1
|
Yang YH, Xie KF, Yang S, Wang H, Ma HH, Zhou M, Wang ZW, Gu Y, Jia XM. BLNK negatively regulates innate antifungal immunity through inhibiting c-Cbl-mediated macrophage migration. Proc Natl Acad Sci U S A 2024; 121:e2400920121. [PMID: 39413134 PMCID: PMC11513953 DOI: 10.1073/pnas.2400920121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024] Open
Abstract
B cell linker protein (BLNK) is crucial for orchestrating B cell receptor-associated spleen tyrosine kinase (Syk) signaling. However, the role of BLNK in Syk-coupled C-type lectin receptor (CLR) signaling in macrophages remains unclear. Here, we delineate that CLRs govern the Syk-mediated activation of BLNK, thereby impeding macrophage migration by disrupting podosome ring formation upon stimulation with fungal β-glucans or α-mannans. Mechanistically, BLNK instigates its association with casitas B-lineage lymphoma (c-Cbl), competitively impeding the interaction between c-Cbl and Src-family kinase Fyn. This interference disrupts Fyn-mediated phosphorylation of c-Cbl and subsequent c-Cbl-associated F-actin assembly. Consequently, BLNK deficiency intensifies CLR-mediated recruitment of the c-Cbl/phosphatidylinositol 3-kinase complex to the F-actin cytoskeleton, thereby enhancing macrophage migration. Notably, mice with monocyte-specific BLNK deficiency exhibit heightened resistance to infection with Candida albicans, a prominent human fungal pathogen. This resistance is attributed to the increased infiltration of Ly6C+ macrophages into renal tissue. These findings unveil a previously unrecognized role of BLNK for the negative regulation of macrophage migration through inhibiting CLR-mediated podosome ring formation during fungal infections.
Collapse
Affiliation(s)
- Yi-Heng Yang
- Department of Stomatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| | - Ke-Fang Xie
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing211198, China
| | - Shuai Yang
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| | - Huan Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Hui-Hui Ma
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| | - Min Zhou
- Department of Periodontology, Stemmatological Hospital, Tongji University, Shanghai200072, China
| | - Zhong-Wei Wang
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| | - Yebo Gu
- Department of Stomatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| | - Xin-Ming Jia
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| |
Collapse
|
2
|
Yazicioglu YF, Mitchell RJ, Clarke AJ. Mitochondrial control of lymphocyte homeostasis. Semin Cell Dev Biol 2024; 161-162:42-53. [PMID: 38608498 DOI: 10.1016/j.semcdb.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Mitochondria play a multitude of essential roles within mammalian cells, and understanding how they control immunity is an emerging area of study. Lymphocytes, as integral cellular components of the adaptive immune system, rely on mitochondria for their function, and mitochondria can dynamically instruct their differentiation and activation by undergoing rapid and profound remodelling. Energy homeostasis and ATP production are often considered the primary functions of mitochondria in immune cells; however, their importance extends across a spectrum of other molecular processes, including regulation of redox balance, signalling pathways, and biosynthesis. In this review, we explore the dynamic landscape of mitochondrial homeostasis in T and B cells, and discuss how mitochondrial disorders compromise adaptive immunity.
Collapse
|
3
|
Edwards ESJ, Ojaimi S, Ngui J, Seo GH, Kim J, Chunilal S, Yablonski D, O'Hehir RE, van Zelm MC. Combined immunodeficiency and impaired PI3K signaling in a patient with biallelic LCP2 variants. J Allergy Clin Immunol 2023; 152:807-813.e7. [PMID: 37211057 DOI: 10.1016/j.jaci.2023.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Inborn errors affecting components of the T-cell receptor signaling cascade cause combined immunodeficiency with various degrees of severity. Recently, homozygous variants in LCP2 were reported to cause pediatric onset of severe combined immunodeficiency with neutrophil, platelet, and T- and B-cell defects. OBJECTIVE We sought to unravel the genetic cause of combined immunodeficiency and early-onset immune dysregulation in a 26-year-old man who presented with specific antibody deficiency, autoimmunity, and inflammatory bowel disease since early childhood. METHODS The patient was subjected to whole-exome sequencing of genomic DNA and examination of blood neutrophils, platelets, and T and B cells. Expression levels of the Src homology domain 2-containing leukocyte protein of 76 kDa (SLP76) and tonic and ligand-induced PI3K signaling were evaluated by flow-cytometric detection of phosphorylated ribosomal protein S6 in B and T cells. RESULTS Compound heterozygous missense variants were identified in LCP2, affecting the proline-rich repeat domain of SLP76 (p.P190R and p.R204W). The patient's total B- and T-cell numbers were within the normal range, as was platelet function. However, neutrophil function, numbers of unswitched and class-switched memory B cells, and serum IgA were decreased. Moreover, intracellular SLP76 protein levels were reduced in the patient's B cells, CD4+ and CD8+ T cells, and natural killer cells. Tonic and ligand-induced levels of phosphorylated ribosomal protein S6 and ligand-induced phosphorylated PLCγ1 were decreased in the patient's B cells and CD4+ and CD8+ T cells. CONCLUSIONS Biallelic variants in LCP2 impair neutrophil function and T-cell and B-cell antigen-receptor signaling and can cause combined immunodeficiency with early-onset immune dysregulation, even in the absence of platelet defects.
Collapse
Affiliation(s)
- Emily S J Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia; Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, Australia
| | - Samar Ojaimi
- Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, Australia; Monash Pathology, Monash Health, Melbourne, Australia; Monash Infectious Diseases, Monash Health, Melbourne, Australia; Monash Lung Sleep Allergy Immunology, Monash Health, Melbourne, Australia; Department of Medicine, Southern Clinical School, Monash Health and Monash University, Melbourne, Australia.
| | - James Ngui
- Monash Pathology, Monash Health, Melbourne, Australia
| | - Go Hun Seo
- Division of Medical Genetics, 3billion Inc, Seoul, Korea
| | - JiHye Kim
- Division of Medical Genetics, 3billion Inc, Seoul, Korea
| | - Sanjeev Chunilal
- Department of Pathology and Radiology, Monash Health, Melbourne, Australia
| | - Deborah Yablonski
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Robyn E O'Hehir
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia; Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, Australia; Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Alfred Hospital, Melbourne, Australia
| | - Menno C van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia; Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, Australia; Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Alfred Hospital, Melbourne, Australia.
| |
Collapse
|
4
|
Hobeika E, Dautzenberg M, Levit-Zerdoun E, Pelanda R, Reth M. Conditional Selection of B Cells in Mice With an Inducible B Cell Development. Front Immunol 2018; 9:1806. [PMID: 30127788 PMCID: PMC6087743 DOI: 10.3389/fimmu.2018.01806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/23/2018] [Indexed: 11/13/2022] Open
Abstract
Developing B cells undergo defined maturation steps in the bone marrow and in the spleen. The timing and the factors that control these differentiation steps are not fully understood. By targeting the B cell-restricted mb-1 locus to generate an mb-1 allele that expresses a tamoxifen inducible Cre and another allele in which mb-1 expression can be controlled by Cre, we have established a mouse model with an inducible B cell compartment. With these mice, we studied in detail the kinetics of B cell development and the consequence of BCR activation at a defined B cell maturation stage. Contrary to expectations, transitional 1-B cells exposed to anti-IgM reagents in vivo did not die but instead developed into transitional 2 (T2)-B cells with upregulated Bcl-2 expression. We show, however, that these T2-B cells had an increased dependency on the B cell survival factor B cell activating factor when compared to non-stimulated B cells. Overall, our findings indicate that the inducible mb-1 mouse strain represents a useful model, which allows studying the signals that control the selection of B cells in greater detail.
Collapse
Affiliation(s)
- Elias Hobeika
- Centre for Biological Signaling Studies (BIOSS), Biology III, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Marcel Dautzenberg
- Centre for Biological Signaling Studies (BIOSS), Biology III, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ella Levit-Zerdoun
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology, Freiburg, Germany
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Michael Reth
- Centre for Biological Signaling Studies (BIOSS), Biology III, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
5
|
Abstract
Immune tolerance hinders the potentially destructive responses of lymphocytes to host tissues. Tolerance is regulated at the stage of immature B cell development (central tolerance) by clonal deletion, involving apoptosis, and by receptor editing, which reprogrammes the specificity of B cells through secondary recombination of antibody genes. Recent mechanistic studies have begun to elucidate how these divergent mechanisms are controlled. Single-cell antibody cloning has revealed defects of B cell central tolerance in human autoimmune diseases and in several human immunodeficiency diseases caused by single gene mutations, which indicates the relevance of B cell tolerance to disease and suggests possible genetic pathways that regulate tolerance.
Collapse
|
6
|
Engels N, Yigit G, Emmerich CH, Czesnik D, Schild D, Wienands J. Epstein-Barr virus LMP2A signaling in statu nascendi mimics a B cell antigen receptor-like activation signal. Cell Commun Signal 2012; 10:9. [PMID: 22472181 PMCID: PMC3352256 DOI: 10.1186/1478-811x-10-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/03/2012] [Indexed: 01/04/2023] Open
Abstract
Background The latent membrane protein (LMP) 2A of Epstein-Barr virus (EBV) is expressed during different latency stages of EBV-infected B cells in which it triggers activation of cytoplasmic protein tyrosine kinases. Early studies revealed that an immunoreceptor tyrosine-based activation motif (ITAM) in the cytoplasmic N-terminus of LMP2A can trigger a transient increase of the cytosolic Ca2+ concentration similar to that observed in antigen-activated B cells when expressed as a chimeric transmembrane receptor. Even so, LMP2A was subsequently ascribed an inhibitory rather than an activating function because its expression seemed to partially inhibit B cell antigen receptor (BCR) signaling in EBV-transformed B cell lines. However, the analysis of LMP2A signaling has been hampered by the lack of cellular model systems in which LMP2A can be studied without the influence of other EBV-encoded factors. Results We have reanalyzed LMP2A signaling using B cells in which LMP2A is expressed in an inducible manner in the absence of any other EBV signaling protein. This allowed us for the first time to monitor LMP2A signaling in statu nascendi as it occurs during the EBV life cycle in vivo. We show that mere expression of LMP2A not only stimulated protein tyrosine kinases but also induced phospholipase C-γ2-mediated Ca2+ oscillations followed by activation of the extracellular signal-regulated kinase (Erk) mitogen-activated protein kinase pathway and induction of the lytic EBV gene bzlf1. Furthermore, expression of the constitutively phosphorylated LMP2A ITAM modulated rather than inhibited BCR-induced Ca2+ mobilization. Conclusion Our data establish that LMP2A expression has a function beyond the putative inhibition of the BCR by generating a ligand-independent cellular activation signal that may provide a molecular switch for different EBV life cycle stages and most probably contributes to EBV-associated lymphoproliferative disorders.
