1
|
Bhutkar M, Kumar A, Rani R, Singh V, Saha A, Pathak A, Kothiala A, Mahajan S, Waghmode B, Verma S, Kumar R, Mudgal R, Sircar D, Kumar P, Tomar S. Structure-based identification of herbacetin and caffeic acid phenethyl ester as inhibitors of S-adenosylmethionine-dependent viral methyltransferase. FEBS Lett 2025. [PMID: 40353321 DOI: 10.1002/1873-3468.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 03/02/2025] [Accepted: 03/09/2025] [Indexed: 05/14/2025]
Abstract
Chikungunya (CHIKV) and dengue (DENV) viruses pose a public health risk and lack antiviral treatments. Structure-based molecular docking of a natural MTase substrates library identified herbacetin (HC) and caffeic acid phenethyl ester (CAPE) as potential CHIKV nsP1 and DENV NS5 MTase inhibitors. Binding affinities and MTase inhibition were confirmed using purified proteins. The crystal structure of DENV 3 NS5 MTase and CAPE complex revealed CAPE binding at viral RNA capping sites. Interestingly, HC and CAPE depleted polyamines crucial for RNA virus replication and decreased viral titer with IC50 values of ~ 13.44 and ~ 0.57 μm against CHIKV, and ~ 7.24 and ~ 1.01 μm against DENV 3, respectively. Polyamine addition did not reverse the antiviral effects, suggesting a dual inhibition mechanism. Impact statement This study reveals the antiviral potential of natural small molecules, Herbacetin (HC) and Caffeic acid phenethyl ester (CAPE) against Dengue and Chikungunya viruses. The molecules deplete polyamine levels and directly inhibit viral methyltransferases. This study opens new avenues for developing antiviral strategies that target both host factors and viral components.
Collapse
Affiliation(s)
- Mandar Bhutkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Amith Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Ruchi Rani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Ankita Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Akashjyoti Pathak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Aditi Kothiala
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Supreeti Mahajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Bhairavnath Waghmode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Shalja Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Ravi Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Rajat Mudgal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| |
Collapse
|
2
|
Alotaibi F, Aba Alkhayl FF, Foudah AI, Azhar Kamal M, Moglad EH, Khan S, Rehman ZU, Warsi MK, Jawaid T, Alam A. Investigating the effects of four medicinal plants against dengue virus through QSAR modeling and molecular dynamics studies. J Biomol Struct Dyn 2025; 43:4063-4080. [PMID: 38197579 DOI: 10.1080/07391102.2024.2301744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
The Dengue virus (DENV) has been increasingly recognized as a prevalent viral pathogen responsible for global transmission of infection. It has been established that DENV's NS5 methyltransferase (MTase) controls viral replication. As a result, NS5 MTase is considered a potentially useful drug target for DENV. In this study, the two phases of virtual screening were conducted using the ML-based QSAR model and molecular docking to identify potential compounds against NS5 of DENV. Four medicinal plants [Aloe vera, Cannabis sativa (Hemp), Ocimum sanctum (Holy Basil; Tulsi), and Zingiber officinale (Ginger)] that showed anti-viral properties were selected for sourcing the phytochemicals and screening them against NS5. Additionally, re-docking at higher exhaustiveness and interaction analysis were performed which resulted in the identification of the top four hits (135398658, 5281675, 119394, and 969516) which showed comparable results with the control Sinefungin (SFG). Post molecular dynamics simulation, 135398658 showed the lowest RMSD (0.4-0.5 nm) and the maximum number of hydrogen bonds (eight hydrogen bonds) after the control while 5281675 and 969516 showed comparable hydrogen bonds to the control. These compounds showed direct interactions with the catalytic site residues GLU111 and ASP131, in addition to this these compounds showed stable complex formation as depicted by principal component analysis and free energy landscape. 135398658 showed lower total binding free energy (ΔGTotal = -36.56 kcal/mol) than the control, while 5281675 had comparable values to the control (ΔGTotal = -34.1 kcal/mol). Overall, the purpose of this study was to identify phytochemicals that inhibit NS5 function, that could be further tested experimentally to treat dengue virus (DENV).
Collapse
Affiliation(s)
- Faisal Alotaibi
- Department of Pharmacy Practice, College of Pharmacy, Shaqra University, Al-Dawadmi, Saudi Arabia
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmed I Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ehssan H Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Microbiology and Parasitology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum, Sudan
| | - Shamshir Khan
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Zia Ur Rehman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohiuddin Khan Warsi
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
3
|
Wu Z, He Y, Wang T, Wang M, Cheng A, Chen S. DENV and ZIKV infection: Species specificity and broad cell tropism. Virology 2024; 600:110276. [PMID: 39467358 DOI: 10.1016/j.virol.2024.110276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Nearly one-third of countries worldwide have reported cases of Dengue virus (DENV) and Zika virus (ZIKV) infections, highlighting the significant threat these viruses pose to global public health. As members of the Flavivirus genus within the Flaviviridae family, DENV and ZIKV have demonstrated the ability to infect a wide range of cell lines from multiple species in vitro. However, the range of susceptible animal models is notably limited, and field studies indicate that their capacity to infect host organisms is highly restricted, with a very narrow range of target cells in vivo. The virus's ability to hijack host cellular machinery plays a crucial role in determining its cellular and species specificity. In this review, we examine how DENV and ZIKV exploit host cells to facilitate their replication, offering new insights that could inform the development of antiviral drugs and therapeutic targets.
Collapse
Affiliation(s)
- Zhen Wu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Agricultural Bioinformatics of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yu He
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Agricultural Bioinformatics of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Tao Wang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mingshu Wang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Anchun Cheng
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Shun Chen
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Agricultural Bioinformatics of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
4
|
Álvarez-Mínguez A, del Río N, Belén-Blázquez A, Casanova E, Orduña JM, Camarero P, Hurtado-Marcos C, del Águila C, Pérez-Pérez M, Martín-Acebes MA, Agudo R. Development of a luminescence-based method for measuring West Nile Virus MTase activity and its application to screen for antivirals. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100282. [PMID: 39445035 PMCID: PMC11497361 DOI: 10.1016/j.crmicr.2024.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
West Nile virus (WNV) is a flavivirus responsible for causing febrile illness and severe neurological diseases, with an increasing impact on human health around the world. However, there is still no adequate therapeutic treatment available to struggle WNV infections. Therefore, there is an urgent need to develop new techniques to accelerate the discovery of drugs against this pathogen. The main protein implicated in the replication of WNV is the non-structural protein 5 (NS5). This multifunctional protein contains methyltransferase (MTase) activity involved in the capping formation at the 5'-end of RNA and the methylation of internal viral RNA residues, both functions being essential for viral processes, such as RNA translation and escape from the innate immune response. We have developed a straightforward luminescence-based assay to monitor the MTase activity of the WNV NS5 protein with potential for high-throughput screening. We have validated this method as a sensitive and suitable assay for the identification of WNV MTase inhibitors assessing the inhibitory effect of the broad MTase inhibitor sinefungin, a natural nucleoside analog of the universal methyl donor S-adenosyl methionine (SAM). The screening of a small series of purine derivatives identified an adenosine derivative as a dose-dependent inhibitor of the MTase activity. The antiviral efficacy of this compound was further confirmed in WNV infections, displaying a measurable antiviral effect. This result supports the utility of this novel method for the screening of inhibitors against WNV MTase activity, which can be of special relevance to the discovery and development of therapeutics against WNV.
Collapse
Affiliation(s)
- Alejandra Álvarez-Mínguez
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| | - Natalia del Río
- Instituto de Quimica Medica (IQM, CSIC) c/ Juan de la Cierva 3, 28006 Madrid, Spain
- Escuela de Doctorado, Universidad Autónoma de Madrid, Spain
| | - Ana Belén-Blázquez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnologia Agraria y Alimentaria (INIA-CSIC) Carretera de A Coruña Km 7.5, 28040 Madrid, Spain
| | - Elena Casanova
- Instituto de Quimica Medica (IQM, CSIC) c/ Juan de la Cierva 3, 28006 Madrid, Spain
| | - José-María Orduña
- Instituto de Quimica Medica (IQM, CSIC) c/ Juan de la Cierva 3, 28006 Madrid, Spain
| | - Patricia Camarero
- Instituto de Quimica Medica (IQM, CSIC) c/ Juan de la Cierva 3, 28006 Madrid, Spain
| | - Carolina Hurtado-Marcos
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| | - Carmen del Águila
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| | | | - Miguel A. Martín-Acebes
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnologia Agraria y Alimentaria (INIA-CSIC) Carretera de A Coruña Km 7.5, 28040 Madrid, Spain
| | - Rubén Agudo
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| |
Collapse
|
5
|
vom Hemdt A, Thienel AL, Ciupka K, Wieseler J, Proksch HM, Schlee M, Kümmerer BM. 2'-O-methyltransferase-deficient yellow fever virus: Restricted replication in the midgut and secondary tissues of Aedes aegypti mosquitoes severely limits dissemination. PLoS Pathog 2024; 20:e1012607. [PMID: 39356716 PMCID: PMC11472933 DOI: 10.1371/journal.ppat.1012607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/14/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
The RNA genome of orthoflaviviruses encodes a methyltransferase within the non-structural protein NS5, which is involved in 2'-O-methylation of the 5'-terminal nucleotide of the viral genome resulting in a cap1 structure. While a 2'-O-unmethylated cap0 structure is recognized in vertebrates by the RNA sensor RIG-I, the cap1 structure allows orthoflaviviruses to evade the vertebrate innate immune system. Here, we analyzed whether the cap0 structure is also recognized in mosquitoes. Replication analyses of 2'-O-methyltransferase deficient yellow fever virus mutants (YFV NS5-E218A) of the vaccine 17D and the wild-type Asibi strain in mosquito cells revealed a distinct downregulation of the cap0 viruses. Interestingly, the level of inhibition differed for various mosquito cells. The most striking difference was found in Aedes albopictus-derived C6/36 cells with YFV-17D cap0 replication being completely blocked. Replication of YFV-Asibi cap0 was also suppressed in mosquito cells but to a lower extent. Analyses using chimeras between YFV-17D and YFV-Asibi suggest that a synergistic effect of several mutations across the viral genome accompanied by a faster initial growth rate of YFV-Asibi cap1 correlates with the lower level of YFV-Asibi cap0 attenuation. Viral growth analyses in Dicer-2 knockout cells demonstrated that Dicer-2 is entirely dispensable for attenuating the YFV cap0 viruses. Translation of a replication-incompetent cap0 reporter YFV-17D genome was reduced in mosquito cells, indicating a cap0 sensing translation regulation mechanism. Further, oral infection of Aedes aegypti mosquitoes resulted in lower infection rates for YFV-Asibi cap0. The latter is related to lower viral loads found in the midguts, which largely diminished dissemination to secondary tissues. After intrathoracic infection, YFV-Asibi cap0 replicated slower and to decreased amounts in secondary tissues compared to YFV-Asibi cap1. These results suggest the existence of an ubiquitously expressed innate antiviral protein recognizing 5'-terminal RNA cap-modifications in mosquitoes, both in the midgut as well as in secondary tissues.
Collapse
Affiliation(s)
- Anja vom Hemdt
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Katrin Ciupka
- Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Janett Wieseler
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Hannah M. Proksch
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Beate M. Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
6
|
Eftekhari Z, Zohrabi H, Oghalaie A, Ebrahimi T, Shariati FS, Behdani M, Kazemi-Lomedasht F. Advancements and challenges in mRNA and ribonucleoprotein-based therapies: From delivery systems to clinical applications. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102313. [PMID: 39281702 PMCID: PMC11402252 DOI: 10.1016/j.omtn.2024.102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The use of mRNA and ribonucleoproteins (RNPs) as therapeutic agents is a promising strategy for treating diseases such as cancer and infectious diseases. This review provides recent advancements and challenges in mRNA- and RNP-based therapies, focusing on delivery systems such as lipid nanoparticles (LNPs), which ensure efficient delivery to target cells. Strategies such as microfluidic devices are employed to prepare LNPs loaded with mRNA and RNPs, demonstrating effective genome editing and protein expression in vitro and in vivo. These applications extend to cancer treatment and infectious disease management, with promising results in genome editing for cancer therapy using LNPs encapsulating Cas9 mRNA and single-guide RNA. In addition, tissue-specific targeting strategies offer potential for improved therapeutic outcomes and reduced off-target effects. Despite progress, challenges such as optimizing delivery efficiency and targeting remain. Future research should enhance delivery efficiency, explore tissue-specific targeting, investigate combination therapies, and advance clinical translation. In conclusion, mRNA- and RNP-based therapies offer a promising avenue for treating various diseases and have the potential to revolutionize medicine, providing new hope for patients worldwide.
