1
|
Aljahdali MO, Molla MHR. Multi-omics prognostic signatures of IPO11 mRNA expression and clinical outcomes in colorectal cancer using bioinformatics approaches. Health Inf Sci Syst 2023; 11:57. [PMID: 38028961 PMCID: PMC10678892 DOI: 10.1007/s13755-023-00259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023] Open
Abstract
The most prevalent malignant illness of the gastrointestinal system, colorectal cancer, is the third most prevalent cancer in males and the second most prevalent cancer in women. Importin-11 is a protein that acts as a regulator of cancer cell proliferation in colorectal tumours by conveying β -catenin to the cell nucleus. However, the IPO11 gene was found to encode a protein called Importin-11, which functions as a nucleus importer for the cell. As a result, preventing β -catenin from entering the nucleus requires blocking Importin-11. As a result, we conducted a multi-omics investigation to assess IPO11 gene potential as a therapeutic biomarker for human colorectal cancer (CC). Oncomine, GEPIA2, immunohisto-chemistry, and UALCAN databases were used to analyses the mRNA expression profiles of IPO11 in CC. The investigation has yielded clear evidence of the increase of IPO11 expression in CC subtypes, as indicated by the data acquired. Analysing CC research from the cBioPortal database, the study discovered three new missense mutations in the importin-11 protein sequence at a frequency of 0.00-1.50% copy number changes. Additionally, the Kaplan-Meier plots demonstrated a strong connection concerning IPO11 downregulation and a poorer CC patient survival rate. The co-expressed gene profile of IPO11 was likewise associated with the onset of CC. IPO11 co-expressed gene profile was also linked to CC development. Moreover, the correlation analysis using bc-GenExMiner and the UCSC Xena server identified KIF2A as the most positively co-expressed gene. The study found that KIF2A and its co-expressed genes were involved in a wide variety of cancer progression pathways using the Enrichr database. Cumulatively, this result will not only provide new information about the expression of IPO11 associated with CC progression and patient survival, but could also serve as a therapeutic biomarker for treating CC in a significant and worthwhile manner. Supplementary Information The online version contains supplementary material available at 10.1007/s13755-023-00259-2.
Collapse
Affiliation(s)
- Mohammed Othman Aljahdali
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21598 Saudi Arabia
| | - Mohammad Habibur Rahman Molla
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21598 Saudi Arabia
| |
Collapse
|
2
|
Zhang Y, Ou G, Zhou Z, Wang J, Yang H. Protocol for IPO11 deletion and re-expression in H460 lung cancer cells using CRISPR-Cas9 and plasmid transfection. STAR Protoc 2023; 4:102317. [PMID: 37195868 DOI: 10.1016/j.xpro.2023.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023] Open
Abstract
Exploring the essential role of Importin 11 (IPO11) in the nuclear translocation of its potential cargo proteins requires an efficient means of IPO11 deletion and re-expression. Here, we present a protocol for the generation of IPO11 deletion using CRISPR-Cas9 and re-expression using plasmid transfection in H460 non-small cell lung cancer cells. We describe steps for lentiviral transduction of H460 cells, single clone selection, and expansion and validation of cell colonies. We then detail plasmid transfection and validation of transfection efficiency. For complete details on the use and execution of this protocol, please refer to Zhang et al.1.
Collapse
Affiliation(s)
- Yarui Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, P. R. China.
| | - Guomin Ou
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Zhou Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, P. R. China
| | - Jingdong Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, P. R. China
| | - Hongying Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, P. R. China.
| |
Collapse
|
3
|
Nachmias B, Khan DH, Voisin V, Mer AS, Thomas GE, Segev N, St-Germain J, Hurren R, Gronda M, Botham A, Wang X, Maclean N, Seneviratne AK, Duong N, Xu C, Arruda A, Orouji E, Algouneh A, Hakem R, Shlush L, Minden MD, Raught B, Bader GD, Schimmer AD. IPO11 regulates the nuclear import of BZW1/2 and is necessary for AML cells and stem cells. Leukemia 2022; 36:1283-1295. [PMID: 35152270 PMCID: PMC9061300 DOI: 10.1038/s41375-022-01513-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/06/2022] [Accepted: 01/26/2022] [Indexed: 12/24/2022]
Abstract
AML cells are arranged in a hierarchy with stem/progenitor cells giving rise to more differentiated bulk cells. Despite the importance of stem/progenitors in the pathogenesis of AML, the determinants of the AML stem/progenitor state are not fully understood. Through a comparison of genes that are significant for growth and viability of AML cells by way of a CRISPR screen, with genes that are differentially expressed in leukemia stem cells (LSC), we identified importin 11 (IPO11) as a novel target in AML. Importin 11 (IPO11) is a member of the importin β family of proteins that mediate transport of proteins across the nuclear membrane. In AML, knockdown of IPO11 decreased growth, reduced engraftment potential of LSC, and induced differentiation. Mechanistically, we identified the transcription factors BZW1 and BZW2 as novel cargo of IPO11. We further show that BZW1/2 mediate a transcriptional signature that promotes stemness and survival of LSC. Thus, we demonstrate for the first time how specific cytoplasmic-nuclear regulation supports stem-like transcriptional signature in relapsed AML.
Collapse
|
4
|
Teratake Y, Kimura Y, Ishizaka Y. Role of karyopherin nuclear transport receptors in nuclear transport by nuclear trafficking peptide. Exp Cell Res 2021; 409:112893. [PMID: 34695436 DOI: 10.1016/j.yexcr.2021.112893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/17/2021] [Accepted: 10/18/2021] [Indexed: 11/15/2022]
Abstract
Nuclear trafficking peptide (NTP), a cell-penetrating peptide (CPP) composed of 10 amino acids (aa) (RIFIHFRIGC), has potent nuclear trafficking activity. Recently, we established a protein-based cell engineering system by using NTP, but it remained elusive how NTP functions as a CPP with nuclear orientation. In the present study, we identified importin subunit β1 (IMB1) and transportin 1 (TNPO1) as cellular proteins underlying the activity of NTP. These karyopherin nuclear transport receptors were identified as candidate molecules by liquid chromatography/mass spectrometry analysis, and downregulation of each protein by small interfering RNA significantly reduced NTP activity (P < 0.01). Biochemical analyses revealed that NTP bound directly to both molecules, and the forced expression of an IMB1 fragment (296-516 aa) or TNPO1 fragment (1-297 aa), which both contain binding sites to NTP, reduced nuclear NTP-green fluorescent protein (GFP) levels when it was added to cell culture medium. NTP is derived from viral protein R (Vpr) of human immunodeficiency virus-1, and Vpr enters the nucleus and exerts pleiotropic functions. Notably, Vpr bound directly to IMB1 and TNPO1, and its function was significantly impaired by the forced expression of the 296-516-aa fragment of IMB1 and 1-297-aa fragment of TNPO1. Interestingly, NTP completely blocked the physical association of Vpr with IMB1 and TNPO1. Although the nuclear localization mechanism of Vpr remains unknown, our data suggest that NTP functions as a novel nuclear localization signal of Vpr.
Collapse
Affiliation(s)
- Yoichi Teratake
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, 3-9 Fukuura, Knazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan.
| |
Collapse
|
5
|
Pasha T, Zatorska A, Sharipov D, Rogelj B, Hortobágyi T, Hirth F. Karyopherin abnormalities in neurodegenerative proteinopathies. Brain 2021; 144:2915-2932. [PMID: 34019093 PMCID: PMC8194669 DOI: 10.1093/brain/awab201] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/08/2021] [Accepted: 05/11/2021] [Indexed: 11/12/2022] Open
Abstract
Neurodegenerative proteinopathies are characterized by progressive cell loss that is preceded by the mislocalization and aberrant accumulation of proteins prone to aggregation. Despite their different physiological functions, disease-related proteins like tau, α-synuclein, TAR DNA binding protein-43, fused in sarcoma and mutant huntingtin, all share low complexity regions that can mediate their liquid-liquid phase transitions. The proteins' phase transitions can range from native monomers to soluble oligomers, liquid droplets and further to irreversible, often-mislocalized aggregates that characterize the stages and severity of neurodegenerative diseases. Recent advances into the underlying pathogenic mechanisms have associated mislocalization and aberrant accumulation of disease-related proteins with defective nucleocytoplasmic transport and its mediators called karyopherins. These studies identify karyopherin abnormalities in amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's disease, and synucleinopathies including Parkinson's disease and dementia with Lewy bodies, that range from altered expression levels to the subcellular mislocalization and aggregation of karyopherin α and β proteins. The reported findings reveal that in addition to their classical function in nuclear import and export, karyopherins can also act as chaperones by shielding aggregation-prone proteins against misfolding, accumulation and irreversible phase-transition into insoluble aggregates. Karyopherin abnormalities can, therefore, be both the cause and consequence of protein mislocalization and aggregate formation in degenerative proteinopathies. The resulting vicious feedback cycle of karyopherin pathology and proteinopathy identifies karyopherin abnormalities as a common denominator of onset and progression of neurodegenerative disease. Pharmacological targeting of karyopherins, already in clinical trials as therapeutic intervention targeting cancers such as glioblastoma and viral infections like COVID-19, may therefore represent a promising new avenue for disease-modifying treatments in neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Terouz Pasha
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Anna Zatorska
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Daulet Sharipov
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Boris Rogelj
- Jozef Stefan Institute, Department of Biotechnology, 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 1000 Ljubljana, Slovenia
| | - Tibor Hortobágyi
- ELKH-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, 4032 Debrecen, Hungary
- King's College London, Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK
| | - Frank Hirth
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| |
Collapse
|
6
|
Ding B, Sepehrimanesh M. Nucleocytoplasmic Transport: Regulatory Mechanisms and the Implications in Neurodegeneration. Int J Mol Sci 2021; 22:4165. [PMID: 33920577 PMCID: PMC8072611 DOI: 10.3390/ijms22084165] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleocytoplasmic transport (NCT) across the nuclear envelope is precisely regulated in eukaryotic cells, and it plays critical roles in maintenance of cellular homeostasis. Accumulating evidence has demonstrated that dysregulations of NCT are implicated in aging and age-related neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease (AD), and Huntington disease (HD). This is an emerging research field. The molecular mechanisms underlying impaired NCT and the pathogenesis leading to neurodegeneration are not clear. In this review, we comprehensively described the components of NCT machinery, including nuclear envelope (NE), nuclear pore complex (NPC), importins and exportins, RanGTPase and its regulators, and the regulatory mechanisms of nuclear transport of both protein and transcript cargos. Additionally, we discussed the possible molecular mechanisms of impaired NCT underlying aging and neurodegenerative diseases, such as ALS/FTD, HD, and AD.
