1
|
Pegka F, Ben-Califa N, Neumann D, Jäkel H, Hengst L. EpoR Activation Stimulates Erythroid Precursor Proliferation by Inducing Phosphorylation of Tyrosine-88 of the CDK-Inhibitor p27 Kip1. Cells 2023; 12:1704. [PMID: 37443738 PMCID: PMC10340229 DOI: 10.3390/cells12131704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Erythrocyte biogenesis needs to be tightly regulated to secure oxygen transport and control plasma viscosity. The cytokine erythropoietin (Epo) governs erythropoiesis by promoting cell proliferation, differentiation, and survival of erythroid precursor cells. Erythroid differentiation is associated with an accumulation of the cyclin-dependent kinase inhibitor p27Kip1, but the regulation and role of p27 during erythroid proliferation remain largely unknown. We observed that p27 can bind to the erythropoietin receptor (EpoR). Activation of EpoR leads to immediate Jak2-dependent p27 phosphorylation of tyrosine residue 88 (Y88). This modification is known to impair its CDK-inhibitory activity and convert the inhibitor into an activator and assembly factor of CDK4,6. To investigate the physiological role of p27-Y88 phosphorylation in erythropoiesis, we analyzed p27Y88F/Y88F knock-in mice, where tyrosine-88 was mutated to phenylalanine. We observed lower red blood cell counts, lower hematocrit levels, and a reduced capacity for colony outgrowth of CFU-Es (colony-forming unit-erythroid), indicating impaired cell proliferation of early erythroid progenitors. Compensatory mechanisms of reduced p27 and increased Epo expression protect from stronger dysregulation of erythropoiesis. These observations suggest that p27-Y88 phosphorylation by EpoR pathway activation plays an important role in the stimulation of erythroid progenitor proliferation during the early stages of erythropoiesis.
Collapse
Affiliation(s)
- Fragka Pegka
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Nathalie Ben-Califa
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel (D.N.)
| | - Drorit Neumann
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel (D.N.)
| | - Heidelinde Jäkel
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Ludger Hengst
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Hawner M, Ducho C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules 2020; 25:E5963. [PMID: 33339365 PMCID: PMC7766908 DOI: 10.3390/molecules25245963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Drug candidates derived from oligonucleotides (ON) are receiving increased attention that is supported by the clinical approval of several ON drugs. Such therapeutic ON are designed to alter the expression levels of specific disease-related proteins, e.g., by displaying antigene, antisense, and RNA interference mechanisms. However, the high polarity of the polyanionic ON and their relatively rapid nuclease-mediated cleavage represent two major pharmacokinetic hurdles for their application in vivo. This has led to a range of non-natural modifications of ON structures that are routinely applied in the design of therapeutic ON. The polyanionic architecture of ON often hampers their penetration of target cells or tissues, and ON usually show no inherent specificity for certain cell types. These limitations can be overcome by conjugation of ON with molecular entities mediating cellular 'targeting', i.e., enhanced accumulation at and/or penetration of a specific cell type. In this context, the use of small molecules as targeting units appears particularly attractive and promising. This review provides an overview of advances in the emerging field of cellular targeting of ON via their conjugation with small-molecule targeting structures.
Collapse
Affiliation(s)
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66 123 Saarbrücken, Germany;
| |
Collapse
|
3
|
Ku M, Wall M, MacKinnon RN, Walkley CR, Purton LE, Tam C, Izon D, Campbell L, Cheng HC, Nandurkar H. Src family kinases and their role in hematological malignancies. Leuk Lymphoma 2015; 56:577-86. [PMID: 24898666 DOI: 10.3109/10428194.2014.907897] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Src family protein tyrosine kinases (SFKs) are non-receptor intracellular kinases that have important roles in both hematopoiesis and leukemogenesis. The derangement of their expression or activation has been demonstrated to contribute to hematological malignancies. This review first examines the mechanisms of SFK overexpression and hyperactivation, emphasizing the dysregulation of the upstream modulators. Subsequently, the role of SFK up-regulation in the initiation, progression and therapy resistance of many hematological malignancies is also analyzed. The presented evidence endeavors to highlight the influence of SFK up-regulation on an extensive number of hematological malignancies and the need to consider them as candidates in targeted anticancer therapy.
Collapse
Affiliation(s)
- Matthew Ku
- Haematology Department and Victorian Cancer Cytogenetics Service, St Vincent's Hospital , Fitzroy , Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Hu J, Muller KA, Furnari FB, Cavenee WK, VandenBerg SR, Gonias SL. Neutralizing the EGF receptor in glioblastoma cells stimulates cell migration by activating uPAR-initiated cell signaling. Oncogene 2014; 34:4078-88. [PMID: 25347738 PMCID: PMC4411189 DOI: 10.1038/onc.2014.336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/03/2014] [Accepted: 09/14/2014] [Indexed: 12/13/2022]
Abstract
In glioblastoma (GBM), the EGF receptor (EGFR) and Src family kinases (SFKs) contribute to an aggressive phenotype. EGFR may be targeted therapeutically; however, resistance to EGFR-targeting drugs such as Erlotinib and Gefitinib develops quickly. In many GBMs, a truncated form of the EGFR (EGFRvIII) is expressed. Although EGFRvIII is constitutively active and promotes cancer progression, its activity is attenuated compared with EGF-ligated wild-type EGFR, suggesting that EGFRvIII may function together with other signaling receptors in cancer cells to induce an aggressive phenotype. In this study, we demonstrate that in EGFRvIII-expressing GBM cells, the urokinase receptor (uPAR) functions as a major activator of SFKs, controlling phosphorylation of downstream targets, such as p130Cas and Tyr-845 in the EGFR in vitro and in vivo. When EGFRvIII expression in GBM cells was neutralized, either genetically or by treating the cells with Gefitinib, paradoxically, the cells demonstrated increased cell migration. The increase in cell migration was explained by a compensatory increase in expression of urokinase-type plasminogen activator, which activates uPAR-dependent cell signaling. GBM cells that were selected for their ability to grow in vivo in the absence of EGFRvIII also demonstrated increased cell migration, due to activation of the uPAR signaling system. The increase in GBM cell migration, induced by genetic or pharmacologic targeting of the EGFR, was blocked by Dasatinib, highlighting the central role of SFKs in uPAR-promoted cell migration. These results suggest that compensatory activation of uPAR-dependent cell signaling, in GBM cells treated with targeted therapeutics, may adversely affect the course of the disease by promoting cell migration, which may be associated with tumor progression.
Collapse
Affiliation(s)
- J Hu
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - K A Muller
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - F B Furnari
- 1] Department of Pathology, University of California San Diego, La Jolla, CA, USA [2] The Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - W K Cavenee
- 1] The Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA [2] Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - S R VandenBerg
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - S L Gonias
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Shintani T, Ohara-Waki F, Kitanaka A, Tanaka T, Kubota Y. Cbl negatively regulates erythropoietin-induced growth and survival signaling through the proteasomal degradation of Src kinase. Blood Cells Mol Dis 2014; 53:211-8. [PMID: 25084697 DOI: 10.1016/j.bcmd.2014.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 12/12/2022]
Abstract
We examined the biological functions of the gene Cbl in erythropoietin (EPO) signaling using Cbl-deficient F-36P human erythroleukemia cells by the introduction of the Cbl siRNA expression vector. Knockdown of Cbl promoted EPO-dependent proliferation and survival of F-36P cells, especially at a low concentration of EPO (0.01U/mL), similar to serum concentrations of EPO in healthy volunteers (0.005-0.04U/mL). We found that Src was degraded mainly by the proteasomal pathway because the proteasome inhibitor MG-132 but not the lysosome inhibitor NH4Cl suppressed the EPO-induced degradation of Src in F-36P cells and that knockdown of Cbl inhibited EPO-induced ubiquitination and degradation of Src in F-36P cells. The experiments using the Src inhibitor PP1 and co-expression experiments further confirmed that Cbl and the kinase activity of Src are required for the EPO-induced ubiquitination of Src. In addition, the co-expression experiments and in vitro kinase assay demonstrated that the EPO-induced tyrosine phosphorylation and ubiquitination of Cbl were dependent on the kinase activity of Src but not Jak2. Thus, Cbl negatively regulates EPO signaling mainly through the proteasome-dependent degradation of Src, and the E3 ligase activity of Cbl and its tyrosine phosphorylation are regulated by Src but not Jak2.
Collapse
Affiliation(s)
- Takamichi Shintani
- Department of Community Medicine, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Fusako Ohara-Waki
- Department of Internal Medicine, Takamatsu Red Cross Hospital, Kagawa 760-0017, Japan
| | - Akira Kitanaka
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Terukazu Tanaka
- Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Yoshitsugu Kubota
- Department of Community Medicine, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan.
| |
Collapse
|
6
|
Lyn kinase plays important roles in erythroid expansion, maturation and erythropoietin receptor signalling by regulating inhibitory signalling pathways that control survival. Biochem J 2014; 459:455-66. [DOI: 10.1042/bj20130903] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In erythroid cells both positive viability signals and feedback inhibitory signalling require the Src family kinase Lyn, influencing cell survival and their ability to differentiate. This illustrates that Lyn is critical for normal erythropoiesis and erythroid cell development.
