1
|
Zou X, Yuan M, Zhou W, Cai A, Cheng Y, Zhan Z, Zhang Y, Pan Z, Hu X, Zheng S, Liu T, Huang P. SOX17 Prevents Endothelial-Mesenchymal Transition of Pulmonary Arterial Endothelial Cells in Pulmonary Hypertension through Mediating TGF-β/Smad2/3 Signaling. Am J Respir Cell Mol Biol 2025; 72:364-379. [PMID: 39392679 DOI: 10.1165/rcmb.2023-0355oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/11/2024] [Indexed: 10/12/2024] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) has been reported to contribute to pulmonary vascular remodeling in patients with pulmonary hypertension (PH). Our study demonstrates that SOX17, a member of the SOX (SRY-Box) transcription factor family, plays a role in regulating pulmonary arterial homeostasis through extracellular vesicles in an autocrine and paracrine manner. However, the role of SOX17 in mediating EndMT of pulmonary arterial endothelial cells (PAECs) and its intracellular mechanisms remain unclear. Here we present evidence showing that downregulation of SOX17 expression is accompanied by significant pulmonary arterial EndMT and activation of the TGF-β/Smad2/3 signaling pathway in patients with idiopathic PH and rats with PH induced by Sugen 5416/hypoxia. In primary human PAECs, canonical TGF-β (transforming growth factor-β) signaling inhibits the expression of SOX17. Overexpression of SOX17 reverses TGF-β- and hypoxia-induced EndMT. These findings suggest that SOX17 is essential for human PAECs to undergo TGF-β-mediated EndMT. Mechanistically, our data demonstrate that SOX17 prevents TGF-β-induced EndMT by suppressing ROCK1 (Rho-associated kinase 1) expression through binding to the specific promoter region of ROCK1, thereby inhibiting MYPT1 (myosin phosphatase target subunit 1) and MLC (myosin light chain) phosphorylation. Furthermore, we show that Tie2-Cre rats with endothelial cell-specific overexpression of SOX17 are protected against Sugen/hypoxia-induced EndMT and subsequent pulmonary vascular remodeling. Consistent with the in vitro results, compared with Tie2-Cre rats treated with Sugen/hypoxia alone, rats overexpressing SOX17 exhibited reduced levels of ROCK1 as well as decreased phosphorylation levels of MYPT1 and MLC. Overall, our studies unveil a novel TGF-β/SOX17/ROCK1 pathway involved in regulating PAECs' EndMT process, and we propose the targeting of SOX17 as a potential therapeutic strategy for alleviating pulmonary vascular remodeling in PH.
Collapse
Affiliation(s)
- Xiaozhou Zou
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Mengnan Yuan
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Wei Zhou
- Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Anqi Cai
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Yili Cheng
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Zibo Zhan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Xiaoping Hu
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Shuilian Zheng
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Ting Liu
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; and
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
2
|
Wang X, Yao DS, Xu L, Yan DM, Zhao Y, Peng JH, Fu QL, Hu YY, Feng Q. Jianpi Huoxue Decoction Ameliorates Alcohol-associated Liver Disease by Improving Intestinal Barrier Function in Rats. Curr Med Sci 2024; 44:1241-1248. [PMID: 39617866 DOI: 10.1007/s11596-024-2955-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/08/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVE Jianpi huoxue decoction (JHD), a Chinese herbal formula, is commonly used for treating alcohol-associated liver disease (ALD). This study aimed to investigate the mechanism by which JHD affects intestinal barrier function in ALD rats. METHODS The Sprague-Dawley rats were randomly divided into three groups: control group, model group and JHD group. They were pair-fed a modified Lieber-DeCarli liquid diet containing alcohol (model group, n=10; JHD group, n=10) or isocaloric maltose dextrin (control group, n=10) for 6 weeks. After 3 weeks of feeding, the mice in the JHD group were given JHD (10 mL/kg/day) by gavage for 3 weeks, and those in the control and model groups received equal amounts of double-distilled water for the same period of time. Afterwards, all the rats were given lipopolysaccharide (LPS) by gavage and sacrificed 3.5 h later. LPS levels were measured in the portal blood to evaluate gut leakage. Transmission electron microscopy (TEM) was used to observe ultrastructural changes in the intestinal tract. Adherens junction (AJ) and tight junction (TJ) proteins were detected by Western blotting, immunofluorescence or immunohistochemistry. RESULTS JHD ameliorated Lieber-DeCarli liquid diet-induced hepatic steatosis, inflammation and LPS expression. It improved pathological changes in the liver and alleviated intestinal ultrastructure injury. Moreover, it significantly enhanced the integrity of tight junctions by increasing the expression of zonula occludens-1 (ZO-1) and occludin. It suppressed the activation of myosin light chain (MLC) phosphorylation. CONCLUSION JHD improves intestinal barrier function and reduces gut leakiness in ALD rats.
Collapse
Affiliation(s)
- Xin Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dong-Sheng Yao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lin Xu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dong-Ming Yan
- Clinical Pharmacokinetics Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu Zhao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing-Hua Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qi-Lin Fu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yi-Yang Hu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China.
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Clinical Pharmacokinetics Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China.
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Schunk CT, Wang W, Sabo LN, Taufalele PV, Reinhart-King CA. Matrix stiffness increases energy efficiency of endothelial cells. Matrix Biol 2024; 133:77-85. [PMID: 39147247 DOI: 10.1016/j.matbio.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
To form blood vessels, endothelial cells rearrange their cytoskeleton, generate traction stresses, migrate, and proliferate, all of which require energy. Despite these energetic costs, stiffening of the extracellular matrix promotes tumor angiogenesis and increases cell contractility. However, the interplay between extracellular matrix, cell contractility, and cellular energetics remains mechanistically unclear. Here, we utilized polyacrylamide substrates with various stiffnesses, a real-time biosensor of ATP, and traction force microscopy to show that endothelial cells exhibit increasing traction forces and energy usage trend as substrate stiffness increases. Inhibition of cytoskeleton reorganization via ROCK inhibition resulted in decreased cellular energy efficiency, and an opposite trend was found when cells were treated with manganese to promote integrin affinity. Altogether, our data reveal a link between matrix stiffness, cell contractility, and cell energetics, suggesting that endothelial cells on stiffer substrates can better convert intracellular energy into cellular traction forces. Given the critical role of cellular metabolism in cell function, our study also suggests that not only energy production but also the efficiency of its use plays a vital role in regulating cell behaviors and may help explain how increased matrix stiffness promotes angiogenesis.
Collapse
Affiliation(s)
- Curtis T Schunk
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Lindsey N Sabo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Paul V Taufalele
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | |
Collapse
|
4
|
Marhamati S, Younesian O, Mir SM, Hosseinzadeh S, Joshaghani HR, Hesari Z. The effects of high doses of selenium supplementation on mRNA and protein levels of cMLCK levels and total antioxidant capacity in rat heart tissue. Food Chem Toxicol 2024; 191:114886. [PMID: 39059692 DOI: 10.1016/j.fct.2024.114886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND High doses of selenium are associated with heart disease prevalence in high-risk areas. Cardiac myosin light chain kinase (cMLCK) is an essential enzyme for normal function of heart tissue. Therefore, we studied the effect of high doses of selenium on the expression of cMLCK gene and its protein in normal heart tissue in rats. MATERIALS AND METHODS Twenty male rats were randomly divided into four groups: control, Se 0.3mg/kg, Se 1.5mg/kg, and Se 3mg/kg. Sodium-selenite was administered orally into drinking water for 20 weeks. Se levels of heart tissue were measured by atomic absorption. Serum creatine phosphokinase (CPK) and total serum antioxidant capacity were measured. Moreover, the concentration of MLCK protein and the gene expression level of cMLCK in normal heart tissue were analyzed. RESULTS Excess Se in dietary can significantly increase CPK. Se concentration of heart tissue in the Se 3mg/kg group was significantly higher than the control. cMLCK mRNA levels were decreased by 0.3mg/kg and 3mg/kg sodium selenite intake. There was no significant difference between the three groups for total antioxidant capacity and MLCK protein. CONCLUSION High concentrations of selenium can probably effect on normal function of the heart tissue by changing the expression levels of cMLCK.
Collapse
Affiliation(s)
- Shayan Marhamati
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Seyed Mostafa Mir
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sara Hosseinzadeh
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamid Reza Joshaghani
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Zahra Hesari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
5
|
Shaheen N, Miao J, Li D, Xia B, Baoyinna B, Zhao Y, Zhao J. Indole-3-Acetic Acid Protects Against Lipopolysaccharide-induced Endothelial Cell Dysfunction and Lung Injury through the Activation of USP40. Am J Respir Cell Mol Biol 2024; 71:307-317. [PMID: 38761166 PMCID: PMC11376244 DOI: 10.1165/rcmb.2024-0159oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/18/2024] [Indexed: 05/20/2024] Open
Abstract
Lung microvascular endothelial cell (EC) dysfunction is the pathological hallmark of acute respiratory distress syndrome. Heat shock protein 90 (HSP90) is a key regulator in control of endothelial barrier disruption and inflammation. Our recent study has demonstrated that ubiquitin-specific peptidase 40 (USP40) preserves endothelial integrity by targeting HSP90β for its deubiquitination and inactivation. Indole-3-acetic acid (IAA), a plant hormone of the auxin class, can also be catabolized from dietary tryptophan by the intestinal microbiota. Accumulating evidence suggests that IAA reduces oxidative stress and inflammation and promotes intestinal barrier function. However, little is known about the role of IAA in endothelial cells and acute lung injury. In this study, we investigated the role of IAA in lung endothelial cell function in the context of acute lung injury. IAA exhibited EC barrier protection against LPS-induced reduction in transendothelial electrical resistance and inflammatory responses. The underlying mechanism of IAA on EC protective effects was investigated by examining the influence of IAA on degrees of HSP90 ubiquitination and USP40 activity. We identified that IAA, acting as a potential activator of USP40, reduces HSP90 ubiquitination, thereby protecting against LPS-induced inflammation in human lung microvascular endothelial cells as well as alleviating experimental lung injury. Furthermore, the EC protective effects of IAA against LPS-induced EC dysfunction and lung injury were abolished in USP40-deficient human lung microvascular endothelial cell and lungs of USP40 EC-specific knockout (USP40cdh5-ECKO) mice. Taken together, this study reveals that IAA protects against LPS-induced EC dysfunction and lung injury through the activation of USP40.
Collapse
Affiliation(s)
- Nargis Shaheen
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, and
| | - Jiaxing Miao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, and
| | - Donna Li
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, and
| | - Boyu Xia
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, and
| | - Boina Baoyinna
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, and
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, and
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Jing Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, and
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
6
|
Wang L, He L, Yi W, Wang M, Xu F, Liu H, Nie J, Pan YH, Dang S, Zhang W. ADAMTS18-fibronectin interaction regulates the morphology of liver sinusoidal endothelial cells. iScience 2024; 27:110273. [PMID: 39040056 PMCID: PMC11261151 DOI: 10.1016/j.isci.2024.110273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/12/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) have a unique morphological structure known as "fenestra" that plays a crucial role in liver substance exchange and homeostasis maintenance. In this study, we demonstrate that ADAMTS18 protease is primarily secreted by fetal liver endothelial cells. ADAMTS18 deficiency leads to enlarged fenestrae and increased porosity of LSECs, microthrombus formation in liver vessels, and an imbalance of liver oxidative stress. These defects worsen carbon tetrachloride (CCl4)-induced liver fibrosis and diethylnitrosamine (DEN)/high-fat-induced hepatocellular carcinoma (HCC) in adult Adamts18-deficient mice. Mechanically, ADAMTS18 functions as a modifier of fibronectin (FN) to regulate the morphological acquisition of LSECs via the vascular endothelial growth factor A (VEGFA) signaling pathways. Collectively, a mechanism is proposed for LSEC morphogenesis and liver homeostasis maintenance via ADAMTS18-FN-VEGFA niches.