Collapse
Affiliation(s)
- Zohre Eftekhari
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Horieh Zohrabi
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Akbar Oghalaie
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Tahereh Ebrahimi
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Sadat Shariati
- Department of Influenza and other Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| |
Collapse
|
7
|
Mifsud JCO, Lytras S, Oliver MR, Toon K, Costa VA, Holmes EC, Grove J. Mapping glycoprotein structure reveals Flaviviridae evolutionary history. Nature 2024; 633:695-703. [PMID: 39232167 PMCID: PMC11410658 DOI: 10.1038/s41586-024-07899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/01/2024] [Indexed: 09/06/2024]
Abstract
Viral glycoproteins drive membrane fusion in enveloped viruses and determine host range, tissue tropism and pathogenesis1. Despite their importance, there is a fragmentary understanding of glycoproteins within the Flaviviridae2, a large virus family that include pathogens such as hepatitis C, dengue and Zika viruses, and numerous other human, animal and emergent viruses. For many flaviviruses the glycoproteins have not yet been identified, for others, such as the hepaciviruses, the molecular mechanisms of membrane fusion remain uncharacterized3. Here we combine phylogenetic analyses with protein structure prediction to survey glycoproteins across the entire Flaviviridae. We find class II fusion systems, homologous to the Orthoflavivirus E glycoprotein in most species, including highly divergent jingmenviruses and large genome flaviviruses. However, the E1E2 glycoproteins of the hepaciviruses, pegiviruses and pestiviruses are structurally distinct, may represent a novel class of fusion mechanism, and are strictly associated with infection of vertebrate hosts. By mapping glycoprotein distribution onto the underlying phylogeny, we reveal a complex evolutionary history marked by the capture of bacterial genes and potentially inter-genus recombination. These insights, made possible through protein structure prediction, refine our understanding of viral fusion mechanisms and reveal the events that have shaped the diverse virology and ecology of the Flaviviridae.
Collapse
Affiliation(s)
- Jonathon C O Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Spyros Lytras
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Michael R Oliver
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Kamilla Toon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Vincenzo A Costa
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Joe Grove
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| |
Collapse
|
8
|
Omme S, Wang J, Sifuna M, Rodriguez J, Owusu NR, Goli M, Jiang P, Waziha P, Nwaiwu J, Brelsfoard CL, Vigneron A, Ciota AT, Kramer LD, Mechref Y, Onyangos MG. Multi-omics analysis of antiviral interactions of Elizabethkingia anophelis and Zika virus. Sci Rep 2024; 14:18470. [PMID: 39122799 PMCID: PMC11315927 DOI: 10.1038/s41598-024-68898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
The microbial communities residing in the mosquito midgut play a key role in determining the outcome of mosquito pathogen infection. Elizabethkingia anophelis, originally isolated from the midgut of Anopheles gambiae possess a broad-spectrum antiviral phenotype, yet a gap in knowledge regarding the mechanistic basis of its interaction with viruses exists. The current study aims to identify pathways and genetic factors linked to E. anophelis antiviral activity. The understanding of E. anophelis antiviral mechanism could lead to novel transmission barrier tools to prevent arboviral outbreaks. We utilized a non-targeted multi-omics approach, analyzing extracellular lipids, proteins, metabolites of culture supernatants coinfected with ZIKV and E. anophelis. We observed a significant decrease in arginine and phenylalanine levels, metabolites that are essential for viral replication and progression of viral infection. This study provides insights into the molecular basis of E. anophelis antiviral phenotype. The findings lay a foundation for in-depth mechanistic studies.
Collapse
Affiliation(s)
- S Omme
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - J Wang
- Department of Biochemistry and Chemistry, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - M Sifuna
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - J Rodriguez
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - N R Owusu
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - M Goli
- Department of Biochemistry and Chemistry, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - P Jiang
- Department of Biochemistry and Chemistry, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - P Waziha
- Department of Biochemistry and Chemistry, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - J Nwaiwu
- Department of Biochemistry and Chemistry, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - C L Brelsfoard
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - A Vigneron
- Laboratoire d'Ecologie Microbienne, Claude Bernard University Lyon, University of Lyon, Lyon, France
| | - A T Ciota
- Wadsworth Centre, New York State Department of Health, Griffin Laboratory, 5668 State Farm Road, Slingerlands, NY, 12159, USA
- School of Public Health, State University of New York Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - L D Kramer
- School of Public Health, State University of New York Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Y Mechref
- Department of Biochemistry and Chemistry, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - M G Onyangos
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA.
| |
Collapse
|
9
|
Krejčová K, Krafcikova P, Klima M, Chalupska D, Chalupsky K, Zilecka E, Boura E. Structural and functional insights in flavivirus NS5 proteins gained by the structure of Ntaya virus polymerase and methyltransferase. Structure 2024; 32:1099-1109.e3. [PMID: 38781970 DOI: 10.1016/j.str.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Flaviviruses are single-stranded positive-sense RNA (+RNA) viruses that are responsible for several (re)emerging diseases such as yellow, dengue, or West Nile fevers. The Zika epidemic highlighted their dangerousness when a relatively benign virus known since the 1950s turned into a deadly pathogen. The central protein for their replication is NS5 (non-structural protein 5), which is composed of the N-terminal methyltransferase (MTase) domain and the C-terminal RNA-dependent RNA-polymerase (RdRp) domain. It is responsible for both RNA replication and installation of the 5' RNA cap. We structurally and biochemically analyzed the Ntaya virus MTase and RdRp domains and we compared their properties to other flaviviral NS5s. The enzymatic centers are well conserved across Flaviviridae, suggesting that the development of drugs targeting all flaviviruses is feasible. However, the enzymatic activities of the isolated proteins were significantly different for the MTase domains.
Collapse
Affiliation(s)
- Kateřina Krejčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic; Faculty of Sciences, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Petra Krafcikova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Karel Chalupsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Eva Zilecka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.
| |
Collapse
|
10
|
Wang X, Jing X, Shi J, Liu Q, Shen S, Cheung PPH, Wu J, Deng F, Gong P. A jingmenvirus RNA-dependent RNA polymerase structurally resembles the flavivirus counterpart but with different features at the initiation phase. Nucleic Acids Res 2024; 52:3278-3290. [PMID: 38296832 PMCID: PMC11014250 DOI: 10.1093/nar/gkae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Jingmenviruses are a category of emerging segmented viruses that have garnered global attention in recent years, and are close relatives of the flaviviruses in the Flaviviridae family. One of their genome segments encodes NSP1 homologous to flavivirus NS5. NSP1 comprises both the methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRP) modules playing essential roles in viral genome replication and capping. Here we solved a 1.8-Å resolution crystal structure of the NSP1 RdRP module from Jingmen tick virus (JMTV), the type species of jingmenviruses. The structure highly resembles flavivirus NS5 RdRP despite a sequence identity less than 30%. NSP1 RdRP enzymatic properties were dissected in a comparative setting with several representative Flaviviridae RdRPs included. Our data indicate that JMTV NSP1 produces characteristic 3-mer abortive products similar to the hepatitis C virus RdRP, and exhibits the highest preference of terminal initiation and shorter-primer usage. Unlike flavivirus NS5, JMTV RdRP may require the MTase for optimal transition from initiation to elongation, as an MTase-less NSP1 construct produced more 4-5-mer intermediate products than the full-length protein. Taken together, this work consolidates the evolutionary relationship between the jingmenvirus group and the Flaviviridae family, providing a basis to the further understanding of their viral replication/transcription process.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuping Jing
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Junming Shi
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Qiaojie Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Peter Pak-Hang Cheung
- Department of Chemical Pathology, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Jiqin Wu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin 300350, China
| |
Collapse
|
11
|
Yoneyama M, Kato H, Fujita T. Physiological functions of RIG-I-like receptors. Immunity 2024; 57:731-751. [PMID: 38599168 DOI: 10.1016/j.immuni.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
RIG-I-like receptors (RLRs) are crucial for pathogen detection and triggering immune responses and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLRs and the mechanism of sensing non-self RNA are described. Usually, self RNA is refractory to the RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLRs involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.
Collapse
Affiliation(s)
- Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan; Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Takashi Fujita
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany; Laboratory of Regulatory Information, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
12
|
Samuel J, Ghosh S, Thiyagarajan S. Identification and characterization of domain-specific inhibitors of DENV NS3 and NS5 proteins by in silico screening methods. J Biomol Struct Dyn 2024:1-15. [PMID: 38334186 DOI: 10.1080/07391102.2024.2313161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
The dengue virus (DENV) infects approximately 400 million people annually worldwide causing significant morbidity and mortality. Despite advances in understanding the virus life cycle and infectivity, no specific treatment for this disease exists due to the lack of therapeutic drugs. In addition, vaccines available currently are ineffective with severe side effects. Therefore, there is an urgent need for developing therapeutics suitable for effective management of DENV infection. In this study, we adopted a drug repurposing strategy to identify new therapeutic use of existing FDA approved drug molecules to target DENV2 non-structural proteins NS3 and NS5 using computational approaches. We used Drugbank database molecules for virtual screening and multiple docking analysis against a total of four domains, the NS3 protease and helicase domains and NS5 MTase and RdRp domains. Subsequently, MD simulations and MM-PBSA analysis were performed to validate the intrinsic atomic interactions and the binding affinities. Furthermore, the internal dynamics in all four protein domains, in presence of drug molecule binding were assessed using essential dynamics and free energy landscape analyses, which were further coupled with conformational dynamics-based clustering studies and cross-correlation analysis to map the regions that exhibit these structural variations. Our comprehensive analysis identified tolcapone, cefprozil, delavirdine and indinavir as potential inhibitors of NS5 MTase, NS5 RdRp, NS3 protease and NS3 helicase functions, respectively. These high-confidence candidate molecules will be useful for developing effective anti-DENV therapy to combat dengue infection.
Collapse
Affiliation(s)
- Johnson Samuel
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, KA, India
| | - Sanjay Ghosh
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, KA, India
| | | |
Collapse
|
13
|
Ahmed-Belkacem R, Sutto-Ortiz P, Delpal A, Troussier J, Canard B, Vasseur JJ, Decroly E, Debart F. 5'-cap RNA/SAM mimetic conjugates as bisubstrate inhibitors of viral RNA cap 2'-O-methyltransferases. Bioorg Chem 2024; 143:107035. [PMID: 38199140 DOI: 10.1016/j.bioorg.2023.107035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/24/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Viral RNA cap 2'-O-methyltransferases are considered promising therapeutic targets for antiviral treatments, as they play a key role in the formation of viral RNA cap-1 structures to escape the host immune system. A better understanding of how they interact with their natural substrates (RNA and the methyl donor SAM) would enable the rational development of potent inhibitors. However, as few structures of 2'-O-MTases in complex with RNA have been described, little is known about substrate recognition by these MTases. For this, chemical tools mimicking the state in which the cap RNA substrate and SAM cofactor are bound in the enzyme's catalytic pocket may prove useful. In this work, we designed and synthesized over 30 RNA conjugates that contain a short oligoribonucleotide (ORN with 4 or 6 nucleotides) with the first nucleotide 2'-O-attached to an adenosine by linkers of different lengths and containing S or N-heteroatoms, or a 1,2,3-triazole ring. These ORN conjugates bearing or not a cap structure at 5'-extremity mimic the methylation transition state with RNA substrate/SAM complex as bisubstrates of 2'-O-MTases. The ORN conjugates were synthesized either by the incorporation of a dinucleoside phosphoramidite during RNA elongation or by click chemistry performed on solid-phase post-RNA elongation. Their ability to inhibit the activity of the nsp16/nsp10 complex of SARS-CoV-2 and the NS5 protein of dengue and Zika viruses was assessed. Significant submicromolar IC50 values and Kd values in the µM range were found, suggesting a possible interaction of some ORN conjugates with these viral 2'-O-MTases.
