1
|
Xu P, Liu X, Ke L, Li K, Wang W, Jiao Y. The genomic insights of intertidal adaptation in Bryopsis corticulans. THE NEW PHYTOLOGIST 2025; 246:1691-1709. [PMID: 40110960 DOI: 10.1111/nph.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Many marine green algae thrive in intertidal zones, adapting to complex light environments that fluctuate between low underwater light and intense sunlight. Exploring their genomic bases could help to comprehend the diversity of adaptation strategies in response to environmental pressures. Here, we developed a novel and practical strategy to assemble high-confidence algal genomes and sequenced a high-quality genome of Bryopsis corticulans, an intertidal zone macroalga in the Bryopsidales order of Chlorophyta that originated 678 million years ago. Comparative genomic analyses revealed a previously overlooked whole genome duplication event in a closely related species, Caulerpa lentillifera. A total of 100 genes were acquired through horizontal gene transfer, including a homolog of the cryptochrome photoreceptor CRY gene. We also found that all four species studied in Bryopsidales lack key photoprotective genes (LHCSR, PsbS, CYP97A3, and VDE) involved in the xanthophyll cycle and energy-dependent quenching processes. We elucidated that the expansion of light-harvesting antenna genes and the biosynthesis pathways for siphonein and siphonaxanthin in B. corticulans likely contribute to its adaptation to intertidal light conditions. Our study unraveled the underlying special genetic basis of Bryopsis' adaptation to intertidal environments, advancing our understanding of plant adaptive evolution.
Collapse
Affiliation(s)
- Peng Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xueyang Liu
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lei Ke
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Kunpeng Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Wenda Wang
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Yuannian Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- China National Botanical Garden, Beijing, 100093, China
| |
Collapse
|
2
|
Jaramillo A, Satta A, Pinto F, Faraloni C, Zittelli GC, Silva Benavides AM, Torzillo G, Schumann C, Méndez JF, Berggren G, Lindblad P, Parente M, Esposito S, Diano M. Outlook on Synthetic Biology-Driven Hydrogen Production: Lessons from Algal Photosynthesis Applied to Cyanobacteria. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2025; 39:4987-5006. [PMID: 40134520 PMCID: PMC11932386 DOI: 10.1021/acs.energyfuels.4c04772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 03/27/2025]
Abstract
Photobiological hydrogen production offers a sustainable route to clean energy by harnessing solar energy through photosynthetic microorganisms. The pioneering sulfur-deprivation technique developed by Melis and colleagues in the green alga Chlamydomonas reinhardtii successfully enabled sustained hydrogen production by downregulating photosystem II (PSII) activity to reduce oxygen evolution, creating anaerobic conditions necessary for hydrogenase activity. Inspired by this approach, we present the project of the European consortium PhotoSynH2, which builds on these biological insights and employs synthetic biology to replicate and enhance this strategy in cyanobacteria, specifically, Synechocystis sp. PCC 6803. By genetically engineering precise downregulation of PSII, we aim to reduce oxygen evolution without the unintended effects associated with nutrient deprivation, enabling efficient hydrogen production. Additionally, re-engineering endogenous respiration to continuously replenish glycogen consumed during respiration allows matching oxygen production with consumption, maintaining anaerobic conditions conducive to hydrogen production. This review discusses how focusing on molecular-level processes and leveraging advanced genetic tools can lead to a new methodology that potentially offers improved results over traditional approaches. By redirecting electron flow and optimizing redox pathways, we seek to enhance hydrogen production efficiency in cyanobacteria. Our approach demonstrates how harnessing photosynthesis through synthetic biology can contribute to scalable and sustainable hydrogen production, addressing the growing demand for renewable energy and advancing toward a carbon-neutral future.
Collapse
Affiliation(s)
- Alfonso Jaramillo
- De
novo Synthetic Biology Lab, i2sysbio, CSIC-University
of Valencia, Parc Científic
Universitat de València, Calle Catedrático
Agustín Escardino, 9, 46980 Paterna, Spain
| | - Alessandro Satta
- De
novo Synthetic Biology Lab, i2sysbio, CSIC-University
of Valencia, Parc Científic
Universitat de València, Calle Catedrático
Agustín Escardino, 9, 46980 Paterna, Spain
| | - Filipe Pinto
- i3S
- Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Cecilia Faraloni
- Istituto
per la Bioeconomia, CNR, Via Madonna del Piano 10 Sesto Fiorentino, I-50019 Firenze, Italy
| | - Graziella Chini Zittelli
- Istituto
per la Bioeconomia, CNR, Via Madonna del Piano 10 Sesto Fiorentino, I-50019 Firenze, Italy
| | - Ana Margarita Silva Benavides
- Centro
de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San Pedro, San José 2060, Costa Rica
| | - Giuseppe Torzillo
- Istituto
per la Bioeconomia, CNR, Via Madonna del Piano 10 Sesto Fiorentino, I-50019 Firenze, Italy
- Centro
de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San Pedro, San José 2060, Costa Rica
| | - Conrad Schumann
- Molecular
Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, Box
523, SE-751 20 Uppsala, Sweden
| | - Jorge Fernández Méndez
- Microbial
Chemistry, Department of Chemistry - Ångström Laboratory, Uppsala University, Box
523, SE-751 20 Uppsala, Sweden
| | - Gustav Berggren
- Molecular
Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, Box
523, SE-751 20 Uppsala, Sweden
| | - Peter Lindblad
- Microbial
Chemistry, Department of Chemistry - Ångström Laboratory, Uppsala University, Box
523, SE-751 20 Uppsala, Sweden
| | - Maddalena Parente
- M2M
Engineering sas, Via Coroglio, Science Center, Business Innovation Center, 80124 Naples, Italy
| | - Serena Esposito
- M2M
Engineering sas, Via Coroglio, Science Center, Business Innovation Center, 80124 Naples, Italy
| | - Marcello Diano
- M2M
Engineering sas, Via Coroglio, Science Center, Business Innovation Center, 80124 Naples, Italy
| |
Collapse
|
3
|
Broderson M, Niyogi KK, Iwai M. Macroscale structural changes of thylakoid architecture during high light acclimation in Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2024; 162:427-437. [PMID: 38180578 PMCID: PMC11614958 DOI: 10.1007/s11120-023-01067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
Photoprotection mechanisms are ubiquitous among photosynthetic organisms. The photoprotection capacity of the green alga Chlamydomonas reinhardtii is correlated with protein levels of stress-related light-harvesting complex (LHCSR) proteins, which are strongly induced by high light (HL). However, the dynamic response of overall thylakoid structure during acclimation to growth in HL has not been fully understood. Here, we combined live-cell super-resolution microscopy and analytical membrane subfractionation to investigate macroscale structural changes of thylakoid membranes during HL acclimation in Chlamydomonas. Subdiffraction-resolution live-cell imaging revealed that the overall thylakoid structures became thinned and shrunken during HL acclimation. The stromal space around the pyrenoid also became enlarged. Analytical density-dependent membrane fractionation indicated that the structural changes were partly a consequence of membrane unstacking. The analysis of both an LHCSR loss-of-function mutant, npq4 lhcsr1, and a regulatory mutant that over-expresses LHCSR, spa1-1, showed that structural changes occurred independently of LHCSR protein levels, demonstrating that LHCSR was neither necessary nor sufficient to induce the thylakoid structural changes associated with HL acclimation. In contrast, stt7-9, a mutant lacking a kinase of major light-harvesting antenna proteins, had a slower thylakoid structural response to HL relative to all other lines tested but still showed membrane unstacking. These results indicate that neither LHCSR- nor antenna-phosphorylation-dependent HL acclimation are required for the observed macroscale structural changes of thylakoid membranes in HL conditions.
Collapse
Affiliation(s)
- Mimi Broderson
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Masakazu Iwai
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
4
|
Faraloni C, Touloupakis E, Torzillo G. Dark Anaerobic Conditions Induce a Fast Induction of the Xanthophyll Cycle in Chlamydomonas reinhardtii When Exposed to High Light. Microorganisms 2024; 12:2264. [PMID: 39597654 PMCID: PMC11596030 DOI: 10.3390/microorganisms12112264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Dark anaerobiosis promotes the acidification of the thylakoid lumen and a reduction in the plastoquinone (PQ) pool. The relationship between the reduction in the PQ pool in the dark and the induction of the xanthophyll cycle under high light stress was investigated in Chlamydomonas reinhardtii. METHODS To achieve a comprehensive oxidative/reductive (aerobic/anaerobic conditions) state of the PQ pool, cultures were bubbled with air or nitrogen for 4 h. To induce the xanthophyll cycle, the cultures were then irradiated with 1200 µmolphotons m-2 s-1 white light for 1 h. RESULTS The anaerobic cultures exhibited a stronger induction of the xanthophyll cycle with a 3.4-fold higher de-epoxidation state than the aerobic cultures. Chlorophyll fluorescence measurements showed that this response was influenced by the previous redox state of the PQ pool, and that dark anaerobiosis triggers physiological responses, such as exposure to high light. Thus, the photosynthetic apparatus in anaerobic cultures was already alerted, at the moment of high light exposure, to give an appropriate response to the stress with a stronger induction of the xanthophyll cycle than in aerobic cultures. CONCLUSIONS Our results provide new information on the importance of the redox signaling pathway and highlight the importance of the reductive conditions of the PQ pool in regulating the physiological responses of photosynthetic organisms to stress.
Collapse
Affiliation(s)
- Cecilia Faraloni
- Istituto per la Bioeconomia, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Firenze, Italy;
| | - Eleftherios Touloupakis
- Istituto di Ricerca sugli Ecosistemi Terrestri, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Firenze, Italy;
| | - Giuseppe Torzillo
- Istituto per la Bioeconomia, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Firenze, Italy;
- Centro de Investigación en Ciencias del Mar y Limnologίa, Universidad de Costa Rica, San Pedro, San José 2060, Costa Rica
| |
Collapse
|
5
|
Guo J, Yao Q, Dong J, Hou J, Jia P, Chen X, Li G, Zhao Q, Wang J, Liu F, Wang Z, Shan Y, Zhang T, Fu A, Wang F. Immunophilin FKB20-2 participates in oligomerization of Photosystem I in Chlamydomonas. PLANT PHYSIOLOGY 2024; 194:1631-1645. [PMID: 38039102 DOI: 10.1093/plphys/kiad645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 10/26/2023] [Accepted: 11/05/2023] [Indexed: 12/03/2023]
Abstract
PSI is a sophisticated photosynthesis protein complex that fuels the light reaction of photosynthesis in algae and vascular plants. While the structure and function of PSI have been studied extensively, the dynamic regulation on PSI oligomerization and high light response is less understood. In this work, we characterized a high light-responsive immunophilin gene FKB20-2 (FK506-binding protein 20-2) required for PSI oligomerization and high light tolerance in Chlamydomonas (Chlamydomonas reinhardtii). Biochemical assays and 77-K fluorescence measurement showed that loss of FKB20-2 led to the reduced accumulation of PSI core subunits and abnormal oligomerization of PSI complexes and, particularly, reduced PSI intermediate complexes in fkb20-2. It is noteworthy that the abnormal PSI oligomerization was observed in fkb20-2 even under dark and dim light growth conditions. Coimmunoprecipitation, MS, and yeast 2-hybrid assay revealed that FKB20-2 directly interacted with the low molecular weight PSI subunit PsaG, which might be involved in the dynamic regulation of PSI-light-harvesting complex I supercomplexes. Moreover, abnormal PSI oligomerization caused accelerated photodamage to PSII in fkb20-2 under high light stress. Together, we demonstrated that immunophilin FKB20-2 affects PSI oligomerization probably by interacting with PsaG and plays pivotal roles during Chlamydomonas tolerance to high light.