Collapse
Affiliation(s)
- Baojin Ding
- Department of Biology, University of Louisiana at Lafayette, 410 East Saint Mary Boulevard, Lafayette, LA 70503, USA;
| | | |
Collapse
|
7
|
Kalita J, Kapinos LE, Lim RYH. On the asymmetric partitioning of nucleocytoplasmic transport - recent insights and open questions. J Cell Sci 2021; 134:239102. [PMID: 33912945 DOI: 10.1242/jcs.240382] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macromolecular cargoes are asymmetrically partitioned in the nucleus or cytoplasm by nucleocytoplasmic transport (NCT). At the center of this activity lies the nuclear pore complex (NPC), through which soluble factors circulate to orchestrate NCT. These include cargo-carrying importin and exportin receptors from the β-karyopherin (Kapβ) family and the small GTPase Ran, which switches between guanosine triphosphate (GTP)- and guanosine diphosphate (GDP)-bound forms to regulate cargo delivery and compartmentalization. Ongoing efforts have shed considerable light on how these soluble factors traverse the NPC permeability barrier to sustain NCT. However, this does not explain how importins and exportins are partitioned in the cytoplasm and nucleus, respectively, nor how a steep RanGTP-RanGDP gradient is maintained across the nuclear envelope. In this Review, we peel away the multiple layers of control that regulate NCT and juxtapose unresolved features against known aspects of NPC function. Finally, we discuss how NPCs might function synergistically with Kapβs, cargoes and Ran to establish the asymmetry of NCT.
Collapse
Affiliation(s)
- Joanna Kalita
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel CH4056, Switzerland
| | - Larisa E Kapinos
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel CH4056, Switzerland
| | - Roderick Y H Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel CH4056, Switzerland
| |
Collapse
|
8
|
Mehmood R, Jibiki K, Shibazaki N, Yasuhara N. Molecular profiling of nucleocytoplasmic transport factor genes in breast cancer. Heliyon 2021; 7:e06039. [PMID: 33553736 PMCID: PMC7851789 DOI: 10.1016/j.heliyon.2021.e06039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/14/2020] [Accepted: 01/14/2021] [Indexed: 11/24/2022] Open
Abstract
Transport of functional molecules across the nuclear membrane of a eukaryotic cell is regulated by a dedicated set of transporter proteins that carry molecules into the nucleus or out of the nucleus to the cytoplasm for homeostasis of the cell. One of the categories of cargo molecules these transporters carry are the molecules for cell cycle regulation. Therefore, their role is critical in terms of cancer development. Any misregulation of the transport factors would means aberrant abundance of cell cycle regulators and might have consequences in cell cycle progression. While earlier studies have focussed on individual transport related molecules, a collective overview of how these molecules may be dysregulated in breast cancer is lacking. Using genomic and transcriptomic datasets from TCGA (The Cancer Genome Atlas) and microarray platforms, we carried out bioinformatic analysis and provide a genetic and molecular profile of all the molecules directly related to nucleocytoplasmic shuttling of proteins and RNAs. Interestingly, we identified that many of these molecules are either mutated or have dysregulated expression in breast cancer. Strikingly, some of the molecules, namely, KPNA2, KPNA3, KPNA5, IPO8, TNPO1, XPOT, XPO7 and CSE1L were correlated with poor patient survival. This study provides a comprehensive genetic and molecular landscape of nucleocytoplasmic factors in breast cancer and points to the important roles of various nucleocytoplasmic factors in cancer progression. This data might have implications in prognosis and therapeutic targeting in breast cancer.
Collapse
Affiliation(s)
- Rashid Mehmood
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Kazuya Jibiki
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Noriko Shibazaki
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Noriko Yasuhara
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
9
|
Ni H, Ji D, Li J, Zhao Z, Zuo J. The nuclear transporter importin-11 regulates the Wnt/β-catenin pathway and acts as a tumor promoter in glioma. Int J Biol Macromol 2021; 176:145-156. [PMID: 33571591 DOI: 10.1016/j.ijbiomac.2021.02.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022]
Abstract
Karyopherins mediate the macromolecular transport between the cytoplasm and the nucleus and participate in cancer progression. However, the role and mechanism of importin-11 (IPO11), a member of the karyopherin family, in glioma progression remain undefined. Effects of IPO11 on glioma progression were detected using CCK-8, colony formation assay, flow cytometry analysis, caspase-3 activity assay, and Transwell invasion assay. Western blot analysis was used to detect the expression of active caspase-3, active caspase-7, active caspase-9, N-cadherin, Vimentin, E-cadherin, β-catenin, and c-Myc. The activity of Wnt/β-catenin pathway was evaluated by the T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factor reporter assay. Results showed that IPO11 knockdown inhibited proliferation and reduced colony number in glioma cells. IPO11 silencing promoted the apoptotic rate, increased expression levels of active caspase-3, caspase-7, and caspase-9, and enhanced caspase-3 activity. Moreover, IPO11 silencing inhibited glioma cell invasion by suppressing epithelial-to-mesenchymal transition (EMT). Mechanistically, IPO11 knockdown inactivated the Wnt/β-catenin pathway. β-Catenin overexpression abolished the effects of IPO11 silencing on the proliferation, apoptosis, and invasion in glioma cells. Furthermore, IPO11 silencing blocked the malignant phenotypes and repressed the Wnt/β-catenin pathway in vivo. In conclusion, IPO11 knockdown suppressed the malignant phenotypes of glioma cells by inactivating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Hongzao Ni
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, China
| | - Daofei Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Jing Li
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, China
| | - Zongren Zhao
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, China
| | - Jiandong Zuo
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, China.
| |
Collapse
|
10
|
Selvaraj J, Ponnulakshmi R, Abilasha S, Nalini D, Vijayalakshmi P, Vishnupriya V, Mohan SK. Docking analysis of importin-11 homology model with the phyto compounds towards colorectal cancer treatment. Bioinformation 2020; 16:153-159. [PMID: 32405167 PMCID: PMC7196172 DOI: 10.6026/97320630016153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 02/20/2020] [Indexed: 11/23/2022] Open
Abstract
Colorectal cancer (CRC) is the most familiar malignancy worldwide. Hence, searching for novel therapeutic options is of highest priority. Therefore, it is of interest to design inhibitors to the protein target importin-11, which transports β-catenin linked to colon cancer cells. However, the structure of importin-11 is not known. Hence, we use a homology model of importin-11 to dock potential interactions with five phyto compounds using molecular interaction features for further consideration.
Collapse
Affiliation(s)
- Jayaraman Selvaraj
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Rajagopal Ponnulakshmi
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai-600 078, India
| | - Srinivasan Abilasha
- Department of Anatomy, Asan Memorial Dental College & Hospital, Asan Nagar, Chengalpattu, Tamil Nadu
| | - Devarajan Nalini
- Central Research Laboratory, Meenakshi Ammal Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Periyasamy Vijayalakshmi
- DBT-BIF Centre, PG & Research Department of Biotechnology & Bioinformatics, Holy Cross College (Autonomous), Trichy, Tamilnadu
| | - Veeraraghavan Vishnupriya
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Surapaneni Krishna Mohan
- Department of Biochemistry, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai-600 123, Tamil Nadu, India
| |
Collapse
|
11
|
Mis M, O’Brien S, Steinhart Z, Lin S, Hart T, Moffat J, Angers S. IPO11 mediates βcatenin nuclear import in a subset of colorectal cancers. J Cell Biol 2020; 219:e201903017. [PMID: 31881079 PMCID: PMC7041691 DOI: 10.1083/jcb.201903017] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/09/2019] [Accepted: 11/07/2019] [Indexed: 01/11/2023] Open
Abstract
Activation of Wnt signaling entails βcatenin protein stabilization and translocation to the nucleus to regulate context-specific transcriptional programs. The majority of colorectal cancers (CRCs) initiate following APC mutations, resulting in Wnt ligand-independent stabilization and nuclear accumulation of βcatenin. The mechanisms underlying βcatenin nucleocytoplasmic shuttling remain incompletely defined. Using a novel, positive selection, functional genomic strategy, DEADPOOL, we performed a genome-wide CRISPR screen and identified IPO11 as a required factor for βcatenin-mediated transcription in APC mutant CRC cells. IPO11 (Importin-11) is a nuclear import protein that shuttles cargo from the cytoplasm to the nucleus. IPO11-/- cells exhibit reduced nuclear βcatenin protein levels and decreased βcatenin target gene activation, suggesting IPO11 facilitates βcatenin nuclear import. IPO11 knockout decreased colony formation of CRC cell lines and decreased proliferation of patient-derived CRC organoids. Our findings uncover a novel nuclear import mechanism for βcatenin in cells with high Wnt activity.
Collapse
Affiliation(s)
- Monika Mis
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Siobhan O’Brien
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Zachary Steinhart
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Sichun Lin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Lee JY, Rahman FU, Kim EK, Cho SM, Kim HR, Lee K, Lee CS, Yoon WK, Moon OS, Seo YW, Won YS, Kim HC, Kim BH, Nam KH. Importin-11 is Essential for Normal Embryonic Development in Mice. Int J Med Sci 2020; 17:815-823. [PMID: 32218703 PMCID: PMC7085267 DOI: 10.7150/ijms.40697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/18/2020] [Indexed: 11/05/2022] Open
Abstract
Importin-11 (Ipo11) is a novel member of the human importin family of transport receptors (karyopherins), which are known to mediate the nucleocytoplasmic transport of protein and RNA cargos. Despite its role in the transport of protein, we found that knockout of Ipo11 nuclear import factor affects normal embryonic development and govern embryo-lethal phenotypes in mice. In this study, we for the first time produced a mouse line containing null mutation in Ipo11 gene utilized by gene trapping. The Ipo11-/- embryos showed an embryonic lethal phenotype. The Ipo11-/- embryos showed a reduced size at embryonic day 10.5 (E10.5) when compared with Ipo11+/+ or Ipo11+/- embryos and died by E11.5. Whereas Ipo11+/- mice were healthy and fertile, and there was no detectable changes in embryonic lethality and phenotype when reviewed. In the X-gal staining with the Ipo11-/- or Ipo11+/- embryos, strong X-gal staining positivity was detected systematically in the whole mount embryos at E10.5, although almost no X-gal positivity was detected at E9.5, indicating that the embryos die soon after the process of Ipo11 expression started. These results indicate that Ipo11 is essential for the normal embryonic development in mice.
Collapse
Affiliation(s)
- Ju-Young Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea.,Department of Public Health, College of Natural Science, Keimyung University, Daegu, 42601, Korea
| | - Faiz Ur Rahman
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Eun-Kyeung Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Sang-Mi Cho
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Hae-Rim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Kihoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Chin-Soo Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Won-Kee Yoon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Ok-Sung Moon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Young-Won Seo
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Hyoung-Chin Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Bae-Hwan Kim
- Department of Public Health, College of Natural Science, Keimyung University, Daegu, 42601, Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| |
Collapse
|
13
|
Plafker KS, Zyla K, Berry W, Plafker SM. Loss of the ubiquitin conjugating enzyme UBE2E3 induces cellular senescence. Redox Biol 2018; 17:411-422. [PMID: 29879550 PMCID: PMC6007080 DOI: 10.1016/j.redox.2018.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 11/23/2022] Open
Abstract
Cellular senescence plays essential roles in tissue homeostasis as well as a host of diseases ranging from cancers to age-related neurodegeneration. Various molecular pathways can induce senescence and these different pathways dictate the phenotypic and metabolic changes that accompany the transition to, and maintenance of, the senescence state. Here, we describe a novel senescence phenotype induced by depletion of UBE2E3, a highly-conserved, metazoan ubiquitin conjugating enzyme. Cells depleted of UBE2E3 become senescent in the absence of overt DNA damage and have a distinct senescence-associated secretory phenotype, increased mitochondrial and lysosomal mass, an increased sensitivity to mitochondrial and lysosomal poisons, and an increased basal autophagic flux. This senescence phenotype can be partially suppressed by co-depletion of either p53 or its cognate target gene, p21CIP1/WAF1, or by co-depleting the tumor suppressor p16INK4a. Together, these data describe a direct link of a ubiquitin conjugating enzyme to cellular senescence and further underscore the consequences of disrupting the integration between the ubiquitin proteolysis system and the autophagy machinery.
