1
|
Fu J, Mansfield C, Diakonov I, Judina A, Delahaye M, Bhogal N, Sanchez-Alonso JL, Kamp T, Gorelik J. Stretch regulation of β2-Adrenoceptor signalling in cardiomyocytes requires caveolae. Cardiovasc Res 2025; 121:440-453. [PMID: 39945052 PMCID: PMC12038227 DOI: 10.1093/cvr/cvae265] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/25/2024] [Accepted: 11/03/2024] [Indexed: 04/30/2025] Open
Abstract
AIMS Caveolin-3 is essential for the formation of caveolae in cardiomyocytes. Caveolar microdomains have been shown to regulate the distribution of signalling proteins such as beta-adrenoceptors (βAR) and may act as membrane reserves to protect the cell from damage during the mechanical stretch. Myocardial stretch occurs during haemodynamic overload and may be normal (e.g. exercise) or pathological (e.g. heart failure); therefore, it is important to understand the effect of stretch on signalling pathways associated with mechanosensitive structures, such as caveolae. In this study, we investigate the role of caveolae in regulating the effect of stretch on βAR-signalling. METHODS AND RESULTS We used osmotic swelling of isolated rat ventricular cardiomyocytes as a method to stretch the cell membrane and investigate the effect of βAR stimulation on cyclic adenosine monophosphate (cAMP) activity and contractility. βAR response was measured using a Förster Resonance Energy Transfer reporter for the second messenger cAMP and using CytoCypher for the measurement of cell contractility. β1AR and β2AR blockers were used to selectively allow stimulation of β2AR and β1AR, respectively. We also investigated the effect of stretch on βAR response to isoprenaline stimulation in left ventricular trabeculae dissected from control and cardiac-specific caveolin-3 knock-out mice (Cav3KO). Stretching trabeculae produces increased baseline adenylyl cyclase activity and a higher level of cAMP and a greater β2AR-induced positive inotropy after stimulation of the β2AR but not β1AR, by isoprenaline. Similar findings were confirmed for isolated myocytes subjected to hypoosmotic conditions. In isolated cardiomyocytes, caveolae depletion using methyl-beta-cyclodextrin or Cav3KO abolished the increase in β2AR response induced by stretch. CONCLUSION Our study reveals a stretch-regulation of the β2AR signalling pathway, which requires functional caveolae. This indicates caveolae are mechanosensitive membrane domains that undergo structural and functional changes in response to stretch, thus leading to mechanical regulation of caveolae-associated signalling pathways.
Collapse
MESH Headings
- Animals
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Caveolae/metabolism
- Caveolae/drug effects
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/drug effects
- Caveolin 3/genetics
- Caveolin 3/metabolism
- Caveolin 3/deficiency
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-1/drug effects
- Receptors, Adrenergic, beta-1/genetics
- Mechanotransduction, Cellular/drug effects
- Cyclic AMP/metabolism
- Male
- Mice, Knockout
- Myocardial Contraction/drug effects
- Mice
- Adrenergic beta-2 Receptor Agonists/pharmacology
- Cells, Cultured
- Rats
- Signal Transduction
- Second Messenger Systems
- Isolated Heart Preparation
- Stress, Mechanical
- Isoproterenol/pharmacology
- Mice, Inbred C57BL
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Jiarong Fu
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Catherine Mansfield
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Ivan Diakonov
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Aleksandra Judina
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Matthew Delahaye
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Navneet Bhogal
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Jose L Sanchez-Alonso
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Timothy Kamp
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, 1111 Highland Avenue, Madison, WI 53792, USA
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
2
|
Voelker TL, Westhoff M, del Villar SG, Thai PN, Chiamvimonvat N, Nieves-Cintrón M, Dickson EJ, Dixon RE. Phosphoinositide Depletion and Compensatory β-adrenergic Signaling in Angiotensin II-Induced Heart Disease: Protection Through PTEN Inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639781. [PMID: 40060428 PMCID: PMC11888262 DOI: 10.1101/2025.02.23.639781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Contractile dysfunction, hypertrophy, and cell death during heart failure are linked to altered Ca2+ handling, and elevated levels of the hormone angiotensin II (AngII), which signals through Gq-coupled AT1 receptors, initiating hydrolysis of PIP2. Chronic elevation of AngII contributes to cardiac pathology, but the mechanisms linking sustained AngII signaling to heart dysfunction remain incompletely understood. Here, we demonstrate that chronic AngII exposure profoundly disrupts cardiac phosphoinositide homeostasis, triggering a cascade of cellular adaptations that ultimately impair cardiac function. Using in vivo AngII infusion combined with phospholipid mass spectrometry, super-resolution microscopy, and functional analyses, we show that sustained AngII signaling reduces PI(4,5)P2 levels and triggers extensive redistribution of CaV1.2 channels from t-tubules to various endosomal compartments. Despite this t-tubular channel loss, enhanced sympathetic drive maintains calcium currents and transients through increased channel phosphorylation via PKA and CaMKII pathways. However, this compensation proves insufficient as cardiac function progressively declines, marked by pathological hypertrophy, t-tubule disruption, and diastolic dysfunction. Notably, we identify depletion of PI(3,4,5)P3 as a critical mediator of AngII-induced cardiac pathology. While preservation of PI(3,4,5)P3 levels through PTEN inhibition did not prevent cellular remodeling or calcium handling changes, it protected against cardiac dysfunction, suggesting effects primarily through reduction of fibrosis. These findings reveal a complex interplay between phosphoinositide signaling, ion channel trafficking, and sympathetic activation in AngII-induced cardiac pathology. Moreover, they establish maintenance of PI(3,4,5)P3 as a promising therapeutic strategy for hypertensive heart disease and as a potential protective adjunct therapy during clinical AngII administration.
Collapse
Affiliation(s)
- Taylor L. Voelker
- Dept. of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA; present address: Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Maartje Westhoff
- Dept. of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA
| | - Silvia G. del Villar
- Dept. of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA
| | - Phung N. Thai
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; present address: David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Dept. of Pharmacology, University of California, Davis, CA, 95616, USA; Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA; present address: Department of Basic Medical Sciences and Translational Cardiovascular Research Center, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | | | - Eamonn J. Dickson
- Dept. of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA
| | - Rose E. Dixon
- Dept. of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
3
|
Wang J, Chen B, Shi Q, Ciampa G, Zhao W, Zhang G, Weiss RM, Peng T, Hall DD, Song LS. Preventing Site-Specific Calpain Proteolysis of Junctophilin-2 Protects Against Stress-Induced Excitation-Contraction Uncoupling and Heart Failure Development. Circulation 2025; 151:171-187. [PMID: 39291390 PMCID: PMC11729472 DOI: 10.1161/circulationaha.124.069329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Excitation-contraction (E-C) coupling processes become disrupted in heart failure (HF), resulting in abnormal Ca2+ homeostasis, maladaptive structural and transcriptional remodeling, and cardiac dysfunction. Junctophilin-2 (JP2) is an essential component of the E-C coupling apparatus but becomes site-specifically cleaved by calpain, leading to disruption of E-C coupling, plasmalemmal transverse tubule degeneration, abnormal Ca2+ homeostasis, and HF. However, it is not clear whether preventing site-specific calpain cleavage of JP2 is sufficient to protect the heart against stress-induced pathological cardiac remodeling in vivo. METHODS Calpain-resistant JP2 knock-in mice (JP2CR) were generated by deleting the primary JP2 calpain cleavage site. Stress-dependent JP2 cleavage was assessed through in vitro cleavage assays and in isolated cardiomyocytes treated with 1 μmol/L isoproterenol by immunofluorescence. Cardiac outcomes were assessed in wild-type and JP2CR mice 5 weeks after transverse aortic constriction compared with sham surgery using echocardiography, histology, and RNA-sequencing methods. E-C coupling efficiency was measured by in situ confocal microscopy. E-C coupling proteins were evaluated by calpain assays and Western blotting. The effectiveness of adeno-associated virus gene therapy with JP2CR, JP2, or green fluorescent protein to slow HF progression was evaluated in mice with established cardiac dysfunction. RESULTS JP2 proteolysis by calpain and in response to transverse aortic constriction and isoproterenol was blocked in JP2CR cardiomyocytes. JP2CR hearts are more resistant to pressure-overload stress, having significantly improved Ca2+ homeostasis and transverse tubule organization with significantly attenuated cardiac dysfunction, hypertrophy, lung edema, fibrosis, and gene expression changes relative to wild-type mice. JP2CR preserves the integrity of calpain-sensitive E-C coupling-related proteins, including ryanodine receptor 2, CaV1.2, and sarcoplasmic reticulum calcium ATPase 2a, by attenuating transverse aortic constriction-induced increases in calpain activity. Furthermore, JP2CR gene therapy after the onset of cardiac dysfunction was found to be effective at slowing the progression of HF and superior to wild-type JP2. CONCLUSIONS The data presented here demonstrate that preserving JP2-dependent E-C coupling by prohibiting the site-specific calpain cleavage of JP2 offers multifaceted beneficial effects, conferring cardiac protection against stress-induced proteolysis, hypertrophy, and HF. Our data also indicate that specifically targeting the primary calpain cleavage site of JP2 by gene therapy approaches holds great therapeutic potential as a novel precision medicine for treating HF.
Collapse
Affiliation(s)
- Jinxi Wang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Biyi Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Qian Shi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Grace Ciampa
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Weiyang Zhao
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Guangqin Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Robert M. Weiss
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Tianqing Peng
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 4S2, Canada
| | - Duane D. Hall
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Long-Sheng Song
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Loh YH, Lv J, Goh Y, Sun X, Zhu X, Muheyati M, Luan Y. Remodelling of T-Tubules and Associated Calcium Handling Dysfunction in Heart Failure: Mechanisms and Therapeutic Insights. Can J Cardiol 2024; 40:2569-2588. [PMID: 39455023 DOI: 10.1016/j.cjca.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
In cardiomyocytes, transverse tubules (T-tubules) are sarcolemmal invaginations that facilitate excitation-contraction coupling and diastolic function. The clinical significance of T-tubules has become evident in that their remodelling is recognised as a hallmark feature of heart failure (HF) and a key contributor to disrupted Ca2+ homeostasis, compromised cardiac function, and arrhythmogenesis. Further investigations have revealed that T-tubule remodelling is particularly pronounced in HF with reduced ejection fraction (HFrEF), but not in HF with preserved ejection fraction, implying that T-tubule remodelling may play a crucial pathophysiologic role in HFrEF. While research on the functional importance of T-tubules is ongoing, T-tubule remodelling has been found to be reversible. That finding has triggered a surge in studies aimed at identifying specific therapeutic approaches for HFrEF. This review discusses the functional importance of T-tubules and their microdomains, the pathophysiology of T-tubule remodelling, and the potential mechanisms of current HFrEF therapeutic approaches in reversing T-tubule alterations. We also highlight discrepancies regarding the roles of T-tubule proteins in the recovery process across studies to offer valuable insights for future research.
Collapse
Affiliation(s)
- Yi Hao Loh
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Jingyi Lv
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Yenfang Goh
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Xiangjie Sun
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Xianfeng Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China; Department of Critical Care Medicine, Hangzhou Ninth People's Hospital, China
| | - Muergen Muheyati
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Yi Luan
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China; School of Medicine, Shaoxing University, China.
| |
Collapse
|
5
|
Lahiri SK, Lu J, Aguilar-Sanchez Y, Li H, Moreira LM, Hulsurkar MM, Mendoza A, Turkieltaub Paredes MR, Navarro-Garcia JA, Munivez E, Horist B, Moore OM, Weninger G, Brandenburg S, Lenz C, Lehnart SE, Sayeed R, Krasopoulos G, Srivastava V, Zhang L, Karch JM, Reilly S, Wehrens XHT. Targeting calpain-2-mediated junctophilin-2 cleavage delays heart failure progression following myocardial infarction. J Mol Cell Cardiol 2024; 194:85-95. [PMID: 38960317 PMCID: PMC11519832 DOI: 10.1016/j.yjmcc.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 06/18/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Coronary heart disease (CHD) is a prevalent cardiac disease that causes over 370,000 deaths annually in the USA. In CHD, occlusion of a coronary artery causes ischemia of the cardiac muscle, which results in myocardial infarction (MI). Junctophilin-2 (JPH2) is a membrane protein that ensures efficient calcium handling and proper excitation-contraction coupling. Studies have identified loss of JPH2 due to calpain-mediated proteolysis as a key pathogenic event in ischemia-induced heart failure (HF). Our findings show that calpain-2-mediated JPH2 cleavage yields increased levels of a C-terminal cleaved peptide (JPH2-CTP) in patients with ischemic cardiomyopathy and mice with experimental MI. We created a novel knock-in mouse model by removing residues 479-SPAGTPPQ-486 to prevent calpain-2-mediated cleavage at this site. Functional and molecular assessment of cardiac function post-MI in cleavage site deletion (CSD) mice showed preserved cardiac contractility and reduced dilation, reduced JPH2-CTP levels, attenuated adverse remodeling, improved T-tubular structure, and normalized SR Ca2+-handling. Adenovirus mediated calpain-2 knockdown in mice exhibited similar findings. Pulldown of CTP followed by proteomic analysis revealed valosin-containing protein (VCP) and BAG family molecular chaperone regulator 3 (BAG3) as novel binding partners of JPH2. Together, our findings suggest that blocking calpain-2-mediated JPH2 cleavage may be a promising new strategy for delaying the development of HF following MI.
