are involved in this process. Adaptive immune responses develop against an array of potential antigens presented to effector T lymphocytes by antigen-presenting cells, especially dendritic cells. Functional analysis of the role of different T-cell subsets identified the Th1 responses as proatherogenic, whereas regulatory T-cell responses exert antiatherogenic activities. The effect of Th2 and Th17 responses is still debated. Atherosclerosis is also associated with B-cell activation. Recent evidence established that conventional B-2 cells promote atherosclerosis. In contrast, innate B-1 B cells offer protection through secretion of natural IgM antibodies. This review discusses the recent development in our understanding of the role of T- and B-cell subsets in atherosclerosis and addresses the role of dendritic cell subpopulations in the control of adaptive immunity.
Collapse
Affiliation(s)
- Hafid Ait-Oufella
- From INSERM UMR-S 970, Paris Cardiovascular Research Center (PARCC), Université Paris Descartes, Sorbonne Paris Cité, Paris, France (H.A.-O., Z.M., A.T.); Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Paris, France (H.A.-O.); and Department of Medicine, University of Cambridge, Cambridge, United Kingdom (A.P.S., Z.M.)
| | | | | | | |
Collapse
|
25
|
Chistiakov DA, Sobenin IA, Orekhov AN, Bobryshev YV. Dendritic cells in atherosclerotic inflammation: the complexity of functions and the peculiarities of pathophysiological effects. Front Physiol 2014; 5:196. [PMID: 24904430 PMCID: PMC4034414 DOI: 10.3389/fphys.2014.00196] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/09/2014] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is considered as a chronic disease of arterial wall, with a strong contribution of inflammation. Dendritic cells (DCs) play a crucial role in the initiation of proatherogenic inflammatory response. Mature DCs present self-antigens thereby supporting differentiation of naïve T cells to effector cells that further propagate atherosclerotic inflammation. Regulatory T cells (Tregs) can suppress proinflammatory function of mature DCs. In contrast, immature DCs are able to induce Tregs and prevent differentiation of naïve T cells to proinflammatory effector T cells by initiating apoptosis and anergy in naïve T cells. Indeed, immature DCs showed tolerogenic and anti-inflammatory properties. Thus, DCs play a double role in atherosclerosis: mature DCs are proatherogenic while immature DCs appear to be anti-atherogenic. Tolerogenic and anti-inflammatory capacity of immature DCs can be therefore utilized for the development of new immunotherapeutic strategies against atherosclerosis.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Medical Nanobiotechnology, Pirogov Russian State Medical University Moscow, Russia
| | - Igor A Sobenin
- Skolkovo Innovative Center, Institute for Atherosclerosis Research Moscow, Russia ; Institute of General Pathology and Pathophysiology, Russian Academy of Sciences Moscow, Russia ; Laboratory of Medical Genetics, Russian Cardiology Research and Production Complex Moscow, Russia
| | - Alexander N Orekhov
- Skolkovo Innovative Center, Institute for Atherosclerosis Research Moscow, Russia ; Institute of General Pathology and Pathophysiology, Russian Academy of Sciences Moscow, Russia
| | - Yuri V Bobryshev
- Skolkovo Innovative Center, Institute for Atherosclerosis Research Moscow, Russia ; Faculty of Medicine, School of Medical Sciences, University of New South Wales, Kensington, Sydney NSW, Australia
| |
Collapse
|
26
|
Role of invariant natural killer T cells in lipopolysaccharide-induced pregnancy loss. Cell Immunol 2013; 286:1-10. [DOI: 10.1016/j.cellimm.2013.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 05/27/2013] [Accepted: 10/25/2013] [Indexed: 11/18/2022]
|
27
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
28
|
Legein B, Temmerman L, Biessen EAL, Lutgens E. Inflammation and immune system interactions in atherosclerosis. Cell Mol Life Sci 2013; 70:3847-69. [PMID: 23430000 PMCID: PMC11113412 DOI: 10.1007/s00018-013-1289-1] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality worldwide, accounting for 16.7 million deaths each year. The underlying cause of the majority of CVD is atherosclerosis. In the past, atherosclerosis was considered to be the result of passive lipid accumulation in the vessel wall. Today's picture is far more complex. Atherosclerosis is considered a chronic inflammatory disease that results in the formation of plaques in large and mid-sized arteries. Both cells of the innate and the adaptive immune system play a crucial role in its pathogenesis. By transforming immune cells into pro- and anti-inflammatory chemokine- and cytokine-producing units, and by guiding the interactions between the different immune cells, the immune system decisively influences the propensity of a given plaque to rupture and cause clinical symptoms like myocardial infarction and stroke. In this review, we give an overview on the newest insights in the role of different immune cells and subtypes in atherosclerosis.