Collapse
|
7
|
Hu XM, Tanaka S, Onda K, Yuan B, Toyoda H, Ma R, Liu F, Hirano T. Arsenic disulfide induced apoptosis and concurrently promoted erythroid differentiation in cytokine-dependent myelodysplastic syndrome-progressed leukemia cell line F-36p with complex karyotype including monosomy 7. Chin J Integr Med 2014; 20:387-93. [PMID: 24610410 DOI: 10.1007/s11655-013-1514-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Acute myeloid leukemia progressed from myelodysplastic syndrome (MDS/AML) is generally incurable with poor prognosis for complex karyotype including monosomy 7 (-7). Qinghuang Powder (, QHP), which includes Qing Dai (Indigo naturalis) and Xiong Huang (realgar) in the formula, is effective in treating MDS or MDS/AML even with the unfavorable karyotype, and its therapeutic efficacy could be enhanced by increasing the Xiong huang content in the formula, while Xiong huang contains > 90% arsenic disulfide (As2S2). F-36p cell line was established from a MDS/AML patient with complex karyotype including -7, and was in cytokine-dependent. The present study was to investigate the effects of As2S2 on F-36p cells. METHODS Cell proliferation was measured by an 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Cell apoptosis was identified by Annexin V-staining. Cell viability was determined by a propidium iodide (PI) exclusion. Erythroid differentiation was evaluated by the expression of cell surface antigen CD235a (GpA). RESULTS After treatment with As2S2 at concentrations of 0.5 to 16 μmol/L for 72 h, As2S2 inhibited the proliferation of F-36p cells. The 50% inhibitory concentrations (IC50) of As2S2 against the proliferation of F-36p cells was 6 μmol/L. The apoptotic cells significantly increased in a dose-dependent mannar (P<0.05). The cell viabilities were significantly inhibited by As2S2 dose-dependent in a dose-dependent manner (P<0.05). Significant increases of CD235a-positive cells were concurrently observed (P<0.05) also in a dose-dependent manner. CONCLUSIONS As2S2 could inhibit proliferation and viability, induce apoptosis, and concurrently promote erythroid differentiation dose-dependently in F-36p cells. As2S2 can inhibit proliferation and viability, induce apoptosis, and concurrently promote erythroid differentiation in cytokine-dependent MDS-progressed human leukemia cell line F-36p with complex karyotype including -7. The data suggest that QHP and/or As2S2 could be a potential candidate in the treatment of MDS or MDS/AML even with unfavorable cytogenetics.
Collapse
Affiliation(s)
- Xiao-mei Hu
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Gain-of-function Lyn induces anemia: appropriate Lyn activity is essential for normal erythropoiesis and Epo receptor signaling. Blood 2013; 122:262-71. [DOI: 10.1182/blood-2012-10-463158] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Key Points
Gain-of-function Lyn mice develop hemolytic anemia with acanthocyte red blood cells and display compensatory extramedullary erythropoiesis. Hyperactive Lyn notably alters Epo receptor signaling, particularly an Akt-FoxO3 pathway, enhancing viability and delaying differentiation.
Collapse
|
9
|
Bridoux L, Etique N, Lambert E, Thevenard J, Sowa ML, Belloy N, Dauchez M, Martiny L, Charpentier E. A crucial role for Lyn in TIMP-1 erythroid cell survival signalling pathway. FEBS Lett 2013; 587:1524-8. [PMID: 23583449 DOI: 10.1016/j.febslet.2013.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/19/2013] [Accepted: 03/27/2013] [Indexed: 12/16/2022]
Abstract
TIMP-1, a well-known MMP inhibitor, displays other biological activities such as cell survival, proliferation and differentiation in hematopoietic cells. In this report, we investigated the role of the Src-related kinase Lyn in TIMP-1 induced UT-7 erythroleukemic cell survival. We showed that (i) tyrosine 507 of Lyn was dephosphorylated and Lyn kinase activity enhanced by TIMP-1, (ii) Lyn silencing suppressed TIMP-1 anti-apoptotic activity and (iii) Lyn was activated upstream the JAK2/PI 3-kinase/Akt pathway. Our data suggest a novel role for Lyn in erythroid cell survival.
Collapse
Affiliation(s)
- Lucie Bridoux
- Université de Reims Champagne Ardenne, CNRS FRE 3481 MEDyC, Laboratoire SiRMa, SFR CAP Santé, Moulin de la Housse, BP 1039, 51687 Reims, France
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Manavathi B, Lo D, Bugide S, Dey O, Imren S, Weiss MJ, Humphries RK. Functional regulation of pre-B-cell leukemia homeobox interacting protein 1 (PBXIP1/HPIP) in erythroid differentiation. J Biol Chem 2011; 287:5600-14. [PMID: 22187427 DOI: 10.1074/jbc.m111.289843] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pre-B-cell leukemia homeobox interacting protein 1 or human PBX1 interacting protein (PBXIP1/HPIP) is a co-repressor of pre-B-cell leukemia homeobox 1 (PBX1) and is also known to regulate estrogen receptor functions by associating with the microtubule network. Despite its initial discovery in the context of hematopoietic cells, little is yet known about the role of HPIP in hematopoiesis. Here, we show that lentivirus-mediated overexpression of HPIP in human CD34(+) cells enhances hematopoietic colony formation in vitro, whereas HPIP knockdown leads to a reduction in the number of such colonies. Interestingly, erythroid colony number was significantly higher in HPIP-overexpressing cells. In addition, forced expression of HPIP in K562 cells, a multipotent erythro-megakaryoblastic leukemia cell line, led to an induction of erythroid differentiation. HPIP overexpression in both CD34(+) and K562 cells was associated with increased activation of the PI3K/AKT pathway, and corresponding treatment with a PI3K-specific inhibitor, LY-294002, caused a reduction in clonogenic progenitor number in HPIP-expressing CD34(+) cells and decreased K562 cell differentiation. Combined, these findings point to an important role of the PI3K/AKT pathway in mediating HPIP-induced effects on the growth and differentiation of hematopoietic cells. Interestingly, HPIP gene expression was found to be induced in K562 cells in response to erythroid differentiation signals such as DMSO and erythropoietin. The erythroid lineage-specific transcription factor GATA1 binds to the HPIP promoter and activates HPIP gene transcription in a CCCTC-binding factor (CTCF)-dependent manner. Co-immunoprecipitation and co-localization experiments revealed the association of CTCF with GATA1 indicating the recruitment of CTCF/GATA1 transcription factor complex onto the HPIP promoter. Together, this study provides evidence that HPIP is a target of GATA1 and CTCF in erythroid cells and plays an important role in erythroid differentiation by modulating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Bramanandam Manavathi
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad-500046, India.
| | | | | | | | | | | | | |
Collapse
|
11
|
Khankin EV, Mutter WP, Tamez H, Yuan HT, Karumanchi SA, Thadhani R. Soluble erythropoietin receptor contributes to erythropoietin resistance in end-stage renal disease. PLoS One 2010; 5:e9246. [PMID: 20169072 PMCID: PMC2821920 DOI: 10.1371/journal.pone.0009246] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 01/24/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Erythropoietin is a growth factor commonly used to manage anemia in patients with chronic kidney disease. A significant clinical challenge is relative resistance to erythropoietin, which leads to use of successively higher erythropoietin doses, failure to achieve target hemoglobin levels, and increased risk of adverse outcomes. Erythropoietin acts through the erythropoietin receptor (EpoR) present in erythroblasts. Alternative mRNA splicing produces a soluble form of EpoR (sEpoR) found in human blood, however its role in anemia is not known. METHODS AND FINDINGS Using archived serum samples obtained from subjects with end stage kidney disease we show that sEpoR is detectable as a 27kDa protein in the serum of dialysis patients, and that higher serum sEpoR levels correlate with increased erythropoietin requirements. Soluble EpoR inhibits erythropoietin mediated signal transducer and activator of transcription 5 (Stat5) phosphorylation in cell lines expressing EpoR. Importantly, we demonstrate that serum from patients with elevated sEpoR levels blocks this phosphorylation in ex vivo studies. Finally, we show that sEpoR is increased in the supernatant of a human erythroleukaemia cell line when stimulated by inflammatory mediators such as interleukin-6 and tumor necrosis factor alpha implying a link between inflammation and erythropoietin resistance. CONCLUSIONS These observations suggest that sEpoR levels may contribute to erythropoietin resistance in end stage renal disease, and that sEpoR production may be mediated by pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Eliyahu V. Khankin
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Walter P. Mutter
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hector Tamez
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hai-Tao Yuan
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - S. Ananth Karumanchi
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ravi Thadhani
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
12
|
Susaki K, Kitanaka A, Dobashi H, Kubota Y, Kittaka K, Kameda T, Yamaoka G, Mano H, Mihara K, Ishida T. Tec protein tyrosine kinase inhibits CD25 expression in human T-lymphocyte. Immunol Lett 2009; 127:135-42. [PMID: 19883687 DOI: 10.1016/j.imlet.2009.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 10/21/2009] [Accepted: 10/23/2009] [Indexed: 11/19/2022]
Abstract
The Tec protein tyrosine kinase (PTK) belongs to a group of structurally related nonreceptor PTKs that also includes Btk, Itk, Rlk, and Bmx. Previous studies have suggested that these kinases play important roles in hematopoiesis and in the lymphocyte signaling pathway. Despite evidence suggesting the involvement of Tec in the T-lymphocyte activation pathway via T-cell receptor (TCR) and CD28, Tec's role in T-lymphocytes remains unclear because of the lack of apparent defects in T-lymphocyte function in Tec-deficient mice. In this study, we investigated the role of Tec in human T-lymphocyte using the Jurkat T-lymphoid cell line stably transfected with a cDNA encoding Tec. We found that the expression of wild-type Tec inhibited the expression of CD25 induced by TCR cross-linking. Second, we observed that LFM-A13, a selective inhibitor of Tec family PTK, rescued the suppression of TCR-induced CD25 expression observed in wild-type Tec-expressing Jurkat cells. In addition, expression of kinase-deleted Tec did not alter the expression level of CD25 after TCR ligation. We conclude that Tec PTK mediates signals that negatively regulate CD25 expression induced by TCR cross-linking. This, in turn, implies that this PTK plays a role in the attenuation of IL-2 activity in human T-lymphocytes.
