1
|
Bastos VAF, Fujimura PT, de Souza AG, Vaz ER, Saito N, Sabino-Silva R, Goulart LR, Cunha TM. Activin A Inhibitory Peptides Suppress Fibrotic Pathways by Targeting Epithelial-Mesenchymal Transition and Fibroblast-Myofibroblast Transformation in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2025; 26:2705. [PMID: 40141346 PMCID: PMC11942258 DOI: 10.3390/ijms26062705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/01/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and incurable chronic interstitial lung disease characterized by excessive fibrosis and impaired lung function. Current treatments, such as pirfenidone and nintedanib, slow disease progression but fail to halt or reverse fibrosis, highlighting the need for novel approaches. Activin A, which belongs to the TGF-β superfamily, is implicated in various fibrosis-related mechanisms, including epithelial-mesenchymal transition (EMT), a process where epithelial cells acquire mesenchymal characteristics, and fibroblast-myofibroblast transformation (FMT), in which fibroblasts differentiate into contractile myofibroblasts. It also promotes inflammatory cytokine release and extracellular matrix buildup. This study aimed to inhibit Activin A activity using synthetic peptides identified through phage display screening. Of the ten peptides isolated, A7, B9, and E10 demonstrated high binding affinity and inhibitory activity. Computational modeling confirmed that these peptides target the receptor-binding domain of Activin A, with peptide E10 exhibiting superior efficacy. Functional assays showed that E10 reduced cell migration, inhibited EMT in A549 cells, and suppressed FMT in fibroblast cultures, even under pro-fibrotic stimulation with TGF-β. These findings underscore the therapeutic potential of targeting Activin A with synthetic peptides, offering a promising avenue for IPF treatment and expanding the arsenal of anti-fibrotic strategies.
Collapse
Affiliation(s)
- Victor Alexandre F. Bastos
- Laboratory of Experimental Biotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38402-022, MG, Brazil
| | - Patrícia Tiemi Fujimura
- Laboratory of Nanobiotechnology—Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38402-022, MG, Brazil; (P.T.F.); (E.R.V.); (N.S.); (T.M.C.)
| | - Aline Gomes de Souza
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto 14040-900, SP, Brazil;
| | - Emília Rezende Vaz
- Laboratory of Nanobiotechnology—Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38402-022, MG, Brazil; (P.T.F.); (E.R.V.); (N.S.); (T.M.C.)
| | - Natieli Saito
- Laboratory of Nanobiotechnology—Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38402-022, MG, Brazil; (P.T.F.); (E.R.V.); (N.S.); (T.M.C.)
| | - Robinson Sabino-Silva
- Department of Physiology, Laboratory of Nanobiotechnology—Prof. Dr. Luiz Ricardo Goulart Filho, Innovation Center in Salivary Diagnostics and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38402-022, MG, Brazil;
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology—Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38402-022, MG, Brazil; (P.T.F.); (E.R.V.); (N.S.); (T.M.C.)
| | - Thulio Marquez Cunha
- Laboratory of Nanobiotechnology—Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38402-022, MG, Brazil; (P.T.F.); (E.R.V.); (N.S.); (T.M.C.)
- School of Medicine, Federal University of Uberlândia, Uberlândia 38408-100, MG, Brazil
| |
Collapse
|
2
|
Ongaro L, Zhou X, Wang Y, Schultz H, Zhou Z, Buddle ERS, Brûlé E, Lin YF, Schang G, Hagg A, Castonguay R, Liu Y, Su GH, Seidah NG, Ray KC, Karp SJ, Boehm U, Ruf-Zamojski F, Sealfon SC, Walton KL, Lee SJ, Bernard DJ. Muscle-derived myostatin is a major endocrine driver of follicle-stimulating hormone synthesis. Science 2025; 387:329-336. [PMID: 39818879 DOI: 10.1126/science.adi4736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/18/2024] [Accepted: 10/31/2024] [Indexed: 01/19/2025]
Abstract
Myostatin is a paracrine myokine that regulates muscle mass in a variety of species, including humans. In this work, we report a functional role for myostatin as an endocrine hormone that directly promotes pituitary follicle-stimulating hormone (FSH) synthesis and thereby ovarian function in mice. Previously, this FSH-stimulating role was attributed to other members of the transforming growth factor-β family, the activins. Our results both challenge activin's eponymous role in FSH synthesis and establish an unexpected endocrine axis between skeletal muscle and the pituitary gland. Our data also suggest that efforts to antagonize myostatin to increase muscle mass may have unintended consequences on fertility.
Collapse
Affiliation(s)
- Luisina Ongaro
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Ying Wang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Hailey Schultz
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Ziyue Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Evan R S Buddle
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Emilie Brûlé
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Yeu-Farn Lin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Gauthier Schang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Adam Hagg
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Yewei Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Gloria H Su
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM)-University of Montreal, Montreal, Quebec, Canada
| | - Kevin C Ray
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seth J Karp
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology, University of Saarland School of Medicine, Homburg, Germany
| | - Frederique Ruf-Zamojski
- Cedars-Sinai Medical Center, Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Los Angeles, CA, USA
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kelly L Walton
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Se-Jin Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Tang W, Gu Z, Guo J, Lin M, Tao H, Jia D, Jia P. Activins and Inhibins in Cardiovascular Pathophysiology. Biomolecules 2024; 14:1462. [PMID: 39595638 PMCID: PMC11592067 DOI: 10.3390/biom14111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Activins and inhibins, members of the transforming growth factor β (TGFβ) superfamily, were initially recognized for their opposing effects on the secretion of follicle-stimulating hormone. Subsequent research has demonstrated their broader biological roles across various tissue types. Primarily, activins and inhibins function through the classical TGFβ SMAD signaling pathway, but studies suggest that they also act through other pathways, with their specific signaling being complex and context-dependent. Recent research has identified significant roles for activins and inhibins in the cardiovascular system. Their actions in other systems and their signaling pathways show strong correlations with the development and progression of cardiovascular diseases, indicating potential broader roles in the cardiovascular system. This review summarizes the progress in research on the biological functions and mechanisms of activins and inhibins and their signaling pathways in cardiovascular diseases, offering new insights for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Dalin Jia
- Department of Cardiology, The First Hospital of China Medical University, Shenyang 110001, China; (W.T.); (Z.G.); (J.G.); (M.L.); (H.T.)
| | - Pengyu Jia
- Department of Cardiology, The First Hospital of China Medical University, Shenyang 110001, China; (W.T.); (Z.G.); (J.G.); (M.L.); (H.T.)
| |
Collapse
|
4
|
Vestal KA, Kattamuri C, Koyiloth M, Ongaro L, Howard JA, Deaton AM, Ticau S, Dubey A, Bernard DJ, Thompson TB. Activin E is a transforming growth factor β ligand that signals specifically through activin receptor-like kinase 7. Biochem J 2024; 481:547-564. [PMID: 38533769 PMCID: PMC11088876 DOI: 10.1042/bcj20230404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 03/28/2024]
Abstract
Activins are one of the three distinct subclasses within the greater Transforming growth factor β (TGFβ) superfamily. First discovered for their critical roles in reproductive biology, activins have since been shown to alter cellular differentiation and proliferation. At present, members of the activin subclass include activin A (ActA), ActB, ActC, ActE, and the more distant members myostatin and GDF11. While the biological roles and signaling mechanisms of most activins class members have been well-studied, the signaling potential of ActE has remained largely unknown. Here, we characterized the signaling capacity of homodimeric ActE. Molecular modeling of the ligand:receptor complexes showed that ActC and ActE shared high similarity in both the type I and type II receptor binding epitopes. ActE signaled specifically through ALK7, utilized the canonical activin type II receptors, ActRIIA and ActRIIB, and was resistant to the extracellular antagonists follistatin and WFIKKN. In mature murine adipocytes, ActE invoked a SMAD2/3 response via ALK7, like ActC. Collectively, our results establish ActE as a specific signaling ligand which activates the type I receptor, ALK7.
Collapse
Affiliation(s)
- Kylie A. Vestal
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| | - Chandramohan Kattamuri
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| | - Muhasin Koyiloth
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - James A. Howard
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| | | | | | - Aditi Dubey
- Alnylam Pharmaceuticals, Cambridge, MA, U.S.A
| | - Daniel J. Bernard
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - Thomas B. Thompson
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| |
Collapse
|
5
|
Vestal KA, Kattamuri C, Koyiloth M, Ongaro L, Howard JA, Deaton A, Ticau S, Dubey A, Bernard DJ, Thompson TB. Activin E is a TGFβ ligand that signals specifically through activin receptor-like kinase 7. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559288. [PMID: 37808681 PMCID: PMC10557571 DOI: 10.1101/2023.09.25.559288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Activins are one of the three distinct subclasses within the greater Transforming Growth Factor β (TGFβ) superfamily. First discovered for their critical roles in reproductive biology, activins have since been shown to alter cellular differentiation and proliferation. At present, members of the activin subclass include activin A (ActA), ActB, ActC, ActE, and the more distant members myostatin and GDF11. While the biological roles and signaling mechanisms of most activins class members have been well-studied, the signaling potential of ActE has remained largely unknown. Here, we characterized the signaling capacity of homodimeric ActE. Molecular modeling of the ligand:receptor complexes showed that ActC and ActE shared high similarity in both the type I and type II receptor binding epitopes. ActE signaled specifically through ALK7, utilized the canonical activin type II receptors, ActRIIA and ActRIIB, and was resistant to the extracellular antagonists follistatin and WFIKKN. In mature murine adipocytes, ActE invoked a SMAD2/3 response via ALK7, similar to ActC. Collectively, our results establish ActE as an ALK7 ligand, thereby providing a link between genetic and in vivo studies of ActE as a regulator of adipose tissue.
Collapse
Affiliation(s)
- Kylie A Vestal
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Chandramohan Kattamuri
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Muhasin Koyiloth
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - James A Howard
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - Thomas B Thompson
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
6
|
Trumpp M, Tan WH, Burdzinski W, Basler Y, Jatzlau J, Knaus P, Winkler C. Characterization of Fibrodysplasia Ossificans Progessiva relevant Acvr1/Acvr2 Activin receptors in medaka (Oryzias latipes). PLoS One 2023; 18:e0291379. [PMID: 37708126 PMCID: PMC10501582 DOI: 10.1371/journal.pone.0291379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Activin and Bone Morphogenetic Protein (BMP) signaling plays crucial roles in vertebrate organ formation, including osteo- and angiogenesis, and tissue homeostasis, such as neuronal maintenance. Activin and BMP signaling needs to be precisely controlled by restricted expression of shared receptors, stoichiometric composition of receptor-complexes and presence of regulatory proteins. A R206H mutation in the human (hs) BMP type I receptor hsACVR1, on the other hand, leads to excessive phosphorylation of Sons of mothers against decapentaplegic (SMAD) 1/5/8. This in turn causes increased inflammation and heterotopic ossification in soft tissues of patients suffering from Fibrodysplasia Ossificans Progressiva (FOP). Several animal models have been established to understand the spontaneous and progressive nature of FOP, but often have inherent limitations. The Japanese medaka (Oryzias latipes, ola) has recently emerged as popular model for bone research. To assess whether medaka is suitable as a potential FOP animal model, we determined the expression of Activin receptor type I (ACVR1) orthologs olaAcvr1 and olaAcvr1l with that of Activin type II receptors olaAcvr2ab, olaAcvr2ba and olaAcvr2bb in embryonic and adult medaka tissues by in situ hybridization. Further, we showed that Activin A binding properties are conserved in olaAcvr2, as are the mechanistic features in the GS-Box of both olaAcvr1 and olaAcvr1l. This consequently leads to FOP-typical elevated SMAD signaling when the medaka type I receptors carry the R206H equivalent FOP mutation. Together, this study therefore provides experimental groundwork needed to establish a unique medaka model to investigate mechanisms underlying FOP.