Collapse
Affiliation(s)
- Bart Legein
- Experimental Vascular Pathology, Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Lieve Temmerman
- Experimental Vascular Pathology, Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Erik A. L. Biessen
- Experimental Vascular Pathology, Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Esther Lutgens
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian’s University, Pettenkoferstrasse 8a/9, 80336 Munich, Germany
| |
Collapse
|
29
|
Kumarathasan P, Vincent R, Blais E, Saravanamuthu A, Gupta P, Wyatt H, Mitchel R, Hannan M, Trivedi A, Whitman S. Cardiovascular changes in atherosclerotic ApoE-deficient mice exposed to Co60 (γ) radiation. PLoS One 2013; 8:e65486. [PMID: 23840332 PMCID: PMC3688723 DOI: 10.1371/journal.pone.0065486] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 04/26/2013] [Indexed: 12/02/2022] Open
Abstract
Background There is evidence for a role of ionizing radiation in cardiovascular diseases. The goal of this work was to identify changes in oxidative and nitrative stress pathways and the status of the endothelinergic system during progression of atherosclerosis in ApoE-deficient mice after single and repeated exposure to ionizing radiation. Methods and Results B6.129P2-ApoE tmlUnc mice on a low-fat diet were acutely exposed (whole body) to Co60 (γ) (single dose 0, 0.5, and 2 Gy) at a dose rate of 36.32 cGy/min, or repeatedly (cumulative dose 0 and 2 Gy) at a dose-rate of 0.1 cGy/min for 5 d/wk, over a period of 4 weeks. Biological endpoints were investigated after 3–6 months of recovery post-radiation. The nitrative stress marker 3-nitrotyrosine and the vasoregulator peptides endothelin-1 and endothelin-3 in plasma were increased (p<0.05) in a dose-dependent manner 3–6 months after acute or chronic exposure to radiation. The oxidative stress marker 8-isoprostane was not affected by radiation, while plasma 8-hydroxydeoxyguanosine and L-3,4-dihydroxyphenylalanine decreased (p<0.05) after treatment. At 2Gy radiation dose, serum cholesterol was increased (p = 0.008) relative to controls. Percent lesion area increased (p = 0.005) with age of animal, but not with radiation treatment. Conclusions Our observations are consistent with persistent nitrative stress and activation of the endothelinergic system in ApoE−/− mice after low-level ionizing radiation exposures. These mechanisms are known factors in the progression of atherosclerosis and other cardiovascular diseases.
Collapse
Affiliation(s)
- Prem Kumarathasan
- Analytical Biochemistry and Proteomics Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bondarenko S, Catapano AL, Norata GD. The CD1d-natural killer T cell axis in atherosclerosis. J Innate Immun 2013; 6:3-12. [PMID: 23774666 DOI: 10.1159/000351034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 03/29/2013] [Indexed: 01/19/2023] Open
Abstract
A key role for 'lipid-sensing' CD1-restricted natural killer T (NKT) cells in the pathogenesis of atherosclerosis has been suggested. However, the biology of NKT cells remains poorly characterized, as in different experimental settings their activation was reported to both stimulate and suppress innate and adaptive immune responses. Most of the data from experimental models suggest that NKT cells are proatherogenic; however, it is debated whether the increase in atherosclerosis observed following NKT cell stimulation is a consequence of the inability to induce functional NKT cells rather than the proatherogenic nature of NKT cells. CD1d-expressing antigen-presenting cells and NKT cells were detected in mouse and human atherosclerotic lesions. Furthermore, several lysophospholipids and glycosphingolipids, known to accumulate in atherosclerotic plaques, are antigenic for human NKT cell clones. Lipid transfer proteins, such as apolipoprotein E and microsomal triglyceride transfer protein, are central to NKT cell responses. All these data suggest a profound relation between lipid metabolism, CD1d-NKT cell axis activation and atherosclerosis. In this review, we summarize the advances and gaps in our knowledge of NKT cell biology in the context of atherosclerosis as well as the possibility of influencing NKT cell polarization toward an atheroprotective phenotype.