Collapse
Affiliation(s)
| | | | - Adrien Delpal
- AFMB, University of Aix-Marseille, CNRS, Marseille, France
| | - Joris Troussier
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Bruno Canard
- AFMB, University of Aix-Marseille, CNRS, Marseille, France
| | | | | | - Françoise Debart
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
14
|
Rabaan AA, AlShehail BM, Halwani MA, Alshengeti A, Najim MA, Garout M, Bajunaid HA, Alshamrani SA, Al Fares MA, Alissa M, Alwashmi ASS. Investigation of Zika virus methyl transferase inhibitors using steered molecular dynamics. J Biomol Struct Dyn 2024; 42:1711-1724. [PMID: 37325855 DOI: 10.1080/07391102.2023.2224882] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/05/2023] [Indexed: 06/17/2023]
Abstract
Zika virus (ZIKV) spread is considered a major public health threat by the World Health Organization (WHO). There are no vaccines or drugs available to control the infection of the Zika virus, therefore a highly effective medicinal molecule is urgently required. In this study, a computationally intensive investigation was performed to identify a potent natural compound that could inhibit the ZIKV NS5 methyltransferase. This research approach is based on target-based drug identification principles where the native inhibitor SAH (S-adenosylhomocysteine) of ZIKV NS5 methyltransferase was selected as a reference. High-throughput virtual screening and tanimoto similarity coefficient were applied to the natural compound library for ranking the potential candidates. The top five compounds were selected for interaction analysis, MD simulation, total binding free energy through MM/GBSA, and steered MD simulation. Among these compounds, Adenosine 5'-monophosphate monohydrate, Tubercidin, and 5-Iodotubercidin showed stable binding to the protein compared to the native compound, SAH. These three compounds also showed less fluctuations in RMSF in contrast to native compound. Additionally, the same interacting residues observed in SAH also made strong interactions with these three compounds. Adenosine 5'-monophosphate monohydrate and 5-Iodotubercidin had greater total binding free energies than the reference ligand. Moreover, the dissociation resistance of all three compounds was equivalent to that of the reference ligand. This study suggested binding properties of three-hit compounds that could be used to develop drugs against Zika virus infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad A Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah, Saudi Arabia
| | - Mustafa A Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Huda A Bajunaid
- Makkah Specialized Laboratory, Fakeeh Care group, Hadda, Saudi Arabia
| | - Saleh A Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Mona A Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
15
|
Tsukamoto Y, Igarashi M, Kato H. Targeting cap1 RNA methyltransferases as an antiviral strategy. Cell Chem Biol 2024; 31:86-99. [PMID: 38091983 DOI: 10.1016/j.chembiol.2023.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 01/21/2024]
Abstract
Methylation is one of the critical modifications that regulates numerous biological processes. Guanine capping and methylation at the 7th position (m7G) have been shown to mature mRNA for increased RNA stability and translational efficiency. The m7G capped cap0 RNA remains immature and requires additional methylation at the first nucleotide (N1-2'-O-Me), designated as cap1, to achieve full maturation. This cap1 RNA with N1-2'-O-Me prevents its recognition by innate immune sensors as non-self. Viruses have also evolved various strategies to produce self-like capped RNAs with the N1-2'-O-Me that potentially evades the antiviral response and establishes an efficient replication. In this review, we focus on the importance of the presence of N1-2'-O-Me in viral RNAs and discuss the potential for drug development by targeting host and viral N1-2'-O-methyltransferases.
Collapse
Affiliation(s)
- Yuta Tsukamoto
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
16
|
Akram M, Hameed S, Hassan A, Khan KM. Development in the Inhibition of Dengue Proteases as Drug Targets. Curr Med Chem 2024; 31:2195-2233. [PMID: 37723635 DOI: 10.2174/0929867331666230918110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/24/2023] [Accepted: 08/04/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Viral infections continue to increase morbidity and mortality severely. The flavivirus genus has fifty different species, including the dengue, Zika, and West Nile viruses that can infect 40% of individuals globally, who reside in at least a hundred different countries. Dengue, one of the oldest and most dangerous human infections, was initially documented by the Chinese Medical Encyclopedia in the Jin period. It was referred to as "water poison," connected to flying insects, i.e., Aedes aegypti and Aedes albopictus. DENV causes some medical expressions like dengue hemorrhagic fever, acute febrile illness, and dengue shock syndrome. OBJECTIVE According to the World Health Organization report of 2012, 2500 million people are in danger of contracting dengue fever worldwide. According to a recent study, 96 million of the 390 million dengue infections yearly show some clinical or subclinical severity. There is no antiviral drug or vaccine to treat this severe infection. It can be controlled by getting enough rest, drinking plenty of water, and using painkillers. The first dengue vaccine created by Sanofi, called Dengvaxia, was previously approved by the USFDA in 2019. All four serotypes of the DENV1-4 have shown re-infection in vaccine recipients. However, the usage of Dengvaxia has been constrained by its adverse effects. CONCLUSION Different classes of compounds have been reported against DENV, such as nitrogen-containing heterocycles (i.e., imidazole, pyridine, triazoles quinazolines, quinoline, and indole), oxygen-containing heterocycles (i.e., coumarins), and some are mixed heterocyclic compounds of S, N (thiazole, benzothiazine, and thiazolidinediones), and N, O (i.e., oxadiazole). There have been reports of computationally designed compounds to impede the molecular functions of specific structural and non-structural proteins as potential therapeutic targets. This review summarized the current progress in developing dengue protease inhibitors.
Collapse
Affiliation(s)
- Muhammad Akram
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shehryar Hameed
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75720, Pakistan
| | - Abbas Hassan
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Khalid Mohammed Khan
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75720, Pakistan
| |
Collapse
|
17
|
Patar AK, Borah SM, Barman J, Bora A, Baruah TJ. Dronabinol as an answer to flavivirus infections: an in-silico investigation. J Biomol Struct Dyn 2023; 41:11219-11230. [PMID: 36576139 DOI: 10.1080/07391102.2022.2160817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2022] [Indexed: 12/29/2022]
Abstract
Flavivirus infections are common in several parts of the world. Two major types of flaviviruses are dengue and zika viruses. Both these two viral infections have caused many fatalities around the world. There is an absence of a vaccine and an effective medication against these viruses. In this study, we analyzed the ability of dronabinol to act as a potential cure against these viral infections. We performed the docking of dronabinol with several viral proteins followed by molecular dynamics simulation, MM/PBSA and PCA analysis. We checked the ability of the polyphenol dronabinol to interfere with the binding of viral helicases to their cellular targets. We performed 2 D-QSAR studies, drug likeliness, ADMET and target prediction studies. From our study, we observed that dronabinol had the best docking ability against the helicase proteins of dengue and zika. Molecular dynamics simulation and MM/PBSA investigation confirmed the stability of the binding while PCA investigation showed a lowering of molecular motions in response to dronabinol docking to the helicases. Dronabinol interfered in the binding of the helicases to RNA. 2 D QSAR studies revealed a low IC50 value for dronabinol. Dronabinol showed favorable drug-likeness, ADMET properties and target prediction results. Thus we propose dronabinol be further investigated in-vitro as a cure against dengue and zika virus infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abani Kumar Patar
- Department of Biochemistry, Assam Royal Global University, Guwahati, Assam, India
| | - Sapna Mayuri Borah
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - Jitul Barman
- Department of Biochemistry, Assam Royal Global University, Guwahati, Assam, India
| | - Anupam Bora
- Department of Biochemistry, Assam Royal Global University, Guwahati, Assam, India
| | - Taranga Jyoti Baruah
- Department of Biochemistry, Assam Royal Global University, Guwahati, Assam, India
| |
Collapse
|
18
|
Samrat SK, Bashir Q, Zhang R, Huang Y, Liu Y, Wu X, Brown T, Wang W, Zheng YG, Zhang QY, Chen Y, Li Z, Li H. A universal fluorescence polarization high throughput screening assay to target the SAM-binding sites of SARS-CoV-2 and other viral methyltransferases. Emerg Microbes Infect 2023; 12:2204164. [PMID: 37060263 PMCID: PMC10165934 DOI: 10.1080/22221751.2023.2204164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/16/2023]
Abstract
SARS-CoV-2 has caused a global pandemic with significant humanity and economic loss since 2020. Currently, only limited options are available to treat SARS-CoV-2 infections for vulnerable populations. In this study, we report a universal fluorescence polarization (FP)-based high throughput screening (HTS) assay for SAM-dependent viral methyltransferases (MTases), using a fluorescent SAM-analogue, FL-NAH. We performed the assay against a reference MTase, NSP14, an essential enzyme for SARS-CoV-2 to methylate the N7 position of viral 5'-RNA guanine cap. The assay is universal and suitable for any SAM-dependent viral MTases such as the SARS-CoV-2 NSP16/NSP10 MTase complex and the NS5 MTase of Zika virus (ZIKV). Pilot screening demonstrated that the HTS assay was very robust and identified two candidate inhibitors, NSC 111552 and 288387. The two compounds inhibited the FL-NAH binding to the NSP14 MTase with low micromolar IC50. We used three functional MTase assays to unambiguously verified the inhibitory potency of these molecules for the NSP14 N7-MTase function. Binding studies indicated that these molecules are bound directly to the NSP14 MTase with similar low micromolar affinity. Moreover, we further demonstrated that these molecules significantly inhibited the SARS-CoV-2 replication in cell-based assays at concentrations not causing cytotoxicity. Furthermore, NSC111552 significantly synergized with known SARS-CoV-2 drugs including nirmatrelvir and remdesivir. Finally, docking suggested that these molecules bind specifically to the SAM-binding site on the NSP14 MTase. Overall, these molecules represent novel and promising candidates to further develop broad-spectrum inhibitors for the management of viral infections.
Collapse
Affiliation(s)
- Subodh Kumar Samrat
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Qamar Bashir
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Ran Zhang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Yiding Huang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Yuchen Liu
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Xiangmeng Wu
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Tyler Brown
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Wei Wang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Y. George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Yin Chen
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Zhong Li
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Hongmin Li
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
- Department of Chemistry and Biochemistry, College of Science & College of Medicine, The University of Arizona, Tucson, AZ, USA
- The BIO5 Institute, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
19
|
Koraboina CP, Akshinthala P, Katari NK, Adarasandi R, Jonnalagadda SB, Gundla R. New oxindole carboxamides as inhibitors of DENV NS5 RdRp: Design, synthesis, docking and Biochemical characterization. Heliyon 2023; 9:e21510. [PMID: 38027588 PMCID: PMC10665688 DOI: 10.1016/j.heliyon.2023.e21510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Dengue is a mosquito-borne disease caused by the dengue virus belonging to family flaviviridae and has grown to be a major global public health issue. Despite decades of effort, the global comeback of dengue is evidence of the inadequacy of present management techniques. Due to the loss of healthy lives and the depletion of scarce medical resources, dengue has a significant negative economic impact in underdeveloped countries. In recent years, research for tackling the incidences of dengue infection has increased. The structure of the viral genome has been deciphered with the non-structural protein, known as NS5 serving as a potential target. NS5 consisting of an MTase domain involved in RNA capping and an RdRp domain involved in viral replication. In the presented work, a series of new Oxindoline Carboxamide derivatives were designed and synthesized for inhibiting the viral RNA dependent RNA-polymerase (RdRp) activity of DENV. The novel compounds were put through tests including molecular docking and surface plasmon resonance (SPR) binding analysis to evaluate their affinity for the viral protein and their potential as novel inhibitors of the virus. From a total of 12 derivative compounds, four compounds OCA-10c, OCA-10f, OCA-10j & OCA-10i, were found to exhibit high affinity for NS5 RdRp, the KD values being 1.376 μM, 1.63 μM, 7.08 μM & 9.32 μM respectively. Overall, we report novel inhibitors of DENV RdRp activity with potential to be utilized against DENV for treating humans after further optimization.
Collapse
Affiliation(s)
- Chandra Prakash Koraboina
- Department of Chemistry, School of Science, GITAM (Deemed to be University) Hyderabad, Telangana, 502 329, India
| | - Parameswari Akshinthala
- Department of Science and Humanities, MLR Institute of Technology, Dundigal, Medchal, Hyderabad, Telangana, 500 043, India
| | - Naresh Kumar Katari
- Department of Chemistry, School of Science, GITAM (Deemed to be University) Hyderabad, Telangana, 502 329, India
- School of Chemistry & Physics, College of Agriculture, Engineering & Science, Westville Campus, University of KwaZulu-Natal, P Bag X 54001, Durban, 4000, South Africa
| | - Ravi Adarasandi
- Department of Chemistry, School of Science, GITAM (Deemed to be University) Hyderabad, Telangana, 502 329, India
| | - Sreekantha Babu Jonnalagadda
- School of Chemistry & Physics, College of Agriculture, Engineering & Science, Westville Campus, University of KwaZulu-Natal, P Bag X 54001, Durban, 4000, South Africa
| | - Rambabu Gundla
- Department of Chemistry, School of Science, GITAM (Deemed to be University) Hyderabad, Telangana, 502 329, India
| |
Collapse
|
20
|
Schindewolf C, Menachery VD. Coronavirus 2'-O-methyltransferase: A promising therapeutic target. Virus Res 2023; 336:199211. [PMID: 37634741 PMCID: PMC10485632 DOI: 10.1016/j.virusres.2023.199211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Coronaviruses (CoVs) have been the source of multiple epidemics and a global pandemic since the start of century, and there is an urgent need to understand CoV biology and develop better therapeutics. Here, we review the role of NSP16 in CoV replication, specifically its importance to 2'-O-methylation and CoV RNA capping. We describe the attenuation phenotypes of NSP16-mutant CoVs, the roles of MDA5 and IFITs in sensing and antagonizing viral RNA lacking 2'O methylation, and the dependence on 2'-O-methylation in other virus families. We also detail the growing body of research into targeting 2'-O-methylation for therapeutics or as a platform for live attenuated vaccines. Beyond its role in RNA capping, NSP16 may have yet uncharacterized importance to CoV replication, highlighting the need for continued studies into NSP16 functions. Understanding the full contribution of NSP16 to the replicative fitness of CoVs will better inform the development of treatments against future CoV outbreaks.
