1
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
2
|
Wang Y, Wang H, Zhang L, Wang Y, Wei S, Wang L. Mechanism Analysis of OsZF8-Mediated Regulation of Rice Resistance to Sheath Blight. Int J Mol Sci 2024; 25:5787. [PMID: 38891973 PMCID: PMC11171851 DOI: 10.3390/ijms25115787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Transcription factors are key molecules involved in transcriptional and post-transcriptional regulation in plants and play an important regulatory role in resisting biological stress. In this study, we identified a regulatory factor, OsZF8, mediating rice response to Rhizoctonia solani (R. solani) AG1-IA infection. The expression of OsZF8 affects R. solani rice infection. OsZF8 knockout and overexpressed rice plants were constructed, and the phenotypes of mutant and wild-type (WT) plants showed that OsZF8 negatively regulated rice resistance to rice sheath blight. However, it was speculated that OsZF8 plays a regulatory role at the protein level. The interacting protein PRB1 of OsZF8 was screened using the yeast two-hybrid and bimolecular fluorescence complementation test. The results showed that OsZF8 effectively inhibited PRB1-induced cell death in tobacco cells, and molecular docking results showed that PRB1 had a strong binding effect with OsZF8. Further, the binding ability of OsZF8-PRB1 to ergosterol was significantly reduced when compared with the PRB1 protein. These findings provide new insights into elucidating the mechanism of rice resistance to rice sheath blight.
Collapse
Affiliation(s)
- Yan Wang
- College of Plant Protection, Department of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (H.W.); (L.Z.); (Y.W.)
| | - Haining Wang
- College of Plant Protection, Department of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (H.W.); (L.Z.); (Y.W.)
| | - Liangkun Zhang
- College of Plant Protection, Department of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (H.W.); (L.Z.); (Y.W.)
| | - Yiming Wang
- College of Plant Protection, Department of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (H.W.); (L.Z.); (Y.W.)
| | - Songhong Wei
- College of Plant Protection, Department of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (H.W.); (L.Z.); (Y.W.)
| | - Lili Wang
- Liaoning Academy of Agricultural Sciences, Shenyang 110101, China
| |
Collapse
|
3
|
Salloum Z, Dauner K, Li YF, Verma N, Valdivieso-González D, Almendro-Vedia V, Zhang JD, Nakka K, Chen MX, McDonald J, Corley CD, Sorisky A, Song BL, López-Montero I, Luo J, Dilworth JF, Zha X. Statin-mediated reduction in mitochondrial cholesterol primes an anti-inflammatory response in macrophages by upregulating Jmjd3. eLife 2024; 13:e85964. [PMID: 38602170 PMCID: PMC11186637 DOI: 10.7554/elife.85964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Statins are known to be anti-inflammatory, but the mechanism remains poorly understood. Here, we show that macrophages, either treated with statin in vitro or from statin-treated mice, have reduced cholesterol levels and higher expression of Jmjd3, a H3K27me3 demethylase. We provide evidence that lowering cholesterol levels in macrophages suppresses the adenosine triphosphate (ATP) synthase in the inner mitochondrial membrane and changes the proton gradient in the mitochondria. This activates nuclear factor kappa-B (NF-κB) and Jmjd3 expression, which removes the repressive marker H3K27me3. Accordingly, the epigenome is altered by the cholesterol reduction. When subsequently challenged by the inflammatory stimulus lipopolysaccharide (M1), macrophages, either treated with statins in vitro or isolated from statin-fed mice, express lower levels proinflammatory cytokines than controls, while augmenting anti-inflammatory Il10 expression. On the other hand, when macrophages are alternatively activated by IL-4 (M2), statins promote the expression of Arg1, Ym1, and Mrc1. The enhanced expression is correlated with the statin-induced removal of H3K27me3 from these genes prior to activation. In addition, Jmjd3 and its demethylase activity are necessary for cholesterol to modulate both M1 and M2 activation. We conclude that upregulation of Jmjd3 is a key event for the anti-inflammatory function of statins on macrophages.
Collapse
Affiliation(s)
- Zeina Salloum
- Chronic Disease Program, Ottawa Hospital Research InstituteOttawaCanada
| | - Kristin Dauner
- Chronic Disease Program, Ottawa Hospital Research InstituteOttawaCanada
| | - Yun-feng Li
- College of Life Sciences, Wuhan UniversityWuhanChina
| | - Neha Verma
- Chronic Disease Program, Ottawa Hospital Research InstituteOttawaCanada
| | - David Valdivieso-González
- Departamento Química Física, Universidad Complutense de Madrid, AvdaMadridSpain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12)MadridSpain
| | - Víctor Almendro-Vedia
- Departamento Química Física, Universidad Complutense de Madrid, AvdaMadridSpain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12)MadridSpain
| | - John D Zhang
- Chronic Disease Program, Ottawa Hospital Research InstituteOttawaCanada
| | - Kiran Nakka
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research InstituteOttawaCanada
| | - Mei Xi Chen
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research InstituteOttawaCanada
- Department of Cell and Regenerative Biology, University of WisconsinMadisonUnited States
| | - Jeffrey McDonald
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Chase D Corley
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Alexander Sorisky
- Chronic Disease Program, Ottawa Hospital Research InstituteOttawaCanada
- Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | | | - Iván López-Montero
- Departamento Química Física, Universidad Complutense de Madrid, AvdaMadridSpain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12)MadridSpain
| | - Jie Luo
- College of Life Sciences, Wuhan UniversityWuhanChina
| | - Jeffrey F Dilworth
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research InstituteOttawaCanada
- Department of Cell and Regenerative Biology, University of WisconsinMadisonUnited States
- Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Xiaohui Zha
- Chronic Disease Program, Ottawa Hospital Research InstituteOttawaCanada
- Departments of Medicine and of Biochemistry, Microbiology & Immunology, University of OttawaOttawaCanada
| |
Collapse
|
4
|
Saiioum Z, Dauner K, Li YF, Verma N, Almendro-Vedia V, Valdivieso Gonzalez D, Zhang DJ, Nakka K, McDonald J, Sorisky A, Song BL, Lopez Montero I, Luo J, Dilworth J, Zha X. Statin-mediated reduction in mitochondrial cholesterol primes an anti-inflammatory response in macrophages by upregulating JMJD3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.09.523264. [PMID: 36711703 PMCID: PMC9881925 DOI: 10.1101/2023.01.09.523264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Stains are known to be anti-inflammatory, but the mechanism remains poorly understood. Here we show that macrophages, either treated with statin in vitro or from statin-treated mice, have reduced cholesterol levels and higher expression of Jmjd3, a H3K27me3 demethylase. We provide evidence that lowering cholesterol levels in macrophages suppresses the ATP synthase in the inner mitochondrial membrane (IMM) and changes the proton gradient in the mitochondria. This activates NFkB and Jmjd3 expression to remove the repressive marker H3K27me3. Accordingly, the epigenome is altered by the cholesterol reduction. When subsequently challenged by the inflammatory stimulus LPS (M1), both macrophages treated with statins in vitro or isolated from statin-treated mice in vivo, express lower levels pro-inflammatory cytokines than controls, while augmenting anti-inflammatory Il10 expression. On the other hand, when macrophages are alternatively activated by IL4 (M2), statins promote the expression of Arg1, Ym1, and Mrc1. The enhanced expression is correlated with the statin-induced removal of H3K27me3 from these genes prior to activation. In addition, Jmjd3 and its demethylase activity are necessary for cholesterol to modulate both M1 and M2 activation. We conclude that upregulation of Jmjd3 is a key event for the anti-inflammatory function of statins on macrophages.
Collapse
|
5
|
Shah R, Patel N, Emin M, Celik Y, Jimenez A, Gao S, Garfinkel J, Wei Y, Jelic S. Statins Restore Endothelial Protection against Complement Activity in Obstructive Sleep Apnea: A Randomized Clinical Trial. Ann Am Thorac Soc 2023; 20:1029-1037. [PMID: 36912897 DOI: 10.1513/annalsats.202209-761oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/13/2023] [Indexed: 03/14/2023] Open
Abstract
Rationale: Increased cardiovascular risk in obstructive sleep apnea (OSA) persists after continuous positive airway pressure (CPAP) and alternative therapies are needed. Impaired endothelial protection against complement is a cholesterol-dependent process that initiates endothelial inflammation in OSA, which increases cardiovascular risk. Objectives: To investigate directly whether lowering cholesterol improves endothelial protection against complement and its proinflammatory effects in OSA. Methods: Newly diagnosed patients with OSA (n = 87) and OSA-free controls (n = 32) participated. Endothelial cells and blood were collected at baseline, after 4 weeks of CPAP therapy, and again after 4 weeks of 10 mg atorvastatin versus placebo using a randomized, double-blind, parallel-group design. Primary outcome was the proportion of a complement inhibitor, CD59, on the endothelial cell plasma membrane in OSA patients after 4 weeks of statins versus placebo. Secondary outcomes were complement deposition on endothelial cells and circulating levels of its downstream proinflammatory factor, angiopoietin-2, after statins versus placebo. Results: Baseline expression of CD59 was lower, whereas complement deposition on endothelial cells and levels of angiopoietin-2 were greater, in patients with OSA compared with controls. CPAP did not affect expression of CD59 or complement deposition on endothelial cells in patients with OSA, regardless of adherence. Compared with placebo, statins increased expression of endothelial complement protector CD59 and lowered complement deposition in patients with OSA. Good CPAP adherence was associated with increased angiopoietin-2 levels, which was reversed by statins. Conclusions: Statins restore endothelial protection against complement and reduce its downstream proinflammatory effects, suggesting a potential approach to reduce residual cardiovascular risk after CPAP in patients with OSA. Clinical trial registered with www.clinicaltrials.gov (NCT03122639).