Collapse
Affiliation(s)
- Kentaro Susaki
- Division of Endocrinology and Metabolism, Hematology, Rheumatology, and Respiratory Medicine, Department of Internal Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gab1 transduces PI3K-mediated erythropoietin signals to the Erk pathway and regulates erythropoietin-dependent proliferation and survival of erythroid cells. Cell Signal 2009; 21:1775-83. [PMID: 19665053 DOI: 10.1016/j.cellsig.2009.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 07/28/2009] [Accepted: 07/28/2009] [Indexed: 11/23/2022]
Abstract
In this study, we examined the biological functions of Gab1 in erythropoietin receptor (EPOR)-mediated signaling in vivo. Knockdown of Gab1 by the introduction of the Gab1 siRNA expression vector into F-36P human erythroleukemia (F-36P-Gab1-siRNA) cells resulted in a reduction of cell proliferation and survival in response to EPO. EPO-induced activation of Erk1/2 but not of Akt was significantly suppressed in F-36P-Gab1-siRNA cells compared with mock-transfected F-36P cells. The co-immunoprecipitation experiments revealed an EPO-enhanced association of Gab1 with the Grb2-SOS1 complex and SHP-2 in F-36P cells. A selective inhibitor of phosphatidylinositol 3-kinase (PI3K) LY294002 and short interfering RNA (siRNA) duplexes targeting the p85 regulatory subunit of PI3K (p85-siRNA) independently suppressed tyrosine phosphorylation of Gab1; its association with Grb2, SHP-2 and p85; and the activation of Erk in EPO-treated F-36P cells. LY294002 inhibited EPO-induced tyrosine phosphorylation of Gab1 and its association with Grb2 in human primary EPO-sensitive erythroid cells. The co-immunoprecipitation experiments using the Jak inhibitor AG490 or siRNA duplexes targeting Jak2 and in vitro binding experiments demonstrated that Jak2 regulated Gab1-mediated Erk activation through tyrosine phosphorylation of Gab1. Taken together, these results suggest that Gab1 couples PI3K-mediated EPO signals with the Ras/Erk pathway and that Gab1 plays an important role in EPOR-mediated signal transduction involved in the proliferation and survival of erythroid cells.
Collapse
|
14
|
Kosmider O, Buet D, Gallais I, Denis N, Moreau-Gachelin F. Erythropoietin down-regulates stem cell factor receptor (Kit) expression in the leukemic proerythroblast: role of Lyn kinase. PLoS One 2009; 4:e5721. [PMID: 19492092 PMCID: PMC2683931 DOI: 10.1371/journal.pone.0005721] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 04/28/2009] [Indexed: 01/17/2023] Open
Abstract
Overexpression of the transcription factor Spi-1/PU.1 by transgenesis in mice induces a maturation arrest at the proerythroblastic stage of differentiation. We have previously isolated a panel of spi-1 transgenic erythroleukemic cell lines that proliferated in the presence of either erythropoietin (Epo) or stem cell factor (SCF). Using these cell lines, we observed that EpoR stimulation by Epo down-regulated expression of the SCF receptor Kit and induced expression of the Src kinase Lyn. Furthermore, enforced expression of Lyn in the cell lines increased cell proliferation in response to Epo, but reduced cell growth in response to SCF in accordance with Lyn ability to down-regulate Kit expression. Together, the data suggest that Epo-R/Lyn signaling pathway is essential for extinction of SCF signaling leading the proerythroblast to strict Epo dependency. These results highlight a new role for Lyn as an effector of EpoR in controlling Kit expression. They suggest that Lyn may play a central role in during erythroid differentiation at the switch between proliferation and maturation.
Collapse
Affiliation(s)
| | - Dorothée Buet
- Inserm U830, Paris, France
- Institut Curie, Paris, France
| | | | - Nicole Denis
- Inserm U830, Paris, France
- Institut Curie, Paris, France
| | | |
Collapse
|
15
|
Missiroli S, Etro D, Buontempo F, Ye K, Capitani S, Neri LM. Nuclear translocation of active AKT is required for erythroid differentiation in erythropoietin treated K562 erythroleukemia cells. Int J Biochem Cell Biol 2008; 41:570-7. [PMID: 18694847 DOI: 10.1016/j.biocel.2008.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 06/25/2008] [Accepted: 07/10/2008] [Indexed: 11/28/2022]
Abstract
Erythroid differentiation of human erythroleukemia cell line K562 induced by erythropoietin is a complex process that involves modifications at nuclear level, including nuclear translocation of phosphatidyl-inositol 3-kinase. In this work we show that erythropoietin stimulation of K562 cells can induce nuclear translocation of active Akt, a downstream molecule of the phosphatidyl-inositol 3-kinase signaling pathway. Akt shows a peak of activity in whole cell homogenates at earlier stage when compared to the nucleus, which shows a peak delayed of 10 min. Akt increases its intranuclear amount and activity rapidly and transiently in response to EPO. Almost all Akt kinase that translocates to the nucleus shows a marked phosphorylation on serine 473. Nuclear enzyme translocation is blocked by the phosphatidyl-inositol 3-kinase inhibitor Ly294002 or Wortmannin. The specific Akt pharmacological inhibitor VI, VII and VIII that act as blocking enzyme activation inhibited translocation as well, whereas Akt inhibitor IX, that inhibits Akt activity, did not block Akt nuclear translocation. When cells were treated by means of siRNA sequences or with the Akt inhibitors the differentiation process was arrested, thus showing the requirement of the nuclear translocation of the active enzyme to differentiate. These findings strongly suggest that the intranuclear translocation of active Akt kinase represents an important step in the signaling pathway that mediates erythropoietin-induced erythroid differentiation.
Collapse
Affiliation(s)
- Silvia Missiroli
- Dipartimento di Morfologia ed Embriologia, Sezione di Anatomia Umana, Signal Transduction Unit, Universita' di Ferrara, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Ho KJ, Liao JK. Non-nuclear actions of estrogen: new targets for prevention and treatment of cardiovascular disease. Mol Interv 2008; 2:219-28. [PMID: 14993393 PMCID: PMC2633129 DOI: 10.1124/mi.2.4.219] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gender-based differences in the incidence of hypertensive and coronary artery disease, the development of atherosclerosis, and myocardial remodeling after infarction are attributable to the indirect effect of estrogen on risk factor profiles, such as cholesterol levels, glucose metabolism, and insulin levels. More recent evidence, however, suggests that activated estrogen receptor (ER) mediates signaling cascades that culminate in direct protective effects such as vasodilation, inhibition of response to vessel injury, limiting myocardial injury after infarction, and attenuating cardiac hypertrophy. Although the ER is usually thought of as a ligand-dependent transcription factor, it can also rapidly mobilize signals at the plasma membrane and in the cytoplasm. Thus, a greater understanding of ER function and regulation may lead to the development of highly specific therapeutics that mediate the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Karen J Ho
- The Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Cambridge, MA 02139, USA
| | | |
Collapse
|
17
|
Inhibition of Src reduces gemcitabine-induced cytotoxicity in human pancreatic cancer cell lines. Cancer Lett 2008; 260:155-62. [DOI: 10.1016/j.canlet.2007.10.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/21/2007] [Accepted: 10/29/2007] [Indexed: 12/17/2022]
|
18
|
Lee SB, Bae IH, Bae YS, Um HD. Link between Mitochondria and NADPH Oxidase 1 Isozyme for the Sustained Production of Reactive Oxygen Species and Cell Death. J Biol Chem 2006; 281:36228-35. [PMID: 17015444 DOI: 10.1074/jbc.m606702200] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although mitochondria and the Nox family of NADPH oxidase are major sources of reactive oxygen species (ROS) induced by external stimuli, there is limited information on their functional relationship. This study has shown that serum withdrawal promotes the production of ROS in human 293T cells by stimulating both the mitochondria and Nox1. An analysis of their relationship revealed that the mitochondria respond to serum withdrawal within a few minutes, and the ROS produced by the mitochondria trigger Nox1 action by stimulating phosphoinositide 3-kinase (PI3K) and Rac1. Activation of the PI3K/Rac1/Nox1 pathway was evident 4-8 h after but not earlier than serum withdrawal initiation, and this time lag was found to be required for an additional activator of the pathway, Lyn, to be expressed. Functional analysis suggested that, although the mitochondria contribute to the early (0-4 h) accumulation of ROS, the maintenance of the induced ROS levels to the later (4-8 h) phase required the action of the PI3K/Rac1/Nox1 pathway. Serum withdrawal-treated cells eventually lost their viability, which was reversed by blocking either the mitochondria-dependent induction of ROS using rotenone or KCN or the PI3K/Rac1/Nox1 pathway using the dominant negative mutants or small interfering RNAs. This suggests that mitochondrial ROS are essential but not enough to promote cell death, which requires the sustained accumulation of ROS by the subsequent action of Nox1. Overall, this study shows a signaling link between the mitochondria and Nox1, which is crucial for the sustained accumulation of ROS and cell death in serum withdrawal-induced signaling.
Collapse
Affiliation(s)
- Seung Bum Lee
- Laboratory of Radiation Tumor Physiology, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul 139-706, Korea
| | | | | | | |
Collapse
|
19
|
Fujiyoshi PT, Michalek JE, Matsumura F. Molecular epidemiologic evidence for diabetogenic effects of dioxin exposure in U.S. Air force veterans of the Vietnam war. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:1677-83. [PMID: 17107852 PMCID: PMC1665440 DOI: 10.1289/ehp.9262] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND One of the outcomes positively associated with dioxin exposure in humans is type 2 diabetes. OBJECTIVES This study was conducted in order to find the molecular biological evidence for the diabetogenic action of dioxin in adipose samples from Vietnam veterans. METHODS We obtained 313 adipose tissue samples both from Vietnam veterans who were exposed to dioxin (Operation Ranch Hand) and from comparison veterans who served in Southeast Asia with no record of dioxin exposure. We conducted quantitative reverse-transcribed polymerase chain reaction studies on selected marker mRNAs from these samples. RESULTS We found the most sensitive and reliable molecular indicator of dioxin-induced diabetes to be the ratio of mRNA of glucose transporter 4 (GLUT4) and nuclear transcription factor kappa B (NFkappaB), a marker of inflammation. This ratio showed significant correlations to serum dioxin residues and to fasting glucose among those in the Ranch Hand group and, surprisingly, even in the comparison group, who have low levels of dioxin comparable to the general public. Such a correlation in the comparison group was particularly significant among those with known risk factors such as obesity and family history of diabetes. CONCLUSIONS These results show that the GLUT4:NFkappaB ratio is a reliable marker for the diabetogenic action of dioxin, particularly at very low exposure levels that are not much higher than those found in the general public, implying a need to address current exposure levels.