Collapse
Affiliation(s)
- Craig Schindewolf
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
21
|
Chen H, Lin S, Yang F, Chen Z, Guo L, Yang J, Lin X, Wang L, Duan Y, Wen A, Zhang X, Dai Y, Yin K, Yuan X, Yu C, He Y, He B, Cao Y, Dong H, Li J, Zhao Q, Liu Q, Lu G. Structural and functional basis of low-affinity SAM/SAH-binding in the conserved MTase of the multi-segmented Alongshan virus distantly related to canonical unsegmented flaviviruses. PLoS Pathog 2023; 19:e1011694. [PMID: 37831643 PMCID: PMC10575543 DOI: 10.1371/journal.ppat.1011694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Alongshan virus (ALSV), a newly discovered member of unclassified Flaviviridae family, is able to infect humans. ALSV has a multi-segmented genome organization and is evolutionarily distant from canonical mono-segmented flaviviruses. The virus-encoded methyltransferase (MTase) plays an important role in viral replication. Here we show that ALSV MTase readily binds S-adenosyl-L-methionine (SAM) and S-adenosyl-L-homocysteine (SAH) but exhibits significantly lower affinities than canonical flaviviral MTases. Structures of ALSV MTase in the free and SAM/SAH-bound forms reveal that the viral enzyme possesses a unique loop-element lining side-wall of the SAM/SAH-binding pocket. While the equivalent loop in flaviviral MTases half-covers SAM/SAH, contributing multiple hydrogen-bond interactions; the pocket-lining loop of ALSV MTase is of short-length and high-flexibility, devoid of any physical contacts with SAM/SAH. Subsequent mutagenesis data further corroborate such structural difference affecting SAM/SAH-binding. Finally, we also report the structure of ALSV MTase bound with sinefungin, an SAM-analogue MTase inhibitor. These data have delineated the basis for the low-affinity interaction between ALSV MTase and SAM/SAH and should inform on antiviral drug design.
Collapse
Affiliation(s)
- Hua Chen
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Sheng Lin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fanli Yang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zimin Chen
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liyan Guo
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Lin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingling Wang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanping Duan
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ao Wen
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xindan Zhang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yushan Dai
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Keqing Yin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Yuan
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chongzhang Yu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yarong He
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin He
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Cao
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Disaster Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haohao Dong
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, Sichuan, China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Quan Liu
- Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin, China
| | - Guangwen Lu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Shukla D, Alanazi AM, Panda SP, Dwivedi VD, Kamal MA. Unveiling the antiviral potential of Plant compounds from the Meliaceae family against the Zika virus through QSAR modeling and MD simulation analysis. J Biomol Struct Dyn 2023; 42:11064-11079. [PMID: 37728536 DOI: 10.1080/07391102.2023.2259498] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Zika virus (ZIKV) is a flavivirus transmitted by mosquitoes, causing neurological disorders and congenital malformations. RNA-dependent RNA polymerase (RdRp) is one of its essential enzymes and a promising drug target for antiviral therapy due to its involvement in the growth and multiplication of the virus. In this study, we conducted a QSAR-based chemical library screening from the Meliaceae family to identify potential RdRp inhibitors. The QSAR model was built using the known inhibitors of RdRp NS5 of ZIKV and their biological activity (EC50), along with the structural and chemical characteristics of the compounds. The top two hit compounds were selected from QSAR screening for further analysis using molecular docking to evaluate their binding energies and intermolecular interactions with RdRp, including the critical residue Trp485. Furthermore, molecular dynamics (MD) simulations were performed to evaluate their binding stability and flexibility upon binding to RdRp. The MD results showed that the selected compounds formed stable complexes with RdRp, and their binding interactions were similar to those observed for the native ligand. The binding energies of the top two hits (-8.6 and -7.7 kcal/mole) were comparable to those of previously reported ZIKV RdRp inhibitors (-8.9 kcal/mole). The compound IMPHY009135 showed the strongest binding affinity with RdRp, forming multiple hydrogen bonds and hydrophobic interactions with key residues. However, compound IMPHY009276 showed the most stable and consistent RMSD, which was similar to the native ligand. Our findings suggest that IMPHY009135 and IMPHY009276 are potential lead compounds for developing novel antiviral agents against ZIKV.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Divyanshi Shukla
- Department of Chemistry, Lajpat Rai PG College, Sahibabad, Ghaziabad, India
- Computational Chemistry & Drug Discovery Division, Quanta Calculus, Greater Noida, India
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar, India
| | - Vivek Dhar Dwivedi
- Computational Chemistry & Drug Discovery Division, Quanta Calculus, Greater Noida, India
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Thandalam, Tamil Nadu, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Enzymoics, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
| |
Collapse
|
23
|
Deshpande S, Huo W, Shrestha R, Sparrow K, Wood JM, Evans GB, Harris LD, Kingston RL, Bulloch EMM. Galidesivir Triphosphate Promotes Stalling of Dengue-2 Virus Polymerase Immediately Prior to Incorporation. ACS Infect Dis 2023; 9:1658-1673. [PMID: 37488090 PMCID: PMC10739630 DOI: 10.1021/acsinfecdis.3c00311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 07/26/2023]
Abstract
Millions of people are infected by the dengue and Zika viruses each year, resulting in significant morbidity and mortality. Galidesivir is an adenosine nucleoside analog that can attenuate flavivirus replication in cell-based assays and animal models of infection. Galidesivir is converted to the triphosphorylated form by host kinases and subsequently incorporated into viral RNA by viral RNA polymerases. This has been proposed to lead to the delayed termination of RNA synthesis. Here, we report direct in vitro testing of the effects of Galidesivir triphosphate on dengue-2 and Zika virus polymerase activity. Galidesivir triphosphate was chemically synthesized, and inhibition of RNA synthesis followed using a dinucleotide-primed assay with a homopolymeric poly(U) template. Galidesivir triphosphate was equipotent against dengue-2 and Zika polymerases, with IC50 values of 42 ± 12 μM and 47 ± 5 μM, respectively, at an ATP concentration of 20 μM. RNA primer extension assays show that the dengue-2 polymerase stalls while attempting to add a Galidesivir nucleotide to the nascent RNA chain, evidenced by the accumulation of RNA products truncated immediately upstream of Galidesivir incorporation sites. Nevertheless, Galidesivir is incorporated at isolated sites with low efficiency, leading to the subsequent synthesis of full-length RNA with no evidence of delayed chain termination. The incorporation of Galidesivir at consecutive sites is strongly disfavored, highlighting the potential for modulation of inhibitory effects of nucleoside analogs by the template sequence. Our results suggest that attenuation of dengue replication by Galidesivir may not derive from the early termination of RNA synthesis following Galidesivir incorporation.
Collapse
Affiliation(s)
- Sandesh Deshpande
- School
of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Wenjuan Huo
- School
of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Rinu Shrestha
- Ferrier
Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Kevin Sparrow
- Ferrier
Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5010, New Zealand
| | - James M. Wood
- Ferrier
Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Gary B. Evans
- Ferrier
Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Lawrence D. Harris
- Ferrier
Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Richard L. Kingston
- School
of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Esther M. M. Bulloch
- School
of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
24
|
Kang DD, Li H, Dong Y. Advancements of in vitro transcribed mRNA (IVT mRNA) to enable translation into the clinics. Adv Drug Deliv Rev 2023; 199:114961. [PMID: 37321375 PMCID: PMC10264168 DOI: 10.1016/j.addr.2023.114961] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
The accelerated progress and approval of two mRNA-based vaccines to address the SARS-CoV-2 virus were unprecedented. This record-setting feat was made possible through the solid foundation of research on in vitro transcribed mRNA (IVT mRNA) which could be utilized as a therapeutic modality. Through decades of thorough research to overcome barriers to implementation, mRNA-based vaccines or therapeutics offer many advantages to rapidly address a broad range of applications including infectious diseases, cancers, and gene editing. Here, we describe the advances that have supported the adoption of IVT mRNA in the clinics, including optimization of the IVT mRNA structural components, synthesis, and lastly concluding with different classes of IVT RNA. Continuing interest in driving IVT mRNA technology will enable a safer and more efficacious therapeutic modality to address emerging and existing diseases.
Collapse
Affiliation(s)
- Diana D Kang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States; Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Haoyuan Li
- Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States; Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center; Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, United States; Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
25
|
Samrat SK, Bashir Q, Huang Y, Trieshmann CW, Tharappel AM, Zhang R, Chen K, Geoge Zheng Y, Li Z, Li H. Broad-Spectrum Small-Molecule Inhibitors Targeting the SAM-Binding Site of Flavivirus NS5 Methyltransferase. ACS Infect Dis 2023; 9:1319-1333. [PMID: 37348028 PMCID: PMC10436986 DOI: 10.1021/acsinfecdis.2c00571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Flavivirus infections, such as those caused by dengue virus (DENV), West Nile virus (WNV), yellow fever virus (YFV), and Zika virus (ZIKV), pose a rising threat to global health. There are no FDA-approved drugs for flaviviruses, although a small number of flaviviruses have vaccines. For flaviviruses or unknown viruses that may appear in the future, it is particularly desirable to identify broad-spectrum inhibitors. The NS5 protein is regarded as one of the most promising flavivirus drug targets because it is conserved across flaviviruses. In this study, we used FL-NAH, a fluorescent analog of the methyl donor S-adenosyl methionine (SAM), to develop a fluorescence polarization (FP)-based high throughput screening (HTS) assay to specifically target methyltransferase (MTase), a vital enzyme for flaviviruses that methylates the N7 and 2'-O positions of the viral 5'-RNA cap. Pilot screening identified two candidate MTase inhibitors, NSC 111552 and 288387. The two compounds inhibited the FL-NAH binding to the DENV3 MTase with low micromolar IC50. Functional assays verified the inhibitory potency of these molecules for the flavivirus MTase activity. Binding studies indicated that these molecules are bound directly to the DENV3 MTase with similar low micromolar affinity. Furthermore, we showed that these compounds greatly reduced ZIKV replication in cell-based experiments at dosages that did not cause cytotoxicity. Finally, docking studies revealed that these molecules bind to the SAM-binding region on the DENV3 MTase, and further mutagenesis studies verified residues important for the binding of these compounds. Overall, these compounds are innovative and attractive candidates for the development of broad-spectrum inhibitors for the treatment of flavivirus infections.
Collapse
Affiliation(s)
- Subodh Kumar Samrat
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Qamar Bashir
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Yiding Huang
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Carl William Trieshmann
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA
| | - Anil Mathew Tharappel
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Ran Zhang
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Ke Chen
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Y. Geoge Zheng
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA
| | - Zhong Li
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Hongmin Li
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
- Department of Chemistry and Biochemistry, College of Science & College of Medicine, The University of Arizona, Tucson AZ, 85721, USA
- The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
26
|
Osawa T, Aoki M, Ehara H, Sekine SI. Structures of dengue virus RNA replicase complexes. Mol Cell 2023:S1097-2765(23)00470-7. [PMID: 37478848 DOI: 10.1016/j.molcel.2023.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/26/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Dengue is a mosquito-borne viral infection caused by dengue virus (DENV), a member of the flaviviruses. The DENV genome is a 5'-capped positive-sense RNA with a unique 5'-stem-loop structure (SLA), which is essential for RNA replication and 5' capping. The virus-encoded proteins NS5 and NS3 are responsible for viral genome replication, but the structural basis by which they cooperatively conduct the required tasks has remained unclear. Here, we report the cryoelectron microscopy (cryo-EM) structures of SLA-bound NS5 (PC), NS3-bound PC (PC-NS3), and an RNA-elongating NS5-NS3 complex (EC). While SLA bridges the NS5 methyltransferase and RNA-dependent RNA polymerase domains in PC, the NS3 helicase domain displaces it in elongation complex (EC). The SLA- and NS3-binding sites overlap with that of human STAT2. These structures illuminate the key steps in DENV genome replication, namely, SLA-dependent replication initiation, processive RNA elongation, and 5' capping of the nascent genomic RNA, thereby providing foundations to combat flaviviruses.