Collapse
Affiliation(s)
- Niklas Engels
- Institute of Cellular and Molecular Immunology, Georg-August-University Göttingen, Humboldtallee 34, Göttingen 37073, Germany.
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
The chicken B cell line DT40 has been widely used as a model system for reverse genetics studies in higher eukaryotes, because of its advantages including efficient gene targeting and ease of chromosome manipulation. Although the genetic approach using the RNA interference technique has become the standard method particularly in human cells, DT40 still remains a powerful tool to investigate the regulation and function of genes and proteins in a vertebrate system, because of feasibility of easy, rapid, and clear genetic experiments. The use of DT40 cells for DNA repair research has several advantages. In addition to canonical assays for DNA repair, such as measurement of the sensitivities toward DNA damage reagents, it is possible to measure homologous recombination and translesion synthesis activities using activation-induced deaminase (AID)-induced diversification of the immunoglobulin locus. In this chapter, we would describe a detailed protocol for gene disruption experiments in DT40 cells.
Collapse
Affiliation(s)
- Masamichi Ishiai
- Laboratory of DNA Damage Signaling, Department of Late Effect Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
8
|
Sims R, Vandergon VO, Malone CS. The mouse B cell-specific mb-1 gene encodes an immunoreceptor tyrosine-based activation motif (ITAM) protein that may be evolutionarily conserved in diverse species by purifying selection. Mol Biol Rep 2011; 39:3185-96. [PMID: 21688146 DOI: 10.1007/s11033-011-1085-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 06/11/2011] [Indexed: 11/25/2022]
Abstract
The B-lymphocyte accessory molecule Ig-alpha (Ig-α) is encoded by the mouse B cell-specific gene (mb-1), and along with the Ig-beta (Ig-β) molecule and a membrane bound immunoglobulin (mIg) makes up the B-cell receptor (BCR). Ig-α and Ig-β form a heterodimer structure that upon antigen binding and receptor clustering primarily initiates and controls BCR intracellular signaling via a phosphorylation cascade, ultimately triggering an effector response. The signaling capacity of Ig-α is contained within its immunoreceptor tyrosine-based activation motif (ITAM), which is also a key component for intracellular signaling initiation in other immune cell-specific receptors. Although numerous studies have been devoted to the mb-1 gene product, Ig-α, and its signaling mechanism, an evolutionary analysis of the mb-1 gene has been lacking until now. In this study, mb-1 coding sequences from 19 species were compared using Bayesian inference. Analysis revealed a gene phylogeny consistent with an expected species divergence pattern, clustering species from the primate order separate from lower mammals and other species. In addition, an overall comparison of non-synonymous and synonymous nucleotide mutational changes suggests that the mb-1 gene has undergone purifying selection throughout its evolution.
Collapse
Affiliation(s)
- Richard Sims
- Department of Biology, California State University Northridge, 18111 Nordhoff St, Northridge, CA 91330-8303, USA
| | | | | |
Collapse
|
9
|
Oxidative stress and redox modulation potential in type 1 diabetes. Clin Dev Immunol 2011; 2011:593863. [PMID: 21647409 PMCID: PMC3102468 DOI: 10.1155/2011/593863] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/09/2011] [Indexed: 12/21/2022]
Abstract
Redox reactions are imperative to preserving cellular metabolism yet must be strictly regulated. Imbalances between reactive oxygen species (ROS) and antioxidants can initiate oxidative stress, which without proper resolve, can manifest into disease. In type 1 diabetes (T1D), T-cell-mediated autoimmune destruction of pancreatic β-cells is secondary to the primary invasion of macrophages and dendritic cells (DCs) into the islets. Macrophages/DCs, however, are activated by intercellular ROS from resident pancreatic phagocytes and intracellular ROS formed after receptor-ligand interactions via redox-dependent transcription factors such as NF-κB. Activated macrophages/DCs ferry β-cell antigens specifically to pancreatic lymph nodes, where they trigger reactive T cells through synapse formation and secretion of proinflammatory cytokines and more ROS. ROS generation, therefore, is pivotal in formulating both innate and adaptive immune responses accountable for islet cell autoimmunity. The importance of ROS/oxidative stress as well as potential for redox modulation in the context of T1D will be discussed.
Collapse
|
10
|
Abstract
B cell receptor (BCR)-mediated tonic signals are important for B cell survival and development. In this issue of Immunity, Treanor et al. (2010) show that triggering of downstream responses is kept in check with BCR immobilization by actin.
Collapse
Affiliation(s)
- Yoshiteru Sasaki
- Laboratory for Stem Cell Biology, Riken Center for Developmental Biology, Kobe, 650-0047, Japan
| | | |
Collapse
|
11
|
Uemura M, Niwa Y, Kakazu N, Adachi N, Kinoshita K. Chromosomal manipulation by site-specific recombinases and fluorescent protein-based vectors. PLoS One 2010; 5:e9846. [PMID: 20352097 PMCID: PMC2844420 DOI: 10.1371/journal.pone.0009846] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 03/03/2010] [Indexed: 11/24/2022] Open
Abstract
Feasibility of chromosomal manipulation in mammalian cells was first reported 15 years ago. Although this technique is useful for precise understanding of gene regulation in the chromosomal context, a limited number of laboratories have used it in actual practice because of associated technical difficulties. To overcome the practical hurdles, we developed a Cre-mediated chromosomal recombination system using fluorescent proteins and various site-specific recombinases. These techniques enabled quick construction of targeting vectors, easy identification of chromosome-rearranged cells, and rearrangement leaving minimum artificial elements at junctions. Applying this system to a human cell line, we successfully recapitulated two types of pathogenic chromosomal translocations in human diseases: MYC/IgH and BCR/ABL1. By inducing recombination between two loxP sites targeted into the same chromosome, we could mark cells harboring deletion or duplication of the inter-loxP segments with different colors of fluorescence. In addition, we demonstrated that the intrachromosomal recombination frequency is inversely proportional to the distance between two recombination sites, implicating a future application of this frequency as a proximity sensor. Our method of chromosomal manipulation can be employed for particular cell types in which gene targeting is possible (e.g. embryonic stem cells). Experimental use of this system would open up new horizons in genome biology, including the establishment of cellular and animal models of diseases caused by translocations and copy-number variations.
Collapse
Affiliation(s)
- Munehiro Uemura
- Evolutionary Medicine, Shiga Medical Center Research Institute, Moriyama, Japan
| | - Youko Niwa
- Evolutionary Medicine, Shiga Medical Center Research Institute, Moriyama, Japan
| | - Naoki Kakazu
- Department of Environmental and Preventive Medicine, Shimane University School of Medicine, Izumo, Japan
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Kazuo Kinoshita
- Evolutionary Medicine, Shiga Medical Center Research Institute, Moriyama, Japan
- * E-mail:
| |
Collapse
|
12
|
Wang X, Takenaka K, Takeda S. PTIP promotes DNA double-strand break repair through homologous recombination. Genes Cells 2010; 15:243-54. [DOI: 10.1111/j.1365-2443.2009.01379.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Andersson KB, Winer LH, Mørk HK, Molkentin JD, Jaisser F. Tamoxifen administration routes and dosage for inducible Cre-mediated gene disruption in mouse hearts. Transgenic Res 2009; 19:715-25. [PMID: 19894134 DOI: 10.1007/s11248-009-9342-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 10/26/2009] [Indexed: 11/27/2022]
Abstract
Tissue-specific and time-dependent control of in vivo gene disruption may be achieved using conditional knockout strategies in transgenic mice. Fusion of mutant estrogen receptor ligand-binding domains to Cre recombinase (Cre-ER(T), MerCreMer) combined with cardiac-directed gene expression has been used to generate several cardiac-specific tamoxifen-inducible Cre-expressing mouse lines. Such mice have successfully been used to generate Cre-loxP-mediated gene disruption in an inducible manner in the myocardium in vivo. However, information is sparse regarding the tamoxifen dosage, the time course of gene disruption and whether different administration routes differ in efficiency in obtaining gene disruption in the myocardium. We have evaluated these parameters in Serca2 ( flox/flox ) Tg(alphaMHC-MerCreMer) transgenic mice (SERCA2 KO). Serca2 mRNA transcript abundance was used as a sensitive indicator of Cre-loxP-dependent gene disruption in the myocardium. We found that 2 i.p. injections of tamoxifen in oil (1 mg/day, approximate total dose 80 mg/kg) was sufficient for efficient gene disruption with maximal reduction of Serca2 mRNA as early as 4 days after tamoxifen induction. Moreover, a simple protocol using tamoxifen-supplemented non-pelleted dry feed p.o. was comparable to i.p. injections in inducing gene disruption. These improvements may significantly improve animal welfare and reduce the workload in the production of cardiac conditional knockout mice.