Collapse
Affiliation(s)
- Liya Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Li He
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Weijia Yi
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Min Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Fangmin Xu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Hanlin Liu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiahui Nie
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
7
|
Gustafson D, DiStefano PV, Wang XF, Wu R, Ghaffari S, Ching C, Rathnakumar K, Alibhai F, Syonov M, Fitzpatrick J, Boudreau E, Lau C, Galant N, Husain M, Li RK, Lee WL, Parekh RS, Monnier PP, Fish JE. Circulating small extracellular vesicles mediate vascular hyperpermeability in diabetes. Diabetologia 2024; 67:1138-1154. [PMID: 38489029 PMCID: PMC11058313 DOI: 10.1007/s00125-024-06120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024]
Abstract
AIMS/HYPOTHESIS A hallmark chronic complication of type 2 diabetes mellitus is vascular hyperpermeability, which encompasses dysfunction of the cerebrovascular endothelium and the subsequent development of associated cognitive impairment. The present study tested the hypothesis that during type 2 diabetes circulating small extracellular vesicles (sEVs) exhibit phenotypic changes that facilitate pathogenic disruption of the vascular barrier. METHODS sEVs isolated from the plasma of a mouse model of type 2 diabetes and from diabetic human individuals were characterised for their ability to disrupt the endothelial cell (EC) barrier. The contents of sEVs and their effect on recipient ECs were assessed by proteomics and identified pathways were functionally interrogated with small molecule inhibitors. RESULTS Using intravital imaging, we found that diabetic mice (Leprdb/db) displayed hyperpermeability of the cerebrovasculature. Enhanced vascular leakiness was recapitulated following i.v. injection of sEVs from diabetic mice into non-diabetic recipient mice. Characterisation of circulating sEV populations from the plasma of diabetic mice and humans demonstrated increased quantity and size of sEVs compared with those isolated from non-diabetic counterparts. Functional experiments revealed that sEVs from diabetic mice or humans induced the rapid and sustained disruption of the EC barrier through enhanced paracellular and transcellular leak but did not induce inflammation. Subsequent sEV proteome and recipient EC phospho-proteome analysis suggested that extracellular vesicles (sEVs) from diabetic mice and humans modulate the MAPK/MAPK kinase (MEK) and Rho-associated protein kinase (ROCK) pathways, cell-cell junctions and actin dynamics. This was confirmed experimentally. Treatment of sEVs with proteinase K or pre-treatment of recipient cells with MEK or ROCK inhibitors reduced the hyperpermeability-inducing effects of circulating sEVs in the diabetic state. CONCLUSIONS/INTERPRETATION Diabetes is associated with marked increases in the concentration and size of circulating sEVs. The modulation of sEV-associated proteins under diabetic conditions can induce vascular leak through activation of the MEK/ROCK pathway. These data identify a new paradigm by which diabetes can induce hyperpermeability and dysfunction of the cerebrovasculature and may implicate sEVs in the pathogenesis of cognitive decline during type 2 diabetes.
Collapse
Affiliation(s)
- Dakota Gustafson
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Peter V DiStefano
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Xue Fan Wang
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
| | - Ruilin Wu
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Siavash Ghaffari
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
| | - Crizza Ching
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | | | - Faisal Alibhai
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Michal Syonov
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
| | - Jessica Fitzpatrick
- Department of Medicine and Pediatrics, Women's College Hospital, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Emilie Boudreau
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Cori Lau
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Natalie Galant
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Mansoor Husain
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Warren L Lee
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Rulan S Parekh
- Department of Medicine and Pediatrics, Women's College Hospital, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Philippe P Monnier
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
8
|
Chow JCL, Ruda HE. Mechanisms of Action in FLASH Radiotherapy: A Comprehensive Review of Physicochemical and Biological Processes on Cancerous and Normal Cells. Cells 2024; 13:835. [PMID: 38786057 PMCID: PMC11120005 DOI: 10.3390/cells13100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
The advent of FLASH radiotherapy (FLASH-RT) has brought forth a paradigm shift in cancer treatment, showcasing remarkable normal cell sparing effects with ultra-high dose rates (>40 Gy/s). This review delves into the multifaceted mechanisms underpinning the efficacy of FLASH effect, examining both physicochemical and biological hypotheses in cell biophysics. The physicochemical process encompasses oxygen depletion, reactive oxygen species, and free radical recombination. In parallel, the biological process explores the FLASH effect on the immune system and on blood vessels in treatment sites such as the brain, lung, gastrointestinal tract, skin, and subcutaneous tissue. This review investigated the selective targeting of cancer cells and the modulation of the tumor microenvironment through FLASH-RT. Examining these mechanisms, we explore the implications and challenges of integrating FLASH-RT into cancer treatment. The potential to spare normal cells, boost the immune response, and modify the tumor vasculature offers new therapeutic strategies. Despite progress in understanding FLASH-RT, this review highlights knowledge gaps, emphasizing the need for further research to optimize its clinical applications. The synthesis of physicochemical and biological insights serves as a comprehensive resource for cell biology, molecular biology, and biophysics researchers and clinicians navigating the evolution of FLASH-RT in cancer therapy.
Collapse
Affiliation(s)
- James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Harry E. Ruda
- Centre of Advance Nanotechnology, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada;
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| |
Collapse
|
9
|
Gathings A, Zaman V, Banik NL, Haque A. Insights into Calpain Activation and Rho-ROCK Signaling in Parkinson's Disease and Aging. Biomedicines 2024; 12:1074. [PMID: 38791036 PMCID: PMC11117523 DOI: 10.3390/biomedicines12051074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Parkinson's disease (PD), a progressive neurodegenerative disease, has no cure, and current therapies are not effective at halting disease progression. The disease affects mid-brain dopaminergic neurons and, subsequently, the spinal cord, contributing to many debilitating symptoms associated with PD. The GTP-binding protein, Rho, plays a significant role in the cellular pathology of PD. The downstream effector of Rho, Rho-associated kinase (ROCK), plays multiple functions, including microglial activation and induction of inflammatory responses. Activated microglia have been implicated in the pathology of many neurodegenerative diseases, including PD, that initiate inflammatory responses, leading to neuron death. Calpain expression and activity is increased following glial activation, which triggers the Rho-ROCK pathway and induces inflammatory T cell activation and migration as well as mediates toxic α-synuclein (α-syn) aggregation and neuron death, indicating a pivotal role for calpain in the inflammatory and degenerative processes in PD. Increased calpain activity and Rho-ROCK activation may represent a new mechanism for increased oxidative damage in aging. This review will summarize calpain activation and the role of the Rho-ROCK pathway in oxidative stress and α-syn aggregation, their influence on the neurodegenerative process in PD and aging, and possible strategies and research directions for therapeutic intervention.
Collapse
Affiliation(s)
- Amy Gathings
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (A.G.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
| | - Vandana Zaman
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| | - Narendra L. Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (A.G.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (A.G.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| |
Collapse
|
10
|
Aboonabi A, McCauley MD. Myofilament dysfunction in diastolic heart failure. Heart Fail Rev 2024; 29:79-93. [PMID: 37837495 PMCID: PMC10904515 DOI: 10.1007/s10741-023-10352-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/16/2023]
Abstract
Diastolic heart failure (DHF), in which impaired ventricular filling leads to typical heart failure symptoms, represents over 50% of all heart failure cases and is linked with risk factors, including metabolic syndrome, hypertension, diabetes, and aging. A substantial proportion of patients with this disorder maintain normal left ventricular systolic function, as assessed by ejection fraction. Despite the high prevalence of DHF, no effective therapeutic agents are available to treat this condition, partially because the molecular mechanisms of diastolic dysfunction remain poorly understood. As such, by focusing on the underlying molecular and cellular processes contributing to DHF can yield new insights that can represent an exciting new avenue and propose a novel therapeutic approach for DHF treatment. This review discusses new developments from basic and clinical/translational research to highlight current knowledge gaps, help define molecular determinants of diastolic dysfunction, and clarify new targets for treatment.
Collapse
Affiliation(s)
- Anahita Aboonabi
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago, 840 S. Wood St., 920S (MC 715), Chicago, IL, 60612, USA.
- Jesse Brown VA Medical Center, Chicago, IL, USA.
| | - Mark D McCauley
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago, 840 S. Wood St., 920S (MC 715), Chicago, IL, 60612, USA.
- Jesse Brown VA Medical Center, Chicago, IL, USA.
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Wu J, Barkat MQ, Su J, Wu F, Tan D, Shen T, He Q, Qu M, Lu M, Cai J, Wu X, Xu C. Inhibition of non-muscular myosin light chain kinase accelerates the clearance of inflammatory cells by promoting the lysosome-mediated cell death. Biomed Pharmacother 2024; 170:115986. [PMID: 38056232 DOI: 10.1016/j.biopha.2023.115986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023] Open
Abstract
Infections like COVID-19 are the primary cause of death around the world because they can cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and sepsis. Inflammatory cells serve as crucial protective barriers in these diseases. However, excessive accumulation of inflammatory cells is also one of the major causes of organ damage. The non-muscular myosin light chain kinase (nmMLCK) plays crucial of cytoskeletal components involved in endothelial cell-matrix and cell-cell adhesion, integrity, and permeability. Our previous investigations found that ML-7, a specific inhibitor of MLCK, promoted neutrophil apoptosis through various signaling pathways. In this study, we found that knockout of MLCK significantly promote apoptosis of neutrophils and macrophages in the BALF of the LPS-induced ALI, meanwhile it had no effect on the apoptosis of neutrophils in the circulatory system. RNA-sequencing revealed that the effect of MLCK knockout in inducing apoptosis of inflammatory cells was mediated through lysosomes. Administering ML-7 into the lungs significantly promoted neutrophil apoptosis, accelerating their clearance. In the LPS- or CLP-induced sepsis models, ML-7 administration significantly improves the apoptosis of inflammatory cells, especially neutrophils, at the infection site but had no impact on neutrophils in the circulatory system. ML-7 also significantly improved the survival rate of mice with LPS- or CLP-induced sepsis. Taken together, we found that MLCK plays a crucial role in the survival of inflammatory cells at the infection site. Inhibiting MLCK significantly induces apoptosis of inflammatory cells at the infection site, promoting inflammation resolution, with no impact of the circulatory system.
Collapse
Affiliation(s)
- Junsong Wu
- Department of Orthopaedics, the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, China
| | - Muhammad Qasim Barkat
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiakun Su
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Fugen Wu
- Department of Pediatrics, the First People's Hospital of Wenling City, Wenling 317500, China
| | - Dan Tan
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Meiyu Qu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Meiping Lu
- National Clinical Research Center for Child Health, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jibao Cai
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Chengyun Xu
- Department of Pharmacology, School of Medcine, Hangzhou City University, 310015, China.
| |
Collapse
|
12
|
Tsuji-Tamura K, Ogawa M. FOXO1 promotes endothelial cell elongation and angiogenesis by up-regulating the phosphorylation of myosin light chain 2. Angiogenesis 2023; 26:523-545. [PMID: 37488325 DOI: 10.1007/s10456-023-09884-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
The forkhead box O1 (FOXO1) is an important transcription factor related to proliferation, metabolism, and homeostasis, while the major phenotype of FOXO1-null mice is abnormal vascular morphology, such as vessel enlargement and dilation. In in vitro mouse embryonic stem cell (ESC)-differentiation system, Foxo1-/- vascular endothelial cells (ECs) fail to elongate, and mimic the abnormalities of FOXO1-deficiency in vivo. Here, we identified the PPP1R14C gene as the FOXO1 target genes responsible for elongating using transcriptome analyses in ESC-derived ECs (ESC-ECs), and found that the FOXO1-PPP1R14C-myosin light chain 2 (MLC2) axis is required for EC elongation during angiogenesis. MLC2 is phosphorylated by MLC kinase (MLCK) and dephosphorylated by MLC phosphatase (MLCP). PPP1R14C is an inhibitor of PP1, the catalytic subunit of MLCP. The abnormal morphology of Foxo1-/- ESC-ECs was associated with low level of PPP1R14C and loss of MLC2 phosphorylation, which were reversed by PPP1R14C-introduction. Knockdown of either FOXO1 or PPP1R14C suppressed vascular cord formation and reduced MLC2 phosphorylation in human ECs (HUVECs). The mouse and human PPP1R14C locus possesses an enhancer element containing conserved FOXO1-binding motifs. In vivo chemical inhibition of MLC2 phosphorylation caused dilated vascular structures in mouse embryos. Furthermore, foxo1 or ppp1r14c-knockdown zebrafish exhibited vascular malformations, which were also restored by PPP1R14C-introduction. Mechanistically, FOXO1 suppressed MLCP activity by up-regulating PPP1R14C expression, thereby promoting MLC2 phosphorylation and EC elongation, which are necessary for vascular development. Given the importance of MLC2 phosphorylation in cell morphogenesis, this study may provide novel insights into the role of FOXO1 in control of angiogenesis.