Collapse
Affiliation(s)
- Takuo Osawa
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mari Aoki
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shun-Ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
27
|
Gonzalez Lopez Ledesma MM, Costa Navarro G, Pallares HM, Paletta A, De Maio F, Iglesias NG, Gebhard L, Oviedo Rouco S, Ojeda DS, de Borba L, Giraldo M, Rajsbaum R, Ceballos A, Krogan NJ, Shah PS, Gamarnik AV. Dengue virus NS5 degrades ERC1 during infection to antagonize NF-kB activation. Proc Natl Acad Sci U S A 2023; 120:e2220005120. [PMID: 37252973 PMCID: PMC10266027 DOI: 10.1073/pnas.2220005120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Dengue virus (DENV) is the most important human virus transmitted by mosquitos. Dengue pathogenesis is characterized by a large induction of proinflammatory cytokines. This cytokine induction varies among the four DENV serotypes (DENV1 to 4) and poses a challenge for live DENV vaccine design. Here, we identify a viral mechanism to limit NF-κB activation and cytokine secretion by the DENV protein NS5. Using proteomics, we found that NS5 binds and degrades the host protein ERC1 to antagonize NF-κB activation, limit proinflammatory cytokine secretion, and reduce cell migration. We found that ERC1 degradation involves unique properties of the methyltransferase domain of NS5 that are not conserved among the four DENV serotypes. By obtaining chimeric DENV2 and DENV4 viruses, we map the residues in NS5 for ERC1 degradation, and generate recombinant DENVs exchanging serotype properties by single amino acid substitutions. This work uncovers a function of the viral protein NS5 to limit cytokine production, critical to dengue pathogenesis. Importantly, the information provided about the serotype-specific mechanism for counteracting the antiviral response can be applied to improve live attenuated vaccines.
Collapse
Affiliation(s)
| | | | | | - Ana Paletta
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires-National Scientific and Technical Research Council, Buenos AiresC1121, Argentina
| | - Federico De Maio
- Fundación Instituto Leloir-CONICET, Buenos AiresC1405, Argentina
| | | | - Leopoldo Gebhard
- Fundación Instituto Leloir-CONICET, Buenos AiresC1405, Argentina
| | | | - Diego S. Ojeda
- Fundación Instituto Leloir-CONICET, Buenos AiresC1405, Argentina
| | - Luana de Borba
- Fundación Instituto Leloir-CONICET, Buenos AiresC1405, Argentina
| | - María Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | - Ricardo Rajsbaum
- Department of Medicine, Center for Virus-Host-Innate-Immunity, Rutgers Biomedical and Health Sciences, Newark, NJ07101
| | - Ana Ceballos
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires-National Scientific and Technical Research Council, Buenos AiresC1121, Argentina
| | | | - Priya S. Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA95616
- Department of Chemical Engineering, University of California, Davis, CA95616
| | | |
Collapse
|
28
|
Hausdorff M, Delpal A, Barelier S, Nicollet L, Canard B, Touret F, Colmant A, Coutard B, Vasseur JJ, Decroly E, Debart F. Structure-guided optimization of adenosine mimetics as selective and potent inhibitors of coronavirus nsp14 N7-methyltransferases. Eur J Med Chem 2023; 256:115474. [PMID: 37192550 DOI: 10.1016/j.ejmech.2023.115474] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
The COVID-19 pandemic reveals the urgent need to develop new therapeutics targeting the SARS-CoV-2 replication machinery. The first antiviral drugs were nucleoside analogues targeting RdRp and protease inhibitors active on nsp5 Mpro. In addition to these common antiviral targets, SARS-CoV-2 codes for the highly conserved protein nsp14 harbouring N7-methyltransferase (MTase) activity. Nsp14 is involved in cap N7-methylation of viral RNA and its inhibition impairs viral RNA translation and immune evasion, making it an attractive new antiviral target. In this work, we followed a structure-guided drug design approach to design bisubstrates mimicking the S-adenosylmethionine methyl donor and RNA cap. We developed adenosine mimetics with an N-arylsulfonamide moiety in the 5'-position, recently described as a guanine mimicking the cap structure in a potent adenosine-derived nsp14 inhibitor. Here, the adenine moiety was replaced by hypoxanthine, N6-methyladenine, or C7-substituted 7-deaza-adenine. 26 novel adenosine mimetics were synthesized, one of which selectively inhibits nsp14 N7-MTase activity with a subnanomolar IC50 (and seven with a single-digit nanomolar IC50). In the most potent inhibitors, adenine was replaced by two different 7-deaza-adenines bearing either a phenyl or a 3-quinoline group at the C7-position via an ethynyl linker. These more complex compounds are barely active on the cognate human N7-MTase and docking experiments reveal that their selectivity of inhibition might result from the positioning of their C7 substitution in a SAM entry tunnel present in the nsp14 structure and absent in the hN7-MTase. These compounds show moderate antiviral activity against SARS-CoV-2 replication in cell culture, suggesting delivery or stability issue.
Collapse
Affiliation(s)
- Marcel Hausdorff
- IBMM, CNRS, University of Montpellier, ENSCM, Montpellier, France
| | - Adrien Delpal
- AFMB, CNRS, Aix-Marseille University, UMR 7257, 163 Avenue de Luminy, Marseille, France
| | - Sarah Barelier
- AFMB, CNRS, Aix-Marseille University, UMR 7257, 163 Avenue de Luminy, Marseille, France
| | - Laura Nicollet
- IBMM, CNRS, University of Montpellier, ENSCM, Montpellier, France
| | - Bruno Canard
- AFMB, CNRS, Aix-Marseille University, UMR 7257, 163 Avenue de Luminy, Marseille, France
| | - Franck Touret
- IHU Méditerranée Infection, Unité Virus Emergents, University of Aix-Marseille, 13005, Marseille, France
| | - Agathe Colmant
- IHU Méditerranée Infection, Unité Virus Emergents, University of Aix-Marseille, 13005, Marseille, France
| | - Bruno Coutard
- IHU Méditerranée Infection, Unité Virus Emergents, University of Aix-Marseille, 13005, Marseille, France
| | | | - Etienne Decroly
- AFMB, CNRS, Aix-Marseille University, UMR 7257, 163 Avenue de Luminy, Marseille, France.
| | - Françoise Debart
- IBMM, CNRS, University of Montpellier, ENSCM, Montpellier, France.
| |
Collapse
|
29
|
Sreekanth GP. Perspectives on the current antiviral developments towards RNA-dependent RNA polymerase (RdRp) and methyltransferase (MTase) domains of dengue virus non-structural protein 5 (DENV-NS5). Eur J Med Chem 2023; 256:115416. [PMID: 37159959 DOI: 10.1016/j.ejmech.2023.115416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
Dengue virus (DENV) infection is one of the most emerging arboviral infections in humans. DENV is a positive-stranded RNA virus in the Flaviviridae family consisting of an 11 kb genome. DENV non-structural protein 5 (DENV-NS5) constitutes the largest among the non-structural proteins, which act as two domains, the RNA-dependent RNA polymerase (RdRp) and RNA methyltransferase enzyme (MTase). The DENV-NS5 RdRp domain contributes to the viral replication stages, whereas the MTase initiates viral RNA capping and facilitates polyprotein translation. Given the functions of both DENV-NS5 domains have made them an important druggable target. Possible therapeutic interventions and drug discoveries against DENV infection were thoroughly reviewed; however, a current update on the therapeutic strategies specific to DENV-NS5 or its active domains was not attempted. Since most potential compounds and drugs targeting the DENV-NS5 were evaluated in both in vitro cultures and animal models, a more detailed evaluation of molecules/drug candidates still requires investigation in randomized controlled clinical trials. This review summarizes current perspectives on the therapeutic strategies adopted to target the DENV-NS5 (RdRp and MTase domains) at the host-pathogen interface and further discusses the directions to identify candidate drugs to combat DENV infection.
Collapse
Affiliation(s)
- Gopinathan Pillai Sreekanth
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, Telangana, India.
| |
Collapse
|
30
|
Li D, Lu HT, Ding YZ, Wang HJ, Ye JL, Qin CF, Liu ZY. Specialized cis-Acting RNA Elements Balance Genome Cyclization to Ensure Efficient Replication of Yellow Fever Virus. J Virol 2023; 97:e0194922. [PMID: 37017533 PMCID: PMC10134800 DOI: 10.1128/jvi.01949-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/13/2023] [Indexed: 04/06/2023] Open
Abstract
Genome cyclization is essential for viral RNA (vRNA) replication of the vertebrate-infecting flaviviruses, and yet its regulatory mechanisms are not fully understood. Yellow fever virus (YFV) is a notorious pathogenic flavivirus. Here, we demonstrated that a group of cis-acting RNA elements in YFV balance genome cyclization to govern efficient vRNA replication. It was shown that the downstream of the 5'-cyclization sequence hairpin (DCS-HP) is conserved in the YFV clade and is important for efficient YFV propagation. By using two different replicon systems, we found that the function of the DCS-HP is determined primarily by its secondary structure and, to a lesser extent, by its base-pair composition. By combining in vitro RNA binding and chemical probing assays, we found that the DCS-HP orchestrates the balance of genome cyclization through two different mechanisms, as follows: the DCS-HP assists the correct folding of the 5' end in a linear vRNA to promote genome cyclization, and it also limits the overstabilization of the circular form through a potential crowding effect, which is influenced by the size and shape of the DCS-HP structure. We also provided evidence that an A-rich sequence downstream of the DCS-HP enhances vRNA replication and contributes to the regulation of genome cyclization. Interestingly, diversified regulatory mechanisms of genome cyclization, involving both the downstream of the 5'-cyclization sequence (CS) and the upstream of the 3'-CS elements, were identified among different subgroups of the mosquito-borne flaviviruses. In summary, our work highlighted how YFV precisely controls the balance of genome cyclization to ensure viral replication. IMPORTANCE Yellow fever virus (YFV), the prototype of the Flavivirus genus, can cause devastating yellow fever disease. Although it is preventable by vaccination, there are still tens of thousands of yellow fever cases per year, and no approved antiviral medicine is available. However, the understandings about the regulatory mechanisms of YFV replication are obscure. In this study, by a combination of bioinformatics, reverse genetics, and biochemical approaches, it was shown that the downstream of the 5'-cyclization sequence hairpin (DCS-HP) promotes efficient YFV replication by modulating the conformational balance of viral RNA. Interestingly, we found specialized combinations for the downstream of the 5'-cyclization sequence (CS) and upstream of the 3'-CS elements in different groups of the mosquito-borne flaviviruses. Moreover, possible evolutionary relationships among the various downstream of the 5'-CS elements were implied. This work highlighted the complexity of RNA-based regulatory mechanisms in the flaviviruses and will facilitate the design of RNA structure-targeted antiviral therapies.
Collapse
Affiliation(s)
- Dan Li
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hai-Tao Lu
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yu-Zhen Ding
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hong-Jiang Wang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- The Chinese People’s Liberation Army Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Jing-Long Ye
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhong-Yu Liu
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
31
|
Zhu Y, Chen S, Lurong Q, Qi Z. Recent Advances in Antivirals for Japanese Encephalitis Virus. Viruses 2023; 15:v15051033. [PMID: 37243122 DOI: 10.3390/v15051033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Culex mosquitoes are the primary vectors of the Japanese encephalitis virus (JEV). Since its discovery in 1935, Japanese encephalitis (JE), caused by JEV, has posed a significant threat to human health. Despite the widespread implementation of several JEV vaccines, the transmission chain of JEV in the natural ecosystem has not changed, and the vector of transmission cannot be eradicated. Therefore, JEV is still the focus of attention for flaviviruses. At present, there is no clinically specific drug for JE treatment. JEV infection is a complex interaction between the virus and the host cell, which is the focus of drug design and development. An overview of antivirals that target JEV elements and host factors is presented in this review. In addition, drugs that balance antiviral effects and host protection by regulating innate immunity, inflammation, apoptosis, or necrosis are reviewed to treat JE effectively.