Collapse
Affiliation(s)
- Michael Trumpp
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Wen Hui Tan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Wiktor Burdzinski
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
| | - Yara Basler
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jerome Jatzlau
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Petra Knaus
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Hamang M, Yaden B, Dai G. Gastrointestinal pharmacology activins in liver health and disease. Biochem Pharmacol 2023; 214:115668. [PMID: 37364623 PMCID: PMC11234865 DOI: 10.1016/j.bcp.2023.115668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Activins are a subgroup of the TGFβ superfamily of growth and differentiation factors, dimeric in nature and consisting of two inhibin beta subunits linked via a disulfide bridge. Canonical activin signaling occurs through Smad2/3, with negative feedback initiated by Smad6/7 following signal transduction, which binds activin type I receptor preventing phosphorylation of Smad2/3 and activation of downstream signaling. In addition to Smad6/7, other inhibitors of activin signaling have been identified as well, including inhibins (dimers of an inhibin alpha and beta subunit), BAMBI, Cripto, follistatin, and follistatin-like 3 (fstl3). To date, activins A, B, AB, C, and E have been identified and isolated in mammals, with activin A and B having the most characterization of biological activity. Activin A has been implicated as a regulator of several important functions of liver biology, including hepatocyte proliferation and apoptosis, ECM production, and liver regeneration; the role of other subunits of activin in liver physiology are less understood. There is mounting data to suggest a link between dysregulation of activins contributing to various hepatic diseases such as inflammation, fibrosis, and hepatocellular carcinoma, and emerging studies demonstrating the protective and regenerative effects of inhibiting activins in mouse models of liver disease. Due to their importance in liver biology, activins demonstrate utility as a therapeutic target for the treatment of hepatic diseases such as cirrhosis, NASH, NAFLD, and HCC; further research regarding activins may provide diagnostic or therapeutic opportunity for those suffering from various liver diseases.
Collapse
Affiliation(s)
- Matthew Hamang
- Department of Biology, School of Science, Indiana University - Purdue University Indianapolis, IN, United States.
| | - Benjamin Yaden
- Department of Biology, School of Science, Indiana University - Purdue University Indianapolis, IN, United States.
| | - Guoli Dai
- Department of Biology, School of Science, Indiana University - Purdue University Indianapolis, IN, United States.
| |
Collapse
|
8
|
Age as a Determinant of the Effectiveness of Intravaginal Sponges Impregnated with Progestin and Equine Chorionic Gonadotropin for Multiple Births Induction of Awassi Ewes. Vet Med Int 2023. [DOI: 10.1155/2023/9800053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The present study was conducted to evaluate the role of age in the effectiveness of intravaginal progestin-impregnated sponges (IPIS) along with equine chorionic gonadotropin (eCG) on the multiple birth rates of Awassi ewes. One hundred mature ewes (live weight was 35–40 kg and age 2–5 years) were allocated to three groups according to their ages (n = 29, 2-3 years;n = 34, 3-4 years; and n = 37, 4-5 years). All ewes were impregnated with IPIS, injected with 20 mg cronolone, for 14 days, and eCG (400 IU, i.m.) at sponges withdrawal. All treated ewes came to estrus (100%); the highest twining rate was recorded in ewes aged 2-3 years, while the highest triple rate were found in those aged 3-4 years. A negative correlation coefficient was recorded between the age of treated ewes and the multiple births. In conclusion, the best age of Awassi ewes for estrus synchronization programs and multiple birth outcomes using IPIS along with eCG is 2–4 years.
Collapse
|
9
|
Jatzlau J, Burdzinski W, Trumpp M, Obendorf L, Roßmann K, Ravn K, Hyvönen M, Bottanelli F, Broichhagen J, Knaus P. A versatile Halo- and SNAP-tagged BMP/TGFβ receptor library for quantification of cell surface ligand binding. Commun Biol 2023; 6:34. [PMID: 36635368 PMCID: PMC9837045 DOI: 10.1038/s42003-022-04388-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/20/2022] [Indexed: 01/14/2023] Open
Abstract
TGFβs, BMPs and Activins regulate numerous developmental and homeostatic processes and signal through hetero-tetrameric receptor complexes composed of two types of serine/threonine kinase receptors. Each of the 33 different ligands possesses unique affinities towards specific receptor types. However, the lack of specific tools hampered simultaneous testing of ligand binding towards all BMP/TGFβ receptors. Here we present a N-terminally Halo- and SNAP-tagged TGFβ/BMP receptor library to visualize receptor complexes in dual color. In combination with fluorescently labeled ligands, we established a Ligand Surface Binding Assay (LSBA) for optical quantification of receptor-dependent ligand binding in a cellular context. We highlight that LSBA is generally applicable to test (i) binding of different ligands such as Activin A, TGFβ1 and BMP9, (ii) for mutant screens and (iii) evolutionary comparisons. This experimental set-up opens opportunities for visualizing ligand-receptor binding dynamics, essential to determine signaling specificity and is easily adaptable for other receptor signaling pathways.
Collapse
Affiliation(s)
- Jerome Jatzlau
- Institute of Chemistry and Biochemistry - Biochemistry, Berlin, Germany
| | - Wiktor Burdzinski
- Institute of Chemistry and Biochemistry - Biochemistry, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
| | - Michael Trumpp
- Institute of Chemistry and Biochemistry - Biochemistry, Berlin, Germany
| | - Leon Obendorf
- Institute of Chemistry and Biochemistry - Biochemistry, Berlin, Germany
| | - Kilian Roßmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Katharina Ravn
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Petra Knaus
- Institute of Chemistry and Biochemistry - Biochemistry, Berlin, Germany.
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany.
| |
Collapse
|
10
|
Kappes EC, Kattamuri C, Czepnik M, Yarawsky AE, Brûlé E, Wang Y, Ongaro L, Herr AB, Walton KL, Bernard DJ, Thompson TB. Follistatin Forms a Stable Complex With Inhibin A That Does Not Interfere With Activin A Antagonism. Endocrinology 2023; 164:7010688. [PMID: 36718082 DOI: 10.1210/endocr/bqad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
Inhibins are transforming growth factor-β family heterodimers that suppress follicle-stimulating hormone (FSH) secretion by antagonizing activin class ligands. Inhibins share a common β chain with activin ligands. Follistatin is another activin antagonist, known to bind the common β chain of both activins and inhibins. In this study, we characterized the antagonist-antagonist complex of inhibin A and follistatin to determine if their interaction impacted activin A antagonism. We isolated the inhibin A:follistatin 288 complex, showing that it forms in a 1:1 stoichiometric ratio, different from previously reported homodimeric ligand:follistatin complexes, which bind in a 1:2 ratio. Small angle X-ray scattering coupled with modeling provided a low-resolution structure of inhibin A in complex with follistatin 288. Inhibin binds follistatin via the shared activin β chain, leaving the α chain free and flexible. The inhibin A:follistatin 288 complex was also shown to bind heparin with lower affinity than follistatin 288 alone or in complex with activin A. Characterizing the inhibin A:follistatin 288 complex in an activin-responsive luciferase assay and by surface plasmon resonance indicated that the inhibitor complex readily dissociated upon binding type II receptor activin receptor type IIb, allowing both antagonists to inhibit activin signaling. Additionally, injection of the complex in ovariectomized female mice did not alter inhibin A suppression of FSH. Taken together, this study shows that while follistatin binds to inhibin A with a substochiometric ratio relative to the activin homodimer, the complex can dissociate readily, allowing both proteins to effectively antagonize activin signaling.
Collapse
Affiliation(s)
- Emily C Kappes
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | - Chandramohan Kattamuri
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | - Magdalena Czepnik
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | | | - Emilie Brûlé
- Departments of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Ying Wang
- Departments of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Luisina Ongaro
- Departments of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Andrew B Herr
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kelly L Walton
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Daniel J Bernard
- Departments of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Departments of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
11
|
Goebel EJ, Ongaro L, Kappes EC, Vestal K, Belcheva E, Castonguay R, Kumar R, Bernard DJ, Thompson TB. The orphan ligand, activin C, signals through activin receptor-like kinase 7. eLife 2022; 11:78197. [PMID: 35736809 PMCID: PMC9224996 DOI: 10.7554/elife.78197] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022] Open
Abstract
Activin ligands are formed from two disulfide-linked inhibin β (Inhβ) subunit chains. They exist as homodimeric proteins, as in the case of activin A (ActA; InhβA/InhβA) or activin C (ActC; InhβC/InhβC), or as heterodimers, as with activin AC (ActAC; InhβA:InhβC). While the biological functions of ActA and activin B (ActB) have been well characterized, little is known about the biological functions of ActC or ActAC. One thought is that the InhβC chain functions to interfere with ActA production by forming less active ActAC heterodimers. Here, we assessed and characterized the signaling capacity of ligands containing the InhβC chain. ActC and ActAC activated SMAD2/3-dependent signaling via the type I receptor, activin receptor-like kinase 7 (ALK7). Relative to ActA and ActB, ActC exhibited lower affinity for the cognate activin type II receptors and was resistant to neutralization by the extracellular antagonist, follistatin. In mature murine adipocytes, which exhibit high ALK7 expression, ActC elicited a SMAD2/3 response similar to ActB, which can also signal via ALK7. Collectively, these results establish that ActC and ActAC are active ligands that exhibit a distinct signaling receptor and antagonist profile compared to other activins.
Collapse
Affiliation(s)
- Erich J Goebel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, United States
| | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Canada
| | - Emily C Kappes
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, United States
| | - Kylie Vestal
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, United States
| | | | | | | | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Canada
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, United States
| |
Collapse
|
12
|
Type II BMP and activin receptors BMPR2 and ACVR2A share a conserved mode of growth factor recognition. J Biol Chem 2022; 298:102076. [PMID: 35643319 PMCID: PMC9234707 DOI: 10.1016/j.jbc.2022.102076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
BMPR2 is a type II Transforming Growth Factor (TGF)-β family receptor that is fundamentally associated with pulmonary arterial hypertension (PAH) in humans. BMPR2 shares functional similarities with the type II activin receptors ACVR2A and ACVR2B, as it interacts with an overlapping group of TGF-β family growth factors (GFs). However, how BMPR2 recognizes GFs remains poorly understood. Here, we solved crystal structures of BMPR2 in complex with the GF activin B and of ACVR2A in complex with the related GF activin A. We show that both BMPR2 and ACVR2A bind GFs with nearly identical geometry using a conserved hydrophobic hot spot, while differences in contacting residues are predominantly found in loop areas. Upon further exploration of the GF-binding spectrum of the two receptors, we found that although many GFs bind both receptors, the high-affinity BMPR2 GFs comprise BMP15, BMP10, and Nodal, whereas those of ACVR2A are activin A, activin B, and GDF11. Lastly, we evaluated GF-binding domain BMPR2 variants found in human PAH patients. We demonstrate that mutations within the GF-binding interface resulted in loss of GF binding, while mutations in loop areas allowed BMPR2 to retain the ability to bind cognate GFs with high affinity. In conclusion, the in vitro activities of BMPR2 variants and the crystal structures reported here indicate biochemically relevant complexes that explain how some GF-binding domain variants can lead to PAH.