Collapse
Affiliation(s)
- Kiyomi Tsuji-Tamura
- Oral Biochemistry and Molecular Biology, Department of Oral Health Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-Ku, Sapporo, 060-8586, Japan.
| | - Minetaro Ogawa
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| |
Collapse
|
13
|
Zhao BH, Ruze A, Zhao L, Li QL, Tang J, Xiefukaiti N, Gai MT, Deng AX, Shan XF, Gao XM. The role and mechanisms of microvascular damage in the ischemic myocardium. Cell Mol Life Sci 2023; 80:341. [PMID: 37898977 PMCID: PMC11073328 DOI: 10.1007/s00018-023-04998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
Following myocardial ischemic injury, the most effective clinical intervention is timely restoration of blood perfusion to ischemic but viable myocardium to reduce irreversible myocardial necrosis, limit infarct size, and prevent cardiac insufficiency. However, reperfusion itself may exacerbate cell death and myocardial injury, a process commonly referred to as ischemia/reperfusion (I/R) injury, which primarily involves cardiomyocytes and cardiac microvascular endothelial cells (CMECs) and is characterized by myocardial stunning, microvascular damage (MVD), reperfusion arrhythmia, and lethal reperfusion injury. MVD caused by I/R has been a neglected problem compared to myocardial injury. Clinically, the incidence of microvascular angina and/or no-reflow due to ineffective coronary perfusion accounts for 5-50% in patients after acute revascularization. MVD limiting drug diffusion into injured myocardium, is strongly associated with the development of heart failure. CMECs account for > 60% of the cardiac cellular components, and their role in myocardial I/R injury cannot be ignored. There are many studies on microvascular obstruction, but few studies on microvascular leakage, which may be mainly due to the lack of corresponding detection methods. In this review, we summarize the clinical manifestations, related mechanisms of MVD during myocardial I/R, laboratory and clinical examination means, as well as the research progress on potential therapies for MVD in recent years. Better understanding the characteristics and risk factors of MVD in patients after hemodynamic reconstruction is of great significance for managing MVD, preventing heart failure and improving patient prognosis.
Collapse
Affiliation(s)
- Bang-Hao Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Amanguli Ruze
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Ling Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Qiu-Lin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Jing Tang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Nilupaer Xiefukaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Min-Tao Gai
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - An-Xia Deng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xue-Feng Shan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China.
| |
Collapse
|
14
|
Ghaderi S, Levkau B. An erythrocyte-centric view on the MFSD2B sphingosine-1-phosphate transporter. Pharmacol Ther 2023; 249:108483. [PMID: 37390971 DOI: 10.1016/j.pharmthera.2023.108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
MFSD2B has been identified as the exclusive sphingosine-1-phosphate (S1P) transporter in red blood cells (RBC) and platelets. MFSD2B-mediated S1P export from platelets is required for aggregation and thrombus formation, whereas RBC MFSD2B maintains plasma S1P levels in concert with SPNS2, the vascular and lymphatic endothelial cell S1P exporter, to control endothelial permeability and ensure normal vascular development. However, the physiological function of MFSD2B in RBC remains rather elusive despite mounting evidence that the intracellular S1P pool plays important roles in RBC glycolysis, adaptation to hypoxia and the regulation of cell shape, hydration, and cytoskeletal organisation. The large accumulation of S1P and sphingosine in MFSD2B-deficient RBC coincides with stomatocytosis and membrane abnormalities, the reasons for which have remained obscure. MFS family members transport substrates in a cation-dependent manner along electrochemical gradients, and disturbances in cation permeability are known to alter cell hydration and shape in RBC. Furthermore, the mfsd2 gene is a transcriptional target of GATA together with mylk3, the gene encoding myosin light chain kinase (MYLK). S1P is known to activate MYLK and thereby impact on myosin phosphorylation and cytoskeletal architecture. This suggests that metabolic, transcriptional and functional interactions may exist between MFSD2B-mediated S1P transport and RBC deformability. Here, we review the evidence for such interactions and the implications for RBC homeostasis.
Collapse
Affiliation(s)
- Shahrooz Ghaderi
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany.
| |
Collapse
|
15
|
Gao X, Bayraktutan U. TNF-α evokes blood-brain barrier dysfunction through activation of Rho-kinase and neurokinin 1 receptor. Immunobiology 2023; 228:152706. [PMID: 37454559 DOI: 10.1016/j.imbio.2023.152706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/17/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Ischaemic stroke, accompanied by neuroinflammation, impairs blood-brain barrier (BBB) integrity through a complex mechanism involving activation of both RhoA/Rho kinase/myosin light chain-2 and neurokinin 1 receptor (NK1R). Using an in vitro model of human BBB composed of brain microvascular endothelial cells (BMEC), astrocytes and pericytes, this study examined the potential contributions of these elements to BBB damage induced by elevated availability of pro-inflammatory cytokine, TNF-α. Treatment of human BMECs with TNF-α significantly enhanced RhoA activity and the protein expressions of Rho kinase and phosphorylated Ser19MLC-2 while decreasing that of NK1R. Pharmacological inhibition of Rho kinase by Y-27632 and NK1R by CP96345 neutralised the disruptive effects of TNF-α on BBB integrity and function as ascertained by reversal of decreases in transendothelial electrical resistance and increases in paracellular flux of low molecular weight permeability marker, sodium fluorescein, respectively. Suppression of RhoA activation, mitigation of actin stress fibre formation and restoration of plasma membrane localisation of tight junction protein zonula occludens-1 appeared to contribute to the barrier-protective effects of both Y-27632 and CP96345. Attenuation of TNF-α-mediated increases in NK1R protein expression in BMEC by Y-27632 suggests that RhoA/Rho kinase pathway acts upstream to NK1R. In conclusion, specific inhibition of Rho kinase in cerebrovascular conditions, accompanied by excessive release of pro-inflammatory cytokine TNF-α, helps preserve endothelial cell morphology and inter-endothelial cell barrier formation and may serve as an important therapeutic target.
Collapse
Affiliation(s)
- Xin Gao
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
16
|
He Z, Xu X, Zhao Q, Ding H, Wang DW. Vasospastic angina: Past, present, and future. Pharmacol Ther 2023; 249:108500. [PMID: 37482097 DOI: 10.1016/j.pharmthera.2023.108500] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/22/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Vasospastic angina (VSA) is characterized by episodes of rest angina that are responsive to short-acting nitrates and are attributable to coronary artery vasospasm. The condition is underdiagnosed as the provocation test is rarely performed. VSA, the most important component of non-obstructive coronary artery disease, can present with angina, be asymptomatic, or can even present with fatal arrhythmias and cardiac arrest. Although most patients with VSA respond well to vasodilating medications, prognosis does not improve as expected in most patients, suggesting the existence elusive prognostic factors and pathogenesis that warrant further exploration. Moreover, patients with either severe or refractory VSA barely respond to conventional treatment and may develop life-threatening arrhythmias or suffer sudden cardiac death during ischemic attacks, which are associated with immune-inflammatory responses and have been shown to achieve remission following glucocorticoid and immunoglobulin treatments. Our recent work revealed that inflammation plays a key role in the initiation and development of coronary spasms, and that inflammatory cytokines have predictive value for diagnosis. In contrast to the existing literature, this review both summarizes the theoretical and clinical aspects of VSA, and also discusses the relationship between inflammation, especially myocarditis and VSA, in order to provide novel insights into the etiology, diagnosis, and treatment of VSA.
Collapse
Affiliation(s)
- Zuowen He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Xin Xu
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Qu Zhao
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
17
|
Li Z, Liu J, Ballard K, Liang C, Wang C. Low-dose albumin-coated gold nanorods induce intercellular gaps on vascular endothelium by causing the contraction of cytoskeletal actin. J Colloid Interface Sci 2023; 649:844-854. [PMID: 37390532 DOI: 10.1016/j.jcis.2023.06.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Cytotoxicity of nanoparticles, typically evaluated by biochemical-based assays, often overlook the cellular biophysical properties such as cell morphology and cytoskeletal actin, which could serve as more sensitive indicators for cytotoxicity. Here, we demonstrate that low-dose albumin-coated gold nanorods (HSA@AuNRs), although being considered noncytotoxic in multiple biochemical assays, can induce intercellular gaps and enhance the paracellular permeability between human aortic endothelial cells (HAECs). The formation of intercellular gaps can be attributed to the changed cell morphology and cytoskeletal actin structures, as validated at the monolayer and single cell levels using fluorescence staining, atomic force microscopy, and super-resolution imaging. Molecular mechanistic study shows the caveolae-mediated endocytosis of HSA@AuNRs induces the calcium influx and activates actomyosin contraction in HAECs. Considering the important roles of endothelial integrity/dysfunction in various physiological/pathological conditions, this work suggests a potential adverse effect of albumin-coated gold nanorods on the cardiovascular system. On the other hand, this work also offers a feasible way to modulate the endothelial permeability, thus promoting drug and nanoparticle delivery across the endothelium.
Collapse
Affiliation(s)
- Zhengqiang Li
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, SD 57701, USA
| | - Jinyuan Liu
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, SD 57701, USA
| | - Katherine Ballard
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, SD 57701, USA
| | - Chao Liang
- Department of Anesthesiology, Zhongshan Hospital (Xiamen) Fudan University, Xiamen 361015, China; Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Congzhou Wang
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, SD 57701, USA.
| |
Collapse
|
18
|
Li L, Xin J, Wang H, Wang Y, Peng W, Sun N, Huang H, Zhou Y, Liu X, Lin Y, Fang J, Jing B, Pan K, Zeng Y, Zeng D, Qin X, Bai Y, Ni X. Fluoride disrupts intestinal epithelial tight junction integrity through intracellular calcium-mediated RhoA/ROCK signaling and myosin light chain kinase. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114940. [PMID: 37099960 DOI: 10.1016/j.ecoenv.2023.114940] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023]
Abstract
Fluoride is a common contaminant of groundwater and agricultural commodity, which poses challenges to animal and human health. A wealth of research has demonstrated its detrimental effects on intestinal mucosal integrity; however, the underlying mechanisms remain obscure. This study aimed to investigate the role of the cytoskeleton in fluoride-induced barrier dysfunction. After sodium fluoride (NaF) treatment of the cultured Caco-2 cells, both cytotoxicity and cytomorphological changes (internal vacuoles or massive ablation) were observed. NaF lowered transepithelial electrical resistance (TEER) and enhanced paracellular permeation of fluorescein isothiocyanate dextran 4 (FD-4), indicating Caco-2 monolayers hyperpermeability. In the meantime, NaF treatment altered both the expression and distribution of the tight junction protein ZO-1. Fluoride exposure increased myosin light chain II (MLC2) phosphorylation and triggered actin filament (F-actin) remodeling. While inhibition of myosin II by Blebbistatin blocked NaF-induced barrier failure and ZO-1 discontinuity, the corresponding agonist Ionomycin had effects comparable to those of fluoride, suggesting that MLC2 serves as an effector. Given the mechanisms upstream of p-MLC2 regulation, further studies demonstrated that NaF activated RhoA/ROCK signaling pathway and myosin light chain kinase (MLCK), strikingly increasing the expression of both. Pharmacological inhibitors (Rhosin, Y-27632 and ML-7) reversed NaF-induced barrier breakdown and stress fiber formation. The role of intracellular calcium ions ([Ca2+]i) in NaF effects on Rho/ROCK pathway and MLCK was investigated. We found that NaF elevated [Ca2+]i, whereas chelator BAPTA-AM attenuated increased RhoA and MLCK expression as well as ZO-1 rupture, thus, restoring barrier function. Collectively, abovementioned results suggest that NaF induces barrier impairment via Ca2+-dependent RhoA/ROCK pathway and MLCK, which in turn triggers MLC2 phosphorylation and rearrangement of ZO-1 and F-actin. These results provide potential therapeutic targets for fluoride-induced intestinal injury.