Collapse
Affiliation(s)
- Satadru K Lahiri
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Jiao Lu
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine
| | - Yuriana Aguilar-Sanchez
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Hui Li
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lucia M Moreira
- Cardiovascular Medicine, Radcliffe Dept of Medicine, University of Oxford, UK
| | - Mohit M Hulsurkar
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Arielys Mendoza
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Mara R Turkieltaub Paredes
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Jose Alberto Navarro-Garcia
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Elda Munivez
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Brooke Horist
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Oliver M Moore
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Gunnar Weninger
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Sören Brandenburg
- Department of Cardiology & Pneumology, Heart Research Center Göttingen; Cellular Biophysics and Translational Cardiology Section, University Medical Center Göttingen, Göttingen, Germany
| | - Christof Lenz
- Department of Clinical Chemistry, University Medical Center Göttingen, Germany; Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stephan E Lehnart
- Department of Cardiology & Pneumology, Heart Research Center Göttingen; Cellular Biophysics and Translational Cardiology Section, University Medical Center Göttingen, Göttingen, Germany
| | - Rana Sayeed
- Cardiothoracic Unit, John Radcliffe Hospital, Oxford, UK
| | | | | | - Lilei Zhang
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jason M Karch
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Svetlana Reilly
- Cardiovascular Medicine, Radcliffe Dept of Medicine, University of Oxford, UK
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA; Department of Medicine/Cardiology, Baylor College of Medicine, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
6
|
Park AC, Mann DL. The Pathobiology of Myocardial Recovery and Remission: From Animal Models to Clinical Observations in Heart Failure Patients. Methodist Debakey Cardiovasc J 2024; 20:16-30. [PMID: 39184167 PMCID: PMC11342835 DOI: 10.14797/mdcvj.1389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/21/2024] [Indexed: 08/27/2024] Open
Abstract
Heart failure with reduced left ventricular (LV) ejection fraction (HFrEF) is a morbid and life-threatening disease, arising secondary to abnormalities of cardiac structure and function that lead to adverse LV remodeling. Implementation of medical and device therapies results in significant improvements in patient outcomes that are associated with reverse LV remodeling and improved LV ejection fraction. This review provides an overview of the pathobiology of reverse LV remodeling in animal models and in HFrEF patients. We emphasize the differences between myocardial recovery and remission as well as the fragile nature of maintaining a state of myocardial remission.
Collapse
Affiliation(s)
- Arick C. Park
- Washington University School of Medicine, St. Louis, Missouri, US
| | - Douglas L. Mann
- Washington University School of Medicine, St. Louis, Missouri, US
| |
Collapse
|
7
|
Moammer H, Bai J, Jones TLM, Ward M, Barrett C, Crossman DJ. Pirfenidone increases transverse tubule length in the infarcted rat myocardium. Interface Focus 2023; 13:20230047. [PMID: 38106917 PMCID: PMC10722216 DOI: 10.1098/rsfs.2023.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023] Open
Abstract
Transverse (t)-tubule remodelling is a prominent feature of heart failure with reduced ejection fraction (HFrEF). In our previous research, we identified an increased amount of collagen within the t-tubules of HFrEF patients, suggesting fibrosis could contribute to the remodelling of t-tubules. In this research, we tested this hypothesis in a rodent model of myocardial infarction induced heart failure that was treated with the anti-fibrotic pirfenidone. Confocal microscopy demonstrated loss of t-tubules within the border zone region of the infarct. This was documented as a reduction in t-tubule frequency, area, length, and transverse elements. Eight weeks of pirfenidone treatment was able to significantly increase the area and length of the t-tubules within the border zone. Echocardiography showed no improvement with pirfenidone treatment. Surprisingly, pirfenidone significantly increased the thickness of the t-tubules in the remote left ventricle of heart failure animals. Dilation of t-tubules is a common feature in heart failure suggesting this may negatively impact function but there was no functional loss associated with pirfenidone treatment. However, due to the relatively short duration of treatment compared to that used clinically, the impact of long-term treatment on t-tubule structure should be investigated in future studies.
Collapse
Affiliation(s)
- Hussam Moammer
- Manaaki Manawa—The Centre for Heart Research, Department of Physiology, School of Medical and Health Sciences, Faculty of Medical and Health Sciences, Waipapa Taumata Rau / The University of Auckland, Park Road, Grafton, Auckland, New Zealand
- Department of Clinical Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jizhong Bai
- Manaaki Manawa—The Centre for Heart Research, Department of Physiology, School of Medical and Health Sciences, Faculty of Medical and Health Sciences, Waipapa Taumata Rau / The University of Auckland, Park Road, Grafton, Auckland, New Zealand
| | - Timothy L. M. Jones
- Manaaki Manawa—The Centre for Heart Research, Department of Physiology, School of Medical and Health Sciences, Faculty of Medical and Health Sciences, Waipapa Taumata Rau / The University of Auckland, Park Road, Grafton, Auckland, New Zealand
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marie Ward
- Manaaki Manawa—The Centre for Heart Research, Department of Physiology, School of Medical and Health Sciences, Faculty of Medical and Health Sciences, Waipapa Taumata Rau / The University of Auckland, Park Road, Grafton, Auckland, New Zealand
| | - Caroyln Barrett
- Manaaki Manawa—The Centre for Heart Research, Department of Physiology, School of Medical and Health Sciences, Faculty of Medical and Health Sciences, Waipapa Taumata Rau / The University of Auckland, Park Road, Grafton, Auckland, New Zealand
| | - David J. Crossman
- Manaaki Manawa—The Centre for Heart Research, Department of Physiology, School of Medical and Health Sciences, Faculty of Medical and Health Sciences, Waipapa Taumata Rau / The University of Auckland, Park Road, Grafton, Auckland, New Zealand
| |
Collapse
|
8
|
Judina A, Niglas M, Leonov V, Kirkby NS, Diakonov I, Wright PT, Zhao L, Mitchell JA, Gorelik J. Pulmonary Hypertension-Associated Right Ventricular Cardiomyocyte Remodelling Reduces Treprostinil Function. Cells 2023; 12:2764. [PMID: 38067192 PMCID: PMC10705885 DOI: 10.3390/cells12232764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
(1) Pulmonary hypertension (PH)-associated right ventricular (RV) failure is linked to a reduction in pulmonary vasodilators. Treprostinil has shown effectiveness in PAH patients with cardiac decompensation, hinting at potential cardiac benefits. We investigated treprostinil's synergy with isoprenaline in RV and LV cardiomyocytes. We hypothesised that disease-related RV structural changes in cardiomyocytes would reduce contractile responses and cAMP/PKA signalling activity. (2) We induced PH in male Sprague Dawley rats using monocrotaline and isolated their ventricular cardiomyocytes. The effect of in vitro treprostinil and isoprenaline stimulation on contraction was assessed. FRET microscopy was used to study PKA activity associated with treprostinil stimulation in AKAR3-NES FRET-based biosensor-expressing cells. (3) RV cells exhibited maladaptive remodelling with hypertrophy, impaired contractility, and calcium transients compared to control and LV cardiomyocytes. Combining treprostinil and isoprenaline failed to enhance inotropy in PH RV cardiomyocytes. PH RV cardiomyocytes displayed an aberrant contractile behaviour, which the combination treatment could not rectify. Finally, we observed decreased PKA activity in treprostinil-treated PH RV cardiomyocytes. (4) PH-associated RV cardiomyocyte remodelling reduced treprostinil sensitivity, inotropic support, and impaired relaxation. Overall, this study highlights the complexity of RV dysfunction in advanced PH and suggests the need for alternative therapeutic strategies.
Collapse
Affiliation(s)
- Aleksandra Judina
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (A.J.); (M.N.); (V.L.); (N.S.K.); (I.D.); (L.Z.); (J.A.M.)
| | - Marili Niglas
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (A.J.); (M.N.); (V.L.); (N.S.K.); (I.D.); (L.Z.); (J.A.M.)
| | - Vladislav Leonov
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (A.J.); (M.N.); (V.L.); (N.S.K.); (I.D.); (L.Z.); (J.A.M.)
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Cardiovascular Science, The University of Verona, 37134 Verona, Italy
| | - Nicholas S. Kirkby
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (A.J.); (M.N.); (V.L.); (N.S.K.); (I.D.); (L.Z.); (J.A.M.)
| | - Ivan Diakonov
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (A.J.); (M.N.); (V.L.); (N.S.K.); (I.D.); (L.Z.); (J.A.M.)
| | - Peter T. Wright
- Definitely School of Life and Health Sciences, Whitelands College, University of Roehampton, Holybourne Avenue, London SW15 4JD, UK;
| | - Lan Zhao
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (A.J.); (M.N.); (V.L.); (N.S.K.); (I.D.); (L.Z.); (J.A.M.)
| | - Jane A. Mitchell
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (A.J.); (M.N.); (V.L.); (N.S.K.); (I.D.); (L.Z.); (J.A.M.)
| | - Julia Gorelik
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (A.J.); (M.N.); (V.L.); (N.S.K.); (I.D.); (L.Z.); (J.A.M.)
| |
Collapse
|
9
|
Kwan Z, Paulose Nadappuram B, Leung MM, Mohagaonkar S, Li A, Amaradasa KS, Chen J, Rothery S, Kibreab I, Fu J, Sanchez-Alonso JL, Mansfield CA, Subramanian H, Kondrashov A, Wright PT, Swiatlowska P, Nikolaev VO, Wojciak-Stothard B, Ivanov AP, Edel JB, Gorelik J. Microtubule-Mediated Regulation of β 2AR Translation and Function in Failing Hearts. Circ Res 2023; 133:944-958. [PMID: 37869877 PMCID: PMC10635332 DOI: 10.1161/circresaha.123.323174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND β1AR (beta-1 adrenergic receptor) and β2AR (beta-2 adrenergic receptor)-mediated cyclic adenosine monophosphate signaling has distinct effects on cardiac function and heart failure progression. However, the mechanism regulating spatial localization and functional compartmentation of cardiac β-ARs remains elusive. Emerging evidence suggests that microtubule-dependent trafficking of mRNP (messenger ribonucleoprotein) and localized protein translation modulates protein compartmentation in cardiomyocytes. We hypothesized that β-AR compartmentation in cardiomyocytes is accomplished by selective trafficking of its mRNAs and localized translation. METHODS The localization pattern of β-AR mRNA was investigated using single molecule fluorescence in situ hybridization and subcellular nanobiopsy in rat cardiomyocytes. The role of microtubule on β-AR mRNA localization was studied using vinblastine, and its effect on receptor localization and function was evaluated with immunofluorescent and high-throughput Förster resonance energy transfer microscopy. An mRNA protein co-detection assay identified plausible β-AR translation sites in cardiomyocytes. The mechanism by which β-AR mRNA is redistributed post-heart failure was elucidated by single molecule fluorescence in situ hybridization, nanobiopsy, and high-throughput Förster resonance energy transfer microscopy on 16 weeks post-myocardial infarction and detubulated cardiomyocytes. RESULTS β1AR and β2AR mRNAs show differential localization in cardiomyocytes, with β1AR found in the perinuclear region and β2AR showing diffuse distribution throughout the cell. Disruption of microtubules induces a shift of β2AR transcripts toward the perinuclear region. The close proximity between β2AR transcripts and translated proteins suggests that the translation process occurs in specialized, precisely defined cellular compartments. Redistribution of β2AR transcripts is microtubule-dependent, as microtubule depolymerization markedly reduces the number of functional receptors on the membrane. In failing hearts, both β1AR and β2AR mRNAs are redistributed toward the cell periphery, similar to what is seen in cardiomyocytes undergoing drug-induced detubulation. This suggests that t-tubule remodeling contributes to β-AR mRNA redistribution and impaired β2AR function in failing hearts. CONCLUSIONS Asymmetrical microtubule-dependent trafficking dictates differential β1AR and β2AR localization in healthy cardiomyocyte microtubules, underlying the distinctive compartmentation of the 2 β-ARs on the plasma membrane. The localization pattern is altered post-myocardial infarction, resulting from transverse tubule remodeling, leading to distorted β2AR-mediated cyclic adenosine monophosphate signaling.