Collapse
|
13
|
Guo J, Liu B, Thorikay M, Yu M, Li X, Tong Z, Salmon RM, Read RJ, Ten Dijke P, Morrell NW, Li W. Crystal structures of BMPRII extracellular domain in binary and ternary receptor complexes with BMP10. Nat Commun 2022; 13:2395. [PMID: 35504921 PMCID: PMC9064986 DOI: 10.1038/s41467-022-30111-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/12/2022] [Indexed: 12/23/2022] Open
Abstract
Heterozygous mutations in BMPR2 (bone morphogenetic protein (BMP) receptor type II) cause pulmonary arterial hypertension. BMPRII is a receptor for over 15 BMP ligands, but why BMPR2 mutations cause lung-specific pathology is unknown. To elucidate the molecular basis of BMP:BMPRII interactions, we report crystal structures of binary and ternary BMPRII receptor complexes with BMP10, which contain an ensemble of seven different BMP10:BMPRII 1:1 complexes. BMPRII binds BMP10 at the knuckle epitope, with the A-loop and β4 strand making BMPRII-specific interactions. The BMPRII binding surface on BMP10 is dynamic, and the affinity is weaker in the ternary complex than in the binary complex. Hydrophobic core and A-loop interactions are important in BMPRII-mediated signalling. Our data reveal how BMPRII is a low affinity receptor, implying that forming a signalling complex requires high concentrations of BMPRII, hence mutations will impact on tissues with highest BMPR2 expression such as the lung vasculature.
Collapse
Affiliation(s)
- Jingxu Guo
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, United Kingdom
| | - Bin Liu
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, United Kingdom
| | - Midory Thorikay
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Minmin Yu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Xiaoyan Li
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, United Kingdom
| | - Zhen Tong
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, United Kingdom
| | - Richard M Salmon
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, United Kingdom
| | - Randy J Read
- Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, United Kingdom
| | - Wei Li
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, United Kingdom.
| |
Collapse
|
14
|
Goebel EJ, Kattamuri C, Gipson GR, Krishnan L, Chavez M, Czepnik M, Maguire MC, Grenha R, Håkansson M, Logan DT, Grinberg AV, Sako D, Castonguay R, Kumar R, Thompson TB. Structures of activin ligand traps using natural sets of type I and type II TGFβ receptors. iScience 2022; 25:103590. [PMID: 35005539 PMCID: PMC8718839 DOI: 10.1016/j.isci.2021.103590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
The 30+ unique ligands of the TGFβ family signal by forming complexes using different combinations of type I and type II receptors. Therapeutically, the extracellular domain of a single receptor fused to an Fc molecule can effectively neutralize subsets of ligands. Increased ligand specificity can be accomplished by using the extracellular domains of both the type I and type II receptor to mimic the naturally occurring signaling complex. Here, we report the structure of one "type II-type I-Fc" fusion, ActRIIB-Alk4-Fc, in complex with two TGFβ family ligands, ActA, and GDF11, providing a snapshot of this therapeutic platform. The study reveals that extensive contacts are formed by both receptors, replicating the ternary signaling complex, despite the inherent low affinity of Alk4. Our study shows that low-affinity type I interactions support altered ligand specificity and can be visualized at the molecular level using this platform.
Collapse
Affiliation(s)
- Erich J. Goebel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, 231 Albert Sabin Way ML 0524, Cincinnati, OH 45267, USA
| | - Chandramohan Kattamuri
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, 231 Albert Sabin Way ML 0524, Cincinnati, OH 45267, USA
| | - Gregory R. Gipson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, 231 Albert Sabin Way ML 0524, Cincinnati, OH 45267, USA
| | | | | | - Magdalena Czepnik
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, 231 Albert Sabin Way ML 0524, Cincinnati, OH 45267, USA
| | | | - Rosa Grenha
- Acceleron Pharma, Inc., Cambridge, MA 02139, USA
| | - Maria Håkansson
- SARomics Biostructures AB, Medicon Village, Scheeletorget 1, 223 63, Lund, Sweden
| | - Derek T. Logan
- SARomics Biostructures AB, Medicon Village, Scheeletorget 1, 223 63, Lund, Sweden
| | | | - Dianne Sako
- Acceleron Pharma, Inc., Cambridge, MA 02139, USA
| | | | | | - Thomas B. Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, 231 Albert Sabin Way ML 0524, Cincinnati, OH 45267, USA
| |
Collapse
|
15
|
Brûlé E, Wang Y, Li Y, Lin YF, Zhou X, Ongaro L, Alonso CAI, Buddle ERS, Schneyer AL, Byeon CH, Hinck CS, Mendelev N, Russell JP, Cowan M, Boehm U, Ruf-Zamojski F, Zamojski M, Andoniadou CL, Sealfon SC, Harrison CA, Walton KL, Hinck AP, Bernard DJ. TGFBR3L is an inhibin B co-receptor that regulates female fertility. SCIENCE ADVANCES 2021; 7:eabl4391. [PMID: 34910520 PMCID: PMC8673766 DOI: 10.1126/sciadv.abl4391] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Follicle-stimulating hormone (FSH), a key regulator of ovarian function, is often used in infertility treatment. Gonadal inhibins suppress FSH synthesis by pituitary gonadotrope cells. The TGFβ type III receptor, betaglycan, is required for inhibin A suppression of FSH. The inhibin B co-receptor was previously unknown. Here, we report that the gonadotrope-restricted transmembrane protein, TGFBR3L, is the elusive inhibin B co-receptor. TGFBR3L binds inhibin B but not other TGFβ family ligands. TGFBR3L knockdown or overexpression abrogates or confers inhibin B activity in cells. Female Tgfbr3l knockout mice exhibit increased FSH levels, ovarian follicle development, and litter sizes. In contrast, female mice lacking both TGFBR3L and betaglycan are infertile. TGFBR3L’s function and cell-specific expression make it an attractive new target for the regulation of FSH and fertility.
Collapse
Affiliation(s)
- Emilie Brûlé
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
| | - Ying Wang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada
| | - Yining Li
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada
| | - Yeu-Farn Lin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada
| | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada
| | - Carlos A. I. Alonso
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada
| | - Evan R. S. Buddle
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada
| | | | - Chang-Hyeock Byeon
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cynthia S. Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Natalia Mendelev
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John P. Russell
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
| | - Mitra Cowan
- McGill Integrated Core for Animal Modeling (MICAM), McGill University, Montreal, Québec, Canada
| | - Ulrich Boehm
- Department of Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Frederique Ruf-Zamojski
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michel Zamojski
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cynthia L. Andoniadou
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stuart C. Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Craig A. Harrison
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kelly L. Walton
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Andrew P. Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daniel J. Bernard
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada
| |
Collapse
|
16
|
Ibáñez CF. Regulation of metabolic homeostasis by the TGF-β superfamily receptor ALK7. FEBS J 2021; 289:5776-5797. [PMID: 34173336 DOI: 10.1111/febs.16090] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022]
Abstract
ALK7 (Activin receptor-like kinase 7) is a member of the TGF-β receptor superfamily predominantly expressed by cells and tissues involved in endocrine functions, such as neurons of the hypothalamus and pituitary, pancreatic β-cells and adipocytes. Recent studies have begun to delineate the processes regulated by ALK7 in these tissues and how these become integrated with the homeostatic regulation of mammalian metabolism. The picture emerging indicates that ALK7's primary function in metabolic regulation is to limit catabolic activities and preserve energy. Aside of the hypothalamic arcuate nucleus, the function of ALK7 elsewhere in the brain, particularly in the cerebellum, where it is abundantly expressed, remains to be elucidated. Although our understanding of the basic molecular events underlying ALK7 signaling has benefited from the vast knowledge available on TGF-β receptor mechanisms, how these connect to the physiological functions regulated by ALK7 in different cell types is still incompletely understood. Findings of missense and nonsense variants in the Acvr1c gene, encoding ALK7, of some mouse strains and human subjects indicate a tolerance to ALK7 loss of function. Recent discoveries suggest that specific inhibitors of ALK7 may have therapeutic applications in obesity and metabolic syndrome without overt adverse effects.
Collapse
Affiliation(s)
- Carlos F Ibáñez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.,Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University School of Life Sciences and Chinese Institute for Brain Research, Beijing, China.,Department of Physiology and Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
17
|
Lodberg A. Principles of the activin receptor signaling pathway and its inhibition. Cytokine Growth Factor Rev 2021; 60:1-17. [PMID: 33933900 DOI: 10.1016/j.cytogfr.2021.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/19/2023]
Abstract
This review captures the anabolic and stimulatory effects observed with inhibition of the transforming growth factor β superfamily in muscle, blood, and bone. New medicinal substances that rectify activin, myostatin, and growth differentiation factor 11 signaling give hope to the many whose lives are affected by deterioration of these tissues. The review first covers the origin, structure, and common pathway of activins, myostatin, and growth differentiation factor 11 along with the pharmacodynamics of the new class of molecules designed to oppose the activin receptor signaling pathway. Current terminology surrounding this new class of molecules is inconsistent and does not infer functionality. Adopting inhibitors of the activin receptor signaling pathway (IASPs) as a generic term is proposed because it encapsulates the molecular mechanisms along the pathway trajectory. To conclude, a pragmatic classification of IASPs is presented that integrates functionality and side effects based on the data available from animals and humans. This provides researchers and clinicians with a tool to tailor IASPs therapy according to the need of projects or patients and with respect to side effects.
Collapse
Affiliation(s)
- Andreas Lodberg
- Department of Biomedicine, Aarhus University, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Wilhelm Meyers Allé, DK-8000, Aarhus, Denmark.
| |
Collapse
|
18
|
Brûlé E, Heinen CA, Smith CL, Schang G, Li Y, Zhou X, Wang Y, Joustra SD, Wit JM, Fliers E, Repping S, van Trotsenburg ASP, Bernard DJ. IGSF1 Does Not Regulate Spermatogenesis or Modify FSH Synthesis in Response to Inhibins or Activins. J Endocr Soc 2021; 5:bvab023. [PMID: 33796801 PMCID: PMC7986638 DOI: 10.1210/jendso/bvab023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 12/03/2022] Open
Abstract
Loss-of-function mutations in the X-linked immunoglobulin superfamily, member 1 (IGSF1) gene result in central hypothyroidism, often associated with macroorchidism. Testicular enlargement in these patients might be caused by increases in follicle-stimulating hormone (FSH) levels, as IGSF1 has been proposed to function as an inhibin B receptor or as an inhibitor of activin type I receptor (ALK4) activity in pituitary gonadotrope cells. If true, loss of IGSF1 should lead to reduced inhibin B action or disinhibition of activin signaling, thereby increasing FSH synthesis. Here, we show that FSH levels and sperm counts are normal in male Igsf1 knockout mice, although testis size is mildly increased. Sperm parameters are also normal in men with IGSF1 deficiency, although their FSH levels may trend higher and their testes are enlarged. Inhibin B retains the ability to suppress FSH synthesis in pituitaries of Igsf1-knockout mice and IGSF1 does not interact with ALK4 or alter activin A/ALK4 stimulation of FSHβ (Fshb/FSHB) subunit transcription or expression. In light of these results, it is unlikely that macroorchidism in IGSF1 deficiency derives from alterations in spermatogenesis or inhibin/activin regulation of FSH.