Collapse
Affiliation(s)
- Lianxin Li
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinge Xin
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hesong Wang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yadong Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiqi Peng
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haonan Huang
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanxi Zhou
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xingmei Liu
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Fang
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiang Qin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Yang Bai
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
19
|
Froldi G. The Use of Medicinal Plants in Blood Vessel Diseases: The Influence of Gender. Life (Basel) 2023; 13:life13040866. [PMID: 37109395 PMCID: PMC10147070 DOI: 10.3390/life13040866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Data available in the literature on the use of herbal products to treat inflammation-related vascular diseases were considered in this study, while also assessing the influence of gender. To this end, the articles published in PubMed over the past 10 years that described the use of plant extracts in randomized clinical trials studying the effectiveness in vascular pathologies were analyzed. The difference in efficacy of plant-derived preparations in female and male subjects was always considered when reporting. The safety profiles of the selected plants were described, reporting unwanted effects in humans and also by searching the WHO database (VigiBase®). The medicinal plants considered were Allium sativum, Campomanesia xanthocarpa, Sechium edule, Terminalia chebula. Additionally, an innovative type of preparation consisting of plant-derived nanovesicles was also reported.
Collapse
Affiliation(s)
- Guglielmina Froldi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
20
|
Golubev DA, Zemskaya NV, Gorbunova AA, Kukuman DV, Moskalev A, Shaposhnikov MV. Studying the Geroprotective Properties of YAP/TAZ Signaling Inhibitors on Drosophila melanogaster Model. Int J Mol Sci 2023; 24:ijms24066006. [PMID: 36983079 PMCID: PMC10058302 DOI: 10.3390/ijms24066006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/28/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are the main downstream effectors of the evolutionarily conserved Hippo signaling pathway. YAP/TAZ are implicated in the transcriptional regulation of target genes that are involved in a wide range of key biological processes affecting tissue homeostasis and play dual roles in the aging process, depending on the cellular and tissue context. The aim of the present study was to investigate whether pharmacological inhibitors of Yap/Taz increase the lifespan of Drosophila melanogaster. Real-time qRT-PCR was performed to measure the changes in the expression of Yki (Yorkie, the Drosophila homolog of YAP/TAZ) target genes. We have revealed a lifespan-increasing effect of YAP/TAZ inhibitors that was mostly associated with decreased expression levels of the wg and E2f1 genes. However, further analysis is required to understand the link between the YAP/TAZ pathway and aging.
Collapse
Affiliation(s)
- Denis A Golubev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Nadezhda V Zemskaya
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Anastasia A Gorbunova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Daria V Kukuman
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Mikhail V Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| |
Collapse
|
21
|
Lee S, Kim Y, Kim YS, Zhang H, Noh M, Kwon YG. CU06-1004 alleviates vascular hyperpermeability in a murine model of hereditary angioedema by protecting the endothelium. Allergy 2023; 78:1333-1346. [PMID: 36789476 DOI: 10.1111/all.15674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/09/2023] [Accepted: 01/22/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Over-release of the vasoactive peptide bradykinin (BK) due to mutation in the SERPING1 gene is the leading cause of hereditary angioedema (HAE). BK directly activates endothelial cells and increases vascular permeability by disrupting the endothelial barrier, leading to angioedema affecting face, lips, extremities, gastrointestinal tract, and larynx. Although various pharmacological treatment options for HAE became available during the last decade, they are presently limited and pose a major economic burden on patients. To identify additional therapeutic options for HAE, we evaluated the effect of CU06-1004, an endothelial dysfunction blocker, on BK-induced vascular hyperpermeability and the HAE murine model. METHODS To investigate the effect of CU06-1004 on BK-induced vascular hyperpermeability in vivo, we pre-administrated WT mice with the drug and then induced vascular leakage through intravenous injection of BK and observed vascular alternation. Then, SERPING1 deficient mice were used for a HAE murine model. For an in vitro model, the HUVEC monolayer was pre-treated with CU06-1004 and then stimulated with BK. RESULTS Bradykinin disrupted the endothelial barrier and formed interendothelial cell gaps, leading to hyperpermeability in vivo and in vitro. However, CU06-1004 treatment protected the endothelial barrier by suppressing Src and myosin light chain activation via BK and alleviated hyperpermeability. CONCLUSION Our study shows that CU06-1004 oral administration significantly reduced vascular hyperpermeability in the HAE murine model by protecting the endothelial barrier function against BK stimulation. Therefore, protecting endothelium against BK with CU06-1004 could serve as a potential prophylactic/therapeutic approach for HAE patients.
Collapse
Affiliation(s)
- Sunghye Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Yeomyeong Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Ye-Seul Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | | | - Minyoung Noh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
22
|
Adhikari UK, Khan R, Mikhael M, Balez R, David MA, Mahns D, Hardy J, Tayebi M. Therapeutic anti-amyloid β antibodies cause neuronal disturbances. Alzheimers Dement 2022. [PMID: 36515320 DOI: 10.1002/alz.12833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Recent published clinical trial safety data showed that 41% of Alzheimer patients experienced amyloid-related imaging abnormalities (ARIA), marks of microhemorrhages and edema in the brain, following administration of Biogen's Aduhelm/aducanumab (amino acids 3-7 of the Aβ peptide). Similarly, Janssen/Pfizer's Bapineuzumab (amino acids 1-5 of the Aβ peptide) and Roche's Gantenerumab (amino acids 2-11/18-27 of the Aβ peptide) also displayed ARIA in clinical trials, including microhemorrhage and focal areas of inflammation or vasogenic edema, respectively. The molecular mechanisms underlying ARIA caused by therapeutic anti-Aβ antibodies remain largely unknown, however, recent reports demonstrated that therapeutic anti-prion antibodies activate neuronal allergenic proteomes following cross-linking cellular prion protein. METHODS Here, we report that treatment of human induced pluripotent stem cells- derived neurons (HSCN) from a non-demented donor, co-cultured with human primary microglia with anti-Aβ1-6, or anti-Aβ17-23 antibodies activate a significant number of allergenic-related proteins as assessed by mass spectrometry. RESULTS Interestingly, a large proportion of the identified proteins included cytokines such as interleukin (IL)-4, IL-12, and IL-13 suggesting a type-1 hypersensitivity response. Following flow cytometry analysis, several proinflammatory cytokines were significantly elevated following anti-Aβ1-6, or anti-Aβ17-23 antibody treatment. DISCUSSION These results justify further and more robust investigation of the molecular mechanisms of ARIA during immunotherapy study trials of AD. HIGHLIGHTS Allergenic-related proteins are often linked with Alzheimer's disease (AD). We investigated the effects of amyloid beta (Aβ) immunotherapy on stem cell derived neurons and primary neuronal cells co-cultured with microglia. Anti-Aβ antibody treatment of neurons or neurons co-cultured with microglia led to activation of a substantial number of allergenic-related genes. These allergenic-related genes are associated with endothelial dysfunction possibly responsible for ARIA.
Collapse
Affiliation(s)
- Utpal Kumar Adhikari
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Rizwan Khan
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Meena Mikhael
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Rachelle Balez
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
| | | | - David Mahns
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| |
Collapse
|
23
|
Anis M, Gonzales J, Halstrom R, Baig N, Humpal C, Demeritte R, Epshtein Y, Jacobson JR, Fraidenburg DR. Non-Muscle MLCK Contributes to Endothelial Cell Hyper-Proliferation through the ERK Pathway as a Mechanism for Vascular Remodeling in Pulmonary Hypertension. Int J Mol Sci 2022; 23:ijms232113641. [PMID: 36362426 PMCID: PMC9654627 DOI: 10.3390/ijms232113641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by endothelial dysfunction, uncontrolled proliferation and migration of pulmonary arterial endothelial cells leading to increased pulmonary vascular resistance resulting in great morbidity and poor survival. Bone morphogenetic protein receptor II (BMPR2) plays an important role in the pathogenesis of PAH as the most common genetic mutation. Non-muscle myosin light chain kinase (nmMLCK) is an essential component of the cellular cytoskeleton and recent studies have shown that increased nmMLCK activity regulates biological processes in various pulmonary diseases such as asthma and acute lung injury. In this study, we aimed to discover the role of nmMLCK in the proliferation and migration of pulmonary arterial endothelial cells (HPAECs) in the pathogenesis of PAH. We used two cellular models relevant to the pathobiology of PAH including BMPR2 silenced and vascular endothelial growth factor (VEGF) stimulated HPAECs. Both models demonstrated an increase in nmMLCK activity along with a robust increase in cellular proliferation, inflammation, and cellular migration. The upregulated nmMLCK activity was also associated with increased ERK expression pointing towards a potential integral cytoplasmic interaction. Mechanistically, we confirmed that when nmMLCK is inhibited by MLCK selective inhibitor (ML-7), proliferation and migration are attenuated. In conclusion, our results demonstrate that nmMLCK upregulation in association with increased ERK expression may contribute to the pathogenesis of PAHby stimulating cellular proliferation and migration.
Collapse
Affiliation(s)
- Mariam Anis
- Northwestern Medical Group, Lake Forest, IL 60045, USA
| | - Janae Gonzales
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rachel Halstrom
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Noman Baig
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Cat Humpal
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Regaina Demeritte
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yulia Epshtein
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jeffrey R. Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Dustin R. Fraidenburg
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Correspondence: ; Tel.: +1-312-355-5918
| |
Collapse
|
24
|
Cheng M, Yang Z, Qiao L, Yang Y, Deng Y, Zhang C, Mi T. AGEs induce endothelial cells senescence and endothelial barrier dysfunction via miR-1-3p/MLCK signaling pathways. Gene 2022; 851:147030. [DOI: 10.1016/j.gene.2022.147030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022]
|
25
|
Wu J, Zhu Z, Liu W, Zhang Y, Kang Y, Liu J, Hu C, Wang R, Zhang M, Chen L, Shao L. How Nanoparticles Open the Paracellular Route of Biological Barriers: Mechanisms, Applications, and Prospects. ACS NANO 2022; 16:15627-15652. [PMID: 36121682 DOI: 10.1021/acsnano.2c05317] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biological barriers are essential physiological protective systems and obstacles to drug delivery. Nanoparticles (NPs) can access the paracellular route of biological barriers, either causing adverse health impacts on humans or producing therapeutic opportunities. This Review introduces the structural and functional influences of NPs on the key components that govern the paracellular route, mainly tight junctions, adherens junctions, and cytoskeletons. Furthermore, we evaluate their interaction mechanisms and address the influencing factors that determine the ability of NPs to open the paracellular route, which provides a better knowledge of how NPs can open the paracellular route in a safer and more controllable way. Finally, we summarize limitations in the research models and methodologies of the existing research in the field and provide future research direction. This Review demonstrates the in-depth causes for the reversible opening or destruction of the integrity of barriers generated by NPs; more importantly, it contributes insights into the design of NP-based medications to boost paracellular drug delivery efficiency.
Collapse
Affiliation(s)
- Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| | - Zhenjun Zhu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chen Hu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ruolan Wang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Manjin Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| |
Collapse
|
26
|
Tuning of Liver Sieve: The Interplay between Actin and Myosin Regulatory Light Chain Regulates Fenestration Size and Number in Murine Liver Sinusoidal Endothelial Cells. Int J Mol Sci 2022; 23:ijms23179850. [PMID: 36077249 PMCID: PMC9456121 DOI: 10.3390/ijms23179850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) facilitate the efficient transport of macromolecules and solutes between the blood and hepatocytes. The efficiency of this transport is realized via transcellular nanopores, called fenestrations. The mean fenestration size is 140 ± 20 nm, with the range from 50 nm to 350 nm being mostly below the limits of diffraction of visible light. The cellular mechanisms controlling fenestrations are still poorly understood. In this study, we tested a hypothesis that both Rho kinase (ROCK) and myosin light chain (MLC) kinase (MLCK)-dependent phosphorylation of MLC regulates fenestrations. We verified the hypothesis using a combination of several molecular inhibitors and by applying two high-resolution microscopy modalities: structured illumination microscopy (SIM) and scanning electron microscopy (SEM). We demonstrated precise, dose-dependent, and reversible regulation of the mean fenestration diameter within a wide range from 120 nm to 220 nm and the fine-tuning of the porosity in a range from ~0% up to 12% using the ROCK pathway. Moreover, our findings indicate that MLCK is involved in the formation of new fenestrations—after inhibiting MLCK, closed fenestrations cannot be reopened with other agents. We, therefore, conclude that the Rho-ROCK pathway is responsible for the control of the fenestration diameter, while the inhibition of MLCK prevents the formation of new fenestrations.