Collapse
Affiliation(s)
- Kristin B Andersson
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål, Building 7, Kirkeveien 166, 0407, Oslo, Norway.
| | | | | | | | | |
Collapse
|
14
|
FANCG promotes formation of a newly identified protein complex containing BRCA2, FANCD2 and XRCC3. Oncogene 2008; 27:3641-52. [PMID: 18212739 DOI: 10.1038/sj.onc.1211034] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fanconi anemia (FA) is a human disorder characterized by cancer susceptibility and cellular sensitivity to DNA crosslinks and other damages. Thirteen complementation groups and genes are identified, including BRCA2, which is defective in the FA-D1 group. Eight of the FA proteins, including FANCG, participate in a nuclear core complex that is required for the monoubiquitylation of FANCD2 and FANCI. FANCD2, like FANCD1/BRCA2, is not part of the core complex, and we previously showed direct BRCA2-FANCD2 interaction using yeast two-hybrid analysis. We now show in human and hamster cells that expression of FANCG protein, but not the other core complex proteins, is required for co-precipitation of BRCA2 and FANCD2. We also show that phosphorylation of FANCG serine 7 is required for its co-precipitation with BRCA2, XRCC3 and FANCD2, as well as the direct interaction of BRCA2-FANCD2. These results argue that FANCG has a role independent of the FA core complex, and we propose that phosphorylation of serine 7 is the signalling event required for forming a discrete complex comprising FANCD1/BRCA2-FANCD2-FANCG-XRCC3 (D1-D2-G-X3). Cells that fail to express either phospho-Ser7-FANCG, or full length BRCA2 protein, lack the interactions amongst the four component proteins. A role for D1-D2-G-X3 in homologous recombination repair (HRR) is supported by our finding that FANCG and the RAD51-paralog XRCC3 are epistatic for sensitivity to DNA crosslinking compounds in DT40 chicken cells. Our findings further define the intricate interface between FANC and HRR proteins in maintaining chromosome stability.
Collapse
|
15
|
Conformational plasticity and navigation of signaling proteins in antigen-activated B lymphocytes. Adv Immunol 2008; 97:251-81. [PMID: 18501772 DOI: 10.1016/s0065-2776(08)00005-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the past two decades our view of the B cell antigen receptor (BCR) has fundamentally changed. Being initially regarded as a mute antibody orphan of the B cell surface, the BCR turned out to be a complex multimolecular machine monitoring almost all stages of B cell development, selection, and activation through a plethora of ubiquitously and cell-type-specific effector proteins. A comprehensive understanding of the many BCR signaling facets is still out but a few common biochemical principles outlined in this review operate at the level of receptor activation and orchestrate specific wiring of intracellular transducer cascades. First, initiation and processing of antigen-induced signal transduction relies on transient conformational changes in the signaling proteins to trigger their physical interaction with downstream elements. Second, this dynamic assembly of signalosomes occurs at distinct subcellular locations, most prominently the plasma membrane, which requires dynamic relocalization of one or more of the engaged molecules. For both, precise complex formation and efficient subcellular targeting, B cell signaling components are equipped with a variety of protein interaction domains. Here we provide an overview on how these simple rules are applied by a limited number of transmembrane and cytosolic proteins to convert BCR ligation into Ca(2+) mobilization and Ras activation in an adjustable manner.
Collapse
|
16
|
Abudula A, Grabbe A, Brechmann M, Polaschegg C, Herrmann N, Goldbeck I, Dittmann K, Wienands J. SLP-65 signal transduction requires Src homology 2 domain-mediated membrane anchoring and a kinase-independent adaptor function of Syk. J Biol Chem 2007; 282:29059-29066. [PMID: 17681949 DOI: 10.1074/jbc.m704043200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The family of SLPs (Src homology 2 domain-containing leukocyte adaptor proteins) are cytoplasmic signal effectors of lymphocyte antigen receptors. A main function of SLP is to orchestrate the assembly of Ca(2+)-mobilizing enzymes at the inner leaflet of the plasma membrane. For this purpose, SLP-76 in T cells utilizes the transmembrane adaptor LAT, but the mechanism of SLP-65 membrane anchoring in B cells remains an enigma. We now employed two genetic reconstitution systems to unravel structural requirements of SLP-65 for the initiation of Ca(2+) mobilization and subsequent activation of gene transcription. First, mutational analysis of SLP-65 in DT40 B cells revealed that its C-terminal Src homology 2 domain controls efficient tyrosine phosphorylation by the kinase Syk, plasma membrane recruitment, as well as downstream signaling to NFAT activation. Second, we dissected these processes by expressing SLP-65 in SLP-76-deficient T cells and found that a kinase-independent adaptor function of Syk is required to link phosphorylated SLP-65 to Ca(2+) mobilization. These approaches unmask a mechanistic complexity of SLP-65 activation and coupling to signaling cascades in that Syk is upstream as well as downstream of SLP-65. Moreover, membrane anchoring of the SLP-65-assembled Ca(2+) initiation complex, which appears to be fundamentally different from that of closely related SLP-76, does not necessarily involve a B cell-specific component.
Collapse
Affiliation(s)
- Abulizi Abudula
- Georg August University of Göttingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | - Annika Grabbe
- Georg August University of Göttingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | - Markus Brechmann
- Georg August University of Göttingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | - Christian Polaschegg
- Georg August University of Göttingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | - Nadine Herrmann
- Georg August University of Göttingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | - Ingo Goldbeck
- Georg August University of Göttingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | - Kai Dittmann
- Georg August University of Göttingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | - Jürgen Wienands
- Georg August University of Göttingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany.
| |
Collapse
|
17
|
Pracht C, Minguet S, Leitges M, Reth M, Huber M. Association of protein kinase C-δ with the B cell antigen receptor complex. Cell Signal 2007; 19:715-22. [PMID: 17098397 DOI: 10.1016/j.cellsig.2006.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 07/19/2006] [Accepted: 07/25/2006] [Indexed: 12/30/2022]
Abstract
Protein kinase C (PKC)-delta is a diacylglycerol-dependent, calcium-independent novel PKC isoform and has been demonstrated to exert negative regulatory functions in B lymphocytes as well as in mast cells. Whereas in mast cells PKC-delta functionally interacts with the high-affinity receptor for IgE, FcepsilonR1, no such association has been described for the B cell antigen receptor (BCR). In this report, for the first time, we demonstrate the interaction of PKC-delta with different classes of BCR by means of affinity purification and native protein complex analysis. Using a C-terminally truncated Ig-alpha as well as non-phosphorylated and phosphorylated peptides representing C-terminal regions of Ig-alpha, the dependence of this BCR/PKC-delta interaction on tyrosine-phosphorylated Ig-alpha is shown. Finally, splenocytes from PKC-delta-deficient mice are found to exert reduced phosphorylation of PKD (a.k.a. PKC-mu) in response to BCR engagement, suggesting the early, membrane-proximal activation of an attenuating kinase complex including PKC-delta and PKD.
Collapse
Affiliation(s)
- Catrin Pracht
- Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck-Institute for Immunobiology, 79108 Freiburg, Germany
| | | | | | | | | |
Collapse
|
18
|
Song H, Zhang J, Chiang YJ, Siraganian RP, Hodes RJ. Redundancy in B Cell Developmental Pathways: c-Cbl Inactivation Rescues Early B Cell Development through a B Cell Linker Protein-Independent Pathway. THE JOURNAL OF IMMUNOLOGY 2007; 178:926-35. [PMID: 17202354 DOI: 10.4049/jimmunol.178.2.926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Deficiency in the adaptor protein B cell linker protein (BLNK) results in a substantial but incomplete block in B cell development, suggesting that alternative pathways exist for B lineage differentiation. Another adaptor protein, c-Cbl, plays a negative regulatory role in several BCR-signaling pathways. We therefore investigated the role of c-Cbl during B cell development and addressed the possibility that redundancies in pathways for B cell differentiation could be further revealed by eliminating negative effects mediated by c-Cbl. Strikingly, c-Cbl inactivation reversed a number of the critical defects in early B cell differentiation that are seen in BLNK-deficient mice. c-Cbl(-/-)BLNK(-/-) mice exhibited normalized down-regulation of pre-BCR and CD43, up-regulation of MHC class II, and augmented L chain rearrangement, resulting in a successful transition from pre-B cells to immature B cells. c-Cbl inactivation also reversed the potentially tumor-predisposing hyperproliferative response of BLNK(-/-) pre-B cells to IL-7. Pre-BCR cross-linking induced enhanced and prolonged tyrosine phosphorylation in c-Cbl(-/-)BLNK(-/-) pre-BCR(+) pre-B cells compared with c-Cbl(+/-)BLNK(-/-) cells, including elevated phosphorylation of Lyn, Syk, Btk, and phospholipase C-gamma2. Our studies suggest that some, but not all, pre-BCR-triggered developmental events can be mediated by BLNK-independent pathways that are negatively regulated by c-Cbl, and further suggest that different events during early B cell development require different strength or duration of pre-BCR signaling.
Collapse
Affiliation(s)
- Haifeng Song
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
19
|
Döring B, Shynlova O, Tsui P, Eckardt D, Janssen-Bienhold U, Hofmann F, Feil S, Feil R, Lye SJ, Willecke K. Ablation of connexin43 in uterine smooth muscle cells of the mouse causes delayed parturition. J Cell Sci 2006; 119:1715-22. [PMID: 16595547 DOI: 10.1242/jcs.02892] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gap junctions are characteristically increased in the myometrium during term and preterm delivery and are thought to be essential for the development of uterine contractions during labour. Expression of connexin43 (Cx43), the major myometrial gap junction protein, is increased during delivery. We have generated a mouse mutant (Cx43fl/fl:SM-CreERT2), in which the coding region of Cx43 can be specifically deleted in smooth muscle cells at any given time point by application of tamoxifen. By this approach, we were able to study long-term effects on myometrial functions that are necessary for parturition as well as gap junction intercellular communication in primary myometrial cell cultures. We found a prolongation of the pregnancy in 82% of tamoxifen-treated Cx43fl/fl:SM-CreERT2 mice as well as decreased dye coupling in cultured primary myocytes of these animals. Other parturition-specific parameters such as the regulation of oxytocin receptor, prostaglandin F receptor or progesterone remained unchanged. Our results indicate the important function of Cx43 during parturition in the living animal and suggest further strategies to investigate the role of connexins in uterine contractility in transgenic mice.