Collapse
Affiliation(s)
- Sergey Bondarenko
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | | |
Collapse
|
31
|
Sag D, Wingender G, Nowyhed H, Wu R, Gebre AK, Parks JS, Kronenberg M, Hedrick CC. ATP-binding cassette transporter G1 intrinsically regulates invariant NKT cell development. THE JOURNAL OF IMMUNOLOGY 2012; 189:5129-38. [PMID: 23100511 DOI: 10.4049/jimmunol.1201570] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
ATP-binding cassette transporter G1 (ABCG1) plays a role in the intracellular transport of cholesterol. Invariant NKT (iNKT) cells are a subpopulation of T lymphocytes that recognize glycolipid Ags. In this study, we demonstrate that ABCG1 regulates iNKT cell development and functions in a cell-intrinsic manner. Abcg1(-/-) mice displayed reduced frequencies of iNKT cells in thymus and periphery. Thymic iNKT cells deficient in ABCG1 had reduced membrane lipid raft content, and showed impaired proliferation and defective maturation during the early stages of development. Moreover, we found that Abcg1(-/-) mice possess a higher frequency of Vβ7(+) iNKT cells, suggesting alterations in iNKT cell thymic selection. Furthermore, in response to CD3ε/CD28 stimulation, Abcg1(-/-) thymic iNKT cells showed reduced production of IL-4 but increased production of IFN-γ. Our results demonstrate that changes in intracellular cholesterol homeostasis by ABCG1 profoundly impact iNKT cell development and function.
Collapse
Affiliation(s)
- Duygu Sag
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Andoh Y, Ogura H, Satoh M, Shimano K, Okuno H, Fujii S, Ishimori N, Eshima K, Tamauchi H, Otani T, Nakai Y, Van Kaer L, Tsutsui H, Onoé K, Iwabuchi K. Natural killer T cells are required for lipopolysaccharide-mediated enhancement of atherosclerosis in apolipoprotein E-deficient mice. Immunobiology 2012; 218:561-9. [PMID: 22954709 DOI: 10.1016/j.imbio.2012.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 07/11/2012] [Accepted: 07/14/2012] [Indexed: 12/12/2022]
Abstract
Lipopolysaccharide (LPS) has been shown to accelerate atherosclerosis and to increase the prevalence of IL-4-producing natural killer T (NKT) cells in various tissues. However, the role of NKT cells in the development of LPS-induced atherosclerotic lesions has not been fully tested in NKT cell-deficient mice. Here, we examined the lesion development in apolipoprotein E knockout (apoE-KO) mice and apoE-KO mice on an NKT cell-deficient, CD1d knockout (CD1d-KO) background (apoE-CD1d double knockout; DKO). LPS (0.5 μg/g body weight/wk) or phosphate-buffered saline (PBS) was intraperitoneally administered to apoE-KO and DKO mice (8-wk old) for 5 wk and atherosclerotic lesion areas were quantified thereafter. Consistent with prior reports, NKT cell-deficient DKO mice showed milder atherosclerotic lesions than apoE-KO mice. Notably, LPS administration significantly increased the lesion size in apoE-KO, but not in DKO mice, compared to PBS controls. Our findings suggest that LPS, and possibly LPS-producing bacteria, aggravate the development of atherosclerosis primarily through NKT cell activation and subsequent collaboration with NK cells.