Collapse
MESH Headings
- Rats
- Animals
- In Situ Hybridization, Fluorescence
- Heart Failure/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Myocardial Infarction/metabolism
- Myocytes, Cardiac/metabolism
- Cyclic AMP/metabolism
- Receptors, Adrenergic, beta-1/metabolism
- Microtubules/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Adenosine Monophosphate/metabolism
- Adenosine Monophosphate/pharmacology
Collapse
Affiliation(s)
- Zoe Kwan
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
- Department of Chemistry (Z.K., B.P.N., A.P.I., J.B.E.), Imperial College London, United Kingdom
| | - Binoy Paulose Nadappuram
- Department of Chemistry (Z.K., B.P.N., A.P.I., J.B.E.), Imperial College London, United Kingdom
- Department of Pure and Applied Chemistry, University of Strathclyde, United Kingdom (B.P.N.)
| | - Manton M. Leung
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom (M.M.L.)
| | - Sanika Mohagaonkar
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Ao Li
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Kumuthu S. Amaradasa
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Ji Chen
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Stephen Rothery
- FILM Facility, Imperial College London, United Kingdom (S.R.)
| | - Iyobel Kibreab
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Jiarong Fu
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Jose L. Sanchez-Alonso
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Catherine A. Mansfield
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | | | - Alexander Kondrashov
- Division of Cancer and Stem Cells, University of Nottingham Biodiscovery Institute, United Kingdom (A.K.)
| | - Peter T. Wright
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
- School of Life and Health Sciences, University of Roehampton, United Kingdom (P.T.W.)
| | - Pamela Swiatlowska
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center, Hamburg-Eppendorf, Germany (H.S., V.O.N.)
| | - Beata Wojciak-Stothard
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Aleksandar P. Ivanov
- Department of Chemistry (Z.K., B.P.N., A.P.I., J.B.E.), Imperial College London, United Kingdom
| | - Joshua B. Edel
- Department of Chemistry (Z.K., B.P.N., A.P.I., J.B.E.), Imperial College London, United Kingdom
| | - Julia Gorelik
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| |
Collapse
|
10
|
Grandi E, Navedo MF, Saucerman JJ, Bers DM, Chiamvimonvat N, Dixon RE, Dobrev D, Gomez AM, Harraz OF, Hegyi B, Jones DK, Krogh-Madsen T, Murfee WL, Nystoriak MA, Posnack NG, Ripplinger CM, Veeraraghavan R, Weinberg S. Diversity of cells and signals in the cardiovascular system. J Physiol 2023; 601:2547-2592. [PMID: 36744541 PMCID: PMC10313794 DOI: 10.1113/jp284011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
This white paper is the outcome of the seventh UC Davis Cardiovascular Research Symposium on Systems Approach to Understanding Cardiovascular Disease and Arrhythmia. This biannual meeting aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The theme of the 2022 Symposium was 'Cell Diversity in the Cardiovascular System, cell-autonomous and cell-cell signalling'. Experts in the field contributed their experimental and mathematical modelling perspectives and discussed emerging questions, controversies, and challenges in examining cell and signal diversity, co-ordination and interrelationships involved in cardiovascular function. This paper originates from the topics of formal presentations and informal discussions from the Symposium, which aimed to develop a holistic view of how the multiple cell types in the cardiovascular system integrate to influence cardiovascular function, disease progression and therapeutic strategies. The first section describes the major cell types (e.g. cardiomyocytes, vascular smooth muscle and endothelial cells, fibroblasts, neurons, immune cells, etc.) and the signals involved in cardiovascular function. The second section emphasizes the complexity at the subcellular, cellular and system levels in the context of cardiovascular development, ageing and disease. Finally, the third section surveys the technological innovations that allow the interrogation of this diversity and advancing our understanding of the integrated cardiovascular function and dysfunction.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Donald M. Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis, Davis, CA, USA
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Rose E. Dixon
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Ana M. Gomez
- Signaling and Cardiovascular Pathophysiology-UMR-S 1180, INSERM, Université Paris-Saclay, Orsay, France
| | - Osama F. Harraz
- Department of Pharmacology, Larner College of Medicine, and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - David K. Jones
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Trine Krogh-Madsen
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Matthew A. Nystoriak
- Department of Medicine, Division of Environmental Medicine, Center for Cardiometabolic Science, University of Louisville, Louisville, KY, 40202, USA
| | - Nikki G. Posnack
- Department of Pediatrics, Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
| | | | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| | - Seth Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
11
|
Zhao X, Yang X, An Z, Liu L, Yong J, Xing H, Huang R, Tian J, Song X. Pathophysiology and molecular mechanism of caveolin involved in myocardial protection strategies in ischemic conditioning. Biomed Pharmacother 2022; 153:113282. [PMID: 35750009 DOI: 10.1016/j.biopha.2022.113282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022] Open
Abstract
Multiple pathophysiological pathways are activated during the process of myocardial injury. Various cardioprotective strategies protect the myocardium from ischemia, infarction, and ischemia/reperfusion (I/R) injury through different targets, yet the clinical translation remains limited. Caveolae and its structure protein, caveolins, have been suggested as a bridge to transmit damage-preventing signals and mediate the protection of ultrastructure in cardiomyocytes under pathological conditions. In this review, we first briefly introduce caveolae and caveolins. Then we review the cardioprotective strategies mediated by caveolins through various pathophysiological pathways. Finally, some possible research directions are proposed to provide future experiments and clinical translation perspectives targeting caveolin based on the investigative evidence.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China
| | - Xueyao Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China
| | - Ziyu An
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China
| | - Libo Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China
| | - Jingwen Yong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China
| | - Haoran Xing
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China
| | - Rongchong Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, 95th Yong An Road, Xuan Wu District, Beijing 100050, PR China
| | - Jinfan Tian
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China.
| |
Collapse
|
12
|
Johnson DM, Pavlovic D. What is actually preserved in HFpEF? Focus on myocyte calcium handling remodelling. J Mol Cell Cardiol 2022; 170:115-116. [PMID: 35714696 DOI: 10.1016/j.yjmcc.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel M Johnson
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom.
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
13
|
Choi S, Vivas O, Baudot M, Moreno CM. Aging Alters the Formation and Functionality of Signaling Microdomains Between L-type Calcium Channels and β2-Adrenergic Receptors in Cardiac Pacemaker Cells. Front Physiol 2022; 13:805909. [PMID: 35514336 PMCID: PMC9065441 DOI: 10.3389/fphys.2022.805909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/03/2022] [Indexed: 12/19/2022] Open
Abstract
Heart rate is accelerated to match physiological demands through the action of noradrenaline on the cardiac pacemaker. Noradrenaline is released from sympathetic terminals and activates β1-and β2-adrenergic receptors (ΑRs) located at the plasma membrane of pacemaker cells. L-type calcium channels are one of the main downstream targets potentiated by the activation of β-ARs. For this signaling to occur, L-type calcium channels need to be located in close proximity to β-ARs inside caveolae. Although it is known that aging causes a slowdown of the pacemaker rate and a reduction in the response of pacemaker cells to noradrenaline, there is a lack of in-depth mechanistic insights into these age-associated changes. Here, we show that aging affects the formation and function of adrenergic signaling microdomains inside caveolae. By evaluating the β1 and β2 components of the adrenergic regulation of the L-type calcium current, we show that aging does not alter the regulation mediated by β1-ARs but drastically impairs that mediated by β2-ARs. We studied the integrity of the signaling microdomains formed between L-type calcium channels and β-ARs by combining high-resolution microscopy and proximity ligation assays. We show that consistent with the electrophysiological data, aging decreases the physical association between β2-ARs and L-type calcium channels. Interestingly, this reduction is associated with a decrease in the association of L-type calcium channels with the scaffolding protein AKAP150. Old pacemaker cells also have a reduction in caveolae density and in the association of L-type calcium channels with caveolin-3. Together the age-dependent alterations in caveolar formation and the nano-organization of β2-ARs and L-type calcium channels result in a reduced sensitivity of the channels to β2 adrenergic modulation. Our results highlight the importance of these signaling microdomains in maintaining the chronotropic modulation of the heart and also pinpoint the direct impact that aging has on their function.
Collapse
Affiliation(s)
- Sabrina Choi
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Matthias Baudot
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Claudia M Moreno
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| |
Collapse
|
14
|
Onohara D, Corporan DM, Kono T, Kumar S, Guyton RA, Padala M. Ventricular reshaping with a beating heart implant improves pump function in experimental heart failure. J Thorac Cardiovasc Surg 2022; 163:e343-e355. [PMID: 33046233 PMCID: PMC7925703 DOI: 10.1016/j.jtcvs.2020.08.097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The left ventricle remodels from an ellipsoidal/conical shape to a spherical shape after a myocardial infarction. The spherical ventricle is inefficient as a pumping chamber, has higher wall stresses, and can lead to congestive heart failure. We sought to investigate if restoring physiological ventricular shape with a beating heart implant improves pump function. METHODS Rats were induced with a myocardial infarction, developing left ventricular dilatation and dysfunction, and becoming spherical over 3 weeks. Thereafter, they were randomized to undergo left ventricular reshaping with a beating heart implant (n = 19) or continue follow-up without an implant (n = 19). Biweekly echocardiography was performed until 12 weeks, with half the rats euthanized at 6 weeks and remaining at 12 weeks. At termination, invasive hemodynamic parameters and histopathology were performed. RESULTS At 3 weeks after the infarction, rats had a 22% fall in ejection fraction, 31% rise in end diastolic volume, and 23% rise in sphericity. Transventricular implant reshaping reduced the volume by 12.6% and sphericity by 21%, restoring physiologic ventricular shape and wall stress. Over the 12-week follow-up, pump function improved significantly with better ventricular-vascular coupling in the reshaped hearts. In this group, cardiomyocyte cross-section area was higher and the cells were less elongated. CONCLUSIONS Reshaping a postinfarction, failing left ventricle to restore its physiological conical shape significantly improves long-term pump function.
Collapse
Affiliation(s)
- Daisuke Onohara
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, Ga
| | - Daniella M Corporan
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, Ga
| | - Takanori Kono
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, Ga
| | - Sandeep Kumar
- Joint Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, Ga
| | - Robert A Guyton
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, Ga; Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, Ga
| | - Muralidhar Padala
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, Ga; Joint Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, Ga; Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, Ga.
| |
Collapse
|
15
|
Franzoso M, Dokshokova L, Vitiello L, Zaglia T, Mongillo M. Tuning the Consonance of Microscopic Neuro-Cardiac Interactions Allows the Heart Beats to Play Countless Genres. Front Physiol 2022; 13:841740. [PMID: 35273522 PMCID: PMC8902305 DOI: 10.3389/fphys.2022.841740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Different from skeletal muscle, the heart autonomously generates rhythmic contraction independently from neuronal inputs. However, speed and strength of the heartbeats are continuously modulated by environmental, physical or emotional inputs, delivered by cardiac innervating sympathetic neurons, which tune cardiomyocyte (CM) function, through activation of β-adrenoceptors (β-ARs). Given the centrality of such mechanism in heart regulation, β-AR signaling has been subject of intense research, which has reconciled the molecular details of the transduction pathway and the fine architecture of cAMP signaling in subcellular nanodomains, with its final effects on CM function. The importance of mechanisms keeping the elements of β-AR/cAMP signaling in good order emerges in pathology, when the loss of proper organization of the transduction pathway leads to detuned β-AR/cAMP signaling, with detrimental consequences on CM function. Despite the compelling advancements in decoding cardiac β-AR/cAMP signaling, most discoveries on the subject were obtained in isolated cells, somehow neglecting that complexity may encompass the means in which receptors are activated in the intact heart. Here, we outline a set of data indicating that, in the context of the whole myocardium, the heart orchestra (CMs) is directed by a closely interacting and continuously attentive conductor, represented by SNs. After a roundup of literature on CM cAMP regulation, we focus on the unexpected complexity and roles of cardiac sympathetic innervation, and present the recently discovered Neuro-Cardiac Junction, as the election site of "SN-CM" interaction. We further discuss how neuro-cardiac communication is based on the combination of extra- and intra-cellular signaling micro/nano-domains, implicating neuronal neurotransmitter exocytosis, β-ARs and elements of cAMP homeostasis in CMs, and speculate on how their dysregulation may reflect on dysfunctional neurogenic control of the heart in pathology.
Collapse
Affiliation(s)
- Mauro Franzoso
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lolita Dokshokova
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
16
|
Chen M, Zhu H, Zhu Q, Wu X, Zhou Y, Gao R, Shi M, Zhang T, Yin T, Zhang H, Shang H, Li X. Citri Reticulatae Pericarpium alleviates postmyocardial infarction heart failure by upregulating PPARγ expression. Clin Exp Pharmacol Physiol 2022; 49:661-673. [PMID: 35278230 DOI: 10.1111/1440-1681.13642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022]
Abstract
Heart failure after myocardial infarction (MI) is the leading cause of death worldwide. Citri Reticulatae Pericarpium (CRP) is a traditional Chinese herbal medicine that has been used in the clinic for centuries. In this study, we aimed to investigate the roles of CRP in cardiac remodeling and heart failure after MI, as well as the molecular mechanisms involved. Male C57BL/6 mice aged 8 weeks were subjected to coronary artery ligation to mimic the clinical situation in vivo. Echocardiography was used to assess the systolic function of the mouse heart. Masson trichrome staining and Wheat germ agglutinin (WGA) staining were utilized to determine the fibrotic area and cross-sectional area of the mouse heart, respectively. Cardiomyocytes and fibroblasts were isolated from neonatal rats aged 0-3 days in vitro using enzyme digestion. TUNEL staining and EdU staining were performed to evaluate apoptosis and proliferation, respectively. Gene expression changes were analyzed by qRT-PCR, and protein expression changes were assessed by Western blotting. Our findings revealed that CRP attenuated cardiac hypertrophy, fibrosis and apoptosis and alleviated heart failure after MI in vivo. Furthermore, CRP mitigated cardiomyocyte apoptosis and fibroblast proliferation and differentiation into myofibroblasts. In addition, the PPARγ inhibitor T0070907 completely abolished the abovementioned beneficial effects of CRP, and the PPARγ activator rosiglitazone failed to further ameliorate cardiac apoptosis and fibrosis in vitro. CRP alleviates cardiac hypertrophy, fibrosis, and apoptosis and can ameliorate heart failure after MI via activation of PPARγ. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengli Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongyan Zhu
- Department of Pediatric Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qingqing Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaodong Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yufei Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rongrong Gao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengsha Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Yin
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haifeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Lang D, Medvedev RY, Ratajczyk L, Zheng J, Yuan X, Lim E, Han OY, Valdivia HH, Glukhov AV. Region-specific distribution of transversal-axial tubule system organization underlies heterogeneity of calcium dynamics in the right atrium. Am J Physiol Heart Circ Physiol 2022; 322:H269-H284. [PMID: 34951544 PMCID: PMC8782648 DOI: 10.1152/ajpheart.00381.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The atrial myocardium demonstrates the highly heterogeneous organization of the transversal-axial tubule system (TATS), although its anatomical distribution and region-specific impact on Ca2+ dynamics remain unknown. Here, we developed a novel method for high-resolution confocal imaging of TATS in intact live mouse atrial myocardium and applied a custom-developed MATLAB-based computational algorithm for the automated analysis of TATS integrity. We observed a twofold higher (P < 0.01) TATS density in the right atrial appendage (RAA) than in the intercaval regions (ICR, the anatomical region between the superior vena cava and atrioventricular junction and between the crista terminalis and interatrial septum). Whereas RAA predominantly consisted of well-tubulated myocytes, ICR showed partially tubulated/untubulated cells. Similar TATS distribution was also observed in healthy human atrial myocardium sections. In both mouse atrial preparations and isolated mouse atrial myocytes, we observed a strong anatomical correlation between TATS distribution and Ca2+ transient synchronization and rise-up time. This region-specific difference in Ca2+ transient morphology disappeared after formamide-induced detubulation. ICR myocytes showed a prolonged action potential duration at 80% of repolarization as well as a significantly lower expression of RyR2 and Cav1.2 proteins but similar levels of NCX1 and Cav1.3 compared with RAA tissue. Our findings provide a detailed characterization of the region-specific distribution of TATS in mouse and human atrial myocardium, highlighting the structural foundation for anatomical heterogeneity of Ca2+ dynamics and contractility in the atria. These results could indicate different roles of TATS in Ca2+ signaling at distinct anatomical regions of the atria and provide mechanistic insight into pathological atrial remodeling.NEW & NOTEWORTHY Mouse and human atrial myocardium demonstrate high variability in the organization of the transversal-axial tubule system (TATS), with more organized TATS expressed in the right atrial appendage. TATS distribution governs anatomical heterogeneity of Ca2+ dynamics and thus could contribute to integral atrial contractility, mechanics, and arrhythmogenicity.