Collapse
Affiliation(s)
- Yongzhe Zhu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Shenglin Chen
- Department of Clinic Laboratory Diagnostics, General Hospital of Tibet Military Area Command of PLA, Lhasa 850007, China
| | - Qilin Lurong
- Department of Geriatrics, General Hospital of Tibet Military Area Command of PLA, Lhasa 850007, China
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
32
|
Feracci M, Eydoux C, Fattorini V, Lo Bello L, Gauffre P, Selisko B, Sutto-Ortiz P, Shannon A, Xia H, Shi PY, Noel M, Debart F, Vasseur JJ, Good S, Lin K, Moussa A, Sommadossi JP, Chazot A, Alvarez K, Guillemot JC, Decroly E, Ferron F, Canard B. AT-752 targets multiple sites and activities on the Dengue virus replication enzyme NS5. Antiviral Res 2023; 212:105574. [PMID: 36905944 DOI: 10.1016/j.antiviral.2023.105574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023]
Abstract
AT-752 is a guanosine analogue prodrug active against dengue virus (DENV). In infected cells, it is metabolized into 2'-methyl-2'-fluoro guanosine 5'-triphosphate (AT-9010) which inhibits RNA synthesis in acting as a RNA chain terminator. Here we show that AT-9010 has several modes of action on DENV full-length NS5. AT-9010 does not inhibit the primer pppApG synthesis step significantly. However, AT-9010 targets two NS5-associated enzyme activities, the RNA 2'-O-MTase and the RNA-dependent RNA polymerase (RdRp) at its RNA elongation step. Crystal structure and RNA methyltransferase (MTase) activities of the DENV 2 MTase domain in complex with AT-9010 at 1.97 Å resolution shows the latter bound to the GTP/RNA-cap binding site, accounting for the observed inhibition of 2'-O but not N7-methylation activity. AT-9010 is discriminated ∼10 to 14-fold against GTP at the NS5 active site of all four DENV1-4 NS5 RdRps, arguing for significant inhibition through viral RNA synthesis termination. In Huh-7 cells, DENV1-4 are equally sensitive to AT-281, the free base of AT-752 (EC50 ≈ 0.50 μM), suggesting broad spectrum antiviral properties of AT-752 against flaviviruses.
Collapse
Affiliation(s)
- Mikael Feracci
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Cécilia Eydoux
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Véronique Fattorini
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Lea Lo Bello
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Pierre Gauffre
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Barbara Selisko
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Priscila Sutto-Ortiz
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Ashleigh Shannon
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, Sealy Institute for Drug Discovery, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, Sealy Institute for Drug Discovery, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| | - Mathieu Noel
- IBMM, UMR 5247 CNRS-UM1-UM2, Department of Nucleic Acids, Montpellier University, Place E. Bataillon, 34095, Montpellier Cedex 05, France
| | - Françoise Debart
- IBMM, UMR 5247 CNRS-UM1-UM2, Department of Nucleic Acids, Montpellier University, Place E. Bataillon, 34095, Montpellier Cedex 05, France
| | - Jean-Jacques Vasseur
- IBMM, UMR 5247 CNRS-UM1-UM2, Department of Nucleic Acids, Montpellier University, Place E. Bataillon, 34095, Montpellier Cedex 05, France
| | - Steve Good
- Atea Pharmaceuticals, Inc., 225 Franklin St., Suite 2100, Boston, MA, 02110, USA
| | - Kai Lin
- Atea Pharmaceuticals, Inc., 225 Franklin St., Suite 2100, Boston, MA, 02110, USA
| | - Adel Moussa
- Atea Pharmaceuticals, Inc., 225 Franklin St., Suite 2100, Boston, MA, 02110, USA
| | | | - Aurélie Chazot
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Karine Alvarez
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Jean-Claude Guillemot
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Etienne Decroly
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - François Ferron
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Bruno Canard
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France.
| |
Collapse
|
33
|
Norshidah H, Leow CH, Ezleen KE, Wahab HA, Vignesh R, Rasul A, Lai NS. Assessing the potential of NS2B/NS3 protease inhibitors biomarker in curbing dengue virus infections: In silico vs. In vitro approach. Front Cell Infect Microbiol 2023; 13:1061937. [PMID: 36864886 PMCID: PMC9971573 DOI: 10.3389/fcimb.2023.1061937] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
An increase in the occurrence of viral infectious diseases is a global concern for human health. According to a WHO report, dengue virus (DENV) is one of the most common viral diseases affecting approximately 400 million people annually, with worsening symptoms in nearly 1% of cases. Both academic and industrial researchers have conducted numerous studies on viral epidemiology, virus structure and function, source and route of infection, treatment targets, vaccines, and drugs. The development of CYD-TDV or Dengvaxia® vaccine has been a major milestone in dengue treatment. However, evidence has shown that vaccines have some drawbacks and limitations. Therefore, researchers are developing dengue antivirals to curb infections. DENV NS2B/NS3 protease is a DENV enzyme essential for replication and virus assembly, making it an interesting antiviral target. For faster hit and lead recognition of DENV targets, methods to screen large number of molecules at lower costs are essential. Similarly, an integrated and multidisciplinary approach involving in silico screening and confirmation of biological activity is required. In this review, we discuss recent strategies for searching for novel DENV NS2B/NS3 protease inhibitors from the in silico and in vitro perspectives, either by applying one of the approaches or by integrating both. Therefore, we hope that our review will encourage researchers to integrate the best strategies and encourage further developments in this area.
Collapse
Affiliation(s)
- Harun Norshidah
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia,Universiti Kuala Lumpur-Royal College of Medicine Perak, Ipoh, Perak, Malaysia,*Correspondence: Harun Norshidah, ; Ramachandran Vignesh, ; Ngit Shin Lai,
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | | | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Ramachandran Vignesh
- Universiti Kuala Lumpur-Royal College of Medicine Perak, Ipoh, Perak, Malaysia,*Correspondence: Harun Norshidah, ; Ramachandran Vignesh, ; Ngit Shin Lai,
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ngit Shin Lai
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia,*Correspondence: Harun Norshidah, ; Ramachandran Vignesh, ; Ngit Shin Lai,
| |
Collapse
|
34
|
Teramoto T, Choi KH, Padmanabhan R. Flavivirus proteases: The viral Achilles heel to prevent future pandemics. Antiviral Res 2023; 210:105516. [PMID: 36586467 PMCID: PMC10062209 DOI: 10.1016/j.antiviral.2022.105516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Flaviviruses are important human pathogens and include dengue (DENV), West Nile (WNV), Yellow fever virus (YFV), Japanese encephalitis (JEV) and Zika virus (ZIKV). DENV, transmitted by mosquitoes, causes diseases ranging in severity from mild dengue fever with non-specific flu-like symptoms to fatal dengue hemorrhagic fever and dengue shock syndrome. DENV infections are caused by four serotypes, DENV1-4, which interact differently with antibodies in blood serum. The incidence of DENV infection has increased dramatically in recent decades and the CDC estimates 400 million dengue infections occur each year, resulting in ∼25,000 deaths mostly among children and elderly people. Similarly, ZIKV infections are caused by infected mosquito bites to humans, can be transmitted sexually and through blood transfusions. If a pregnant woman is infected, the virus can cross the placental barrier and can spread to her fetus, causing severe brain malformations in the child including microcephaly and other birth defects. It is noteworthy that the neurological manifestations of ZIKV were also observed in DENV endemic regions, suggesting that pre-existing antibody response to DENV could augment ZIKV infection. WNV, previously unknown in the US (and known to cause only mild disease in Middle East), first arrived in New York city in 1999 (NY99) and spread throughout the US and Canada by Culex mosquitoes and birds. WNV is now endemic in North America. Thus, emerging and re-emerging flaviviruses are significant threat to human health. However, vaccines are available for only a limited number of flaviviruses, and antiviral therapies are not available for any flavivirus. Hence, there is an urgent need to develop therapeutics that interfere with essential enzymatic steps, such as protease in the flavivirus lifecycle as these viruses possess significant threat to future pandemics. In this review, we focus on our E. coli expression of NS2B hydrophilic domain (NS2BH) covalently linked to NS3 protease domain (NS3Pro) in their natural context which is processed by the combined action of both subunits of the NS2B-NS3Pro precursor. Biochemical activities of the viral protease such as solubility and autoproteolysis of NS2BH-NS3Pro linkage depended on the C-terminal portion of NS2BH linked to the NS3Pro domain. Since 2008, we also focus on the use of the recombinant protease in high throughput screens and characterization of small molecular compounds identified in these screens.
Collapse
Affiliation(s)
- Tadahisa Teramoto
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, 20057, USA.
| | - Kyung H Choi
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47406, USA.
| | - Radhakrishnan Padmanabhan
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
35
|
Furtado ND, de Mello IS, de Godoy AS, Noske GD, Oliva G, Canard B, Decroly E, Bonaldo MC. Amino Acid Polymorphisms on the Brazilian Strain of Yellow Fever Virus Methyltransferase Are Related to the Host's Immune Evasion Mediated by Type I Interferon. Viruses 2023; 15:191. [PMID: 36680231 PMCID: PMC9863089 DOI: 10.3390/v15010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Since late 2016, a yellow fever virus (YFV) variant carrying a set of nine amino acid variations has circulated in South America. Three of them were mapped on the methyltransferase (MTase) domain of viral NS5 protein. To assess whether these changes affected viral infectivity, we synthesized YFV carrying the MTase of circulating lineage as well as its isoform with the residues of the previous strains (NS5 K101R, NS5 V138I, and NS5 G173S). We observed a slight difference in viral growth properties and plaque phenotype between the two synthetic YFVs. However, the MTase polymorphisms associated with the Brazilian strain of YFV (2016-2019) confer more susceptibility to the IFN-I. In addition, in vitro MTase assay revealed that the interaction between the YFV MTase and the methyl donor molecule (SAM) is altered in the Brazilian MTase variant. Altogether, the results reported here describe that the MTase carrying the molecular signature of the Brazilian YFV circulating since 2016 might display a slight decrease in its catalytic activity but virtually no effect on viral fitness in the parameters comprised in this study. The most marked influence of these residues stands in the immune escape against the antiviral response mediated by IFN-I.
Collapse
Affiliation(s)
- Nathália Dias Furtado
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Iasmim Silva de Mello
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Andre Schutzer de Godoy
- Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos-USP, São Paulo 13563-120, Brazil
| | - Gabriela Dias Noske
- Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos-USP, São Paulo 13563-120, Brazil
| | - Glaucius Oliva
- Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos-USP, São Paulo 13563-120, Brazil
| | - Bruno Canard
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, CNRS, UMR7257, 13009 Marseille, France
| | - Etienne Decroly
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, CNRS, UMR7257, 13009 Marseille, France
| | - Myrna C. Bonaldo
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
36
|
Jarerattanachat V, Boonarkart C, Hannongbua S, Auewarakul P, Ardkhean R. In silico and in vitro studies of potential inhibitors against Dengue viral protein NS5 Methyl Transferase from Ginseng and Notoginseng. J Tradit Complement Med 2023; 13:1-10. [PMID: 36685072 PMCID: PMC9845645 DOI: 10.1016/j.jtcme.2022.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Background and aim Dengue is a potentially deadly tropical infectious disease transmitted by mosquito vector Aedes aegypti with no antiviral drug available to date. Dengue NS5 protein is crucial for viral replication and is the most conserved among all four Dengue serotypes, making it an attractive drug target. Both Ginseng and Notoginseng extracts and isolates have been shown to be effective against various viral infections yet against Dengue Virus is understudied. We aim to identify potential inhibitors against Dengue NS5 Methyl transferase from small molecular compounds found in Ginseng and Notoginseng. Experimental procedure A molecular docking model of Dengue NS5 Methyl transferase (MTase) domain was tested with decoys and then used to screen 91 small molecular compounds found in Ginseng and Notoginseng followed by Molecular dynamics simulations and the per-residue free energy decompositions based on molecular mechanics/Poisson-Boltzmann (generalised Born) surface area (MM/PB(GB)SA) calculations of the hit. ADME predictions and drug-likeness analyses were discussed to evaluate the viability of the hit as a drug candidate. To confirm our findings, in vitro studies of antiviral activities against RNA and a E protein synthesis and cell toxicity were carried out. Results and conclusion The virtual screening resulted in Isoquercitrin as a single hit. Further analyses of the Isoquercitrin-MTase complex show that Isoquercitrin can reside within both of the NS5 Methyl Transferase active sites; the AdoMet binding site and the RNA capping site. The Isoquercitrin is safe for consumption and accessible on multikilogram scale. In vitro studies showed that Isoquercitrin can inhibit Dengue virus by reducing viral RNA and viral protein synthesis with low toxicity to cells (CC50 > 20 μM). Our work provides evidence that Isoquercitrin can serve as an inhibitor of Dengue NS5 protein at the Methyl Transferase domain, further supporting its role as an anti-DENV agent.