Collapse
Affiliation(s)
- Yasuhiro Andoh
- Division of Immunobiology, Research Section of Pathophysiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Han YL, Li YL, Jia LX, Cheng JZ, Qi YF, Zhang HJ, Du J. Reciprocal interaction between macrophages and T cells stimulates IFN-γ and MCP-1 production in Ang II-induced cardiac inflammation and fibrosis. PLoS One 2012; 7:e35506. [PMID: 22567105 PMCID: PMC3342394 DOI: 10.1371/journal.pone.0035506] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 03/16/2012] [Indexed: 12/22/2022] Open
Abstract
Background The inflammatory response plays a critical role in hypertension-induced cardiac remodeling. We aimed to study how interaction among inflammatory cells causes inflammatory responses in the process of hypertensive cardiac fibrosis. Methodology/Principal Findings Infusion of angiotensin II (Ang II, 1500 ng/kg/min) in mice rapidly induced the expression of interferon γ (IFN-γ) and leukocytes infiltration into the heart. To determine the role of IFN-γ on cardiac inflammation and remodeling, both wild-type (WT) and IFN-γ-knockout (KO) mice were infused Ang II for 7 days, and were found an equal blood pressure increase. However, knockout of IFN-γ prevented Ang II-induced: 1) infiltration of macrophages and T cells into cardiac tissue; 2) expression of tumor necrosis factor α and monocyte chemoattractant protein 1 (MCP-1), and 3) cardiac fibrosis, including the expression of α-smooth muscle actin and collagen I (all p<0.05). Cultured T cells or macrophages alone expressed very low level of IFN-γ, however, co-culture of T cells and macrophages increased IFN-γ expression by 19.8±0.95 folds (vs. WT macrophage, p<0.001) and 20.9 ± 2.09 folds (vs. WT T cells, p<0.001). In vitro co-culture studies using T cells and macrophages from WT or IFN-γ KO mice demonstrated that T cells were primary source for IFN-γ production. Co-culture of WT macrophages with WT T cells, but not with IFN-γ-knockout T cells, increased IFN-γ production (p<0.01). Moreover, IFN-γ produced by T cells amplified MCP-1 expression in macrophages and stimulated macrophage migration. Conclusions/Significance Reciprocal interaction between macrophages and T cells in heart stimulates IFN-γ expression, leading to increased MCP-1 expression in macrophages, which results a forward-feed recruitment of macrophages, thus contributing to Ang II-induced cardiac inflammation and fibrosis.
Collapse
Affiliation(s)
- Ya-lei Han
- Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Yu-lin Li
- Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Li-xin Jia
- Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Ji-zhong Cheng
- Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Yong-fen Qi
- Beijing An Zhen Hospital, Capital Medical University, Beijing, China
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Hong-jia Zhang
- Beijing An Zhen Hospital, Capital Medical University, Beijing, China
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Jie Du
- Beijing An Zhen Hospital, Capital Medical University, Beijing, China
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- * E-mail:
| |
Collapse
|
34
|
Humoral and cellular immune responses in atherosclerosis: Spotlight on B- and T-cells. Vascul Pharmacol 2012; 56:193-203. [DOI: 10.1016/j.vph.2012.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/17/2012] [Accepted: 01/28/2012] [Indexed: 01/20/2023]
|
35
|
Li LP, Fang YC, Dong GF, Lin Y, Saito S. Depletion of invariant NKT cells reduces inflammation-induced preterm delivery in mice. THE JOURNAL OF IMMUNOLOGY 2012; 188:4681-9. [PMID: 22467647 DOI: 10.4049/jimmunol.1102628] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study sought to determine whether invariant NKT (iNKT) cells play an essential role in inflammation-induced preterm delivery. Preterm delivery and fetal death rates were determined in wild-type (WT) C57BL/6 mice and iNKT cell-deficient Jα18(-/-) mice injected i.p. with LPS. The percentages of decidual immune cells, including activated subsets, and costimulatory molecule expression were analyzed by flow cytometry. Th1 and Th2 cytokine production in the culture supernatants of decidual mononuclear cells was measured by ELISA. To some extent, Jα18(-/-) mice were resistant to LPS-induced preterm delivery. The proportions of decidual CD3(+) and CD49b(+) cells were slightly lower in Jα18(-/-) mice than in WT Jα18(+/+) mice, whereas almost no CD3(+)CD49b(+) cells could be found in Jα18-null mice. The percentages of activated decidual DCs, T cells, and NK cells were significantly lower in LPS-treated Jα18(-/-) mice than in WT mice. The CD40, CD80, and CD86 expression levels on decidual CD11c(+) cells from Jα18(-/-) mice were also significantly lower than in WT mice. Mean concentrations of Th1 cytokines IFN-γ and IL-12p70 in the culture supernatants of decidual mononuclear cells from LPS-treated Jα18(-/-) mice were apparently lower than those of LPS-induced WT mice. Additionally, the proportions of activated CD11c(+) cells, CD3(+) cells, and CD49b(+) cells in LPS-induced preterm delivery mice were strikingly higher in both WT and null mice when compared with the control PBS group and LPS-injected but normally delivered mice. Our results suggest that iNKT cells may play an essential role in inflammation-induced preterm birth.