Collapse
|
27
|
Hall JD, Farzaneh S, Babakhani Galangashi R, Pujari A, Sweet DT, Kahn ML, Jiménez JM. Lymphoedema conditions disrupt endothelial barrier function in vitro. J R Soc Interface 2022; 19:20220223. [PMID: 36000230 PMCID: PMC9399713 DOI: 10.1098/rsif.2022.0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/27/2022] [Indexed: 11/12/2022] Open
Abstract
Lymphatic vessel contractions generate net antegrade pulsatile lymph flow. By contrast, impaired lymphatic vessels are often associated with lymphoedema and altered lymph flow. The effect of lymphoedema on the lymph flow field and endothelium is not completely known. Here, we characterized the lymphatic flow field of a platelet-specific receptor C-type lectin-like receptor 2 (CLEC2) deficient lymphoedema mouse model. In regions of lymphoedema, collecting vessels were significantly distended, vessel contractility was greatly diminished and pulsatile lymph flow was replaced by quasi-steady flow. In vitro exposure of human dermal lymphatic endothelial cells (LECs) to lymphoedema-like quasi-steady flow conditions increased intercellular gap formation and permeability in comparison to normal pulsatile lymph flow. In the absence of flow, LECs exposed to steady pressure (SP) increased intercellular gap formation in contrast with pulsatile pressure (PP). The absence of pulsatility in steady fluid flow and SP conditions without flow-induced upregulation of myosin light chain (MLCs) regulatory subunits 9 and 12B mRNA expression and phosphorylation of MLCs, in contrast with pulsatile flow and PP without flow. These studies reveal that the loss of pulsatility, which can occur with lymphoedema, causes LEC contraction and an increase in intercellular gap formation mediated by MLC phosphorylation.
Collapse
Affiliation(s)
- Joshua D. Hall
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Sina Farzaneh
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Reza Babakhani Galangashi
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Akshay Pujari
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Daniel T. Sweet
- Department of Medicine and Division of Cardiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark L. Kahn
- Department of Medicine and Division of Cardiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Juan M. Jiménez
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
28
|
Batori RK, Chen F, Bordan Z, Haigh S, Su Y, Verin AD, Barman SA, Stepp DW, Chakraborty T, Lucas R, Fulton DJR. Protective role of Cav-1 in pneumolysin-induced endothelial barrier dysfunction. Front Immunol 2022; 13:945656. [PMID: 35967431 PMCID: PMC9363592 DOI: 10.3389/fimmu.2022.945656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 01/16/2023] Open
Abstract
Pneumolysin (PLY) is a bacterial pore forming toxin and primary virulence factor of Streptococcus pneumonia, a major cause of pneumonia. PLY binds cholesterol-rich domains of the endothelial cell (EC) plasma membrane resulting in pore assembly and increased intracellular (IC) Ca2+ levels that compromise endothelial barrier integrity. Caveolae are specialized plasmalemma microdomains of ECs enriched in cholesterol. We hypothesized that the abundance of cholesterol-rich domains in EC plasma membranes confers cellular susceptibility to PLY. Contrary to this hypothesis, we found increased PLY-induced IC Ca2+ following membrane cholesterol depletion. Caveolin-1 (Cav-1) is an essential structural protein of caveolae and its regulation by cholesterol levels suggested a possible role in EC barrier function. Indeed, Cav-1 and its scaffolding domain peptide protected the endothelial barrier from PLY-induced disruption. In loss of function experiments, Cav-1 was knocked-out using CRISPR-Cas9 or silenced in human lung microvascular ECs. Loss of Cav-1 significantly enhanced the ability of PLY to disrupt endothelial barrier integrity. Rescue experiments with re-expression of Cav-1 or its scaffolding domain peptide protected the EC barrier against PLY-induced barrier disruption. Dynamin-2 (DNM2) is known to regulate caveolar membrane endocytosis. Inhibition of endocytosis, with dynamin inhibitors or siDNM2 amplified PLY induced EC barrier dysfunction. These results suggest that Cav-1 protects the endothelial barrier against PLY by promoting endocytosis of damaged membrane, thus reducing calcium entry and PLY-dependent signaling.
Collapse
Affiliation(s)
- Robert K. Batori
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Zsuzsanna Bordan
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Stephen Haigh
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Division of Critical Care and Pulmonary Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Scott A. Barman
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - David W. Stepp
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Phyiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Trinad Chakraborty
- Institute of Human Microbiology, Justus-Liebig University, Giessen, Germany
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Division of Critical Care and Pulmonary Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
29
|
Yazbeck P, Cullere X, Bennett P, Yajnik V, Wang H, Kawada K, Davis V, Parikh A, Kuo A, Mysore V, Hla T, Milstone D, Mayadas TN. DOCK4 Regulation of Rho GTPases Mediates Pulmonary Vascular Barrier Function. Arterioscler Thromb Vasc Biol 2022; 42:886-902. [PMID: 35477279 PMCID: PMC9233130 DOI: 10.1161/atvbaha.122.317565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 04/12/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The vascular endothelium maintains tissue-fluid homeostasis by controlling the passage of large molecules and fluid between the blood and interstitial space. The interaction of catenins and the actin cytoskeleton with VE-cadherin (vascular endothelial cadherin) is the primary mechanism for stabilizing AJs (adherens junctions), thereby preventing lung vascular barrier disruption. Members of the Rho (Ras homology) family of GTPases and conventional GEFs (guanine exchange factors) of these GTPases have been demonstrated to play important roles in regulating endothelial permeability. Here, we evaluated the role of DOCK4 (dedicator of cytokinesis 4)-an unconventional Rho family GTPase GEF in vascular function. METHODS We generated mice deficient in DOCK4' used DOCK4 silencing and reconstitution approaches in human pulmonary artery endothelial cells' used assays to evaluate protein localization, endothelial cell permeability, and small GTPase activation. RESULTS Our data show that DOCK4-deficient mice are viable. However, these mice have hemorrhage selectively in the lung, incomplete smooth muscle cell coverage in pulmonary vessels, increased basal microvascular permeability, and impaired response to S1P (sphingosine-1-phosphate)-induced reversal of thrombin-induced permeability. Consistent with this, DOCK4 rapidly translocates to the cell periphery and associates with the detergent-insoluble fraction following S1P treatment, and its absence prevents S1P-induced Rac-1 activation and enhancement of barrier function. Moreover, DOCK4-silenced pulmonary artery endothelial cells exhibit enhanced basal permeability in vitro that is associated with enhanced Rho GTPase activation. CONCLUSIONS Our findings indicate that DOCK4 maintains AJs necessary for lung vascular barrier function by establishing the normal balance between RhoA (Ras homolog family member A) and Rac-1-mediated actin cytoskeleton remodeling, a previously unappreciated function for the atypical GEF family of molecules. Our studies also identify S1P as a potential upstream regulator of DOCK4 activity.
Collapse
Affiliation(s)
- Pascal Yazbeck
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Xavier Cullere
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Paul Bennett
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Vijay Yajnik
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02445
| | - Huan Wang
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Kenji Kawada
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02445
| | - Vanessa Davis
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Asit Parikh
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02445
| | - Andrew Kuo
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 20115
| | - Vijayashree Mysore
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Timothy Hla
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 20115
| | - David Milstone
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Tanya N. Mayadas
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
30
|
Burboa PC, Puebla M, Gaete PS, Durán WN, Lillo MA. Connexin and Pannexin Large-Pore Channels in Microcirculation and Neurovascular Coupling Function. Int J Mol Sci 2022; 23:ijms23137303. [PMID: 35806312 PMCID: PMC9266979 DOI: 10.3390/ijms23137303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Microcirculation homeostasis depends on several channels permeable to ions and/or small molecules that facilitate the regulation of the vasomotor tone, hyperpermeability, the blood–brain barrier, and the neurovascular coupling function. Connexin (Cxs) and Pannexin (Panxs) large-pore channel proteins are implicated in several aspects of vascular physiology. The permeation of ions (i.e., Ca2+) and key metabolites (ATP, prostaglandins, D-serine, etc.) through Cxs (i.e., gap junction channels or hemichannels) and Panxs proteins plays a vital role in intercellular communication and maintaining vascular homeostasis. Therefore, dysregulation or genetic pathologies associated with these channels promote deleterious tissue consequences. This review provides an overview of current knowledge concerning the physiological role of these large-pore molecule channels in microcirculation (arterioles, capillaries, venules) and in the neurovascular coupling function.
Collapse
Affiliation(s)
- Pía C. Burboa
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA; (P.C.B.); (W.N.D.)
- Departamento de Morfología y Función, Facultad de Salud y Ciencias Sociales, Sede Santiago Centro, Universidad de las Américas, Avenue República 71, Santiago 8370040, Chile;
| | - Mariela Puebla
- Departamento de Morfología y Función, Facultad de Salud y Ciencias Sociales, Sede Santiago Centro, Universidad de las Américas, Avenue República 71, Santiago 8370040, Chile;
| | - Pablo S. Gaete
- Department of Physiology and Membrane Biology, University of California at Davis, Davis, CA 95616, USA;
| | - Walter N. Durán
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA; (P.C.B.); (W.N.D.)
- Rutgers School of Graduate Studies, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Mauricio A. Lillo
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA; (P.C.B.); (W.N.D.)
- Correspondence:
| |
Collapse
|
31
|
Proteomics and Phosphoproteomics of Circulating Extracellular Vesicles Provide New Insights into Diabetes Pathobiology. Int J Mol Sci 2022; 23:ijms23105779. [PMID: 35628588 PMCID: PMC9147902 DOI: 10.3390/ijms23105779] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
The purpose of this study was to define the proteomic and phosphoproteomic landscape of circulating extracellular vesicles (EVs) in people with normal glucose tolerance (NGT), prediabetes (PDM), and diabetes (T2DM). Archived serum samples from 30 human subjects (n = 10 per group, ORIGINS study, NCT02226640) were used. EVs were isolated using EVtrap®. Mass spectrometry-based methods were used to detect the global EV proteome and phosphoproteome. Differentially expressed features, correlation, enriched pathways, and enriched tissue-specific protein sets were identified using custom R scripts. Phosphosite-centric analyses were conducted using directPA and PhosR software packages. A total of 2372 unique EV proteins and 716 unique EV phosphoproteins were identified among all samples. Unsupervised clustering of the differentially expressed (fold change ≥ 2, p < 0.05, FDR < 0.05) proteins and, particularly, phosphoproteins showed excellent discrimination among the three groups. CDK1 and PKCδ appear to drive key upstream phosphorylation events that define the phosphoproteomic signatures of PDM and T2DM. Circulating EVs from people with diabetes carry increased levels of specific phosphorylated kinases (i.e., AKT1, GSK3B, LYN, MAP2K2, MYLK, and PRKCD) and could potentially distribute activated kinases systemically. Among characteristic changes in the PDM and T2DM EVs, “integrin switching” appeared to be a central feature. Proteins involved in oxidative phosphorylation (OXPHOS), known to be reduced in various tissues in diabetes, were significantly increased in EVs from PDM and T2DM, which suggests that an abnormally elevated EV-mediated secretion of OXPHOS components may underlie the development of diabetes. A highly enriched signature of liver-specific markers among the downregulated EV proteins and phosphoproteins in both PDM and T2DM groups was also detected. This suggests that an alteration in liver EV composition and/or secretion may occur early in prediabetes. This study identified EV proteomic and phosphoproteomic signatures in people with prediabetes and T2DM and provides novel insight into the pathobiology of diabetes.