Collapse
Affiliation(s)
- Riddhi Shah
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | | | - Memet Emin
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Yeliz Celik
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | | | - Su Gao
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Jared Garfinkel
- Department of Biostatistics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Ying Wei
- Department of Biostatistics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Sanja Jelic
- Division of Pulmonary, Allergy, and Critical Care Medicine
| |
Collapse
|
6
|
Guo Z, Liu X, Wang N, Mo P, Shen J, Liu M, Zhang H, Wang P, Zhang Z. Membrane component ergosterol builds a platform for promoting effector secretion and virulence in Magnaporthe oryzae. THE NEW PHYTOLOGIST 2023; 237:930-943. [PMID: 36300785 DOI: 10.1111/nph.18575] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The plasma membrane (PM) functions as a physical border between the extracellular and cytoplasmic environments that contribute to the interaction between host plants and pathogenic fungi. As a specific sterol constituent in the cell membrane, ergosterol plays a significant role in fungal development. However, the role of ergosterol in the infection of the rice blast fungus Magnaporthe oryzae remains unclear. In this study, we found that a sterol reductase, MoErg4, is involved in ergosterol biosynthesis and the regulation of plasma membrane integrity in M. oryzae. We found that defects in ergosterol biosynthesis disrupt lipid raft formation in the PM and cause an abnormal distribution of the t-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein MoSso1, inhibiting its interaction with the v-SNARE protein MoSnc1. In addition, we found that MoSso1-MoSnc1 interaction is important for biotrophic interface complex development and cytoplasmic effector protein secretion. Our findings suggested that ergosterol-enriched lipid rafts constitute a platform for interactions among various SNARE proteins that are required for the development and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Ziqian Guo
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Liu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nian Wang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pengcheng Mo
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ju Shen
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Muxing Liu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70118, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
7
|
van den Brand AD, Bajard L, Steffensen IL, Brantsæter AL, Dirven HAAM, Louisse J, Peijnenburg A, Ndaw S, Mantovani A, De Santis B, Mengelers MJB. Providing Biological Plausibility for Exposure-Health Relationships for the Mycotoxins Deoxynivalenol (DON) and Fumonisin B1 (FB1) in Humans Using the AOP Framework. Toxins (Basel) 2022; 14:279. [PMID: 35448888 PMCID: PMC9030459 DOI: 10.3390/toxins14040279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 02/07/2023] Open
Abstract
Humans are chronically exposed to the mycotoxins deoxynivalenol (DON) and fumonisin B1 (FB1), as indicated by their widespread presence in foods and occasional exposure in the workplace. This exposure is confirmed by human biomonitoring (HBM) studies on (metabolites of) these mycotoxins in human matrices. We evaluated the exposure-health relationship of the mycotoxins in humans by reviewing the available literature. Since human studies did not allow the identification of unequivocal chronic health effects upon exposure to DON and FB1, the adverse outcome pathway (AOP) framework was used to structure additional mechanistic evidence from in vitro and animal studies on the identified adverse effects. In addition to a preliminary AOP for DON resulting in the adverse outcome (AO) 'reduced body weight gain', we developed a more elaborated AOP for FB1, from the molecular initiating event (MIE) 'inhibition of ceramide synthases' leading to the AO 'neural tube defects'. The mechanistic evidence from AOPs can be used to support the limited evidence from human studies, to focus FB1- and DON-related research in humans to identify related early biomarkers of effect. In order to establish additional human exposure-health relationships in the future, recommendations are given to maximize the information that can be obtained from HBM.
Collapse
Affiliation(s)
| | - Lola Bajard
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic;
| | - Inger-Lise Steffensen
- Norwegian Institute of Public Health (NIPH), 0213 Oslo, Norway; (I.-L.S.); (A.L.B.); (H.A.A.M.D.)
| | - Anne Lise Brantsæter
- Norwegian Institute of Public Health (NIPH), 0213 Oslo, Norway; (I.-L.S.); (A.L.B.); (H.A.A.M.D.)
| | - Hubert A. A. M. Dirven
- Norwegian Institute of Public Health (NIPH), 0213 Oslo, Norway; (I.-L.S.); (A.L.B.); (H.A.A.M.D.)
| | - Jochem Louisse
- Wageningen Food Safety Research (WFSR), 6708 WB Wageningen, The Netherlands; (J.L.); (A.P.)
| | - Ad Peijnenburg
- Wageningen Food Safety Research (WFSR), 6708 WB Wageningen, The Netherlands; (J.L.); (A.P.)
| | - Sophie Ndaw
- Institut National de Recherche et de Sécurité (INRS), 54500 Vandoeuvre-Lés-Nancy, France;
| | - Alberto Mantovani
- Istituto Superiore di Sanità (ISS), 00161 Rome, Italy; (A.M.); (B.D.S.)
| | - Barbara De Santis
- Istituto Superiore di Sanità (ISS), 00161 Rome, Italy; (A.M.); (B.D.S.)
| | - Marcel J. B. Mengelers
- Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands;
| |
Collapse
|
8
|
Wagner K, Smylla TK, Lampe M, Krieg J, Huber A. Phospholipase D and retromer promote recycling of TRPL ion channel via the endoplasmic reticulum. Traffic 2021; 23:42-62. [PMID: 34719094 DOI: 10.1111/tra.12824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022]
Abstract
Plasma membrane protein trafficking is of fundamental importance for cell function and cell integrity of neurons and includes regulated protein recycling. In this work, we report a novel role of the endoplasmic reticulum (ER) for protein recycling as discovered in trafficking studies of the ion channel TRPL in photoreceptor cells of Drosophila. TRPL is located within the rhabdomeric membrane from where it is endocytosed upon light stimulation and stored in the cell body. Conventional immunohistochemistry as well as stimulated emission depletion super-resolution microscopy revealed TRPL storage at the ER after illumination, suggesting an unusual recycling route of TRPL. Our results also imply that both phospholipase D (PLD) and retromer complex are required for correct recycling of TRPL to the rhabdomeric membrane. Loss of PLD activity in PLD3.1 mutants results in enhanced degradation of TRPL. In the retromer mutant vps35MH20 , TRPL is trapped in a Rab5-positive compartment. Evidenced by epistatic analysis in the double mutant PLD3.1 vps35MH20 , PLD activity precedes retromer function. We propose a model in which PLD and retromer function play key roles in the transport of TRPL to an ER enriched compartment.
Collapse
Affiliation(s)
- Krystina Wagner
- Department of Biochemistry, University of Hohenheim, Institute of Biology, Stuttgart, Germany
| | - Thomas K Smylla
- Department of Biochemistry, University of Hohenheim, Institute of Biology, Stuttgart, Germany
| | - Marko Lampe
- European Molecular Biology Laboratory, Advanced Light Microscopy Core Facility, Heidelberg, Germany
| | - Jana Krieg
- Department of Biochemistry, University of Hohenheim, Institute of Biology, Stuttgart, Germany
| | - Armin Huber
- Department of Biochemistry, University of Hohenheim, Institute of Biology, Stuttgart, Germany
| |
Collapse
|
9
|
Tan LX, Germer CJ, La Cunza N, Lakkaraju A. Complement activation, lipid metabolism, and mitochondrial injury: Converging pathways in age-related macular degeneration. Redox Biol 2020; 37:101781. [PMID: 33162377 PMCID: PMC7767764 DOI: 10.1016/j.redox.2020.101781] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
The retinal pigment epithelium (RPE) is the primary site of injury in non-neovascular age-related macular degeneration or dry AMD. Polymorphisms in genes that regulate complement activation and cholesterol metabolism are strongly associated with AMD, but the biology underlying disease-associated variants is not well understood. Here, we highlight recent studies that have used molecular, biochemical, and live-cell imaging methods to elucidate mechanisms by which aging-associated insults conspire with AMD genetic risk variants to tip the balance towards disease. We discuss how critical functions including lipid metabolism, autophagy, complement regulation, and mitochondrial dynamics are compromised in the RPE, and how a deeper understanding of these mechanisms has helped identify promising therapeutic targets to preserve RPE homeostasis in AMD.
Collapse
Affiliation(s)
- Li Xuan Tan
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA
| | - Colin J Germer
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, USA
| | - Nilsa La Cunza
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, USA
| | - Aparna Lakkaraju
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, USA; Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
10
|
Vidal M. Exosomes and GPI-anchored proteins: Judicious pairs for investigating biomarkers from body fluids. Adv Drug Deliv Rev 2020; 161-162:110-123. [PMID: 32828789 DOI: 10.1016/j.addr.2020.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/27/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022]
Abstract
Exosomes are 50-100 nm membranous vesicles actively released by cells which can be indicative of a diseased cell status. They contain various kinds of molecule - proteins, mRNA, miRNA, lipids - that are actively being studied as potential biomarkers. Hereafter I put forward several arguments in favor of the potential use of glycosylphosphatidylinositol-anchored proteins (GPI-APs) as biomarkers especially of cancerous diseases. I will briefly update readers on the exosome field and review various features of GPI-APs, before further discussing the advantages of this class of proteins as potential exosomal biomarkers. I will finish with a few examples of exosomal GPI-APs that have already been demonstrated to be good prognostic markers, as well as innovative approaches developed to quantify these exosomal biomarkers.