Collapse
Affiliation(s)
- Li-Ping Li
- Department of Obstetrics and Gynecology, Guangzhou Medical College Affiliated Guangzhou First Municipal People's Hospital, Guangzhou 510180, China
| | | | | | | | | |
Collapse
|
36
|
Kotas ME, Lee HY, Gillum MP, Annicelli C, Guigni BA, Shulman GI, Medzhitov R. Impact of CD1d deficiency on metabolism. PLoS One 2011; 6:e25478. [PMID: 21980475 PMCID: PMC3183002 DOI: 10.1371/journal.pone.0025478] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 09/05/2011] [Indexed: 01/29/2023] Open
Abstract
Invariant natural killer T cells (iNKTs) are innate-like T cells that are highly concentrated in the liver and recognize lipids presented on the MHC-like molecule CD1d. Although capable of a myriad of responses, few essential functions have been described for iNKTs. Among the many cell types of the immune system implicated in metabolic control and disease, iNKTs seem ideally poised for such a role, yet little has been done to elucidate such a possible function. We hypothesized that lipid presentation by CD1d could report on metabolic status and engage iNKTs to regulate cellular lipid content through their various effector mechanisms. To test this hypothesis, we examined CD1d deficient mice in a variety of metabolically stressed paradigms including high fat feeding, choline-deficient feeding, fasting, and acute inflammation. CD1d deficiency led to a mild exacerbation of steatosis during high fat or choline-deficient feeding, accompanied by impaired hepatic glucose tolerance. Surprisingly, however, this phenotype was not observed in Jα18⁻/⁻ mice, which are deficient in iNKTs but express CD1d. Thus, CD1d appears to modulate some metabolic functions through an iNKT-independent mechanism.
Collapse
Affiliation(s)
- Maya E Kotas
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America.
| | | | | | | | | | | | | |
Collapse
|
37
|
Getz GS, Vanderlaan PA, Reardon CA. Natural killer T cells in lipoprotein metabolism and atherosclerosis. Thromb Haemost 2011; 106:814-9. [PMID: 21946866 DOI: 10.1160/th11-05-0336] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 08/23/2011] [Indexed: 01/28/2023]
Abstract
Cells of both the innate and adaptive immune system participate in the development of atherosclerosis, a chronic inflammatory disorder of medium and large arteries. Natural killer T (NKT) cells express surface markers characteristic of natural killer cells and conventional T cells and bridge the innate and adaptive immune systems. The development and activation of NKT cells is dependent upon CD1d, a MHC-class I-type molecule that presents lipids, especially glycolipids to the T cell receptors on NKT cells. There are two classes of NKT cells; invariant NKT cells that express a semi-invariant T cell receptor and variant NKT cells. This review summarises studies in murine models in which the effect of the activation, overexpression or deletion of NKT cells or only invariant NKT cells on atherosclerosis has been examined.
Collapse
Affiliation(s)
- G S Getz
- University of Chicago, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
38
|
Qin W, Sundaram M, Wang Y, Zhou H, Zhong S, Chang CC, Manhas S, Yao EF, Parks RJ, McFie PJ, Stone SJ, Jiang ZG, Wang C, Figeys D, Jia W, Yao Z. Missense mutation in APOC3 within the C-terminal lipid binding domain of human ApoC-III results in impaired assembly and secretion of triacylglycerol-rich very low density lipoproteins: evidence that ApoC-III plays a major role in the formation of lipid precursors within the microsomal lumen. J Biol Chem 2011; 286:27769-80. [PMID: 21676879 DOI: 10.1074/jbc.m110.203679] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatic assembly of triacylglycerol (TAG)-rich very low density lipoproteins (VLDL) is achieved through recruitment of bulk TAG (presumably in the form of lipid droplets within the microsomal lumen) into VLDL precursor containing apolipoprotein (apo) B-100. We determined protein/lipid components of lumenal lipid droplets (LLD) in cells expressing recombinant human apoC-III (C3wt) or a mutant form (K58E, C3KE) initially identified in humans that displayed hypotriglyceridemia. Although expression of C3wt markedly stimulated secretion of TAG and apoB-100 as VLDL(1), the K58E mutation (located at the C-terminal lipid binding domain) abolished the effect in transfected McA-RH7777 cells and in apoc3-null mice. Metabolic labeling studies revealed that accumulation of TAG in LLD was decreased (by 50%) in cells expressing C3KE. A Fat Western lipid protein overlay assay showed drastically reduced lipid binding of the mutant protein. Substituting Lys(58) with Arg demonstrated that the positive charge at position 58 is crucial for apoC-III binding to lipid and for promoting TAG secretion. On the other hand, substituting both Lys(58) and Lys(60) with Glu resulted in almost entire elimination of lipid binding and loss of function in promoting TAG secretion. Thus, the lipid binding domain of apoC-III plays a key role in the formation of LLD for hepatic VLDL assembly and secretion.