Collapse
Affiliation(s)
- Emilie Brûlé
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| | - Charlotte A Heinen
- Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Department of Pediatric Endocrinology, 1105 Amsterdam, the Netherlands.,Amsterdam University Medical Centers, University of Amsterdam, Department of Endocrinology & Metabolism, Meibergdreef 9, 1105 Amsterdam, the Netherlands
| | - Courtney L Smith
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Gauthier Schang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Yining Li
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Ying Wang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Sjoerd D Joustra
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 Leiden, the Netherlands.,Department of Pediatrics, Leiden University Medical Center, 2300 Leiden, the Netherlands
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, 2300 Leiden, the Netherlands
| | - Eric Fliers
- Amsterdam University Medical Centers, University of Amsterdam, Department of Endocrinology & Metabolism, Meibergdreef 9, 1105 Amsterdam, the Netherlands
| | - Sjoerd Repping
- Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 Amsterdam, the Netherlands
| | - A S Paul van Trotsenburg
- Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Department of Pediatric Endocrinology, 1105 Amsterdam, the Netherlands
| | - Daniel J Bernard
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| |
Collapse
|
19
|
Identification of two genes potentially related to myogenesis and muscle growth in Fenneropenaeus chinensis: Activin receptor II and Follistatin-like protein. Gene 2020; 770:145346. [PMID: 33333225 DOI: 10.1016/j.gene.2020.145346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Activin receptor (ActR) and follistatin-like (FSTL) genes, which are involved in the Myostatin (Mstn) related TGF-β/Smad signaling pathway, play important roles in regulating the muscle generation, development and growth of muscle in vertebrate. Our previous studies have confirmed that Mstn negatively regulates muscle development and growth in Fenneropenaeus chinensis as that in vertebrate. However, the roles of ActR and FSTL in muscle development and growth in invertebrate remains unclear. In the present study, type II ActR(FcActRII) and FSTL (FcFSTL) genes from F. chinensis were cloned and characterized, and their functions on muscle development and growth were investigated. The full-length cDNAs of FcActRII and FcFSTL were 2366 bp that encoded 572 amino acids and 2474 bp that encoded 717 amino acids, respectively. Sequence analysis revealed that the overall protein sequences of the two genes shared 97% and 96% identities with Penaeus vannamei and 50%-59% and 35%-36% identities with vertebrates, respectively. In the early development stages, muscles firstly appeared in nauplius stage and developed gradually until post larval, and the mRNA expressions of FcActRII increased from gastrula to zoea stage and then decreased from zoea stage to post larval stage while that of FcFSTL was lowest in gastrula stage and increased rapidly in nauplius stage and then expressed stably from nauplius stage to post-larval stage. In the adult shrimp, the two genes were widely distributed in the examined tissues. The FcActRII expression in muscle of L group was significantly lower than that of S group, but the FcFSTL expression showed an opposite result. After down-regulating the expression of FcMstn by RNAi, FcActRII expression was significantly down-regulated while that of FcFSTL was up-regulated. The present study suggested that FcActRII and FcFSTL, regulated by FcMstn, might be involved in myogenesis and muscle growth.
Collapse
|
20
|
Gipson GR, Goebel EJ, Hart KN, Kappes EC, Kattamuri C, McCoy JC, Thompson TB. Structural perspective of BMP ligands and signaling. Bone 2020; 140:115549. [PMID: 32730927 PMCID: PMC7502536 DOI: 10.1016/j.bone.2020.115549] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
Abstract
The Bone Morphogenetic Proteins (BMPs) are the largest class signaling molecules within the greater Transforming Growth Factor Beta (TGFβ) family, and are responsible for a wide array of biological functions, including dorsal-ventral patterning, skeletal development and maintenance, as well as cell homeostasis. As such, dysregulation of BMPs results in a number of diseases, including fibrodysplasia ossificans progressiva (FOP) and pulmonary arterial hypertension (PAH). Therefore, understanding BMP signaling and regulation at the molecular level is essential for targeted therapeutic intervention. This review discusses the recent advances in the structural and biochemical characterization of BMPs, from canonical ligand-receptor interactions to co-receptors and antagonists. This work aims to highlight how BMPs differ from other members of the TGFβ family, and how that information can be used to further advance the field. Lastly, this review discusses several gaps in the current understanding of BMP structures, with the aim that discussion of these gaps will lead to advancements in the field.
Collapse
Affiliation(s)
- Gregory R Gipson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Erich J Goebel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Kaitlin N Hart
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Emily C Kappes
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Chandramohan Kattamuri
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Jason C McCoy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA.
| |
Collapse
|
21
|
Wang J, Zhang K, Hou X, Yue W, Yang H, Chen X, Wang J, Wang C. Molecular characteristic of activin receptor IIB and its functions in growth and nutrient regulation in Eriocheir sinensis. PeerJ 2020; 8:e9673. [PMID: 32953259 PMCID: PMC7473049 DOI: 10.7717/peerj.9673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023] Open
Abstract
Activin receptor IIB (ActRIIB) is a serine/threonine-kinase receptor binding with transforming growth factor-β (TGF-β) superfamily ligands to participate in the regulation of muscle mass in vertebrates. However, its structure and function in crustaceans remain unknown. In this study, the ActRIIB gene in Eriocheir sinensis (Es-ActRIIB) was cloned and obtained with a 1,683 bp open reading frame, which contains the characteristic domains of TGF-β type II receptor superfamily, encoding 560 amino acids. The mRNA expression of Es-ActRIIB was the highest in hepatopancreas and the lowest in muscle at each molting stage. After injection of Es-ActRIIB double-stranded RNA during one molting cycle, the RNA interference (RNAi) group showed higher weight gain rate, higher specific growth rate, and lower hepatopancreas index compared with the control group. Meanwhile, the RNAi group displayed a significantly increased content of hydrolytic amino acid in both hepatopancreas and muscle. The RNAi group also displayed slightly higher contents of saturated fatty acid and monounsaturated fatty acid but significantly decreased levels of polyunsaturated fatty acid compared with the control group. After RNAi on Es-ActRIIB, the mRNA expressions of five ActRIIB signaling pathway genes showed that ActRI and forkhead box O (FoxO) were downregulated in hepatopancreas and muscle, but no significant expression differences were found in small mother against decapentaplegic (SMAD) 3, SMAD4 and mammalian target of rapamycin. The mRNA expression s of three lipid metabolism-related genes (carnitine palmitoyltransferase 1β (CPT1β), fatty acid synthase, and fatty acid elongation) were significantly downregulated in both hepatopancreas and muscle with the exception of CPT1β in muscles. These results indicate that ActRIIB is a functionally conservative negative regulator in growth mass, and protein and lipid metabolism could be affected by inhibiting ActRIIB signaling in crustacean.
Collapse
Affiliation(s)
- Jingan Wang
- Key Laboratory of Freshwater Fisheries Germplasm Resources, Ministry of Agriculture and Rural Affairs, National Demonstration Center for Experimental Fisheries Science Education / Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Kaijun Zhang
- Key Laboratory of Freshwater Fisheries Germplasm Resources, Ministry of Agriculture and Rural Affairs, National Demonstration Center for Experimental Fisheries Science Education / Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xin Hou
- Key Laboratory of Freshwater Fisheries Germplasm Resources, Ministry of Agriculture and Rural Affairs, National Demonstration Center for Experimental Fisheries Science Education / Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Wucheng Yue
- Key Laboratory of Freshwater Fisheries Germplasm Resources, Ministry of Agriculture and Rural Affairs, National Demonstration Center for Experimental Fisheries Science Education / Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - He Yang
- Key Laboratory of Freshwater Fisheries Germplasm Resources, Ministry of Agriculture and Rural Affairs, National Demonstration Center for Experimental Fisheries Science Education / Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaowen Chen
- Key Laboratory of Freshwater Fisheries Germplasm Resources, Ministry of Agriculture and Rural Affairs, National Demonstration Center for Experimental Fisheries Science Education / Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jun Wang
- Key Laboratory of Freshwater Fisheries Germplasm Resources, Ministry of Agriculture and Rural Affairs, National Demonstration Center for Experimental Fisheries Science Education / Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Chenghui Wang
- Key Laboratory of Freshwater Fisheries Germplasm Resources, Ministry of Agriculture and Rural Affairs, National Demonstration Center for Experimental Fisheries Science Education / Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
22
|
Yan W. An Interview with Dr. Teresa K Woodruff. Biol Reprod 2020. [DOI: 10.1093/biolre/ioaa094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wei Yan
- The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Schang G, Ongaro L, Schultz H, Wang Y, Zhou X, Brûlé E, Boehm U, Lee SJ, Bernard DJ. Murine FSH Production Depends on the Activin Type II Receptors ACVR2A and ACVR2B. Endocrinology 2020; 161:5818077. [PMID: 32270195 PMCID: PMC7286621 DOI: 10.1210/endocr/bqaa056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
Activins are selective regulators of FSH production by pituitary gonadotrope cells. In a gonadotrope-like cell line, LβT2, activins stimulate FSH via the activin type IIA receptor (ACVR2A) and/or bone morphogenetic protein type II receptor (BMPR2). Consistent with these observations, FSH is greatly reduced, though still present, in global Acvr2a knockout mice. In contrast, FSH production is unaltered in gonadotrope-specific Bmpr2 knockout mice. In light of these results, we questioned whether an additional type II receptor might mediate the actions of activins or related TGF-β ligands in gonadotropes. We focused on the activin type IIB receptor (ACVR2B), even though it does not mediate activin actions in LβT2 cells. Using a Cre-lox strategy, we ablated Acvr2a and/or Acvr2b in murine gonadotropes. The resulting conditional knockout (cKO) animals were compared with littermate controls. Acvr2a cKO (cKO-A) females were subfertile (~70% reduced litter size), cKO-A males were hypogonadal, and both sexes showed marked decreases in serum FSH levels compared with controls. Acvr2b cKO (cKO-B) females were subfertile (~20% reduced litter size), cKO-B males had a moderate decrease in testicular weight, but only males showed a significant decrease in serum FSH levels relative to controls. Simultaneous deletion of both Acvr2a and Acvr2b in gonadotropes led to profound hypogonadism and FSH deficiency in both sexes; females were acyclic and sterile. Collectively, these data demonstrate that ACVR2A and ACVR2B are the critical type II receptors through which activins or related TGF-β ligands induce FSH production in mice in vivo.
Collapse
Affiliation(s)
- Gauthier Schang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Hailey Schultz
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| | - Ying Wang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Emilie Brûlé
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| | - Ulrich Boehm
- Department of Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Se-Jin Lee
- The Jackson Laboratory, Farmington, Connecticut
- University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, Connecticut
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
- Correspondence: Daniel J. Bernard, PhD, Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler room 1320, Montreal H3G 1Y6, QC, Canada. E-mail:
| |
Collapse
|
24
|
Hart KN, Pépin D, Czepnik M, Donahoe PK, Thompson TB. Mutational Analysis of the Putative Anti-Müllerian Hormone (AMH) Binding Interface on its Type II Receptor, AMHR2. Endocrinology 2020; 161:5825248. [PMID: 32333774 PMCID: PMC7286617 DOI: 10.1210/endocr/bqaa066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/21/2020] [Indexed: 12/27/2022]
Abstract
Anti-Müllerian hormone (AMH) or Müllerian inhibiting substance is a unique member of the TGF-β family responsible for development and differentiation of the reproductive system. AMH signals through its own dedicated type II receptor, anti-Müllerian hormone receptor type II (AMHR2), providing an exclusive ligand-receptor pair within the broader TGF-β family. In this study, we used previous structural information to derive a model of AMH bound to AMHR2 to guide mutagenesis studies to identify receptor residues important for AMH signaling. Nonconserved mutations were introduced in AMHR2 and characterized in an AMH-responsive cell-based luciferase assay and native PAGE. Collectively, our results identified several residues important for AMH signaling within the putative ligand binding interface of AMHR2. Our results show that AMH engages AMHR2 at a similar interface to how activin and BMP class ligands bind the type II receptor, ACVR2B; however, there are significant molecular differences at the ligand interface of these 2 receptors, where ACVR2B is mostly hydrophobic and AMHR2 is predominately charged. Overall, this study shows that although the location of ligand binding on the receptor is similar to ACVR2A, ACVR2B, and BMPR2; AMHR2 uses unique ligand-receptor interactions to impart specificity for AMH.