Collapse
Affiliation(s)
- Britta Döring
- Institut für Genetik, Abteilung Molekulargenetik, Universität Bonn, Römerstr. 164, 53117 Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Spiotto MT, Schreiber H. Floxed reporter genes: Flow-cytometric selection of clonable cells expressing high levels of a target gene after tamoxifen-regulated Cre-loxP recombination. J Immunol Methods 2006; 312:201-8. [PMID: 16674971 DOI: 10.1016/j.jim.2006.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 02/26/2006] [Indexed: 11/23/2022]
Abstract
Tamoxifen treatment allows MerCreMer fusion recombinase to localize to the nucleus where MerCreMer can excise a floxed inhibitory DNA segment, thereby activating the expression of a downstream gene. This excision is irreversible, and it is therefore difficult to predict which non-activated clones will express the gene at high levels after recombination. We transfected a vector using HLA-A2.1 as floxed inhibitory DNA element and its expression level as surrogate marker predicting future expression of the attenuated downstream target gene. The target gene encoded an EGFP-linked fusion protein. In the unsorted population, 6% of the cells expressed the transfected target gene after recombination and less than 10-fold higher than the population before recombination. However after flow-cytometric selection for high HLA-A2.1 expression, 47% of the cells expressed the target gene after recombination and at levels 37-fold higher than the sorted population before recombination. 58% of the clones were capable of expressing the fusion protein and some over 200-fold above background of untransfected cells and greater than 20-fold higher levels of expression than before recombination. We describe an efficient method to select for clones expressing high levels of a target gene after tamoxifen regulated Cre-loxP recombination. Other floxed reporter genes should be equally useful.
Collapse
Affiliation(s)
- Michael T Spiotto
- Department of Pathology, The University of Chicago, 5831 South Ellis Avenue, Chicago, IL 60637, USA
| | | |
Collapse
|
21
|
Swamy M, Kulathu Y, Ernst S, Reth M, Schamel WWA. Two dimensional Blue Native-/SDS-PAGE analysis of SLP family adaptor protein complexes. Immunol Lett 2005; 104:131-7. [PMID: 16356554 DOI: 10.1016/j.imlet.2005.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 11/01/2005] [Accepted: 11/08/2005] [Indexed: 11/26/2022]
Abstract
SH2 domain containing leukocyte protein (SLP) adaptor proteins serve a central role in the antigen-mediated activation of lymphocytes by organizing multiprotein signaling complexes. Here, we use two dimensional native-/SDS-gel electrophoresis to study the number, size and relative abundance of protein complexes containing SLP family proteins. In non-stimulated T cells all SLP-76 proteins are in a approximately 400 kDa complex with the small adaptor protein Grb2-like adaptor protein downstream of Shc (Gads), whereas half of Gads is monomeric. This constitutive SLP-76/Gads complex could be reconstituted in Drosophila S2 cells expressing both components, suggesting that it might not contain additional subunits. In contrast, in B cells SLP-65 exists in a 180 kDa complex as well as in monomeric form. Since the complex was not found in S2 cells expressing only SLP-65, it was not di/trimeric SLP-65. Upon antigen-stimulation only the complexed SLP-65 was phosphorylated. Surprisingly, stimulation-induced alteration of SLP complexes could not be detected, suggesting that active signaling complexes form only transiently, and are of low abundance.
Collapse
Affiliation(s)
- Mahima Swamy
- Department of Molecular Immunology, Biologie III, University of Freiburg and Max Planck-Institut für Immunbiologie, Stübeweg 51, 79108 Freiburg, Germany
| | | | | | | | | |
Collapse
|
22
|
Suzuki T, Ishihara K, Migaki H, Ishihara K, Nagao M, Yamaguchi-Iwai Y, Kambe T. Two Different Zinc Transport Complexes of Cation Diffusion Facilitator Proteins Localized in the Secretory Pathway Operate to Activate Alkaline Phosphatases in Vertebrate Cells. J Biol Chem 2005; 280:30956-62. [PMID: 15994300 DOI: 10.1074/jbc.m506902200] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Zinc is an essential component for the catalytic activity of numerous zinc-requiring enzymes. However, until recently little has been known about the molecules involved in the pathways required for supplying zinc to these enzymes. We showed recently (Suzuki, T., Ishihara, K., Migaki, H., Matsuura, W., Kohda, A., Okumura, K., Nagao, M., Yamaguchi-Iwai, Y., and Kambe, T. (2005) J. Biol. Chem. 280, 637-643) that zinc transporters, ZnT5 and ZnT7, are required for the activation of zinc-requiring enzymes, alkaline phosphatases (ALPs), by transporting zinc into the lumens of the Golgi apparatus and the vesicular compartments where ALPs locate and converting apoALPs to holoALPs. ZnT6 is also located in the vesicular compartments like ZnT5 and ZnT7. However, the functions of ZnT6 and relationships among these three transporters have not been characterized yet. Here, we characterized the cellular function of ZnT6 together with ZnT5 and ZnT7 by gene-targeting studies using DT40 cells. ZnT6-deficient DT40 cells showed low ALP activity, suggesting that ZnT6 is required for the activation of zinc-requiring enzymes like ZnT5 and ZnT7. Combined disruptions of three transporter genes and re-expressions of transgenes revealed that ZnT5 and ZnT6 work in the same pathway, whereas ZnT7 acts alone. Furthermore, co-immunoprecipitation studies revealed that ZnT5 and ZnT6 formed hetero-oligomers, whereas ZnT7 formed homo-oligomers. Interestingly, the Ser-rich loop in ZnT6, a potential zinc-binding site, was dispensable for the zinc-supplying function of ZnT5/ZnT6 hetero-oligomers, suggesting that the His-rich loop in ZnT5 may be important for zinc binding and that the loop in ZnT6 may acquire another function in the hetero-oligomer formation. These results suggest that two different zinc transport complexes operate to activate ALPs.
Collapse
Affiliation(s)
- Tomoyuki Suzuki
- Division of Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Yonetani Y, Hochegger H, Sonoda E, Shinya S, Yoshikawa H, Takeda S, Yamazoe M. Differential and collaborative actions of Rad51 paralog proteins in cellular response to DNA damage. Nucleic Acids Res 2005; 33:4544-52. [PMID: 16093548 PMCID: PMC1184222 DOI: 10.1093/nar/gki766] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Metazoan Rad51 plays a central role in homologous DNA recombination, and its activity is controlled by a number of Rad51 cofactors. These include five Rad51 paralogs, Rad51B, Rad51C, Rad51D, XRCC2 and XRCC3. We previously hypothesized that all five paralogs participate collaboratively in repair. However, this idea was challenged by the biochemical identification of two independent complexes composed of either Rad51B/C/D/XRCC2 or Rad51C/XRCC3. To investigate if this biochemical finding is matched by genetic interactions, we made double mutants in either the same complex (rad51b/rad51d) or in both complexes (xrcc3/rad51d). In agreement with the biochemical findings the double deletion involving both complexes had an additive effect on the sensitivity to camptothecin and cisplatin. The double deletion of genes in the same complex, on the other hand, did not further increase the sensitivity to these agents. Conversely, all mutants tested displayed comparatively mild sensitivity to gamma-irradiation and attenuated gamma-irradiation-induced Rad51 foci formation. Thus, in accord with our previous conclusion, all paralogs appear to collaboratively facilitate Rad51 action. In conclusion, our detailed genetic study reveals a complex interplay between the five Rad51 paralogs and suggests that some of the Rad51 paralogs can separately operate in later step of homologous recombination.
Collapse
Affiliation(s)
- Yasukazu Yonetani
- Department of Orthopedics, Graduate School of Medicine, Osaka UniversityOsaka, Japan
- Department of Radiation Genetics, Faculty of Medicine, Kyoto UniversitySakyo-ku, Kyoto, Japan
| | - Helfrid Hochegger
- Department of Radiation Genetics, Faculty of Medicine, Kyoto UniversitySakyo-ku, Kyoto, Japan
- CREST, Japan Science and TechnologySaitama, Japan
| | - Eiichiro Sonoda
- Department of Radiation Genetics, Faculty of Medicine, Kyoto UniversitySakyo-ku, Kyoto, Japan
- CREST, Japan Science and TechnologySaitama, Japan
| | - Sayoko Shinya
- Department of Radiation Genetics, Faculty of Medicine, Kyoto UniversitySakyo-ku, Kyoto, Japan
- Department of Food and Nutrition, Faculty of Home Economics, Kyoto Women's UniversityHigashiyama-ku, Kyoto, Japan
| | - Hideki Yoshikawa
- Department of Orthopedics, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Faculty of Medicine, Kyoto UniversitySakyo-ku, Kyoto, Japan
- CREST, Japan Science and TechnologySaitama, Japan
| | - Mistuyoshi Yamazoe
- Department of Radiation Genetics, Faculty of Medicine, Kyoto UniversitySakyo-ku, Kyoto, Japan
- CREST, Japan Science and TechnologySaitama, Japan
- To whom correspondence should be addressed. Tel: +81 75 753 4410; Fax: +81 75 753 4419;
| |
Collapse
|
24
|
Moeller MJ, Soofi A, Sanden S, Floege J, Kriz W, Holzman LB. An efficient system for tissue-specific overexpression of transgenes in podocytes in vivo. Am J Physiol Renal Physiol 2005; 289:F481-8. [PMID: 15784842 DOI: 10.1152/ajprenal.00332.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The utility of promoter fragments isolated from the 5'-flanking region of endogenous mammalian genes to drive transgene expression in vivo is often limited by low expression levels. In this study, a bigenic system was established that allows constitutive overexpression of transgenes in a tissue-specific fashion in transgenic mice in a time- and cost-effective fashion. A modified floxed expression vector was constructed [CMVflox-enhanced green fluorescent protein (eGFP)], in which a lacZ cassette (beta-galactosidase) flanked by lox sites was placed between a CMV-promoter and the transgene of interest (eGFP). Before Cre recombination, expression of eGFP was effectively prevented by the interposed floxed lacZ cassette, whereas beta-galactosidase was strongly expressed in transiently transfected cells. Transcription of the gene of interest (eGFP) could be irreversibly activated by cotransfection with Cre recombinase. Mice transgenic for CMVflox-eGFP were generated by pronuclear injection. A rapid assay was developed to identify transgenic founders with active transgene expression by measuring transgene activity (beta-galactosidase) in tail biopsies. Transgene activity in tails correlated with transgene expression in most other tissues tested including podocytes within the kidney. To activate expression of the gene of interest in a tissue-specific fashion, founder mice were mated to the Cre mouse line 2.5P-Cre previously shown to mediate 100% Cre recombination exclusively in podocytes (Moeller MJ, Sanden SK, Soofi A, Wiggins RC, and Holzman LB. Genesis 35: 39-42, 2003). In doubly transgenic offspring, high-level eGFP expression resulting from Cre excision of the interposed lacZ cassette was detected in four of seven CMVflox-eGFP founder lines. This approach should also circumvent common limitations arising from lethality or transgene silencing as a consequence of transgene overexpression.