Collapse
Affiliation(s)
- Wen Qin
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai 200233, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kyriakakis E, Cavallari M, Andert J, Philippova M, Koella C, Bochkov V, Erne P, Wilson SB, Mori L, Biedermann BC, Resink TJ, De Libero G. Invariant natural killer T cells: linking inflammation and neovascularization in human atherosclerosis. Eur J Immunol 2010; 40:3268-79. [PMID: 21061446 DOI: 10.1002/eji.201040619] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/28/2010] [Accepted: 08/17/2010] [Indexed: 12/16/2022]
Abstract
Atherosclerosis, a chronic inflammatory lipid storage disease of large arteries, is complicated by cardiovascular events usually precipitated by plaque rupture or erosion. Inflammation participates in lesion progression and plaque rupture. Identification of leukocyte populations involved in plaque destabilization is important for effective prevention of cardiovascular events. This study investigates CD1d-expressing cells and invariant NKT cells (iNKT) in human arterial tissue, their correlation with disease severity and symptoms, and potential mechanisms for their involvement in plaque formation and/or destabilization. CD1d-expressing cells were present in advanced plaques in patients who suffered from cardiovascular events in the past and were most abundant in plaques with ectopic neovascularization. Confocal microscopy detected iNKT cells in plaques, and plaque-derived iNKT cell lines promptly produced proinflammatory cytokines when stimulated by CD1d-expressing APC-presenting α-galactosylceramide lipid antigen. Furthermore, iNKT cells were diminished in the circulating blood of patients with symptomatic atherosclerosis. Activated iNKT cell-derived culture supernatants showed angiogenic activity in a human microvascular endothelial cell line HMEC-1-spheroid model of in vitro angiogenesis and strongly activated human microvascular endothelial cell line HMEC-1 migration. This functional activity was ascribed to IL-8 released by iNKT cells upon lipid recognition. These findings introduce iNKT cells as novel cellular candidates promoting plaque neovascularization and destabilization in human atherosclerosis.
Collapse
Affiliation(s)
- Emmanouil Kyriakakis
- Laboratory for Signal Transduction, Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Braun NA, Covarrubias R, Major AS. Natural killer T cells and atherosclerosis: form and function meet pathogenesis. J Innate Immun 2010; 2:316-24. [PMID: 20375560 DOI: 10.1159/000296915] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Accepted: 01/20/2010] [Indexed: 01/17/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by dyslipidemia and accumulation of lipids in the arterial intima, with activation of both innate and adaptive immunity. Reciprocally, dyslipidemia associated with atherosclerosis can perturb normal immune function. Natural killer T (NKT) cells are a specialized group of immune cells that share characteristics with both conventional T cells and natural killer cells. However, unlike these cells, NKT cells recognize glycolipid antigens and produce both pro- and anti-inflammatory cytokines upon activation. Because of these unique characteristics, NKT cells have recently been ascribed a role in the regulation of immunity and inflammation, including cardiovascular disease. In addition, NKT cells represent a bridge between dyslipidemia and immune regulation. This review summarizes the current knowledge of NKT cells and discusses the interplay between dyslipidemia and the normal functions of NKT cells and how this might modulate inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Nicole A Braun
- Department of Molecular Pathology, Vanderbilt University Medical Center, Nashville, TN 37232-6300, USA
| | | | | |
Collapse
|
41
|