Collapse
MESH Headings
- Activin Receptors, Type II/chemistry
- Activin Receptors, Type II/metabolism
- Anti-Mullerian Hormone/metabolism
- Disorder of Sex Development, 46,XY/genetics
- HEK293 Cells
- Humans
- Mutagenesis, Site-Directed
- Receptors, Peptide/chemistry
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Receptors, Transforming Growth Factor beta/chemistry
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Kaitlin N Hart
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
- Correspondence and Reprint Requests: Thomas B. Thompson, University of Cincinnati, 231 Albert Sabin Way, MolGen Department, MSB 2204, Cincinnati, OH 45267. E-mail: Kaitlin N. Hart (), 231 Albert Sabin Way, MolGen Department, CARE 4850, Cincinnati, OH 45267
| | - David Pépin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Magdalena Czepnik
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | - Patricia K Donahoe
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
- Correspondence and Reprint Requests: Thomas B. Thompson, University of Cincinnati, 231 Albert Sabin Way, MolGen Department, MSB 2204, Cincinnati, OH 45267. E-mail: Kaitlin N. Hart (), 231 Albert Sabin Way, MolGen Department, CARE 4850, Cincinnati, OH 45267
| |
Collapse
|
25
|
Farmer SM, Andl CD. Computational modeling of transforming growth factor β and activin a receptor complex formation in the context of promiscuous signaling regulation. J Biomol Struct Dyn 2020; 39:5166-5181. [PMID: 32597324 DOI: 10.1080/07391102.2020.1785330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The Transforming growth factor-beta (TGFβ) superfamily is a group of multipotent growth factors that control proliferation, quiescence and differentiation. Aberrant signal transduction and downstream target activation contribute to tumorigenesis and targeted therapy has therefore been considered a promising avenue. Using various modeling pipelines, we analyzed the structure-function relationship between ligand and receptor molecules of the TGFβ family. We further simulated the molecular docking of Galunisertib, a small molecule inhibitor targeting TGFβ signaling in cancer, which is currently undergoing FDA-approved clinical trials. We found that proprotein dimers of Activin isoforms differ at intrachain disulfide bonds, which support prior evidence of varying pro-domain stability and isoform preference. Further, mature proteins possess flexibility around conserved cystine knots to functionally interact with receptors or regulatory molecules in similar but distinct ways to TGFβ. We show that all Activin isoforms are capable of assuming a closed- or open-dimer state, revealing structural promiscuity of their open forms for receptor binding. We propose the first structural landscape for Activin receptor complexes containing a type I receptor (ACVR1B), which shares a pre-helix extension with TGFβ type I receptor (TGFβR1). Here, we artificially demonstrate that Activin can bind TGFβR1 in a TGFβ-like manner and that TGFβ1 can form signaling complexes with ACVR1B. Interestingly, Galunisertib was found to form stable inhibitory structures within the homologous kinase domains of both TGFβR1 and ACVR1B, thus halting receptor-promiscuous signaling. Overall, these observations highlight the challenges of specific TGFβ cascade targeting in the context of cancer therapies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Stephen M Farmer
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Claudia D Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
26
|
Woodruff TK. Lessons from bioengineering the ovarian follicle: a personal perspective. Reproduction 2020; 158:F113-F126. [PMID: 31846436 DOI: 10.1530/rep-19-0190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
The ovarian follicle and its maturation captivated my imagination and inspired my scientific journey - what we know now about this remarkable structure is captured in this invited review. In the past decade, our knowledge of the ovarian follicle expanded dramatically as cross-disciplinary collaborations brought new perspectives to bear, ultimately leading to the development of extragonadal follicles as model systems with significant clinical implications. Follicle maturation in vitro in an 'artificial' ovary became possible by learning what the follicle is fundamentally and autonomously capable of - which turns out to be quite a lot. Progress in understanding and harnessing follicle biology has been aided by engineers and materials scientists who created hardware that enables tissue function for extended periods of time. The EVATAR system supports extracorporeal ovarian function in an engineered environment that mimics the endocrine environment of the reproductive tract. Finally, applying the tools of inorganic chemistry, we discovered that oocytes require zinc to mature over time - a truly new aspect of follicle biology with no antecedent other than the presence of zinc in sperm. Drawing on the tools and ideas from the fields of bioengineering, materials science and chemistry unlocked follicle biology in ways that we could not have known or even predicted. Similarly, how today's basic science discoveries regarding ovarian follicle maturation are translated to improve the experience of tomorrow's patients is yet to be determined.
Collapse
Affiliation(s)
- Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
27
|
Bernard DJ, Smith CL, Brûlé E. A Tale of Two Proteins: Betaglycan, IGSF1, and the Continuing Search for the Inhibin B Receptor. Trends Endocrinol Metab 2020; 31:37-45. [PMID: 31648935 DOI: 10.1016/j.tem.2019.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 11/23/2022]
Abstract
Inhibins are gonadal hormones that suppress follicle-stimulating hormone (FSH) synthesis by pituitary gonadotrope cells. The structurally related activins stimulate FSH by signaling through complexes of type I and type II receptors. Two models of inhibin action were proposed in 2000. First, inhibins function as competitive receptor antagonists, binding activin type II receptors with high affinity in the presence of the TGF-β type III coreceptor, betaglycan. Second, immunoglobulin superfamily, member 1 (IGSF1, then called p120) was proposed to mediate inhibin B antagonism of activin signaling via its type I receptor. These ideas have been challenged over the past few years. Rather than playing a role in inhibin action, IGSF1 is involved in the central control of the thyroid gland. Betaglycan binds inhibin A and inhibin B with high affinity, but only functions as an obligate inhibin A coreceptor in murine gonadotropes. There is likely to be a distinct, but currently unidentified coreceptor for inhibin B.
Collapse
Affiliation(s)
- Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 1Y6; Department of Anatomy and Cell Biology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 1Y6.
| | - Courtney L Smith
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 1Y6
| | - Emilie Brûlé
- Department of Anatomy and Cell Biology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 1Y6
| |
Collapse
|
28
|
Zandsalimi F, Hajihassan Z, Hamidi R. Denovo designing: a novel signal peptide for tat translocation pathway to transport activin A to the periplasmic space of E. coli. Biotechnol Lett 2019; 42:45-55. [PMID: 31679097 DOI: 10.1007/s10529-019-02752-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/27/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The twin-arginine translocation (Tat) pathway is one of the bacterial secretory strategies which exports folded proteins across the cytoplasmic membrane. RESULTS In the present study, we designed a novel Tat-signal peptide for secretion of human activin A used as a recombinant protein model here. In doing so, Haloferax volcanii, Halobacterium salinarum, and Escherichia coli Tat specific signal peptides were aligned by ClustalW program to determine conserved and more frequently used residues. After making the initial signal peptide sequence and doing some mutations, efficiency of this designed signal peptide was evaluated using a set of well-known software programs such as TatP, PRED-TAT, and Phobius. Then the best complex between TatC as an initiator protein in Tat secretory machine and the new designed signal peptide connected to activin A with the lowest binding energy was constructed by HADDOCK server, and ΔΔG value of - 5.5 kcal/mol was calculated by FoldX module. After that, efficiency of this novel signal peptide for secretion of human activin A to the periplasmic space of E. coli Rosetta-gami (DE3) strain was experimentally evaluated; to scrutinize the activity of the novel signal peptide, Iranian Bacillus Licheniformis α-Amylase enzyme signal peptide as a Sec pathway signal peptide was used as a positive control. The quantitative analysis of western blotting bands by ImageJ software confirmed the high secretion ability of the new designed signal peptide; translocation of 69% of the produced recombinant activin A to the periplasmic space of E. coli. Circular Dichroism (CD) spectroscopy technique also approved the proper secondary structure of activin A secreted to the periplasmic space. The biological activity of activin A was also confirmed by differentiation of K562 erythroleukemia cells to the red blood cell by measuring the amount of hemoglobin or Fe2+ ion using ICP method. CONCLUSIONS In conclusion, this novel designed signal peptide can be used to secrete any other recombinant proteins to the periplasmic space of E. coli efficiently.
Collapse
Affiliation(s)
- Farshid Zandsalimi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Zahra Hajihassan
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Roghaye Hamidi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
29
|
Goebel EJ, Hart KN, McCoy JC, Thompson TB. Structural biology of the TGFβ family. Exp Biol Med (Maywood) 2019; 244:1530-1546. [PMID: 31594405 DOI: 10.1177/1535370219880894] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The transforming growth factor beta (TGFβ) signaling pathway orchestrates a wide breadth of biological processes, ranging from bone development to reproduction. Given this, there has been a surge of interest from the drug development industry to modulate the pathway – at several points. This review discusses and provides additional context for several layers of the TGFβ signaling pathway from a structural biology viewpoint. The combination of structural techniques coupled with biophysical studies has provided a foundational knowledge of the molecular mechanisms governing this high impact, ubiquitous pathway, underlying many of the current therapeutic pursuits. This work seeks to consolidate TGFβ-related structural knowledge and educate other researchers of the apparent gaps that still prove elusive. We aim to highlight the importance of these structures and provide the contextual information to understand the contribution to the field, with the hope of advancing the discussion and exploration of the TGFβ signaling pathway. Impact statement The transforming growth factor beta (TGFβ) signaling pathway is a multifacetted and highly regulated pathway, forming the underpinnings of a large range of biological processes. Here, we review and consolidate the key steps in TGFβ signaling using literature rooted in structural and biophysical techniques, with a focus on molecular mechanisms and gaps in knowledge. From extracellular regulation to ligand–receptor interactions and intracellular activation cascades, we hope to provide an introductory base for understanding the TGFβ pathway as a whole.
Collapse
Affiliation(s)
- Erich J Goebel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Kaitlin N Hart
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jason C McCoy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
30
|
Molecular characterization and computational structure prediction of activin receptor type IIB in aseel and broiler chicken. Res Vet Sci 2019; 126:139-149. [PMID: 31491670 DOI: 10.1016/j.rvsc.2019.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/19/2019] [Accepted: 08/27/2019] [Indexed: 11/20/2022]
Abstract
The present study was formulated to characterize and comprehend the molecular structural characteristics of ACTRIIB receptor in Aseel and control broiler (CB) populations. The full length coding sequence (1539 bp) of the receptor was amplified, cloned, sequenced and analyzed using bioinformatic tools. The physico chemical properties of protein and structural features like secondary structure, solvent accessibility and disorder regions were computed. The 3D structure was predicted by I-TASSER and evaluated by Ramachandran Plot and tools under Structural Analysis and Verification Server. The nucleotides differences between CB and Aseel were c. [156G > A; 210 T > C; 493C > T; c.520G > C; 665A > C; 686G > A; 937C > G; 1011A > C; 1130A > G; 1208 T > A; 1326 T > C; 1433 T > C]. The amino acid substitutions between CB and Aseel were p. [(Pro165Ser; Glu174Gln; Gln222Pro; Ser229Asn; His313Asp; Gln377Arg; Val403Asp; and Ile478Thr)]. While, the silent changes includes p. [(Lys53=; Glu71=; Leu337=; Asp442=)]. The molecular weight of mature protein was predicted to be 55.51 kDa and 57.80 kDa in Aseel and CB, respectively. The higher rank 3D model had a C-score of -1.60 in Aseel and - 1.41 in CB, while the estimated TM-score (0.54 ± 0.14) and RMSD (5.8 ± 1.2 Å) were found to be similar in Aseel and CB. Among the 512 residues, >90% were in favored region, 4.7% in allowed region and <1.5% in disallowed region in both Aseel and CB. The pattern of contact map was comparable in Aseel and CB. The Hydrogen bond plots of the Aseel and CB shared similar secondary structure pattern. The ACTRIIB protein was predicted to interact with ACVR1B, ACVR1C, INHBA, SMAD 1,2,5,7 & 9 and BMPR1A&B. Clustal and phylogenetic analysis implied that both the lines were closely related and formed a sub cluster with in avian cluster. The current research provides insights about structural and functional aspects of the receptor and also aids in understanding the evolutionary history of ACTRIIB.