Collapse
|
11
|
Lakkaraju A, Umapathy A, Tan LX, Daniele L, Philp NJ, Boesze-Battaglia K, Williams DS. The cell biology of the retinal pigment epithelium. Prog Retin Eye Res 2020; 78:100846. [PMID: 32105772 PMCID: PMC8941496 DOI: 10.1016/j.preteyeres.2020.100846] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023]
Abstract
The retinal pigment epithelium (RPE), a monolayer of post-mitotic polarized epithelial cells, strategically situated between the photoreceptors and the choroid, is the primary caretaker of photoreceptor health and function. Dysfunction of the RPE underlies many inherited and acquired diseases that cause permanent blindness. Decades of research have yielded valuable insight into the cell biology of the RPE. In recent years, new technologies such as live-cell imaging have resulted in major advancement in our understanding of areas such as the daily phagocytosis and clearance of photoreceptor outer segment tips, autophagy, endolysosome function, and the metabolic interplay between the RPE and photoreceptors. In this review, we aim to integrate these studies with an emphasis on appropriate models and techniques to investigate RPE cell biology and metabolism, and discuss how RPE cell biology informs our understanding of retinal disease.
Collapse
Affiliation(s)
- Aparna Lakkaraju
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Ankita Umapathy
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Li Xuan Tan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Daniele
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy J Philp
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David S Williams
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Yuan D, Rode F, Cao Y. A systems pharmacokinetic/pharmacodynamic model for concizumab to explore the potential of anti-TFPI recycling antibodies. Eur J Pharm Sci 2019; 138:105032. [PMID: 31394258 PMCID: PMC6824202 DOI: 10.1016/j.ejps.2019.105032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 01/31/2023]
Abstract
Concizumab is a humanized monoclonal antibody in clinical investigation directed against membrane-bound and soluble tissue factor pathway inhibitor (mTFPI and sTFPI) for treatment of hemophilia. Concizumab displays a non-linear pharmacokinetic (PK) profile due to mTFPI-mediated endocytosis and necessitates a high dose and frequent dosing to suppress the abundant sTFPI, a negative regulator of coagulation. Recycling antibodies that can dissociate bound mTFPI/sTFPI in endosomes for degradation and rescue antibody from degradation have a potential in reducing the dose by extending antibody systemic persistence and sTFPI suppression. We developed a systems PK/pharmacodynamics (PD) model with nested endosome compartments to simulate the effect of decreased antibody binding to mTFPI/sTFPI in endosomes on antibody clearance and sTFPI suppression for exploring the potential of anti-TFPI recycling antibodies in reducing the dose. A dynamic model-building strategy was taken. A reduced PK/PD model without the endosome compartments was developed to optimize unknown target turnover parameters using concizumab PK data. The optimized parameters were then employed in the systems PK/PD model for simulations. The obtained systems PK/PD model adequately described the PK of concizumab in rabbits, monkeys, and humans and the PD in humans. The systems PK/PD model predicted that an anti-TFPI recycling antibody with a 100-fold higher mTFPI/sTFPI dissociation constant in endosomes than concizumab can extend sTFPI suppression from 12 days to 1 month. Thus, the systems PK/PD model provides a quantitative platform for guiding the engineering and translational development of anti-TFPI recycling antibodies.
Collapse
Affiliation(s)
- Dongfen Yuan
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Frederik Rode
- Novo Nordisk, Translational DMPK, H. Lundbeck A/S, Denmark
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
13
|
Reinholdt P, Wind S, Wüstner D, Kongsted J. Computational Characterization of a Cholesterol-Based Molecular Rotor in Lipid Membranes. J Phys Chem B 2019; 123:7313-7326. [PMID: 31381343 DOI: 10.1021/acs.jpcb.9b04967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biophysical properties of cellular membranes critically depend on their content of cholesterol and its interaction with various other lipid species. Cholesterol-dependent friction at the nanoscale can be studied with molecular rotors, whose quantum yield depends on rotational dynamics of functional groups during their excited state lifetime. Here, we present a detailed computational analysis of a phenyl-BODIPY-linked cholesterol based molecular rotor in direct comparison with the well-known TopFluor-cholesterol. We describe a new parametrization strategy of force field parameters for the BODIPY moiety and carry out extensive molecular dynamics simulations of the probe in membranes in the absence or presence of cholesterol. Our study quantifies the extent of membrane perturbation by these probes, analyzes their tilting resistance in the bilayer and derives dynamic properties directly related to the rotor propensity. We show that phenyl-BODIPY-cholesterol bears potential as a cholesterol-dependent molecular rotor to report about microviscosity of sterol-containing model and cell membranes.
Collapse
Affiliation(s)
- Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , Campusvej 55 , DK-5230 Odense M , Denmark
| | - Signe Wind
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , Campusvej 55 , DK-5230 Odense M , Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology , University of Southern Denmark , Campusvej 55 , DK-5230 Odense M , Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , Campusvej 55 , DK-5230 Odense M , Denmark
| |
Collapse
|
14
|
Sokolov SS, Trushina NI, Severin FF, Knorre DA. Ergosterol Turnover in Yeast: An Interplay between Biosynthesis and Transport. BIOCHEMISTRY (MOSCOW) 2019; 84:346-357. [DOI: 10.1134/s0006297919040023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Abstract
The development of multiple cell culture models of prion infection over the last two decades has led to a significant increase in our understanding of how prions infect cells. In particular, new techniques to distinguish exogenous from endogenous prions have allowed us for the first time to look in depth at the earliest stages of prion infection through to the establishment of persistent infection. These studies have shown that prions can infect multiple cell types, both neuronal and nonneuronal. Once in contact with the cell, they are rapidly taken up via multiple endocytic pathways. After uptake, the initial replication of prions occurs almost immediately on the plasma membrane and within multiple endocytic compartments. Following this acute stage of prion replication, persistent prion infection may or may not be established. Establishment of a persistent prion infection in cells appears to depend upon the achievement of a delicate balance between the rate of prion replication and degradation, the rate of cell division, and the efficiency of prion spread from cell to cell. Overall, cell culture models have shown that prion infection of the cell is a complex and variable process which can involve multiple cellular pathways and compartments even within a single cell.
Collapse
Affiliation(s)
- Suzette A Priola
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States.
| |
Collapse
|
16
|
Kovač V, Čurin Šerbec V. Prion Proteins Without the Glycophosphatidylinositol Anchor: Potential Biomarkers in Neurodegenerative Diseases. Biomark Insights 2018; 13:1177271918756648. [PMID: 29449775 PMCID: PMC5808966 DOI: 10.1177/1177271918756648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/23/2017] [Indexed: 01/17/2023] Open
Abstract
Prion protein (PrP) is a biomolecule that is involved in neuronal signaling, myelinization, and the development of neurodegenerative diseases. In the cell, PrP is shed by the ADAM10 protease. This process generates PrP molecules that lack glycophosphatidylinositol anchor, and these molecules incorporate into toxic aggregates and neutralize toxic oligomers. Due to this dual role, these molecules are important biomarkers for neurodegenerative diseases. In this review, we present shed PrP as a potential biomarker, with a focus on PrP226*, which may be the main biomarker for predicting neurodegenerative diseases in humans.
Collapse
Affiliation(s)
- Valerija Kovač
- Department for the Production of Diagnostic Reagents and Research, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Vladka Čurin Šerbec
- Department for the Production of Diagnostic Reagents and Research, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| |
Collapse
|
17
|
Balashova OA, Visina O, Borodinsky LN. Folate action in nervous system development and disease. Dev Neurobiol 2018; 78:391-402. [PMID: 29380544 DOI: 10.1002/dneu.22579] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 01/04/2023]
Abstract
The vitamin folic acid has been recognized as a crucial environmental factor for nervous system development. From the early fetal stages of the formation of the presumptive spinal cord and brain to the maturation and maintenance of the nervous system during infancy and childhood, folate levels and its supplementation have been considered influential in the clinical outcome of infants and children affected by neurological diseases. Despite the vast epidemiological information recorded on folate function and neural tube defects, neural development and neurodegenerative diseases, the mechanisms of folate action in the developing neural tissue have remained elusive. Here we compiled studies that argue for a unique role for folate in nervous system development and function and its consequences to neural disease and repair. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 391-402, 2018.
Collapse
Affiliation(s)
- Olga A Balashova
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, Sacramento, California
| | - Olesya Visina
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, Sacramento, California
| | - Laura N Borodinsky
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, Sacramento, California
| |
Collapse
|
18
|
Membrane order in the plasma membrane and endocytic recycling compartment. PLoS One 2017; 12:e0188041. [PMID: 29125865 PMCID: PMC5681288 DOI: 10.1371/journal.pone.0188041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/31/2017] [Indexed: 12/30/2022] Open
Abstract
The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles.
Collapse
|
19
|
Kim JH, Singh A, Del Poeta M, Brown DA, London E. The effect of sterol structure upon clathrin-mediated and clathrin-independent endocytosis. J Cell Sci 2017; 130:2682-2695. [PMID: 28655854 DOI: 10.1242/jcs.201731] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/22/2017] [Indexed: 12/25/2022] Open
Abstract
Ordered lipid domains (rafts) in plasma membranes have been hypothesized to participate in endocytosis based on inhibition of endocytosis by removal or sequestration of cholesterol. To more carefully investigate the role of the sterol in endocytosis, we used a substitution strategy to replace cholesterol with sterols that show various raft-forming abilities and chemical structures. Both clathrin-mediated endocytosis of transferrin and clathrin-independent endocytosis of clustered placental alkaline phosphatase were measured. A subset of sterols reversibly inhibited both clathrin-dependent and clathrin-independent endocytosis. The ability of a sterol to support lipid raft formation was necessary for endocytosis. However, it was not sufficient, because a sterol lacking a 3β-OH group did not support endocytosis even though it had the ability to support ordered domain formation. Double bonds in the sterol rings and an aliphatic tail structure identical to that of cholesterol were neither necessary nor sufficient to support endocytosis. This study shows that substitution using a large number of sterols can define the role of sterol structure in cellular functions. Hypotheses for how sterol structure can similarly alter clathrin-dependent and clathrin-independent endocytosis are discussed.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ashutosh Singh
- Dept. of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maurizio Del Poeta
- Dept. of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Deborah A Brown
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Erwin London
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
20
|
Arumugam S, Kaur A. The Lipids of the Early Endosomes: Making Multimodality Work. Chembiochem 2017; 18:1053-1060. [PMID: 28374483 DOI: 10.1002/cbic.201700046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Indexed: 01/21/2023]
Abstract
Early endosomes are dynamic intracellular compartments that fuse with incoming endocytic carrier vesicles and associated cargoes from the plasma membrane. It has been long known that the chemical structures of lipids confer striking properties and rich biochemistry on bilayers. Although the organisational principles of the plasma membrane are relatively better understood, understanding endosomal membranes has been challenging. It has become increasingly apparent that endosomal membranes, because of their lipid compositions and interactions, use distinct lipid chemistries. We discuss the biochemical and biophysical phenomena in play at the early endosomal membrane. We focus on cholesterol, phosphoinositides, and phosphatidylserine and their clear roles in endosome functions. We discuss the various principles and mechanisms underpinning how these lipids are implicated at the functional level in the working of endosomes, and we summarise early endosomes as a multimodal organelle employing distinct lipid-specific mechanisms.