Gardner TR, Chen Q, Jin Y, Ajuebor MN. Toll-like receptor 3 ligand dampens liver inflammation by stimulating Valpha 14 invariant natural killer T cells to negatively regulate gammadeltaT cells. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1779-89. [PMID: 20167870 DOI: 10.2353/ajpath.2010.090738] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Valpha14 invariant natural killer T (Valpha14iNKT) cells are at the interface between the innate and adaptive immune responses and are thus critical for providing full engagement of host defense. We investigated the role of polyriboinosinic:polycytidylic acid (poly I:C), a replication-competent viral double-stranded RNA mimic and a specific agonist that recognizes the cellular sensor Toll-like receptor 3 (TLR3), in regulating Valpha14iNKT cell activation. We established for the first time that hepatic Valpha14iNKT cells up-regulate TLR3 extracellularly after poly I:C treatment. Notably, activation of TLR3-expressing hepatic Valpha14iNKT cells by a TLR3 ligand was suppressed by TLR3 deficiency. Our studies also revealed that Valpha14iNKT cell activation in response to poly I:C administration uniquely suppressed the accumulation and activation of intrahepatic gammadeltaT cells (but not natural killer cells) by inducing apoptosis. Furthermore, we established that activated hepatic Valpha14iNKT cells (via cytokines and possibly reactive oxygen species) influenced the frequency and absolute number of intrahepatic gammadeltaT cells, as evidenced by increased hepatic gammadeltaT cell accumulation in Valpha14iNKT cell-deficient mice after poly I:C treatment relative to wild-type mice. Thus, hepatic Valpha14iNKT cells and intrahepatic gammadeltaT cells are functionally linked on application of TLR3 agonist. Overall, our results demonstrate a novel and previously unrecognized anti-inflammatory role for activated hepatic Valpha14iNKT cells in negatively regulating intrahepatic gammadeltaT cell accumulation (probably through TLR3 signaling) and thereby preventing potentially harmful activation of intrahepatic gammadeltaT cells.
Collapse
Affiliation(s)
- Tommy R Gardner
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | |
Collapse
|
42
|
Mulvihill EE, Assini JM, Sutherland BG, DiMattia AS, Khami M, Koppes JB, Sawyez CG, Whitman SC, Huff MW. Naringenin decreases progression of atherosclerosis by improving dyslipidemia in high-fat-fed low-density lipoprotein receptor-null mice. Arterioscler Thromb Vasc Biol 2010; 30:742-8. [PMID: 20110573 DOI: 10.1161/atvbaha.109.201095] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Naringenin is a citrus flavonoid that potently inhibits the assembly and secretion of apolipoprotein B100-containing lipoproteins in cultured hepatocytes and improves the dyslipidemia and insulin resistance in a mouse model of the metabolic syndrome. In the present study, we used low-density lipoprotein receptor-null mice fed a high-fat diet (Western, TD96125) to test the hypothesis that naringenin prevents atherosclerosis. METHODS AND RESULTS Three groups (chow, Western, and Western plus naringenin) were fed ad libitum for 6 months. The Western diet increased fasting plasma triglyceride (TG) (5-fold) and cholesterol (8-fold) levels compared with chow, whereas the addition of naringenin significantly decreased both lipids by 50%. The Western-fed mice developed extensive atherosclerosis in the aortic sinus because plaque area was increased by 10-fold compared with chow-fed animals. Quantitation of fat-soluble dye (Sudan IV)-stained aortas, prepared en face, revealed that Western-fed mice also had a 10-fold increase in plaque deposits throughout the arch and in the abdominal sections of the aorta, compared with chow. Atherosclerosis in both areas was significantly decreased by more than 70% in naringenin-treated mice. Consistent with quantitation of aortic lesions, the Western-fed mice had a significant 6-fold increase in cholesterol and a 4-fold increase in TG deposition in the aorta compared with chow-fed mice. Both were reduced more than 50% by naringenin. The Western diet induced extensive hepatic steatosis, with a 10-fold increase in both TG and cholesteryl ester mass compared with chow. The addition of naringenin decreased both liver TG and cholesteryl ester mass by 80%. The hyperinsulinemia and obesity that developed in Western-fed mice was normalized by naringenin to levels observed in chow-fed mice. CONCLUSIONS These in vivo studies demonstrate that the citrus flavonoid naringenin ameliorates the dyslipidemia in Western-fed low-density lipoprotein receptor-null mice, leading to decreased atherosclerosis; and suggests a potential therapeutic strategy for the hyperlipidemia and increased risk of atherosclerosis associated with insulin resistance.