Collapse
Affiliation(s)
- Jia Guo
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Qiang Yao
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Jie Dong
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Jinrong Hou
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Pulian Jia
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Xueying Chen
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Guoyang Li
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Qi Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an 710069, China
| | - Jingyi Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an 710069, China
| | - Fang Liu
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Ziyu Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Yuying Shan
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Tengyue Zhang
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Aigen Fu
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an 710069, China
| | - Fei Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an 710069, China
| |
Collapse
|
6
|
Walker BJ, Driever SM, Kromdijk J, Lawson T, Busch FA. Tools for Measuring Photosynthesis at Different Scales. Methods Mol Biol 2024; 2790:1-26. [PMID: 38649563 DOI: 10.1007/978-1-0716-3790-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Measurements of in vivo photosynthesis are powerful tools that probe the largest fluxes of carbon and energy in an illuminated leaf, but often the specific techniques used are so varied and specialized that it is difficult for researchers outside the field to select and perform the most useful assays for their research questions. The goal of this chapter is to provide a broad overview of the current tools available for the study of photosynthesis, both in vivo and in vitro, so as to provide a foundation for selecting appropriate techniques, many of which are presented in detail in subsequent chapters. This chapter will also organize current methods into a comparative framework and provide examples of how they have been applied to research questions of broad agronomical, ecological, or biological importance. This chapter closes with an argument that the future of in vivo measurements of photosynthesis lies in the ability to use multiple methods simultaneously and discusses the benefits of this approach to currently open physiological questions. This chapter, combined with the relevant methods chapters, could serve as a laboratory course in methods in photosynthesis research or as part of a more comprehensive laboratory course in general plant physiology methods.
Collapse
Affiliation(s)
- Berkley J Walker
- Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Steven M Driever
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, The Netherlands
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Florian A Busch
- School of Biosciences and The Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
7
|
Cecchin M, Simicevic J, Chaput L, Hernandez Gil M, Girolomoni L, Cazzaniga S, Remacle C, Hoeng J, Ivanov NV, Titz B, Ballottari M. Acclimation strategies of the green alga Chlorella vulgaris to different light regimes revealed by physiological and comparative proteomic analyses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4540-4558. [PMID: 37155956 DOI: 10.1093/jxb/erad170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Acclimation to different light regimes is at the basis of survival for photosynthetic organisms, regardless of their evolutionary origin. Previous research efforts largely focused on acclimation events occurring at the level of the photosynthetic apparatus and often highlighted species-specific mechanisms. Here, we investigated the consequences of acclimation to different irradiances in Chlorella vulgaris, a green alga that is one of the most promising species for industrial application, focusing on both photosynthetic and mitochondrial activities. Moreover, proteomic analysis of cells acclimated to high light (HL) or low light (LL) allowed identification of the main targets of acclimation in terms of differentially expressed proteins. The results obtained demonstrate photosynthetic adaptation to HL versus LL that was only partially consistent with previous findings in Chlamydomonas reinhardtii, a model organism for green algae, but in many cases similar to vascular plant acclimation events. Increased mitochondrial respiration measured in HL-acclimated cells mainly relied on alternative oxidative pathway dissipating the excessive reducing power produced due to enhanced carbon flow. Finally, proteins involved in cell metabolism, intracellular transport, gene expression, and signaling-including a heliorhodopsin homolog-were identified as strongly differentially expressed in HL versus LL, suggesting their key roles in acclimation to different light regimes.
Collapse
Affiliation(s)
- Michela Cecchin
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Jovan Simicevic
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Louise Chaput
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel Hernandez Gil
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Laura Girolomoni
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Stefano Cazzaniga
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Matteo Ballottari
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
8
|
Bisht B, Jaiswal KK, Parveen A, Kumar S, Verma M, Kim H, Vlaskin MS, Singh N, Kumar V. A phyco-nanobionics biohybrid system for increased carotenoid accumulation in C. sorokiniana UUIND6. J Mater Chem B 2023; 11:7466-7477. [PMID: 37449368 DOI: 10.1039/d3tb00960b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Recent advancements in "phyco-nanobionics" have sparked considerable interest in the ability of microalgae to synthesize high-value natural bioactive compounds such as carotenoid pigments, which have been highlighted as an emergent and vital bioactive compound from both industrial and scientific perspectives. Such bioactive compounds are often synthesized by either altering the biogenetic processes existing in living microorganisms or using synthetic techniques derived from petroleum-based chemical sources. A bio-hybrid light-driven cell factory system was established herein by using harmful macroalgal bloom extract (HMBE) and efficient light-harvesting silver nanoparticles (AgNPs) to synthesize HMBE-AgNPs and integrating the synthesized HMBE-AgNPs in various concentrations (1, 2.5, 5 and 10 ppm) into the microalgae C. sorokiniana UUIND6 to improve the overall solar-to-chemical conversion efficiency in carotenoid pigment synthesis in microalgae. The current study findings found high biocompatibility of 5 ppm HMBE-AgNP concentration that can serve as a built-in photo-sensitizer and significantly improve ROS levels in microalgae (6.75 ± 0.25 μmol H2O2 g-1), thus elevating total photosynthesis resulting in a two-fold increase in carotenoids (457.5 ± 2.5 μg mL-1) over the native microalgae without compromising biomass yield. NMR spectroscopy was additionally applied to acquire a better understanding of pure carotenoids derived from microalgae, which indicated similar peaks in both spectra when compared to β-carotene. Thus, this well-planned bio-hybrid system offers a potential option for the cost-effective and long-term supply of these natural carotenoid bio-products.
Collapse
Affiliation(s)
- Bhawna Bisht
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, 248002, India
| | - Krishna Kumar Jaiswal
- Bioprocess Engineering Laboratory, Department of Green Energy Technology, Pondicherry University, Puducherry, 605014, India
| | - Afreen Parveen
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, 248002, India
| | - Sanjay Kumar
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, 248002, India
| | - Monu Verma
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hyunook Kim
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Mikhail S Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, 117198, Russian Federation
| | - Narpinder Singh
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, 248002, India
| | - Vinod Kumar
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, 248002, India
- Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russian Federation.
| |
Collapse
|
9
|
Burlacot A, Peltier G. Energy crosstalk between photosynthesis and the algal CO 2-concentrating mechanisms. TRENDS IN PLANT SCIENCE 2023; 28:795-807. [PMID: 37087359 DOI: 10.1016/j.tplants.2023.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
Microalgal photosynthesis is responsible for nearly half of the CO2 annually captured by Earth's ecosystems. In aquatic environments where the CO2 availability is low, the CO2-fixing efficiency of microalgae greatly relies on mechanisms - called CO2-concentrating mechanisms (CCMs) - for concentrating CO2 at the catalytic site of the CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). While the transport of inorganic carbon (Ci) across membrane bilayers against a concentration gradient consumes part of the chemical energy generated by photosynthesis, the bioenergetics and cellular mechanisms involved are only beginning to be elucidated. Here, we review the current knowledge relating to the energy requirement of CCMs in the light of recent advances in photosynthesis regulatory mechanisms and the spatial organization of CCM components.
Collapse
Affiliation(s)
- Adrien Burlacot
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Gilles Peltier
- Aix-Marseille Université, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France.
| |
Collapse
|
10
|
Structure of Photosystem I Supercomplex Isolated from a Chlamydomonas reinhardtii Cytochrome b6f Temperature-Sensitive Mutant. Biomolecules 2023; 13:biom13030537. [PMID: 36979472 PMCID: PMC10046768 DOI: 10.3390/biom13030537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/22/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
The unicellular green alga, Chlamydomonas reinhardtii, has been widely used as a model system to study photosynthesis. Its possibility to generate and analyze specific mutants has made it an excellent tool for mechanistic and biogenesis studies. Using negative selection of ultraviolet (UV) irradiation–mutated cells, we isolated a mutant (TSP9) with a single amino acid mutation in the Rieske protein of the cytochrome b6f complex. The W143R mutation in the petC gene resulted in total loss of cytochrome b6f complex function at the non-permissive temperature of 37 °C and recovery at the permissive temperature of 25 °C. We then isolated photosystem I (PSI) and photosystem II (PSII) supercomplexes from cells grown at the non-permissive temperature and determined the PSI structure with high-resolution cryogenic electron microscopy. There were several structural alterations compared with the structures obtained from wild-type cells. Our structural data suggest that the mutant responded by excluding the Lhca2, Lhca9, PsaL, and PsaH subunits. This structural alteration prevents state two transition, where LHCII migrates from PSII to bind to the PSI complex. We propose this as a possible response mechanism triggered by the TSP9 phenotype at the non-permissive temperature.
Collapse
|
11
|
Shang H, Li M, Pan X. Dynamic Regulation of the Light-Harvesting System through State Transitions in Land Plants and Green Algae. PLANTS (BASEL, SWITZERLAND) 2023; 12:1173. [PMID: 36904032 PMCID: PMC10005731 DOI: 10.3390/plants12051173] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Photosynthesis constitutes the only known natural process that captures the solar energy to convert carbon dioxide and water into biomass. The primary reactions of photosynthesis are catalyzed by the photosystem II (PSII) and photosystem I (PSI) complexes. Both photosystems associate with antennae complexes whose main function is to increase the light-harvesting capability of the core. In order to maintain optimal photosynthetic activity under a constantly changing natural light environment, plants and green algae regulate the absorbed photo-excitation energy between PSI and PSII through processes known as state transitions. State transitions represent a short-term light adaptation mechanism for balancing the energy distribution between the two photosystems by relocating light-harvesting complex II (LHCII) proteins. The preferential excitation of PSII (state 2) results in the activation of a chloroplast kinase which in turn phosphorylates LHCII, a process followed by the release of phosphorylated LHCII from PSII and its migration to PSI, thus forming the PSI-LHCI-LHCII supercomplex. The process is reversible, as LHCII is dephosphorylated and returns to PSII under the preferential excitation of PSI. In recent years, high-resolution structures of the PSI-LHCI-LHCII supercomplex from plants and green algae were reported. These structural data provide detailed information on the interacting patterns of phosphorylated LHCII with PSI and on the pigment arrangement in the supercomplex, which is critical for constructing the excitation energy transfer pathways and for a deeper understanding of the molecular mechanism of state transitions progress. In this review, we focus on the structural data of the state 2 supercomplex from plants and green algae and discuss the current state of knowledge concerning the interactions between antenna and the PSI core and the potential energy transfer pathways in these supercomplexes.