Collapse
Affiliation(s)
- Di Lang
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Roman Y Medvedev
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Lucas Ratajczyk
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Jingjing Zheng
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Xiaoyu Yuan
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Evi Lim
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Owen Y Han
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Hector H Valdivia
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
18
|
Beneke K, Molina CE. Live Cell Imaging of Cyclic Nucleotides in Human Cardiomyocytes. Methods Mol Biol 2022; 2483:195-204. [PMID: 35286677 DOI: 10.1007/978-1-0716-2245-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ubiquitous second messengers' 3',5'-cyclic adenosine monophosphate (cAMP ) and 3',5'-cyclic guanosine monophosphate (cGMP) are crucial in regulating cardiomyocyte function, as well as pathological processes, by acting in distinct subcellular microdomains and thus controlling excitation-contraction coupling. Spatio-temporal intracellular dynamics of cyclic nucleotides can be measured in living cells using fluorescence resonance energy transfer (FRET ) by transducing isolated cells with genetically encoded biosensors. While FRET experiments have been regularly performed in cardiomyocytes from different animal models, human-based translational experiments are very challenging due to the difficulty to culture and transduce adult human cardiomyocytes. Here, we describe a technique for obtaining human atrial and ventricular myocytes which allows to keep them alive in culture long enough to transduce them and visualize cAMP and cGMP in physiological and pathological human settings.
Collapse
Affiliation(s)
- Kira Beneke
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg -Eppendorf (UKE), Hamburg, Germany
- Germany DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Cristina E Molina
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg -Eppendorf (UKE), Hamburg, Germany.
- Germany DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
19
|
Hoang-Trong TM, Ullah A, Lederer WJ, Jafri MS. A Stochastic Spatiotemporal Model of Rat Ventricular Myocyte Calcium Dynamics Demonstrated Necessary Features for Calcium Wave Propagation. MEMBRANES 2021; 11:989. [PMID: 34940490 PMCID: PMC8706945 DOI: 10.3390/membranes11120989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
Calcium (Ca2+) plays a central role in the excitation and contraction of cardiac myocytes. Experiments have indicated that calcium release is stochastic and regulated locally suggesting the possibility of spatially heterogeneous calcium levels in the cells. This spatial heterogeneity might be important in mediating different signaling pathways. During more than 50 years of computational cell biology, the computational models have been advanced to incorporate more ionic currents, going from deterministic models to stochastic models. While periodic increases in cytoplasmic Ca2+ concentration drive cardiac contraction, aberrant Ca2+ release can underly cardiac arrhythmia. However, the study of the spatial role of calcium ions has been limited due to the computational expense of using a three-dimensional stochastic computational model. In this paper, we introduce a three-dimensional stochastic computational model for rat ventricular myocytes at the whole-cell level that incorporate detailed calcium dynamics, with (1) non-uniform release site placement, (2) non-uniform membrane ionic currents and membrane buffers, (3) stochastic calcium-leak dynamics and (4) non-junctional or rogue ryanodine receptors. The model simulates spark-induced spark activation and spark-induced Ca2+ wave initiation and propagation that occur under conditions of calcium overload at the closed-cell condition, but not when Ca2+ levels are normal. This is considered important since the presence of Ca2+ waves contribute to the activation of arrhythmogenic currents.
Collapse
Affiliation(s)
- Tuan Minh Hoang-Trong
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA; (T.M.H.-T.); (A.U.)
| | - Aman Ullah
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA; (T.M.H.-T.); (A.U.)
| | - William Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Mohsin Saleet Jafri
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA; (T.M.H.-T.); (A.U.)
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
20
|
Calpain-2 specifically cleaves Junctophilin-2 at the same site as Calpain-1 but with less efficacy. Biochem J 2021; 478:3539-3553. [PMID: 34524407 PMCID: PMC8589432 DOI: 10.1042/bcj20210629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
Calpain proteolysis contributes to the pathogenesis of heart failure but the calpain isoforms responsible and their substrate specificities have not been rigorously defined. One substrate, Junctophilin-2 (JP2), is essential for maintaining junctional cardiac dyads and excitation-contraction coupling. We previously demonstrated that mouse JP2 is cleaved by calpain-1 (CAPN1) between Arginine 565 (R565) and Threonine 566 (T566). Recently, calpain-2 (CAPN2) was reported to cleave JP2 at a novel site between Glycine 482 (G482) and Threonine 483 (T483). We aimed to directly compare the contributions of each calpain isoform, their Ca2+ sensitivity, and their cleavage site selection for JP2. We find CAPN1, CAPN2 and their requisite CAPNS1 regulatory subunit are induced by pressure overload stress that is concurrent with JP2 cleavage. Using in vitro calpain cleavage assays, we demonstrate that CAPN1 and CAPN2 cleave JP2 into similar 75 kD N-terminal (JP2NT) and 25 kD C-terminal fragments (JP2CT) with CAPNS1 co-expression enhancing proteolysis. Deletion mutagenesis shows both CAPN1 and CAPN2 require R565/T566 but not G482/T483. When heterologously expressed, the JP2CT peptide corresponding to R565/T566 cleavage approximates the 25 kD species found during cardiac stress while the C-terminal peptide from potential cleavage at G482/T483 produces a 35 kD product. Similar results were obtained for human JP2. Finally, we show that CAPN1 has higher Ca2+ sensitivity and cleavage efficacy than CAPN2 on JP2 and other cardiac substrates including cTnT, cTnI and β2-spectrin. We conclude that CAPN2 cleaves JP2 at the same functionally conserved R565/T566 site as CAPN1 but with less efficacy and suggest heart failure may be targeted through specific inhibition of CAPN1.
Collapse
|
21
|
Abstract
Scanning ion conductance microscopy (SICM) has emerged as a versatile tool for studies of interfaces in biology and materials science with notable utility in biophysical and electrochemical measurements. The heart of the SICM is a nanometer-scale electrolyte filled glass pipette that serves as a scanning probe. In the initial conception, manipulations of ion currents through the tip of the pipette and appropriate positioning hardware provided a route to recording micro- and nanoscopic mapping of the topography of surfaces. Subsequent advances in instrumentation, probe design, and methods significantly increased opportunities for SICM beyond recording topography. Hybridization of SICM with coincident characterization techniques such as optical microscopy and faradaic electrodes have brought SICM to the forefront as a tool for nanoscale chemical measurement for a wide range of applications. Modern approaches to SICM realize an important tool in analytical, bioanalytical, biophysical, and materials measurements, where significant opportunities remain for further exploration. In this review, we chronicle the development of SICM from the perspective of both the development of instrumentation and methods and the breadth of measurements performed.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kaixiang Huang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Natasha P Siepser
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
22
|
Amoni M, Dries E, Ingelaere S, Vermoortele D, Roderick HL, Claus P, Willems R, Sipido KR. Ventricular Arrhythmias in Ischemic Cardiomyopathy-New Avenues for Mechanism-Guided Treatment. Cells 2021; 10:2629. [PMID: 34685609 PMCID: PMC8534043 DOI: 10.3390/cells10102629] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic heart disease is the most common cause of lethal ventricular arrhythmias and sudden cardiac death (SCD). In patients who are at high risk after myocardial infarction, implantable cardioverter defibrillators are the most effective treatment to reduce incidence of SCD and ablation therapy can be effective for ventricular arrhythmias with identifiable culprit lesions. Yet, these approaches are not always successful and come with a considerable cost, while pharmacological management is often poor and ineffective, and occasionally proarrhythmic. Advances in mechanistic insights of arrhythmias and technological innovation have led to improved interventional approaches that are being evaluated clinically, yet pharmacological advancement has remained behind. We review the mechanistic basis for current management and provide a perspective for gaining new insights that centre on the complex tissue architecture of the arrhythmogenic infarct and border zone with surviving cardiac myocytes as the source of triggers and central players in re-entry circuits. Identification of the arrhythmia critical sites and characterisation of the molecular signature unique to these sites can open avenues for targeted therapy and reduce off-target effects that have hampered systemic pharmacotherapy. Such advances are in line with precision medicine and a patient-tailored therapy.
Collapse
Affiliation(s)
- Matthew Amoni
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.A.); (E.D.); (S.I.); (H.L.R.); (R.W.)
- Division of Cardiology, University Hospitals Leuven, 3000 Leuven, Belgium
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa
| | - Eef Dries
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.A.); (E.D.); (S.I.); (H.L.R.); (R.W.)
| | - Sebastian Ingelaere
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.A.); (E.D.); (S.I.); (H.L.R.); (R.W.)
- Division of Cardiology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Dylan Vermoortele
- Imaging and Cardiovascular Dynamics, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (D.V.); (P.C.)
| | - H. Llewelyn Roderick
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.A.); (E.D.); (S.I.); (H.L.R.); (R.W.)
| | - Piet Claus
- Imaging and Cardiovascular Dynamics, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (D.V.); (P.C.)
| | - Rik Willems
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.A.); (E.D.); (S.I.); (H.L.R.); (R.W.)
- Division of Cardiology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Karin R. Sipido
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.A.); (E.D.); (S.I.); (H.L.R.); (R.W.)
| |
Collapse
|
23
|
Du X. Sympatho-adrenergic mechanisms in heart failure: new insights into pathophysiology. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:47-77. [PMID: 37724075 PMCID: PMC10388789 DOI: 10.1515/mr-2021-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/02/2021] [Indexed: 09/20/2023]
Abstract
The sympathetic nervous system is activated in the setting of heart failure (HF) to compensate for hemodynamic instability. However, acute sympathetic surge or sustained high neuronal firing rates activates β-adrenergic receptor (βAR) signaling contributing to myocardial remodeling, dysfunction and electrical instability. Thus, sympatho-βAR activation is regarded as a hallmark of HF and forms pathophysiological basis for β-blocking therapy. Building upon earlier research findings, studies conducted in the recent decades have significantly advanced our understanding on the sympatho-adrenergic mechanism in HF, which forms the focus of this article. This review notes recent research progress regarding the roles of cardiac β2AR or α1AR in the failing heart, significance of β1AR-autoantibodies, and βAR signaling through G-protein independent signaling pathways. Sympatho-βAR regulation of immune cells or fibroblasts is specifically discussed. On the neuronal aspects, knowledge is assembled on the remodeling of sympathetic nerves of the failing heart, regulation by presynaptic α2AR of NE release, and findings on device-based neuromodulation of the sympathetic nervous system. The review ends with highlighting areas where significant knowledge gaps exist but hold promise for new breakthroughs.
Collapse
Affiliation(s)
- Xiaojun Du
- Faculty of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, 76 West Yanta Road, Xi’an710061, Shaanxi, China
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC3004, Australia
| |
Collapse
|
24
|
Setterberg IE, Le C, Frisk M, Li J, Louch WE. The Physiology and Pathophysiology of T-Tubules in the Heart. Front Physiol 2021; 12:718404. [PMID: 34566684 PMCID: PMC8458775 DOI: 10.3389/fphys.2021.718404] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
In cardiomyocytes, invaginations of the sarcolemmal membrane called t-tubules are critically important for triggering contraction by excitation-contraction (EC) coupling. These structures form functional junctions with the sarcoplasmic reticulum (SR), and thereby enable close contact between L-type Ca2+ channels (LTCCs) and Ryanodine Receptors (RyRs). This arrangement in turn ensures efficient triggering of Ca2+ release, and contraction. While new data indicate that t-tubules are capable of exhibiting compensatory remodeling, they are also widely reported to be structurally and functionally compromised during disease, resulting in disrupted Ca2+ homeostasis, impaired systolic and/or diastolic function, and arrhythmogenesis. This review summarizes these findings, while highlighting an emerging appreciation of the distinct roles of t-tubules in the pathophysiology of heart failure with reduced and preserved ejection fraction (HFrEF and HFpEF). In this context, we review current understanding of the processes underlying t-tubule growth, maintenance, and degradation, underscoring the involvement of a variety of regulatory proteins, including junctophilin-2 (JPH2), amphiphysin-2 (BIN1), caveolin-3 (Cav3), and newer candidate proteins. Upstream regulation of t-tubule structure/function by cardiac workload and specifically ventricular wall stress is also discussed, alongside perspectives for novel strategies which may therapeutically target these mechanisms.