Collapse
Affiliation(s)
- Marcus J Moeller
- Institute for Anatomy and Cell Biology, University of Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Kabak S, Clark MR. Membrane-targeted peptides derived from Igalpha attenuate B-cell antigen receptor function. Biochem Biophys Res Commun 2005; 324:1249-55. [PMID: 15504349 DOI: 10.1016/j.bbrc.2004.09.184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Indexed: 12/30/2022]
Abstract
Within the B-cell antigen receptor (BCR), heterodimers of Igalpha/Igbeta couple the receptor to intracellular signaling pathways. In the resting state, Igalpha associates with Src-family tyrosine kinases (SFTKs) which contain some basal activity. Upon engagement of the receptor, the SFTKs phosphorylate tyrosine residues in the BCR that recruit and activate the tyrosine kinase Syk, initiating signaling pathways. To test the hypothesis that disrupting the association between the resting receptor and the SFTKs would attenuate both basal and induced receptor activities, we expressed non-phosphorylatable membrane-targeted analogs of Igalpha (Igalpha/M) or Igbeta (Igbeta/M) in B lymphocytes. Both Igalpha/M and Igbeta/M inhibited BCR-induced calcium mobilization, but only Igalpha/M was able to diminish tyrosine phosphorylation. In an immature B-cell line, Igalpha/M attenuated both receptor-induced and basal apoptosis. Taken together, these data demonstrate the importance of the resting receptor complex and suggest therapeutic strategies for regulating receptor-mediated functions.
Collapse
Affiliation(s)
- Shara Kabak
- Departments of Medicine and Pathology, Section of Rheumatology, Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
26
|
Hatanaka A, Yamazoe M, Sale JE, Takata M, Yamamoto K, Kitao H, Sonoda E, Kikuchi K, Yonetani Y, Takeda S. Similar effects of Brca2 truncation and Rad51 paralog deficiency on immunoglobulin V gene diversification in DT40 cells support an early role for Rad51 paralogs in homologous recombination. Mol Cell Biol 2005; 25:1124-34. [PMID: 15657438 PMCID: PMC544004 DOI: 10.1128/mcb.25.3.1124-1134.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 08/11/2004] [Accepted: 10/19/2004] [Indexed: 11/20/2022] Open
Abstract
BRCA2 is a tumor suppressor gene that is linked to hereditary breast and ovarian cancer. Although the Brca2 protein participates in homologous DNA recombination (HR), its precise role remains unclear. From chicken DT40 cells, we generated BRCA2 gene-deficient cells which harbor a truncation at the 3' end of the BRC3 repeat (brca2tr). Comparison of the characteristics of brca2tr cells with those of other HR-deficient DT40 clones revealed marked similarities with rad51 paralog mutants (rad51b, rad51c, rad51d, xrcc2, or xrcc3 cells). The phenotypic similarities include a shift from HR-mediated diversification to single-nucleotide substitutions in the immunoglobulin variable gene segment and the partial reversion of this shift by overexpression of Rad51. Although recent evidence supports at least Xrcc3 and Rad51C playing a role late in HR, our data suggest that Brca2 and the Rad51 paralogs may also contribute to HR at the same early step, with their loss resulting in the stimulation of an alternative, error-prone repair pathway.
Collapse
Affiliation(s)
- Atsushi Hatanaka
- Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Konoe Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yamamoto K, Hirano S, Ishiai M, Morishima K, Kitao H, Namikoshi K, Kimura M, Matsushita N, Arakawa H, Buerstedde JM, Komatsu K, Thompson LH, Takata M. Fanconi anemia protein FANCD2 promotes immunoglobulin gene conversion and DNA repair through a mechanism related to homologous recombination. Mol Cell Biol 2005; 25:34-43. [PMID: 15601828 PMCID: PMC538764 DOI: 10.1128/mcb.25.1.34-43.2005] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recent studies show overlap between Fanconi anemia (FA) proteins and those involved in DNA repair mediated by homologous recombination (HR). However, the mechanism by which FA proteins affect HR is unclear. FA proteins (FancA/C/E/F/G/L) form a multiprotein complex, which is responsible for DNA damage-induced FancD2 monoubiquitination, a key event for cellular resistance to DNA damage. Here, we show that FANCD2-disrupted DT40 chicken B-cell line is defective in HR-mediated DNA double-strand break (DSB) repair, as well as gene conversion at the immunoglobulin light-chain locus, an event also mediated by HR. Gene conversions occurring in mutant cells were associated with decreased nontemplated mutations. In contrast to these defects, we also found increased spontaneous sister chromatid exchange (SCE) and intact Rad51 foci formation after DNA damage. Thus, we propose that FancD2 promotes a subpathway of HR that normally mediates gene conversion by a mechanism that avoids crossing over and hence SCEs.
Collapse
Affiliation(s)
- Kazuhiko Yamamoto
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The random and inherently imprecise process of V(D)J recombination is the foundation for generation of the B-cell receptor (BCR). Signals must be generated to trigger selective processes that retain cells expressing a functional BCR, and these signals must be antigen-independent to insure an unbiased and diverse pool of newly formed B cells. Moreover, BCR expression, and presumably signaling, is essential for the continued survival of the B cell. Although BCR signaling is generally thought to depend upon ligand-induced aggregation, recent studies argue that some aspects of BCR signaling occur independently of antigen, and, furthermore, these non-induced or 'tonic' signals are linked to specific cellular processes operating at multiple stages of B-cell development. The potential co-existence of tonic and induced signaling suggests a unique aspect of BCR complexes, or at least an aspect of receptors that has previously been under-appreciated.
Collapse
Affiliation(s)
- John G Monroe
- University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, Pennsylvania 191104, USA.
| |
Collapse
|
29
|
Hirano S, Yamamoto K, Ishiai M, Yamazoe M, Seki M, Matsushita N, Ohzeki M, Yamashita YM, Arakawa H, Buerstedde JM, Enomoto T, Takeda S, Thompson LH, Takata M. Functional relationships of FANCC to homologous recombination, translesion synthesis, and BLM. EMBO J 2004; 24:418-27. [PMID: 15616572 PMCID: PMC545820 DOI: 10.1038/sj.emboj.7600534] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 12/06/2004] [Indexed: 11/09/2022] Open
Abstract
Some of the restarting events of stalled replication forks lead to sister chromatid exchange (SCE) as a result of homologous recombination (HR) repair with crossing over. The rate of SCE is elevated by the loss of BLM helicase or by a defect in translesion synthesis (TLS). We found that spontaneous SCE levels were elevated approximately 2-fold in chicken DT40 cells deficient in Fanconi anemia (FA) gene FANCC. To investigate the mechanism of the elevated SCE, we deleted FANCC in cells lacking Rad51 paralog XRCC3, TLS factor RAD18, or BLM. The increased SCE in fancc cells required Xrcc3, whereas the fancc/rad18 double mutant exhibited higher SCE than either single mutant. Unexpectedly, SCE in the fancc/blm mutant was similar to that in blm cells, indicating functional linkage between FANCC and BLM. Furthermore, MMC-induced formation of GFP-BLM nuclear foci was severely compromised in both human and chicken fancc or fancd2 cells. Our cell survival data suggest that the FA proteins serve to facilitate HR, but not global TLS, during crosslink repair.
Collapse
Affiliation(s)
- Seiki Hirano
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kazuhiko Yamamoto
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Masamichi Ishiai
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Mitsuyoshi Yamazoe
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto, Japan
| | - Masayuki Seki
- Molecular Cell Biology Laboratory, Graduate School for Pharmaceutical Sciences, Tohoku University, Aoba, Aoba-ku, Sendai, Miyagi, Japan
| | - Nobuko Matsushita
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Mioko Ohzeki
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yukiko M Yamashita
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto, Japan
| | - Hiroshi Arakawa
- GSF, Institute for Molecular Radiobiology, Neuherberg Munich, Germany
| | | | - Takemi Enomoto
- Molecular Cell Biology Laboratory, Graduate School for Pharmaceutical Sciences, Tohoku University, Aoba, Aoba-ku, Sendai, Miyagi, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto, Japan
| | - Larry H Thompson
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Minoru Takata
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Okayama, Japan
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan. Tel.: +81 86 462 1111; Fax: +81 86 464 1187; E-mail:
| |
Collapse
|
30
|
Ishiai M, Kimura M, Namikoshi K, Yamazoe M, Yamamoto K, Arakawa H, Agematsu K, Matsushita N, Takeda S, Buerstedde JM, Takata M. DNA cross-link repair protein SNM1A interacts with PIAS1 in nuclear focus formation. Mol Cell Biol 2004; 24:10733-41. [PMID: 15572677 PMCID: PMC533992 DOI: 10.1128/mcb.24.24.10733-10741.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 08/27/2004] [Accepted: 09/21/2004] [Indexed: 11/20/2022] Open
Abstract
The yeast SNM1/PSO2 gene specifically functions in DNA interstrand cross-link (ICL) repair, and its role has been suggested to be separate from other DNA repair pathways. In vertebrates, there are three homologs of SNM1 (SNM1A, SNM1B, and SNM1C/Artemis; SNM1 family proteins) whose functions are largely unknown. We disrupted each of the SNM1 family genes in the chicken B-cell line DT40. Both SNM1A- and SNM1B-deficient cells were sensitive to cisplatin but not to X-rays, whereas SNM1C/Artemis-deficient cells exhibited sensitivity to X-rays but not to cisplatin. SNM1A was nonepistatic with XRCC3 (homologous recombination), RAD18 (translesion synthesis), FANCC (Fanconi anemia), and SNM1B in ICL repair. SNM1A protein formed punctate nuclear foci depending on the conserved SNM1 (metallo-beta-lactamase) domain. PIAS1 was found to physically interact with SNM1A, and they colocalized at nuclear foci. Point mutations in the SNM1 domain, which disrupted the interaction with PIAS1, led to mislocalization of SNM1A in the nucleus and loss of complementation of snm1a cells. These results suggest that interaction between SNM1A and PIAS1 is required for ICL repair.