Collapse
Affiliation(s)
- Hui Shang
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaowei Pan
- College of Life Science, Capital Normal University, Beijing 100048, China
| |
Collapse
|
12
|
Devadasu E, Kanna SD, Neelam S, Yadav RM, Nama S, Akhtar P, Polgár TF, Ughy B, Garab G, Lambrev PH, Subramanyam R. Long- and short-term acclimation of the photosynthetic apparatus to salinity in Chlamydomonas reinhardtii. The role of Stt7 protein kinase. FRONTIERS IN PLANT SCIENCE 2023; 14:1051711. [PMID: 37089643 PMCID: PMC10113551 DOI: 10.3389/fpls.2023.1051711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/03/2023] [Indexed: 05/03/2023]
Abstract
Salt stress triggers an Stt7-mediated LHCII-phosphorylation signaling mechanism similar to light-induced state transitions. However, phosphorylated LHCII, after detaching from PSII, does not attach to PSI but self-aggregates instead. Salt is a major stress factor in the growth of algae and plants. Here, our study mainly focuses on the organization of the photosynthetic apparatus to the long-term responses of Chlamydomonas reinhardtii to elevated NaCl concentrations. We analyzed the physiological effects of salt treatment at a cellular, membrane, and protein level by microscopy, protein profile analyses, transcripts, circular dichroism spectroscopy, chlorophyll fluorescence transients, and steady-state and time-resolved fluorescence spectroscopy. We have ascertained that cells that were grown in high-salinity medium form palmelloids sphere-shaped colonies, where daughter cells with curtailed flagella are enclosed within the mother cell walls. Palmelloid formation depends on the presence of a cell wall, as it was not observed in a cell-wall-less mutant CC-503. Using the stt7 mutant cells, we show Stt7 kinase-dependent phosphorylation of light-harvesting complex II (LHCII) in both short- and long-term treatments of various NaCl concentrations-demonstrating NaCl-induced state transitions that are similar to light-induced state transitions. The grana thylakoids were less appressed (with higher repeat distances), and cells grown in 150 mM NaCl showed disordered structures that formed diffuse boundaries with the flanking stroma lamellae. PSII core proteins were more prone to damage than PSI. At high salt concentrations (100-150 mM), LHCII aggregates accumulated in the thylakoid membranes. Low-temperature and time-resolved fluorescence spectroscopy indicated that the stt7 mutant was more sensitive to salt stress, suggesting that LHCII phosphorylation has a role in the acclimation and protection of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Elsinraju Devadasu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sai Divya Kanna
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Satyabala Neelam
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Ranay Mohan Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Srilatha Nama
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Parveen Akhtar
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Tamás F. Polgár
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Bettina Ughy
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Győző Garab
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Petar H. Lambrev
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
- *Correspondence: Rajagopal Subramanyam,
| |
Collapse
|
13
|
Virtanen O, Tyystjärvi E. Plastoquinone pool redox state and control of state transitions in Chlamydomonas reinhardtii in darkness and under illumination. PHOTOSYNTHESIS RESEARCH 2023; 155:59-76. [PMID: 36282464 PMCID: PMC9792418 DOI: 10.1007/s11120-022-00970-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Movement of LHCII between two photosystems has been assumed to be similarly controlled by the redox state of the plastoquinone pool (PQ-pool) in plants and green algae. Here we show that the redox state of the PQ-pool of Chlamydomonas reinhardtii can be determined with HPLC and use this method to compare the light state in C. reinhardtii with the PQ-pool redox state in a number of conditions. The PQ-pool was at least moderately reduced under illumination with all tested types of visible light and oxidation was achieved only with aerobic dark treatment or with far-red light. Although dark incubations and white light forms with spectral distribution favoring one photosystem affected the redox state of PQ-pool differently, they induced similar Stt7-dependent state transitions. Thus, under illumination the dynamics of the PQ-pool and its connection with light state appears more complicated in C. reinhardtii than in plants. We suggest this to stem from the larger number of LHC-units and from less different absorption profiles of the photosystems in C. reinhardtii than in plants. The data demonstrate that the two different control mechanisms required to fulfill the dual function of state transitions in C. reinhardtii in photoprotection and in balancing light utilization are activated via different means.
Collapse
Affiliation(s)
- Olli Virtanen
- Department of Life Technologies/Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | - Esa Tyystjärvi
- Department of Life Technologies/Molecular Plant Biology, University of Turku, 20014, Turku, Finland.
| |
Collapse
|
14
|
Zhang X, Fujita Y, Kaneda N, Tokutsu R, Ye S, Minagawa J, Shibata Y. State transition is quiet around pyrenoid and LHCII phosphorylation is not essential for thylakoid deformation in Chlamydomonas 137c. Proc Natl Acad Sci U S A 2022; 119:e2122032119. [PMID: 36067315 PMCID: PMC9478649 DOI: 10.1073/pnas.2122032119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic organisms have developed a regulation mechanism called state transition (ST) to rapidly adjust the excitation balance between the two photosystems by light-harvesting complex II (LHCII) movement. Though many researchers have assumed coupling of the dynamic transformations of the thylakoid membrane with ST, evidence of that remains elusive. To clarify the above-mentioned coupling in a model organism Chlamydomonas, here we used two advanced microscope techniques, the excitation-spectral microscope (ESM) developed recently by us and the superresolution imaging based on structured-illumination microscopy (SIM). The ESM observation revealed ST-dependent spectral changes upon repeated ST inductions. Surprisingly, it clarified a less significant ST occurrence in the region surrounding the pyrenoid, which is a subcellular compartment specialized for the carbon-fixation reaction, than that in the other domains. Further, we found a species dependence of this phenomenon: 137c strain showed the significant intracellular inhomogeneity of ST occurrence, whereas 4A+ strain hardly did. On the other hand, the SIM observation resolved partially irreversible fine thylakoid transformations caused by the ST-inducing illumination. This fine, irreversible thylakoid transformation was also observed in the STT7 kinase-lacking mutant. This result revealed that the fine thylakoid transformation is not induced solely by the LHCII phosphorylation, suggesting the highly susceptible nature of the thylakoid ultrastructure to the photosynthetic light reactions.
Collapse
Affiliation(s)
- XianJun Zhang
- Department of Chemistry, Graduate School of Sciences, Tohoku University, 980-8578 Sendai, Japan
- Division for Interdisciplinary Advanced Research and Education, Tohoku University, 980-8578 Sendai, Japan
| | - Yuki Fujita
- Department of Chemistry, Graduate School of Sciences, Tohoku University, 980-8578 Sendai, Japan
| | - Naoya Kaneda
- Department of Chemistry, Graduate School of Sciences, Tohoku University, 980-8578 Sendai, Japan
| | - Ryutaro Tokutsu
- Division of Environmental Photobiology, National Institute for Basic Biology, 444-8585 Okazaki, Japan
| | - Shen Ye
- Department of Chemistry, Graduate School of Sciences, Tohoku University, 980-8578 Sendai, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, 444-8585 Okazaki, Japan
| | - Yutaka Shibata
- Department of Chemistry, Graduate School of Sciences, Tohoku University, 980-8578 Sendai, Japan
| |
Collapse
|
15
|
The relationship between photosystem II regulation and light-dependent hydrogen production by microalgae. Biophys Rev 2022; 14:893-904. [DOI: 10.1007/s12551-022-00977-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/30/2022] [Indexed: 01/10/2023] Open
|
16
|
Microalgae-Based Fluorimetric Bioassays for Studying Interferences on Photosynthesis Induced by Environmentally Relevant Concentrations of the Herbicide Diuron. BIOSENSORS 2022; 12:bios12020067. [PMID: 35200329 PMCID: PMC8869104 DOI: 10.3390/bios12020067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 11/28/2022]
Abstract
The widespread agricultural use of the phenylurea herbicide Diuron (DCMU) requires the investigation of ecotoxicological risk in freshwater and soil ecosystems in light of potential effects on non-target primary producers and a heavier effect on higher trophic levels. We used microalgae-based fluorimetric bioassays for studying the interferences on the photosynthesis of a freshwater and soil model green microalga (Chlamydomonas reinhardtii) induced by environmentally relevant concentrations of the herbicide DCMU. Measurements of steady-state chlorophyll a (Chl-a) fluorescence emission spectra were performed; as well, the kinetics of the Chl-a fluorescence transient were recorded. Percentage indexes of interference on photosynthesis were calculated after comparison of steady-state and kinetic Chl-a fluorescence measurements of DCMU-exposed and control C. reinhardtii cell suspensions. The results obtained after 30 min exposure to the herbicide DCMU confirmed a significant inhibitory effect of DCMU 2 μg/L, and no significant differences between %ι values for DCMU 0.2 μg/L and 0.02 μg/L exposures. Positive %ε values from kinetic measurements of the Chl-a fluorescence transient confirmed the same interfering effect of 2 μg/L DCMU on PSII photochemistry in the exposed C. reinhardtii cell suspensions. Negative values of %ε observed for 0.2 and 0.02 μg/L DCMU exposures could be attributable to a presumptive ‘stimulatory-like’ effect in the photochemistry of photosynthesis. Short-term exposure to sub-μg/L DCMU concentration (≤0.2 μg/L) affects the photosynthetic process of the model microalga C. reinhardtii. Similar environmental exposures could affect natural communities of unicellular autotrophs, with hardly predictable cascading secondary effects on higher trophic levels.
Collapse
|
17
|
Rogowski P, Urban A, Romanowska E. Light as a substrate: migration of LHCII antennas in extended Michaelis-Menten model for PSI kinetics. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 225:112336. [PMID: 34736069 DOI: 10.1016/j.jphotobiol.2021.112336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/12/2021] [Accepted: 10/15/2021] [Indexed: 11/19/2022]
Abstract
We extended, for the first time, the Michaelis-Menten (M-M) model to describe the kinetics of photosystem I (PSI) complexes using light as a substrate. Our work is novel as it can be useful for studying the phenomenon of "state transitions" because it quantifies the affinity of light to PSI reaction centers depending on the associated light harvesting complex II (LHCII) antennas. We verified our models by measuring the PSI activity as a function of light intensity using an oxygen electrode for chloroplast from plants grown in low light conditions and treated with far red light. We determined the kinetics constant KM for: PSI-LHCI, PSI-LHCI-LHCII and PSI-PSII megacomplexes and have shown that KM for PSI located in the megacomplexes was smaller in magnitude than PSI-LHCI, thus demonstrating that LHCII antennas are functionally associated with PSI. The parameter [S]1/2used in our models is the equivalent of M-M constant. Far red light increases [S]1/2, which indicates that transition from state 1 to state 2 leads to an energy gain while reaching the PSI reaction centers. We also observed that redistribution of the absorbed excitation energy is realized not only by LHCII migration but also by association of the photosystems in the megacomplexes.
Collapse
Affiliation(s)
- Paweł Rogowski
- Department of Molecular Plant Physiology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02096 Warsaw, Poland.
| | - Aleksandra Urban
- Department of Molecular Plant Physiology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02096 Warsaw, Poland.
| | - Elżbieta Romanowska
- Department of Molecular Plant Physiology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02096 Warsaw, Poland.
| |
Collapse
|
18
|
Longoni FP, Goldschmidt-Clermont M. Thylakoid Protein Phosphorylation in Chloroplasts. PLANT & CELL PHYSIOLOGY 2021; 62:1094-1107. [PMID: 33768241 DOI: 10.1093/pcp/pcab043] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Because of their abundance and extensive phosphorylation, numerous thylakoid proteins stand out amongst the phosphoproteins of plants and algae. In particular, subunits of light-harvesting complex II (LHCII) and of photosystem II (PSII) are dynamically phosphorylated and dephosphorylated in response to light conditions and metabolic demands. These phosphorylations are controlled by evolutionarily conserved thylakoid protein kinases and counteracting protein phosphatases, which have distinct but partially overlapping substrate specificities. The best characterized are the kinases STATE TRANSITION 7 (STN7/STT7) and STATE TRANSITION 8 (STN8), and the antagonistic phosphatases PROTEIN PHOSPHATASE 1/THYLAKOID-ASSOCIATED PHOSPHATASE 38 (PPH1/TAP38) and PHOTOSYSTEM II CORE PHOSPHATASE (PBCP). The phosphorylation of LHCII is mainly governed by STN7 and PPH1/TAP38 in plants. LHCII phosphorylation is essential for state transitions, a regulatory feedback mechanism that controls the allocation of this antenna to either PSII or PSI, and thus maintains the redox balance of the electron transfer chain. Phosphorylation of several core subunits of PSII, regulated mainly by STN8 and PBCP, correlates with changes in thylakoid architecture, the repair cycle of PSII after photodamage as well as regulation of light harvesting and of alternative routes of photosynthetic electron transfer. Other kinases, such as the PLASTID CASEIN KINASE II (pCKII), also intervene in thylakoid protein phosphorylation and take part in the chloroplast kinase network. While some features of thylakoid phosphorylation were conserved through the evolution of photosynthetic eukaryotes, others have diverged in different lineages possibly as a result of their adaptation to varied environments.