Collapse
|
31
|
Kim SK, Whitley MJ, Krzysiak TC, Hinck CS, Taylor AB, Zwieb C, Byeon CH, Zhou X, Mendoza V, López-Casillas F, Furey W, Hinck AP. Structural Adaptation in Its Orphan Domain Engenders Betaglycan with an Alternate Mode of Growth Factor Binding Relative to Endoglin. Structure 2019; 27:1427-1442.e4. [PMID: 31327662 DOI: 10.1016/j.str.2019.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/11/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Betaglycan (BG) and endoglin (ENG), homologous co-receptors of the TGF-β family, potentiate the signaling activity of TGF-β2 and inhibin A, and BMP-9 and BMP-10, respectively. BG exists as monomer and forms 1:1 growth factor (GF) complexes, while ENG exists as a dimer and forms 2:1 GF complexes. Herein, the structure of the BG orphan domain (BGO) reveals an insertion that blocks the region that the endoglin orphan domain (ENGO) uses to bind BMP-9, preventing it from binding in the same manner. Using binding studies with domain-deleted forms of TGF-β and BGO, as well as small-angle X-ray scattering data, BGO is shown to bind its cognate GF in an entirely different manner compared with ENGO. The alternative interfaces likely engender BG and ENG with the ability to selectively bind and target their cognate GFs in a unique temporal-spatial manner, without interfering with one another or other TGF-β family GFs.
Collapse
Affiliation(s)
- Sun Kyung Kim
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, Room 2051, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA; Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Matthew J Whitley
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, Room 2051, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Troy C Krzysiak
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, Room 2051, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Cynthia S Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, Room 2051, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Alexander B Taylor
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA; X-ray Crystallography Core Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Christian Zwieb
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Chang-Hyeock Byeon
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, Room 2051, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Xiaohong Zhou
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, Room 2051, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Valentín Mendoza
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Fernando López-Casillas
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - William Furey
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, Room 2051, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
32
|
Structural characterization of an activin class ternary receptor complex reveals a third paradigm for receptor specificity. Proc Natl Acad Sci U S A 2019; 116:15505-15513. [PMID: 31315975 DOI: 10.1073/pnas.1906253116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
TGFβ family ligands, which include the TGFβs, BMPs, and activins, signal by forming a ternary complex with type I and type II receptors. For TGFβs and BMPs, structures of ternary complexes have revealed differences in receptor assembly. However, structural information for how activins assemble a ternary receptor complex is lacking. We report the structure of an activin class member, GDF11, in complex with the type II receptor ActRIIB and the type I receptor Alk5. The structure reveals that receptor positioning is similar to the BMP class, with no interreceptor contacts; however, the type I receptor interactions are shifted toward the ligand fingertips and away from the dimer interface. Mutational analysis shows that ligand type I specificity is derived from differences in the fingertips of the ligands that interact with an extended loop specific to Alk4 and Alk5. The study also reveals differences for how TGFβ and GDF11 bind to the same type I receptor, Alk5. For GDF11, additional contacts at the fingertip region substitute for the interreceptor interactions that are seen for TGFβ, indicating that Alk5 binding to GDF11 is more dependent on direct contacts. In support, we show that a single residue of Alk5 (Phe84), when mutated, abolishes GDF11 signaling, but has little impact on TGFβ signaling. The structure of GDF11/ActRIIB/Alk5 shows that, across the TGFβ family, different mechanisms regulate type I receptor binding and specificity, providing a molecular explanation for how the activin class accommodates low-affinity type I interactions without the requirement of cooperative receptor interactions.
Collapse
|
33
|
Bhattacharya TK, Shukla R, Chatterjee RN, Bhanja SK. Comparative analysis of silencing expression of myostatin (MSTN) and its two receptors (ACVR2A and ACVR2B) genes affecting growth traits in knock down chicken. Sci Rep 2019; 9:7789. [PMID: 31127166 PMCID: PMC6534594 DOI: 10.1038/s41598-019-44217-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/10/2019] [Indexed: 12/22/2022] Open
Abstract
Myostatin (MSTN), a growth differentiation factor-8 regulates muscular development through its receptors, ACVR2A (Activin receptor type IIA) and ACVR2B (Activin receptor type IIB) by inhibiting cellular differentiation of developing somites during embryonic stage and diminishing myofibriller growth during post-embryonic period. The objective of this study was to compare the effect of knockdown of expression of myostatin, ACVR2A and ACVR2B genes on growth traits in chicken. The shRNAs for Myostatin, ACVR2A and ACVR2B genes were designed, synthesized and cloned in DEST vector. The recombinant molecules were transfected into the spermatozoa and transfected spermatozoa were inseminated artificially to the hens to obtain fertile eggs. The fertile eggs were collected, incubated in the incubator and hatched to chicks. Silencing of ACVR2B gene showed significantly higher body weight than other single, double and triple knock down of genes in transgenic birds. The carcass traits such as dressing%, leg muscle%, and breast muscle% were found with the highest magnitudes in birds with silencing of the ACVR2B gene as compared to the birds with that of other genes and control group. The lowest serum cholesterol and HDL content was found in ACVR2B silencing birds. The total RBC count was the highest in this group though the differential counts did not differ significantly among various silencing and control groups of birds. It is concluded that silencing of only one receptor of MSTN particularly, ACVR2B may augment the highest growth in chicken during juvenile stage. Our findings may be used as model for improving growth in other food animals and repairing muscular degenerative disorders in human and other animals.
Collapse
Affiliation(s)
- T K Bhattacharya
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India.
| | - Renu Shukla
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| | - R N Chatterjee
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| | - S K Bhanja
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| |
Collapse
|
34
|
Seachrist DD, Keri RA. The Activin Social Network: Activin, Inhibin, and Follistatin in Breast Development and Cancer. Endocrinology 2019; 160:1097-1110. [PMID: 30874767 PMCID: PMC6475112 DOI: 10.1210/en.2019-00015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
Activins and inhibins are closely related protein heterodimers with a similar tissue distribution; however, these two complexes have opposing functions in development and disease. Both are secreted cytokine hormones, with activin the primary inducer of downstream signaling cascades and inhibin acting as a rheostat that exquisitely governs activin function. Adding to the complexity of activin signaling, follistatin, a highly glycosylated monomeric protein, binds activin with high affinity and restrains downstream pathway activation but through a mechanism distinct from that of inhibin. These three proteins were first identified as key ovarian hormones in the pituitary-gonadal axis that direct the synthesis and secretion of FSH from the pituitary, hence controlling folliculogenesis. Research during the past 30 years has expanded the roles of these proteins, first by discovering the ubiquitous expression of the trio and then by implicating them in a wide array of biological functions. In concert, these three hormones govern tissue development, homeostasis, and disease in multiple organ systems through diverse autocrine and paracrine mechanisms. In the present study, we have reviewed the actions of activin and its biological inhibitors, inhibin, and follistatin, in mammary gland morphogenesis and cancer.
Collapse
Affiliation(s)
- Darcie D Seachrist
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Ruth A Keri
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
- Division of General Medical Sciences–Oncology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
35
|
McCoy JC, Walker RG, Murray NH, Thompson TB. Crystal structure of the WFIKKN2 follistatin domain reveals insight into how it inhibits growth differentiation factor 8 (GDF8) and GDF11. J Biol Chem 2019; 294:6333-6343. [PMID: 30814254 DOI: 10.1074/jbc.ra118.005831] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/26/2019] [Indexed: 11/06/2022] Open
Abstract
Growth differentiation factor 8 (GDF8; also known as myostatin) and GDF11 are closely related members of the transforming growth factor β (TGF-β) family. GDF8 strongly and negatively regulates skeletal muscle growth, and GDF11 has been implicated in various age-related pathologies such as cardiac hypertrophy. GDF8 and GDF11 signaling activities are controlled by the extracellular protein antagonists follistatin; follistatin-like 3 (FSTL3); and WAP, follistatin/kazal, immunoglobulin, Kunitz, and netrin domain-containing (WFIKKN). All of these proteins contain a follistatin domain (FSD) important for ligand binding and antagonism. Here, we investigated the structure and function of the FSD from murine WFIKKN2 and compared it with the FSDs of follistatin and FSTL3. Using native gel shift and surface plasmon resonance analyses, we determined that the WFIKKN2 FSD can interact with both GDF8 and GDF11 and block their interactions with the type II receptor activin A receptor type 2B (ActRIIB). Further, we solved the crystal structure of the WFIKKN2 FSD to 1.39 Å resolution and identified surface-exposed residues that, when substituted with alanine, reduce antagonism of GDF8 in full-length WFIKKN2. Comparison of the WFIKKN2 FSD with those of follistatin and FSTL3 revealed differences in both the FSD structure and position of residues within the domain that are important for ligand antagonism. Taken together, our results indicate that both WFIKKN and follistatin utilize their FSDs to block the type II receptor but do so via different binding interactions.
Collapse
Affiliation(s)
- Jason C McCoy
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Ryan G Walker
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Nathan H Murray
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Thomas B Thompson
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| |
Collapse
|
36
|
Walton KL, Harrison CA. Inhibin: To Betaglycan, or Not to Betaglycan. Endocrinology 2019; 160:341-342. [PMID: 30576440 DOI: 10.1210/en.2018-01049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/16/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Kelly L Walton
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Craig A Harrison
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
37
|
Ryu D, Yoon BH, Oh CH, Kim MH, Kim JY, Yoon SH, Choe S. Activin A/BMP2 Chimera (AB204) Exhibits Better Spinal Bone Fusion Properties than rhBMP2. J Korean Neurosurg Soc 2018; 61:669-679. [PMID: 30396241 PMCID: PMC6280059 DOI: 10.3340/jkns.2017.0295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/20/2018] [Indexed: 11/27/2022] Open
Abstract
Objective To compare the spinal bone fusion properties of activin A/BMP2 chimera (AB204) with recombinant human bone morphogenetic protein (rhBMP2) using a rat posterolateral spinal fusion model.
Methods The study was designed to compare the effects and property at different dosages of AB204 and rhBMP2 on spinal bone fusion. Sixty-one male Sprague-Dawley rats underwent posterolateral lumbar spinal fusion using one of nine treatments during the study, that is, sham; osteon only; 3.0 μg, 6.0 μg, or 10.0 μg of rhBMP2 with osteon; and 1.0 μg, 3.0 μg, 6.0 μg, or 10.0 μg of AB204 with osteon. The effects and property on spinal bone fusion was calculated at 4 and 8 weeks after treatment using the scores of physical palpation, simple radiograph, micro-computed tomography, and immunohistochemistry.
Results Bone fusion scores were significantly higher for 10.0 μg AB204 and 10.0 μg rhBMP2 than for osteon only or 1.0 μg AB204. AB204 exhibited more prolonged osteoblastic activity than rhBMP2. Bone fusion properties of AB204 were similar with the properties of rhBMP2 at doses of 6.0 and 10.0 μg, but, the properties of AB204 at doses of 3.0 μg exhibited better than the properties of rhBMP2 at doses of 3.0 μg.