Collapse
Affiliation(s)
- Masamichi Ishiai
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yamazoe M, Sonoda E, Hochegger H, Takeda S. Reverse genetic studies of the DNA damage response in the chicken B lymphocyte line DT40. DNA Repair (Amst) 2004; 3:1175-85. [PMID: 15279806 DOI: 10.1016/j.dnarep.2004.03.039] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the 'post-genome' era, reverse genetics is one of the most informative and powerful means to investigate protein function. The chicken B lymphocyte line DT40 is widely used for reverse genetics because the cells have a number of advantages, including efficient gene targeting as well as a remarkably stable phenotype. Furthermore, the absence of functional p53 in DT40 cells enables identification of DNA damage using chromosome analysis by suppressing damage-induced apoptosis during interphase. This review summarizes the contribution of DT40 cells to reverse genetic studies of DNA damage response pathways in higher eukaryotic cells.
Collapse
Affiliation(s)
- Mitsuyoshi Yamazoe
- CRESTO, The Japan Science and Technology Corporation, Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
32
|
Ouvrard-Pascaud A, Puttini S, Sainte-Marie Y, Athman R, Fontaine V, Cluzeaud F, Farman N, Rafestin-Oblin ME, Blot-Chabaud M, Jaisser F. Conditional gene expression in renal collecting duct epithelial cells: use of the inducible Cre-lox system. Am J Physiol Renal Physiol 2004; 286:F180-7. [PMID: 12928315 DOI: 10.1152/ajprenal.00301.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renal collecting duct plays a key role in control of ion and fluid homeostasis. Genes encoding for ion transporters, hormone receptors, or regulatory proteins specifically expressed in the collecting duct are mutated in several genetic diseases with altered blood pressure. Suitable cellular models expressing genes in a conditional way should represent attractive systems for structure-function analyses and generation of appropriate physiopathological models of related diseases. However, generation of such systems remains laborious and quite inefficient. We adapted and improved a conditional Cre-lox-inducible system in the highly differentiated aldosterone-sensitive rat cortical collecting duct (RCCD2) cell line. The inducible MerCreMer recombinase allowed tight control and high levels of transgene expression, whereas flanking a selection marker with two loxP sites strongly improved the selection procedure. We have used this system to conditionally express an enhanced green fluorescent protein-tagged human mineralocorticoid receptor. In the future, this will allow structure-function analyses as well as mineralocorticoid receptor trafficking studies in these epithelial cells, which retain the features of the native collecting duct. Improvements in the conditional Cre-lox expression system have potentially wide applications in other epithelial or nonepithelial cell lines.
Collapse
Affiliation(s)
- Antoine Ouvrard-Pascaud
- INSERM U478, Federative Institute of Research 02, Bichat Medical School, 75870 Paris Cedex 18, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mielenz D, Ruschel A, Vettermann C, Jäck HM. Immunoglobulin mu heavy chains do not mediate tyrosine phosphorylation of Ig alpha from the ER-cis-Golgi. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:3091-101. [PMID: 12960335 DOI: 10.4049/jimmunol.171.6.3091] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Signals delivered by Ig receptors guide the development of functional B lymphocytes. For example, clonal expansion of early mu heavy chain ( mu HC)-positive pre-B cells requires the assembly of a signal-competent pre-B cell receptor complex (pre-BCR) consisting of a mu HC, a surrogate L chain, and the signal dimer Ig alpha beta. However, only a small fraction of the pre-BCR is transported to the cell surface, suggesting that pre-BCR signaling initiates already from an intracellular compartment, e.g., the endoplasmic reticulum (ER). The finding that differentiation of pre-B cells and allelic exclusion at the IgH locus take place in surrogate L chain-deficient mice further supports the presence of a mu HC-mediated intracellular signal pathway. To determine whether a signal-competent Ig complex can already be assembled in the ER, we analyzed the consequence of pervanadate on tyrosine phosphorylation of Ig alpha in J558L plasmacytoma and 38B9 pre-B cells transfected with either a transport-competent IgL chain-pairing or an ER-retained nonpairing micro HC. Flow cytometry, combined Western blot-immunoprecipitation-kinase assays, and confocal microscopy revealed that both the nonpairing and pairing mu HC assembled with the Ig alpha beta dimer; however, in contrast to a pairing mu HC, the nonpairing mu HC was retained in the ER-cis-Golgi compartment, and neither colocalized with the src kinase lyn nor induced tyrosine phosphorylation of Ig alpha after pervanadate treatment of cells. On the basis of these findings, we propose that a signal-competent Ig complex consisting of mu HC, Ig alpha beta, and associated kinases is assembled in a post-ER compartment, thereby supporting the idea that a pre-BCR must be transported to the cell surface to initiate pre-BCR signaling.
Collapse
Affiliation(s)
- Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | |
Collapse
|
34
|
Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, Scharenberg AM. Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 2003; 114:191-200. [PMID: 12887921 DOI: 10.1016/s0092-8674(03)00556-7] [Citation(s) in RCA: 569] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
TRPM7 is a polypeptide with intrinsic ion channel and protein kinase domains whose targeted deletion causes cells to experience growth arrest within 24 hr and eventually die. Here, we show that while TRPM7's kinase domain is not essential for activation of its channel, a functional coupling exists such that structural alterations of the kinase domain alter the sensitivity of channel activation to Mg(2+). Investigation of the relationship between Mg(2+) and the cell biological role of TRPM7 revealed that TRPM7-deficient cells become Mg(2+) deficient, that both the viability and proliferation of TRPM7-deficient cells are rescued by supplementation of extracellular Mg(2+), and that the capacity of heterologously expressed TRPM7 mutants to complement TRPM7 deficiency correlates with their sensitivity to Mg(2+). Overall, our results indicate that TRPM7 has a central role in Mg(2+) homeostasis as a Mg(2+) uptake pathway regulated through a functional coupling between its channel and kinase domains.
Collapse
Affiliation(s)
- Carsten Schmitz
- Department of Pediatrics, University of Washington and Children's Hospital and Regional Medical Center, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sonoda E, Okada T, Zhao GY, Tateishi S, Araki K, Yamaizumi M, Yagi T, Verkaik NS, van Gent DC, Takata M, Takeda S. Multiple roles of Rev3, the catalytic subunit of polzeta in maintaining genome stability in vertebrates. EMBO J 2003; 22:3188-97. [PMID: 12805232 PMCID: PMC162160 DOI: 10.1093/emboj/cdg308] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Translesion DNA synthesis (TLS) and homologous DNA recombination (HR) are two major postreplicational repair (PRR) pathways. The REV3 gene of Saccharomyces cerevisiae encodes the catalytic subunit of DNA polymerase zeta, which is involved in mutagenic TLS. To investigate the role of REV3 in vertebrates, we disruped the gene in chicken DT40 cells. REV3(-/-) cells are sensitive to various DNA-damaging agents, including UV, methyl methanesulphonate (MMS), cisplatin and ionizing radiation (IR), consistent with its role in TLS. Interestingly, REV3(-/-) cells showed reduced gene targeting efficiencies and significant increase in the level of chromosomal breaks in the subsequent M phase after IR in the G(2) phase, suggesting the involvement of Rev3 in HR-mediated double-strand break repair. REV3(-/-) cells showed significant increase in sister chromatid exchange events and chromosomal breaks even in the absence of exogenous genotoxic stress. Furthermore, double mutants of REV3 and RAD54, genes involved in HR, are synthetic lethal. In conclusion, Rev3 plays critical roles in PRR, which accounts for survival on naturally occurring endogenous as well as induced damages during replication.
Collapse
Affiliation(s)
- Eiichiro Sonoda
- CREST Research Project, Japan Science and Technology, Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Oxidants such as H2O2 are connected to lymphocyte activation, but the molecular mechanisms behind this phenomenon are less clear. Here, I review data suggesting that by inhibiting protein tyrosine phosphatases, H2O2 plays an important role as a secondary messenger in the initiation and amplification of signaling at the antigen receptor. These findings explain why exposure of lymphocytes to H2O2 can mimic the effect of antigen. In addition, more recent data show that antigen receptors themselves are H2O2-generating enzymes and that the oxidative burst in macrophages seems to play a role not only in pathogen killing but also in the activation of these as well as neighboring cells. Thus, by controlling the activity of the negative regulatory phosphatases inside the cell, H2O2 can set and influence critical thresholds for lymphocyte activation.