Collapse
Affiliation(s)
| | - Joel Edmund Michalek
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Fumio Matsumura
- Department of Environmental Toxicology, University of California-Davis, Davis, California, USA
- Address correspondence to F. Matsumura, Department of Environmental Toxicology, University of California, One Shields Ave., Davis, CA 95616 USA. Telephone: (530) 752-4251. Fax: (530) 752-3394. E-mail:
| |
Collapse
|
20
|
Subramanian A, Hegde S, Correll PH, Paulson RF. Mutation of the Lyn tyrosine kinase delays the progression of Friend virus induced erythroleukemia without affecting susceptibility. Leuk Res 2006; 30:1141-9. [PMID: 16527351 DOI: 10.1016/j.leukres.2006.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 01/24/2006] [Accepted: 02/03/2006] [Indexed: 11/29/2022]
Abstract
During the initial phase of Friend virus (FV) induced erythroleukemia, the interaction between the viral envelope glycoprotein gp55, the Erythropoietin receptor (EpoR) and the naturally occurring truncated version of the Mst1r receptor tyrosine kinase, called Sf-Stk, drives the polyclonal expansion of infected progenitors in an erythropoietin independent manner. Sf-Stk provides signals that cooperate with EpoR signals to effect expansion of erythroid progenitors. The latter phase of disease is characterized by a clonal expansion of transformed leukemic cells causing an acute erythroleukemia in mice. Signaling by Sf-Stk and EpoR mediated by gp55 renders erythroid progenitors Epo independent through the activation of the EpoR downstream pathways such as PI3K, MAPK and JAK/STAT. Previous work has shown that Src family kinases also play an important role in erythropoiesis. In particular, mutation of Src and Lyn can affect erythropoiesis. In this report we analyze the role of the Lyn tyrosine kinase in the pathogenesis of Friend virus. We demonstrate that during FV infection of primary erythroblasts, Lyn is not required for expansion of viral targets. Lyn deficient bone marrow and spleen cells are able to form Epo independent FV colonies in vitro. In vivo infection of Lyn deficient animals also results in a massive splenomegaly characteristic of the virus. However, we observe differences in the pathogenesis of Friend erythroleukemia in Lyn-/- mice. Lyn-/- mice infected with the polycythemia inducing strain of FV, FVP, do not develop polycythemia suggesting that Lyn-/- infected erythroblasts have a defect in terminal differentiation. Furthermore, the expansion of transformed cells in the spleen is reduced in Lyn-/- mice. Our data show that Lyn signals are not required for susceptibility to Friend erythroleukemia, but Lyn plays a role in later events, the terminal differentiation of infected cells and the expansion of transformed cells.
Collapse
MESH Headings
- Animals
- Bone Marrow/enzymology
- Bone Marrow/virology
- Cell Differentiation/genetics
- Cell Transformation, Viral/genetics
- Erythroid Precursor Cells/metabolism
- Erythroid Precursor Cells/virology
- Friend murine leukemia virus
- Leukemia, Erythroblastic, Acute/enzymology
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/virology
- Leukemia, Experimental/enzymology
- Leukemia, Experimental/genetics
- MAP Kinase Signaling System/genetics
- Mice
- Mice, Knockout
- Mutation
- Phosphotransferases/genetics
- Phosphotransferases/metabolism
- Receptors, Erythropoietin/metabolism
- Retroviridae Infections/enzymology
- Retroviridae Infections/genetics
- Spleen/enzymology
- Spleen/virology
- Tumor Virus Infections/enzymology
- Tumor Virus Infections/genetics
- Viral Envelope Proteins/metabolism
- src-Family Kinases/genetics
Collapse
Affiliation(s)
- Aparna Subramanian
- Graduate Program in Biochemistry, Microbiology and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
21
|
Manabe N, Kubota Y, Kitanaka A, Ohnishi H, Taminato T, Tanaka T. Src transduces signaling via growth hormone (GH)-activated GH receptor (GHR) tyrosine-phosphorylating GHR and STAT5 in human leukemia cells. Leuk Res 2006; 30:1391-8. [PMID: 16650892 DOI: 10.1016/j.leukres.2006.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 03/24/2006] [Accepted: 03/27/2006] [Indexed: 11/29/2022]
Abstract
Most human leukemia cells are shown to express growth hormone receptor (GHR) and some of them proliferate in response to GH. We demonstrate that Src contributes to GHR-mediated signal transduction via STAT5 activation in F-36P human leukemia cells stimulated with GH. The tyrosine phosphorylation levels of GHR and STAT5 induced by GH decreased in the presence of PP2 Src kinase inhibitor. When GHR and wild-type Src were co-expressed in COS7 cells, GHR was markedly tyrosine phosphorylated as well as when Jak2 was co-expressed with GHR, but not when kinase-inactive Src co-expressed. The treatment of F-36P cells with the antisense src oligonucleotides, which selectively decreased the Src expression, reduced the rhGH-induced tyrosine phosphorylation of the STAT5 activation sites.
Collapse
Affiliation(s)
- Noriko Manabe
- Depertment of Laboratory Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Menon MP, Fang J, Wojchowski DM. Core erythropoietin receptor signals for late erythroblast development. Blood 2005; 107:2662-72. [PMID: 16332976 PMCID: PMC1895369 DOI: 10.1182/blood-2005-02-0684] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Critical signals for erythroblast formation are transduced by activated, tyrosine-phosphorylated erythropoietin receptor (EpoR) complexes. Nonetheless, steady-state erythropoiesis is supported effectively by EpoR alleles that are deficient in cytoplasmic phosphotyrosine sites. To better define core EpoR action mechanisms, signaling capacities of minimal PY-null (EpoR-HM) and PY343-retaining (EpoR-H) alleles were analyzed for the first time in bone marrow-derived erythroblasts. Jak2 activation via each allele was comparable. Stat5 (and several Stat5-response genes) were induced via EpoR-H but not via EpoR-HM. Stat1 and Stat3 activation was nominal for all EpoR forms. For both EpoR-HM and EpoR-H, Akt and p70S6-kinase activation was decreased multifold, and JNK activation was minimal. ERKs, however, were hyperactivated uniquely via EpoR-HM. In vivo, Epo expression in EpoR-HM mice was elevated, while Epo-induced reticulocyte production was diminished. In vitro, EpoR-HM erythroblast maturation also was attenuated (based on DNA content, forward-angle light scatter, and hemoglobinization). These EpoR-HM-specific defects were corrected not only upon PY343 site restoration in EpoR-H, but also upon MEK1,2 inhibition. Core EpoR PY site-independent signals for erythroblast formation therefore appear to be Stat5, Stat1, Stat3, p70S6-kinase, and JNK independent, but ERK dependent. Wild-type signaling capacities, however, depend further upon signals provided via an EpoR/PY343/Stat5 axis.
Collapse
Affiliation(s)
- Madhu P Menon
- Program in Stem Cell Biology, Maine Medical Center Research Institute, 81 Research Dr, Scarborough, ME 04074, USA
| | | | | |
Collapse
|
23
|
Ghaffari S, Kitidis C, Zhao W, Marinkovic D, Fleming MD, Luo B, Marszalek J, Lodish HF. AKT induces erythroid-cell maturation of JAK2-deficient fetal liver progenitor cells and is required for Epo regulation of erythroid-cell differentiation. Blood 2005; 107:1888-91. [PMID: 16254141 PMCID: PMC1895702 DOI: 10.1182/blood-2005-06-2304] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AKT serine threonine kinase of the protein kinase B (PKB) family plays essential roles in cell survival, growth, metabolism, and differentiation. In the erythroid system, AKT is known to be rapidly phosphorylated and activated in response to erythropoietin (Epo) engagement of Epo receptor (EpoR) and to sustain survival signals in cultured erythroid cells. Here we demonstrate that activated AKT complements EpoR signaling and supports erythroid-cell differentiation in wild-type and JAK2-deficient fetal liver cells. We show that erythroid maturation of AKT-transduced cells is not solely dependent on AKT-induced cell survival or proliferation signals, suggesting that AKT transduces also a differentiation-specific signal downstream of EpoR in erythroid cells. Down-regulation of expression of AKT kinase by RNA interference, or AKT activity by expression of dominant negative forms, inhibits significantly fetal liver-derived erythroid-cell colony formation and gene expression, demonstrating that AKT is required for Epo regulation of erythroid-cell maturation.
Collapse
Affiliation(s)
- Saghi Ghaffari
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang J, Lodish HF. Identification of K-ras as the major regulator for cytokine-dependent Akt activation in erythroid progenitors in vivo. Proc Natl Acad Sci U S A 2005; 102:14605-10. [PMID: 16203968 PMCID: PMC1253609 DOI: 10.1073/pnas.0507446102] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite intensive investigation, controversial results have been obtained concerning the precise signaling pathway(s) regulated by K-ras in different cell types. We show that in primary fetal liver erythroid progenitors, erythropoietin activates all three Ras isoforms, but preferentially N- and K-ras. In K-ras(-/-) fetal liver cells (FLC), erythropoietin- or stem cell factor-dependent Akt activation is greatly reduced, whereas other pathways including Stat5 and p44/p42 MAP kinase are activated normally. We further studied the effects of reduced cytokine-dependent Akt activation in erythroid differentiation. We find that freshly isolated K-ras(-/-) FLC show an approximately 7-fold increase of apoptosis and delayed erythroid differentiation, but only at the stage of erythroid progenitors and very early erythroblasts. When K-ras(-/-) erythroid progenitors are cultured in vitro, there is a significant delay in erythroid differentiation but little increase in apoptosis. Furthermore, we show that partial pharmacologic inhibition of the phosphatidylinositol 3-kinase/Akt pathway in wild-type erythroid progenitors leads to a delay in erythroid differentiation similar to that observed in K-ras(-/-) FLC. Taken together, our data identify K-ras as the major regulator for cytokine-dependent Akt activation, which is important for erythroid differentiation in vivo.