Collapse
Affiliation(s)
- Fiamma Paolo Longoni
- Laboratory of Plant Physiology, Institute of Biology, University of Neuchâtel, Neuchâtel 2000, Switzerland
| | | |
Collapse
|
19
|
Zhang XJ, Fujita Y, Tokutsu R, Minagawa J, Ye S, Shibata Y. High-Speed Excitation-Spectral Microscopy Uncovers In Situ Rearrangement of Light-Harvesting Apparatus in Chlamydomonas during State Transitions at Submicron Precision. PLANT & CELL PHYSIOLOGY 2021; 62:872-882. [PMID: 33822212 DOI: 10.1093/pcp/pcab047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Photosynthetic organisms adjust to fluctuating natural light under physiological ambient conditions through flexible light-harvesting ability of light-harvesting complex II (LHCII). A process called state transition is an efficient regulation mechanism to balance the excitations between photosystem II (PSII) and photosystem I (PSI) by shuttling mobile LHCII between them. However, in situ observation of the migration of LHCII in vivo remains limited. In this study, we investigated the in vivo reversible changes in the intracellular distribution of the chlorophyll (Chl) fluorescence during the light-induced state transitions in Chlamydomonas reinhardtii. The newly developed noninvasive excitation-spectral microscope provided powerful spectral information about excitation-energy transfer between Chl-a and Chl-b. The excitation spectra were detected through the fluorescence emission in the 700-750-nm spectral range, where PSII makes the main contribution, though PSI still makes a non-negligible contribution at room temperature. The technique is sensitive to the Chl-b spectral component specifically bound to LHCII. Using a PSI-specific 685-nm component also provided visualization of the local relative concentration of PSI within a chloroplast at room temperature. The decrease in the relative intensity of the Chl-b band in state 2 was more conspicuous in the PSII-rich region than in the PSI-rich region, reflecting the dissociation of LHCII from PSII. We observed intracellular redistributions of the Chl-b-related light-harvesting abilities within a chloroplast during the state transitions. This observation implies the association of the state transitions with the morphological changes in the thylakoid membrane.
Collapse
Affiliation(s)
- Xian Jun Zhang
- Department of Chemistry, Graduate School of Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Yuki Fujita
- Department of Chemistry, Graduate School of Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Ryutaro Tokutsu
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, 444-8585 Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, 444-8585 Japan
| | - Shen Ye
- Department of Chemistry, Graduate School of Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Yutaka Shibata
- Department of Chemistry, Graduate School of Sciences, Tohoku University, Sendai, 980-8578 Japan
| |
Collapse
|
20
|
Pan X, Tokutsu R, Li A, Takizawa K, Song C, Murata K, Yamasaki T, Liu Z, Minagawa J, Li M. Structural basis of LhcbM5-mediated state transitions in green algae. NATURE PLANTS 2021; 7:1119-1131. [PMID: 34239095 DOI: 10.1038/s41477-021-00960-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/03/2021] [Indexed: 05/10/2023]
Abstract
In green algae and plants, state transitions serve as a short-term light-acclimation process in the regulation of the light-harvesting capacity of photosystems I and II (PSI and PSII, respectively). During the process, a portion of light-harvesting complex II (LHCII) is phosphorylated, dissociated from PSII and binds with PSI to form the supercomplex PSI-LHCI-LHCII. Here, we report high-resolution structures of PSI-LHCI-LHCII from Chlamydomonas reinhardtii, revealing the mechanism of assembly between the PSI-LHCI complex and two phosphorylated LHCII trimers containing all four types of LhcbM protein. Two specific LhcbM isoforms, namely LhcbM1 and LhcbM5, directly interact with the PSI core through their phosphorylated amino terminal regions. Furthermore, biochemical and functional studies on mutant strains lacking either LhcbM1 or LhcbM5 indicate that only LhcbM5 is indispensable in supercomplex formation. The results unravel the specific interactions and potential excitation energy transfer routes between green algal PSI and two phosphorylated LHCIIs.
Collapse
Affiliation(s)
- Xiaowei Pan
- National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Science, Capital Normal University, Beijing, China
| | - Ryutaro Tokutsu
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Basic Biology, School of Life Science, the Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Anjie Li
- National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kenji Takizawa
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Astrobiology Centre, National Institutes of Natural Sciences, Mitaka, Japan
| | - Chihong Song
- Exploratory Research Centre on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kazuyoshi Murata
- Exploratory Research Centre on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Tomohito Yamasaki
- Science and Technology Department, Natural Science Cluster, Kochi University, Kochi, Japan
| | - Zhenfeng Liu
- National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Jun Minagawa
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan.
- Department of Basic Biology, School of Life Science, the Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan.
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Cramer WA, Finazzi G, Osyczka A. Catalytic Reactions and Energy Conservation in the Cytochrome bc1 and b6f Complexes of Energy-Transducing Membranes. Chem Rev 2021; 121:2020-2108. [PMID: 33464892 PMCID: PMC7908018 DOI: 10.1021/acs.chemrev.0c00712] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/16/2022]
Abstract
This review focuses on key components of respiratory and photosynthetic energy-transduction systems: the cytochrome bc1 and b6f (Cytbc1/b6f) membranous multisubunit homodimeric complexes. These remarkable molecular machines catalyze electron transfer from membranous quinones to water-soluble electron carriers (such as cytochromes c or plastocyanin), coupling electron flow to proton translocation across the energy-transducing membrane and contributing to the generation of a transmembrane electrochemical potential gradient, which powers cellular metabolism in the majority of living organisms. Cytsbc1/b6f share many similarities but also have significant differences. While decades of research have provided extensive knowledge on these enzymes, several important aspects of their molecular mechanisms remain to be elucidated. We summarize a broad range of structural, mechanistic, and physiological aspects required for function of Cytbc1/b6f, combining textbook fundamentals with new intriguing concepts that have emerged from more recent studies. The discussion covers but is not limited to (i) mechanisms of energy-conserving bifurcation of electron pathway and energy-wasting superoxide generation at the quinol oxidation site, (ii) the mechanism by which semiquinone is stabilized at the quinone reduction site, (iii) interactions with substrates and specific inhibitors, (iv) intermonomer electron transfer and the role of a dimeric complex, and (v) higher levels of organization and regulation that involve Cytsbc1/b6f. In addressing these topics, we point out existing uncertainties and controversies, which, as suggested, will drive further research in this field.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Sebastian Pintscher
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Łukasz Bujnowicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Guy Hanke
- School
of Biological and Chemical Sciences, Queen
Mary University of London, London E1 4NS, U.K.
| | - William A. Cramer
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 United States
| | - Giovanni Finazzi
- Laboratoire
de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National Recherche Scientifique,
Commissariat Energie Atomique et Energies Alternatives, Institut National
Recherche l’agriculture, l’alimentation et l’environnement, 38054 Grenoble Cedex 9, France
| | - Artur Osyczka
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
22
|
Ma M, Liu Y, Bai C, Yang Y, Sun Z, Liu X, Zhang S, Han X, Yong JWH. The Physiological Functionality of PGR5/PGRL1-Dependent Cyclic Electron Transport in Sustaining Photosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:702196. [PMID: 34305990 PMCID: PMC8294387 DOI: 10.3389/fpls.2021.702196] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/07/2021] [Indexed: 05/07/2023]
Abstract
The cyclic electron transport (CET), after the linear electron transport (LET), is another important electron transport pathway during the light reactions of photosynthesis. The proton gradient regulation 5 (PGR5)/PRG5-like photosynthetic phenotype 1 (PGRL1) and the NADH dehydrogenase-like complex pathways are linked to the CET. Recently, the regulation of CET around photosystem I (PSI) has been recognized as crucial for photosynthesis and plant growth. Here, we summarized the main biochemical processes of the PGR5/PGRL1-dependent CET pathway and its physiological significance in protecting the photosystem II and PSI, ATP/NADPH ratio maintenance, and regulating the transitions between LET and CET in order to optimize photosynthesis when encountering unfavorable conditions. A better understanding of the PGR5/PGRL1-mediated CET during photosynthesis might provide novel strategies for improving crop yield in a world facing more extreme weather events with multiple stresses affecting the plants.
Collapse
Affiliation(s)
- Mingzhu Ma
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Yifei Liu
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Yifei Liu, ; Xiaori Han,
| | - Chunming Bai
- National Sorghum Improvement Center, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Yunhong Yang
- Professional Technology Innovation Center of Magnesium Nutrition, Yingkou Magnesite Chemical Ind Group Co., Ltd., Yingkou, China
| | - Zhiyu Sun
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xinyue Liu
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Siwei Zhang
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xiaori Han
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Yifei Liu, ; Xiaori Han,
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
23
|
Deficiency in flavodiiron protein Flv3 promotes cyclic electron flow and state transition under high light in the cyanobacterium Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148318. [PMID: 32979345 DOI: 10.1016/j.bbabio.2020.148318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 11/21/2022]
Abstract
Photosynthetic organisms adjust their activity to changes in irradiance by different ways, including the operation of cyclic electron flow around photosystem I (PSI) and state transitions that redistribute amounts of light energy absorbed by PSI and PSII. In dark-acclimated wild type cells of Synechocystis PCC 6803, linear electron transport was activated after the first 500 ms of illumination, while cyclic electron flow around PSI was long predominant in the mutant deficient in flavodiiron protein Flv3. Chlorophyll P700 oxidation associated with activation of linear electron flow extended in the Flv3- mutant to several tens of seconds and included a P700+ re-reduction phase. Parallel monitoring of chlorophyll fluorescence and the redox state of P700 indicated that, at low light intensity both in wild type and in the Flv3- mutant, the transient re-reduction step coincided in time with S-M fluorescence rise, which reflected state 2-state 1 transition (Kaňa et al., 2012). Despite variations in the initial redox state of plastoquinone pool, the oxidases-deficient mutant, succinate dehydrogenase-deficient mutant, and wild type cells did not show the S-M rise under high-intensity light until additional Flv3- mutation was introduced in these strains. Thus, the lack of available electron acceptor for PSI was the main cause for the appearance of S-M fluorescence rise under high light. It is concluded that the lack of Flv3 protein promotes cyclic electron flow around PSI and facilitates the subsequent state 2-state 1 transition in the absence of strict relation to the dark-operated pathways of plastoquinone reduction or oxidation.