Collapse
Affiliation(s)
- Michael Reth
- Max-Planck Institute für Immunobiologie, Universität Freiburg, Biologie III, Abteilung Molekulare Immunologie, Stuebeweg 51, Freiburg 79108, Germany.
| |
Collapse
|
37
|
Rolli V, Gallwitz M, Wossning T, Flemming A, Schamel WWA, Zürn C, Reth M. Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol Cell 2002; 10:1057-69. [PMID: 12453414 DOI: 10.1016/s1097-2765(02)00739-6] [Citation(s) in RCA: 241] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have established a protocol allowing transient and inducible coexpression of many foreign genes in Drosophila S2 Schneider cells. With this powerful approach of reverse genetics, we studied the interaction of the protein tyrosine kinases Syk and Lyn with the B cell antigen receptor (BCR). We find that Lyn phosphorylates only the first tyrosine whereas Syk phosphorylates both tyrosines of the BCR immunoreceptor tyrosine-based activation motif (ITAM). Furthermore, we show that Syk is a positive allosteric enzyme, which is strongly activated by the binding to the phosphorylated ITAM tyrosines, thus initiating a positive feedback loop at the receptor. The BCR-dependent Syk activation and signal amplification is efficiently counterbalanced by protein tyrosine phosphatases, the activity of which is regulated by H(2)O(2) and the redox equilibrium inside the cell.
Collapse
Affiliation(s)
- Véronique Rolli
- Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck Institute for Immunobiology, Stuebeweg 51, 79108 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Yamashita YM, Okada T, Matsusaka T, Sonoda E, Zhao GY, Araki K, Tateishi S, Yamaizumi M, Takeda S. RAD18 and RAD54 cooperatively contribute to maintenance of genomic stability in vertebrate cells. EMBO J 2002; 21:5558-66. [PMID: 12374756 PMCID: PMC129066 DOI: 10.1093/emboj/cdf534] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Translesion DNA synthesis (TLS) and homologous DNA recombination (HR) are two major pathways that account for survival after post-replicational DNA damage. TLS functions by filling gaps on a daughter strand that remain after DNA replication caused by damage on the mother strand, while HR can repair gaps and breaks using the intact sister chromatid as a template. The RAD18 gene, which is conserved from lower eukaryotes to vertebrates, is essential for TLS in Saccharomyces cerevisiae. To investigate the role of RAD18, we disrupted RAD18 by gene targeting in the chicken B-lymphocyte line DT40. RAD18(-/-) cells are sensitive to various DNA-damaging agents including ultraviolet light and the cross-linking agent cisplatin, consistent with its role in TLS. Interestingly, elevated sister chromatid exchange, which reflects HR- mediated post-replicational repair, was observed in RAD18(-/-) cells during the cell cycle. Strikingly, double mutants of RAD18 and RAD54, a gene involved in HR, are synthetic lethal, although the single mutant in either gene can proliferate with nearly normal kinetics. These data suggest that RAD18 plays an essential role in maintaining chromosomal DNA in cooperation with the RAD54-dependent DNA repair pathway.
Collapse
Affiliation(s)
- Yukiko M. Yamashita
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| | - Takashi Okada
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| | - Takahiro Matsusaka
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| | - Eiichiro Sonoda
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| | - Guang Yu Zhao
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| | - Kasumi Araki
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| | - Satoshi Tateishi
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| | - Masaru Yamaizumi
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| | - Shunichi Takeda
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| |
Collapse
|
39
|
Forde A, Constien R, Gröne HJ, Hämmerling G, Arnold B. Temporal Cre-mediated recombination exclusively in endothelial cells using Tie2 regulatory elements. Genesis 2002; 33:191-7. [PMID: 12203917 DOI: 10.1002/gene.10117] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SUMMARY The versatility of the bacteriophage Cre/LoxP system is dependent on the availability of a spectrum of tissue-specific Cre transgenic mice to address a host of biological questions. In this paper, we report on the generation of an inducible Tie2Cre transgenic mouse line that facilitates gene targeting exclusively in endothelial cells. The temporal manner of recombination is feasible through the use of a Cre-estrogen receptor fusion protein ER(T2) and was, in practical terms, achieved by feeding the animals the estrogen antagonist tamoxifen orally for 5 weeks. High efficiency of recombination was found in the vast majority of endothelial cell populations examined, as monitored by an EGFP reporter mouse line. Critically, no EGFP expression was observed in any uninduced mice. This inducible Cre line will be a very beneficial asset to investigating the role of endothelial specific genes in the adult mouse and to induce transgenes in the endothelium in an extremely efficient manner. genesis 33:191-197, 2002.
Collapse
Affiliation(s)
- Anne Forde
- Department of Molecular Immunology, Division of Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
40
|
Wienands J, Engels N. Multitasking of Ig-alpha and Ig-beta to regulate B cell antigen receptor function. Int Rev Immunol 2002; 20:679-96. [PMID: 11913945 DOI: 10.3109/08830180109045585] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Since their discovery as signaling subunits of the B cell antigen receptor (BCR), Ig-alpha and Ig-beta are discussed to serve either a redundant or distinct function for B cell development, maintenance, and activation. Dependent upon the experimental system that has been used to address this issue, evidence could be provided to support both possibilities. Only recently has it become clear that Ig-alpha and Ig-beta possess a unique signaling identity but that both together are required to orchestrate proper B cell function in vivo. Here we discuss some of the underlying mechanisms that may involve direct coupling to discrete subsets of BCR effector proteins, such as protein tyrosine kinases or the intracellular adaptor SLP-65/BLNK.
Collapse
Affiliation(s)
- J Wienands
- Department of Biochemistry and Molecular Immunology, University of Bielefeld, Germany.
| | | |
Collapse
|
41
|
Fuentes-Pananá EM, Monroe JG. Ligand-dependent and -independent processes in B-cell-receptor-mediated signaling. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 2001; 23:333-50. [PMID: 11826613 DOI: 10.1007/s281-001-8163-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The B cell antigen receptor (BCR) is a protein complex expressed on the surface of immature and mature B cells. After ligand-induced aggregation, this complex generates signals that lead to a variety of biological outcomes, including survival, proliferation and differentiation. During B cell development intermediate forms of the BCR are expressed on the surface. The composition of these pro- and preBCR complexes reflects the ordered assembly of the BCR complex and they exist to generate signals for positive selection at defined developmental checkpoints. Because these receptors lack the ability to bind conventional ligands, the pro- and preBCR have been postulated to signal via ligand-independent processes. This ligand-independent or constitutive signal may also play a role in the survival of peripheral mature B cells. Here we discuss the evidence for ligand-independent functions for the BCR and postulate how it may be regulated and linked to biological processes associated with B cell development and survival.
Collapse
Affiliation(s)
- E M Fuentes-Pananá
- University of Pennsylvania School of Medicine, Room 311 BRBII/III, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | | |
Collapse
|
42
|
Fang T, Smith BP, Roman CA. Conventional and surrogate light chains differentially regulate Ig mu and Dmu heavy chain maturation and surface expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3846-57. [PMID: 11564802 DOI: 10.4049/jimmunol.167.7.3846] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Positive selection of precursor (pre-) B cells by Ig membrane mu H chains (mum HC) and counterselection mediated by the truncated HC Dmu depend on the ability of each HC to form a pre-B cell receptor (pre-BCR) signaling complex with the surrogate L chain (SLC) components lambda5 and Vpre-B. To better understand how pre-BCR signaling output is determined by its Ig components and the SLC, we investigated the regulation of pre-BCR surface expression and HC secretory maturation in a new nonlymphoid system. We took this approach as a means to distinguish B-lineage-specific effects from pre-BCR-intrinsic properties that may influence these aspects of pre-BCR homeostasis necessary for signaling. As in pre-B cells, the SLC in nonlymphoid cells supported only a limited degree of mum HC maturation and low pre-BCR surface expression levels compared with conventional LCs, indicating that this was due to an intrinsic property of the SLC. We identified the non-Ig region of lambda5 as harboring the restrictive activity responsible for this phenotype. This property of lambda5 was also evident with Dmu, but the overall SLC- and L chain-dependent requirements for Dmu maturation and surface expression were markedly different from those for mum. Surprisingly, Dmu was modified in an unusual manner that was only dependent on Vpre-B. These results establish a novel function of lambda5 in limiting surface pre-BCR levels and reveal biochemical properties of Ig molecules that may underlie the diverse consequences of pre-BCR signaling in vivo by different HCs.
Collapse
Affiliation(s)
- T Fang
- Department of Microbiology and Immunology and Morse Institute for Molecular Genetics, State University of New York-Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | | | | |
Collapse
|
43
|
Abstract
One of the most powerful tools that the molecular biology revolution has given us is the ability to turn genes on and off at our discretion. In the mouse, this has been accomplished by using binary systems in which gene expression is dependent on the interaction of two components, resulting in either transcriptional transactivation or DNA recombination. During recent years, these systems have been used to analyse complex and multi-staged biological processes, such as embryogenesis and cancer, with unprecedented precision. Here, I review these systems and discuss certain studies that exemplify the advantages and limitations of each system.
Collapse
Affiliation(s)
- M Lewandoski
- Section of Genetics of Vertebrate Development, Laboratory of Cancer and Developmental Biology, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201, USA.
| |
Collapse
|
44
|
Fujimori A, Tachiiri S, Sonoda E, Thompson LH, Dhar PK, Hiraoka M, Takeda S, Zhang Y, Reth M, Takata M. Rad52 partially substitutes for the Rad51 paralog XRCC3 in maintaining chromosomal integrity in vertebrate cells. EMBO J 2001; 20:5513-20. [PMID: 11574483 PMCID: PMC125654 DOI: 10.1093/emboj/20.19.5513] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Yeast Rad52 DNA-repair mutants exhibit pronounced radiation sensitivity and a defect in homologous re combination (HR), whereas vertebrate cells lacking Rad52 exhibit a nearly normal phenotype. Bio chemical studies show that both yeast Rad52 and Rad55-57 (Rad51 paralogs) stimulate DNA-strand exchange mediated by Rad51. These findings raise the possibility that Rad51 paralogs may compensate for lack of Rad52 in vertebrate cells, explaining the absence of prominent phenotypes for Rad52-deficient cells. To test this hypothesis, using chicken DT40 cells, we generated conditional mutants deficient in both RAD52 and XRCC3, which is one of the five vertebrate RAD51 paralogs. Surprisingly, the rad52 xrcc3 double-mutant cells were non-viable and exhibited extensive chromosomal breaks, whereas rad52 and xrcc3 single mutants grew well. Our data reveal an overlapping (but non-reciprocal) role for Rad52 and XRCC3 in repairing DNA double-strand breaks. The present study shows that Rad52 can play an important role in HR repair by partially substituting for a Rad51 paralog.