Collapse
Affiliation(s)
- Jing Zhang
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
25
|
Jackson EK, Gao L, Zhu C. Mechanism of the vascular angiotensin II/alpha2-adrenoceptor interaction. J Pharmacol Exp Ther 2005; 314:1109-16. [PMID: 15901799 DOI: 10.1124/jpet.105.086074] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
alpha(2)-Adrenoceptors potentiate vascular responses to angiotensin II. The goal of this study was to test the hypothesis that the phospholipase C (PLC)/protein kinase C (PKC)/c-src/phosphatidylinositol 3-kinase (PI3K) pathway contributes to the vascular angiotensin II/alpha(2)-adrenoceptor interaction. In rats in vivo, intrarenal infusions of angiotensin II (10 ng/kg/min) increased renal vascular resistance by 5.8 +/- 0.5 units, and this response was enhanced (p < 0.05) to 9.1 +/- 1.2 units by UK-14,304 [5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine; 3 microg/kg/min; alpha(2)-adrenoceptor agonist]. Intrarenal infusions of U-73122 [1-[6-[[(17beta)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]-hexyl]-1H-pyrrole-2,5-dione; 3 microg/min; PLC inhibitor], GF109203X [bisindolylmaleimide I; 10 microg/min; PKC inhibitor], CGP77675 [1-(2-{4-[4-amino-5-(3-methoxyphenyl)pyrrolo[2,3-d]pyrimidin-7-yl]phenyl}ethyl)piperidin-4-ol; 5 microg/min; c-src inhibitor], and wortmannin (1 microg/min; PI3K inhibitor) abolished the angiotensin II/alpha(2)-adrenoceptor interaction. In isolated perfused rat kidneys, angiotensin II (0.3, 1, and 3 nM) increased perfusion pressure (by 15 +/- 8, 39 +/- 4, and 93 +/- 9 mm Hg, respectively), and UK-14,304 (1 microM) potentiated these responses (to 36 +/- 4, 67 +/- 7, and 135 +/- 17 mm Hg, respectively). This angiotensin II/alpha(2)-adrenoceptor interaction was abolished by U-73122 (10 microM), GF109203X (3 microM), CGP77675 (5 microM), and wortmannin (0.2 microM). Preglomerular microvascular smooth muscle cells expressed phospholipase (PLC)-beta(2), PLC-beta(3), c-src, phospho(tyrosine 416)-c-src, and PI3K. In these cells, angiotensin II (0.1 microM) and UK-14,304 (1 microM) per se did not increase phospho-c-src; however, the combination of angiotensin II plus UK-14,304 doubled phospho-c-src, and this interaction was abolished by U-73122 (10 microM) and GF109203X (3 microM). In conclusion, the PLC/PKC/c-src/PI3K pathway may contribute importantly to the interaction between alpha(2)-adrenoceptors and angiotensin II on renal vascular resistance.
Collapse
Affiliation(s)
- Edwin K Jackson
- Center for Clinical Pharmacology, Department of Pharmacology, University of Pittsburgh School of Medicine, PA 15219-3130, USA.
| | | | | |
Collapse
|
26
|
Xie Z, Singleton PA, Bourguignon LYW, Bikle DD. Calcium-induced human keratinocyte differentiation requires src- and fyn-mediated phosphatidylinositol 3-kinase-dependent activation of phospholipase C-gamma1. Mol Biol Cell 2005; 16:3236-46. [PMID: 15872086 PMCID: PMC1165407 DOI: 10.1091/mbc.e05-02-0109] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 04/11/2005] [Accepted: 04/25/2005] [Indexed: 01/25/2023] Open
Abstract
We have previously demonstrated that phospholipase C (PLC)-gamma1 is required for calcium-induced human keratinocyte differentiation. In the present study, we investigated whether the activation of PLC-gamma1 by nonreceptor kinases such as src and fyn plays a role in mediating this process. Our results showed that the combination of dominant negative src and fyn blocked calcium-stimulated PLC-gamma1 activity and human keratinocyte differentiation, whereas each separately has little effect. However, unlike the activation of PLC-gamma1 by epidermal growth factor, calcium-induced activation of PLC-gamma1 was not a result of direct tyrosine phosphorylation. Therefore, we examined an alternative mechanism, in particular phosphatidylinositol 3,4,5-triphosphate (PIP3) formed as a product of phosphatidylinositol 3-kinase (PI3K) activity. PIP3 binds to and activates PLC-gamma1. The combination of dominant negative src and fyn blocked calcium-induced tyrosine phosphorylation of the regulatory subunit of PI3K, p85alpha, and the activity of the catalytic subunit of PI3K. PI3K inhibitors blocked calcium activation of PLC-gamma1 as well as the induction of keratinocyte differentiation markers involucrin and transglutaminase. These data indicate that calcium activates PLC-gamma1 via increased PIP3 formation mediated by c-src- and fyn-activated PI3K. This activation is required for calcium-induced human keratinocyte differentiation.
Collapse
Affiliation(s)
- Zhongjian Xie
- Endocrine Unit, Veterans Affairs Medical Center, Northern California Institute for Research and Education and University of California-San Francisco, San Francisco, CA 94121, USA.
| | | | | | | |
Collapse
|
27
|
Munugalavadla V, Kapur R. Role of c-Kit and erythropoietin receptor in erythropoiesis. Crit Rev Oncol Hematol 2005; 54:63-75. [PMID: 15780908 DOI: 10.1016/j.critrevonc.2004.11.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2004] [Indexed: 11/30/2022] Open
Abstract
Erythropoiesis is regulated by a number of growth factors, among which stem cell factor (SCF) and erythropoietin (Epo) play a non-redundant function. Viable mice with mutations in the SCF gene (encoded by the Steel (Sl) locus), or its receptor gene c-Kit (encoded by the White spotting (W) locus) develop a hypoplastic macrocytic anemia. Mutants of W or Sl that are completely devoid of c-Kit or SCF expression die in utero of anemia between days 14 and 16 of gestation and contain reduced numbers of erythroid progenitors in the fetal liver. Likewise, Epo and Epo receptor (Epo-R)-deficient mice die in utero due to a marked reduction in the number of committed fetal liver derived erythroid progenitors. Thus, committed erythroid progenitors require both c-Kit and Epo-R signal transduction pathways for their survival, proliferation and differentiation. In vitro, Epo alone is capable of generating mature erythroid progenitors; however, a combined treatment of Epo and SCF results in synergistic proliferation and expansion of developing erythroid progenitors. This review summarizes recent advances made towards understanding the signaling mechanisms by which Epo-R and c-Kit regulate growth, survival, and differentiation of erythroid progenitors alone and cooperatively.
Collapse
Affiliation(s)
- Veerendra Munugalavadla
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Cancer Research Building, Indianapolis, IN 46202, USA
| | | |
Collapse
|
28
|
Ingley E, McCarthy DJ, Pore JR, Sarna MK, Adenan AS, Wright MJ, Erber W, Tilbrook PA, Klinken SP. Lyn deficiency reduces GATA-1, EKLF and STAT5, and induces extramedullary stress erythropoiesis. Oncogene 2005; 24:336-43. [PMID: 15516974 DOI: 10.1038/sj.onc.1208199] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In vitro studies have implicated the Lyn tyrosine kinase in erythropoietin signaling. In this study, we show that J2E erythroid cells lacking Lyn have impaired signaling and reduced levels of transcription factors STAT5a, EKLF and GATA-1. Since mice lacking STAT5, EKLF or GATA-1 have red cell abnormalities, this study also examined the erythroid compartment of Lyn(-/-) mice. Significantly, STAT5, EKLF and GATA-1 levels were appreciably lower in Lyn(-/-) erythroblasts, and the phenotype of Lyn(-/-) animals was remarkably similar to GATA-1(low) animals. Although young adult Lyn-deficient mice had normal hematocrits, older mice developed anemia. Grossly enlarged erythroblasts and florid erythrophagocytosis were detected in the bone marrow of mice lacking Lyn. Markedly elevated erythroid progenitors and precursor levels were observed in the spleens, but not bone marrow, of Lyn(-/-) animals indicating that extramedullary erythropoiesis was occurring. These data indicate that Lyn(-/-) mice display extramedullary stress erythropoiesis to compensate for intrinsic and extrinsic erythroid defects.
Collapse
Affiliation(s)
- Evan Ingley
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, WA, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Takagaki K, Katsuma S, Kaminishi Y, Horio T, Tanaka T, Ohgi T, Yano J. Role of Chk1 and Chk2 in Ara-C-induced differentiation of human leukemia K562 cells. Genes Cells 2005; 10:97-106. [PMID: 15676021 DOI: 10.1111/j.1365-2443.2005.00821.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human chronic myelogenous leukemia K562 cells are relatively resistant to the anti-metabolite cytosine arabinoside (Ara-C) and, when treated with Ara-C, they differentiate into erythrocytes without undergoing apoptosis. In this study we investigated the mechanism by which Ara-C induces K562 cells to differentiate. We first observed that Ara-C-induced differentiation of these cells is completely inhibited by the radiosensitizing agent caffeine, an inhibitor of ATM and ATR protein kinases. We next found that Ara-C activates Chk1 and Chk2 in the cells, and that the activation of Chk1, but not of Chk2, was almost completely inhibited by caffeine. Proteasome-mediated degradation of Cdc25A and phosphorylation of Cdc25C were induced by Ara-C treatment, presumably due to the activation of Chk2 and Chk1, respectively. To directly observe the effects of checkpoint kinase activation in Ara-C-induced differentiation, we suppressed Chk1 or Chk2 with the Chk1-specific inhibitor Go6976, by generating cell lines stably over-expressing dominant-negative forms of Chk2, or by siRNA-mediated knock-down of the Chk1 or the Chk2 gene. The results suggest that Ara-C-induced erythroid differentiation of K562 cells depends on both Chk1 and Chk2 pathways.