Collapse
Affiliation(s)
- Kendra S Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Katarzyna Zyla
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - William Berry
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Scott M Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
14
|
Zhao J, Shi L, Zeng S, Ma C, Xu W, Zhang Z, Liu Q, Zhang P, Sun Y, Xu C. Importin-11 overexpression promotes the migration, invasion, and progression of bladder cancer associated with the deregulation of CDKN1A and THBS1. Urol Oncol 2018; 36:311.e1-311.e13. [DOI: 10.1016/j.urolonc.2018.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/27/2018] [Accepted: 03/04/2018] [Indexed: 11/15/2022]
|
15
|
Zhao J, Xu W, He M, Zhang Z, Zeng S, Ma C, Sun Y, Xu C. Whole-exome sequencing of muscle-invasive bladder cancer identifies recurrent copy number variation in IPO11 and prognostic significance of importin-11 overexpression on poor survival. Oncotarget 2018; 7:75648-75658. [PMID: 27689332 PMCID: PMC5342767 DOI: 10.18632/oncotarget.12315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/06/2016] [Indexed: 02/07/2023] Open
Abstract
Non-muscle-invasive bladder cancer (NMIBC) often has a worse prognosis following its progression to muscle-invasive bladder cancer (MIBC), despite radical cystectomy with pelvic lymph node dissection combined with chemotherapy. Therefore, the discovery of novel biomarkers for predicting the progression of this disease and of therapeutic targets for preventing it is crucial. We performed whole-exome sequencing to analyze superficial tumor tissues (Tsup) and basal tumor tissues (Tbas) from 3 MIBC patients and identified previously unreported copy number variations in IPO11 that warrants further investigation as a molecular target. In addition, we identified a significant association between the absolute copy number and mRNA expression of IPO11 and found that high importin-11 expression was correlated with poor 3-year overall survival (OS), cancer-specific survival (CSS) and cancer-free survival (CFS) compared with low expression in the BCa patients. Importin-11 overexpression was also an independent risk factor for CSS and CFS in the BCa patients. Our study has revealed that IPO11 copy number amplification contributes to its overexpression and that these changes are unfavorable prognostic factors in NMIBC. Thus, IPO11 copy number amplification and importin-11 overexpression are promising biomarkers for predicting the progression and poor prognosis of patients with NMIBC.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Urology, Yantai Yuhuangding Hospital, Yantai 264000, China.,Department of Urology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Weidong Xu
- Department of Urology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Minghui He
- Cancer Research Department, BGI-Shenzhen, Yantian District, Shenzhen, Guangdong 518083, China
| | - Zhensheng Zhang
- Department of Urology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Shuxiong Zeng
- Department of Urology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Chong Ma
- Department of Urology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Yinghao Sun
- Department of Urology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
16
|
Chen M, Nowak DG, Narula N, Robinson B, Watrud K, Ambrico A, Herzka TM, Zeeman ME, Minderer M, Zheng W, Ebbesen SH, Plafker KS, Stahlhut C, Wang VMY, Wills L, Nasar A, Castillo-Martin M, Cordon-Cardo C, Wilkinson JE, Powers S, Sordella R, Altorki NK, Mittal V, Stiles BM, Plafker SM, Trotman LC. The nuclear transport receptor Importin-11 is a tumor suppressor that maintains PTEN protein. J Cell Biol 2017; 216:641-656. [PMID: 28193700 PMCID: PMC5350510 DOI: 10.1083/jcb.201604025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/21/2016] [Accepted: 01/19/2017] [Indexed: 12/25/2022] Open
Abstract
Phosphatase and tensin homologue (PTEN) protein levels are critical for tumor suppression. However, the search for a recurrent cancer-associated gene alteration that causes PTEN degradation has remained futile. In this study, we show that Importin-11 (Ipo11) is a transport receptor for PTEN that is required to physically separate PTEN from elements of the PTEN degradation machinery. Mechanistically, we find that the E2 ubiquitin-conjugating enzyme and IPO11 cargo, UBE2E1, is a limiting factor for PTEN degradation. Using in vitro and in vivo gene-targeting methods, we show that Ipo11 loss results in degradation of Pten, lung adenocarcinoma, and neoplasia in mouse prostate with aberrantly high levels of Ube2e1 in the cytoplasm. These findings explain the correlation between loss of IPO11 and PTEN protein in human lung tumors. Furthermore, we find that IPO11 status predicts disease recurrence and progression to metastasis in patients choosing radical prostatectomy. Thus, our data introduce the IPO11 gene as a tumor-suppressor locus, which is of special importance in cancers that still retain at least one intact PTEN allele.
Collapse
Affiliation(s)
- Muhan Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Dawid G Nowak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Navneet Narula
- Department of Pathology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065.,Department of Cell and Developmental Biology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Brian Robinson
- Department of Pathology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065.,Department of Cell and Developmental Biology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Kaitlin Watrud
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | - Tali M Herzka
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | | | - Wu Zheng
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Saya H Ebbesen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.,The Watson School of Biological Sciences, Cold Spring Harbor, NY 11724
| | - Kendra S Plafker
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | | | | | - Lorna Wills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Abu Nasar
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | | | | | - John E Wilkinson
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Scott Powers
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Brendon M Stiles
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Scott M Plafker
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | | |
Collapse
|
17
|
Mahipal A, Malafa M. Importins and exportins as therapeutic targets in cancer. Pharmacol Ther 2016; 164:135-43. [PMID: 27113410 DOI: 10.1016/j.pharmthera.2016.03.020] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/08/2016] [Indexed: 01/01/2023]
Abstract
The nuclear transport proteins, importins and exportins (karyopherin-β proteins), may play an important role in cancer by transporting key mediators of oncogenesis across the nuclear membrane in cancer cells. During nucleocytoplasmic transport of tumor suppressor proteins and cell cycle regulators during the processing of these proteins, aberrant cellular growth signaling and inactivation of apoptosis can occur, both critical to growth and development of tumors. Karyopherin-β proteins bind to these cargo proteins and RanGTP for active transport across the nuclear membrane through the nuclear pore complex. Importins and exportins are overexpressed in multiple tumors including melanoma, pancreatic, breast, colon, gastric, prostate, esophageal, lung cancer, and lymphomas. Furthermore, some of the karyopherin-β proteins such as exportin-1 have been implicated in drug resistance in cancer. Importin and exportin inhibitors are being considered as therapeutic targets against cancer and have shown preclinical anticancer activity. Moreover, synergistic activity has been observed with various chemotherapeutic and targeted agents. However, clinical development of the exportin-1 inhibitor leptomycin B was stopped due to adverse events, including vomiting, anorexia, and dehydration. Selinexor, a selective nuclear export inhibitor, is being tested in multiple clinical trials both as a single agent and in combination with chemotherapy. Selinexor has demonstrated clinical activity in multiple cancers, especially acute myelogenous leukemia and multiple myeloma. The roles of other importin and exportin inhibitors still need to be investigated clinically. Targeting the key mediators of nucleocytoplasmic transport in cancer cells represents a novel strategy in cancer intervention with the potential to significantly affect outcomes.
Collapse
Affiliation(s)
- Amit Mahipal
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, United States.
| |
Collapse
|
18
|
Roggero VR, Zhang J, Parente LE, Doshi Y, Dziedzic RC, McGregor EL, Varjabedian AD, Schad SE, Bondzi C, Allison LA. Nuclear import of the thyroid hormone receptor α1 is mediated by importin 7, importin β1, and adaptor importin α1. Mol Cell Endocrinol 2016; 419:185-97. [PMID: 26525414 PMCID: PMC4684427 DOI: 10.1016/j.mce.2015.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/20/2015] [Accepted: 10/20/2015] [Indexed: 01/27/2023]
Abstract
The thyroid hormone receptor α1 (TRα1) is a nuclear receptor for thyroid hormone that shuttles rapidly between the nucleus and cytoplasm. Our prior studies showed that nuclear import of TRα1 is directed by two nuclear localization signals, one in the N-terminal A/B domain and the other in the hinge domain. Here, we showed using in vitro nuclear import assays that TRα1 nuclear localization is temperature and energy-dependent and can be reconstituted by the addition of cytosol. In HeLa cells expressing green fluorescent protein (GFP)-tagged TRα1, knockdown of importin 7, importin β1 and importin α1 by RNA interference, or treatment with an importin β1-specific inhibitor, significantly reduced nuclear localization of TRα1, while knockdown of other importins had no effect. Coimmunoprecipitation assays confirmed that TRα1 interacts with importin 7, as well as importin β1 and the adapter importin α1, suggesting that TRα1 trafficking into the nucleus is mediated by two distinct pathways.
Collapse
Affiliation(s)
- Vincent R Roggero
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Jibo Zhang
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Laura E Parente
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Yazdi Doshi
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Rose C Dziedzic
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Emma L McGregor
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Arev D Varjabedian
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Sara E Schad
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Cornelius Bondzi
- Department of Biological Sciences, Hampton University, Hampton, VA, 23668, USA
| | - Lizabeth A Allison
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA.
| |
Collapse
|
19
|
Larabee CM, Georgescu C, Wren JD, Plafker SM. Expression profiling of the ubiquitin conjugating enzyme UbcM2 in murine brain reveals modest age-dependent decreases in specific neurons. BMC Neurosci 2015; 16:76. [PMID: 26566974 PMCID: PMC4644300 DOI: 10.1186/s12868-015-0194-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 08/24/2015] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND UbcM2 is a ubiquitin-conjugating enzyme with roles in the turnover of damaged and misfolded proteins, cell cycle progression, development, and regulation of the antioxidant transcription factor, Nrf2. Recent screens have identified binding partners of the enzyme that are associated with various neurodegenerative diseases, and our previous studies have shown that UbcM2 is enriched in retina and brain. RESULTS In the current study, we characterized UbcM2 protein expression in various structures and cell types in the murine brain. Immunofluorescence analysis of paraffin-embedded brain sections revealed that UbcM2 is ubiquitously expressed throughout the brain, is enriched in hindbrain and cortex, and is robustly expressed in neurons. In contrast, the enzyme is undetectable in most astrocytes and microglia. As dysfunction of the ubiquitin proteasome system (UPS) has been linked to many age-related neurological diseases, we compared UbcM2 expression levels in young versus aged wild-type mice and found a global decrease in expression in aged brains, with reductions of 10 % or greater in five substructures (cerebellar granule cell layer, primary motor cortex, olfactory nucleus, superior colliculus, and secondary visual cortex). CONCLUSIONS These studies represent the first protein expression profiling of a ubiquitin-conjugating enzyme in the brain and support the notion that deficits in protein degradation and proteostasis associated with neurodegenerative diseases may be, in part, attributable to age-dependent reductions in the enzymatic machinery of the UPS.