Collapse
|
32
|
Nawrot DA, Ozer LY, Al Haj Zen A. A Novel High Content Angiogenesis Assay Reveals That Lacidipine, L-Type Calcium Channel Blocker, Induces In Vitro Vascular Lumen Expansion. Int J Mol Sci 2022; 23:ijms23094891. [PMID: 35563280 PMCID: PMC9100973 DOI: 10.3390/ijms23094891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Angiogenesis is a critical cellular process toward establishing a functional circulatory system capable of delivering oxygen and nutrients to the tissue in demand. In vitro angiogenesis assays represent an important tool for elucidating the biology of blood vessel formation and for drug discovery applications. Herein, we developed a novel, high content 2D angiogenesis assay that captures endothelial morphogenesis’s cellular processes, including lumen formation. In this assay, endothelial cells form luminized vascular-like structures in 48 h. The assay was validated for its specificity and performance. Using the optimized assay, we conducted a phenotypic screen of a library containing 150 FDA-approved cardiovascular drugs to identify modulators of lumen formation. The screening resulted in several L-type calcium channel blockers being able to expand the lumen space compared to controls. Among these blockers, Lacidipine was selected for follow-up studies. We found that the endothelial cells treated with Lacidipine showed enhanced activity of caspase-3 in the luminal space. Pharmacological inhibition of caspase activity abolished the Lacidipine-enhancing effect on lumen formation, suggesting the involvement of apoptosis. Using a Ca2+ biosensor, we found that Lacipidine reduces the intracellular Ca2+ oscillations amplitude in the endothelial cells at the early stage, whereas Lacidipine blocks these Ca2+ oscillations completely at the late stage. The inhibition of MLCK exhibits a phenotype of lumen expansion similar to that of Lacidipine. In conclusion, this study describes a novel high-throughput phenotypic assay to study angiogenesis. Our findings suggest that calcium signalling plays an essential role during lumen morphogenesis. L-type Ca2+ channel blockers could be used for more efficient angiogenesis-mediated therapies.
Collapse
Affiliation(s)
- Dorota A. Nawrot
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK;
- Alzheimer’s Research UK, Oxford Drug Discovery Institute, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Lutfiye Yildiz Ozer
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha P.O. Box 34110, Qatar;
| | - Ayman Al Haj Zen
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK;
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha P.O. Box 34110, Qatar;
- Correspondence: ; Tel.: +974-4454-6352
| |
Collapse
|
33
|
Hemin-Induced Endothelial Dysfunction and Endothelial to Mesenchymal Transition in the Pathogenesis of Pulmonary Hypertension Due to Chronic Hemolysis. Int J Mol Sci 2022; 23:ijms23094763. [PMID: 35563154 PMCID: PMC9104708 DOI: 10.3390/ijms23094763] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 01/08/2023] Open
Abstract
Pulmonary hypertension in sickle cell disease is an independent predictor of mortality, yet the pathogenesis of pulmonary vascular disease in chronic hemolytic disorders remains incompletely understood and treatment options are limited primarily to supportive care. The release of extracellular hemoglobin has been implicated in the development of pulmonary hypertension, and in this study we explored the direct effects of hemin, the oxidized moiety of heme, on the pulmonary artery endothelium. We found that low dose hemin exposure leads to significantly increased endothelial cell proliferation, migration, and cytokine release as markers of endothelial dysfunction. Protein expression changes in our pulmonary artery endothelial cells showed upregulation of mesenchymal markers after hemin treatment in conjunction with a decrease in endothelial markers. Endothelial to mesenchymal transition (EndoMT) resulting from hemin exposure was further confirmed by showing upregulation of the transcription factors SNAI1 and SLUG, known to regulate EndoMT. Lastly, given the endothelial dysfunction and phenotypic transition observed, the endothelial cytoskeleton was considered a potential novel target. Inhibiting myosin light chain kinase, to prevent phosphorylation of myosin light chain and cytoskeletal contraction, attenuated hemin-induced endothelial hyper-proliferation, migration, and cytokine release. The findings in this study implicate hemin as a key inducer of endothelial dysfunction through EndoMT, which may play an important role in pulmonary vascular remodeling during the development of pulmonary hypertension in chronic hemolytic states.
Collapse
|
34
|
Zhang Y, Zhang J, Fu Z. Molecular hydrogen is a potential protective agent in the management of acute lung injury. Mol Med 2022; 28:27. [PMID: 35240982 PMCID: PMC8892414 DOI: 10.1186/s10020-022-00455-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome, which is a more severe form of ALI, are life-threatening clinical syndromes observed in critically ill patients. Treatment methods to alleviate the pathogenesis of ALI have improved to a great extent at present. Although the efficacy of these therapies is limited, their relevance has increased remarkably with the ongoing pandemic caused by the novel coronavirus disease 2019 (COVID-19), which causes severe respiratory distress syndrome. Several studies have demonstrated the preventive and therapeutic effects of molecular hydrogen in the various diseases. The biological effects of molecular hydrogen mainly involve anti-inflammation, antioxidation, and autophagy and cell death modulation. This review focuses on the potential therapeutic effects of molecular hydrogen on ALI and its underlying mechanisms and aims to provide a theoretical basis for the clinical treatment of ALI and COVID-19.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004 People’s Republic of China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004 People’s Republic of China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004 People’s Republic of China
| |
Collapse
|
35
|
Zhang X, Monnoye M, Mariadassou M, Beguet-Crespel F, Lapaque N, Heberden C, Douard V. Glucose but Not Fructose Alters the Intestinal Paracellular Permeability in Association With Gut Inflammation and Dysbiosis in Mice. Front Immunol 2021; 12:742584. [PMID: 35024040 PMCID: PMC8744209 DOI: 10.3389/fimmu.2021.742584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/11/2021] [Indexed: 01/14/2023] Open
Abstract
A causal correlation between the metabolic disorders associated with sugar intake and disruption of the gastrointestinal (GI) homeostasis has been suggested, but the underlying mechanisms remain unclear. To unravel these mechanisms, we investigated the effect of physiological amounts of fructose and glucose on barrier functions and inflammatory status in various regions of the GI tract and on the cecal microbiota composition. C57BL/6 mice were fed chow diet and given 15% glucose or 15% fructose in drinking water for 9 weeks. We monitored caloric intake, body weight, glucose intolerance, and adiposity. The intestinal paracellular permeability, cytokine, and tight junction protein expression were assessed in the jejunum, cecum, and colon. In the cecum, the microbiota composition was determined. Glucose-fed mice developed a marked increase in total adiposity, glucose intolerance, and paracellular permeability in the jejunum and cecum while fructose absorption did not affect any of these parameters. Fructose-fed mice displayed increased circulation levels of IL6. In the cecum, both glucose and fructose intake were associated with an increase in Il13, Ifnγ, and Tnfα mRNA and MLCK protein levels. To clarify the relationships between monosaccharides and barrier function, we measured the permeability of Caco-2 cell monolayers in response to IFNγ+TNFα in the presence of glucose or fructose. In vitro, IFNγ+TNFα-induced intestinal permeability increase was less pronounced in response to fructose than glucose. Mice treated with glucose showed an enrichment of Lachnospiracae and Desulfovibrionaceae while the fructose increased relative abundance of Lactobacillaceae. Correlations between pro-inflammatory cytokine gene expression and bacterial abundance highlighted the potential role of members of Desulfovibrio and Lachnospiraceae NK4A136 group genera in the inflammation observed in response to glucose intake. The increase in intestinal inflammation and circulating levels of IL6 in response to fructose was observed in the absence of intestinal permeability modification, suggesting that the intestinal permeability alteration does not precede the onset of metabolic outcome (low-grade inflammation, hyperglycemia) associated with chronic fructose consumption. The data also highlight the deleterious effects of glucose on gut barrier function along the GI tract and suggest that Desulfovibrionaceae and Lachnospiraceae play a key role in the onset of GI inflammation in response to glucose.
Collapse
Affiliation(s)
- Xufei Zhang
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| | - Magali Monnoye
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| | | | | | - Nicolas Lapaque
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| | - Christine Heberden
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| | - Veronique Douard
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| |
Collapse
|
36
|
Koch SR, Stark RJ. Cell penetrating peptides coupled to an endothelial nitric oxide synthase sequence alter endothelial permeability. Tissue Barriers 2021; 10:2017226. [PMID: 34923902 DOI: 10.1080/21688370.2021.2017226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Delivery of cargo to cells through the use of cell-penetrating peptide (CPP) sequences is an area of rich investigation for targeted therapeutics. Specific to the endothelium, the layer of cells that cover every blood vessel in the body, the loss or alteration of a key enzyme, endothelial nitric oxide synthase (eNOS), is known to contribute to endothelial health during severe, infectious challenge. While the beneficial effects of eNOS are often thought to be mediated through the generation of nitric oxide, some protection is theorized to be through eNOS binding to regulatory pathways via a pentabasic RRKRK motif. We hypothesized that delivery of the eNOS-RRKRK peptide sequence using common CPPs would allow protection against gram-negative lipopolysaccharide (LPS). Combination of the eNOS-RRKRK sequence to the CPP antennapedia (AP) reduced the impact of LPS-induced permeability in cultured human microvascular endothelial cells (HMVECs) as measured by transendothelial electrical resistance (TEER). There was also a modest reduction in cytokine production, however it was observed that AP alone significantly impaired LPS-induced endothelial permeability and cytokine production. In comparison, the CPP trans-activator of transcription (TAT) did not significantly alter endothelial inflammation by itself. When TAT was coupled to the eNOS-RRKRK sequence, protection against LPS-induced permeability was still demonstrated, however cytokine production was not reduced. These data demonstrate that the RRKRK sequence of eNOS can offer some NO-independent protection against LPS-mediated endothelial inflammation, however the degree of protection is highly dependent on the type of CPP utilized for cargo delivery.
Collapse
Affiliation(s)
- Stephen R Koch
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ryan J Stark
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
37
|
Rodenburg WS, van Buul JD. Rho GTPase signalling networks in cancer cell transendothelial migration. VASCULAR BIOLOGY 2021; 3:R77-R95. [PMID: 34738075 PMCID: PMC8558887 DOI: 10.1530/vb-21-0008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/21/2023]
Abstract
Rho GTPases are small signalling G-proteins that are central regulators of cytoskeleton dynamics, and thereby regulate many cellular processes, including the shape, adhesion and migration of cells. As such, Rho GTPases are also essential for the invasive behaviour of cancer cells, and thus involved in several steps of the metastatic cascade, including the extravasation of cancer cells. Extravasation, the process by which cancer cells leave the circulation by transmigrating through the endothelium that lines capillary walls, is an essential step for metastasis towards distant organs. During extravasation, Rho GTPase signalling networks not only regulate the transmigration of cancer cells but also regulate the interactions between cancer and endothelial cells and are involved in the disruption of the endothelial barrier function, ultimately allowing cancer cells to extravasate into the underlying tissue and potentially form metastases. Thus, targeting Rho GTPase signalling networks in cancer may be an effective approach to inhibit extravasation and metastasis. In this review, the complex process of cancer cell extravasation will be discussed in detail. Additionally, the roles and regulation of Rho GTPase signalling networks during cancer cell extravasation will be discussed, both from a cancer cell and endothelial cell point of view.