Collapse
Affiliation(s)
- Akira Fujimori
- Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Department of Therapeutic Radiology and Oncology, Faculty of Medicine, Kyoto University, Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8507, CREST, JST (Japan Science and Technology), Saitama, Japan, BBR Program, Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94551-0808, USA and Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck Institute for Immunobiology, Stübeweg 51, D-79108 Freiburg, Germany Present address: Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan Corresponding author e-mail:
| | - Seiji Tachiiri
- Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Department of Therapeutic Radiology and Oncology, Faculty of Medicine, Kyoto University, Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8507, CREST, JST (Japan Science and Technology), Saitama, Japan, BBR Program, Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94551-0808, USA and Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck Institute for Immunobiology, Stübeweg 51, D-79108 Freiburg, Germany Present address: Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan Corresponding author e-mail:
| | - Eiichiro Sonoda
- Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Department of Therapeutic Radiology and Oncology, Faculty of Medicine, Kyoto University, Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8507, CREST, JST (Japan Science and Technology), Saitama, Japan, BBR Program, Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94551-0808, USA and Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck Institute for Immunobiology, Stübeweg 51, D-79108 Freiburg, Germany Present address: Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan Corresponding author e-mail:
| | - Larry H. Thompson
- Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Department of Therapeutic Radiology and Oncology, Faculty of Medicine, Kyoto University, Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8507, CREST, JST (Japan Science and Technology), Saitama, Japan, BBR Program, Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94551-0808, USA and Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck Institute for Immunobiology, Stübeweg 51, D-79108 Freiburg, Germany Present address: Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan Corresponding author e-mail:
| | - Pawan Kumar Dhar
- Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Department of Therapeutic Radiology and Oncology, Faculty of Medicine, Kyoto University, Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8507, CREST, JST (Japan Science and Technology), Saitama, Japan, BBR Program, Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94551-0808, USA and Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck Institute for Immunobiology, Stübeweg 51, D-79108 Freiburg, Germany Present address: Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan Corresponding author e-mail:
| | - Masahiro Hiraoka
- Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Department of Therapeutic Radiology and Oncology, Faculty of Medicine, Kyoto University, Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8507, CREST, JST (Japan Science and Technology), Saitama, Japan, BBR Program, Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94551-0808, USA and Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck Institute for Immunobiology, Stübeweg 51, D-79108 Freiburg, Germany Present address: Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan Corresponding author e-mail:
| | - Shunichi Takeda
- Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Department of Therapeutic Radiology and Oncology, Faculty of Medicine, Kyoto University, Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8507, CREST, JST (Japan Science and Technology), Saitama, Japan, BBR Program, Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94551-0808, USA and Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck Institute for Immunobiology, Stübeweg 51, D-79108 Freiburg, Germany Present address: Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan Corresponding author e-mail:
| | - Yong Zhang
- Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Department of Therapeutic Radiology and Oncology, Faculty of Medicine, Kyoto University, Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8507, CREST, JST (Japan Science and Technology), Saitama, Japan, BBR Program, Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94551-0808, USA and Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck Institute for Immunobiology, Stübeweg 51, D-79108 Freiburg, Germany Present address: Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan Corresponding author e-mail:
| | - Michael Reth
- Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Department of Therapeutic Radiology and Oncology, Faculty of Medicine, Kyoto University, Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8507, CREST, JST (Japan Science and Technology), Saitama, Japan, BBR Program, Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94551-0808, USA and Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck Institute for Immunobiology, Stübeweg 51, D-79108 Freiburg, Germany Present address: Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan Corresponding author e-mail:
| | - Minoru Takata
- Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Department of Therapeutic Radiology and Oncology, Faculty of Medicine, Kyoto University, Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8507, CREST, JST (Japan Science and Technology), Saitama, Japan, BBR Program, Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94551-0808, USA and Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck Institute for Immunobiology, Stübeweg 51, D-79108 Freiburg, Germany Present address: Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan Corresponding author e-mail:
| |
Collapse
|
45
|
Engels N, Merchant M, Pappu R, Chan AC, Longnecker R, Wienands J. Epstein-Barr virus latent membrane protein 2A (LMP2A) employs the SLP-65 signaling module. J Exp Med 2001; 194:255-64. [PMID: 11489945 PMCID: PMC2193464 DOI: 10.1084/jem.194.3.255] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2001] [Accepted: 06/20/2001] [Indexed: 11/29/2022] Open
Abstract
In latently infected B lymphocytes, the Epstein-Barr virus (EBV) suppresses signal transduction from the antigen receptor through expression of the integral latent membrane protein 2A (LMP2A). At the same time, LMP2A triggers B cell survival by a yet uncharacterized maintenance signal that is normally provided by the antigen receptor. The molecular mechanisms are unknown as LMP2A-regulated signaling cascades have not been described so far. Using a novel mouse model we have identified the intracellular adaptor protein Src homology 2 (SH2) domain-containing leukocyte protein (SLP)-65 as a critical downstream effector of LMP2A in vivo. Biochemical analysis of the underlying signaling pathways revealed that EBV infection causes constitutive tyrosine phosphorylation of one of the two SLP-65 isoforms and complex formation between SLP-65 and the protooncoprotein CrkL (CT10 regulator of kinase like). This leads to antigen receptor-independent phosphorylation of Cbl (Casitas B lineage lymphoma) and C3G. In contrast, phospholipase C-gamma2 (PLC-gamma2) activation is completely blocked. Our data show that in order to establish a latent EBV infection, LMP2A selectively activates or represses SLP-65-regulated signaling pathways.
Collapse
Affiliation(s)
- Niklas Engels
- Department of Biochemistry I, University of Bielefeld, Bielefeld D-33615, Germany
| | - Mark Merchant
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611
| | - Rajita Pappu
- Center for Immunology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Andrew C. Chan
- Center for Immunology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Richard Longnecker
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611
| | - Jürgen Wienands
- Department of Biochemistry I, University of Bielefeld, Bielefeld D-33615, Germany
| |
Collapse
|
46
|
Erratum: LTRPC7 is a Mg·ATP-regulated divalent cation channel required for cell viability. Nature 2001. [DOI: 10.1038/35088104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Sonoda E, Takata M, Yamashita YM, Morrison C, Takeda S. Homologous DNA recombination in vertebrate cells. Proc Natl Acad Sci U S A 2001; 98:8388-94. [PMID: 11459980 PMCID: PMC37448 DOI: 10.1073/pnas.111006398] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The RAD52 epistasis group genes are involved in homologous DNA recombination, and their primary structures are conserved from yeast to humans. Although biochemical studies have suggested that the fundamental mechanism of homologous DNA recombination is conserved from yeast to mammals, recent studies of vertebrate cells deficient in genes of the RAD52 epistasis group reveal that the role of each protein is not necessarily the same as that of the corresponding yeast gene product. This review addresses the roles and mechanisms of homologous recombination-mediated repair with a special emphasis on differences between yeast and vertebrate cells.
Collapse
Affiliation(s)
- E Sonoda
- Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
48
|
Abstract
Antigen receptors on lymphocytes utilize different signaling modes to control the positive and negative selection of lymphocytes. In addition, these receptors have to detect the amount and affinity of the antigen and set delicate threshold values for the activation of lymphocytes. It is suggested that the antigen receptors on B and T-cells form oligomeric complexes, inside of which, signals can be processed and amplified in a manner that might explain the different signaling outputs of these receptors.
Collapse
Affiliation(s)
- M Reth
- Dept of Molecular Immunology, Biology III, University of Freiburg and Max-Planck-Institute for Immunobiology, Stübeweg 51, 79108 Freiburg, Germany.
| |
Collapse
|
49
|
Engels N, Wollscheid B, Wienands J. Association of SLP-65/BLNK with the B cell antigen receptor through a non-ITAM tyrosine of Ig-alpha. Eur J Immunol 2001; 31:2126-34. [PMID: 11449366 DOI: 10.1002/1521-4141(200107)31:7<2126::aid-immu2126>3.0.co;2-o] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cytoplasmic adaptor protein SLP-65 (BLNK or BASH) is a critical downstream effector of the B cell antigen receptor (BCR). Tyrosine-phosphorylated SLP-65 assembles intracellular signaling complexes such as the Ca(2 +) initiation complex encompassing phospholipase C-gamma2 and Bruton's tyrosine kinase. It is, however, unclear how the SLP-65 signaling module can be recruited to the plasma membrane. Here we show that following B cell stimulation, SLP-65 associates directly with the BCR signaling subunit, the Ig-alpha / Ig-beta heterodimer. The interaction is mediated by the Src homology 2 domain of SLP-65 and the phosphorylated Ig-alpha tyrosine 204, which is located outside of the immunoreceptor tyrosine-based activation motif. Our data identify an unexpected BCR phosphorylation pattern and indicate that Ig-alpha has the capability to serve as transmembrane adaptor in BCR signaling.
Collapse
Affiliation(s)
- N Engels
- Institute of Biology III, University of Freiburg and Max Planck Institute of Immunobiology, Freiburg, Germany
| | | | | |
Collapse
|
50
|
Reth M, Wienands J. The maintenance and the activation signal of the B-cell antigen receptor. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2001; 64:323-8. [PMID: 11232302 DOI: 10.1101/sqb.1999.64.323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- M Reth
- Abteilung für Molekulare Immunologie, Biologie III, Universität Freiburg and Max-Planck-Institut für Immunbiologie, Stübeweg 51, 79108 Freiburg, Germany
| | | |
Collapse
|