Collapse
Affiliation(s)
- Chelsea M Larabee
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 Northeast 13th Street, Oklahoma City, OK, USA. .,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Constantin Georgescu
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 Northeast 13th Street, Oklahoma City, OK, USA.
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 Northeast 13th Street, Oklahoma City, OK, USA.
| | - Scott M Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 Northeast 13th Street, Oklahoma City, OK, USA. .,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
20
|
Zuo L, Saba L, Lin X, Tan Y, Wang K, Krystal JH, Tabakoff B, Luo X. Significant association between rare IPO11-HTR1A variants and attention deficit hyperactivity disorder in Caucasians. Am J Med Genet B Neuropsychiatr Genet 2015; 168:544-56. [PMID: 26079129 PMCID: PMC4851708 DOI: 10.1002/ajmg.b.32329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/22/2015] [Indexed: 12/28/2022]
Abstract
We comprehensively examined the rare variants in the IPO11-HTR1A region to explore their roles in neuropsychiatric disorders. Five hundred seventy-three to 1,181 rare SNPs in subjects of European descent and 1,234-2,529 SNPs in subjects of African descent (0 < minor allele frequency (MAF) < 0.05) were analyzed in a total of 49,268 subjects in 21 independent cohorts with 11 different neuropsychiatric disorders. Associations between rare variant constellations and diseases and associations between individual rare variants and diseases were tested. RNA expression changes of this region were also explored. We identified a rare variant constellation across the entire IPO11-HTR1A region that was associated with attention deficit hyperactivity disorder (ADHD) in Caucasians (T5: P = 7.9 × 10(-31) ; Fp: P = 1.3 × 10(-32) ), but not with any other disorder examined; association signals mainly came from IPO11 (T5: P = 3.6 × 10(-10) ; Fp: P = 3.2 × 1 0(-10) ) and the intergenic region between IPO11 and HTR1A (T5: P = 4.1 × 10(-30) ; Fp: P = 5.4 × 10(-32) ). One association between ADHD and an intergenic rare variant, i.e., rs10042956, exhibited region- and cohort-wide significance (P = 5.2 × 10(-6) ) and survived correction for false discovery rate (q = 0.006). Cis-eQTL analysis showed that, 29 among the 41 SNPs within or around IPO11 had replicable significant regulatory effects on IPO11 exon expression (1.5 × 10(-17) ≤P < 0.002) in human brain or peripheral blood mononuclear cell tissues. We concluded that IPO11-HTR1A was a significant risk gene region for ADHD in Caucasians.
Collapse
Affiliation(s)
- Lingjun Zuo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Laura Saba
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Xiandong Lin
- Provincial Key Laboratory of Translational Cancer Medicine, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, China
| | - Yunlong Tan
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| | - Kesheng Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA Alcohol Research Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Boris Tabakoff
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
21
|
Hwang B, McCool K, Wan J, Wuerzberger-Davis SM, Young EWK, Choi EY, Cingolani G, Weaver BA, Miyamoto S. IPO3-mediated Nonclassical Nuclear Import of NF-κB Essential Modulator (NEMO) Drives DNA Damage-dependent NF-κB Activation. J Biol Chem 2015; 290:17967-17984. [PMID: 26060253 DOI: 10.1074/jbc.m115.645960] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Indexed: 11/06/2022] Open
Abstract
Activation of IκB kinase (IKK) and NF-κB by genotoxic stresses modulates apoptotic responses and production of inflammatory mediators, thereby contributing to therapy resistance and premature aging. We previously reported that genotoxic agents induce nuclear localization of NF-κB essential modulator (NEMO) via an undefined mechanism to arbitrate subsequent DNA damage-dependent IKK/NF-κB signaling. Here we show that a nonclassical nuclear import pathway via IPO3 (importin 3, transportin 2) mediates stress-induced NEMO nuclear translocation. We found putative nuclear localization signals in NEMO whose mutations disrupted stress-inducible nuclear translocation of NEMO and IKK/NF-κB activation in stably reconstituted NEMO-deficient cells. RNAi screening of both importin α and β family members, as well as co-immunoprecipitation analyses, revealed that a nonclassical importin β family member, IPO3, was the only importin that was able to associate with NEMO and whose reduced expression prevented genotoxic stress-induced NEMO nuclear translocation, IKK/NF-κB activation, and inflammatory cytokine transcription. Recombinant IPO3 interacted with recombinant NEMO but not the nuclear localization signal mutant version and induced nuclear import of NEMO in digitonin-permeabilized cells. We also provide evidence that NEMO is disengaged from IKK complex following genotoxic stress induction. Thus, the IPO3 nuclear import pathway is an early and crucial determinant of the IKK/NF-κB signaling arm of the mammalian DNA damage response.
Collapse
Affiliation(s)
- Byounghoon Hwang
- Department of Oncology, University of Wisconsin, Madison, Wisconsin
| | - Kevin McCool
- Department of Oncology, University of Wisconsin, Madison, Wisconsin; Molecular and Cellular Pharmacology Program, University of Wisconsin, Madison, Wisconsin
| | - Jun Wan
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, Wisconsin
| | - Shelly M Wuerzberger-Davis
- Department of Oncology, University of Wisconsin, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin
| | - Edmond W K Young
- Department of Mechanical and Industrial Engineering and Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Eun Young Choi
- Department of Oncology, University of Wisconsin, Madison, Wisconsin
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Beth A Weaver
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin
| | - Shigeki Miyamoto
- Department of Oncology, University of Wisconsin, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin.
| |
Collapse
|
22
|
Plafker KS, Plafker SM. The ubiquitin-conjugating enzyme UBE2E3 and its import receptor importin-11 regulate the localization and activity of the antioxidant transcription factor NRF2. Mol Biol Cell 2014; 26:327-38. [PMID: 25378586 PMCID: PMC4294679 DOI: 10.1091/mbc.e14-06-1057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The transcription factor NF-E2 p45-related factor (Nrf2) induces the expression of cytoprotective proteins that maintain and restore redox homeostasis. Nrf2 levels and activity are tightly regulated, and three subcellular populations of the transcription factor have been identified. During homeostasis, the majority of Nrf2 is degraded in the cytoplasm by ubiquitin (Ub)-mediated degradation. A second population is transcriptionally active in the nucleus, and a third population localizes to the outer mitochondrial membrane. Still unresolved are the mechanisms and factors that govern Nrf2 distribution between its subcellular locales. We show here that the Ub-conjugating enzyme UBE2E3 and its nuclear import receptor importin 11 (Imp-11) regulate Nrf2 distribution and activity. Knockdown of UBE2E3 reduces nuclear Nrf2, decreases Nrf2 target gene expression, and relocalizes the transcription factor to a perinuclear cluster of mitochondria. In a complementary manner, Imp-11 functions to restrict KEAP1, the major suppressor of Nrf2, from prematurely extracting the transcription factor off of a subset of target gene promoters. These findings identify a novel pathway of Nrf2 modulation during homeostasis and support a model in which UBE2E3 and Imp-11 promote Nrf2 transcriptional activity by restricting the transcription factor from partitioning to the mitochondria and limiting the repressive activity of nuclear KEAP1.
Collapse
Affiliation(s)
- Kendra S Plafker
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Scott M Plafker
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| |
Collapse
|
23
|
Importins and exportins regulating allergic immune responses. Mediators Inflamm 2014; 2014:476357. [PMID: 24733961 PMCID: PMC3964845 DOI: 10.1155/2014/476357] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 12/21/2022] Open
Abstract
Nucleocytoplasmic shuttling of macromolecules is a well-controlled process involving importins and exportins. These karyopherins recognize and bind to receptor-mediated intracellular signals through specific signal sequences that are present on cargo proteins and transport into and out of the nucleus through nuclear pore complexes. Nuclear localization signals (NLS) present on cargo molecules to be imported while nuclear export signals (NES) on the molecules to be exported are recognized by importins and exportins, respectively. The classical NLS are found on many transcription factors and molecules that are involved in the pathogenesis of allergic diseases. In addition, several immune modulators, including corticosteroids and vitamin D, elicit their cellular responses by regulating the expression and activity of importin molecules. In this review article, we provide a comprehensive list of importin and exportin molecules and their specific cargo that shuttled between cytoplasm and the nucleus. We also critically review the role and regulation of specific importin and exportin involved in the transport of activated transcription factors in allergic diseases, the underlying molecular mechanisms, and the potential target sites for developing better therapeutic approaches.
Collapse
|
24
|
Furuta M, Kose S, Kehlenbach RH, Imamoto N. Analysis of Nucleocytoplasmic Transport in Digitonin-Permeabilized Cells Under Different Cellular Conditions. Methods Cell Biol 2014; 122:331-52. [DOI: 10.1016/b978-0-12-417160-2.00015-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Abstract
Classic nuclear shuttling is mediated by an importin-α∙β heterodimer that binds to cargoes containing a nuclear localization signal, and shuttles most nuclear proteins immediately after their translation. Aside from this canonical mechanism, kariopheryn-βs or β-like importins operate by binding to non-canonical nuclear localization signals to mediate translocation without the assistance of importin-α. The mechanism by which these components operate is much less understood and is currently under investigation. Recently, several β-like importins have been implicated in the stimulated nuclear translocation of signaling proteins. Here, we propose that this group of importins might be responsible for the swift nuclear shuttling of many proteins following various stimuli.
Collapse
|
26
|
Zuo L, Zhang XY, Wang F, Li CSR, Lu L, Ye L, Zhang H, Krystal JH, Deng HW, Luo X. Genome-wide significant association signals in IPO11-HTR1A region specific for alcohol and nicotine codependence. Alcohol Clin Exp Res 2013; 37:730-9. [PMID: 23216389 PMCID: PMC3610804 DOI: 10.1111/acer.12032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 08/31/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Alcohol and nicotine codependence can be considered as a more severe subtype of alcohol dependence. A portion of its risk may be attributable to genetic factors. METHODS We searched for significant risk genomic regions specific for this disorder using a genome-wide association study. A total of 8,847 subjects underwent gene-disease association analysis, including (i) a discovery cohort of 818 European American cases with alcohol and nicotine codependence and 1,396 European American controls, (ii) a replication cohort of 5,704 Australian family subjects with 907 affected offspring, and (iii) a replication cohort of 449 African American cases and 480 African American controls. Additionally, a total of 38,714 subjects of European or African descent in 18 independent cohorts with 10 other nonalcoholism neuropsychiatric disorders were analyzed as contrast. Furthermore, 90 unrelated HapMap CEU individuals, 93 European brain tissue samples, and 80 European peripheral blood mononuclear cell samples underwent cis-acting expression quantitative locus (cis-eQTL) analysis. RESULTS We identified a significant risk region for alcohol and nicotine codependence between IPO11 and HTR1A on chromosome 5q that was reported to be suggestively associated with alcohol dependence previously. In the European American discovery cohort, 381 single nucleotide polymorphisms (SNPs) in this region were nominally associated with alcohol and nicotine codependence (p < 0.05); 57 associations of them survived region- and cohort-wide correction (α = 3.6 × 10(-6) ); and the top SNP (rs7445832) was significantly associated with alcohol and nicotine codependence at the genome-wide significance level (p = 6.2 × 10(-9) ). Furthermore, associations for 34 and 11 SNPs were replicated in the Australian and African American replication cohorts, respectively. Among these replicable associations, 4 reached genome-wide significance level in the meta-analysis of European Americans and European Australians: rs7445832 (p = 9.6 × 10(-10) ), rs13361996 (p = 8.2 × 10(-9) ), rs62380518 (p = 2.3 × 10(-8) ), and rs7714850 (p = 3.4 × 10(-8) ). Cis-eQTL analysis showed that many risk SNPs in this region had nominally significant cis-acting regulatory effects on HTR1A or IPO11 mRNA expression. Finally, no markers were significantly associated with any other neuropsychiatric disorder examined. CONCLUSIONS We speculate that this IPO11-HTR1A region might harbor a causal variant for alcohol and nicotine codependence.