Collapse
Affiliation(s)
- Senthil Arumugam
- European Molecular Biology Laboratory Australia Node for Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Amandeep Kaur
- European Molecular Biology Laboratory Australia Node for Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, University of New South Wales, Sydney, 2052, New South Wales, Australia
| |
Collapse
|
21
|
Maekawa M. Domain 4 (D4) of Perfringolysin O to Visualize Cholesterol in Cellular Membranes-The Update. SENSORS 2017; 17:s17030504. [PMID: 28273804 PMCID: PMC5375790 DOI: 10.3390/s17030504] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022]
Abstract
The cellular membrane of eukaryotes consists of phospholipids, sphingolipids, cholesterol and membrane proteins. Among them, cholesterol is crucial for various cellular events (e.g., signaling, viral/bacterial infection, and membrane trafficking) in addition to its essential role as an ingredient of steroid hormones, vitamin D, and bile acids. From a micro-perspective, at the plasma membrane, recent emerging evidence strongly suggests the existence of lipid nanodomains formed with cholesterol and phospholipids (e.g., sphingomyelin, phosphatidylserine). Thus, it is important to elucidate how cholesterol behaves in membranes and how the behavior of cholesterol is regulated at the molecular level. To elucidate the complexed characteristics of cholesterol in cellular membranes, a couple of useful biosensors that enable us to visualize cholesterol in cellular membranes have been recently developed by utilizing domain 4 (D4) of Perfringolysin O (PFO, theta toxin), a cholesterol-binding toxin. This review highlights the current progress on development of novel cholesterol biosensors that uncover new insights of cholesterol in cellular membranes.
Collapse
Affiliation(s)
- Masashi Maekawa
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan.
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University; Toon, Ehime 791-0295, Japan.
| |
Collapse
|
22
|
Abstract
Since the term protein was first coined in 1838 and protein was discovered to be the essential component of fibrin and albumin, all cellular proteins were presumed to play beneficial roles in plants and mammals. However, in 1967, Griffith proposed that proteins could be infectious pathogens and postulated their involvement in scrapie, a universally fatal transmissible spongiform encephalopathy in goats and sheep. Nevertheless, this novel hypothesis had not been evidenced until 1982, when Prusiner and coworkers purified infectious particles from scrapie-infected hamster brains and demonstrated that they consisted of a specific protein that he called a "prion." Unprecedentedly, the infectious prion pathogen is actually derived from its endogenous cellular form in the central nervous system. Unlike other infectious agents, such as bacteria, viruses, and fungi, prions do not contain genetic materials such as DNA or RNA. The unique traits and genetic information of prions are believed to be encoded within the conformational structure and posttranslational modifications of the proteins. Remarkably, prion-like behavior has been recently observed in other cellular proteins-not only in pathogenic roles but also serving physiological functions. The significance of these fascinating developments in prion biology is far beyond the scope of a single cellular protein and its related disease.
Collapse
|
23
|
He M, Ro L, Liu J, Chu CC. Folate-decorated arginine-based poly(ester urea urethane) nanoparticles as carriers for gambogic acid and effect on cancer cells. J Biomed Mater Res A 2016; 105:475-490. [PMID: 27706899 DOI: 10.1002/jbm.a.35924] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/20/2016] [Accepted: 10/03/2016] [Indexed: 12/18/2022]
Abstract
Gambogic acid (GA) exhibits a broad spectrum of anticancer activity and low chemotoxicity to normal tissues. However, poor aqueous solubility and sensitivity to hydrolysis make its pharmaceutical applications a challenge. Linear and branched Arg-based poly(ester urea urethane)s (Arg-PEUUs), folate (FA)-conjugated Arg PEUUs (FA-Arg-PEUUs), and their self-assembled nanoparticles (NPs) were designed, synthesized, and studied as the potential GA carriers for cancer treatment. The average diameters of linear or branched Arg-PEUU/FA-Arg-PEUU NPs were 98-267 nm. FA-Arg-PEUU NPs adhered onto and were internalized into HeLa and A549 cells, and showed no cytotoxicity. The GA loading efficiency in the NP carriers ranged from 40 to 98%, depending on the feed weight ratio of GA to Arg-PEUU and the Arg-PEUU polymer structure (i.e., linear vs. branched). The GA at 2 µg/mL concentration delivered by the FA-Arg-PEUU NP carriers had higher cytotoxicity and induced a higher apoptosis percentage against folate receptor (FR)-overexpressed HeLa or HCT116 than Arg-PEUU NPs. When compared to the free GA treatment, the GA loaded in the FA-Arg-PEUU NP carriers also led to significant loss of the mitochondrial membrane potential in a higher percentage of the cancer cell population and more DNA fragmentation. The GA loaded in FA-Arg-PEUU NP carriers at as low as 0.6 µg/mL GA concentration led to lower MMP-2 and MMP-9 activity of cancer cells compared to free GA, suggesting that GA-loaded Arg-PEUU NPs may have greater potential to reduce cancer cell invasion and metastasis than free GA. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 475-490, 2017.
Collapse
Affiliation(s)
- Mingyu He
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York, 14853-4401
| | - Lillian Ro
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, 14853
| | - Jing Liu
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Chih-Chang Chu
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York, 14853-4401
| |
Collapse
|
24
|
Imaging approaches for analysis of cholesterol distribution and dynamics in the plasma membrane. Chem Phys Lipids 2016; 199:106-135. [PMID: 27016337 DOI: 10.1016/j.chemphyslip.2016.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/04/2016] [Indexed: 11/21/2022]
Abstract
Cholesterol is an important lipid component of the plasma membrane (PM) of mammalian cells, where it is involved in control of many physiological processes, such as endocytosis, cell migration, cell signalling and surface ruffling. In an attempt to explain these functions of cholesterol, several models have been put forward about cholesterol's lateral and transbilayer organization in the PM. In this article, we review imaging techniques developed over the last two decades for assessing the distribution and dynamics of cholesterol in the PM of mammalian cells. Particular focus is on fluorescence techniques to study the lateral and inter-leaflet distribution of suitable cholesterol analogues in the PM of living cells. We describe also several methods for determining lateral cholesterol dynamics in the PM including fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), single particle tracking (SPT) and spot variation FCS coupled to stimulated emission depletion (STED) microscopy. For proper interpretation of such measurements, we provide some background in probe photophysics and diffusion phenomena occurring in cell membranes. In particular, we show the equivalence of the reaction-diffusion approach, as used in FRAP and FCS, and continuous time random walk (CTRW) models, as often invoked in SPT studies. We also discuss mass spectrometry (MS) based imaging of cholesterol in the PM of fixed cells and compare this method with fluorescence imaging of sterols. We conclude that evidence from many experimental techniques converges towards a model of a homogeneous distribution of cholesterol with largely free and unhindered diffusion in both leaflets of the PM.
Collapse
|
25
|
Maekawa M, Yang Y, Fairn GD. Perfringolysin O Theta Toxin as a Tool to Monitor the Distribution and Inhomogeneity of Cholesterol in Cellular Membranes. Toxins (Basel) 2016; 8:toxins8030067. [PMID: 27005662 PMCID: PMC4810212 DOI: 10.3390/toxins8030067] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 02/26/2016] [Accepted: 02/26/2016] [Indexed: 11/23/2022] Open
Abstract
Cholesterol is an essential structural component of cellular membranes in eukaryotes. Cholesterol in the exofacial leaflet of the plasma membrane is thought to form membrane nanodomains with sphingolipids and specific proteins. Additionally, cholesterol is found in the intracellular membranes of endosomes and has crucial functions in membrane trafficking. Furthermore, cellular cholesterol homeostasis and regulation of de novo synthesis rely on transport via both vesicular and non-vesicular pathways. Thus, the ability to visualize and detect intracellular cholesterol, especially in the plasma membrane, is critical to understanding the complex biology associated with cholesterol and the nanodomains. Perfringolysin O (PFO) theta toxin is one of the toxins secreted by the anaerobic bacteria Clostridium perfringens and this toxin forms pores in the plasma membrane that causes cell lysis. It is well understood that PFO recognizes and binds to cholesterol in the exofacial leaflets of the plasma membrane, and domain 4 of PFO (D4) is sufficient for the binding of cholesterol. Recent studies have taken advantage of this high-affinity cholesterol-binding domain to create a variety of cholesterol biosensors by using a non-toxic PFO or the D4 in isolation. This review highlights the characteristics and usefulness of, and the principal findings related to, these PFO-derived cholesterol biosensors.