Collapse
Affiliation(s)
- Wessel S Rodenburg
- Molecular Cell Biology Lab at Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Jaap D van Buul
- Molecular Cell Biology Lab at Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands.,Leeuwenhoek Centre for Advanced Microscopy, Section Molecular Cytology at Swammerdam Institute for Life Sciences at University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
38
|
Li J, Xu X, Liu C, Xi X, Wang Y, Wu X, Li H. miR-181a-2-3p Stimulates Gastric Cancer Progression via Targeting MYLK. Front Bioeng Biotechnol 2021; 9:687915. [PMID: 34733825 PMCID: PMC8558245 DOI: 10.3389/fbioe.2021.687915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022] Open
Abstract
Background: The abnormal expression of miRNAs facilitates tumorigenesis and development. miR-181a-2-3p is up-regulated in various cancers, yet its mechanism in gastric cancer (GC) remains elusive. Objective: To understand mechanism of miR-181a-2-3p stimulating GC cell progression via targeting Myosin Light Chain Kinase (MYLK) expression. Methods: Downstream genes of miRNA of interest were predicted in TargetScan and miRTarBase. qRT-PCR and western blot were applied to assess miR-181a-2-3p and MYLK expression in GC cells and normal cells. Dual-luciferase and RIP assays were completed to assess binding of miR-181a-2-3p and MYLK. Cell Counting Kit-8 (CCK-8) assay was conducted for detecting viability of AGS and SNU-1 cells, while Transwell tested migratory and invasive abilities of cells. Nude mouse transplantation tumor experiment was performed to assay tumor growth in vivo. Results: miR-181a-2-3p was notably increased in human GC cell lines, while MYLK was remarkably down-regulated. RIP and dual-luciferase assay disclosed that miR-181a-2-3p targeted MYLK and repressed MYLK. Forced miR-181a-2-3p expression fostered GC cell proliferation, invasion, migration, and fostered tumor growth in vivo. Promoting effect of miR-181a-2-3p on GC cells was reversed when miR-181a-2-3p and MYLK were simultaneously overexpressed. Conclusion: miR-181a-2-3p facilitated GC cell progression by targeting MYLK, and it may be a pivotal prognostic biomarker in investigating molecular mechanism of GC.
Collapse
Affiliation(s)
- Jianjie Li
- Department of Gastrointestinal Surgery, Tangshan Central Hospital, Tangshan, China
| | - Xiaoyue Xu
- Department of Gastrointestinal Surgery, Tangshan Gongren Hospital, Tangshan, China
| | - Chunhui Liu
- Department of General Surgery, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Xiaoxue Xi
- Department of Gastrointestinal Surgery, Tangshan Central Hospital, Tangshan, China
| | - Yang Wang
- Department of Gastrointestinal Surgery, Tangshan Central Hospital, Tangshan, China
| | - Xiaotang Wu
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Hua Li
- Department of Gastrointestinal Surgery, Tangshan Gongren Hospital, Tangshan, China
| |
Collapse
|
39
|
Inhibition of Soluble Epoxide Hydrolase Is Protective against the Multiomic Effects of a High Glycemic Diet on Brain Microvascular Inflammation and Cognitive Dysfunction. Nutrients 2021; 13:nu13113913. [PMID: 34836168 PMCID: PMC8622784 DOI: 10.3390/nu13113913] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Diet is a modifiable risk factor for cardiovascular disease (CVD) and dementia, yet relatively little is known about the effect of a high glycemic diet (HGD) on the brain’s microvasculature. The objective of our study was to determine the molecular effects of an HGD on hippocampal microvessels and cognitive function and determine if a soluble epoxide hydrolase (sEH) inhibitor (sEHI), known to be vasculoprotective and anti-inflammatory, modulates these effects. Wild type male mice were fed a low glycemic diet (LGD, 12% sucrose/weight) or an HGD (34% sucrose/weight) with/without the sEHI, trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB), for 12 weeks. Brain hippocampal microvascular gene expression was assessed by microarray and data analyzed using a multi-omic approach for differential expression of protein and non-protein-coding genes, gene networks, functional pathways, and transcription factors. Global hippocampal microvascular gene expression was fundamentally different for mice fed the HGD vs. the LGD. The HGD response was characterized by differential expression of 608 genes involved in cell signaling, neurodegeneration, metabolism, and cell adhesion/inflammation/oxidation effects reversible by t-AUCB and hence sEH inhibitor correlated with protection against Alzheimer’s dementia. Ours is the first study to demonstrate that high dietary glycemia contributes to brain hippocampal microvascular inflammation through sEH.
Collapse
|
40
|
Liu J, Dean DA. Gene transfer of MRCKα rescues lipopolysaccharide-induced acute lung injury by restoring alveolar capillary barrier function. Sci Rep 2021; 11:20862. [PMID: 34675326 PMCID: PMC8531330 DOI: 10.1038/s41598-021-99897-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023] Open
Abstract
Acute Lung Injury/Acute Respiratory Distress Syndrome (ALI/ARDS) is characterized by alveolar edema accumulation with reduced alveolar fluid clearance (AFC), alveolar-capillary barrier disruption, and substantial inflammation, all leading to acute respiratory failure. Enhancing AFC has long been considered one of the primary therapeutic goals in gene therapy treatments for ARDS. We previously showed that electroporation-mediated gene delivery of the Na+, K+-ATPase β1 subunit not only increased AFC, but also restored alveolar barrier function through upregulation of tight junction proteins, leading to treatment of LPS-induced ALI in mice. We identified MRCKα as an interaction partner of β1 which mediates this upregulation in cultured alveolar epithelial cells. In this study, we investigate whether electroporation-mediated gene transfer of MRCKα to the lungs can attenuate LPS-induced acute lung injury in vivo. Compared to mice that received a non-expressing plasmid, those receiving the MRCKα plasmid showed attenuated LPS-increased pulmonary edema and lung leakage, restored tight junction protein expression, and improved overall outcomes. Interestingly, gene transfer of MRCKα did not alter AFC rates. Studies using both cultured microvascular endothelial cells and mice suggest that β1 and MRCKα upregulate junctional complexes in both alveolar epithelial and capillary endothelial cells, and that one or both barriers may be positively affected by our approach. Our data support a model of treatment for ALI/ARDS in which improvement of alveolar-capillary barrier function alone may be of more benefit than improvement of alveolar fluid clearance.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA.,Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - David A Dean
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA. .,Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
41
|
Dubrovskyi O, Hasten E, Dudek SM, Flavin MT, Chan LLY. Development of an Image-Based HCS-Compatible Method for Endothelial Barrier Function Assessment. SLAS DISCOVERY 2021; 26:1079-1090. [PMID: 34269109 DOI: 10.1177/24725552211030900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The recent renascence of phenotypic drug discovery (PDD) is catalyzed by its ability to identify first-in-class drugs and deliver results when the exact molecular mechanism is partially obscure. Acute respiratory distress syndrome (ARDS) is a severe, life-threatening condition with a high mortality rate that has increased in frequency due to the COVID-19 pandemic. Despite decades of laboratory and clinical study, no efficient pharmacological therapy for ARDS has been found. An increase in endothelial permeability is the primary event in ARDS onset, causing the development of pulmonary edema that leads to respiratory failure. Currently, the detailed molecular mechanisms regulating endothelial permeability are poorly understood. Therefore, the use of the PDD approach in the search for efficient ARDS treatment can be more productive than classic target-based drug discovery (TDD), but its use requires a new cell-based assay compatible with high-throughput (HTS) and high-content (HCS) screening. Here we report the development of a new plate-based image cytometry method to measure endothelial barrier function. The incorporation of image cytometry in combination with digital image analysis substantially decreases assay variability and increases the signal window. This new method simultaneously allows for rapid measurement of cell monolayer permeability and cytological analysis. The time-course of permeability increase in human pulmonary artery endothelial cells (HPAECs) in response to the thrombin and tumor necrosis factor α treatment correlates with previously published data obtained by transendothelial resistance (TER) measurements. Furthermore, the proposed image cytometry method can be easily adapted for HTS/HCS applications.
Collapse
Affiliation(s)
- Oleksii Dubrovskyi
- UICentre, College of Pharmacy, University of Illinois in Chicago, Chicago, IL, USA
| | - Erica Hasten
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep, and Allergy, College of Medicine, University of Illinois in Chicago, Chicago, IL, USA
| | - Michael T Flavin
- UICentre, College of Pharmacy, University of Illinois in Chicago, Chicago, IL, USA
| | - Leo Li-Ying Chan
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| |
Collapse
|
42
|
Vascular consequences of inflammation: a position statement from the ESH Working Group on Vascular Structure and Function and the ARTERY Society. J Hypertens 2021; 38:1682-1698. [PMID: 32649623 DOI: 10.1097/hjh.0000000000002508] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
: Inflammation is a physiological response to aggression of pathogenic agents aimed at eliminating the aggressor agent and promoting healing. Excessive inflammation, however, may contribute to tissue damage and an alteration of arterial structure and function. Increased arterial stiffness is a well recognized cardiovascular risk factor independent of blood pressure levels and an intermediate endpoint for cardiovascular events. In the present review, we discuss immune-mediated mechanisms by which inflammation can influence arterial physiology and lead to vascular dysfunction such as atherosclerosis and arterial stiffening. We also show that acute inflammation predisposes the vasculature to arterial dysfunction and stiffening, and alteration of endothelial function and that chronic inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease and psoriasis are accompanied by profound arterial dysfunction which is proportional to the severity of inflammation. Current findings suggest that treatment of inflammation by targeted drugs leads to regression of arterial dysfunction. There is hope that these treatments will improve outcomes for patients.
Collapse
|
43
|
Ottolini M, Sonkusare SK. The Calcium Signaling Mechanisms in Arterial Smooth Muscle and Endothelial Cells. Compr Physiol 2021; 11:1831-1869. [PMID: 33792900 PMCID: PMC10388069 DOI: 10.1002/cphy.c200030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The contractile state of resistance arteries and arterioles is a crucial determinant of blood pressure and blood flow. Physiological regulation of arterial contractility requires constant communication between endothelial and smooth muscle cells. Various Ca2+ signals and Ca2+ -sensitive targets ensure dynamic control of intercellular communications in the vascular wall. The functional effect of a Ca2+ signal on arterial contractility depends on the type of Ca2+ -sensitive target engaged by that signal. Recent studies using advanced imaging methods have identified the spatiotemporal signatures of individual Ca2+ signals that control arterial and arteriolar contractility. Broadly speaking, intracellular Ca2+ is increased by ion channels and transporters on the plasma membrane and endoplasmic reticular membrane. Physiological roles for many vascular Ca2+ signals have already been confirmed, while further investigation is needed for other Ca2+ signals. This article focuses on endothelial and smooth muscle Ca2+ signaling mechanisms in resistance arteries and arterioles. We discuss the Ca2+ entry pathways at the plasma membrane, Ca2+ release signals from the intracellular stores, the functional and physiological relevance of Ca2+ signals, and their regulatory mechanisms. Finally, we describe the contribution of abnormal endothelial and smooth muscle Ca2+ signals to the pathogenesis of vascular disorders. © 2021 American Physiological Society. Compr Physiol 11:1831-1869, 2021.
Collapse
Affiliation(s)
- Matteo Ottolini
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Swapnil K Sonkusare
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.,Department of Molecular Physiology & Biological Physics, University of Virginia, Charlottesville, Virginia, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
44
|
Li Y, Suo L, Fu Z, Li G, Zhang J. Pivotal role of endothelial cell autophagy in sepsis. Life Sci 2021; 276:119413. [PMID: 33794256 DOI: 10.1016/j.lfs.2021.119413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Sepsis is a fatal organ dysfunction resulting from a disordered host response to infection. Endothelial cells (ECs) are usually the primary targets of inflammatory mediators in sepsis; damage to ECs plays a pivotal part in vital organ failure. In recent studies, autophagy was suggested to play a critical role in the ECs injury although the mechanisms by which ECs are injured in sepsis are not well elucidated. Autophagy is a highly conserved catabolic process that includes sequestrating plasma contents and transporting cargo to lysosomes for recycling the vital substrates required for metabolism. This pathway also counteracts microbial invasion to balance and retain homeostasis, especially during sepsis. Increasing evidence indicates that autophagy is closely associated with endothelial function. The role of autophagy in sepsis may or may not be favorable depending upon conditions. In the present review, the current knowledge of autophagy in the process of sepsis and its influence on ECs was evaluated. In addition, the potential of targeting EC autophagy for clinical treatment of sepsis was discussed.