Collapse
|
24
|
Cariti F, Chazaux M, Lefebvre-Legendre L, Longoni P, Ghysels B, Johnson X, Goldschmidt-Clermont M. Regulation of Light Harvesting in Chlamydomonas reinhardtii Two Protein Phosphatases Are Involved in State Transitions. PLANT PHYSIOLOGY 2020; 183:1749-1764. [PMID: 32327546 PMCID: PMC7401111 DOI: 10.1104/pp.20.00384] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 05/09/2023]
Abstract
Protein phosphorylation plays important roles in short-term regulation of photosynthetic electron transfer, and during state transitions, the kinase STATE TRANSITION7 (STT7) of Chlamydomonas reinhardtii phosphorylates components of light-harvesting antenna complex II (LHCII). This reversible phosphorylation governs the dynamic allocation of a part of LHCII to PSI or PSII, depending on light conditions and metabolic demands, but counteracting phosphatase(s) remain unknown in C. reinhardtii Here we analyzed state transitions in C. reinhardtii mutants of two phosphatases, PROTEIN PHOSPHATASE1 and PHOTOSYSTEM II PHOSPHATASE, which are homologous to proteins that antagonize the state transition kinases (STN7 and STN8) in Arabidopsis (Arabidopsis thaliana). The transition from state 2 to state 1 was retarded in pph1, and surprisingly also in pbcp However, both mutants eventually returned to state 1. In contrast, the double mutant pph1;pbcp appeared strongly locked in state 2. The complex phosphorylation patterns of the LHCII trimers and of the monomeric subunits were affected in the phosphatase mutants. Their analysis indicated that the two phosphatases have different yet overlapping sets of protein targets. The dual control of thylakoid protein dephosphorylation and the more complex antenna phosphorylation patterns in C. reinhardtii compared to Arabidopsis are discussed in the context of the stronger amplitude of state transitions and the more diverse LHCII isoforms in the alga.
Collapse
Affiliation(s)
- Federica Cariti
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva 4, Switzerland
| | - Marie Chazaux
- Aix Marseille University, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre National de la Recherche Scientifique, Biosciences and Biotechnologies Institute of Aix-Marseille, F-13108 Saint Paul-Lez-Durance, France
| | | | - Paolo Longoni
- Institute of Genetics and Genomics of Geneva, University of Geneva, 1205 Geneva 4, Switzerland
| | - Bart Ghysels
- Aix Marseille University, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre National de la Recherche Scientifique, Biosciences and Biotechnologies Institute of Aix-Marseille, F-13108 Saint Paul-Lez-Durance, France
| | - Xenie Johnson
- Aix Marseille University, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre National de la Recherche Scientifique, Biosciences and Biotechnologies Institute of Aix-Marseille, F-13108 Saint Paul-Lez-Durance, France
| | | |
Collapse
|
25
|
Petrova EV, Kukarskikh GP, Krendeleva TE, Antal TK. The Mechanisms and Role of Photosynthetic Hydrogen Production by Green Microalgae. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720030169] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Redekop P, Rothhausen N, Rothhausen N, Melzer M, Mosebach L, Dülger E, Bovdilova A, Caffarri S, Hippler M, Jahns P. PsbS contributes to photoprotection in Chlamydomonas reinhardtii independently of energy dissipation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148183. [DOI: 10.1016/j.bbabio.2020.148183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
|
27
|
The BF4 and p71 antenna mutants from Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148085. [PMID: 31672413 DOI: 10.1016/j.bbabio.2019.148085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/28/2019] [Accepted: 09/11/2019] [Indexed: 11/23/2022]
Abstract
Two pale green mutants of the green alga Chlamydomonas reinhardtii, which have been used over the years in many photosynthesis studies, the BF4 and p71 mutants, were characterized and their mutated gene identified in the nuclear genome. The BF4 mutant is defective in the insertase Alb3.1 whereas p71 is defective in cpSRP43. The two mutants showed strikingly similar deficiencies in most of the peripheral antenna proteins associated with either photosystem I or photosystem 2. As a result the two photosystems have a reduced antenna size with photosystem 2 being the most affected. Still up to 20% of the antenna proteins remain in these strains, with the heterodimer Lhca5/Lhca6 showing a lower sensitivity to these mutations. We discuss these phenotypes in light of those of other allelic mutants that have been described in the literature and suggest that eventhough the cpSRP route serves as the main biogenesis pathway for antenna proteins, there should be an escape pathway which remains to be genetically identified.
Collapse
|
28
|
Bjerkelund Røkke G, Hohmann-Marriott MF, Almaas E. An adjustable algal chloroplast plug-and-play model for genome-scale metabolic models. PLoS One 2020; 15:e0229408. [PMID: 32092117 PMCID: PMC7039451 DOI: 10.1371/journal.pone.0229408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/05/2020] [Indexed: 01/25/2023] Open
Abstract
The chloroplast is a central part of plant cells, as this is the organelle where the photosynthesis, fixation of inorganic carbon, and other key functions related to fatty acid synthesis and amino acid synthesis occur. Since this organelle should be an integral part of any genome-scale metabolic model for a microalgae or a higher plant, it is of great interest to generate a detailed and standardized chloroplast model. Additionally, we see the need for a novel type of sub-model template, or organelle model, which could be incorporated into a larger, less specific genome-scale metabolic model, while allowing for minor differences between chloroplast-containing organisms. The result of this work is the very first standardized chloroplast model, iGR774, consisting of 788 reactions, 764 metabolites, and 774 genes. The model is currently able to run in three different modes, mimicking the chloroplast metabolism of three photosynthetic microalgae-Nannochloropsis gaditana, Chlamydomonas reinhardtii and Phaeodactylum tricornutum. In addition to developing the chloroplast metabolic network reconstruction, we have developed multiple software tools for working with this novel type of sub-model in the COBRA Toolbox for MATLAB, including tools for connecting the chloroplast model to a genome-scale metabolic reconstruction in need of a chloroplast, for switching the model between running in different organism modes, and for expanding it by introducing more reactions either related to one of the current organisms included in the model, or to a new organism.
Collapse
Affiliation(s)
- Gunvor Bjerkelund Røkke
- Department of Biotechnology and Food Science, The Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Eivind Almaas
- Department of Biotechnology and Food Science, The Norwegian University of Science and Technology, Trondheim, Norway
- K. G. Jebsen Center for Genetic Epidemiology, The Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
29
|
Pralon T, Collombat J, Pipitone R, Ksas B, Shanmugabalaji V, Havaux M, Finazzi G, Longoni P, Kessler F. Mutation of the Atypical Kinase ABC1K3 Partially Rescues the PROTON GRADIENT REGULATION 6 Phenotype in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:337. [PMID: 32269582 PMCID: PMC7109304 DOI: 10.3389/fpls.2020.00337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/06/2020] [Indexed: 05/15/2023]
Abstract
Photosynthesis is an essential pathway providing the chemical energy and reducing equivalents that sustain higher plant metabolism. It relies on sunlight, which is an inconstant source of energy that fluctuates in both intensity and spectrum. The fine and rapid tuning of the photosynthetic apparatus is essential to cope with changing light conditions and increase plant fitness. Recently PROTON GRADIENT REGULATION 6 (PGR6-ABC1K1), an atypical plastoglobule-associated kinase, was shown to regulate a new mechanism of light response by controlling the homeostasis of photoactive plastoquinone (PQ). PQ is a crucial electron carrier existing as a free neutral lipid in the photosynthetic thylakoid membrane. Perturbed homeostasis of PQ impairs photosynthesis and plant acclimation to high light. Here we show that a homologous kinase, ABC1K3, which like PGR6-ABC1K1 is associated with plastoglobules, also contributes to the homeostasis of the photoactive PQ pool. Contrary to PGR6-ABC1K1, ABC1K3 disfavors PQ availability for photosynthetic electron transport. In fact, in the abc1k1/abc1k3 double mutant the pgr6(abc1k1) the photosynthetic defect seen in the abc1k1 mutant is mitigated. However, the PQ concentration in the photoactive pool of the double mutant is comparable to that of abc1k1 mutant. An increase of the PQ mobility, inferred from the kinetics of its oxidation in dark, contributes to the mitigation of the pgr6(abc1k1) photosynthetic defect. Our results also demonstrate that ABC1K3 contributes to the regulation of other mechanisms involved in the adaptation of the photosynthetic apparatus to changes in light quality and intensity such as the induction of thermal dissipation and state transitions. Overall, we suggests that, besides the absolute concentration of PQ, its mobility and exchange between storage and active pools are critical for light acclimation in plants.
Collapse
Affiliation(s)
- Thibaut Pralon
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Joy Collombat
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Rosa Pipitone
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Brigitte Ksas
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), UMR 7265, Biosciences et Biotechnologies Institute of Aix-Marseille, Saint-Paul-lez-Durance, France
| | | | - Michel Havaux
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), UMR 7265, Biosciences et Biotechnologies Institute of Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Giovanni Finazzi
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Recherche Agromique (INRA), Interdisciplinary Research Institute of Grenoble - Cell and Plant Physiology Laboratory (IRIG-LPCV), Grenoble, France
| | - Paolo Longoni
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
- *Correspondence: Paolo Longoni,
| | - Felix Kessler
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Felix Kessler,
| |
Collapse
|
30
|
Rochaix JD. The Dynamics of the Photosynthetic Apparatus in Algae. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
31
|
Regulation of photosynthetic cyclic electron flow pathways by adenylate status in higher plant chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148081. [PMID: 31520615 DOI: 10.1016/j.bbabio.2019.148081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/01/2019] [Accepted: 09/08/2019] [Indexed: 01/08/2023]
Abstract
Cylic electron flow (CEF) around Photosystem I in photosynthetic eukaryotes is likely to be necessary to augment ATP production, rapidly- and precisely balancing the plastid ATP/NADPH energy budget to meet the demands of downstream metabolism. Many regulatory aspects of this process are unclear. Here we demonstrate that the higher plant plastid NADH/Fd:plastoquinone reductase (NDH) and proposed PGR5/PGRL1 ferredoxin:plastoquinone reductase (FQR) pathways of CEF are strongly, rapidly and reversibly inhibited in vitro by ATP with Ki values of 670 μM and 240 μM respectively, within the range of physiological changes in ATP concentrations. Control experiments ruled out effects on secondary reactions, e.g. FNR- and cytochrome b6f activity, nonphotochemical quenching of chlorophyll fluorescence etc., supporting the view that ATP is an inhibitor of CEF and its associated pmf generation and subsequent ATP production. The effects are specific to ATP, with the ATP analog AMP-PNP showing little inhibitory effect, and ADP inhibiting only at higher concentrations. For the FQR pathway, inhibition was found to be classically competitive with Fd, and the NDH pathway showing partial competition with Fd. We propose a straightforward model for regulation of CEF in plants in which CEF is activated under conditions when stromal ATP low, but is downregulated as ATP levels build up, allowing for effective ATP homeostasis. The differences in Ki values suggest a two-tiered regulatory system, where the highly efficient proton pumping NDH is activated with moderate decreases in ATP, with the less energetically-efficient FQR pathway being activated under more severe ATP depletion.