Collapse
Affiliation(s)
- Masashi Maekawa
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 209 Victoria Street, 6th Floor, Toronto, ON M5S 1T8, Canada.
| | - Yanbo Yang
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 209 Victoria Street, 6th Floor, Toronto, ON M5S 1T8, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Gregory D Fairn
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 209 Victoria Street, 6th Floor, Toronto, ON M5S 1T8, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada.
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Institute for Biomedical Engineering and Science Technology (IBEST), Ryerson University and St. Michael's Hospital, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
26
|
Zhuang X, Teng Y, Samykutty A, Mu J, Deng Z, Zhang L, Cao P, Rong Y, Yan J, Miller D, Zhang HG. Grapefruit-derived Nanovectors Delivering Therapeutic miR17 Through an Intranasal Route Inhibit Brain Tumor Progression. Mol Ther 2016. [PMID: 26444082 DOI: 10.1038/mt.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
The lack of access to the brain is a major obstacle for central nervous system drug development. In this study, we demonstrate the capability of a grapefruit-derived nanovector (GNV) to carry miR17 for therapeutic treatment of mouse brain tumor. We show that GNVs coated with folic acid (FA-GNVs) are enhanced for targeting the GNVs to a folate receptor-positive GL-26 brain tumor. Additionally, FA-GNV-coated polyethylenimine (FA-pGNVs) not only enhance the capacity to carry RNA, but the toxicity of the polyethylenimine is eliminated by the GNVs. Intranasal administration of miR17 carried by FA-pGNVs led to rapid delivery of miR17 to the brain that was selectively taken up by GL-26 tumor cells. Mice treated intranasally with FA-pGNV/miR17 had delayed brain tumor growth. Our results demonstrate that this strategy may provide a noninvasive therapeutic approach for treating brain-related disease through intranasal delivery.
Collapse
Affiliation(s)
- Xiaoying Zhuang
- Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Yun Teng
- Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Abhilash Samykutty
- Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Jingyao Mu
- Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Zhongbin Deng
- Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Lifeng Zhang
- Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Pengxiao Cao
- Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Yuan Rong
- Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Jun Yan
- Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Donald Miller
- Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Huang-Ge Zhang
- Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- Robley Rex Veterans Administration Medical Center, Louisville, Kentucky, USA
| |
Collapse
|
27
|
Emin M, Wang G, Castagna F, Rodriguez-Lopez J, Wahab R, Wang J, Adams T, Wei Y, Jelic S. Increased internalization of complement inhibitor CD59 may contribute to endothelial inflammation in obstructive sleep apnea. Sci Transl Med 2016; 8:320ra1. [PMID: 26738794 PMCID: PMC5485919 DOI: 10.1126/scitranslmed.aad0634] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH) during transient cessation of breathing, triples the risk for cardiovascular diseases. We used a phage display peptide library as an unbiased approach to investigate whether IH, which is specific to OSA, activates endothelial cells (ECs) in a distinctive manner. The target of a differentially bound peptide on ECs collected from OSA patients was identified as CD59, a major complement inhibitor that protects ECs from the membrane attack complex (MAC). A decreased proportion of CD59 is located on the EC surface in OSA patients compared with controls, suggesting reduced protection against complement attack. In vitro, IH promoted endothelial inflammation predominantly via augmented internalization of CD59 and consequent MAC deposition. Increased internalization of endothelial CD59 in IH appeared to be cholesterol-dependent and was reversed by statins in a CD59-dependent manner. These studies suggest that reduced complement inhibition may mediate endothelial inflammation and increase vascular risk in OSA patients.
Collapse
Affiliation(s)
- Memet Emin
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Gang Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Francesco Castagna
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Josanna Rodriguez-Lopez
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Romina Wahab
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jing Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Tessa Adams
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ying Wei
- Division of Biostatistics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Sanja Jelic
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA,Corresponding author.
| |
Collapse
|
28
|
Iaea DB, Gale SE, Bielska AA, Krishnan K, Fujiwara H, Jiang H, Maxfield FR, Schlesinger PH, Covey DF, Schaffer JE, Ory DS. A novel intrinsically fluorescent probe for study of uptake and trafficking of 25-hydroxycholesterol. J Lipid Res 2015; 56:2408-19. [PMID: 26497473 DOI: 10.1194/jlr.d064287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 11/20/2022] Open
Abstract
Cholesterol homeostasis is regulated not only by cholesterol, but also by oxygenated cholesterol species, referred to as oxysterols. Side-chain oxysterols, such as 25-hydroxycholesterol (25-HC), regulate cholesterol homeostasis through feedback inhibition and feed-forward activation of transcriptional pathways that govern cholesterol synthesis, uptake, and elimination, as well as through direct nongenomic actions that modulate cholesterol accessibility in membranes. Elucidating the cellular distribution of 25-HC is required to understand its biological activity at the molecular level. However, studying oxysterol distribution and behavior within cells has proven difficult due to the lack of fluorescent analogs of 25-HC that retain its chemical and physical properties. To address this, we synthesized a novel intrinsically fluorescent 25-HC mimetic, 25-hydroxycholestatrienol (25-HCTL). We show that 25-HCTL modulates sterol homeostatic responses in a similar manner as 25-HC. 25-HCTL associates with lipoproteins in media and is taken up by cells through LDL-mediated endocytosis. In cultured cells, 25-HCTL redistributes among cellular membranes and, at steady state, has a similar distribution as cholesterol, being enriched in both the endocytic recycling compartment as well as the plasma membrane. Our findings indicate that 25-HCTL is a faithful fluorescent 25-HC mimetic that can be used to investigate the mechanisms through which 25-HC regulates sterol homeostatic pathways.
Collapse
Affiliation(s)
- David B Iaea
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Sarah E Gale
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Agata A Bielska
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Kathiresan Krishnan
- Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Hideji Fujiwara
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Hui Jiang
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110
| | | | - Paul H Schlesinger
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Douglas F Covey
- Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Jean E Schaffer
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
29
|
Zhuang X, Teng Y, Samykutty A, Mu J, Deng Z, Zhang L, Cao P, Rong Y, Yan J, Miller D, Zhang HG. Grapefruit-derived Nanovectors Delivering Therapeutic miR17 Through an Intranasal Route Inhibit Brain Tumor Progression. Mol Ther 2015; 24:96-105. [PMID: 26444082 DOI: 10.1038/mt.2015.188] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/22/2015] [Indexed: 12/12/2022] Open
Abstract
The lack of access to the brain is a major obstacle for central nervous system drug development. In this study, we demonstrate the capability of a grapefruit-derived nanovector (GNV) to carry miR17 for therapeutic treatment of mouse brain tumor. We show that GNVs coated with folic acid (FA-GNVs) are enhanced for targeting the GNVs to a folate receptor-positive GL-26 brain tumor. Additionally, FA-GNV-coated polyethylenimine (FA-pGNVs) not only enhance the capacity to carry RNA, but the toxicity of the polyethylenimine is eliminated by the GNVs. Intranasal administration of miR17 carried by FA-pGNVs led to rapid delivery of miR17 to the brain that was selectively taken up by GL-26 tumor cells. Mice treated intranasally with FA-pGNV/miR17 had delayed brain tumor growth. Our results demonstrate that this strategy may provide a noninvasive therapeutic approach for treating brain-related disease through intranasal delivery.
Collapse
Affiliation(s)
- Xiaoying Zhuang
- Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Yun Teng
- Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Abhilash Samykutty
- Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Jingyao Mu
- Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Zhongbin Deng
- Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Lifeng Zhang
- Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Pengxiao Cao
- Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Yuan Rong
- Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Jun Yan
- Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Donald Miller
- Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Huang-Ge Zhang
- Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA.,Robley Rex Veterans Administration Medical Center, Louisville, Kentucky, USA
| |
Collapse
|
30
|
Trafficking and degradation pathways in pathogenic conversion of prions and prion-like proteins in neurodegenerative diseases. Virus Res 2015; 207:146-54. [DOI: 10.1016/j.virusres.2015.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/01/2014] [Accepted: 01/22/2015] [Indexed: 11/20/2022]
|
31
|
Holm J, Bruun SW, Hansen SI. The complex interplay between ligand binding and conformational structure of the folate binding protein (folate receptor): Biological perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1249-59. [PMID: 26116148 DOI: 10.1016/j.bbapap.2015.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/05/2015] [Accepted: 06/23/2015] [Indexed: 11/27/2022]
Abstract
This review analyzes how interplay between folate binding and changes in folate binding protein (FBP) conformation/self-association affects the biological function of FBP. Concentration-dependent, reversible self-association of hydrophobic apo-FBP at pI=7.4 is associated with decreased affinity for folate, probably due to shielding of binding sites between interacting hydrophobic patches. Titration with folate removes apo-monomers, favoring dissociation of self-associated apo-FBP into apo-monomers. Folate anchors to FBP through a network of hydrogen bonds and hydrophobic interactions, and the binding induces a conformational change with formation of hydrophilic and stable holo-FBP. Holo-FBP exhibits a ligand-mediated concentration-dependent self-association into multimers of great thermal and chemical stability due to strong intermolecular forces. Both ligand and FBP are thus protected against biological/physicochemical decomposition. In biological fluids with low FBP concentrations, e.g., saliva, semen and plasma, hydrophobic apo-monomers and hydrophilic holo-monomers associate into stable asymmetrical complexes with aberrant binding kinetics unless detergents, e.g., cholesterol or phospholipids are present.