Collapse
Affiliation(s)
- Ingunn E Setterberg
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Christopher Le
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Wright PT, Gorelik J, Harding SE. Electrophysiological Remodeling: Cardiac T-Tubules and ß-Adrenoceptors. Cells 2021; 10:cells10092456. [PMID: 34572106 PMCID: PMC8468945 DOI: 10.3390/cells10092456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/09/2023] Open
Abstract
Beta-adrenoceptors (βAR) are often viewed as archetypal G-protein coupled receptors. Over the past fifteen years, investigations in cardiovascular biology have provided remarkable insights into this receptor family. These studies have shifted pharmacological dogma, from one which centralized the receptor to a new focus on structural micro-domains such as caveolae and t-tubules. Important studies have examined, separately, the structural compartmentation of ion channels and βAR. Despite links being assumed, relatively few studies have specifically examined the direct link between structural remodeling and electrical remodeling with a focus on βAR. In this review, we will examine the nature of receptor and ion channel dysfunction on a substrate of cardiomyocyte microdomain remodeling, as well as the likely ramifications for cardiac electrophysiology. We will then discuss the advances in methodologies in this area with a specific focus on super-resolution microscopy, fluorescent imaging, and new approaches involving microdomain specific, polymer-based agonists. The advent of powerful computational modelling approaches has allowed the science to shift from purely empirical work, and may allow future investigations based on prediction. Issues such as the cross-reactivity of receptors and cellular heterogeneity will also be discussed. Finally, we will speculate as to the potential developments within this field over the next ten years.
Collapse
Affiliation(s)
- Peter T. Wright
- School of Life & Health Sciences, University of Roehampton, Holybourne Avenue, London SW15 4JD, UK;
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
| | - Julia Gorelik
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
| | - Sian E. Harding
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
- Correspondence:
| |
Collapse
|
26
|
Gilani N, Wang K, Muncan A, Peter J, An S, Bhatti S, Pandya K, Zhang Y, Tang YD, Gerdes AM, Stout RF, Ojamaa K. Triiodothyronine maintains cardiac transverse-tubule structure and function. J Mol Cell Cardiol 2021; 160:1-14. [PMID: 34175303 DOI: 10.1016/j.yjmcc.2021.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 06/03/2021] [Accepted: 06/18/2021] [Indexed: 12/29/2022]
Abstract
Subclinical hypothyroidism and low T3 syndrome are commonly associated with an increased risk of cardiovascular disease (CVD) and mortality. We examined effects of T3 on T-tubule (TT) structures, Ca2+ mobilization and contractility, and clustering of dyadic proteins. Thyroid hormone (TH) deficiency was induced in adult female rats by propyl-thiouracil (PTU; 0.025%) treatment for 8 weeks. Rats were then randomized to continued PTU or triiodo-L-thyronine (T3; 10 μg/kg/d) treatment for 2 weeks (PTU + T3). After in vivo echocardiographic and hemodynamic recordings, cardiomyocytes (CM) were isolated to record Ca2+ transients and contractility. TT organization was assessed by confocal microscopy, and STORM images were captured to measure ryanodine receptor (RyR2) cluster number and size, and L-type Ca2+ channel (LTCC, Cav1.2) co-localization. Expressed genes including two integral TT proteins, junctophilin-2 (Jph-2) and bridging integrator-1 (BIN1), were analyzed in left ventricular (LV) tissues and cultured CM using qPCR and RNA sequencing. The T3 dosage used normalized serum T3, and reversed adverse effects of TH deficiency on in vivo measures of cardiac function. Recordings of isolated CM indicated that T3 increased rates of Ca2+ release and re-uptake, resulting in increased velocities of sarcomere shortening and re-lengthening. TT periodicity was significantly decreased, with reduced transverse tubules but increased longitudinal tubules in TH-deficient CMs and LV tissue, and these structures were normalized by T3 treatment. Analysis of STORM data of PTU myocytes showed decreased RyR2 cluster numbers and RyR localizations within each cluster without significant changes in Cav1.2 localizations within RyR clusters. T3 treatment normalized RyR2 cluster size and number. qPCR and RNAseq analyses of LV and cultured CM showed that Jph2 expression was T3-responsive, and its increase with treatment may explain improved TT organization and RyR-LTCC coupling.
Collapse
Affiliation(s)
- Nimra Gilani
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Blvd., Old Westbury, New York 11568, USA.
| | - Kaihao Wang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Blvd., Old Westbury, New York 11568, USA; Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Adam Muncan
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Blvd., Old Westbury, New York 11568, USA.
| | - Jerrin Peter
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Blvd., Old Westbury, New York 11568, USA.
| | - Shimin An
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Blvd., Old Westbury, New York 11568, USA; Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Simran Bhatti
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Blvd., Old Westbury, New York 11568, USA.
| | - Khushbu Pandya
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Blvd., Old Westbury, New York 11568, USA.
| | - Youhua Zhang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Blvd., Old Westbury, New York 11568, USA.
| | - Yi-Da Tang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - A Martin Gerdes
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Blvd., Old Westbury, New York 11568, USA.
| | - Randy F Stout
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Blvd., Old Westbury, New York 11568, USA; NYIT Imaging Center, New York Institute of Technology College of Osteopathic Medicine, Northern Blvd., Old Westbury, New York 11568, USA.
| | - Kaie Ojamaa
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Blvd., Old Westbury, New York 11568, USA.
| |
Collapse
|
27
|
Medvedev RY, Sanchez-Alonso JL, Mansfield CA, Judina A, Francis AJ, Pagiatakis C, Trayanova N, Glukhov AV, Miragoli M, Faggian G, Gorelik J. Local hyperactivation of L-type Ca 2+ channels increases spontaneous Ca 2+ release activity and cellular hypertrophy in right ventricular myocytes from heart failure rats. Sci Rep 2021; 11:4840. [PMID: 33649357 PMCID: PMC7921450 DOI: 10.1038/s41598-021-84275-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Right ventricle (RV) dysfunction is an independent predictor of patient survival in heart failure (HF). However, the mechanisms of RV progression towards failing are not well understood. We studied cellular mechanisms of RV remodelling in a rat model of left ventricle myocardial infarction (MI)-caused HF. RV myocytes from HF rats show significant cellular hypertrophy accompanied with a disruption of transverse-axial tubular network and surface flattening. Functionally these cells exhibit higher contractility with lower Ca2+ transients. The structural changes in HF RV myocytes correlate with more frequent spontaneous Ca2+ release activity than in control RV myocytes. This is accompanied by hyperactivated L-type Ca2+ channels (LTCCs) located specifically in the T-tubules of HF RV myocytes. The increased open probability of tubular LTCCs and Ca2+ sparks activation is linked to protein kinase A-mediated channel phosphorylation that occurs locally in T-tubules. Thus, our approach revealed that alterations in RV myocytes in heart failure are specifically localized in microdomains. Our findings may indicate the development of compensatory, though potentially arrhythmogenic, RV remodelling in the setting of LV failure. These data will foster better understanding of mechanisms of heart failure and it could promote an optimized treatment of patients.
Collapse
Affiliation(s)
- Roman Y Medvedev
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK.,Dipartimento Di Cardiochirurgia, Università Degli Studi Di Verona, Ospedale Borgo Trento, P.le Stefani 1, 37126, Verona, Italy.,Department of Medicine, Cardiovascular Medicine, Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Jose L Sanchez-Alonso
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Catherine A Mansfield
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Aleksandra Judina
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Alice J Francis
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | | | - Natalia Trayanova
- Department of Biomedical Engineering and Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, USA
| | - Alexey V Glukhov
- Department of Medicine, Cardiovascular Medicine, Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Michele Miragoli
- Humanitas Clinical and Research Center - IRCCS, Rozzano, MI, Italy.,Dipartimento Di Medicina E Chirurgia, Università Degli Studi di Parma, Via Gramsci 14, 43124, Parma, Italy
| | - Giuseppe Faggian
- Dipartimento Di Cardiochirurgia, Università Degli Studi Di Verona, Ospedale Borgo Trento, P.le Stefani 1, 37126, Verona, Italy
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
28
|
McCabe KJ, Rangamani P. Computational modeling approaches to cAMP/PKA signaling in cardiomyocytes. J Mol Cell Cardiol 2021; 154:32-40. [PMID: 33548239 DOI: 10.1016/j.yjmcc.2021.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
The cAMP/PKA pathway is a fundamental regulator of excitation-contraction coupling in cardiomyocytes. Activation of cAMP has a variety of downstream effects on cardiac function including enhanced contraction, accelerated relaxation, adaptive stress response, mitochondrial regulation, and gene transcription. Experimental advances have shed light on the compartmentation of cAMP and PKA, which allow for control over the varied targets of these second messengers and is disrupted in heart failure conditions. Computational modeling is an important tool for understanding the spatial and temporal complexities of this system. In this review article, we outline the advances in computational modeling that have allowed for deeper understanding of cAMP/PKA dynamics in the cardiomyocyte in health and disease, and explore new modeling frameworks that may bring us closer to a more complete understanding of this system. We outline various compartmental and spatial signaling models that have been used to understand how β-adrenergic signaling pathways function in a variety of simulation conditions. We also discuss newer subcellular models of cardiovascular function that may be used as templates for the next phase of computational study of cAMP and PKA in the heart, and outline open challenges which are important to consider in future models.
Collapse
Affiliation(s)
- Kimberly J McCabe
- Simula Research Laboratory, Department of Computational Physiology, PO Box 134, 1325 Lysaker, Norway.
| | - Padmini Rangamani
- University of California San Diego, Department of Mechanical and Aerospace Engineering, 9500 Gilman Drive MC 0411, La Jolla, CA 92093, United States of America
| |
Collapse
|
29
|
De Jong KA, Nikolaev VO. Multifaceted remodelling of cAMP microdomains driven by different aetiologies of heart failure. FEBS J 2021; 288:6603-6622. [DOI: 10.1111/febs.15706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Kirstie A. De Jong
- Institute of Experimental Cardiovascular Research University Medical Center Hamburg‐Eppendorf Hamburg Germany
- German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck D‐20246 Hamburg Germany
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research University Medical Center Hamburg‐Eppendorf Hamburg Germany
- German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck D‐20246 Hamburg Germany
| |
Collapse
|
30
|
Poulet C, Sanchez-Alonso J, Swiatlowska P, Mouy F, Lucarelli C, Alvarez-Laviada A, Gross P, Terracciano C, Houser S, Gorelik J. Junctophilin-2 tethers T-tubules and recruits functional L-type calcium channels to lipid rafts in adult cardiomyocytes. Cardiovasc Res 2021; 117:149-161. [PMID: 32053184 PMCID: PMC7797210 DOI: 10.1093/cvr/cvaa033] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/08/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
AIM In cardiomyocytes, transverse tubules (T-tubules) associate with the sarcoplasmic reticulum (SR), forming junctional membrane complexes (JMCs) where L-type calcium channels (LTCCs) are juxtaposed to Ryanodine receptors (RyR). Junctophilin-2 (JPH2) supports the assembly of JMCs by tethering T-tubules to the SR membrane. T-tubule remodelling in cardiac diseases is associated with downregulation of JPH2 expression suggesting that JPH2 plays a crucial role in T-tubule stability. Furthermore, increasing evidence indicate that JPH2 might additionally act as a modulator of calcium signalling by directly regulating RyR and LTCCs. This study aimed at determining whether JPH2 overexpression restores normal T-tubule structure and LTCC function in cultured cardiomyocytes. METHODS AND RESULTS Rat ventricular myocytes kept in culture for 4 days showed extensive T-tubule remodelling with impaired JPH2 localization and relocation of the scaffolding protein Caveolin3 (Cav3) from the T-tubules to the outer membrane. Overexpression of JPH2 restored T-tubule structure and Cav3 relocation. Depletion of membrane cholesterol by chronic treatment with methyl-β-cyclodextrin (MβCD) countered the stabilizing effect of JPH2 overexpression on T-tubules and Cav3. Super-resolution scanning patch-clamp showed that JPH2 overexpression greatly increased the number of functional LTCCs at the plasma membrane. Treatment with MβCD reduced LTCC open probability and activity. Proximity ligation assays showed that MβCD did not affect JPH2 interaction with RyR and the pore-forming LTCC subunit Cav1.2, but strongly impaired JPH2 association with Cav3 and the accessory LTCC subunit Cavβ2. CONCLUSIONS JPH2 promotes T-tubule structural stability and recruits functional LTCCs to the membrane, most likely by directly binding to the channel. Cholesterol is involved in the binding of JPH2 to T-tubules as well as in the modulation of LTCC activity. We propose a model where cholesterol and Cav3 support the assembly of lipid rafts which provide an anchor for JPH2 to form JMCs and a platform for signalling complexes to regulate LTCC activity.
Collapse
Affiliation(s)
- Claire Poulet
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Jose Sanchez-Alonso
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Pamela Swiatlowska
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Florence Mouy
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Carla Lucarelli
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
- Department of Cardiac Surgery, School of Medicine, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Anita Alvarez-Laviada
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Polina Gross
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, 3500 N. Broad St., Philadelphia, PA 19140, USA
| | - Cesare Terracciano
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Steven Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, 3500 N. Broad St., Philadelphia, PA 19140, USA
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
31
|
Medvedev R, Sanchez-Alonso JL, Alvarez-Laviada A, Rossi S, Dries E, Schorn T, Abdul-Salam VB, Trayanova N, Wojciak-Stothard B, Miragoli M, Faggian G, Gorelik J. Nanoscale Study of Calcium Handling Remodeling in Right Ventricular Cardiomyocytes Following Pulmonary Hypertension. Hypertension 2020; 77:605-616. [PMID: 33356404 DOI: 10.1161/hypertensionaha.120.14858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pulmonary hypertension is a complex disorder characterized by pulmonary vascular remodeling and right ventricular hypertrophy, leading to right heart failure. The mechanisms underlying this process are not well understood. We hypothesize that the structural remodeling occurring in the cardiomyocytes of the right ventricle affects the cytosolic Ca2+ handling leading to arrhythmias. After 12 days of monocrotaline-induced pulmonary hypertension in rats, epicardial mapping showed electrical remodeling in both ventricles. In myocytes isolated from the hypertensive rats, a combination of high-speed camera and confocal line-scan documented a prolongation of Ca2+ transients along with a higher local Ca2+-release activity. These Ca2+ transients were less synchronous than in controls, likely due to disorganized transverse-axial tubular system. In fact, following pulmonary hypertension, hypertrophied right ventricular myocytes showed significantly reduced number of transverse tubules and increased number of axial tubules; however, Stimulation Emission Depletion microscopy demonstrated that the colocalization of L-type Ca2+ channels and RyR2 (ryanodine receptor 2) remained unchanged. Finally, Stimulation Emission Depletion microscopy and super-resolution scanning patch-clamp analysis uncovered a decrease in the density of active L-type Ca2+ channels in right ventricular myocytes with an elevated open probability of the T-tubule anchored channels. This may represent a general mechanism of how nanoscale structural changes at the early stage of pulmonary hypertension impact on the development of the end stage failing phenotype in the right ventricle.