Collapse
Affiliation(s)
- Lingjun Zuo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Xiang-Yang Zhang
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Fei Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Lingeng Lu
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT, USA
| | - Liefu Ye
- Department of Urology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Heping Zhang
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT, USA
| | - John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Hong-Wen Deng
- Department of Biostatistics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
27
|
Madiraju C, Welsh K, Cuddy MP, Godoi PH, Pass I, Ngo T, Vasile S, Sergienko EA, Diaz P, Matsuzawa SI, Reed JC. TR-FRET-based high-throughput screening assay for identification of UBC13 inhibitors. JOURNAL OF BIOMOLECULAR SCREENING 2012; 17:163-76. [PMID: 22034497 PMCID: PMC4172584 DOI: 10.1177/1087057111423417] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
UBC13 is a noncanonical ubiquitin conjugating enzyme (E2) that has been implicated in a variety of cellular signaling processes due to its ability to catalyze formation of lysine 63-linked polyubiquitin chains on various substrates. In particular, UBC13 is required for signaling by a variety of receptors important in immune regulation, making it a candidate target for inflammatory diseases. UBC13 is also critical for double-strand DNA repair and thus a potential radiosensitizer and chemosensitizer target for oncology. The authors developed a high-throughput screening (HTS) assay for UBC13 based on the method of time-resolved fluorescence resonance energy transfer (TR-FRET). The TR-FRET assay combines fluorochrome (Fl)-conjugated ubiquitin (fluorescence acceptor) with terbium (Tb)-conjugated ubiquitin (fluorescence donor), such that the assembly of mixed chains of Fl- and Tb-ubiquitin creates a robust TR-FRET signal. The authors defined conditions for optimized performance of the TR-FRET assay in both 384- and 1536-well formats. Chemical library screens (total 456 865 compounds) were conducted in high-throughput mode using various compound collections, affording superb Z' scores (typically >0.7) and thus validating the performance of the assays. Altogether, the HTS assays described here are suitable for large-scale, automated screening of chemical libraries in search of compounds with inhibitory activity against UBC13.
Collapse
Affiliation(s)
- Charitha Madiraju
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yanjiang X, Hongjuan H, Tiantian G, Yan Z, Zhijun H, Qiong W. Expression patterns of ubiquitin conjugating enzyme UbcM2 during mouse embryonic development. Gene Expr 2012; 15:163-70. [PMID: 22783725 PMCID: PMC6043840 DOI: 10.3727/105221612x13372578119616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ubiquitin conjugating enzyme UbcM2 (Ubiquitin-conjugating enzymes from Mice, the number reveals the identification order) has been implicated in many critical processes, such like growth-inhibiting, mediating cell proliferation and regulation of some transcription factor, but the expression profile during mouse embryo development remains unclear. Hereby, during mid-later embryonic stage, the expression patterns of UbcM2 were examined using in situ hybridization and quantitative real-time PCR (qRT-PCR). The signals were significantly intense in central nervous system and skeletal system, weak in tongue, heart, lung, liver, and kidney. In the central nervous system, UbcM2 was principally expressed in thalamus, external germinal layer of cerebellum (EGL), mitral cell layer of olfactory bulb, hippocampus, marginal zone and ventricular zone of cerebral cortex, and spinal cord. In the skeletal system, UbcM2 was primarily expressed in proliferating cartilage. Furthermore, qRT-PCR analysis displayed that the expression of UbcM2 was ubiquitous at E15.5, most prominent in brain, weaker in lung liver and kidney, accompanied by the lowest level in tongue and heart. During brain development, the expression level of UbcM2 first ascended and then decreased from E12.5 to E18.5, the peak of which sustained starting at E14.5 until E16.5. Together, these results suggest that UbcM2 may play potential roles in the development of mouse diverse tissues and organs, particularly in the development of brain and skeleton.
Collapse
Affiliation(s)
- Xing Yanjiang
- *School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Heilongjiang, China
| | - He Hongjuan
- *School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Heilongjiang, China
| | - Gu Tiantian
- *School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Heilongjiang, China
| | - Zhang Yan
- †College of Bioinformatics Science and Technology, Harbin Medical University, Heilongjiang, China
| | - Huang Zhijun
- *School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Heilongjiang, China
| | - Wu Qiong
- *School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Heilongjiang, China
| |
Collapse
|
29
|
Expression and distribution of the class III ubiquitin-conjugating enzymes in the retina. Mol Vis 2010; 16:2425-37. [PMID: 21139979 PMCID: PMC2994761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 11/13/2010] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Mounting evidence implicates chronic oxidative stress as a significant pathogenic factor in the development and progression of retinopathies, including age-related macular degeneration (AMD). The age-dependent toxic accumulation of oxidatively damaged proteins, lipids, and DNA in susceptible cells of the retina arises, at least in part, from a decreased capacity to eliminate these damaged biomolecules. The goal of this study was to determine the expression patterns and function of class III ubiquitin-conjugating enzymes (UbcM3, UBE2E2, and UbcM2) in the retina. These enzymes have been implicated in the ubiquitin-dependent degradation of oxidatively damaged and misfolded proteins. METHODS Complementary western blotting and immunohistochemistry was performed with specific antibodies to determine the retinal cell expression pattern of each enzyme. Additional analyses using antibodies raised against UbcM2 were performed to determine the relative levels of the enzyme in lysates derived from various mouse organs as compared to the retina. An established light-damage model of oxidative stress-induced retinal degeneration was used to determine alterations in the susceptibility of mice harboring a single intact allele of UbcM2. Ubiquitin charging and auto-ubiquitylation assays were done to assess the catalytic state of UbcM2 following photo-oxidative stress. RESULTS Expression of the class III ubiquitin-conjugating enzymes in the retina, from highest to lowest, is UbcM2>UbcM3>UBE2E2. In addition to being the most robustly expressed, UbcM2 is further distinguished by its expression in photoreceptors and retinal pigment epithelial cells. UbcM2 is expressed in most mouse tissues analyzed and is most abundant in the retina. Studies using a bright-light-damage model of acute oxidative stress in mice harboring a single disrupted allele of UbcM2 revealed that a 58% reduction in enzyme levels did not increase the susceptibility of photoreceptors to acute photo-oxidative toxicity. This result may be explained by the observation that UbcM2 retained an intact and functional active site following exposure to acute bright light. CONCLUSIONS The class III ubiquitin-conjugating enzymes, and in particular UbcM2, are expressed in the retina and may function to counter the accumulation of oxidatively damaged and misfolded proteins. A 58% reduction in UbcM2 does not increase the susceptibility of photoreceptors to an acute photo-oxidative stress, suggesting the existence of compensating enzymes and/or that the remaining UbcM2 activity is sufficient to target oxidatively damaged proteins for destruction.
Collapse
|
30
|
Plafker KS, Nguyen L, Barneche M, Mirza S, Crawford D, Plafker SM. The ubiquitin-conjugating enzyme UbcM2 can regulate the stability and activity of the antioxidant transcription factor Nrf2. J Biol Chem 2010; 285:23064-74. [PMID: 20484052 DOI: 10.1074/jbc.m110.121913] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor nuclear factor E2-related factor 2 (Nrf2) induces the expression of antioxidant gene products that neutralize reactive oxygen species and restore redox homeostasis. Nrf2 is constitutively degraded by the ubiquitin proteolytic system in unperturbed cells, but this turnover is arrested in response to oxidative stress, thereby leading to Nrf2 accumulation. Yet, a mechanistic understanding of how Nrf2 stabilization and transcriptional activation are coupled remains to be determined. We have discovered that the ubiquitin-conjugating enzyme UbcM2 is a novel regulator of Nrf2. Recombinant Nrf2 and UbcM2 form a complex upon alkylation of a non-catalytic cysteine in UbcM2, Cys-136. Substitution of this cysteine with a phenylalanine (C136F) to mimic cysteine oxidation/alkylation results in constitutive binding of UbcM2 to Nrf2 and an increased half-life of the transcription factor in vivo. We provide evidence that UbcM2 and Nrf2 form a nuclear complex utilizing the DNA binding, Neh1 domain, of Nrf2. Finally, we demonstrate that UbcM2 can enhance the transcriptional activity of endogenous Nrf2 and that Cys-136 and the active-site cysteine, Cys-145, jointly contribute to this regulation. Collectively, these data identify UbcM2 as a novel component of the Nrf2 regulatory circuit and position cysteine 136 as a putative redox sensor in this signaling pathway. This work implicates UbcM2 in the restoration of redox homeostasis following oxidative stress.
Collapse
Affiliation(s)
- Kendra S Plafker
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | |
Collapse
|
31
|
Gudleski N, Flanagan JM, Ryan EP, Bewley MC, Parent LJ. Directionality of nucleocytoplasmic transport of the retroviral gag protein depends on sequential binding of karyopherins and viral RNA. Proc Natl Acad Sci U S A 2010; 107:9358-63. [PMID: 20435918 PMCID: PMC2889109 DOI: 10.1073/pnas.1000304107] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Retroviral Gag polyproteins coopt host factors to traffic from cytosolic ribosomes to the plasma membrane, where virions are released. Before membrane transport, the multidomain Gag protein of Rous sarcoma virus (RSV) undergoes importin-mediated nuclear import and CRM1-dependent nuclear export, an intrinsic step in the assembly pathway. Transient nuclear trafficking of Gag is required for efficient viral RNA (vRNA) encapsidation, suggesting that Gag:vRNA binding might occur in the nucleus. Here, we show that Gag is imported into the nucleus through direct interactions of the Gag NC domain with importin-alpha (imp-alpha) and the MA domain with importin-11 (imp-11). The vRNA packaging signal, known as psi, inhibited imp-alpha binding to Gag, indicating that the NC domain does not bind to imp-alpha and vRNA simultaneously. Unexpectedly, vRNA binding also prevented the association of imp-11 with both the MA domain alone and with Gag, suggesting that the MA domain may bind to the vRNA genome. In contrast, direct binding of Gag to the nuclear export factor CRM1, via the CRM1-RanGTP heterodimer, was stimulated by psiRNA. These findings suggest a model whereby the genomic vRNA serves as a switch to regulate the ordered association of host import/export factors that mediate Gag nucleocytoplasmic trafficking for virion assembly. The Gag:vRNA interaction appears to serve multiple critical roles in assembly: specific selection of the vRNA genome for packaging, stimulating the formation of Gag dimers, and triggering export of viral ribonucleoprotein complexes from the nucleus.