Collapse
Affiliation(s)
- Kazuchika Takagaki
- Research Laboratories, Nippon Shinyaku Co. Ltd, 3-14-1 Sakura, Tsukuba, Ibaraki 305-0003, Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Kubota Y, Ohnishi H, Kitanaka A, Ishida T, Tanaka T. Constitutive activation of PI3K is involved in the spontaneous proliferation of primary acute myeloid leukemia cells: direct evidence of PI3K activation. Leukemia 2004; 18:1438-40. [PMID: 15175626 DOI: 10.1038/sj.leu.2403402] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Nomura T, Kubota Y, Baba N, Saigo K, Ohnishi H, Kitanaka A, Taminato T. Analysis of the optimal blood sampling conditions for estimation of hematopoietic progenitor cell count by the SE-9000 automated hematolyzer. Acta Haematol 2004; 112:152-9. [PMID: 15345898 DOI: 10.1159/000079727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Accepted: 03/15/2004] [Indexed: 11/19/2022]
Abstract
We evaluated the optimal conditions for blood sampling for hematopoietic progenitor cells (HPCs) as estimated by the immature information program of the SE-9000 automated hematology analyzer. The HPC count was most stable when the blood samples were incubated at room temperature with ethylene-diaminetetraacetic acid dipotassium (EDTA-2K) as an anticoagulant. The HPC count should, however, be measured within 4 h after blood collection, even under optimal conditions. In contrast, the CD34+ cell count estimated by flow cytometric analysis was stable for at least 21 h after the blood samples were incubated with EDTA-2K at room temperature or 4 degrees C. When appropriate blood samples were used, the HPC count in the peripheral blood significantly correlated with the CD34+ cell count in the peripheral blood and in the apheresis yields (r = 0.798 and 0.635, respectively); therefore, the HPC count is a reliable predictor for initiation of apheresis procedures to obtain sufficient HPCs for peripheral blood stem cell transplantation.
Collapse
Affiliation(s)
- Tsutomu Nomura
- Department of Transfusion Medicine, Kagawa University, Kagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Kubota Y, Tanaka T, Ohnishi H, Kitanaka A, Okutani Y, Taminato T, Ishida T, Kamano H. Constitutively activated phosphatidylinositol 3-kinase primes platelets from patients with chronic myelogenous leukemia for thrombopoietin-induced aggregation. Leukemia 2004; 18:1127-37. [PMID: 15085152 DOI: 10.1038/sj.leu.2403370] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study, we examined the effect of thrombopoietin (TPO) on the aggregation of platelets from 40 patients with myeloproliferative disorders (MPDs), including 17 patients with chronic myelogenous leukemia in the chronic phase (CML-CP), 10 with polycythemia vera, 10 with essential thrombocythemia, and three with myelofibrosis. TPO by itself dose-dependently induced the aggregation of platelets from patients with CML-CP but not from those with other MPDs or with CML-CP in cytogenetical complete remission. The expression of CD63 in CML-CP platelets was induced by TPO treatment. Phosphatidylinositol 3-kinase (PI3-kinase) was constitutively activated in CML-CP platelets. Pretreatment with PI3-kinase inhibitors (wortmannin and LY294002) dose-dependently inhibited TPO-induced aggregation of CML-CP platelets. The Abl kinase inhibitor imatinib mesylate and the Jak inhibitor AG490 suppressed TPO-induced aggregation of CML-CP platelets. Pretreatment with imatinib mesylate, but not with AG490, inhibited the activity of PI3-kinase in CML-CP platelets. In addition, tyrosine phosphorylation of Jak2 was undetected in CML-CP platelets before TPO treatment. These findings indicate that the constitutive activation of PI3-kinase primes CML-CP platelets for the aggregation induced by TPO, and that Bcr-Abl, but not Jak family protein tyrosine kinases, are involved in the constitutive activation of PI3-kinase in CML-CP platelets.
Collapse
Affiliation(s)
- Y Kubota
- The Department of Transfusion Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
PI3 kinase is important for Ras, MEK and Erk activation of Epo-stimulated human erythroid progenitors. BMC Biol 2004; 2:7. [PMID: 15149544 PMCID: PMC419721 DOI: 10.1186/1741-7007-2-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Accepted: 05/18/2004] [Indexed: 12/31/2022] Open
Abstract
Background Erythropoietin is a multifunctional cytokine which regulates the number of erythrocytes circulating in mammalian blood. This is crucial in order to maintain an appropriate oxygen supply throughout the body. Stimulation of primary human erythroid progenitors (PEPs) with erythropoietin (Epo) leads to the activation of the mitogenic kinases (MEKs and Erks). How this is accomplished mechanistically remained unclear. Results Biochemical studies with human cord blood-derived PEPs now show that Ras and the class Ib enzyme of the phosphatidylinositol-3 kinase (PI3K) family, PI3K gamma, are activated in response to minimal Epo concentrations. Surprisingly, three structurally different PI3K inhibitors block Ras, MEK and Erk activation in PEPs by Epo. Furthermore, Erk activation in PEPs is insensitive to the inhibition of Raf kinases but suppressed upon PKC inhibition. In contrast, Erk activation induced by stem cell factor, which activates c-Kit in the same cells, is sensitive to Raf inhibition and insensitive to PI3K and PKC inhibitors. Conclusions These unexpected findings contrast with previous results in human primary cells using Epo at supraphysiological concentrations and open new doors to eventually understanding how low Epo concentrations mediate the moderate proliferation of erythroid progenitors under homeostatic blood oxygen levels. They indicate that the basal activation of MEKs and Erks in PEPs by minimal concentrations of Epo does not occur through the classical cascade Shc/Grb2/Sos/Ras/Raf/MEK/Erk. Instead, MEKs and Erks are signal mediators of PI3K, probably the recently described PI3K gamma, through a Raf-independent signaling pathway which requires PKC activity. It is likely that higher concentrations of Epo that are induced by hypoxia, for example, following blood loss, lead to additional mitogenic signals which greatly accelerate erythroid progenitor proliferation.
Collapse
|
34
|
Ugo V, Marzac C, Teyssandier I, Larbret F, Lécluse Y, Debili N, Vainchenker W, Casadevall N. Multiple signaling pathways are involved in erythropoietin-independent differentiation of erythroid progenitors in polycythemia vera. Exp Hematol 2004; 32:179-87. [PMID: 15102479 DOI: 10.1016/j.exphem.2003.11.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 10/29/2003] [Accepted: 11/04/2003] [Indexed: 11/18/2022]
Abstract
Polycythemia vera (PV) is a myeloproliferative disorder arising in a multipotent hematopoietic stem cell. The pathogenesis of PV remains poorly understood; however, the biologic hallmark of this disease is the presence of erythropoietin (Epo)-independent colony formation (endogenous erythroid colony [EEC]) and cytokine hypersensitivity. We have developed a simple liquid culture from CD34+ cells to study PV erythroid differentiation. PV erythroid differentiation was characterized in this culture system by two types of abnormalities: 1) an increased proliferation of progenitors in response to cytokines, associated with strict cytokine dependency for preventing apoptosis; and 2) Epo-independent terminal erythroid differentiation in the presence of stem cell factor and interleukin-3 as evidenced by the acquisition of glycophorin A. The level of Epo-independent terminal differentiation correlates in PV patients with the number of EEC. Epo-independent terminal differentiation as well as normal Epo-induced differentiation were repressed by inhibitors of JAK2 (AG490), PI3K (LY294002), and the Src family kinases (PP2). In contrast, an inhibitor of the ERK/MAP kinase pathway (PD98059) had no effect on Epo-independent terminal differentiation. These signaling abnormalities were not mediated by a decreased expression or activity of the membrane tyrosine phosphatase CD45, which dephosphorylates JAK2 and Src family kinases. This study demonstrates that early steps of PV erythroid differentiation are strictly cytokine dependent. In contrast, late erythroid differentiation is an Epo-independent phenomenon that is mediated by signaling pathways identical to those in Epo-induced differentiation.
Collapse
Affiliation(s)
- Valérie Ugo
- INSERM U362, Institut Gustave Roussy, Villejuif, France.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Li K, Menon MP, Karur VG, Hegde S, Wojchowski DM. Attenuated signaling by a phosphotyrosine-null Epo receptor form in primary erythroid progenitor cells. Blood 2003; 102:3147-53. [PMID: 12869513 DOI: 10.1182/blood-2003-01-0078] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Signals provided by the erythropoieitin receptor (EpoR) are required for erythroid development beyond the erythroid colony-forming unit (CFU-e) stage and are propagated via the EpoR-tethered Janus kinase, JAK2. JAK2 functions, in part, to phosphorylate 8 conserved EpoR phosphotyrosine (PY) sites for the binding of a diverse set of signaling factors. However, recent studies in transgenic and knock-in mice have demonstrated substantial bioactivity for PY-null EpoR forms. Presently, the activities of a PY-null EpoR-HM form in primary progenitor cells from knock-in mice were further assessed using optimized Epo dose-dependent proliferation, survival, and differentiation assays. As compared with the wild-type (wt)-EpoR, EpoR-HM activity was compromised several-fold in each context when Epo was limited to physiologic concentrations. Possible compensatory increases in serum growth factor levels also were investigated, and as assayed using embryonic stem (ES) cell-derived erythroid G1E2 cells, activities in serum from EpoR-HM mice were substantially elevated. In addition, when challenged with phenylhydrazine-induced anemia, EpoR-HM mice failed to respond with efficient splenic stress erythropoiesis. Thus, the function of this JAK2-coupled but minimal PY-null EpoR-HM form appears to be attenuated in several contexts and to be assisted in vivo by compensatory mechanisms. Roles normally played by EpoR PY sites and distal domains therefore should receive continued attention.