Conclusion AB204 chimeras could to be more potent for treating spinal bone fusion than rhBMP2 substitutes with increased osteoblastic activity for over a longer period.
Collapse
Affiliation(s)
- Dalsung Ryu
- Department of Neurosurgery, Inha University College of Medicine, Incheon, Korea
| | - Byung-Hak Yoon
- Protein Engineering Laboratory, joint Center for Biosciences at Songdo Global University, Incheon, Korea
| | - Chang-Hyun Oh
- Department of Neurosurgery, Inha University College of Medicine, Incheon, Korea.,Department of Neurosurgery, Cham Teun Teun Research Institute, Seoul, Korea
| | - Moon-Hang Kim
- Department of Physiology, Inha University College of Medicine, Incheon, Korea
| | - Ji-Yong Kim
- Department of Neurosurgery, Inha University College of Medicine, Incheon, Korea
| | - Seung Hwan Yoon
- Department of Neurosurgery, Inha University College of Medicine, Incheon, Korea
| | - Senyon Choe
- Protein Engineering Laboratory, joint Center for Biosciences at Songdo Global University, Incheon, Korea.,Structural Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
38
|
Hinck AP. Structure-guided engineering of TGF-βs for the development of novel inhibitors and probing mechanism. Bioorg Med Chem 2018; 26:5239-5246. [PMID: 30026042 DOI: 10.1016/j.bmc.2018.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/05/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
The increasing availability of detailed structural information on many biological systems provides an avenue for manipulation of these structures, either for probing mechanism or for developing novel therapeutic agents for treating disease. This has been accompanied by the advent of several powerful new methods, such as the ability to incorporate non-natural amino acids or perform fragment screening, increasing the capacity to leverage this new structural information to aid in these pursuits. The abundance of structural information also provides new opportunities for protein engineering, which may become more and more relevant as treatment of diseases using gene therapy approaches become increasingly common. This is illustrated by example with the TGF-β family of proteins, for which there is ample structural information, yet no approved inhibitors for treating diseases, such as cancer and fibrosis that are promoted by excessive TGF-β signaling. The results presented demonstrate that through several relatively simple modifications, primarily involving the removal of an α-helix and replacement of it with a flexible loop, it is possible to alter TGF-βs from being potent signaling proteins into inhibitors of TGF-β signaling. The engineered TGF-βs have improved specificity relative to kinase inhibitors and a much smaller size compared to monoclonal antibodies, and thus may prove successful as either as an injected therapeutic or as a gene therapy-based therapeutic, where other classes of inhibitors have failed.
Collapse
Affiliation(s)
- Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
39
|
Al-Sa'aidi JAA, Khudair KK, Khafaji SS. Reproductive fecundity of Iraqi Awassi ewes immunized against synthetic inhibin-α subunit or steroid-free bovine follicular fluid. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018. [PMID: 29514448 PMCID: PMC6043455 DOI: 10.5713/ajas.17.0660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Objective The present study was conducted to investigate the impacts of active and passive immunization against synthetic inhibin and steroid-free bovine follicular fluid, respectively, on reproductive fecundity out of breeding season in Iraqi Awassi ewes. Methods Follicular fluid was aspired from mature bovine follicles, treated with activated charcoal, and used for immunization of male rabbits for obtaining steroid free bovine follicular fluid (SFBFF) antiserum. Forty non-pregnant Awassi ewes were allocated into 4 groups (n = 10 each). At day 38 of experiment, ewes were treated with intra-vaginal MPA sponge (60 mg for 12 days). At days 0, 28, and 50, ewes were treated with 4, 2, and 2 mL of normal saline (control; C-ve), 400, 200, and 200 μg of ovalbumin (C+ve), 400, 200 and 200 μg of inhibin (SI group), respectively, and 4 mL of normal saline at day 0, and 4 and 2 mL of SFBFF antiserum at days 28 and 50, respectively, (AI group). After mating with Awassi rams, pregnancy and embryo number were diagnosed, at day 38 of pregnancy, using ultrasonography. Blood samples were collected at days 30, 60, 90, and 120 of pregnancy, for assessment of estradiol-17β (E2) and progesterone (P4) levels. After parturition, numbers of delivered lambs were recorded. Results The results revealed significant increase of P4 and significant decrease of E2 levels in SI and AI pregnant ewes than controls at days 30, 60, 90, and 120. Newborn number increased significantly in SI and AI treated than control ewes. Conclusion Active or passive immunization against endogenous inhibin could augment reproductive fecundity out of breeding season in Iraqi Awassi ewes.
Collapse
Affiliation(s)
| | - Khalisa Khadim Khudair
- Department of Physiological, Pharmacology and Biochemistry, College of Veterinary Medicine, University of Baghdad, 10, Iraq
| | - Sura Safi Khafaji
- Department of Animal Production, College of Agriculture, University of Kerbala, 56, Iraq
| |
Collapse
|
40
|
Heo SY, Ko SC, Nam SY, Oh J, Kim YM, Kim JI, Kim N, Yi M, Jung WK. Fish bone peptide promotes osteogenic differentiation of MC3T3-E1 pre-osteoblasts through upregulation of MAPKs and Smad pathways activated BMP-2 receptor. Cell Biochem Funct 2018; 36:137-146. [PMID: 29392739 DOI: 10.1002/cbf.3325] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/02/2018] [Accepted: 01/09/2018] [Indexed: 12/15/2022]
Abstract
Fish bone, a by-product of fishery processing, is composed of protein, calcium, and other minerals. The objective of this study was to investigate the effects of a bioactive peptide isolated from the bone of the marine fish, Johnius belengerii, on the osteoblastic differentiation of MC3T3-E1 pre-osteoblasts. Post consecutive purification by liquid chromatography, a potent osteogenic peptide, composed of 3 amino acids, Lys-Ser-Ala (KSA, MW: 304.17 Da), was identified. The purified peptide promoted cell proliferation, alkaline phosphatase activity, mineral deposition, and expression levels of phenotypic markers of osteoblastic differentiation in MC3T3-E1 pre-osteoblast. The purified peptide induced phosphorylation of mitogen-activated protein kinases, including p38 mitogen-activated protein kinase, extracellular regulated kinase, and c-Jun N-terminal kinase as well as Smads. As attested by molecular modelling study, the purified peptide interacted with the core interface residues in bone morphogenetic protein receptors with high affinity. Thus, the purified peptide could serve as a potential pharmacological substance for controlling bone metabolism.
Collapse
Affiliation(s)
- Seong-Yeong Heo
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Republic of Korea.,Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Seok-Chun Ko
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Seung Yun Nam
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Republic of Korea.,Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Junghwan Oh
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Republic of Korea.,Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea.,Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | - Jae-Il Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan, Republic of Korea
| | - Namwon Kim
- Ingram School of Engineering, Texas State University, San Marcos, TX, USA
| | - Myunggi Yi
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Republic of Korea.,Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
41
|
Blockade of activin type II receptors with a dual anti-ActRIIA/IIB antibody is critical to promote maximal skeletal muscle hypertrophy. Proc Natl Acad Sci U S A 2017; 114:12448-12453. [PMID: 29109273 PMCID: PMC5703284 DOI: 10.1073/pnas.1707925114] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We recently reported that activin type II receptors (ActRIIs) blockade using bimagrumab could positively impact muscle wasting in mice and humans. However, the specific role of each individual ActRII at regulating adult muscle mass had not been clarified. Here, we highlight the importance of concomitant neutralization of both ActRIIs in controlling muscle mass. Through comparison with single specificity antibodies, we uncover unique features related to bimagrumab and its neutralizing interactions with both ActRIIA and ActRIIB at the structural and cellular levels and in vivo in adult mice. The need for simultaneous engagement and neutralization of both ActRIIs to generate a strong skeletal muscle response confers unique therapeutic potential to bimagrumab, in the context of muscle wasting conditions. The TGF-β family ligands myostatin, GDF11, and activins are negative regulators of skeletal muscle mass, which have been reported to primarily signal via the ActRIIB receptor on skeletal muscle and thereby induce muscle wasting described as cachexia. Use of a soluble ActRIIB-Fc “trap,” to block myostatin pathway signaling in normal or cachectic mice leads to hypertrophy or prevention of muscle loss, perhaps suggesting that the ActRIIB receptor is primarily responsible for muscle growth regulation. Genetic evidence demonstrates however that both ActRIIB- and ActRIIA-deficient mice display a hypertrophic phenotype. Here, we describe the mode of action of bimagrumab (BYM338), as a human dual-specific anti-ActRIIA/ActRIIB antibody, at the molecular and cellular levels. As shown by X-ray analysis, bimagrumab binds to both ActRIIA and ActRIIB ligand binding domains in a competitive manner at the critical myostatin/activin binding site, hence preventing signal transduction through either ActRII. Myostatin and the activins are capable of binding to both ActRIIA and ActRIIB, with different affinities. However, blockade of either single receptor through the use of specific anti-ActRIIA or anti-ActRIIB antibodies achieves only a partial signaling blockade upon myostatin or activin A stimulation, and this leads to only a small increase in muscle mass. Complete neutralization and maximal anabolic response are achieved only by simultaneous blockade of both receptors. These findings demonstrate the importance of ActRIIA in addition to ActRIIB in mediating myostatin and activin signaling and highlight the need for blocking both receptors to achieve a strong functional benefit.
Collapse
|
42
|
Fung RSK, Bai J, Yuen KWY, Wong AOL. Activin/follistatin system in grass carp pituitary cells: - Regulation by local release of growth hormone and luteinizing hormone and its functional role in growth hormone synthesis and secretion. PLoS One 2017; 12:e0179789. [PMID: 28662143 PMCID: PMC5491050 DOI: 10.1371/journal.pone.0179789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/05/2017] [Indexed: 12/31/2022] Open
Abstract
Gonadotrophin regulation by activin/follistatin system is well-documented, but the corresponding effect on growth hormone (GH) has not been fully characterized and with little information available in lower vertebrates, especially in fish models. In grass carp, local interactions of GH and luteinizing hormone (LH) can induce GH release and gene expression at pituitary level via autocrine/paracrine mechanisms. To shed light on the role of activin/follistatin system in GH regulation by local actions of GH and LH, grass carp activin βA and βB were cloned, shown to be single-copy genes expressed in the pituitary, and confirmed to encode activin proteins capable of transactivating promoter with activin-responsive elements. In grass carp pituitary cells, activin A and B were effective in reducing GH secretion and GH cell content with concurrent drop in GH mRNA level whereas the opposite was true for follistatin, the activin-binding protein known to neutralize the effects of endogenous activin. Treatment with activin A and B not only could suppress basal but also inhibit GH mRNA expression induced by GH and human chorionic gonadotropin (hCG), a functional analogue of LH in fish model. Apparently, down-regulation of GH mRNA by activin was mediated by reducing GH transcript stability with concurrent inhibition on GH promoter activity via the SMAD pathway. In reciprocal experiments, GH treatment was found to up-regulate activin βA, activin βB and follistatin mRNA levels in carp pituitary cells but the opposite was noted by removing endogenous GH with GH antiserum. Interestingly, parallel treatment with hCG could also inhibit basal as well as GH-induced activin βA, activin βB and follistatin gene expression. These results, as a whole, indicate that the pituitary activin/follistatin system can serve as a regulatory target for local interactions of GH and LH and contribute to GH regulation by autocrine/paracrine mechanisms in the carp pituitary.