Collapse
Affiliation(s)
- Jan Holm
- Department of Clinical Biochemistry, Nordsjællands Hospital - Hillerød, University Hospital Copenhagen, Dyrehavevej 29, DK-3400 Hillerød, Denmark.
| | - Susanne W Bruun
- Faculty of Science, Department of Food Science, Spectroscopy and Chemometrics, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark
| | - Steen I Hansen
- Department of Clinical Biochemistry, Nordsjællands Hospital - Hillerød, University Hospital Copenhagen, Dyrehavevej 29, DK-3400 Hillerød, Denmark.
| |
Collapse
|
32
|
Murshid A, Gong J, Prince T, Borges TJ, Calderwood SK. Scavenger receptor SREC-I mediated entry of TLR4 into lipid microdomains and triggered inflammatory cytokine release in RAW 264.7 cells upon LPS activation. PLoS One 2015; 10:e0122529. [PMID: 25836976 PMCID: PMC4383338 DOI: 10.1371/journal.pone.0122529] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/20/2015] [Indexed: 12/11/2022] Open
Abstract
Scavenger receptor associated with endothelial cells I (SREC-I) was shown to be expressed in immune cells and to play a role in the endocytosis of peptides and antigen presentation. As our previous studies indicated that SREC-I required intact Toll-like receptor 4 (TLR4) expression for its functions in tumor immunity, we examined potential interactions between these two receptors. We have shown here that SREC-I became associated with TLR4 on binding bacterial lipopolysaccharides (LPS) in RAW 264.7 and HEK 293 cells overexpressing these two receptors. The receptors then became internalized together in intracellular endosomes. SREC-I promoted TLR4-induced signal transduction through the NF-kB and MAP kinase pathways, leading to enhanced inflammatory cytokine release. Activation of inflammatory signaling through SREC-I/TLR4 complexes appeared to involve recruitment of the receptors into detergent-insoluble, cholesterol-rich lipid microdomains that contained the small GTPase Cdc42 and the non-receptor tyrosine kinase c-src. Under conditions of SREC-I activation by LPS, TLR4 activity required Cdc42 as well as cholesterol and actin polymerization for signaling through NF-kB and MAP kinase pathways in RAW 264.7 cells. SREC-I appeared to respond differently to another ligand, the molecular chaperone Hsp90 that, while triggering SREC-I-TLR4 binding caused only faint activation of the NF-kB pathway. Our experiments therefore indicated that SREC-I could bind LPS and might be involved in innate inflammatory immune responses to extracellular danger signals in RAW 264.7 cells or bone marrow-derived macrophages.
Collapse
Affiliation(s)
- Ayesha Murshid
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 3 Blackfan Circle, Boston, Massachusetts, United States of America
| | - Jianlin Gong
- Stress Response Center, Boston University Medical Center, Boston, Massachusetts, United States of America
| | - Thomas Prince
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 3 Blackfan Circle, Boston, Massachusetts, United States of America
| | - Thiago J. Borges
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 3 Blackfan Circle, Boston, Massachusetts, United States of America
- School of Biosciences and Biomedical Research Institute, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Stuart K. Calderwood
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 3 Blackfan Circle, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
33
|
Murshid A, Borges TJ, Calderwood SK. Emerging roles for scavenger receptor SREC-I in immunity. Cytokine 2015; 75:256-60. [PMID: 25767073 DOI: 10.1016/j.cyto.2015.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 10/23/2022]
Abstract
SREC-I is a class F scavenger receptor with key role in the immune response, particularly in antigen presenting cell (APC) such as macrophages and dendritic cells (DC). This receptor is able to mediate engulfment of dead cells as well as endocytosis of heat shock protein (HSP)-antigen complexes. SREC-I could thus potentially mediate the tolerizing influence of apoptotic cells or the immunostimulatory effects of HSP-peptide complexes, depending on context. This receptor was able to mediate presentation of external antigens, bound to HSPs through both the class II pathway as well as cross presentation via MHC class I complexes. In addition to its recently established role in adaptive immunity, emerging studies are indicating a broad role in innate immunity and regulation of cell signaling through Toll Like Receptors (TLR). SREC-I may thus play a key role in APC function by coordinating immune responses to internal and external antigens in APC.
Collapse
Affiliation(s)
- Ayesha Murshid
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States
| | - Thiago J Borges
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States; School of Biosciences and Biomedical Research Institute, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
34
|
Brachet A, Norwood S, Brouwers JF, Palomer E, Helms JB, Dotti CG, Esteban JA. LTP-triggered cholesterol redistribution activates Cdc42 and drives AMPA receptor synaptic delivery. ACTA ACUST UNITED AC 2015; 208:791-806. [PMID: 25753037 PMCID: PMC4362467 DOI: 10.1083/jcb.201407122] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholesterol acts as a sensor of NMDA receptor activation and as a trigger of downstream signaling by engaging small GTPase activation and AMPA receptor synaptic delivery during long-term potentiation. Neurotransmitter receptor trafficking during synaptic plasticity requires the concerted action of multiple signaling pathways and the protein transport machinery. However, little is known about the contribution of lipid metabolism during these processes. In this paper, we addressed the question of the role of cholesterol in synaptic changes during long-term potentiation (LTP). We found that N-methyl-d-aspartate–type glutamate receptor (NMDAR) activation during LTP induction leads to a rapid and sustained loss or redistribution of intracellular cholesterol in the neuron. A reduction in cholesterol, in turn, leads to the activation of Cdc42 and the mobilization of GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid–type glutamate receptors (AMPARs) from Rab11-recycling endosomes into the synaptic membrane, leading to synaptic potentiation. This process is accompanied by an increase of NMDAR function and an enhancement of LTP. These results imply that cholesterol acts as a sensor of NMDAR activation and as a trigger of downstream signaling to engage small GTPase (guanosine triphosphatase) activation and AMPAR synaptic delivery during LTP.
Collapse
Affiliation(s)
- Anna Brachet
- Departamento de Neurobiología, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Stephanie Norwood
- Departamento de Neurobiología, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jos F Brouwers
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, 3508 Utrecht, Netherlands
| | - Ernest Palomer
- Departamento de Neurobiología, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - J Bernd Helms
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, 3508 Utrecht, Netherlands
| | - Carlos G Dotti
- Departamento de Neurobiología, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José A Esteban
- Departamento de Neurobiología, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
35
|
Jaensch N, Corrêa IR, Watanabe R. Stable cell surface expression of GPI-anchored proteins, but not intracellular transport, depends on their fatty acid structure. Traffic 2014; 15:1305-29. [PMID: 25196094 DOI: 10.1111/tra.12224] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 11/28/2022]
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are a class of lipid anchored proteins expressed on the cell surface of eukaryotes. The potential interaction of GPI-APs with ordered lipid domains enriched in cholesterol and sphingolipids has been proposed to function in the intracellular transport of these lipid anchored proteins. Here, we examined the biological importance of two saturated fatty acids present in the phosphatidylinositol moiety of GPI-APs. These fatty acids are introduced by the action of lipid remodeling enzymes and required for the GPI-AP association within ordered lipid domains. We found that the fatty acid remodeling is not required for either efficient Golgi-to-plasma membrane transport or selective endocytosis via GPI-enriched early endosomal compartment (GEEC)/ clathrin-independent carrier (CLIC) pathway, whereas cholesterol depletion significantly affects both pathways independent of their fatty acid structure. Therefore, the mechanism of cholesterol dependence does not appear to be related to the interaction with ordered lipid domains mediated by two saturated fatty acids. Furthermore, cholesterol extraction drastically releases the unremodeled GPI-APs carrying an unsaturated fatty acid from the cell surface, but not remodeled GPI-APs carrying two saturated fatty acids. This underscores the essential role of lipid remodeling to ensure a stable membrane association of GPI-APs particularly under potential membrane lipid perturbation.
Collapse
Affiliation(s)
- Nina Jaensch
- Department of Biochemistry, University of Geneva Sciences II, CH1-1211 Geneva, Switzerland
| | | | | |
Collapse
|
36
|
Abstract
Folic acid, also known as vitamin B9 (Fig. 9.1), is an essential co-enzyme in one-carbon metabolism pathways, including the biosynthesis of nucleotides (i.e. purines, thymidine) and several amino acids. In general, two functionally different systems mediate the cellular uptake of folate: (1) the reduced folate carrier (RFC, Kd ∼ 10-6 M), an anion transporter that delivers folates across the plasma membrane in a bidirectional fashion, and (2) the folate receptor (FR, Kd ∼ 10-10 M), which internalizes folate through active receptor-mediated endocytosis. The RFC, a membrane-spanning anion transporter, is present in virtually all tissues and is responsible for the majority of folate transport in and out of cells. In contrast, FR expression is largely restricted to malignant cells, activated macrophages, and the proximal tubule cells of the kidneys. Because a variety of important diseases are caused by the former two cell types, interest in exploiting FR for drug targeting applications has rapidly increased. And achievement of this targeting objective, primarily through conjugation of drugs to folic acid is believed to enable (1) enhanced net drug uptake by pathologic cells, and more importantly (2) reduction in drug deposition into non-pathologic cells, thereby mitigating collateral toxicity to normal tissues.
Collapse
|
37
|
Diaz-Rohrer B, Levental KR, Levental I. Rafting through traffic: Membrane domains in cellular logistics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3003-3013. [PMID: 25130318 DOI: 10.1016/j.bbamem.2014.07.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/28/2014] [Accepted: 07/31/2014] [Indexed: 01/03/2023]
Abstract
The intricate and tightly regulated organization of eukaryotic cells into spatially and functionally distinct membrane-bound compartments is a defining feature of complex organisms. These compartments are defined by their lipid and protein compositions, with their limiting membrane as the functional interface to the rest of the cell. Thus, proper segregation of membrane proteins and lipids is necessary for the maintenance of organelle identity, and this segregation must be maintained despite extensive, rapid membrane exchange between compartments. Sorting processes of high efficiency and fidelity are required to avoid potentially deleterious mis-targeting and maintain cellular function. Although much molecular machinery associated with membrane traffic (i.e. membrane budding/fusion/fission) has been characterized both structurally and biochemically, the mechanistic details underlying the tightly regulated distribution of membranes between subcellular locations remain to be elucidated. This review presents evidence for the role of ordered lateral membrane domains known as lipid rafts in both biosynthetic sorting in the late secretory pathway, as well as endocytosis and recycling to/from the plasma membrane. Although such evidence is extensive and the involvement of membrane domains in sorting is definitive, specific mechanistic details for raft-dependent sorting processes remain elusive.