Collapse
|
32
|
Cook G, Teufel A, Kalra I, Li W, Wang X, Priscu J, Morgan-Kiss R. The Antarctic psychrophiles Chlamydomonas spp. UWO241 and ICE-MDV exhibit differential restructuring of photosystem I in response to iron. PHOTOSYNTHESIS RESEARCH 2019; 141:209-228. [PMID: 30729447 DOI: 10.1007/s11120-019-00621-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Chlamydomonas sp. UWO241 is a psychrophilic alga isolated from the deep photic zone of a perennially ice-covered Antarctic lake (east lobe Lake Bonney, ELB). Past studies have shown that C. sp. UWO241 exhibits constitutive downregulation of photosystem I (PSI) and high rates of PSI-associated cyclic electron flow (CEF). Iron levels in ELB are in the nanomolar range leading us to hypothesize that the unusual PSI phenotype of C. sp. UWO241 could be a response to chronic Fe-deficiency. We studied the impact of Fe availability in C. sp. UWO241, a mesophile, C. reinhardtii SAG11-32c, as well as a psychrophile isolated from the shallow photic zone of ELB, Chlamydomonas sp. ICE-MDV. Under Fe-deficiency, PsaA abundance and levels of photooxidizable P700 (ΔA820/A820) were reduced in both psychrophiles relative to the mesophile. Upon increasing Fe, C. sp. ICE-MDV and C. reinhardtii exhibited restoration of PSI function, while C. sp. UWO241 exhibited only moderate changes in PSI activity and lacked almost all LHCI proteins. Relative to Fe-excess conditions (200 µM Fe2+), C. sp. UWO241 grown in 18 µM Fe2+ exhibited downregulation of light harvesting and photosystem core proteins, as well as upregulation of a bestrophin-like anion channel protein and two CEF-associated proteins (NdsS, PGL1). Key enzymes of starch synthesis and shikimate biosynthesis were also upregulated. We conclude that in response to variable Fe availability, the psychrophile C. sp. UWO241 exhibits physiological plasticity which includes restructuring of the photochemical apparatus, increased PSI-associated CEF, and shifts in downstream carbon metabolism toward storage carbon and secondary stress metabolites.
Collapse
Affiliation(s)
- Greg Cook
- Department of Microbiology, Miami University, 700 E High St., 32 Pearson Hall, Oxford, OH, 45056, USA
| | - Amber Teufel
- Department of Microbiology, Miami University, 700 E High St., 32 Pearson Hall, Oxford, OH, 45056, USA
| | - Isha Kalra
- Department of Microbiology, Miami University, 700 E High St., 32 Pearson Hall, Oxford, OH, 45056, USA
| | - Wei Li
- Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - Xin Wang
- Department of Microbiology, Miami University, 700 E High St., 32 Pearson Hall, Oxford, OH, 45056, USA
| | - John Priscu
- Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - Rachael Morgan-Kiss
- Department of Microbiology, Miami University, 700 E High St., 32 Pearson Hall, Oxford, OH, 45056, USA.
| |
Collapse
|
33
|
Pralon T, Shanmugabalaji V, Longoni P, Glauser G, Ksas B, Collombat J, Desmeules S, Havaux M, Finazzi G, Kessler F. Plastoquinone homoeostasis by Arabidopsis proton gradient regulation 6 is essential for photosynthetic efficiency. Commun Biol 2019; 2:220. [PMID: 31240258 PMCID: PMC6586890 DOI: 10.1038/s42003-019-0477-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/17/2019] [Indexed: 11/09/2022] Open
Abstract
Photosynthesis produces organic carbon via a light-driven electron flow from H2O to CO2 that passes through a pool of plastoquinone molecules. These molecules are either present in the photosynthetic thylakoid membranes, participating in photochemistry (photoactive pool), or stored (non-photoactive pool) in thylakoid-attached lipid droplets, the plastoglobules. The photoactive pool acts also as a signal of photosynthetic activity allowing the adaptation to changes in light condition. Here we show that, in Arabidopsis thaliana, proton gradient regulation 6 (PGR6), a predicted atypical kinase located at plastoglobules, is required for plastoquinone homoeostasis, i.e. to maintain the photoactive plastoquinone pool. In a pgr6 mutant, the photoactive pool is depleted and becomes limiting under high light, affecting short-term acclimation and photosynthetic efficiency. In the long term, pgr6 seedlings fail to adapt to high light and develop a conditional variegated leaf phenotype. Therefore, PGR6 activity, by regulating plastoquinone homoeostasis, is required to cope with high light.
Collapse
Affiliation(s)
- Thibaut Pralon
- Faculty of Sciences, Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | | | - Paolo Longoni
- Faculty of Sciences, Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Gaetan Glauser
- Faculty of Sciences, Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
- Faculty of Sciences, Chemical Analytical Service of the Swiss Plant Science Web, Neuchâtel Platform for Analytical Chemistry (NPAC), University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Brigitte Ksas
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Cadarache, Centre National de la Recherche Scientifique (CNRS), UMR 7265, Institut de Biosciences et de Biotechnologies d’Aix-Marseille, Laboratoire d’Ecophysiologie Moléculaire des Plantes Aix Marseille Université, 13108 Saint-Paul-lez-Durance, France
| | - Joy Collombat
- Faculty of Sciences, Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Saskia Desmeules
- Faculty of Sciences, Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Michel Havaux
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Cadarache, Centre National de la Recherche Scientifique (CNRS), UMR 7265, Institut de Biosciences et de Biotechnologies d’Aix-Marseille, Laboratoire d’Ecophysiologie Moléculaire des Plantes Aix Marseille Université, 13108 Saint-Paul-lez-Durance, France
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Institut National de la Recherche Agronomique (INRA), Institut de Biosciences et Biotechnologie de Grenoble (BIG), CEA-Grenoble Université Grenoble Alpes (UGA), 38000 Grenoble, France
| | - Felix Kessler
- Faculty of Sciences, Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| |
Collapse
|
34
|
Nawrocki W, Bailleul B, Cardol P, Rappaport F, Wollman FA, Joliot P. Maximal cyclic electron flow rate is independent of PGRL1 in Chlamydomonas. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:425-432. [DOI: 10.1016/j.bbabio.2019.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 12/08/2018] [Accepted: 01/25/2019] [Indexed: 11/30/2022]
|
35
|
Ancín M, Fernández-San Millán A, Larraya L, Morales F, Veramendi J, Aranjuelo I, Farran I. Overexpression of thioredoxin m in tobacco chloroplasts inhibits the protein kinase STN7 and alters photosynthetic performance. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1005-1016. [PMID: 30476130 PMCID: PMC6363096 DOI: 10.1093/jxb/ery415] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/12/2018] [Indexed: 05/06/2023]
Abstract
The activity of the protein kinase STN7, involved in phosphorylation of the light-harvesting complex II (LHCII) proteins, has been reported as being co-operatively regulated by the redox state of the plastoquinone pool and the ferredoxin-thioredoxin (Trx) system. The present study aims to investigate the role of plastid Trxs in STN7 regulation and their impact on photosynthesis. For this purpose, tobacco plants overexpressing Trx f or m from the plastid genome were characterized, demonstrating that only Trx m overexpression was associated with a complete loss of LHCII phosphorylation that did not correlate with decreased STN7 levels. The absence of phosphorylation in Trx m-overexpressing plants impeded migration of LHCII from PSII to PSI, with the concomitant loss of PSI-LHCII complex formation. Consequently, the thylakoid ultrastructure was altered, showing reduced grana stacking. Moreover, the electron transport rate was negatively affected, showing an impact on energy-demanding processes such as the Rubisco maximum carboxylation capacity and ribulose 1,5-bisphosphate regeneration rate values, which caused a strong depletion in net photosynthetic rates. Finally, tobacco plants overexpressing a Trx m mutant lacking the reactive redox site showed equivalent physiological performance to the wild type, indicating that the overexpressed Trx m deactivates STN7 in a redox-dependent way.
Collapse
Affiliation(s)
- María Ancín
- Instituto de Agrobiotecnología (IdAB), Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus Arrosadia, Pamplona, Spain
| | - Alicia Fernández-San Millán
- Instituto de Agrobiotecnología (IdAB), Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus Arrosadia, Pamplona, Spain
| | - Luis Larraya
- Instituto de Agrobiotecnología (IdAB), Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus Arrosadia, Pamplona, Spain
| | - Fermín Morales
- Instituto de Agrobiotecnología (IdAB), Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus Arrosadia, Pamplona, Spain
- Estación Experimental de Aula Dei (EEAD), CSIC, Departamento Nutrición Vegetal, Zaragoza, Spain
| | - Jon Veramendi
- Instituto de Agrobiotecnología (IdAB), Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus Arrosadia, Pamplona, Spain
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB), Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus Arrosadia, Pamplona, Spain
| | - Inmaculada Farran
- Instituto de Agrobiotecnología (IdAB), Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus Arrosadia, Pamplona, Spain
| |
Collapse
|
36
|
Zhang Y, Wu H, Sun M, Peng Q, Li A. Photosynthetic physiological performance and proteomic profiling of the oleaginous algae Scenedesmus acuminatus reveal the mechanism of lipid accumulation under low and high nitrogen supplies. PHOTOSYNTHESIS RESEARCH 2018; 138:73-102. [PMID: 30039359 DOI: 10.1007/s11120-018-0549-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
In this study, we presented cellular morphological changes, time-resolved biochemical composition, photosynthetic performance and proteomic profiling to capture the photosynthetic physiological response of Scenedesmus acuminatus under low nitrogen (3.6 mM NaNO3, N-) and high nitrogen supplies (18.0 mM NaNO3, N+). S. acuminatus cells showed extensive lipid accumulation (53.7% of dry weight) and were enriched in long-chain fatty acids (C16 & C18) under low nitrogen supply. The activity of PSII and photosynthetic rate decreases, whereas non-photochemical quenching and dark respiration rates were increased in the N- group. In addition, the results indicated a redistribution of light excitation energy between PSII and PSI in S. acuminatus exists before lipid accumulation. The iTRAQ results showed that, under high nitrogen supply, protein abundance of the chlorophyll biosynthesis, the Calvin cycle and ribosomal proteins decreased in S. acuminatus. In contrast, proteins associated with the photosynthetic machinery, except for F-type ATPase, were increased in the N+ group (N+, 3 vs. 9 days and 3 days, N+ vs. N-). Under low nitrogen supply, proteins involved in central carbon metabolism, fatty acid synthesis and branched-chain amino acid metabolism were increased, whereas the abundance of proteins of the photosynthetic machinery had decreased, with exception of PSI (N-, 3 vs. 9 days and 9 days, N+ vs. N-). Collectively, the current study has provided a basis for the metabolic engineering of S. acuminatus for biofuel production.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Huijuan Wu
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Mingzhe Sun
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Qianqian Peng
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Aifen Li
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
37
|
Lanoue J, Leonardos ED, Grodzinski B. Effects of Light Quality and Intensity on Diurnal Patterns and Rates of Photo-Assimilate Translocation and Transpiration in Tomato Leaves. FRONTIERS IN PLANT SCIENCE 2018; 9:756. [PMID: 29915612 PMCID: PMC5994434 DOI: 10.3389/fpls.2018.00756] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/17/2018] [Indexed: 05/05/2023]
Abstract
Translocation of assimilates is a fundamental process involving carbon and water balance affecting source/sink relationships. Diurnal patterns of CO2 exchange, translocation (carbon export), and transpiration of an intact tomato source leaf were determined during 14CO2 steady-state labeling under different wavelengths at three pre-set photosynthetic rates. Daily patterns showed that photosynthesis and export were supported by all wavelengths of light tested including orange and green. Export in the light, under all wavelengths was always higher than that at night. Export in the light varied from 65-83% of the total daily carbon fixed, depending on light intensity. Photosynthesis and export were highly correlated under all wavelengths (r = 0.90-0.96). Export as a percentage of photosynthesis (relative export) decreased as photosynthesis increased by increasing light intensity under all wavelengths. These data indicate an upper limit for export under all spectral conditions. Interestingly, only at the medium photosynthetic rate, relative export under the blue and the orange light-emitting diodes (LEDs) were higher than under white and red-white LEDs. Stomatal conductance, transpiration rates, and water-use-efficiency showed similar daily patterns under all wavelengths. Illuminating tomato leaves with different spectral quality resulted in similar carbon export rates, but stomatal conductance and transpiration rates varied due to wavelength specific control of stomatal function. Thus, we caution that the link between transpiration and C-export may be more complex than previously thought. In summary, these data indicate that orange and green LEDs, not simply the traditionally used red and blue LEDs, should be considered and tested when designing lighting systems for optimizing source leaf strength during plant production in controlled environment systems. In addition, knowledge related to the interplay between water and C-movement within a plant and how they are affected by environmental stimuli, is needed to develop a better understanding of source/sink relationships.