Collapse
Affiliation(s)
| | | | - Eileen P. Ryan
- Division of Infectious Diseases, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | | | - Leslie J. Parent
- Department of Microbiology and Immunology
- Division of Infectious Diseases, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
32
|
Higashi-Kovtun ME, Mosca TJ, Dickman DK, Meinertzhagen IA, Schwarz TL. Importin-beta11 regulates synaptic phosphorylated mothers against decapentaplegic, and thereby influences synaptic development and function at the Drosophila neuromuscular junction. J Neurosci 2010; 30:5253-68. [PMID: 20392948 PMCID: PMC2881940 DOI: 10.1523/jneurosci.3739-09.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 02/11/2010] [Accepted: 03/01/2010] [Indexed: 11/21/2022] Open
Abstract
Importin proteins act both at the nuclear pore to promote substrate entry and in the cytosol during signal trafficking. Here, we describe mutations in the Drosophila gene importin-beta11, which has not previously been analyzed genetically. Mutants of importin-beta11 died as late pupae from neuronal defects, and neuronal importin-beta11 was present not only at nuclear pores but also in the cytosol and at synapses. Neurons lacking importin-beta11 were viable and properly differentiated but exhibited discrete defects. Synaptic transmission was defective in adult photoreceptors and at larval neuromuscular junctions (NMJs). Mutant photoreceptor axons formed grossly normal projections and synaptic terminals in the brain, but synaptic arbors on larval muscles were smaller while still containing appropriate synaptic components. Bone morphogenic protein (BMP) signaling was the apparent cause of the observed NMJ defects. Importin-beta11 interacted genetically with the BMP pathway, and at mutant synaptic boutons, a key component of this pathway, phosphorylated mothers against decapentaplegic (pMAD), was reduced. Neuronal expression of an importin-beta11 transgene rescued this phenotype as well as the other observed neuromuscular phenotypes. Despite the loss of synaptic pMAD, pMAD persisted in motor neuron nuclei, suggesting a specific impairment in the local function of pMAD. Restoring levels of pMAD to mutant terminals via expression of constitutively active type I BMP receptors or by reducing retrograde transport in motor neurons also restored synaptic strength and morphology. Thus, importin-beta11 function interacts with the BMP pathway to regulate a pool of pMAD that must be present at the presynapse for its proper development and function.
Collapse
Affiliation(s)
- Misao E. Higashi-Kovtun
- F. M. Kirby Center for Neurobiology, Children's Hospital, Boston, Massachusetts 02115
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Timothy J. Mosca
- F. M. Kirby Center for Neurobiology, Children's Hospital, Boston, Massachusetts 02115
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Dion K. Dickman
- F. M. Kirby Center for Neurobiology, Children's Hospital, Boston, Massachusetts 02115
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Ian A. Meinertzhagen
- Department of Psychology, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada
| | - Thomas L. Schwarz
- F. M. Kirby Center for Neurobiology, Children's Hospital, Boston, Massachusetts 02115
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, and
| |
Collapse
|
33
|
Plafker KS, Singer JD, Plafker SM. The ubiquitin conjugating enzyme, UbcM2, engages in novel interactions with components of cullin-3 based E3 ligases. Biochemistry 2009; 48:3527-37. [PMID: 19256485 PMCID: PMC2680606 DOI: 10.1021/bi801971m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The class III ubiquitin conjugating enzymes (E2s) are distinguished from other E2s by the presence of unique N-terminal domains, and the utilization of importin-11 for transport into the nucleus in an activation dependent fashion. To begin determining the physiological roles of these enzymes, we carried out a yeast two-hybrid screen with the class III E2, UbcM2. This screen retrieved RCBTB1, a putative substrate adaptor for a cullin3 (CUL3) E3 ligase. We initially established through biochemical studies that RCBTB1 has the properties of a CUL3 substrate adaptor. Further analysis of the UbcM2-RCBTB1 complex led to the discovery and characterization of the following novel interactions: (i) UbcM2 binds an N-terminal domain of CUL3 requiring the first 57 amino acids, the same domain that binds to RCBTB1 and other substrate adaptors; (ii) UbcM2 does not bind mutants of CUL3 that are deficient in substrate adaptor recruitment; (iii) UbcM2 interacts with CUL3 independent of a bridging RING-finger protein; and (iv) can engage the neddylated (i.e., activated) form of CUL3. We also present evidence that UbcM2 can bind to the N-terminal halves of multiple cullins, implying that this E2 is a general cofactor for this class of ligases. Together, these studies represent the first evidence that UbcM2, in concert with substrate adaptors, engages activated CUL3 ligases, thus suggesting that class III E2s are novel regulators of cullin ligases.
Collapse
Affiliation(s)
| | | | - Scott M. Plafker
- Address correspondence this author at Department of Cell Biology, 940 Stanton L. Young Blvd., BMSB 538, University of Oklahoma, Oklahoma City, OK 73104. Tel: (405) 271−2335 (ext 242). Fax: (405) 271−3548. E-mail:
| |
Collapse
|
34
|
Yamauchi T, Sakurai M, Abe K, Matsumiya G, Sawa Y. Ubiquitin-mediated stress response in the spinal cord after transient ischemia. Stroke 2008; 39:1883-9. [PMID: 18388347 DOI: 10.1161/strokeaha.106.455832] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Vulnerability of motor neurons in the spinal cord against ischemia is considered to play an important role in the development of delayed paraplegia after surgery of the thoracic aorta. However, the reasons for such vulnerability are not fully understood. Recently, the ubiquitin system has been reported to participate in neuronal cell death. In the present study, we investigated the expression of ubiquitin system molecules and discussed the relationship between the vulnerability and the ubiquitin system after transient ischemia in the spinal cord. METHODS Fifteen minutes of spinal cord ischemia in rabbits was applied with the use of a balloon catheter. In this model, the spinal motor neuron shows selectively delayed neuronal death, whereas other spinal neurons such as interneurons survive. Immunohistochemical analysis and Western blotting for ubiquitin system molecules, ubiquitin, deubiquitylating enzyme (ubiquitin carboxy-terminal hydrolase 1), and ubiquitin-ligase parkin were examined. RESULTS In cytoplasm, ubiquitin and ubiquitin carboxy-terminal hydrolase 1 were strongly induced both in interneuron and motor neuron at the early stage of reperfusion, but the sustained expression was observed only in motor neuron. Parkin was induced strongly at 3 hours after the reperfusion, but the immunoreactivity returned to the sham control level at 6 hours in both neurons. In the nuclei, ubiquitin, ubiquitin carboxy-terminal hydrolase 1, and parkin were strongly induced in interneuron, whereas no upregulation of these proteins was observed in motor neuron. CONCLUSIONS These results indicate that the vulnerability of motor neuron of the spinal cord might be partially attributed to the different response in ubiquitin-mediated stress response after transient ischemia.
Collapse
Affiliation(s)
- Takashi Yamauchi
- Department of Cardiovascular Surgery, Osaka University Graduate school of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | | | | | | | | |
Collapse
|
35
|
Pradeepa MM, Manjunatha S, Sathish V, Agrawal S, Rao MRS. Involvement of importin-4 in the transport of transition protein 2 into the spermatid nucleus. Mol Cell Biol 2007; 28:4331-41. [PMID: 17682055 PMCID: PMC2447153 DOI: 10.1128/mcb.00519-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mammalian spermiogenesis is characterized by a unique chromatin-remodeling process in which histones are replaced by transition protein 1 (TP1), TP2, and TP4, which are further replaced by protamines. We showed previously that the import of TP2 into the haploid spermatid nucleus requires the components of cytosol and ATP. We have now carried out a detailed analysis to characterize the molecular components underlying the nuclear translocation of TP2. Real-time PCR analysis of the expression of different importins in testicular germ cells revealed that importin-4 and importin-beta3 are significantly up-regulated in tetraploid and haploid germ cells. We carried out physical interaction studies as well as an in vitro nuclear transport assay using recombinant TP2 and the nuclear localization signal of TP2 (TP2(NLS)) fused to glutathione S-transferase in digitonin-permeabilized, haploid, round spermatids and identified importin-4 to be involved in the import of TP2. A three-dimensional model of the importin-4 protein was generated using the crystal structure of importin-beta1 as the template. Molecular docking simulations of TP2(NLS) with the importin-4 structure led to the identification of a TP2(NLS) binding pocket spanning the three helices (helices 21 to 23) of importin-4, which was experimentally confirmed by in vitro interaction and import studies with different deletion mutants of importin-4. In contrast to TP2, TP1 import was accomplished through a passive diffusion process.
Collapse
Affiliation(s)
- M M Pradeepa
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | | | | | | | | |
Collapse
|
36
|
Waldmann I, Wälde S, Kehlenbach RH. Nuclear import of c-Jun is mediated by multiple transport receptors. J Biol Chem 2007; 282:27685-92. [PMID: 17652081 DOI: 10.1074/jbc.m703301200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
c-Jun and c-Fos are major components of the transcriptional complex AP-1. Here, we investigate the nuclear import pathway(s) of the transcription factor c-Jun. c-Jun bound specifically to the nuclear import receptors importin beta, transportin, importin 5, importin 7, importin 9, and importin 13. In digitonin-permeabilized cells, importin beta, transportin, importin 7, and importin 9 promoted efficient import of c-Jun into the nucleus. Importin alpha, by contrast, inhibited nuclear import of c-Jun in vitro. A single basic region preceding the leucine zipper of c-Jun functions as a nuclear localization signal (NLS) and was required for interaction with all tested import receptors. In vivo, nuclear import of a c-Jun reporter protein lacking the leucine zipper strictly depended on this NLS. In a leucine zipper-dependent manner, c-Jun with mutations in its NLS was still imported into the nucleus in a complex with endogenous leucine zipper proteins or, for example, with cotransfected c-Fos. Together, these results explain the highly efficient nuclear import of the transcription factor c-Jun.