Collapse
Affiliation(s)
- Yuexian Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, PR China
| | - Liangyuan Suo
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shengjing Hospital of China Medical University, No. 44 Xiaoheyan Road, Shengyang, Liaoning 110042, PR China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, PR China
| | - Guoqing Li
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning 116001, PR China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
45
|
Zhong J, Yu R, Zhou Q, Liu P, Liu Z, Bian Y. Naringenin prevents TNF-α-induced gut-vascular barrier disruption associated with inhibiting the NF-κB-mediated MLCK/p-MLC and NLRP3 pathways. Food Funct 2021; 12:2715-2725. [PMID: 33667286 DOI: 10.1039/d1fo00155h] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microvasculature endothelium accurately regulates the passage of molecules across the gut-vascular barrier (GVB), which plays an essential role in intestinal immunity. Naringenin is reported to have therapeutic potential against several intestinal disorders. However, the effect of naringenin on GVB disruption has been rarely studied. This study aims to investigate the effect of naringenin on GVB function and the potential mechanism. In the present study, the in vitro GVB disruption of rat intestinal microvascular endothelial cells (RIMVEC) was induced by 50 ng mL-1 of tumor necrosis factor-α (TNF-α). The integrity of the in vitro GVB was determined by Evans blue (EB)-albumin efflux assay and trans-endothelial electrical resistance (TER). Meanwhile, the expression of tight junction proteins and the related NF-κB, MLCK/p-MLC and NLRP3 pathways were determined using enzyme-linked immunosorbent assay (ELISA), real-time quantitative polymerase chain reaction (RT-qPCR), western blot analysis and immunofluorescence. The results show that naringenin (100 μM) inhibits TNF-α-induced interleukin (IL)-6 hypersecretion, alleviates GVB disruption and mitigates the change in the tight junction protein expression pattern. Naringenin inhibits the GVB-disruption-associated activation of the MLCK/p-MLC system and TLR4/NF-κB/NLRP3 pathways. Furthermore, naringenin shows a similar effect to that of NF-κB inhibitor Bay 11-7082 in reducing the TNF-α-induced activation of NLRP3, p-MLC and secondary GVB disruption. The results suggest that naringenin evidently alleviates TNF-α-induced in vitro GVB disruption via the maintenance of a tight junction protein pattern, partly with the inhibition of the NF-κB-mediated MLCK/p-MLC and NLRP3 pathway activation.
Collapse
Affiliation(s)
- Jia Zhong
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China.
| | | | | | | | | | | |
Collapse
|
46
|
Kunimura K, Miki S, Takashima M, Suzuki JI. S-1-propenylcysteine improves TNF-α-induced vascular endothelial barrier dysfunction by suppressing the GEF-H1/RhoA/Rac pathway. Cell Commun Signal 2021; 19:17. [PMID: 33588881 PMCID: PMC7883441 DOI: 10.1186/s12964-020-00692-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022] Open
Abstract
Background Vascular endothelial barrier function is maintained by cell-to-cell junctional proteins and contributes to vascular homeostasis. Various risk factors such as inflammation disrupt barrier function through down-regulation of these proteins and promote vascular diseases such as atherosclerosis. Previous studies have demonstrated that aged garlic extract (AGE) and its sulfur-containing constituents exert the protective effects against several vascular diseases such as atherosclerosis. In this study, we examined whether AGE and its sulfur-containing constituents improve the endothelial barrier dysfunction elicited by a pro-inflammatory cytokine, Tumor-necrosis factor-α (TNF-α), and explored their mode of action on TNF-α signaling pathway. Methods Human umbilical vein endothelial cells (HUVECs) were treated with test substances in the presence of TNF-α for various time periods. The endothelial permeability was measured by using a transwell permeability assay. The localization of cell-to-cell junctional proteins and actin cytoskeletons were visualized by immunostaining. RhoA and Rac activities were assessed by using GTP-binding protein pulldown assay. Gene and protein expression levels of signaling molecules were analyzed by real-time PCR and western blotting, respectively. Results We found that AGE and its major sulfur-containing constituent, S-1-propenylcysteine (S1PC), reduced hyperpermeability elicited by TNF-α in HUVECs. In addition, S1PC inhibited TNF-α-induced production of myosin light chain (MLC) kinase and inactivation of MLC phosphatase through the suppression of the Rac and RhoA signaling pathways, respectively, which resulted in the dephosphorylation of MLC2, a key factor of actin remodeling. Moreover, S1PC inhibited the phosphorylation and activation of guanine nucleotide exchange factor-H1 (GEF-H1), a common upstream key molecule and activator of Rac and RhoA. These effects of S1PC were accompanied by its ability to prevent the disruption of junctional proteins on the cell–cell contact regions and the increase of actin stress fibers induced by TNF-α. Conclusions The present study suggested that AGE and its major constituent, S1PC, improve endothelial barrier disruption through the protection of junctional proteins on plasma membrane.![]() Video abstract
Collapse
Affiliation(s)
- Kayo Kunimura
- Central Research Laboratory, Wakunaga Pharmaceutical Co., Ltd., 624 Shimokotachi, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan
| | - Satomi Miki
- Central Research Laboratory, Wakunaga Pharmaceutical Co., Ltd., 624 Shimokotachi, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan
| | - Miyuki Takashima
- Central Research Laboratory, Wakunaga Pharmaceutical Co., Ltd., 624 Shimokotachi, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan
| | - Jun-Ichiro Suzuki
- Central Research Laboratory, Wakunaga Pharmaceutical Co., Ltd., 624 Shimokotachi, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan.
| |
Collapse
|
47
|
Chatterjee V, Yang X, Ma Y, Wu MH, Yuan SY. Extracellular vesicles: new players in regulating vascular barrier function. Am J Physiol Heart Circ Physiol 2020; 319:H1181-H1196. [PMID: 33035434 PMCID: PMC7792704 DOI: 10.1152/ajpheart.00579.2020] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/21/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) have attracted rising interests in the cardiovascular field not only because they serve as serological markers for circulatory disorders but also because they participate in important physiological responses to stress and inflammation. In the circulation, these membranous vesicles are mainly derived from blood or vascular cells, and they carry cargos with distinct molecular signatures reflecting the origin and activation state of parent cells that produce them, thus providing a powerful tool for diagnosis and prognosis of pathological conditions. Functionally, circulating EVs mediate tissue-tissue communication by transporting bioactive cargos to local and distant sites, where they directly interact with target cells to alter their function. Recent evidence points to the critical contributions of EVs to the pathogenesis of vascular endothelial barrier dysfunction during inflammatory response to injury or infection. In this review, we provide a brief summary of the current knowledge on EV biology and advanced techniques in EV isolation and characterization. This is followed by a discussion focusing on the role and mechanisms of EVs in regulating blood-endothelium interactions and vascular permeability during inflammation. We conclude with a translational perspective on the diagnostic and therapeutic potential of EVs in vascular injury or infectious diseases, such as COVID-19.
Collapse
Affiliation(s)
- Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Mack H Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| |
Collapse
|
48
|
Uddin MA, Akhter MS, Kubra KT, Barabutis N. P53 deficiency potentiates LPS-Induced acute lung injury in vivo. Curr Res Physiol 2020; 3:30-33. [PMID: 32724900 PMCID: PMC7386399 DOI: 10.1016/j.crphys.2020.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS) represent a significant cause of morbidity and mortality in critically ill hospitalized patients. Emerging evidence suggest that the expression levels of P53 in the lungs are associated with the supportive effects of heat shock protein 90 inhibitors and growth hormone releasing hormone antagonists in the endothelium. In the current study, we employed an in vivo model of intratracheal administration of lipopolysaccharides (LPS)-induced ALI to investigate the role of P53 in counteracting LPS-induced lung inflammatory responses. In wild type mice, LPS induced the expression of IL-1α, IL-1β, and TNFα in the lungs, increased bronchoalveolar lavage fluid protein concentration, and activated cofilin. Remarkably; those responses were more potent in P53 knockout mice, suggesting the crucial role of P53 in orchestrating rigorous endothelial defenses against inflammatory stimuli. The present study supports previous endeavors on the protective role of P53 against lung inflammatory disease, and enrich our knowledge on the development of medical countermeasures against ARDS.
Collapse
Affiliation(s)
| | | | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| |
Collapse
|
49
|
Huang Y, Chen S, Luo Y, Han Z. Crosstalk between Inflammation and the BBB in Stroke. Curr Neuropharmacol 2020; 18:1227-1236. [PMID: 32562523 PMCID: PMC7770647 DOI: 10.2174/1570159x18666200620230321] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/23/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
The blood-brain barrier (BBB), which is located at the interface between the central nervous system (CNS) and the circulatory system, is instrumental in establishing and maintaining the microenvironmental homeostasis of the CNS. BBB disruption following stroke promotes inflammation by enabling leukocytes, T cells and other immune cells to migrate via both the paracellular and transcellular routes across the BBB and to infiltrate the CNS parenchyma. Leukocytes promote the removal of necrotic tissues and neuronal recovery, but they also aggravate BBB injury and exacerbate stroke outcomes, especially after late reperfusion. Moreover, the swelling of astrocyte endfeet is thought to contribute to the ‘no-reflow’ phenomenon observed after cerebral ischemia, that is, blood flow cannot return to capillaries after recanalization of large blood vessels. Pericyte recruitment and subsequent coverage of endothelial cells (ECs) alleviate BBB disruption, which causes the transmigration of inflammatory cells across the BBB to be a dynamic process. Furthermore, interneurons and perivascular microglia also make contacts with ECs, astrocytes and pericytes to establish the neurovascular unit. BBB-derived factors after cerebral ischemia triggered microglial activation. During the later stage of injury, microglia remain associated with brain ECs and contribute to repair mechanisms, including postinjury angiogenesis, by acquiring a protective phenotype, which possibly occurs through the release of microglia-derived soluble factors. Taken together, we reviewed dynamic and bidirectional crosstalk between inflammation and the BBB during stroke and revealed targeted interventions based on the crosstalk between inflammation and the BBB, which will provide novel insights for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Yuyou Huang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical
University, Beijing, China
| | - Shengpan Chen
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical
University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical
University, Beijing, China,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Ziping Han
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical
University, Beijing, China,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
50
|
Zhang L, Liu X, Gao L, Ji Y, Wang L, Zhang C, Dai L, Liu J, Ji Z. Activation of Piezo1 by ultrasonic stimulation and its effect on the permeability of human umbilical vein endothelial cells. Biomed Pharmacother 2020; 131:110796. [PMID: 33152952 DOI: 10.1016/j.biopha.2020.110796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 01/01/2023] Open
Abstract
The acoustic radiation forces produced by ultrasonic stimulation induce shear stress on objects in the acoustic field. Piezo1, a mechanosensitive ion channel protein that is expressed on the plasma membranes of vertebrate cells, can sense shear stress and transduce it into downstream signaling. In this study, we examined the sensitivity of Piezo1 to ultrasonic stimulation and assessed its downstream biological functions in human umbilical vein endothelial cells (HUVECs). Ultrasonic stimulation using a stimulation power of 0.2 W and a frequency of 1 MHz for 10 s did not induce cell damage. However, ultrasonic stimulation induced an influx of calcium ions, which increased with an increase in the stimulation duration. Knockdown of Piezo1 protein decreased the influx of calcium ions during ultrasonic stimulation, which demonstrated that Piezo1 may be activated by the shear stress produced by ultrasonic stimulation. The influx of calcium ions in response to ultrasonic stimulation could be modulated by the Piezo1 protein level. Additionally, ultrasonic stimulation reduced the levels of downstream factors such as MLCK and ATP, which are involved in the Ca2+/CaM/MLCK pathway, by suppressing Piezo1. As the Ca2+/CaM/MLCK pathway influences the permeability of the cell membrane, the internalization of FITC-Dextran into cells under ultrasonic stimulation was validated. Ultrasonic stimulation was demonstrated to promote the increase in cell permeability, and the suppression of Piezo1 was shown to induce the decrease in cell permeability. Therefore, this study shows that ultrasonic stimulation may modulate the permeability of the membrane of HUVECs by modulating the expression of Piezo1 protein.
Collapse
Affiliation(s)
- Liguo Zhang
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450007, China; Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450052, China
| | - Xiaojie Liu
- School of Basic Medical Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, China
| | - Lu Gao
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450007, China; Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450052, China
| | - Yun Ji
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450007, China; Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450052, China
| | - Lulu Wang
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450007, China; Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450052, China
| | - Can Zhang
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450007, China; Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450052, China
| | - Liping Dai
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450007, China; Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450052, China
| | - Jingjing Liu
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450007, China; Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450052, China
| | - Zhenyu Ji
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450007, China; Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450052, China.
| |
Collapse
|