Collapse
Affiliation(s)
- Viwan Jarerattanachat
- NSTDA Supercomputer Center, National Electronics and Computer Technology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ruchuta Ardkhean
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| |
Collapse
|
37
|
Kandagalla S, Novak J, Shekarappa SB, Grishina MA, Potemkin VA, Kumbar B. Exploring potential inhibitors against Kyasanur forest disease by utilizing molecular dynamics simulations and ensemble docking. J Biomol Struct Dyn 2022; 40:13547-13563. [PMID: 34662258 DOI: 10.1080/07391102.2021.1990131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Kyasanur forest disease (KFD) is a tick-borne, neglected tropical disease, caused by KFD virus (KFDV) which belongs to Flavivirus (Flaviviridae family). This emerging viral disease is a major threat to humans. Currently, vaccination is the only controlling method against the KFDV, and its effectiveness is very low. An effective control strategy is required to combat this emerging tropical disease using the existing resources. In this regard, in silico drug repurposing method offers an effective strategy to find suitable antiviral drugs against KFDV proteins. Drug repurposing is an effective strategy to identify new use for approved or investigational drugs that are outside the scope of their initial usage and the repurposed drugs have lower risk and higher safety compared to de novo developed drugs, because their toxicity and safety issues are profoundly investigated during the preclinical trials in human/other models. In the present work, we evaluated the effectiveness of the FDA approved and natural compounds against KFDV proteins using in silico molecular docking and molecular simulations. At present, no experimentally solved 3D structures for the KFD viral proteins are available in Protein Data Bank and hence their homology model was developed and used for the analysis. The present analysis successfully developed the reliable homology model of NS3 of KFDV, in terms of geometry and energy contour. Further, in silico molecular docking and molecular dynamics simulations successfully presented four FDA approved drugs and one natural compound against the NS3 homology model of KFDV. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shivananda Kandagalla
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
| | - Jurica Novak
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
| | - Sharath Belenahalli Shekarappa
- Department of PG Studies and Research in Biotechnology and Bioinformatics, Kuvempu University, Shivamogga, Karnataka, India
| | - Maria A Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
| | - Vladimir A Potemkin
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
| | - Bhimanagoud Kumbar
- Department of PG Studies and Research in Biotechnology and Bioinformatics, Kuvempu University, Shivamogga, Karnataka, India.,ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| |
Collapse
|
38
|
The RNA polymerase of cytoplasmically replicating Zika virus binds with chromatin DNA in nuclei and regulates host gene transcription. Proc Natl Acad Sci U S A 2022; 119:e2205013119. [PMID: 36442102 PMCID: PMC9894162 DOI: 10.1073/pnas.2205013119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Zika virus (ZIKV) targets the neural progenitor cells (NPCs) in brain during intrauterine infections and consequently causes severe neurological disorders, such as microcephaly in neonates. Although replicating in the cytoplasm, ZIKV dysregulates the expression of thousands of host genes, yet the detailed mechanism remains elusive. Herein, we report that ZIKV encodes a unique DNA-binding protein to regulate host gene transcription in the nucleus. We found that ZIKV NS5, the viral RNA polymerase, associates tightly with host chromatin DNA through its methyltransferase domain and this interaction could be specifically blocked by GTP. Further study showed that expression of ZIKV NS5 in human NPCs markedly suppressed the transcription of its target genes, especially the genes involved in neurogenesis. Mechanistically, ZIKV NS5 binds onto the gene body of its target genes and then blocks their transcriptional elongation. The utero electroporation in pregnant mice showed that NS5 expression significantly disrupts the neurogenesis by reducing the number of Sox2- and Tbr2-positive cells in the fetal cortex. Together, our findings demonstrate a molecular clue linking to the abnormal neurodevelopment caused by ZIKV infection and also provide intriguing insights into the interaction between the host cell and the pathogenic RNA virus, where the cytoplasmic RNA virus encodes a DNA-binding protein to control the transcription of host cell in the nuclei.
Collapse
|
39
|
Kouyianou K, Mitsikas DA, Kotsifaki D, Providaki M, Bouriotis V, Kokkinidis M. Purification, Crystallization, and Preliminary X-Ray Analysis of the BseCI DNA Methyltransferase from Geobacillus stearothermophilus in Complex with Its Cognate DNA in Two Distinct Methylation States. CRYSTALLOGR REP+ 2022. [DOI: 10.1134/s1063774522070070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
40
|
Ferrero DS, Albentosa-González L, Mas A, Verdaguer N. Structure and function of the NS5 methyltransferase domain from Usutu virus. Antiviral Res 2022; 208:105460. [DOI: 10.1016/j.antiviral.2022.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
|
41
|
Kazzi PE, Rabah N, Chamontin C, Poulain L, Ferron F, Debart F, Canard B, Missé D, Coutard B, Nisole S, Decroly E. Internal RNA 2′O-methylation in the HIV-1 genome counteracts ISG20 nuclease-mediated antiviral effect. Nucleic Acids Res 2022; 51:2501-2515. [PMID: 36354007 PMCID: PMC10085690 DOI: 10.1093/nar/gkac996] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/16/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract
RNA 2′O-methylation is a ‘self’ epitranscriptomic modification allowing discrimination between host and pathogen. Indeed, human immunodeficiency virus 1 (HIV-1) induces 2′O-methylation of its genome by recruiting the cellular FTSJ3 methyltransferase, thereby impairing detection by RIG-like receptors. Here, we show that RNA 2′O-methylations interfere with the antiviral activity of interferon-stimulated gene 20-kDa protein (ISG20). Biochemical experiments showed that ISG20-mediated degradation of 2′O-methylated RNA pauses two nucleotides upstream of and at the methylated residue. Structure-function analysis indicated that this inhibition is due to steric clash between ISG20 R53 and D90 residues and the 2′O-methylated nucleotide. We confirmed that hypomethylated HIV-1 genomes produced in FTSJ3-KO cells were more prone to in vitro degradation by ISG20 than those produced in cells expressing FTSJ3. Finally, we found that reverse-transcription of hypomethylated HIV-1 was impaired in T cells by interferon-induced ISG20, demonstrating the direct antagonist effect of 2′O-methylation on ISG20-mediated antiviral activity.
Collapse
Affiliation(s)
- Priscila El Kazzi
- AFMB, CNRS, Aix-Marseille University , UMR 7257, Case 925, 163 Avenue de Luminy , 13288 Marseille Cedex 09, France
| | - Nadia Rabah
- AFMB, CNRS, Aix-Marseille University , UMR 7257, Case 925, 163 Avenue de Luminy , 13288 Marseille Cedex 09, France
- Université de Toulon , 83130 La Garde , France
| | - Célia Chamontin
- IRIM, CNRS UMR9004, Université de Montpellier , Montpellier , France
| | - Lina Poulain
- AFMB, CNRS, Aix-Marseille University , UMR 7257, Case 925, 163 Avenue de Luminy , 13288 Marseille Cedex 09, France
| | - François Ferron
- AFMB, CNRS, Aix-Marseille University , UMR 7257, Case 925, 163 Avenue de Luminy , 13288 Marseille Cedex 09, France
- European Virus Bioinformatics Center , Leutragraben 1, 07743 Jena , Germany
| | - Françoise Debart
- IBMM, UMR 5247 CNRS, Université de Montpellier , ENSCM, Montpellier , France
| | - Bruno Canard
- AFMB, CNRS, Aix-Marseille University , UMR 7257, Case 925, 163 Avenue de Luminy , 13288 Marseille Cedex 09, France
| | - Dorothée Missé
- MIVEGEC, Univ. Montpellier, CNRS , IRD, Montpellier, France
| | - Bruno Coutard
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207) , Marseille , France
| | - Sébastien Nisole
- IRIM, CNRS UMR9004, Université de Montpellier , Montpellier , France
| | - Etienne Decroly
- AFMB, CNRS, Aix-Marseille University , UMR 7257, Case 925, 163 Avenue de Luminy , 13288 Marseille Cedex 09, France
| |
Collapse
|
42
|
Li N, Rana TM. Regulation of antiviral innate immunity by chemical modification of viral RNA. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1720. [PMID: 35150188 PMCID: PMC9786758 DOI: 10.1002/wrna.1720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 12/30/2022]
Abstract
More than 100 chemical modifications of RNA, termed the epitranscriptome, have been described, most of which occur in prokaryotic and eukaryotic ribosomal, transfer, and noncoding RNA and eukaryotic messenger RNA. DNA and RNA viruses can modify their RNA either directly via genome-encoded enzymes or by hijacking the host enzymatic machinery. Among the many RNA modifications described to date, four play particularly important roles in promoting viral infection by facilitating viral gene expression and replication and by enabling escape from the host innate immune response. Here, we discuss our current understanding of the mechanisms by which the RNA modifications such as N6 -methyladenosine (m6A), N6 ,2'-O-dimethyladenosine (m6Am), 5-methylcytidine (m5C), N4-acetylcytidine (ac4C), and 2'-O-methylation (Nm) promote viral replication and/or suppress recognition by innate sensors and downstream activation of the host antiviral response. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.
Collapse
Affiliation(s)
- Na Li
- Division of Genetics, Department of Pediatrics, Program in ImmunologyInstitute for Genomic MedicineLa JollaCaliforniaUSA
| | - Tariq M. Rana
- Division of Genetics, Department of Pediatrics, Program in ImmunologyInstitute for Genomic MedicineLa JollaCaliforniaUSA
| |
Collapse
|
43
|
Shannon A, Sama B, Gauffre P, Guez T, Debart F, Vasseur JJ, Decroly E, Canard B, Ferron F. A second type of N7-guanine RNA cap methyltransferase in an unusual locus of a large RNA virus genome. Nucleic Acids Res 2022; 50:11186-11198. [PMID: 36265859 DOI: 10.1093/nar/gkac876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/29/2022] [Indexed: 11/12/2022] Open
Abstract
The order Nidovirales is a diverse group of (+)RNA viruses, with a common genome organization and conserved set of replicative and editing enzymes. In particular, RNA methyltransferases play a central role in mRNA stability and immune escape. However, their presence and distribution in different Nidovirales families is not homogeneous. In Coronaviridae, the best characterized family, two distinct methytransferases perform methylation of the N7-guanine and 2'-OH of the RNA-cap to generate a cap-1 structure (m7GpppNm). The genes of both of these enzymes are located in the ORF1b genomic region. While 2'-O-MTases can be identified for most other families based on conservation of both sequence motifs and genetic loci, identification of the N7-guanine methyltransferase has proved more challenging. Recently, we identified a putative N7-MTase domain in the ORF1a region (N7-MT-1a) of certain members of the large genome Tobaniviridae family. Here, we demonstrate that this domain indeed harbors N7-specific methyltransferase activity. We present its structure as the first N7-specific Rossmann-fold (RF) MTase identified for (+)RNA viruses, making it remarkably different from that of the known Coronaviridae ORF1b N7-MTase gene. We discuss the evolutionary implications of such an appearance in this unexpected location in the genome, which introduces a split-off in the classification of Tobaniviridae.
Collapse
Affiliation(s)
- Ashleigh Shannon
- Aix-Marseille Université and CNRS, Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13009, Marseille, France
| | - Bhawna Sama
- Aix-Marseille Université and CNRS, Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13009, Marseille, France
| | - Pierre Gauffre
- Aix-Marseille Université and CNRS, Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13009, Marseille, France
| | - Théo Guez
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Françoise Debart
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Etienne Decroly
- Aix-Marseille Université and CNRS, Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13009, Marseille, France
| | - Bruno Canard
- Aix-Marseille Université and CNRS, Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13009, Marseille, France.,European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - François Ferron
- Aix-Marseille Université and CNRS, Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13009, Marseille, France.,European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| |
Collapse
|
44
|
Flavivirus NS4B protein: Structure, function, and antiviral discovery. Antiviral Res 2022; 207:105423. [PMID: 36179934 DOI: 10.1016/j.antiviral.2022.105423] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/02/2022]
Abstract
Infections with mosquito-borne flaviviruses, such as Dengue virus, ZIKV virus, and West Nile virus, pose significant threats to public health. Flaviviruses cause about 400 million infections each year, leading to many forms of diseases, including fatal hemorrhagic, encephalitis, congenital abnormalities, and deaths. Currently, there are no clinically approved antiviral drugs for the treatment of flavivirus infections. The non-structural protein NS4B is an emerging target for drug discovery due to its multiple roles in the flaviviral life cycle. In this review, we summarize the latest knowledge on the structure and function of flavivirus NS4B, as well as the progress on antiviral compounds that target NS4B.