Collapse
Affiliation(s)
- Ke Li
- Immunobiology Program and Department of Veterinary Science, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
36
|
Li K, Miller C, Hegde S, Wojchowski D. Roles for an Epo receptor Tyr-343 Stat5 pathway in proliferative co-signaling with kit. J Biol Chem 2003; 278:40702-9. [PMID: 12909618 DOI: 10.1074/jbc.m307182200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythroid progenitor cell expansion depends upon co-signaling by Epo receptor (EpoR) and Kit, but underlying mechanisms are incompletely understood. To quantitatively analyze EpoR contributions to co-signaling, phosphotyrosine (Tyr(P)) mutants were expressed as human epidermal growth factor (hEGF) receptor-mEpoR EE chimeras at matched and physiological levels in FDCW2 hematopoietic progenitor cells and were assayed for proliferative activities in the absence or presence of endogenous Kit stimulation. Two Tyr(P)-null (but Jak2-coupled) EpoR forms each retained <or=25% of the wild-type activity, whereas the add-back of single Tyr(P) sites in the EpoR forms EE-T-Y343 (Stat5 binding site), EE-Y479 (p85/phosphatidylinositol 3-kinase binding site), or EE-Y464 (Src kinase binding site) significantly enhanced activities (to 100, 95, and 50% of EE-WT (wild type) levels, respectively). EE-Y343&Y401 and EEF343&F401 double add-back and deletion constructs were also prepared and were shown to possess 90 and <or=50% of wild-type activity. In contrast, efficient Kit co-signaling activity was retained only by EE-T-Y343 and EE-Y343&Y401 EpoR forms. EE-T-Y343 together with EE-T-Y343F and EE-WT EpoR forms were also analyzed in embryonic stem cell-derived erythroid G1E-2 cells with highly comparable outcomes, including the ability of EE-T-Y343 (but not EE-T-Y-343F) to synergize with Kit. Despite specific connection of EE-T-Y343 to Stat5, the contributions of Kit to EpoR-dependent proliferation did not involve Kit effects on Stat5 activation (but was limited by the mutation of Kit Tyr(P)-567 and Tyr(P)-569 Src kinase recruitment sites). Instead, co-signaling appears to depend upon the downstream integration of Kit signals with the targets of an EpoR/Jak2/Y343/Stat 5 response axis.
Collapse
Affiliation(s)
- Ke Li
- Department of Veterinary Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
37
|
Rahmani M, Yu C, Reese E, Ahmed W, Hirsch K, Dent P, Grant S. Inhibition of PI-3 kinase sensitizes human leukemic cells to histone deacetylase inhibitor-mediated apoptosis through p44/42 MAP kinase inactivation and abrogation of p21CIP1/WAF1 induction rather than AKT inhibition. Oncogene 2003; 22:6231-42. [PMID: 13679862 DOI: 10.1038/sj.onc.1206646] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Effects of the PI-3 kinase inhibitor LY294002 (LY) have been examined in relation to responses of human leukemia cells to histone deacetylase inhibitors (HDIs). Coexposure of U937 cells for 24 h to marginally toxic concentrations of LY294002 (e.g., 30 microM) and sodium butyrate (SB; 1 mM) resulted in a marked increase in mitochondrial damage (e.g., cytochrome c and Smac/DIABLO release, loss of DeltaPsi(m)), caspase activation, and apoptosis. Similar results were observed in Jurkat, HL-60, and K562 leukemic cells and with other HDIs (e.g., SAHA, MS-275). Exposure of cells to SB/LY was associated with Bcl-2 and Bid cleavage, XIAP and Mcl-1 downregulation, and diminished CD11b expression. While LY blocked SB-mediated Akt activation, enforced expression of a constitutively active (myristolated) Akt failed to attenuate SB/LY-mediated lethality. Unexpectedly, treatment of cells with SB+/-LY resulted in a marked reduction in phosphorylation (activation) of p44/42 mitogen-activated protein (MAP) kinase. Moreover, enforced expression of a constitutively active MEK1 construct partially but significantly attenuated SB/LY-induced apoptosis. Lastly, cotreatment with LY blocked SB-mediated induction of p21(CIP1/WAF1); moreover, enforced expression of p21(CIP1/WAF1) significantly reduced SB/LY-mediated apoptosis. Together, these findings indicate that LY promotes SB-mediated apoptosis through an AKT-independent process that involves MEK/MAP kinase inactivation and interference with p21(CIP1/WAF1) induction.
Collapse
Affiliation(s)
- Mohamed Rahmani
- Department of Medicine, Medical College of Viriginia, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Huddleston H, Tan B, Yang FC, White H, Wenning MJ, Orazi A, Yoder MC, Kapur R, Ingram DA. Functional p85alpha gene is required for normal murine fetal erythropoiesis. Blood 2003; 102:142-5. [PMID: 12623844 DOI: 10.1182/blood-2002-10-3245] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro studies suggest that activation of class IA phosphatidylinositol 3 (PI-3) kinase is necessary for normal erythroid cell development. However, when class IA PI-3 kinase-deficient mice were generated by a targeted deletion of the p85alpha regulatory subunit, fetal erythropoiesis was reportedly unaffected. Given the discrepancies between these studies, we performed a more detailed in vivo analysis of class IA PI-3 kinase-deficient embryos. Day-14.5 p85alpha-/- embryos are pale with a marked reduction of mature erythrocytes in their peripheral blood. Further, the absolute number and frequency of both early (erythroid burst-forming unit [BFU-E]) and late erythroid progenitors (erythroid colony-forming unit [CFU-E]) are reduced in p85alpha-/- fetal livers compared with wild-type controls, which is associated with reduced proliferation. Taken together, these data establish an important role for p85alpha and class IA PI-3 kinase in regulating the development of both early and late erythroid progenitors in fetal liver.
Collapse
Affiliation(s)
- Hannah Huddleston
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut St, R4/470, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bouscary D, Pene F, Claessens YE, Muller O, Chrétien S, Fontenay-Roupie M, Gisselbrecht S, Mayeux P, Lacombe C. Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation. Blood 2003; 101:3436-43. [PMID: 12506011 DOI: 10.1182/blood-2002-07-2332] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The production of red blood cells is tightly regulated by erythropoietin (Epo). The phosphoinositide 3-kinase (PI 3-kinase) pathway was previously shown to be activated in response to Epo. We studied the role of this pathway in the control of Epo-induced survival and proliferation of primary human erythroid progenitors. We show that phosphoinositide 3 (PI 3)-kinase associates with 4 tyrosine-phosphorylated proteins in primary human erythroid progenitors, namely insulin receptor substrate-2 (IRS2), Src homology 2 domain-containing inositol 5'-phosphatase (SHIP), Grb2-associated binder-1 (Gab1), and the Epo receptor (EpoR). Using different in vitro systems, we demonstrate that 3 alternative pathways independently lead to Epo-induced activation of PI 3-kinase and phosphorylation of its downstream effectors, Akt, FKHRL1, and P70S6 kinase: through direct association of PI 3-kinase with the last tyrosine residue (Tyr479) of the Epo receptor (EpoR), through recruitment and phosphorylation of Gab proteins via either Tyr343 or Tyr401 of the EpoR, or through phosphorylation of IRS2 adaptor protein. The mitogen-activated protein (MAP) kinase pathway was also activated by Epo in erythroid progenitors, but we found that this process is independent of PI 3-kinase activation. In erythroid progenitors, the functional role of PI 3-kinase was both to prevent apoptosis and to stimulate cell proliferation in response to Epo stimulation. Finally, our results show that PI 3-kinase-mediated proliferation of erythroid progenitors in response to Epo occurs mainly through modulation of the E3 ligase SCF(SKP2), which, in turn, down-regulates p27(Kip1) cyclin-dependent kinase (CDK) inhibitor via proteasome degradation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Apoptosis
- Cell Cycle Proteins/metabolism
- Cell Division
- Cell Survival
- Cells, Cultured/cytology
- Cells, Cultured/drug effects
- Cells, Cultured/enzymology
- Chromones/pharmacology
- Cyclin-Dependent Kinase Inhibitor p27
- Cysteine Endopeptidases/metabolism
- DNA-Binding Proteins/metabolism
- Enzyme Activation/drug effects
- Enzyme Inhibitors/pharmacology
- Erythroid Precursor Cells/cytology
- Erythroid Precursor Cells/drug effects
- Erythroid Precursor Cells/enzymology
- Erythropoietin/pharmacology
- Erythropoietin/physiology
- Fetal Blood/cytology
- Forkhead Box Protein O1
- Forkhead Box Protein O3
- Forkhead Transcription Factors
- Humans
- Infant, Newborn
- Insulin Receptor Substrate Proteins
- Intracellular Signaling Peptides and Proteins
- Ligases/metabolism
- MAP Kinase Signaling System
- Mice
- Morpholines/pharmacology
- Multienzyme Complexes/metabolism
- Phosphatidylinositol 3-Kinases/physiology
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoinositide-3 Kinase Inhibitors
- Phosphoproteins/metabolism
- Phosphoric Monoester Hydrolases/metabolism
- Phosphorylation
- Proteasome Endopeptidase Complex
- Protein Processing, Post-Translational
- Protein Serine-Threonine Kinases
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Receptors, Erythropoietin/metabolism
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Signal Transduction/drug effects
- Sirolimus/pharmacology
- Transcription Factors/metabolism
- Tumor Suppressor Proteins/metabolism
- Ubiquitin-Protein Ligases
Collapse
Affiliation(s)
- Didier Bouscary
- Département d'Hématologie, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U567, Centre National de la Recherche Scientifique, UMR 8104, Université René Descartes, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Maejima Y, Ueba H, Kuroki M, Yasu T, Hashimoto S, Nabata A, Kobayashi N, Ikeda N, Saito M, Kawakami M. Src family kinases and nitric oxide production are required for hepatocyte growth factor-stimulated endothelial cell growth. Atherosclerosis 2003; 167:89-95. [PMID: 12618272 DOI: 10.1016/s0021-9150(02)00384-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatocyte growth factor (HGF) is a potent mitogen for vascular endothelial cells (EC); however, signal transduction pathways for HGF-stimulated EC growth remain unclear. In the present study we investigated the role of Src family kinases and nitric oxide (NO) in HGF-stimulated EC growth. Human umbilical vein endothelial cells (HUVEC) were stimulated with HGF and NO was measured by an NOx analyzing HPLC system. Activation of ERK1/2 and p38 MAPK was assessed by Western blot. NO production in HUVEC increased 1.8-fold by HGF. A Src family kinases inhibitor PP1 inhibited HGF-stimulated NO production by 71%. HUVEC growth increased 1.9-fold in cell number by HGF. PP1 and Nitro-L-arginine methylester (L-NAME) inhibited HGF-stimulated HUVEC growth by 51 and by 71%. ERK1/2 and p38 MAPK were phosphorylated by HGF and a MEK inhibitor PD98059 and a p38 MAPK inhibitor SB203580 inhibited HGF-stimulated HUVEC growth by 66% and by 58%; however, HGF-induced phosphorylation of ERK1/2 and p38 MAPK was not inhibited by L-NAME, indicating that NO is not an upstream activator of ERK1/2 and p38 MAPK. These findings demonstrated that Src family kinases regulate HGF-stimulated NO production in HUVEC and that HGF stimulates HUVEC growth through NO-dependent and NO-independent pathways.