Collapse
Affiliation(s)
- Roman Medvedev
- From the Dipartimento di Cardiochirurgia, Università degli Studi di Verona, Ospedale Borgo Trento, Italy (R.M., G.F.).,National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.).,Humanitas Clinical and Research Center, Rozzano, Italy (R.M., T.S., M.M.)
| | - Jose L Sanchez-Alonso
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.)
| | - Anita Alvarez-Laviada
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.)
| | - Stefano Rossi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Italy (S.R., M.M.)
| | - Eef Dries
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.).,Lab of Experimental Cardiology, University of Leuven, Belgium (E.D.)
| | - Tilo Schorn
- Humanitas Clinical and Research Center, Rozzano, Italy (R.M., T.S., M.M.)
| | - Vahitha B Abdul-Salam
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.)
| | - Natalia Trayanova
- Department of Biomedical Engineering and Alliance for Cardiovascular Diagnostic and Treatment Innovation; Johns Hopkins University; Baltimore, MD (N.T.)
| | - Beata Wojciak-Stothard
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.)
| | - Michele Miragoli
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Italy (S.R., M.M.)
| | | | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.)
| |
Collapse
|
32
|
Mora MT, Gong JQX, Sobie EA, Trenor B. The role of β-adrenergic system remodeling in human heart failure: A mechanistic investigation. J Mol Cell Cardiol 2020; 153:14-25. [PMID: 33326834 DOI: 10.1016/j.yjmcc.2020.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 01/01/2023]
Abstract
β-adrenergic receptor antagonists (β-blockers) are extensively used to improve cardiac performance in heart failure (HF), but the electrical improvements with these clinical treatments are not fully understood. The aim of this study was to analyze the electrophysiological effects of β-adrenergic system remodeling in heart failure with reduced ejection fraction and the underlying mechanisms. We used a combined mathematical model that integrated β-adrenergic signaling with electrophysiology and calcium cycling in human ventricular myocytes. HF remodeling, both in the electrophysiological and signaling systems, was introduced to quantitatively analyze changes in electrophysiological properties due to the stimulation of β-adrenergic receptors in failing myocytes. We found that the inotropic effect of β-adrenergic stimulation was reduced in HF due to the altered Ca2+ dynamics resulting from the combination of structural, electrophysiological and signaling remodeling. Isolated cells showed proarrhythmic risk after sympathetic stimulation because early afterdepolarizations appeared, and the vulnerability was greater in failing myocytes. When analyzing coupled cells, β-adrenergic stimulation reduced transmural repolarization gradients between endocardium and epicardium in normal tissue, but was less effective at reducing these gradients after HF remodeling. The comparison of the selective activation of β-adrenergic isoforms revealed that the response to β2-adrenergic receptors stimulation was blunted in HF while β1-adrenergic receptors downstream effectors regulated most of the changes observed after sympathetic stimulation. In conclusion, this study was able to reproduce an altered β-adrenergic activity on failing myocytes and to explain the mechanisms involved. The derived predictions could help in the treatment of HF and guide in the design of future experiments.
Collapse
Affiliation(s)
- Maria T Mora
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Jingqi Q X Gong
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric A Sobie
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Beatriz Trenor
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
33
|
Xing G, Woo AYH, Pan L, Lin B, Cheng MS. Recent Advances in β 2-Agonists for Treatment of Chronic Respiratory Diseases and Heart Failure. J Med Chem 2020; 63:15218-15242. [PMID: 33213146 DOI: 10.1021/acs.jmedchem.0c01195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
β2-Adrenoceptor (β2-AR) agonists are widely used as bronchodilators. The emerge of ultralong acting β2-agonists is an important breakthrough in pulmonary medicine. In this review, we will provide mechanistic insights into the application of β2-agonists in asthma, chronic obstructive pulmonary disease (COPD), and heart failure (HF). Recent studies in β-AR signal transduction have revealed opposing functions of the β1-AR and the β2-AR on cardiomyocyte survival. Thus, β2-agonists and β-blockers in combination may represent a novel strategy for HF management. Allosteric modulation and biased agonism at the β2-AR also provide a theoretical basis for developing drugs with novel mechanisms of action and pharmacological profiles. Overlap of COPD and HF presents a substantial clinical challenge but also a unique opportunity for evaluation of the cardiovascular safety of β2-agonists. Further basic and clinical research along these lines can help us develop better drugs and innovative strategies for the management of these difficult-to-treat diseases.
Collapse
Affiliation(s)
- Gang Xing
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Anthony Yiu-Ho Woo
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li Pan
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Lin
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mao-Sheng Cheng
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
34
|
Liu Y, Zhou K, Li J, Agvanian S, Caldaruse AM, Shaw S, Hitzeman TC, Shaw RM, Hong T. In Mice Subjected to Chronic Stress, Exogenous cBIN1 Preserves Calcium-Handling Machinery and Cardiac Function. JACC Basic Transl Sci 2020; 5:561-578. [PMID: 32613144 PMCID: PMC7315191 DOI: 10.1016/j.jacbts.2020.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022]
Abstract
Heart failure is an important, and growing, cause of morbidity and mortality. Half of patients with heart failure have preserved ejection fraction, for whom therapeutic options are limited. Here we report that cardiac bridging integrator 1 gene therapy to maintain subcellular membrane compartments within cardiomyocytes can stabilize intracellular distribution of calcium-handling machinery, preserving diastolic function in hearts stressed by chronic beta agonist stimulation and pressure overload. This study identifies that maintenance of intracellular architecture and, in particular, membrane microdomains at t-tubules, is important in the setting of sympathetic stress. Stabilization of membrane microdomains may be a pathway for future therapeutic development.
Collapse
Key Words
- AAV9, adeno-associated virus 9
- ANOVA, analysis of variance
- AR, adrenergic receptor
- ATPase, adenosine triphosphatase
- BW, body weight
- CAMKII, Ca2+/calmodulin-dependent protein kinase
- CMV, cytomegalovirus
- Di-8-ANNEPs, 4-[2-[6-(Dioctylamino)-2-naphthalenyl]ethenyl]-1-(3-sulfopropyl)-pyridinium, inner salt
- EC, excitation contraction
- EDV, end diastolic volume
- EF, ejection fraction
- GFP, green fluorescent protein
- HF, heart failure
- HR, heart rate
- HT, heterozygote
- HW, heart weight
- ISO, isoproterenol
- LSD, least significant difference
- LTCC, voltage-dependent L-type calcium channel
- LV, left ventricular
- LW, lung weight
- PBS, phosphate-buffered saline
- PKA, protein kinase A
- PLN, phospholamban
- RWT, relative wall thickness
- RyR, ryanodine receptor
- SD, standard deviation
- SEM, standard error of the mean
- SERCA2a, sarcoplasmic reticulum calcium ATPase pump 2a
- SR, sarcoplasmic reticulum
- STORM, stochastic optical reconstruction microscopy
- TAC, transverse aortic constriction
- TEM, transmission electron microscopy
- WT, wild type
- cBIN1, cardiac bridging integrator 1
- diastolic dysfunction
- heart failure
- jSR, junctional sarcoplasmic reticulum
- pressure overload
- sympathetic overdrive
- t-tubule
- t-tubule, transverse-tubule
- vg, vector genome
Collapse
Affiliation(s)
- Yan Liu
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kang Zhou
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jing Li
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Sosse Agvanian
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | | | - Seiji Shaw
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Tara C Hitzeman
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Robin M Shaw
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - TingTing Hong
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Departments of Medicine, Cedars-Sinai Medical Center and UCLA, Los Angeles, California
| |
Collapse
|
35
|
New aspects in cardiac L-type Ca2+ channel regulation. Biochem Soc Trans 2020; 48:39-49. [PMID: 32065210 DOI: 10.1042/bst20190229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 12/23/2022]
Abstract
Cardiac excitation-contraction coupling is initiated with the influx of Ca2+ ions across the plasma membrane through voltage-gated L-type calcium channels. This process is tightly regulated by modulation of the channel open probability and channel localization. Protein kinase A (PKA) is found in close association with the channel and is one of the main regulators of its function. Whether this kinase is modulating the channel open probability by phosphorylation of key residues or via alternative mechanisms is unclear. This review summarizes recent findings regarding the PKA-mediated channel modulation and will highlight recently discovered regulatory mechanisms that are independent of PKA activity and involve protein-protein interactions and channel localization.
Collapse
|
36
|
Studying signal compartmentation in adult cardiomyocytes. Biochem Soc Trans 2020; 48:61-70. [PMID: 32104883 PMCID: PMC7054744 DOI: 10.1042/bst20190247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 02/04/2023]
Abstract
Multiple intra-cellular signalling pathways rely on calcium and 3′–5′ cyclic adenosine monophosphate (cAMP) to act as secondary messengers. This is especially true in cardiomyocytes which act as the force-producing units of the cardiac muscle and are required to react rapidly to environmental stimuli. The specificity of functional responses within cardiomyocytes and other cell types is produced by the organellar compartmentation of both calcium and cAMP. In this review, we assess the role of molecular localisation and relative contribution of active and passive processes in producing compartmentation. Active processes comprise the creation and destruction of signals, whereas passive processes comprise the release or sequestration of signals. Cardiomyocytes display a highly articulated membrane structure which displays significant cell-to-cell variability. Special attention is paid to the way in which cell membrane caveolae and the transverse-axial tubule system allow molecular localisation. We explore the effects of cell maturation, pathology and regional differences in the organisation of these processes. The subject of signal compartmentation has had a significant amount of attention within the cardiovascular field and has undergone a revolution over the past two decades. Advances in the area have been driven by molecular imaging using fluorescent dyes and genetically encoded constructs based upon fluorescent proteins. We also explore the use of scanning probe microscopy in the area. These techniques allow the analysis of molecular compartmentation within specific organellar compartments which gives researchers an entirely new perspective.
Collapse
|
37
|
Bastug-Özel Z, Wright PT, Kraft AE, Pavlovic D, Howie J, Froese A, Fuller W, Gorelik J, Shattock MJ, Nikolaev VO. Heart failure leads to altered β2-adrenoceptor/cyclic adenosine monophosphate dynamics in the sarcolemmal phospholemman/Na,K ATPase microdomain. Cardiovasc Res 2020; 115:546-555. [PMID: 30165515 DOI: 10.1093/cvr/cvy221] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 11/22/2017] [Accepted: 08/23/2018] [Indexed: 01/09/2023] Open
Abstract
AIMS Cyclic adenosine monophosphate (cAMP) regulates cardiac excitation-contraction coupling by acting in microdomains associated with sarcolemmal ion channels. However, local real time cAMP dynamics in such microdomains has not been visualized before. We sought to directly monitor cAMP in a microdomain formed around sodium-potassium ATPase (NKA) in healthy and failing cardiomyocytes and to better understand alterations of cAMP compartmentation in heart failure. METHODS AND RESULTS A novel Förster resonance energy transfer (FRET)-based biosensor termed phospholemman (PLM)-Epac1 was developed by fusing a highly sensitive cAMP sensor Epac1-camps to the C-terminus of PLM. Live cell imaging in PLM-Epac1 and Epac1-camps expressing adult rat ventricular myocytes revealed extensive regulation of NKA/PLM microdomain-associated cAMP levels by β2-adrenoceptors (β2-ARs). Local cAMP pools stimulated by these receptors were tightly controlled by phosphodiesterase (PDE) type 3. In chronic heart failure following myocardial infarction, dramatic reduction of the microdomain-specific β2-AR/cAMP signals and β2-AR dependent PLM phosphorylation was accompanied by a pronounced loss of local PDE3 and an increase in PDE2 effects. CONCLUSIONS NKA/PLM complex forms a distinct cAMP microdomain which is directly regulated by β2-ARs and is under predominant control by PDE3. In heart failure, local changes in PDE repertoire result in blunted β2-AR signalling to cAMP in the vicinity of PLM.