Collapse
Affiliation(s)
- Inga Waldmann
- Universität Göttingen, Zentrum für Biochemie und Molekulare Zellbiologie, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | |
Collapse
|
37
|
Sengupta A, Mense SM, Lan C, Zhou M, Mauro RE, Kellerman L, Bentsman G, Volsky DJ, Louis ED, Graziano JH, Zhang L. Gene expression profiling of human primary astrocytes exposed to manganese chloride indicates selective effects on several functions of the cells. Neurotoxicology 2007; 28:478-89. [PMID: 17175027 PMCID: PMC2041834 DOI: 10.1016/j.neuro.2006.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 10/24/2006] [Accepted: 10/24/2006] [Indexed: 12/31/2022]
Abstract
Exposure of adult humans to manganese (Mn) has long been known to cause neurotoxicity. Recent evidence also suggests that exposure of children to Mn is associated with developmental neurotoxicity. Astrocytes are critical for the proper functioning of the nervous system, and they play active roles in neurogenesis, synaptogenesis and synaptic neurotransmission. In this report, to help elucidate the molecular events underlying Mn neurotoxicity, we systematically identified the molecular targets of Mn in primary human astrocytes at a genome-wide level, by using microarray gene expression profiling and computational data analysis algorithms. We found that Mn altered the expression of diverse genes ranging from those encoding cytokines and transporters to signal transducers and transcriptional regulators. Particularly, 28 genes encoding proinflammatory chemokines, cytokines and related functions were up-regulated, whereas 15 genes encoding functions involved in DNA replication and repair and cell cycle checkpoint control were down-regulated. Consistent with the increased expression of proinflammatory factors, analysis of common regulators revealed that 16 targets known to be positively affected by the interferon-gamma signaling pathway were up-regulated by Mn(2+). In addition, 68 genes were found to be similarly up- or down-regulated by both Mn(2+) and hypoxia. These results from genomic analysis are further supported by data from real-time RT-PCR, Western blotting, flow cytometric and toxicological analyses. Together, these analyses show that Mn(2+) selectively affects cell cycle progression, the expression of hypoxia-responsive genes, and the expression of proinflammatory factors in primary human astrocytes. These results provide important insights into the molecular mechanisms underlying Mn neurotoxicity.
Collapse
Affiliation(s)
- Amitabha Sengupta
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, 60 Haven Avenue, B-106, New York, New York 10032
| | - Sarah M. Mense
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, 60 Haven Avenue, B-106, New York, New York 10032
| | - Changgui Lan
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, 60 Haven Avenue, B-106, New York, New York 10032
| | - Mei Zhou
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, 60 Haven Avenue, B-106, New York, New York 10032
| | - Rory E. Mauro
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, 60 Haven Avenue, B-106, New York, New York 10032
| | - Lisa Kellerman
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, 60 Haven Avenue, B-106, New York, New York 10032
| | - Galina Bentsman
- Molecular Virology Division, St. Luke's-Roosevelt Hospital Center and College of Physicians and Surgeons, Columbia University, New York, New York 10019
| | - David J. Volsky
- Molecular Virology Division, St. Luke's-Roosevelt Hospital Center and College of Physicians and Surgeons, Columbia University, New York, New York 10019
| | - Elan D. Louis
- Gertrude H. Sergievsky Center and the Department of Neurology, Columbia University, New York 10032
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, 60 Haven Avenue, B-106, New York, New York 10032
| | - Li Zhang
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, 60 Haven Avenue, B-106, New York, New York 10032
| |
Collapse
|
38
|
Pick E, Lau OS, Tsuge T, Menon S, Tong Y, Dohmae N, Plafker SM, Deng XW, Wei N. Mammalian DET1 regulates Cul4A activity and forms stable complexes with E2 ubiquitin-conjugating enzymes. Mol Cell Biol 2007; 27:4708-19. [PMID: 17452440 PMCID: PMC1951502 DOI: 10.1128/mcb.02432-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DET1 (de-etiolated 1) is an essential negative regulator of plant light responses, and it is a component of the Arabidopsis thaliana CDD complex containing DDB1 and COP10 ubiquitin E2 variant. Human DET1 has recently been isolated as one of the DDB1- and Cul4A-associated factors, along with an array of WD40-containing substrate receptors of the Cul4A-DDB1 ubiquitin ligase. However, DET1 differs from conventional substrate receptors of cullin E3 ligases in both biochemical behavior and activity. Here we report that mammalian DET1 forms stable DDD-E2 complexes, consisting of DDB1, DDA1 (DET1, DDB1 associated 1), and a member of the UBE2E group of canonical ubiquitin-conjugating enzymes. DDD-E2 complexes interact with multiple ubiquitin E3 ligases. We show that the E2 component cannot maintain the ubiquitin thioester linkage once bound to the DDD core, rendering mammalian DDD-E2 equivalent to the Arabidopsis CDD complex. While free UBE2E-3 is active and able to enhance UbcH5/Cul4A activity, the DDD core specifically inhibits Cul4A-dependent polyubiquitin chain assembly in vitro. Overexpression of DET1 inhibits UV-induced CDT1 degradation in cultured cells. These findings demonstrate that the conserved DET1 complex modulates Cul4A functions by a novel mechanism.
Collapse
Affiliation(s)
- Elah Pick
- Department of Molecualr, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Caesar S, Greiner M, Schlenstedt G. Kap120 functions as a nuclear import receptor for ribosome assembly factor Rpf1 in yeast. Mol Cell Biol 2006; 26:3170-80. [PMID: 16581791 PMCID: PMC1446960 DOI: 10.1128/mcb.26.8.3170-3180.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleocytoplasmic exchange of macromolecules is mediated by receptors specialized in passage through the nuclear pore complex. The majority of these receptors belong to the importin beta protein family, which has 14 members in Saccharomyces cerevisiae. Nine importins carry various cargos from the cytoplasm into the nucleus, whereas four exportins mediate nuclear export. Kap120 is the only receptor whose transport cargo has not been found previously. Here, we characterize Kap120 as an importin for the ribosome maturation factor Rpf1, which was identified in a two-hybrid screen. Kap120 binds directly to Rpf1 in vitro and is released by Ran-GTP. At least three parallel import pathways exist for Rpf1, since nuclear import is defective in strains with the importins Kap120, Kap114, and Nmd5 deleted. Both kap120 and rpf1 mutants accumulate large ribosomal subunits in the nucleus. The nuclear accumulation of 60S ribosomal subunits in kap120 mutants is abolished upon RPF1 overexpression, indicating that Kap120 does not function in the actual ribosomal export step but rather in import of ribosome maturation factors.
Collapse
Affiliation(s)
- Stefanie Caesar
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, D-66421 Homburg, Germany
| | | | | |
Collapse
|
40
|
Hirano M, Furiya Y, Asai H, Yasui A, Ueno S. ALADINI482S causes selective failure of nuclear protein import and hypersensitivity to oxidative stress in triple A syndrome. Proc Natl Acad Sci U S A 2006; 103:2298-303. [PMID: 16467144 PMCID: PMC1413683 DOI: 10.1073/pnas.0505598103] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Triple A syndrome is an autosomal recessive neuroendocrinological disease caused by mutations in a gene that encodes 546 amino acid residues. The encoded protein is the nucleoporin ALADIN, a component of nuclear pore complex (NPC). We identified a mutant ALADIN(I482S) that fails to target NPC and investigated the consequences of mistargeting using cultured fibroblasts (I482Sf) from a patient with triple A syndrome. ALADIN(I482S) affected a karyopherin-alpha/beta-mediated import pathway and decreased nuclear accumulations of aprataxin (APTX), a repair protein for DNA single-strand breaks (SSBs), and of DNA ligase I in I482Sf. This decrease was restored by wild-type ALADIN. ALADIN(I482S) had no effect on imports of M9/kap-beta2, BIB/kap-beta3, histone H1/importin 7, the ubiquitin conjugating enzyme UbcM2/importin 11, or the spliceosome protein U1A, indicating that ALADIN(I482S) selectively impaired transport of discrete import complexes through NPC. Cell survival assay showed hypersensitivity of I482Sf to l-buthionine-(S,R)-sulfoximine (BSO), a glutathione-depleting agent. BSO decreased nuclear APTX and ligase I levels in I482Sf and normal control fibroblasts, but increased SSBs only in I482Sf. These observations implied that I482Sf are hypersensitive to BSO and no longer sufficiently repair SSBs. Consistent with this notion, I482Sf transfected with both APTX and ligase I had increased resistance to BSO, whereas I482Sf transfected with LacZ vector remained hypersensitive to BSO. We propose that oxidative stress aggravates nuclear import failure, which is already compromised in patient cells. Consequent DNA damage, beyond the limited capacity of DNA repair proteins, i.e., APTX and ligase I, may participate in triggering cell death.
Collapse
Affiliation(s)
- Makito Hirano
- *Department of Neurology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; and
| | - Yoshiko Furiya
- *Department of Neurology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; and
| | - Hirohide Asai
- *Department of Neurology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; and
| | - Akira Yasui
- Department of Molecular Genetics, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Satoshi Ueno
- *Department of Neurology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Butterfield-Gerson KL, Scheifele LZ, Ryan EP, Hopper AK, Parent LJ. Importin-beta family members mediate alpharetrovirus gag nuclear entry via interactions with matrix and nucleocapsid. J Virol 2006; 80:1798-806. [PMID: 16439536 PMCID: PMC1367160 DOI: 10.1128/jvi.80.4.1798-1806.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 11/23/2005] [Indexed: 11/20/2022] Open
Abstract
The retroviral Gag polyprotein orchestrates the assembly and release of virus particles from infected cells. We previously reported that nuclear transport of the Rous sarcoma virus (RSV) Gag protein is intrinsic to the virus assembly pathway. To identify cis- and trans-acting factors governing nucleocytoplasmic trafficking, we developed novel vectors to express regions of Gag in Saccharomyces cerevisiae. The localization of Gag proteins was examined in the wild type and in mutant strains deficient in members of the importin-beta family. We confirmed the Crm1p dependence of the previously identified Gag p10 nuclear export signal. The known nuclear localization signal (NLS) in MA (matrix) was also functional in S. cerevisiae, and additionally we discovered a novel NLS within the NC (nucleocapsid) domain of Gag. MA utilizes Kap120p and Mtr10p import receptors while nuclear entry of NC involves the classical importin-alpha/beta (Kap60p/95p) pathway. NC also possesses nuclear targeting activity in avian cells and contains the primary signal for the import of the Gag polyprotein. Thus, the nucleocytoplasmic dynamics of RSV Gag depend upon the counterbalance of Crm1p-mediated export with two independent NLSs, each interacting with distinct nuclear import factors.
Collapse
Affiliation(s)
- Kristin L Butterfield-Gerson
- Division of Infectious Diseases HO36, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
42
|
Riddick G, Macara IG. A systems analysis of importin-{alpha}-{beta} mediated nuclear protein import. J Cell Biol 2005; 168:1027-38. [PMID: 15795315 PMCID: PMC2171841 DOI: 10.1083/jcb.200409024] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Accepted: 02/16/2005] [Indexed: 11/22/2022] Open
Abstract
Importin-beta (Impbeta) is a major transport receptor for Ran-dependent import of nuclear cargo. Impbeta can bind cargo directly or through an adaptor such as Importin-alpha (Impalpha). Factors involved in nuclear transport have been well studied, but systems analysis can offer further insight into regulatory mechanisms. We used computer simulation and real-time assays in intact cells to examine Impalpha-beta-mediated import. The model reflects experimentally determined rates for cargo import and correctly predicts that import is limited principally by Impalpha and Ran, but is also sensitive to NTF2. The model predicts that CAS is not limiting for the initial rate of cargo import and, surprisingly, that increased concentrations of Impbeta and the exchange factor, RCC1, actually inhibit rather than stimulate import. These unexpected predictions were all validated experimentally. The model revealed that inhibition by RCC1 is caused by sequestration of nuclear Ran. Inhibition by Impbeta results from depletion nuclear RanGTP, and, in support of this mechanism, expression of mRFP-Ran reversed the inhibition.