Collapse
Affiliation(s)
- Yasuhiro Maejima
- Department of Internal Medicine, Omiya Medical Center, Jichi Medical School, Amanuma-Cho 1-847, Saitama City 330-8503, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kong M, Mounier C, Dumas V, Posner BI. Epidermal growth factor-induced DNA synthesis. Key role for Src phosphorylation of the docking protein Gab2. J Biol Chem 2003; 278:5837-44. [PMID: 12464621 DOI: 10.1074/jbc.m208286200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated that phosphatidylinositol 3-kinase (PI3-kinase) is necessary and sufficient to account for epidermal growth factor (EGF)-induced mitogenesis in rat primary hepatocytes. A cytosolic Gab2-containing complex accounts for >80% of the total EGF-induced PI3-kinase activity (Kong, M., Mounier, C., Wu, J., and Posner, B. I. (2000) J. Biol. Chem. 275, 36035-36042), suggesting a key role for Gab2 in EGF-induced mitogenesis. Here, we demonstrate that PP1, a selective inhibitor of Src family kinases, blocks the EGF-induced Gab2 tyrosine phosphorylation without inhibiting EGF-induced phosphorylation of the EGF receptor, ErbB3, or Shc. We also show that Gab2 phosphorylation is increased in Csk knockout cells in which Src family kinases are constitutively activated. Furthermore, PP1 blocks Gab2-associated downstream events including EGF-induced PI3-kinase activation, Akt phosphorylation, and DNA synthesis. We demonstrate that Gab2 and Src are constitutively associated. Since this association involves the proline-rich sequences of Gab2, it probably involves the Src homology 3 domain of Src kinase. Mutation of the proline-rich sequences in Gab2 prevented EGF-induced Gab2 phosphorylation, PI3-kinase/Akt activation, and DNA synthesis, demonstrating that Gab2 phosphorylation is critical for EGF-induced mitogenesis and is not complemented by ErbB3 or Shc phosphorylation. We also found that overexpression of a Gab2 mutant lacking SHP2 binding sites increased EGF-induced Gab2 phosphorylation and the activation of PI3-kinase but blocked activation of MAPK. In addition, we demonstrated that the Src-induced response was down-regulated by Gab2-associated SHP2. In summary, our results have defined the role for Src activation in EGF-induced hepatic mitogenesis through the phosphorylation of Gab2 and the activation of the PI3-kinase cascade.
Collapse
Affiliation(s)
- Mei Kong
- Polypeptide Hormone Laboratory, Faculty of Medicine, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | | | |
Collapse
|
42
|
Boudot C, Dassé E, Lambert E, Kadri Z, Mayeux P, Chrétien S, Haye B, Billat C, Petitfrère E. Involvement of the Src kinase Lyn in phospholipase C-gamma 2 phosphorylation and phosphatidylinositol 3-kinase activation in Epo signalling. Biochem Biophys Res Commun 2003; 300:437-42. [PMID: 12504103 DOI: 10.1016/s0006-291x(02)02866-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We examined the role of the Src kinase Lyn in phospholipase C-gamma 2 (PLC-gamma 2) and phosphatidylinositol (PI) 3-kinase activation in erythropoietin (Epo)-stimulated FDC-P1 cells transfected with a wild type (WT) Epo-receptor (Epo-R). We showed that two inhibitors of Src kinases, PP1 and PP2, abolish both PLC-gamma 2 tyrosine phosphorylation and PI 3-kinase activity in WT Epo-R FDC-P1 cells. We also demonstrated that Epo-phosphorylated Lyn is associated with tyrosine phosphorylated PLC-gamma 2 and PI 3-kinase in WT Epo-R FDC-P1-stimulated cells. Moreover Epo-activated Lyn phosphorylates in vitro PLC-gamma 2 immunoprecipitated from unstimulated cells. Our results suggest that the Src kinase Lyn is involved in PLC-gamma 2 phosphorylation and PI 3-kinase activation induced by Epo.
Collapse
Affiliation(s)
- Cédric Boudot
- Laboratoire de Biochimie, CNRS FRE 2534, IFR 53 Biomolécules, UFR Sciences Exactes et Naturelles, BP 1039, Université de Reims Champagne-Ardenne, 51687 Reims Cedex 2, France
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Buitenhuis M, Baltus B, Lammers JWJ, Coffer PJ, Koenderman L. Signal transducer and activator of transcription 5a (STAT5a) is required for eosinophil differentiation of human cord blood-derived CD34+ cells. Blood 2003; 101:134-42. [PMID: 12393707 DOI: 10.1182/blood-2002-03-0740] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signal transducers and activators of transcription (STATs) have been reported to play a critical role in the differentiation of several myeloid cell lines, although the importance of STATs in the differentiation of primary human hematopoietic cells remains to be established. Terminal eosinophil differentiation is induced by interleukin-5 (IL-5), which has also been demonstrated to activate STAT5. We have investigated whether STAT5 plays a critical role during eosinophil differentiation using umbilical cord blood-derived CD34(+) cells. In this ex vivo system, STAT5 expression and activation are high early during differentiation, and STAT5 protein expression is down-regulated during the final stages of eosinophil differentiation. Retroviral transductions were performed to ectopically express wild-type and dominant-negative STAT5a (STAT5aDelta750) in CD34(+) cells. Transduction of cells with STAT5a resulted in enhanced proliferation compared with cells transduced with empty vector alone. Interestingly, ectopic expression of STAT5a also resulted in accelerated differentiation. In contrast, ectopic expression of STAT5aDelta750 resulted in a block in differentiation, whereas proliferation was also severely inhibited. Similar results were obtained with dominant-negative STAT5b. Forced expression of STAT5a enhanced expression of the STAT5 target genes Bcl-2 and p21(WAF/Cip1), suggesting they may be important in STAT5a-mediated eosinophil differentiation. These results demonstrate that STAT5 plays a critical role in eosinophil differentiation of primary human hematopoietic cells.
Collapse
Affiliation(s)
- Miranda Buitenhuis
- Department of Pulmonary Diseases, University Medical Center, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
Abstract
Estrogen has long been observed to endow cardiovascular protective effects, as evidenced by sex-specific differences in the incidence of hypertensive and coronary artery disease, the development of atherosclerosis, and myocardial remodeling after infarction. To exert its tissue-specific effects, the classic estrogen receptor (ER) functions as a ligand-dependent transcription factor. However, there is growing evidence that in response to 17beta-estradiol and heterologous signals, the ER can also mediate signaling cascades at the membrane and in the cytoplasm via various second messengers, such as receptor-mediated protein kinases. This review summarizes the current understanding of nonnuclear ER signaling and discusses the relevance to eliciting the beneficial cardiovascular effects of estrogen. These include vasodilation, inhibition of response to vessel injury, limiting myocardial injury after infarction, and attenuating cardiac hypertrophy. Defining the full repertoire of ER function promises to expose novel, highly specific targets for pharmacological interventions and may ultimately lead to the primary and secondary prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Karen J Ho
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Mass 02139, USA
| | | |
Collapse
|
45
|
Myklebust JH, Blomhoff HK, Rusten LS, Stokke T, Smeland EB. Activation of phosphatidylinositol 3-kinase is important for erythropoietin-induced erythropoiesis from CD34(+) hematopoietic progenitor cells. Exp Hematol 2002; 30:990-1000. [PMID: 12225790 DOI: 10.1016/s0301-472x(02)00868-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Several transducing molecules, including JAK2, STAT5, MAP kinases, phosphatidylinositol 3-kinase (PI3K), phospholipase C-gamma1, and PKC are activated by interaction between erythropoietin (EPO) and the EPO receptor. The aim of this was to examine the relative involvement of PI3K in the development of glycophorin A (GPA)(+) erythroid cells from normal hematopoietic progenitor cells. MATERIALS AND METHODS CD34(+) hematopoietic progenitor cells or subpopulations obtained by FACS sorting were cultured in serum-free medium containing EPO with or without inhibitors for PI3K, p38, MEK, or PKC for various time periods before phenotypic analysis or detection of apoptosis by flow cytometry, cell cycle analysis, high-resolution tracking of cell division, Western blot analysis, or Akt kinase assay were performed. RESULTS The PI3K inhibitor LY294002 completely counteracted the EPO-induced proliferation of CD34(+) progenitor cells and CD34(+)CD71(+)CD45RA(-) erythroid progenitors. LY294002 also highly suppressed the expanded erythropoiesis induced by the combined action of EPO and stem cell factor. The profound inhibitory effect of LY294002 on proliferation was caused by its induction of cell cycle arrest in the G(0)/G(1) phase of the cell cycle. Some cells acquired GPA expression before they went through cell division. This was completely blocked by LY294002, implying an inhibitory effect on maturation. In addition, LY294002 completely blocked the viability-enhancing effect of EPO in CD34(+)CD71(+)CD45RA(-) erythroid progenitors. LY294002 and various inhibitors of PKC completely suppressed the EPO-induced increase in the activity of Akt kinase, a direct downstream target of PI3K. CONCLUSIONS Our results point to an important role for PI3K in mediating EPO-induced survival, proliferation, and possibly maturation of early erythroid progenitors.
Collapse
Affiliation(s)
- June Helen Myklebust
- Department of Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway.
| | | | | | | | | |
Collapse
|