Collapse
Affiliation(s)
- Blanca Diaz-Rohrer
- University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX 77030, USA
| | - Kandice R Levental
- University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX 77030, USA
| | - Ilya Levental
- University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX 77030, USA; Cancer Prevention and Research Institute of Texas, USA.
| |
Collapse
|
38
|
Hullin-Matsuda F, Taguchi T, Greimel P, Kobayashi T. Lipid compartmentalization in the endosome system. Semin Cell Dev Biol 2014; 31:48-56. [DOI: 10.1016/j.semcdb.2014.04.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 11/15/2022]
|
39
|
Tokumasu F, Crivat G, Ackerman H, Hwang J, Wellems TE. Inward cholesterol gradient of the membrane system in P. falciparum-infected erythrocytes involves a dilution effect from parasite-produced lipids. Biol Open 2014; 3:529-41. [PMID: 24876390 PMCID: PMC4058088 DOI: 10.1242/bio.20147732] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum (Pf) infection remodels the human erythrocyte with new membrane systems, including a modified host erythrocyte membrane (EM), a parasitophorous vacuole membrane (PVM), a tubulovesicular network (TVN), and Maurer's clefts (MC). Here we report on the relative cholesterol contents of these membranes in parasitized normal (HbAA) and hemoglobin S-containing (HbAS, HbAS) erythrocytes. Results from fluorescence lifetime imaging microscopy (FLIM) experiments with a cholesterol-sensitive fluorophore show that membrane cholesterol levels in parasitized erythrocytes (pRBC) decrease inwardly from the EM, to the MC/TVN, to the PVM, and finally to the parasite membrane (PM). Cholesterol depletion of pRBC by methyl-β-cyclodextrin treatment caused a collapse of this gradient. Lipid and cholesterol exchange data suggest that the cholesterol gradient involves a dilution effect from non-sterol lipids produced by the parasite. FLIM signals from the PVM or PM showed little or no difference between parasitized HbAA vs HbS-containing erythrocytes that differed in lipid content, suggesting that malaria parasites may regulate the cholesterol contents of the PVM and PM independently of levels in the host cell membrane. Cholesterol levels may affect raft structures and the membrane trafficking and sorting functions that support Pf survival in HbAA, HbAS and HbSS erythrocytes.
Collapse
Affiliation(s)
- Fuyuki Tokumasu
- Malaria Genetics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA Present address: Department of Lipidomics, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Georgeta Crivat
- Malaria Genetics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA Quantum Electronics and Photonics Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - Hans Ackerman
- Malaria Genetics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - Jeeseong Hwang
- Quantum Electronics and Photonics Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - Thomas E Wellems
- Malaria Genetics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA
| |
Collapse
|
40
|
Miyagawa-Yamaguchi A, Kotani N, Honke K. Expressed glycosylphosphatidylinositol-anchored horseradish peroxidase identifies co-clustering molecules in individual lipid raft domains. PLoS One 2014; 9:e93054. [PMID: 24671047 PMCID: PMC3966864 DOI: 10.1371/journal.pone.0093054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 03/02/2014] [Indexed: 11/18/2022] Open
Abstract
Lipid rafts that are enriched in glycosylphosphatidylinositol (GPI)-anchored proteins serve as a platform for important biological events. To elucidate the molecular mechanisms of these events, identification of co-clustering molecules in individual raft domains is required. Here we describe an approach to this issue using the recently developed method termed enzyme-mediated activation of radical source (EMARS), by which molecules in the vicinity within 300 nm from horseradish peroxidase (HRP) set on the probed molecule are labeled. GPI-anchored HRP fusion proteins (HRP-GPIs), in which the GPI attachment signals derived from human decay accelerating factor and Thy-1 were separately connected to the C-terminus of HRP, were expressed in HeLa S3 cells, and the EMARS reaction was catalyzed by these expressed HRP-GPIs under a living condition. As a result, these different HRP-GPIs had differences in glycosylation and localization and formed distinct clusters. This novel approach distinguished molecular clusters associated with individual GPI-anchored proteins, suggesting that it can identify co-clustering molecules in individual raft domains.
Collapse
Affiliation(s)
- Arisa Miyagawa-Yamaguchi
- Kochi System Glycobiology Center, Kochi University Medical School, Nankoku, Kochi, Japan
- Center for Innovate and Translational Medicine, Kochi University Medical School, Nankoku, Kochi, Japan
| | - Norihiro Kotani
- Kochi System Glycobiology Center, Kochi University Medical School, Nankoku, Kochi, Japan
- Center for Innovate and Translational Medicine, Kochi University Medical School, Nankoku, Kochi, Japan
- Department of Biochemistry, Saitama Medical University, Iruma-gun, Saitama, Japan
| | - Koichi Honke
- Kochi System Glycobiology Center, Kochi University Medical School, Nankoku, Kochi, Japan
- Center for Innovate and Translational Medicine, Kochi University Medical School, Nankoku, Kochi, Japan
- Department of Biochemistry, Kochi University Medical School, Nankoku, Kochi, Japan
- * E-mail:
| |
Collapse
|
41
|
Bandara NA, Hansen MJ, Low PS. Effect of receptor occupancy on folate receptor internalization. Mol Pharm 2014; 11:1007-13. [PMID: 24446917 DOI: 10.1021/mp400659t] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The folate receptor (FR) is a GPI anchored cell surface glycoprotein that functions to facilitate folic acid uptake and mediate signal transduction. With the introduction of multiple folate-targeted drugs into the clinic, the question has arisen regarding how frequently a patient can be dosed with a FR-targeted drug or antibody and whether dosing frequency exerts any impact on the availability of FR for subsequent rounds of FR-mediated drug uptake. Although the rate of FR recycling has been examined in murine tumor models, little or no information exists on the impact of FR occupancy on its rate of endocytosis. The present study quantitates the number of cell surface FR-α and FR-β following exposure to saturating concentrations of a variety of folate-linked molecules and anti-FR antibodies, including the unmodified vitamin, folate-linked drug mimetics, multifolate derivatized nanoparticles, and monoclonal antibodies to FR. We report here that FR occupancy has no impact on the rate of FR internalization. We also demonstrate that multivalent conjugates that bind and cross-link FRs at the cell surface internalize at the same rate as monovalent folate conjugates that have no impact on FR clustering, even though the multivalent conjugates traffic through a different endocytic pathway.
Collapse
Affiliation(s)
- N Achini Bandara
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | | | | |
Collapse
|
42
|
Should I stay or should I go? Trafficking of sub-lytic MAC in the retinal pigment epithelium. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:267-74. [PMID: 24664707 DOI: 10.1007/978-1-4614-3209-8_34] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Assembly of sub-lytic C5b-9 membrane attack complexes (MAC) on the plasma membrane of retinal pigment epithelial cells contributes to the pathogenesis of age-related macular degeneration. C5b-9 pores induce calcium influx, which activates signaling pathways that compromise cell function. Mechanisms that limit sub-lytic MAC activity include: cell surface complement regulatory proteins CD46, CD55, and CD59 that inhibit specific steps of MAC formation; elimination of assembled MAC by exocytosis of membrane vesicles or by endocytosis and subsequent lysosomal degradation; and rapid resealing of pores by the exocytosis of lysosomes. Aging in the post-mitotic retinal pigment epithelium is characterized by the accumulation of cellular debris called lipofuscin, which has also been associated with retinal diseases such as age-related macular degeneration. Lipofuscin has been shown to activate complement components both in vitro and in vivo, suggesting that it could contribute complement-mediated dysfunction in the retinal pigment epithelium. Here, we discuss emerging evidence that vesicular trafficking in the retinal pigment epithelium is critical for efficient removal of MAC from the cell surface and for limiting inflammation in the outer retina.
Collapse
|
43
|
Abstract
GLUT4 is regulated by its intracellular localization. In the absence of insulin, GLUT4 is efficiently retained intracellularly within storage compartments in muscle and fat cells. Upon insulin stimulation (and contraction in muscle), GLUT4 translocates from these compartments to the cell surface where it transports glucose from the extracellular milieu into the cell. Its implication in insulin-regulated glucose uptake makes GLUT4 not only a key player in normal glucose homeostasis but also an important element in insulin resistance and type 2 diabetes. Nevertheless, how GLUT4 is retained intracellularly and how insulin acts on this retention mechanism is largely unclear. In this review, the current knowledge regarding the various molecular processes that govern GLUT4 physiology is discussed as well as the questions that remain.