Collapse
Affiliation(s)
- Zeynep Bastug-Özel
- Clinic of Cardiology and Heart Research Center, University Medical Center Göttingen, Göttingen, Germany.,Cardiovascular Division, King's College London, London, UK
| | - Peter T Wright
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Axel E Kraft
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Martinistr. 52, D-20246 Hamburg, Germany
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Jacqueline Howie
- Division of Cardiovascular and Diabetes Medicine, University of Dundee, Dundee, UK
| | - Alexander Froese
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Martinistr. 52, D-20246 Hamburg, Germany
| | - William Fuller
- Division of Cardiovascular and Diabetes Medicine, University of Dundee, Dundee, UK
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Martinistr. 52, D-20246 Hamburg, Germany
| |
Collapse
|
38
|
Power A, Kaur S, Dyer C, Ward ML. Disruption of Transverse-Tubules Eliminates the Slow Force Response to Stretch in Isolated Rat Trabeculae. Front Physiol 2020; 11:193. [PMID: 32210837 PMCID: PMC7069251 DOI: 10.3389/fphys.2020.00193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
Ventricular muscle has a biphasic response to stretch. There is an immediate increase in force that coincides with the stretch which is followed by a second phase that takes several minutes for force to develop to a new steady state. The initial increase in force is due to changes in myofilament properties, whereas the second, slower component of the stretch response (known as the “slow force response” or SFR) is accompanied by a steady increase in Ca2+ transient amplitude. Evidence shows stretch-dependent Ca2+ influx during the SFR occurs through some mechanism that is continuously active for several minutes following stretch. Many of the candidate ion channels are located primarily in the t-tubules, which are consequently lost in heart disease. Our aim, therefore, was to investigate the impact of t-tubule loss on the SFR in non-failing cardiac trabeculae in which expression of the different Ca2+ handling proteins was not altered by any disease process. For comparison, we also investigated the effect of formamide detubulation of trabeculae on β-adrenergic activation (1 μM isoproterenol), since this is another key regulator of cardiac force. Measurement of intracellular calcium ([Ca2+]i) and isometric stress were made in RV trabeculae from rat hearts before, during and after formamide treatment (1.5 M for 5 min), which on washout seals the surface sarcolemmal t-tubule openings. Results showed detubulation slowed the time course of Ca2+ transients and twitch force, with time-to-peak, maximum rate-of-rise, and relaxation prolonged in trabeculae at optimal length (Lo). Formamide treatment also prevented development of the SFR following a step change in length from 90 to 100% Lo, and blunted the response to β-adrenergic activation (1 μM isoproterenol).
Collapse
Affiliation(s)
- Amelia Power
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Sarbjot Kaur
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Cameron Dyer
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Marie-Louise Ward
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| |
Collapse
|
39
|
Adverse transverse-tubule remodeling in a rat model of heart failure is attenuated with low-dose triiodothyronine treatment. Mol Med 2019; 25:53. [PMID: 31810440 PMCID: PMC6898920 DOI: 10.1186/s10020-019-0120-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
Abstract Pre-clinical animal studies have shown that triiodothyronine (T3) replacement therapy improves cardiac contractile function after myocardial infarction (MI). We hypothesized that T3 treatment could prevent adverse post-infarction cardiomyocyte remodeling by maintaining transverse-tubule (TT) structures, thus improving calcium dynamics and contractility. Methods Myocardial infarction (MI) or sham surgeries were performed on female Sprague-Dawley rats (aged 12 wks), followed by treatment with T3 (5μg/kg/d) or vehicle in drinking water for 16 wks (n = 10–11/group). After in vivo echocardiographic and hemodynamic analyses, left ventricular myocytes were isolated by collagenase digestion and simultaneous calcium and contractile transients in single cardiomyocytes were recorded using IonOptix imaging. Live cardiomyocytes were stained with AlexaFluor-488 conjugated wheat germ agglutinin (WGA-488) or di-8-ANEPPS, and multiple z-stack images per cell were captured by confocal microscopy for analysis of TT organization. RTqPCR and immunoblot approaches determined expression of TT proteins. Results Echocardiography and in vivo hemodynamic measurements showed significant improvements in systolic and diastolic function in T3- vs vehicle-treated MI rats. Isolated cardiomyocyte analysis showed significant dysfunction in measurements of myocyte relengthening in MI hearts, and improvements with T3 treatment: max relengthening velocity (Vmax, um/s), 2.984 ± 1.410 vs 1.593 ± 0.325, p < 0.05 and time to Vmax (sec), 0.233 ± 0.037 vs 0.314 ± 0.019, p < 0.001; MI + T3 vs MI + Veh, respectively. Time to peak contraction was shortened by T3 treatment (0.161 ± 0.021 vs 0.197 ± 0.011 s., p < 0.01; MI + T3 vs MI + Veh, respectively). Analysis of TT periodicity of WGA- or ANEPPS-stained cardiomyocytes indicated significant TT disorganization in MI myocytes and improvement with T3 treatment (transverse-oriented tubules (TE%): 9.07 ± 0.39 sham, 6.94 ± 0.67 MI + Veh and 8.99 ± 0.38 MI + T3; sham vs MI + Veh, p < 0.001; MI + Veh vs MI + T3, p < 0.01). Quantitative RT-PCR showed that reduced expression of BIN1 (Bridging integrator-1), Jph2 (junctophilin-2), RyR2 (ryanodine receptor) and Cav1.2 (L-type calcium channel) in the failing myocardium were increased by T3 and immunoblot analysis further supporting a potential T3 effect on the TT-associated proteins, BIN1 and Jph2. In conclusion, low dose T3 treatment initiated immediately after myocardial infarction attenuated adverse TT remodeling, improved calcium dynamics and contractility, thus supporting the potential therapeutic utility of T3 treatment in heart failure.
Collapse
|
40
|
Small HY, Guzik TJ. High impact Cardiovascular Research: beyond the heart and vessels. Cardiovasc Res 2019; 115:e166-e171. [PMID: 31697316 DOI: 10.1093/cvr/cvz272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Heather Y Small
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, 126 University Place, University of Glasgow, Glasgow, UK
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, 126 University Place, University of Glasgow, Glasgow, UK.,Department of Internal and Agricultural Medicine, Jagiellonian University Collegium Medicum, 31-008 Anny 12, Krakow, Poland
| |
Collapse
|
41
|
Nader M. The SLMAP/Striatin complex: An emerging regulator of normal and abnormal cardiac excitation-contraction coupling. Eur J Pharmacol 2019; 858:172491. [PMID: 31233748 DOI: 10.1016/j.ejphar.2019.172491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/01/2022]
Abstract
The excitation-contraction (E-C) module involves a harmonized correspondence between the sarcolemma and the sarcoplasmic reticulum. This is provided by membrane proteins, which primarily shape the caveolae, the T-tubule/Sarcoplasmic reticulum (TT/SR) junction, and the intercalated discs (ICDs). Distortion of either one of these structures impairs myocardial contraction, and subsequently translates into cardiac failure. Thus, detailed studies on the molecular cues of the E-C module are becoming increasingly necessary to pharmacologically eradicate cardiac failure Herein we reviewed the organization of caveolae, TT/SR junctions, and the ICDs in the heart, with special attention to the Sarcolemma Membrane Associated Protein (SLMAP) and striatin (STRN) in cardiac membranes biology and cardiomyocyte contraction. We emphasized on their in vivo and in vitro signaling in cardiac function/dysfunction. SLMAP is a cardiac membrane protein that plays an important role in E-C coupling and the adrenergic response of the heart. Similarly, STRN is a dynamic protein that is also involved in cardiac E-C coupling and ICD-related cardiomyopathies. Both SLMAP and STRN are linked to cardiac conditions, including heart failure, and their role in cardiomyocyte function was elucidated in our laboratory. They interact together in a protein complex that holds therapeutic potentials for cardiac dysfunction. This review is the first of its kind to conceptualize the role of the SLMAP/STRN complex in cardiac function and failure. It provides in depth information on the signaling of these two proteins and projects their interaction as a novel therapeutic target for cardiac failure.
Collapse
Affiliation(s)
- Moni Nader
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, 11533, P.O. Box 50927, Saudi Arabia; Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|
42
|
Baltzer S, Klussmann E. Small molecules for modulating the localisation of the water channel aquaporin-2-disease relevance and perspectives for targeting local cAMP signalling. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1049-1064. [PMID: 31300862 DOI: 10.1007/s00210-019-01686-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/26/2019] [Indexed: 12/23/2022]
Abstract
The tight spatial and temporal organisation of cyclic adenosine monophosphate (cAMP) signalling plays a key role in arginine-vasopressin (AVP)-mediated water reabsorption in renal collecting duct principal cells and in a plethora of other processes such as in the control of cardiac myocyte contractility. This review critically discusses in vitro- and cell-based screening strategies for the identification of small molecules that interfere with AVP/cAMP signalling in renal principal cells; it features phenotypic screening and approaches for targeting protein-protein interactions of A-kinase anchoring proteins (AKAPs), which organise local cAMP signalling hubs. The discovery of novel chemical entities for the modulation of local cAMP will not only provide tools for elucidating molecular mechanisms underlying cAMP signalling. Novel chemical entities can also serve as starting points for the development of novel drugs for the treatment of human diseases. Examples illustrate how screening for small molecules can pave the way to novel approaches for the treatment of certain forms of diabetes insipidus, a disease caused by defects in AVP-mediated water reabsorption.
Collapse
Affiliation(s)
- Sandrine Baltzer
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany. .,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and Vegetative Physiology, Berlin, Germany.
| |
Collapse
|
43
|
cAMP/PKA signaling compartmentalization in cardiomyocytes: Lessons from FRET-based biosensors. J Mol Cell Cardiol 2019; 131:112-121. [PMID: 31028775 DOI: 10.1016/j.yjmcc.2019.04.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 12/29/2022]
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger produced in response to the stimulation of G protein-coupled receptors (GPCRs). It regulates a plethora of pathophysiological processes in different organs, including the cardiovascular system. It is now clear that cAMP is not uniformly distributed within cardiac myocytes but confined in specific subcellular compartments where it modulates key players of the excitation-contraction coupling as well as other processes including gene transcription, mitochondrial homeostasis and cell death. This review will cover the major cAMP microdomains in cardiac myocytes. We will describe recent work using pioneering tools developed for investigating the organization and the function of the major cAMP microdomains in cardiomyocytes, including the plasma membrane, the sarcoplasmic reticulum, the myofilaments, the nucleus and the mitochondria.
Collapse
|
44
|
Krzesiak A, Cognard C, Sebille S, Carré G, Bosquet L, Delpech N. High-intensity intermittent training is as effective as moderate continuous training, and not deleterious, in cardiomyocyte remodeling of hypertensive rats. J Appl Physiol (1985) 2019; 126:903-915. [PMID: 30702976 DOI: 10.1152/japplphysiol.00131.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exercise training offers possible nonpharmacological therapy for cardiovascular diseases including hypertension. High-intensity intermittent exercise (HIIE) training has been shown to have as much or even more beneficial cardiovascular effect in patients with cardiovascular diseases than moderate-intensity continuous exercise (CMIE) training. The aim of this study was to investigate the effects of the two types of training on cardiac remodeling of spontaneously hypertensive rats (SHR) induced by hypertension. Eight-week-old male SHR and normotensive Wistar-Kyoto rats (WKY) were divided into four groups: normotensive and hypertensive control (WKY and SHR-C) and hypertensive trained with CMIE (SHR-T CMIE) or HIIE (SHR-T HIIE). After 8 wk of training or inactivity, maximal running speed (MRS), arterial pressure, and heart weight were all assessed. CMIE or HIIE protocols not only increased final MRS and left ventricular weight/body weight ratio but also reduced mean arterial pressure compared with sedentary group. Then, left ventricular tissue was enzymatically dissociated, and isolated cardiomyocytes were used to highlight the changes induced by physical activity at morphological, mechanical, and molecular levels. Both types of training induced restoration of transverse tubule regularity, decrease in spark site density, and reduction in half-relaxation time of calcium transients. HIIE training, in particular, decreased spark amplitude and width, and increased cardiomyocyte contractility and the expression of sarco(endo)plasmic reticulum Ca2+-ATPase and phospholamban phosphorylated on serine 16. NEW & NOTEWORTHY High-intensity intermittent exercise training induces beneficial remodeling of the left ventricular cardiomyocytes of spontaneously hypertensive rats at the morphological, mechanical, and molecular levels. Results also confirm, at the cellular level, that this type of training, as it appears not to be deleterious, could be applied in rehabilitation of hypertensive patients.
Collapse
Affiliation(s)
- A Krzesiak
- Equipe Transferts Ioniques et Rythmicité Cellulaire, Laboratory Signalisation et Transports Ioniques Membranaires, Université de Poitiers, EA 7349, Faculté des Sciences Fondamentales et Appliquées , Poitiers , France.,Laboratoire Mobilité, Vieillissement, and Exercice, EA 6314, Université de Poitiers, Faculté des Sciences du Sport , Poitiers , France
| | - C Cognard
- Equipe Transferts Ioniques et Rythmicité Cellulaire, Laboratory Signalisation et Transports Ioniques Membranaires, Université de Poitiers, EA 7349, Faculté des Sciences Fondamentales et Appliquées , Poitiers , France
| | - S Sebille
- Equipe Transferts Ioniques et Rythmicité Cellulaire, Laboratory Signalisation et Transports Ioniques Membranaires, Université de Poitiers, EA 7349, Faculté des Sciences Fondamentales et Appliquées , Poitiers , France
| | - G Carré
- Equipe Transferts Ioniques et Rythmicité Cellulaire, Laboratory Signalisation et Transports Ioniques Membranaires, Université de Poitiers, EA 7349, Faculté des Sciences Fondamentales et Appliquées , Poitiers , France
| | - L Bosquet
- Laboratoire Mobilité, Vieillissement, and Exercice, EA 6314, Université de Poitiers, Faculté des Sciences du Sport , Poitiers , France
| | - N Delpech
- Laboratoire Mobilité, Vieillissement, and Exercice, EA 6314, Université de Poitiers, Faculté des Sciences du Sport , Poitiers , France
| |
Collapse
|
45
|
Johnson DM, Antoons G. Arrhythmogenic Mechanisms in Heart Failure: Linking β-Adrenergic Stimulation, Stretch, and Calcium. Front Physiol 2018; 9:1453. [PMID: 30374311 PMCID: PMC6196916 DOI: 10.3389/fphys.2018.01453] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022] Open
Abstract
Heart failure (HF) is associated with elevated sympathetic tone and mechanical load. Both systems activate signaling transduction pathways that increase cardiac output, but eventually become part of the disease process itself leading to further worsening of cardiac function. These alterations can adversely contribute to electrical instability, at least in part due to the modulation of Ca2+ handling at the level of the single cardiac myocyte. The major aim of this review is to provide a definitive overview of the links and cross talk between β-adrenergic stimulation, mechanical load, and arrhythmogenesis in the setting of HF. We will initially review the role of Ca2+ in the induction of both early and delayed afterdepolarizations, the role that β-adrenergic stimulation plays in the initiation of these and how the propensity for these may be altered in HF. We will then go onto reviewing the current data with regards to the link between mechanical load and afterdepolarizations, the associated mechano-sensitivity of the ryanodine receptor and other stretch activated channels that may be associated with HF-associated arrhythmias. Furthermore, we will discuss how alterations in local Ca2+ microdomains during the remodeling process associated the HF may contribute to the increased disposition for β-adrenergic or stretch induced arrhythmogenic triggers. Finally, the potential mechanisms linking β-adrenergic stimulation and mechanical stretch will be clarified, with the aim of finding common modalities of arrhythmogenesis that could be targeted by novel therapeutic agents in the setting of HF.