Collapse
Affiliation(s)
- Jason Lanoue
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON, Canada
| | | | - Bernard Grodzinski
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
38
|
Li JW, Chen XD, Hu XY, Ma L, Zhang SB. Comparative physiological and proteomic analyses reveal different adaptive strategies by Cymbidium sinense and C. tracyanum to drought. PLANTA 2018; 247:69-97. [PMID: 28871432 DOI: 10.1007/s00425-017-2768-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
A terrestrial orchid, Cymbidium sinense appears to utilizes "remedy strategy", while an epiphytic orchid, C. tracyanum , employs a "precaution strategy" to drought stress based on morphological, physiological and proteomic analysis. Drought condition influences plant growth and productivity. Although the mechanism by which plants adapt to this abiotic stress has been studied extensively, the water-adaptive strategies of epiphytes grown in water-limited habitats remain undefined. Here, root and leaf anatomies, dynamic changes in physiological and proteomic responses during periods of drought stress and recovery studied in an epiphytic orchid (Cymbidium tracyanum) and a terrestrial orchid (C. sinense) to investigate their strategies for coping with drought. Compared with C. sinense, C. tracyanum showed stronger drought-resistant adaptive characteristics to drought because its leaves had more negative water potential at turgor loss point and roots had higher proportion of velamen radicum thickness. Although both species demonstrated quick recovery of photosynthesis after stress treatment, they differed in physiological and proteomic responses. We detected and functionally characterized 103 differentially expressed proteins in C. sinense and 104 proteins in C. tracyanum. These proteins were mainly involved in carbon and energy metabolism, photosynthesis, and defense responses. The up-regulated expression of plastid fibrillin may have contributed to the marked accumulation of jasmonates only in stressed C. sinense, while ferredoxin-NADP reductase up-regulation was only found in C. tracyanum which possibly related to the stimulation of cyclic electron flow that is linked with photoprotection. These physiological and proteomic performances suggest distinct adaptive strategies to drought stress between C. sinense (remedy strategy) and C. tracyanum (precaution strategy). Our findings may help improve our understanding about the ecological adaptation of epiphytic orchids.
Collapse
Affiliation(s)
- Jia-Wei Li
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Dong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiang-Yang Hu
- College of Life Science, Shanghai University, Shanghai, 200444, China
| | - Lan Ma
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
| | - Shi-Bao Zhang
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China.
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China.
| |
Collapse
|
39
|
Abstract
Measurements of in vivo photosynthesis are powerful tools that probe the largest fluxes of carbon and energy in an illuminated leaf, but often the specific techniques used are so varied and specialized that it is difficult for researchers outside the field to select and perform the most useful assays for their research questions. The goal of this chapter is to provide a broad overview of the current tools available for the study of in vivo photosynthesis so as to provide a foundation for selecting appropriate techniques, many of which are presented in detail in subsequent chapters. This chapter also organizes current methods into a comparative framework and provides examples of how they have been applied to research questions of broad agronomical, ecological, or biological importance. The chapter closes with an argument that the future of in vivo measurements of photosynthesis lies in the ability to use multiple methods simultaneously and discusses the benefits of this approach to currently open physiological questions. This chapter, combined with the relevant methods chapters, could serve as a laboratory course in methods in photosynthesis research or as part of a more comprehensive laboratory course in general plant physiology methods.
Collapse
|
40
|
Düner M, Lambertz J, Mügge C, Hemschemeier A. The soluble guanylate cyclase CYG12 is required for the acclimation to hypoxia and trophic regimes in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:311-337. [PMID: 29161457 DOI: 10.1111/tpj.13779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 05/27/2023]
Abstract
Oxygenic phototrophs frequently encounter environmental conditions that result in intracellular energy crises. Growth of the unicellular green alga Chlamydomonas reinhardtii in hypoxia in the light depends on acclimatory responses of which the induction of photosynthetic cyclic electron flow is essential. The microalga cannot grow in the absence of molecular oxygen (O2 ) in the dark, although it possesses an elaborate fermentation metabolism. Not much is known about how the microalga senses and signals the lack of O2 or about its survival strategies during energy crises. Recently, nitric oxide (NO) has emerged to be required for the acclimation of C. reinhardtii to hypoxia. In this study, we show that the soluble guanylate cyclase (sGC) CYG12, a homologue of animal NO sensors, is also involved in this response. CYG12 is an active sGC, and post-transcriptional down-regulation of the CYG12 gene impairs hypoxic growth and gene expression in C. reinhardtii. However, it also results in a disturbed photosynthetic apparatus under standard growth conditions and the inability to grow heterotrophically. Transcriptome profiles indicate that the mis-expression of CYG12 results in a perturbation of responses that, in the wild-type, maintain the cellular energy budget. We suggest that CYG12 is required for the proper operation of the photosynthetic apparatus which, in turn, is essential for survival in hypoxia and darkness.
Collapse
Affiliation(s)
- Melis Düner
- Department of Plant Biochemistry, Workgroup Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Jan Lambertz
- Department of Plant Biochemistry, Workgroup Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Carolin Mügge
- Junior Research Group for Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Anja Hemschemeier
- Department of Plant Biochemistry, Workgroup Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
41
|
Volgusheva AA, Jokel M, Allahverdiyeva Y, Kukarskikh GP, Lukashev EP, Lambreva MD, Krendeleva TE, Antal TK. Comparative analyses of H 2 photoproduction in magnesium- and sulfur-starved Chlamydomonas reinhardtii cultures. PHYSIOLOGIA PLANTARUM 2017; 161:124-137. [PMID: 28386962 DOI: 10.1111/ppl.12576] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/09/2017] [Accepted: 02/27/2017] [Indexed: 05/27/2023]
Abstract
Magnesium (Mg)-deprived Chlamydomonas reinhardtii cells are capable to sustain hydrogen (H2 ) photoproduction at relatively high photosystem II (PSII) activity levels for an extended time period as compared with sulfur (S)-deprived cells. Herein, we present a comparative study of H2 photoproduction induced by Mg and S shortage to unravel the specific rearrangements of the photosynthetic machinery and cell metabolism occurring under the two deprivation protocols. The exhaustive analysis of photosynthetic activity and regulatory pathways, respiration and starch metabolism revealed the specific rearrangements of the photosynthetic machinery and cellular metabolism, which occur under the two deprivation conditions. The obtained results allowed us to conclude that the expanded time period of H2 production upon Mg-deprivation is due to the less harmful effects that Mg-depletion has on viability and metabolic performance of the cells. Unlike S-deprivation, the photosynthetic light and dark reactions in Mg-deprived cells remained active over the whole H2 production period. However, the elevated PSII activity in Mg-deprived cells was counteracted by the operation of pathways for O2 consumption that maintain anaerobic conditions in the presence of active water splitting.
Collapse
Affiliation(s)
- Alena A Volgusheva
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Martina Jokel
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, FI-20014, Finland
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, FI-20014, Finland
| | - Galina P Kukarskikh
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Eugeni P Lukashev
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maya D Lambreva
- Institute of Crystallography, National Research Council of Italy, Rome, Italy
| | - Tatayana E Krendeleva
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Taras K Antal
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
42
|
Røkke G, Melø TB, Hohmann-Marriott MF. The plastoquinone pool of Nannochloropsis oceanica is not completely reduced during bright light pulses. PLoS One 2017; 12:e0175184. [PMID: 28403199 PMCID: PMC5389811 DOI: 10.1371/journal.pone.0175184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/21/2017] [Indexed: 11/18/2022] Open
Abstract
The lipid-producing model alga Nannochloropsis oceanica has a distinct photosynthetic machinery. This organism possesses chlorophyll a as its only chlorophyll species, and has a high ratio of PSI to PSII. This high ratio of PSI to PSII may affect the redox state of the plastoquinone pool during exposure to light, and consequently may play a role in activating photoprotection mechanisms. We utilized pulse-amplitude modulated fluorometry to investigate the redox state of the plastoquinone pool during and after bright light pulses. Our data indicate that even very intense (5910 μmol photons s-1m-2 of blue light having a wavelength of 440 nm) light pulses of 0.8 second duration are not sufficient to completely reduce the plastoquinone pool in Nannochloropsis. In order to achieve extensive reduction of the plastoquinone pool by bright light pulses, anaerobic conditions or an inhibitor of the photosynthetic electron transport chain has to be utilized. The implication of this finding for the application of the widely used saturating pulse method in algae is discussed.
Collapse
Affiliation(s)
- Gunvor Røkke
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thor Bernt Melø
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
43
|
Marutani Y, Yamauchi Y, Higashiyama M, Miyoshi A, Akimoto S, Inoue K, Ikeda KI, Mizutani M, Sugimoto Y. Essential role of the PSI-LHCII supercomplex in photosystem acclimation to light and/or heat conditions by state transitions. PHOTOSYNTHESIS RESEARCH 2017; 131:41-50. [PMID: 27432175 DOI: 10.1007/s11120-016-0295-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/11/2016] [Indexed: 05/22/2023]
Abstract
Light and temperature affect state transitions through changes in the plastoquinone (PQ) redox state in photosynthetic organisms. We demonstrated that light and/or heat treatment induced preferential photosystem (PS) I excitation by binding light-harvesting complex II (LHCII) proteins. The photosystem of wheat was in state 1 after dark overnight treatment, wherein PQ was oxidized and most of LHCII was not bound to PSI. At the onset of the light treatment [25 °C in the light (100 µmol photons m-2 s-1)], two major LHCIIs, Lhcb1 and Lhcb2 were phosphorylated, and the PSI-LHCII supercomplex formed within 5 min, which coincided with an increase in the PQ oxidation rate. Heat treatment at 40 °C of light-adapted wheat led to further LHCII protein phosphorylation of, resultant cyclic electron flow promotion, which was accompanied by ultrafast excitation of PSI and structural changes of thylakoid membranes, thereby protecting PSII from heat damage. These results suggest that LHCIIs are required for the functionality of wheat plant PSI, as it keeps PQ oxidized by regulating photochemical electron flow, thereby helping acclimation to environmental changes.