Collapse
Affiliation(s)
- Erin E Mulvihill
- Vascular Biology Group, Robarts Research Institute, The University of Western Ontario, 100 Perth Dr, London, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Khan MA, Gallo RM, Renukaradhya GJ, Du W, Gervay-Hague J, Brutkiewicz RR. Statins impair CD1d-mediated antigen presentation through the inhibition of prenylation. THE JOURNAL OF IMMUNOLOGY 2009; 182:4744-50. [PMID: 19342651 DOI: 10.4049/jimmunol.0804311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Statins are widely used as cholesterol-lowering agents that also decrease inflammation and target enzymes essential for prenylation, an important process in the activation and intracellular transport of proteins vital for a wide variety of cellular functions. Here, we report that statins impair a critical component of the innate immune response, CD1d-mediated Ag presentation. The addition of specific intermediates in the isoprenylation pathway reversed this effect, whereas specific targeting of enzymes responsible for prenylation mimicked the inhibitory effects of statins on Ag presentation by CD1d as well as MHC class II molecules. This study demonstrates the importance of isoprenylation in the regulation of Ag presentation and suggests a mechanism by which statins reduce inflammatory responses.
Collapse
Affiliation(s)
- Masood A Khan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Walther Oncology Center, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
44
|
To K, Agrotis A, Besra G, Bobik A, Toh BH. NKT cell subsets mediate differential proatherogenic effects in ApoE-/- mice. Arterioscler Thromb Vasc Biol 2009; 29:671-7. [PMID: 19251589 DOI: 10.1161/atvbaha.108.182592] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE NKT cells promote atherogenesis, but the subtypes responsible have not been identified. We investigated 2 major NKT cell subtypes (CD4+ and DN NKT) in ApoE-/- mice rendered NKT cell-deficient by day-3 neonatal thymectomy (3dTx). METHODS AND RESULTS Atherosclerosis development was studied in thymectomized ApoE-/- mice fed a high-fat diet with/without adoptively transferred NKT cells. We demonstrate NKT cell deficiency in thymectomized mice and markedly smaller atherosclerotic lesions. The reduction in lesion size was reversed by adoptive transfer of liver-derived NKT cells. Adoptive transfer of CD4+, but not DN NKT cells, into 3dTx ApoE-/- mice increased lesion size 2.5-fold. The differential effects were not attributable to differences in homing to developing atherosclerotic lesions. DN NKT cells expressed at least 3-fold higher levels of inhibitory Ly49 receptors (Ly49A, Ly49C/I, and Ly49G2) than CD4+ NKT cells, and lesions expressed large amounts of their MHC class I ligand. In vitro these inhibitory receptors initiated greater effects in DN NKT cells. Culture of each NKT cell subset with TAP-deficient (MHC class I-deficient) dendritic cells and alpha-GalCer led to secretion of similar amounts of proatherogenic cytokines IL-2, IFN-gamma, and TNF but, when cultured with MHC class I-positive dendritic cells, CD4+ NKT cells secreted more of these cytokines. CONCLUSIONS CD4+ NKT cells are responsible for the proatherogenic activity of NKT cells. Expression of inhibitory Ly49 receptors by the subtypes appears responsible for regulating their secretion of proatherogenic cytokines and their differential proatherogenic effects.
Collapse
Affiliation(s)
- Kelly To
- Vascular Biology & Atherosclerosis Laboratory, Baker IDI Heart & Diabetes Institute, PO Box 6492, St Kilda Road Central, Melbourne, Victoria 8008, Australia.
| | | | | | | | | |
Collapse
|
45
|
McLaren JE, Ramji DP. Interferon gamma: a master regulator of atherosclerosis. Cytokine Growth Factor Rev 2008; 20:125-35. [PMID: 19041276 DOI: 10.1016/j.cytogfr.2008.11.003] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease that is characterized by the development of fibrotic plaques in the arterial wall. The disease exhibits a complex aetiology and its progression is influenced by a number of environmental and genetic risk factors. The cytokine interferon-gamma (IFN-gamma), a key regulator of immune function, is highly expressed in atherosclerotic lesions and has emerged as a significant factor in atherogenesis. Evidence from both mouse models of atherosclerosis and in vitro cell culture has suggested that the role of IFN-gamma is complex since both pro- and anti-atherogenic actions have been affiliated to it. This review will focus on evaluating the contribution of IFN-gamma to atherosclerosis and, in particular, how it regulates immune responses to the disease.
Collapse
Affiliation(s)
- James E McLaren
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| | | |
Collapse
|
46
|
Bibliography. Current world literature. Atherosclerosis: cell biology and lipoproteins. Curr Opin Lipidol 2008; 19:525-35. [PMID: 18769235 DOI: 10.1097/mol.0b013e328312bffc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|