Collapse
Affiliation(s)
- Gregory Riddick
- Center for Cell Signaling, Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
43
|
|
44
|
Lorick KL, Jensen JP, Weissman AM. Expression, Purification, and Properties of the Ubc4/5 Family of E2 Enzymes. Methods Enzymol 2005; 398:54-68. [PMID: 16275319 DOI: 10.1016/s0076-6879(05)98006-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ubiquitin-conjugating enzymes (E2s) play a central role in ubiquitylation. They function to bridge the first, nonspecific step of ubiquitin activation by E1 with the transfer of activated ubiquitin to substrates by substrate-specific E3s. While sharing a common core UBC domain, members of this family exhibit significant specificity in their physical and functional interactions with E3s. Among the families of E2s, members of the yeast Ubc4/5 family are particularly well conserved in higher metazoans. In humans, these are represented by the UbcH5 family. Members of this ubiquitously expressed family show a capacity to interact with a wide range of E3s from both HECT and RING finger families, making them particularly useful tools in the laboratory. Using the UbcH5 family as a prototype, this chapter describes methods for the expression, purification, and characterization of E2 enzymes in vitro and some of the basics for their use in experiments in cells.
Collapse
Affiliation(s)
- Kevin L Lorick
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | | | | |
Collapse
|
45
|
Plafker SM, Plafker KS, Weissman AM, Macara IG. Ubiquitin charging of human class III ubiquitin-conjugating enzymes triggers their nuclear import. ACTA ACUST UNITED AC 2004; 167:649-59. [PMID: 15545318 PMCID: PMC2172591 DOI: 10.1083/jcb.200406001] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ubiquitin is a small polypeptide that is conjugated to proteins and commonly serves as a degradation signal. The attachment of ubiquitin (Ub) to a substrate proceeds through a multi-enzyme cascade involving an activating enzyme (E1), a conjugating enzyme (E2), and a protein ligase (E3). We previously demonstrated that a murine E2, UbcM2, is imported into nuclei by the transport receptor importin-11. We now show that the import mechanism for UbcM2 and two other human class III E2s (UbcH6 and UBE2E2) uniquely requires the covalent attachment of Ub to the active site cysteine of these enzymes. This coupling of E2 activation and transport arises from the selective interaction of importin-11 with the Ub-loaded forms of these enzymes. Together, these findings reveal that Ub charging can function as a nuclear import trigger, and identify a novel link between E2 regulation and karyopherin-mediated transport.
Collapse
Affiliation(s)
- Scott M Plafker
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | | | | | |
Collapse
|
46
|
Chen T, Brownawell AM, Macara IG. Nucleocytoplasmic shuttling of JAZ, a new cargo protein for exportin-5. Mol Cell Biol 2004; 24:6608-19. [PMID: 15254228 PMCID: PMC444848 DOI: 10.1128/mcb.24.15.6608-6619.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 03/24/2004] [Accepted: 05/06/2004] [Indexed: 11/20/2022] Open
Abstract
Exportin-5 is a nuclear export receptor for certain classes of double-stranded RNA (dsRNA), including pre-micro-RNAs, viral hairpin RNAs, and some tRNAs. It can also export the RNA binding proteins ILF3 and elongation factor EF1A. However, the rules that determine which RNA binding proteins are exportin-5 cargoes remain unclear. JAZ possesses an unusual dsRNA binding domain consisting of multiple C2H2 zinc fingers. We found that JAZ binds to exportin-5 in a Ran-GTP- and dsRNA-dependent manner. Exportin-5 stimulates JAZ shuttling, and gene silencing of exportin-5 reduces shuttling. Recombinant exportin-5 also stimulates nuclear export of JAZ in permeabilized cells. JAZ also binds to ILF3, and surprisingly, this interaction is RNA independent, even though it requires the dsRNA binding domains of ILF3. Exportin-5, JAZ, and ILF3 can form a heteromeric complex with Ran-GTP and dsRNA, and JAZ increases ILF3 binding to exportin-5. JAZ does not contain a classical nuclear localization signal, and in digitonin-permeabilized cells, nuclear accumulation of JAZ does not require energy or cytosol. Nonetheless, low temperatures prevent JAZ import, suggesting that nuclear entry does not occur via simple diffusion. Together, these data suggest that JAZ is exported by exportin-5 but translocates back into nuclei by a facilitated diffusion mechanism.
Collapse
Affiliation(s)
- Ting Chen
- Center for Cell Signaling, Department of Microbiology, Health Sciences Center, University of Virginia School of Medicine, Charlottesville, VA 22908-0577, USA
| | | | | |
Collapse
|
47
|
Hegde AN. Ubiquitin-proteasome-mediated local protein degradation and synaptic plasticity. Prog Neurobiol 2004; 73:311-57. [PMID: 15312912 DOI: 10.1016/j.pneurobio.2004.05.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 05/28/2004] [Indexed: 02/07/2023]
Abstract
A proteolytic pathway in which attachment of a small protein, ubiquitin, marks the substrates for degradation by a multi-subunit complex called the proteasome has been shown to function in synaptic plasticity and in several other physiological processes of the nervous system. Attachment of ubiquitin to protein substrates occurs through a series of highly specific and regulated steps. Degradation by the proteasome is subject to multiple levels of regulation as well. How does the ubiquitin-proteasome pathway contribute to synaptic plasticity? Long-lasting, protein synthesis-dependent, changes in the synaptic strength occur through activation of molecular cascades in the nucleus in coordination with signaling events in specific synapses. Available evidence indicates that ubiquitin-proteasome-mediated degradation has a role in the molecular mechanisms underlying synaptic plasticity that operate in the nucleus as well as at the synapse. Since the ubiquitin-proteasome pathway has been shown to be versatile in having roles in addition to proteolysis in several other cellular processes relevant to synaptic plasticity, such as endocytosis and transcription, this pathway is highly suited for a localized role in the neuron. Because of its numerous roles, malfunctioning of this pathway leads to several diseases and disorders of the nervous system. In this review, I examine the ubiquitin-proteasome pathway in detail and describe the role of regulated proteolysis in long-term synaptic plasticity. Also, using synaptic tagging theory of synapse-specific plasticity, I provide a model on the possible roles and regulation of local protein degradation by the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Ashok N Hegde
- Department of Neurobiology and Anatomy, Medical Center Boulevard, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| |
Collapse
|
48
|
Ploski JE, Shamsher MK, Radu A. Paired-type homeodomain transcription factors are imported into the nucleus by karyopherin 13. Mol Cell Biol 2004; 24:4824-34. [PMID: 15143176 PMCID: PMC416398 DOI: 10.1128/mcb.24.11.4824-4834.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We report that the paired homeodomain transcription factor Pax6 is imported into the nucleus by the Karyopherin beta family member Karyopherin 13 (Kap13). Pax6 was identified as a potential cargo for Kap13 by a yeast two-hybrid screen. Direct binding of Pax6 to Kap13 was subsequently confirmed by in vitro assays with recombinant proteins, and binding in vivo was shown by coimmunoprecipitation. Ran-dependent import of Pax6 by Kap13 was shown to occur by using a digitonin-permeabilized cells assay. Kap13 binds to Pax6 via a nuclear localization sequence (NLS), which is located within a segment of 80 amino acid residues that includes the homeodomain. Kap13 showed reduced binding to Pax6 when either region located at each end of the homeodomain (208 to 214 and 261 to 267) was deleted. The paired-type homeodomain transcription factor family includes more than 20 members. All members contain a region similar to the NLS found in Pax6 and are therefore likely to be imported by Kap13. We confirmed this hypothesis for Pax3 and Crx, which bind to and are imported by Kap13.
Collapse
Affiliation(s)
- Jonathan E Ploski
- The Carl C. Icahn Center for Gene Therapy and Molecular Medicine, Box 1496, The Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA.
| | | | | |
Collapse
|
49
|
Debonneville C, Staub O. Participation of the ubiquitin-conjugating enzyme UBE2E3 in Nedd4-2-dependent regulation of the epithelial Na+ channel. Mol Cell Biol 2004; 24:2397-409. [PMID: 14993279 PMCID: PMC355826 DOI: 10.1128/mcb.24.6.2397-2409.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The epithelial Na+ channel (ENaC) is a heteromeric protein complex playing a fundamental role in Na+ homeostasis and blood pressure regulation. Specific mutations inactivating PY motifs in ENaC C termini cause Liddle's syndrome, an inherited form of hypertension. Previously we showed that these PY motifs serve as binding sites for the E3 enzyme Nedd4-2, implying ubiquitination as a regulatory mechanism of ENaC. Ubiquitination involves the sequential action of E1, E2, and E3 enzymes. Here we identify the E2 enzyme UBE2E3, which acts in concert with Nedd4-2, and show by coimmunoprecipitation that UBE2E3 and Nedd4-2 interact together. In Xenopus laevis oocytes, UBE2E3 reduces ENaC activity marginally, consistent with Nedd4-2 being the rate-limiting factor in this process, whereas a catalytically inactive mutant of UBE2E3 (UBE2E3-CS) causes elevated ENaC activity by increasing cell surface expression. No additive effect is observed when UBE2E3-CS is coexpressed with an inactive Nedd4-2 mutant, and the stimulatory role of UBE2E3-CS depends on the integrity of the PY motifs (Nedd4-2 binding sites) and the ubiquitination sites on ENaC. In renal mpkCCD(cl4) cells, displaying ENaC-dependent transepithelial Na+ transport, Nedd4-2 and UBE2E3 can be coimmunoprecipitated and overexpression of UBE2E3 affects Na+ transport, corroborating the concept of a concerted action of UBE2E3 and Nedd4-2 in ENaC regulation.
Collapse
Affiliation(s)
- Christophe Debonneville
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1005 Lausanne, Switzerland
| | | |
Collapse
|
50
|
Merkle T. Nucleo-cytoplasmic partitioning of proteins in plants: implications for the regulation of environmental and developmental signalling. Curr Genet 2003; 44:231-60. [PMID: 14523572 DOI: 10.1007/s00294-003-0444-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Revised: 08/21/2003] [Accepted: 09/01/2003] [Indexed: 12/21/2022]
Abstract
Considerable progress has been made in the past few years in characterising Arabidopsis nuclear transport receptors and in elucidating plant signal transduction pathways that employ nucleo-cytoplasmic partitioning of a member of the signal transduction chain. This review briefly introduces the major principles of nuclear transport of macromolecules across the nuclear envelope and the proteins involved, as they have been described in vertebrates and yeast. Proteins of the plant nuclear transport machinery that have been identified to date are discussed, the focus being on Importin beta-like nuclear transport receptors. Finally, the importance of nucleo-cytoplasmic partitioning as a regulatory tool for signalling is highlighted, and different plant signal transduction pathways that make use of this regulatory potential are presented.
Collapse
Affiliation(s)
- Thomas Merkle
- Institute of Biology II, Cell Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| |
Collapse
|