Collapse
Affiliation(s)
- Yoko Marutani
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, 657-8501, Japan
- Technology Innovation Center, Sumika Chemical Analysis Service, Ltd., 3-1-135, Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Yasuo Yamauchi
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, 657-8501, Japan.
| | - Mari Higashiyama
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| | - Akihito Miyoshi
- Faculty of Agriculture, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| | - Seiji Akimoto
- Molecular Photoscience Research Center, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| | - Kanako Inoue
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, 657-8501, Japan
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Ken-Ichi Ikeda
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| | - Yukihiro Sugimoto
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
44
|
Girolomoni L, Ferrante P, Berteotti S, Giuliano G, Bassi R, Ballottari M. The function of LHCBM4/6/8 antenna proteins in Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:627-641. [PMID: 28007953 PMCID: PMC5441897 DOI: 10.1093/jxb/erw462] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In eukaryotic autotrophs, photosystems are composed of a core moiety, hosting charge separation and electron transport reactions, and an antenna system, enhancing light harvesting and photoprotection. In Chlamydomonas reinhardtii, the major antenna of PSII is a heterogeneous trimeric complex made up of LHCBM1-LHCBM9 subunits. Despite high similarity, specific functions have been reported for several members including LHCBM1, 2, 7, and 9. In this work, we analyzed the function of LHCBM4 and LHCBM6 gene products in vitro by synthesizing recombinant apoproteins from individual sequences and refolding them with pigments. Additionally, we characterized knock-down strains in vivo for LHCBM4/6/8 genes. We show that LHCBM4/6/8 subunits could be found as a component of PSII supercomplexes with different sizes, although the largest pool was free in the membranes and poorly connected to PSII. Impaired accumulation of LHCBM4/6/8 caused a decreased LHCII content per PSII and a reduction in the amplitude of state 1-state 2 transitions. In addition, the reduction of LHCBM4/6/8 subunits caused a significant reduction of the Non-photochemical quenching activity and in the level of photoprotection.
Collapse
Affiliation(s)
- Laura Girolomoni
- Dipartimento di Biotecnologie, Università di Verona, Strada le Grazie 15, Verona, Italy
| | - Paola Ferrante
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Casaccia Research Center, Rome, Italy
| | - Silvia Berteotti
- Dipartimento di Biotecnologie, Università di Verona, Strada le Grazie 15, Verona, Italy
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Casaccia Research Center, Rome, Italy
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Strada le Grazie 15, Verona, Italy
| | - Matteo Ballottari
- Dipartimento di Biotecnologie, Università di Verona, Strada le Grazie 15, Verona, Italy
| |
Collapse
|
45
|
Shen W, Ye L, Ma J, Yuan Z, Zheng B, Lv C, Zhu Z, Chen X, Gao Z, Chen G. The existence of C4-bundle-sheath-like photosynthesis in the mid-vein of C3 rice. RICE (NEW YORK, N.Y.) 2016; 9:20. [PMID: 27164981 PMCID: PMC4864733 DOI: 10.1186/s12284-016-0094-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/30/2016] [Indexed: 05/12/2023]
Abstract
BACKGROUND Recent studies have shown that C4-like photosynthetic pathways partly reside in photosynthetic cells surrounding the vascular system of C3 dicots. However, it is still unclear whether this is the case in C3 monocots, especially at the molecular level. RESULTS In order to fill this gap, we investigated several characteristics required for C4 photosynthesis, including C4 pathway enzymes, cyclic/non-cyclic photophosphorylation rates, the levels and assembly state of photosynthetic machineries, in the mid-veins of C3 monocots rice with leaf laminae used as controls. The signature of photosystem photochemistry was also recorded via non-invasive chlorophyll a fluorescence and reflectance changes at 820 nm in vivo. Our results showed that rice mid-veins were photosynthetically active with higher levels of three C4 decarboxylases. Meanwhile, the linear electron transport chain was blocked in mid-veins due to the selective loss of dysfunctional photosystem II subunits. However, photosystem I was sufficient to support cyclic electron flow in mid-veins, reminiscent of the bundle sheath in C4 plants. CONCLUSIONS The photosynthetic attributes required for C4 photosynthesis were identified for the first time in the monocotyledon model crop rice, suggesting that this is likely a general innate characteristic of C3 plants which might be preconditioned for the C4 pathway evolution. Understanding these attributes would provide a base for improved strategies for engineering C4 photosynthetic pathways into rice.
Collapse
Affiliation(s)
- Weijun Shen
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Luhuan Ye
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jing Ma
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhongyuan Yuan
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Baogang Zheng
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Chuangen Lv
- Institute of Food and Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
| | - Ziqiang Zhu
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xiang Chen
- University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhiping Gao
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| | - Guoxiang Chen
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
46
|
Shibata A, Takahashi F, Kasahara M, Imamura N. Induction of Maltose Release by Light in the Endosymbiont Chlorella variabilis of Paramecium bursaria. Protist 2016; 167:468-478. [DOI: 10.1016/j.protis.2016.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/17/2016] [Accepted: 08/25/2016] [Indexed: 11/24/2022]
|
47
|
Matuszyńska A, Heidari S, Jahns P, Ebenhöh O. A mathematical model of non-photochemical quenching to study short-term light memory in plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1860-1869. [PMID: 27620066 DOI: 10.1016/j.bbabio.2016.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 11/19/2022]
Abstract
Plants are permanently exposed to rapidly changing environments, therefore it is evident that they had to evolve mechanisms enabling them to dynamically adapt to such fluctuations. Here we study how plants can be trained to enhance their photoprotection and elaborate on the concept of the short-term illumination memory in Arabidopsis thaliana. By monitoring fluorescence emission dynamics we systematically observe the extent of non-photochemical quenching (NPQ) after previous light exposure to recognise and quantify the memory effect. We propose a simplified mathematical model of photosynthesis that includes the key components required for NPQ activation, which allows us to quantify the contribution to photoprotection by those components. Due to its reduced complexity, our model can be easily applied to study similar behavioural changes in other species, which we demonstrate by adapting it to the shadow-tolerant plant Epipremnum aureum. Our results indicate that a basic mechanism of short-term light memory is preserved. The slow component, accumulation of zeaxanthin, accounts for the amount of memory remaining after relaxation in darkness, while the fast one, antenna protonation, increases quenching efficiency. With our combined theoretical and experimental approach we provide a unifying framework describing common principles of key photoprotective mechanisms across species in general, mathematical terms.
Collapse
Affiliation(s)
- Anna Matuszyńska
- Cluster of Excellence on Plant Sciences, Institute for Quantitative and Theoretical Biology, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Somayyeh Heidari
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University Of Mashhad, 9177948974 Mashhad, Iran
| | - Peter Jahns
- Plant Biochemistry and Stress Physiology, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Oliver Ebenhöh
- Cluster of Excellence on Plant Sciences, Institute for Quantitative and Theoretical Biology, Heinrich-Heine University, Düsseldorf 40225, Germany.
| |
Collapse
|
48
|
Grieco M, Jain A, Ebersberger I, Teige M. An evolutionary view on thylakoid protein phosphorylation uncovers novel phosphorylation hotspots with potential functional implications. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3883-96. [PMID: 27117338 DOI: 10.1093/jxb/erw164] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The regulation of photosynthetic light reactions by reversible protein phosphorylation is well established today, but functional studies have so far mostly been restricted to processes affecting light-harvesting complex II and the core proteins of photosystem II. Virtually no functional data are available on regulatory effects at the other photosynthetic complexes despite the identification of multiple phosphorylation sites. Therefore we summarize the available data from 50 published phospho-proteomics studies covering the main complexes involved in photosynthetic light reactions in the 'green lineage' (i.e. green algae and land plants) as well as its cyanobacterial counterparts. In addition, we performed an extensive orthologue search for the major photosynthetic thylakoid proteins in 41 sequenced genomes and generated sequence alignments to survey the phylogenetic distribution of phosphorylation sites and their evolutionary conservation from green algae to higher plants. We observed a number of uncharacterized phosphorylation hotspots at photosystem I and the ATP synthase with potential functional relevance as well as an unexpected divergence of phosphosites. Although technical limitations might account for a number of those differences, we think that many of these phosphosites have important functions. This is particularly important for mono- and dicot plants, where these sites might be involved in regulatory processes such as stress acclimation.
Collapse
Affiliation(s)
- Michele Grieco
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| | - Arpit Jain
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe University, Max-von-Laue Str. 13, D-60438 Frankfurt, Germany
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe University, Max-von-Laue Str. 13, D-60438 Frankfurt, Germany Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Anlage 25, D-60325 Frankfurt, Germany
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| |
Collapse
|
49
|
Yamori W, Shikanai T. Physiological Functions of Cyclic Electron Transport Around Photosystem I in Sustaining Photosynthesis and Plant Growth. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:81-106. [PMID: 26927905 DOI: 10.1146/annurev-arplant-043015-112002] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The light reactions in photosynthesis drive both linear and cyclic electron transport around photosystem I (PSI). Linear electron transport generates both ATP and NADPH, whereas PSI cyclic electron transport produces ATP without producing NADPH. PSI cyclic electron transport is thought to be essential for balancing the ATP/NADPH production ratio and for protecting both photosystems from damage caused by stromal overreduction. Two distinct pathways of cyclic electron transport have been proposed in angiosperms: a major pathway that depends on the PROTON GRADIENT REGULATION 5 (PGR5) and PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE 1 (PGRL1) proteins, which are the target site of antimycin A, and a minor pathway mediated by the chloroplast NADH dehydrogenase-like (NDH) complex. Recently, the regulation of PSI cyclic electron transport has been recognized as essential for photosynthesis and plant growth. In this review, we summarize the possible functions and importance of the two pathways of PSI cyclic electron transport.
Collapse
Affiliation(s)
- Wataru Yamori
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan;
- Precursory Research for Embryonic Science and Technology (PRESTO) and
| | - Toshiharu Shikanai
- Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
50
|
Takahashi H, Schmollinger S, Lee JH, Schroda M, Rappaport F, Wollman FA, Vallon O. PETO Interacts with Other Effectors of Cyclic Electron Flow in Chlamydomonas. MOLECULAR PLANT 2016; 9:558-568. [PMID: 26768121 DOI: 10.1016/j.molp.2015.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
While photosynthetic linear electron flow produces both ATP and NADPH, cyclic electron flow (CEF) around photosystem I (PSI) and cytochrome b6f generates only ATP. CEF is thus essential to balance the supply of ATP and NADPH for carbon fixation; however, it remains unclear how the system tunes the relative levels of linear and cyclic flow. Here, we show that PETO, a transmembrane thylakoid phosphoprotein specific of green algae, contributes to the stimulation of CEF when cells are placed in anoxia. In oxic conditions, PETO co-fractionates with other thylakoid proteins involved in CEF (ANR1, PGRL1, FNR). In PETO-knockdown strains, interactions between these CEF proteins are affected. Anoxia triggers a reorganization of the membrane, so that a subpopulation of PSI and cytochrome b6f now co-fractionates with the CEF effectors in sucrose gradients. The absence of PETO impairs this reorganization. Affinity purification identifies ANR1 as a major interactant of PETO. ANR1 contains two ANR domains, which are also found in the N-terminal region of NdhS, the ferredoxin-binding subunit of the plant ferredoxin-plastoquinone oxidoreductase (NDH). We propose that the ANR domain was co-opted by two unrelated CEF systems (PGR and NDH), possibly as a sensor of the redox state of the membrane.
Collapse
Affiliation(s)
- Hiroko Takahashi
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P et M Curie, Paris 75005, France
| | - Stefan Schmollinger
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, Kaiserlautern 67663, Germany
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, Kaiserlautern 67663, Germany
| | - Fabrice Rappaport
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P et M Curie, Paris 75005, France
| | - Francis-André Wollman
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P et M Curie, Paris 75005, France
| | - Olivier Vallon
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P et M Curie, Paris 75005, France.
| |
Collapse
|