Collapse
Affiliation(s)
- Daniel M Johnson
- Department of Cardiothoracic Surgery, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Gudrun Antoons
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
46
|
Wright PT, Sanchez-Alonso JL, Lucarelli C, Alvarez-Laviada A, Poulet CE, Bello SO, Faggian G, Terracciano CM, Gorelik J. Partial Mechanical Unloading of the Heart Disrupts L-Type Calcium Channel and Beta-Adrenoceptor Signaling Microdomains. Front Physiol 2018; 9:1302. [PMID: 30283354 PMCID: PMC6157487 DOI: 10.3389/fphys.2018.01302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/29/2018] [Indexed: 12/16/2022] Open
Abstract
Introduction: We investigated the effect of partial mechanical unloading (PMU) of the heart on the physiology of calcium and beta-adrenoceptor-cAMP (βAR-cAMP) microdomains. Previous studies have investigated PMU using a model of heterotopic-heart and lung transplantation (HTHAL). These studies have demonstrated that PMU disrupts the structure of cardiomyocytes and calcium handling. We sought to understand these processes by studying L-Type Calcium Channel (LTCC) activity and sub-type-specific βAR-cAMP signaling within cardiomyocyte membrane microdomains. Method: We utilized an 8-week model of HTHAL, whereby the hearts of syngeneic Lewis rats were transplanted into the abdomens of randomly assigned cage mates. A pronounced atrophy was observed in hearts after HTHAL. Cardiomyocytes were isolated via enzymatic perfusion. We utilized Förster Resonance Energy Transfer (FRET) based cAMP-biosensors and scanning ion conductance microscopy (SICM) based methodologies to study localization of LTCC and βAR-cAMP signaling. Results: β2AR-cAMP responses measured by FRET in the cardiomyocyte cytosol were reduced by PMU (loaded 28.51 ± 7.18% vs. unloaded 10.84 ± 3.27% N,n 4/10-13 mean ± SEM ∗p < 0.05). There was no effect of PMU on β2AR-cAMP signaling in RII_Protein Kinase A domains. β1AR-cAMP was unaffected by PMU in either microdomain. Consistent with this SICM/FRET analysis demonstrated that β2AR-cAMP was specifically reduced in t-tubules (TTs) after PMU (loaded TT 0.721 ± 0.106% vs. loaded crest 0.104 ± 0.062%, unloaded TT 0.112 ± 0.072% vs. unloaded crest 0.219 ± 0.084% N,n 5/6-9 mean ± SEM ∗∗p < 0.01, ∗∗∗p < 0.001 vs. loaded TT). By comparison β1AR-cAMP responses in either TT or sarcolemmal crests were unaffected by the PMU. LTCC occurrence and open probability (Po) were reduced by PMU (loaded TT Po 0.073 ± 0.011% vs. loaded crest Po 0.027 ± 0.006% N,n 5/18-26 mean ± SEM ∗p < 0.05) (unloaded TT 0.0350 ± 0.003% vs. unloaded crest Po 0.025 N,n 5/20-30 mean ± SEM NS #p < 0.05 unloaded vs. loaded TT). We discovered that PMU had reduced the association between Caveolin-3, Junctophilin-2, and Cav1.2. Discussion: PMU suppresses’ β2AR-cAMP and LTCC activity. When activated, the signaling of β2AR-cAMP and LTCC become more far-reaching after PMU. We suggest that a situation of ‘suppression/decompartmentation’ is elicited by the loss of refined cardiomyocyte structure following PMU. As PMU is a component of modern device therapy for heart failure this study has clinical ramifications and raises important questions for regenerative medicine.
Collapse
Affiliation(s)
- Peter T Wright
- Myocardial Function, National Heart and Lung Institute, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, London, United Kingdom
| | - Jose L Sanchez-Alonso
- Myocardial Function, National Heart and Lung Institute, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, London, United Kingdom
| | - Carla Lucarelli
- Myocardial Function, National Heart and Lung Institute, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, London, United Kingdom.,Department of Cardiac Surgery, School of Medicine, University of Verona, Verona, Italy
| | - Anita Alvarez-Laviada
- Myocardial Function, National Heart and Lung Institute, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, London, United Kingdom
| | - Claire E Poulet
- Myocardial Function, National Heart and Lung Institute, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, London, United Kingdom
| | - Sean O Bello
- Myocardial Function, National Heart and Lung Institute, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, London, United Kingdom
| | - Giuseppe Faggian
- Department of Cardiac Surgery, School of Medicine, University of Verona, Verona, Italy
| | - Cesare M Terracciano
- Myocardial Function, National Heart and Lung Institute, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, London, United Kingdom
| | - Julia Gorelik
- Myocardial Function, National Heart and Lung Institute, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
47
|
Nooh MM, Mancarella S, Bahouth SW. Novel Paradigms Governing β1-Adrenergic Receptor Trafficking in Primary Adult Rat Cardiac Myocytes. Mol Pharmacol 2018; 94:862-875. [PMID: 29848777 PMCID: PMC6022806 DOI: 10.1124/mol.118.112045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
The β1-adrenergic receptor (β1-AR) is a major cardiac G protein-coupled receptor, which mediates cardiac actions of catecholamines and is involved in genesis and treatment of numerous cardiovascular disorders. In mammalian cells, catecholamines induce the internalization of the β1-AR into endosomes and their removal promotes the recycling of the endosomal β1-AR back to the plasma membrane; however, whether these redistributive processes occur in terminally differentiated cells is unknown. Compartmentalization of the β1-AR in response to β-agonists and antagonists was determined by confocal microscopy in primary adult rat ventricular myocytes (ARVMs), which are terminally differentiated myocytes with unique structures such as transverse tubules (T-tubules) and contractile sarcomeres. In unstimulated ARVMs, the fluorescently labeled β1-AR was expressed on the external membrane (the sarcolemma) of cardiomyocytes. Exposing ARVMs to isoproterenol redistributed surface β1-ARs into small (∼225-250 nm) regularly spaced internal punctate structures that overlapped with puncta stained by Di-8 ANEPPS, a membrane-impermeant T-tubule-specific dye. Replacing the β-agonist with the β-blocker alprenolol, induced the translocation of the wild-type β1-AR from these punctate structures back to the plasma membrane. This step was dependent on two barcodes, namely, the type-1 PDZ binding motif and serine at position 312 of the β1-AR, which is phosphorylated by a pool of cAMP-dependent protein kinases anchored at the type-1 PDZ of the β1-AR. These data show that redistribution of the β1-AR in ARVMs from internal structures back to the plasma membrane was mediated by a novel sorting mechanism, which might explain unique aspects of cardiac β1-AR signaling under normal or pathologic conditions.
Collapse
Affiliation(s)
- Mohammed M Nooh
- Departments of Pharmacology (M.M.N., S.W.B.) and Physiology (S.M.), The University of Tennessee Health Sciences Center, Memphis, Tennessee; and Department of Biochemistry, Faculty of Pharmacy Cairo University, Cairo, Egypt (M.M.N.)
| | - Salvatore Mancarella
- Departments of Pharmacology (M.M.N., S.W.B.) and Physiology (S.M.), The University of Tennessee Health Sciences Center, Memphis, Tennessee; and Department of Biochemistry, Faculty of Pharmacy Cairo University, Cairo, Egypt (M.M.N.)
| | - Suleiman W Bahouth
- Departments of Pharmacology (M.M.N., S.W.B.) and Physiology (S.M.), The University of Tennessee Health Sciences Center, Memphis, Tennessee; and Department of Biochemistry, Faculty of Pharmacy Cairo University, Cairo, Egypt (M.M.N.)
| |
Collapse
|
48
|
Bhogal NK, Hasan A, Gorelik J. The Development of Compartmentation of cAMP Signaling in Cardiomyocytes: The Role of T-Tubules and Caveolae Microdomains. J Cardiovasc Dev Dis 2018; 5:jcdd5020025. [PMID: 29751502 PMCID: PMC6023514 DOI: 10.3390/jcdd5020025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/18/2018] [Accepted: 04/28/2018] [Indexed: 12/26/2022] Open
Abstract
3′-5′-cyclic adenosine monophosphate (cAMP) is a signaling messenger produced in response to the stimulation of cellular receptors, and has a myriad of functional applications depending on the cell type. In the heart, cAMP is responsible for regulating the contraction rate and force; however, cAMP is also involved in multiple other functions. Compartmentation of cAMP production may explain the specificity of signaling following a stimulus. In particular, transverse tubules (T-tubules) and caveolae have been found to be critical structural components for the spatial confinement of cAMP in cardiomyocytes, as exemplified by beta-adrenergic receptor (β-ARs) signaling. Pathological alterations in cardiomyocyte microdomain architecture led to a disruption in compartmentation of the cAMP signal. In this review, we discuss the difference between atrial and ventricular cardiomyocytes in respect to microdomain organization, and the pathological changes of atrial and ventricular cAMP signaling in response to myocyte dedifferentiation. In addition, we review the role of localized phosphodiesterase (PDE) activity in constraining the cAMP signal. Finally, we discuss microdomain biogenesis and maturation of cAMP signaling with the help of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Understanding these mechanisms may help to overcome the detrimental effects of pathological structural remodeling.
Collapse
Affiliation(s)
- Navneet K Bhogal
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| | - Alveera Hasan
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| | - Julia Gorelik
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
49
|
Norman R, Fuller W, Calaghan S. Caveolae and the cardiac myocyte. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2017.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Auguste G, Gurha P, Lombardi R, Coarfa C, Willerson JT, Marian AJ. Suppression of Activated FOXO Transcription Factors in the Heart Prolongs Survival in a Mouse Model of Laminopathies. Circ Res 2018; 122:678-692. [PMID: 29317431 DOI: 10.1161/circresaha.117.312052] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/13/2017] [Accepted: 01/05/2018] [Indexed: 01/15/2023]
Abstract
RATIONALE Mutations in the LMNA gene, encoding nuclear inner membrane protein lamin A/C, cause distinct phenotypes, collectively referred to as laminopathies. Heart failure, conduction defects, and arrhythmias are the common causes of death in laminopathies. OBJECTIVE The objective of this study was to identify and therapeutically target the responsible mechanism(s) for cardiac phenotype in laminopathies. METHODS AND RESULTS Whole-heart RNA sequencing was performed before the onset of cardiac dysfunction in the Lmna-/- and matched control mice. Differentially expressed transcripts and their upstream regulators were identified, validated, and targeted by adeno-associated virus serotype 9-short hairpin RNA constructs. A total of 576 transcripts were upregulated and 233 were downregulated in the Lmna-/- mouse hearts (q<0.05). Forkhead box O (FOXO) transcription factors (TFs) were the most activated while E2 factors were the most suppressed transcriptional regulators. Transcript levels of FOXO targets were also upregulated in the isolated Lmna-/- cardiac myocytes and in the myocardium of human heart failure patients. Nuclear localization of FOXO1 and 3 was increased, whereas phosphorylated (inactive) FOXO1 and 3 levels were reduced in the Lmna-/- hearts. Gene set enrichment analysis and gene ontology showed activation of apoptosis and inflammation and suppression of cell cycle, adipogenesis, and oxidative phosphorylation in the Lmna-/- hearts. Adeno-associated virus serotype 9-short hairpin RNA-mediated suppression of FOXO TFs rescued selected molecular signatures, improved apoptosis, and prolonged survival by ≈2-fold. CONCLUSIONS FOXO TFs are activated and contribute to the pathogenesis of cardiac phenotype in laminopathies. Suppression of the FOXO TFs in cardiac myocytes partially rescues the phenotype and prolongs survival. The findings identify FOXO TFs as potential therapeutic targets for cardiac phenotype in laminopathies.
Collapse
Affiliation(s)
- Gaelle Auguste
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston (G.A., P.G., R.L., T.T.W., A.J.M.), Texas Heart Institute (J.T.W., A.J.M.); and Baylor College of Medicine, Houston, TX (C.C.)
| | - Priyatansh Gurha
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston (G.A., P.G., R.L., T.T.W., A.J.M.), Texas Heart Institute (J.T.W., A.J.M.); and Baylor College of Medicine, Houston, TX (C.C.)
| | - Raffaella Lombardi
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston (G.A., P.G., R.L., T.T.W., A.J.M.), Texas Heart Institute (J.T.W., A.J.M.); and Baylor College of Medicine, Houston, TX (C.C.)
| | - Cristian Coarfa
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston (G.A., P.G., R.L., T.T.W., A.J.M.), Texas Heart Institute (J.T.W., A.J.M.); and Baylor College of Medicine, Houston, TX (C.C.)
| | - James T Willerson
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston (G.A., P.G., R.L., T.T.W., A.J.M.), Texas Heart Institute (J.T.W., A.J.M.); and Baylor College of Medicine, Houston, TX (C.C.)
| | - Ali J Marian
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston (G.A., P.G., R.L., T.T.W., A.J.M.), Texas Heart Institute (J.T.W., A.J.M.); and Baylor College of Medicine, Houston, TX (C.C.).
| |
Collapse
|