Collapse
|
45
|
Mushegian A. Methyltransferases of Riboviria. Biomolecules 2022; 12:1247. [PMID: 36139088 PMCID: PMC9496149 DOI: 10.3390/biom12091247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
Many viruses from the realm Riboviria infecting eukaryotic hosts encode protein domains with sequence similarity to S-adenosylmethionine-dependent methyltransferases. These protein domains are thought to be involved in methylation of the 5'-terminal cap structures in virus mRNAs. Some methyltransferase-like domains of Riboviria are homologous to the widespread cellular FtsJ/RrmJ-like methyltransferases involved in modification of cellular RNAs; other methyltransferases, found in a subset of positive-strand RNA viruses, have been assigned to a separate "Sindbis-like" family; and coronavirus-specific Nsp13/14-like methyltransferases appeared to be different from both those classes. The representative structures of proteins from all three groups belong to a specific variety of the Rossmann fold with a seven-stranded β-sheet, but it was unclear whether this structural similarity extends to the level of conserved sequence signatures. Here I survey methyltransferases in Riboviria and derive a joint sequence alignment model that covers all groups of virus methyltransferases and subsumes the previously defined conserved sequence motifs. Analysis of the spatial structures indicates that two highly conserved residues, a lysine and an aspartate, frequently contact a water molecule, which is located in the enzyme active center next to the methyl group of S-adenosylmethionine cofactor and could play a key role in the catalytic mechanism of the enzyme. Phylogenetic evidence indicates a likely origin of all methyltransferases of Riboviria from cellular RrmJ-like enzymes and their rapid divergence with infrequent horizontal transfer between distantly related viruses.
Collapse
Affiliation(s)
- Arcady Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, 2415 Eisenhower Ave., Alexandria, VA 22314, USA
| |
Collapse
|
46
|
Klima M, Khalili Yazdi A, Li F, Chau I, Hajian T, Bolotokova A, Kaniskan HÜ, Han Y, Wang K, Li D, Luo M, Jin J, Boura E, Vedadi M. Crystal structure of SARS-CoV-2 nsp10-nsp16 in complex with small molecule inhibitors, SS148 and WZ16. Protein Sci 2022; 31:e4395. [PMID: 36040262 PMCID: PMC9375521 DOI: 10.1002/pro.4395] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/11/2022] [Accepted: 07/12/2022] [Indexed: 01/04/2023]
Abstract
SARS-CoV-2 nsp10-nsp16 complex is a 2'-O-methyltransferase (MTase) involved in viral RNA capping, enabling the virus to evade the immune system in humans. It has been considered a valuable target in the discovery of antiviral therapeutics, as the RNA cap formation is crucial for viral propagation. Through cross-screening of the inhibitors that we previously reported for SARS-CoV-2 nsp14 MTase activity against nsp10-nsp16 complex, we identified two compounds (SS148 and WZ16) that also inhibited nsp16 MTase activity. To further enable the chemical optimization of these two compounds towards more potent and selective dual nsp14/nsp16 MTase inhibitors, we determined the crystal structure of nsp10-nsp16 in complex with each of SS148 and WZ16. As expected, the structures revealed the binding of both compounds to S-adenosyl-L-methionine (SAM) binding pocket of nsp16. However, our structural data along with the biochemical mechanism of action determination revealed an RNA-dependent SAM-competitive pattern of inhibition for WZ16, clearly suggesting that binding of the RNA first may help the binding of some SAM competitive inhibitors. Both compounds also showed some degree of selectivity against human protein MTases, an indication of great potential for chemical optimization towards more potent and selective inhibitors of coronavirus MTases.
Collapse
Affiliation(s)
- Martin Klima
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrague 6Czech Republic
| | | | - Fengling Li
- Structural Genomics ConsortiumUniversity of TorontoTorontoOntarioCanada
| | - Irene Chau
- Structural Genomics ConsortiumUniversity of TorontoTorontoOntarioCanada
| | - Taraneh Hajian
- Structural Genomics ConsortiumUniversity of TorontoTorontoOntarioCanada
| | - Albina Bolotokova
- Structural Genomics ConsortiumUniversity of TorontoTorontoOntarioCanada
| | - H. Ümit Kaniskan
- Departments of Pharmacological Sciences and Oncological Sciences, Mount Sinai Center for Therapeutics DiscoveryTisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Yulin Han
- Departments of Pharmacological Sciences and Oncological Sciences, Mount Sinai Center for Therapeutics DiscoveryTisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ke Wang
- Chemical Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoOntarioCanada
| | - Deyao Li
- Chemical Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoOntarioCanada
| | - Minkui Luo
- Chemical Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoOntarioCanada
| | - Jian Jin
- Departments of Pharmacological Sciences and Oncological Sciences, Mount Sinai Center for Therapeutics DiscoveryTisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Evzen Boura
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrague 6Czech Republic
| | - Masoud Vedadi
- Structural Genomics ConsortiumUniversity of TorontoTorontoOntarioCanada
- Program of PharmacologyWeill Cornell Medical College of Cornell UniversityNew YorkNew YorkUSA
| |
Collapse
|
47
|
Latanova A, Starodubova E, Karpov V. Flaviviridae Nonstructural Proteins: The Role in Molecular Mechanisms of Triggering Inflammation. Viruses 2022; 14:v14081808. [PMID: 36016430 PMCID: PMC9414172 DOI: 10.3390/v14081808] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
Members of the Flaviviridae family are posing a significant threat to human health worldwide. Many flaviviruses are capable of inducing severe inflammation in humans. Flaviviridae nonstructural proteins, apart from their canonical roles in viral replication, have noncanonical functions strongly affecting antiviral innate immunity. Among these functions, antagonism of type I IFN is the most investigated; meanwhile, more data are accumulated on their role in the other pathways of innate response. This review systematizes the last known data on the role of Flaviviridae nonstructural proteins in molecular mechanisms of triggering inflammation, with an emphasis on their interactions with TLRs and RLRs, interference with NF-κB and cGAS-STING signaling, and activation of inflammasomes.
Collapse
|
48
|
Abstract
The positive-sense flavivirus RNA genome bears a cap 1 structure essential for RNA stability and viral protein translation, and the formation of cap 1 requires the virally encoded nonstructural protein NS5 harboring guanylyltransferase (GTase), cap guanine N7 methyltransferase (N7 MTase), and 5'-nucleotide ribose 2'-O MTase activities in its single-domain MTase module. Despite numerous MTase-containing structures reported, the structural evidence for a critical GMP-enzyme intermediate formation and RNA repositioning when transitioning among different reactions is missing. Here, we report 10 high-resolution MTase crystal structures of Omsk hemorrhagic fever virus (OHFV), a representative high-consequence tick-borne flavivirus, capturing previously unidentified GMP-arginine adduct structures and a rarely observed capped RNA conformation. These structures help us thread capping events in the canonical model with a structure-based hypothesis involving the flipping of the 5' nucleotide, while the observation of an m7GMP-arginine adduct is compatible with an alternate capping model that decouples the N7 and 2'-O methylation steps. IMPORTANCE The methyltransferase (MTase) domain of flavivirus NS5 is unique in harboring guanylyltransferase (GTase), N7 MTase, and 2'-O MTase activities, playing a central role in viral RNA capping. However, the detailed mechanisms of the multistep capping process remain elusive. Here, we report 10 crystal structures of a flavivirus MTase to help understand the guanylyl transfer from GTP to the GTase itself and the transition between guanylyl transfer and methylation steps. In particular, a previously unobserved GMP-arginine covalent intermediate was captured multiple times in MTase crystal soaking trials with GTP present in the soaking solution, supporting its role in bridging the guanylyl transfer from GTP to the GTase and subsequent transfer to the 5'-diphosphate RNA.
Collapse
|
49
|
Yadav P, El-Kafrawy SA, El-Day MM, Alghafari WT, Faizo AA, Jha SK, Dwivedi VD, Azhar EI. Discovery of Small Molecules from Echinacea angustifolia Targeting RNA-Dependent RNA Polymerase of Japanese Encephalitis Virus. Life (Basel) 2022; 12:life12070952. [PMID: 35888042 PMCID: PMC9324244 DOI: 10.3390/life12070952] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 05/28/2023] Open
Abstract
The Japanese encephalitis virus (JEV), a mosquito-borne flavivirus that causes viral encephalitis leading to neural damage, is a major threat in most Asian countries. The RNA-dependent RNA polymerase (RdRp) present in the viral genome is the key component for genome replication, making it an attractive target for antiviral drug development. In this study, the natural products from Echinacea angustifolia were retrieved for structure-based virtual screening against JEV-RdRp. The top six compounds (Echinacoside, Echinacin, Rutin, Cynaroside, Quercetagetin 7-glucoside, and Kaempferol-3-glucoside) were obtained based on the highest negative docking score, ADMET (absorption, distribution, metabolism, excretion, and toxicity), and molecular interaction. The computational analysis of these selected compounds against the co-crystallized ligands, i.e., ATP and GTP, were performed. Further, 100 ns molecular dynamic simulation and post-free binding energy calculation of all the selected compounds complexed with JEV-RdRP were performed to check the stability of the complexes. The obtained results showed considerable stability and intermolecular interaction with native ligand-binding site residues of JEV-RdRp. Hence, selected natural compounds are admissible inhibitors of JEV-RdRp protein and can be considered for future antiviral drug development studies.
Collapse
Affiliation(s)
- Pardeep Yadav
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India; (P.Y.); (S.K.J.)
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida 201308, India
| | - Sherif A. El-Kafrawy
- Special Infectious Agents Unit-BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; (S.A.E.-K.); (M.M.E.-D.); (W.T.A.); (A.A.F.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Mai M. El-Day
- Special Infectious Agents Unit-BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; (S.A.E.-K.); (M.M.E.-D.); (W.T.A.); (A.A.F.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Wejdan T. Alghafari
- Special Infectious Agents Unit-BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; (S.A.E.-K.); (M.M.E.-D.); (W.T.A.); (A.A.F.)
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Arwa A. Faizo
- Special Infectious Agents Unit-BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; (S.A.E.-K.); (M.M.E.-D.); (W.T.A.); (A.A.F.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India; (P.Y.); (S.K.J.)
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida 201308, India
- Institute of Advanced Materials, IAAM, 59053 Ulrika, Sweden
| | - Esam I. Azhar
- Special Infectious Agents Unit-BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; (S.A.E.-K.); (M.M.E.-D.); (W.T.A.); (A.A.F.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| |
Collapse
|
50
|
The Dengue Virus Nonstructural Protein 1 (NS1) Interacts with the Putative Epigenetic Regulator DIDO1 to Promote Flavivirus Replication in Mosquito Cells. J Virol 2022; 96:e0070422. [PMID: 35652656 DOI: 10.1128/jvi.00704-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dengue virus (DENV) NS1 is a multifunctional protein essential for viral replication. To gain insights into NS1 functions in mosquito cells, the protein interactome of DENV NS1 in C6/36 cells was investigated using a proximity biotinylation system and mass spectrometry. A total of 817 mosquito targets were identified as protein-protein interacting with DENV NS1. Approximately 14% of them coincide with interactomes previously obtained in vertebrate cells, including the oligosaccharide transferase complex, the chaperonin containing TCP-1, vesicle localization, and ribosomal proteins. Notably, other protein pathways not previously reported in vertebrate cells, such as epigenetic regulation and RNA silencing, were also found in the NS1 interactome in mosquito cells. Due to the novel and strong interactions observed for NS1 and the epigenetic regulator DIDO1 (Death-Inducer Obliterator 1), the role of DIDO1 in viral replication was further explored. Interactions between NS1 and DIDO1 were corroborated in infected mosquito cells, by colocalization and proximity ligation assays. Silencing DIDO1 expression results in a significant reduction in DENV and ZIKV replication and progeny production. Comparison of transcription analysis of mock or DENV infected cells silenced for DIDO1 revealed variations in multiple gene expression pathways, including pathways associated with DENV infection such as RNA surveillance, IMD, and Toll. These results suggest that DIDO1 is a host factor involved in the negative modulation of the antiviral response necessary for flavivirus replication in mosquito cells. Our findings uncover novel mechanisms of NS1 to promote DENV and ZIKV replication, and add to the understanding of NS1 as a multifunctional protein. IMPORTANCE Dengue is the most important mosquito-borne viral disease to humans. Dengue virus NS1 is a multifunctional protein essential for replication and modulation of innate immunity. To gain insights into NS1 functions, the protein interactome of dengue virus NS1 in Aedes albopictus cells was investigated using a proximity biotinylation system and mass spectrometry. Several protein pathways, not previously observed in vertebrate cells, such as transcription and epigenetic regulation, were found as part of the NS1 interactome in mosquito cells. Among those, DIDO1 was found to be a necessary host factor for dengue and Zika virus replication in mosquito cells. Transcription analysis of infected mosquito cells silenced for DIDO1 revealed alterations of the IMD and Toll pathways, part of the antiviral response in mosquitoes. The results suggest that DIDO1 is a host factor involved in modulation of the antiviral response and necessary for flavivirus replication.
Collapse
|