Collapse
|
44
|
The Us2 gene product of herpes simplex virus 2 is a membrane-associated ubiquitin-interacting protein. J Virol 2013; 87:9590-603. [PMID: 23785212 DOI: 10.1128/jvi.00994-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Us2 gene encodes a tegument protein that is conserved in most members of the Alphaherpesvirinae. Previous studies on the pseudorabies virus (PRV) Us2 ortholog indicated that it is prenylated, associates with membranes, and spatially regulates the enzymatic activity of the MAP (mitogen-activated protein) kinase ERK (extracellular signal-related kinase) through direct binding and sequestration of ERK at the cytoplasmic face of the plasma membrane. Here we present an analysis of the herpes simplex virus 2 (HSV-2) Us2 ortholog and demonstrate that, like PRV Us2, HSV-2 Us2 is a virion component and that, unlike PRV Us2, it does not interact with ERK in yeast two-hybrid assays. HSV-2 Us2 lacks prenylation signals and other canonical membrane-targeting motifs yet is tightly associated with detergent-insoluble membranes and localizes predominantly to recycling endosomes. Experiments to identify cellular proteins that facilitate HSV-2 Us2 membrane association were inconclusive; however, these studies led to the identification of HSV-2 Us2 as a ubiquitin-interacting protein, providing new insight into the functions of HSV-2 Us2.
Collapse
|
45
|
Siljamäki E, Rintanen N, Kirsi M, Upla P, Wang W, Karjalainen M, Ikonen E, Marjomäki V. Cholesterol dependence of collagen and echovirus 1 trafficking along the novel α2β1 integrin internalization pathway. PLoS One 2013; 8:e55465. [PMID: 23393580 PMCID: PMC3564754 DOI: 10.1371/journal.pone.0055465] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/23/2012] [Indexed: 12/29/2022] Open
Abstract
We have previously shown that soluble collagen and a human pathogen, echovirus 1 (EV1) cluster α2β1 integrin on the plasma membrane and cause their internalization into cytoplasmic endosomes. Here we show that cholesterol plays a major role not only in the uptake of α2β1 integrin and its ligands but also in the formation of α2 integrin-specific multivesicular bodies (α2-MVBs) and virus infection. EV1 infection and α2β1 integrin internalization were totally halted by low amounts of the cholesterol-aggregating drugs filipin or nystatin. Inhibition of cholesterol synthesis and accumulation of lanosterol after ketoconazole treatment inhibited uptake of collagen, virus and clustered integrin, and prevented formation of multivesicular bodies and virus infection. Loading of lipid starved cells with cholesterol increased infection to some extent but could not completely restore EV1 infection to control levels. Cold Triton X-100 treatment did not solubilize the α2-MVBs suggesting, together with cholesterol labeling, that the cytoplasmic endosomes were enriched in detergent-resistant lipids in contrast to αV integrin labeled control endosomes in the clathrin pathway. Cholesterol aggregation leading to increased ion permeability caused a significant reduction in EV1 uncoating in endosomes as judged by sucrose gradient centrifugation and by neutral red-based uncoating assay. In contrast, the replication step was not dependent on cholesterol in contrast to the reports on several other viruses. In conclusion, our results showed that the integrin internalization pathway is dependent on cholesterol for uptake of collagen, EV1 and integrin, for maturation of endosomal structures and for promoting EV1 uncoating. The results thus provide novel information for developing anti-viral strategies and more insight into collagen and integrin trafficking.
Collapse
Affiliation(s)
- Elina Siljamäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Nina Rintanen
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Maija Kirsi
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Paula Upla
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Wei Wang
- Institute of Biomedicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Mikko Karjalainen
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Elina Ikonen
- Institute of Biomedicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
- * E-mail:
| |
Collapse
|
46
|
TAG1 regulates the endocytic trafficking and signaling of the semaphorin3A receptor complex. J Neurosci 2012; 32:10370-82. [PMID: 22836270 DOI: 10.1523/jneurosci.5874-11.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endocytic trafficking of membrane proteins is essential for neuronal structure and function. We show that Transient Axonal Glycoprotein 1 (TAG1 or CNTN2), a contactin-related adhesion molecule, plays a central role in the differential trafficking of components of the semaphorin3A (Sema3A) receptor complex into distinct endosomal compartments in murine spinal sensory neuron growth cones. The semaphorin3A receptor is composed of Neuropilin1 (NRP1), PlexinA4, and L1, with NRP1 being the ligand-binding component. TAG1 interacts with NRP1, causing a change in its association with L1 in the Sema3A response such that L1 is lost from the complex following Sema3A binding. Initially, however, L1 and NRP1 endocytose together and only become separated intracellularly, with NRP1 becoming associated with endosomes enriched in lipid rafts and colocalizing with TAG1 and PlexinA4. When TAG1 is missing, NRP1 and L1 fail to separate and NRP1 does not become raft associated; colocalization with PlexinA4 is reduced and Plexin signaling is not initiated. These observations identify a novel role for TAG1 in modulating the intracellular sorting of signaling receptor complexes.
Collapse
|
47
|
Biljan I, Ilc G, Giachin G, Plavec J, Legname G. Structural Rearrangements at Physiological pH: Nuclear Magnetic Resonance Insights from the V210I Human Prion Protein Mutant. Biochemistry 2012; 51:7465-74. [DOI: 10.1021/bi3009856] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ivana Biljan
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000
Ljubljana, Slovenia
| | - Gregor Ilc
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000
Ljubljana, Slovenia
- EN→FIST Centre of Excellence, Dunajska 156, SI-1001 Ljubljana,
Slovenia
| | - Gabriele Giachin
- Laboratory of Prion
Biology, Department
of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, Trieste, Italy
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000
Ljubljana, Slovenia
- EN→FIST Centre of Excellence, Dunajska 156, SI-1001 Ljubljana,
Slovenia
- Faculty of Chemistry and Chemical
Technology, University of Ljubljana, Aškerčeva
cesta 5, SI-1000 Ljubljana, Slovenia
| | - Giuseppe Legname
- Laboratory of Prion
Biology, Department
of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, Trieste, Italy
- ELETTRA Laboratory, Sincrotrone Trieste S.C.p.A., I-34149 Basovizza, Trieste,
Italy
| |
Collapse
|
48
|
Fujita M, Kinoshita T. GPI-anchor remodeling: Potential functions of GPI-anchors in intracellular trafficking and membrane dynamics. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1050-8. [DOI: 10.1016/j.bbalip.2012.01.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 12/28/2011] [Accepted: 01/04/2012] [Indexed: 01/08/2023]
|
49
|
Balse E, Steele DF, Abriel H, Coulombe A, Fedida D, Hatem SN. Dynamic of Ion Channel Expression at the Plasma Membrane of Cardiomyocytes. Physiol Rev 2012; 92:1317-58. [DOI: 10.1152/physrev.00041.2011] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiac myocytes are characterized by distinct structural and functional entities involved in the generation and transmission of the action potential and the excitation-contraction coupling process. Key to their function is the specific organization of ion channels and transporters to and within distinct membrane domains, which supports the anisotropic propagation of the depolarization wave. This review addresses the current knowledge on the molecular actors regulating the distinct trafficking and targeting mechanisms of ion channels in the highly polarized cardiac myocyte. In addition to ubiquitous mechanisms shared by other excitable cells, cardiac myocytes show unique specialization, illustrated by the molecular organization of myocyte-myocyte contacts, e.g., the intercalated disc and the gap junction. Many factors contribute to the specialization of the cardiac sarcolemma and the functional expression of cardiac ion channels, including various anchoring proteins, motors, small GTPases, membrane lipids, and cholesterol. The discovery of genetic defects in some of these actors, leading to complex cardiac disorders, emphasizes the importance of trafficking and targeting of ion channels to cardiac function. A major challenge in the field is to understand how these and other actors work together in intact myocytes to fine-tune ion channel expression and control cardiac excitability.
Collapse
Affiliation(s)
- Elise Balse
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David F. Steele
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Hugues Abriel
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Alain Coulombe
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David Fedida
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Stéphane N. Hatem
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| |
Collapse
|
50
|
Cai B, Caplan S, Naslavsky N. cPLA2α and EHD1 interact and regulate the vesiculation of cholesterol-rich, GPI-anchored, protein-containing endosomes. Mol Biol Cell 2012; 23:1874-88. [PMID: 22456504 PMCID: PMC3350552 DOI: 10.1091/mbc.e11-10-0881] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
cPLA2 hydrolyzes phospholipids and regulates membrane curvature and/or tubulation. Despite disparate roles for cPLA2 at the Golgi and early endosomes, its function in the regulation of membranes containing GPI-anchored proteins is not known. A role for cPLA2α and EHD1 is identified in the vesiculation of cholesterol-rich, GPI-AP–containing membranes. The lipid modifier phospholipase A2 catalyzes the hydrolysis of phospholipids to inverted-cone–shaped lysophospholipids that contribute to membrane curvature and/or tubulation. Conflicting findings exist regarding the function of cytosolic phospholipase A2 (cPLA2) and its role in membrane regulation at the Golgi and early endosomes. However, no studies addressed the role of cPLA2 in the regulation of cholesterol-rich membranes that contain glycosylphosphatidylinositol-anchored proteins (GPI-APs). Our studies support a role for cPLA2α in the vesiculation of GPI-AP–containing membranes, using endogenous CD59 as a model for GPI-APs. On cPLA2α depletion, CD59-containing endosomes became hypertubular. Moreover, accumulation of lysophospholipids induced by a lysophospholipid acyltransferase inhibitor extensively vesiculated CD59-containing endosomes. However, overexpression of cPLA2α did not increase the endosomal vesiculation, implying a requirement for additional factors. Indeed, depletion of the “pinchase” EHD1, a C-terminal Eps15 homology domain (EHD) ATPase, also induced hypertubulation of CD59-containing endosomes. Furthermore, EHD1 and cPLA2α demonstrated in situ proximity (<40 nm) and interacted in vivo. The results presented here provide evidence that the lipid modifier cPLA2α and EHD1 are involved in the vesiculation of CD59-containing endosomes. We speculate that cPLA2α induces membrane curvature and allows EHD1, possibly in the context of a complex, to sever the curved membranes into vesicles.
Collapse
Affiliation(s)
- Bishuang Cai
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | |
Collapse
|