Collapse
Affiliation(s)
- Roger S. K. Fung
- School of Biological Sciences, the University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jin Bai
- School of Biological Sciences, the University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Karen W. Y. Yuen
- School of Biological Sciences, the University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Anderson O. L. Wong
- School of Biological Sciences, the University of Hong Kong, Pokfulam Road, Hong Kong, China
- * E-mail:
| |
Collapse
|
43
|
Sakamoto K, Kanematsu-Yamaki Y, Kamada Y, Oka M, Ohnishi T, Miwa M, Asami T, Inooka H. Identification of ligand-selective peptidic ActRIIB-antagonists using phage display technology. Biochem Biophys Rep 2017; 11:33-39. [PMID: 28955765 PMCID: PMC5614685 DOI: 10.1016/j.bbrep.2017.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/18/2017] [Accepted: 06/07/2017] [Indexed: 01/02/2023] Open
Abstract
ActRIIB (activin receptor type-2B) is an activin receptor subtype constitutively expressed in the whole body, playing a role in cellular proliferation, differentiation, and metabolism. For its various physiological activities, ActRIIB interacts with activin and multiple other ligands including myostatin (MSTN), growth differentiation factor 11 (GDF11), and bone morphogenetic protein 9 (BMP9). Notably, the protein-protein interaction (PPI) between ActRIIB and MSTN negatively controls muscular development. Therefore, this PPI has been targeted for effective treatment of muscle degenerative diseases such as muscular dystrophy and sarcopenia. Here, we report the identification of ligand-selective peptidic ActRIIB-antagonists by phage display technology. Our peptides bound to the extracellular domain of ActRIIB, inhibited PPIs between ActRIIB expressed on the cell surface and its ligands, and subsequently suppressed activation of Smad that serves as the downstream signal of the ActRIIB pathway. Interestingly, these peptidic antagonists displayed different ligand selectivities; the AR2mini peptide inhibited multiple ligands (activin A, MSTN, GDF11, and BMP9), AR9 inhibited MSTN and GDF11, while AR8 selectively inhibited MSTN. This is the first report of artificial peptidic ActRIIB-antagonists possessing ligand-selectivity. Artificial ActRIIB-antagonist peptides were discovered by phage display. These peptides selectively bound to the extracellular domain of ActRIIB. They antagonized ActRIIB expressed on the cell surface. They presented multiple ligand selectivities.
Collapse
Affiliation(s)
- Kotaro Sakamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoko Kanematsu-Yamaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yusuke Kamada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masahiro Oka
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Toshiyuki Ohnishi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masanori Miwa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Taiji Asami
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroshi Inooka
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
44
|
Walker RG, Czepnik M, Goebel EJ, McCoy JC, Vujic A, Cho M, Oh J, Aykul S, Walton KL, Schang G, Bernard DJ, Hinck AP, Harrison CA, Martinez-Hackert E, Wagers AJ, Lee RT, Thompson TB. Structural basis for potency differences between GDF8 and GDF11. BMC Biol 2017; 15:19. [PMID: 28257634 PMCID: PMC5336696 DOI: 10.1186/s12915-017-0350-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/18/2017] [Indexed: 01/11/2023] Open
Abstract
Background Growth/differentiation factor 8 (GDF8) and GDF11 are two highly similar members of the transforming growth factor β (TGFβ) family. While GDF8 has been recognized as a negative regulator of muscle growth and differentiation, there are conflicting studies on the function of GDF11 and whether GDF11 has beneficial effects on age-related dysfunction. To address whether GDF8 and GDF11 are functionally identical, we compared their signaling and structural properties. Results Here we show that, despite their high similarity, GDF11 is a more potent activator of SMAD2/3 and signals more effectively through the type I activin-like receptor kinase receptors ALK4/5/7 than GDF8. Resolution of the GDF11:FS288 complex, apo-GDF8, and apo-GDF11 crystal structures reveals unique properties of both ligands, specifically in the type I receptor binding site. Lastly, substitution of GDF11 residues into GDF8 confers enhanced activity to GDF8. Conclusions These studies identify distinctive structural features of GDF11 that enhance its potency, relative to GDF8; however, the biological consequences of these differences remain to be determined. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0350-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryan G Walker
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Magdalena Czepnik
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Erich J Goebel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Jason C McCoy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Ana Vujic
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Miook Cho
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.,Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, 02115, USA
| | - Juhyun Oh
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.,Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, 02115, USA
| | - Senem Aykul
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Kelly L Walton
- Hudson Institute of Medical Research, Clayton, Australia.,Department of Physiology, Monash University, Clayton, Australia
| | - Gauthier Schang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Craig A Harrison
- Hudson Institute of Medical Research, Clayton, Australia.,Department of Physiology, Monash University, Clayton, Australia
| | - Erik Martinez-Hackert
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Amy J Wagers
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.,Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, 02115, USA
| | - Richard T Lee
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA. .,University of Cincinnati, 231 Albert Sabin Way ML 0524, Cincinnati, OH, 45267, USA.
| |
Collapse
|
45
|
Abstract
We review the evolution and structure of members of the transforming growth factor β (TGF-β) family, antagonistic or agonistic modulators, and receptors that regulate TGF-β signaling in extracellular environments. The growth factor (GF) domain common to all family members and many of their antagonists evolved from a common cystine knot growth factor (CKGF) domain. The CKGF superfamily comprises six distinct families in primitive metazoans, including the TGF-β and Dan families. Compared with Wnt/Frizzled and Notch/Delta families that also specify body axes, cell fate, tissues, and other families that contain CKGF domains that evolved in parallel, the TGF-β family was the most fruitful in evolution. Complexes between the prodomains and GFs of the TGF-β family suggest a new paradigm for regulating GF release by conversion from closed- to open-arm procomplex conformations. Ternary complexes of the final step in extracellular signaling show how TGF-β GF dimers bind type I and type II receptors on the cell surface, and enable understanding of much of the specificity and promiscuity in extracellular signaling. However, structures suggest that when GFs bind repulsive guidance molecule (RGM) family coreceptors, type I receptors do not bind until reaching an intracellular, membrane-enveloped compartment, blurring the line between extra- and intracellular signaling. Modulator protein structures show how structurally diverse antagonists including follistatins, noggin, and members of the chordin family bind GFs to regulate signaling; complexes with the Dan family remain elusive. Much work is needed to understand how these molecular components assemble to form signaling hubs in extracellular environments in vivo.
Collapse
Affiliation(s)
- Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Thomas D Mueller
- Department of Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, D-97082 Wuerzburg, Germany
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine and Division of Hematology, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
- Department of Biological Chemistry and Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
46
|
Apgar JR, Mader M, Agostinelli R, Benard S, Bialek P, Johnson M, Gao Y, Krebs M, Owens J, Parris K, St. Andre M, Svenson K, Morris C, Tchistiakova L. Beyond CDR-grafting: Structure-guided humanization of framework and CDR regions of an anti-myostatin antibody. MAbs 2016; 8:1302-1318. [PMID: 27625211 PMCID: PMC5058614 DOI: 10.1080/19420862.2016.1215786] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/23/2016] [Accepted: 07/18/2016] [Indexed: 01/29/2023] Open
Abstract
Antibodies are an important class of biotherapeutics that offer specificity to their antigen, long half-life, effector function interaction and good manufacturability. The immunogenicity of non-human-derived antibodies, which can be a major limitation to development, has been partially overcome by humanization through complementarity-determining region (CDR) grafting onto human acceptor frameworks. The retention of foreign content in the CDR regions, however, is still a potential immunogenic liability. Here, we describe the humanization of an anti-myostatin antibody utilizing a 2-step process of traditional CDR-grafting onto a human acceptor framework, followed by a structure-guided approach to further reduce the murine content of CDR-grafted antibodies. To accomplish this, we solved the co-crystal structures of myostatin with the chimeric (Protein Databank (PDB) id 5F3B) and CDR-grafted anti-myostatin antibody (PDB id 5F3H), allowing us to computationally predict the structurally important CDR residues as well as those making significant contacts with the antigen. Structure-based rational design enabled further germlining of the CDR-grafted antibody, reducing the murine content of the antibody without affecting antigen binding. The overall "humanness" was increased for both the light and heavy chain variable regions.
Collapse
Affiliation(s)
| | | | | | - Susan Benard
- Biomedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Peter Bialek
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Mark Johnson
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Yijie Gao
- Biomedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Mark Krebs
- Biomedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Jane Owens
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Kevin Parris
- Biomedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | - Kris Svenson
- Biomedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Carl Morris
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | | |
Collapse
|
47
|
Walker RG, Poggioli T, Katsimpardi L, Buchanan SM, Oh J, Wattrus S, Heidecker B, Fong YW, Rubin LL, Ganz P, Thompson TB, Wagers AJ, Lee RT. Biochemistry and Biology of GDF11 and Myostatin: Similarities, Differences, and Questions for Future Investigation. Circ Res 2016; 118:1125-41; discussion 1142. [PMID: 27034275 DOI: 10.1161/circresaha.116.308391] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/07/2016] [Indexed: 02/06/2023]
Abstract
Growth differentiation factor 11 (GDF11) and myostatin (or GDF8) are closely related members of the transforming growth factor β superfamily and are often perceived to serve similar or overlapping roles. Yet, despite commonalities in protein sequence, receptor utilization and signaling, accumulating evidence suggests that these 2 ligands can have distinct functions in many situations. GDF11 is essential for mammalian development and has been suggested to regulate aging of multiple tissues, whereas myostatin is a well-described negative regulator of postnatal skeletal and cardiac muscle mass and modulates metabolic processes. In this review, we discuss the biochemical regulation of GDF11 and myostatin and their functions in the heart, skeletal muscle, and brain. We also highlight recent clinical findings with respect to a potential role for GDF11 and/or myostatin in humans with heart disease. Finally, we address key outstanding questions related to GDF11 and myostatin dynamics and signaling during development, growth, and aging.
Collapse
Affiliation(s)
- Ryan G Walker
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Tommaso Poggioli
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Lida Katsimpardi
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Sean M Buchanan
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Juhyun Oh
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Sam Wattrus
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Bettina Heidecker
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Yick W Fong
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Lee L Rubin
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Peter Ganz
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Thomas B Thompson
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Amy J Wagers
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.).
| | - Richard T Lee
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.).
| |
Collapse
|
48
|
Ashtiani MK, Zandi M, Barzin J, Tahamtani Y, Ghanian MH, Moradmand A, Ehsani M, Nezari H, Larijani MR, Baharvand H. Substrate-mediated commitment of human embryonic stem cells for hepatic differentiation. J Biomed Mater Res A 2016; 104:2861-72. [DOI: 10.1002/jbm.a.35830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/18/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Mohammad Kazemi Ashtiani
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
- Biomaterials Department; Iran Polymer and Petrochemical Institute; Tehran Iran
| | - Mojgan Zandi
- Biomaterials Department; Iran Polymer and Petrochemical Institute; Tehran Iran
| | - Jalal Barzin
- Biomaterials Department; Iran Polymer and Petrochemical Institute; Tehran Iran
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| | - Mohammad Hossein Ghanian
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
- Biomaterials Department; Iran Polymer and Petrochemical Institute; Tehran Iran
| | - Azadeh Moradmand
- Biomaterials Department; Iran Polymer and Petrochemical Institute; Tehran Iran
| | - Morteza Ehsani
- Biomaterials Department; Iran Polymer and Petrochemical Institute; Tehran Iran
| | - Hossein Nezari
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| | - Mehran Rezaei Larijani
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
- Department of Developmental Biology; University of Science and Culture; Tehran Iran
| |
Collapse
|
49
|
Wang X, Fischer G, Hyvönen M. Structure and activation of pro-activin A. Nat Commun 2016; 7:12052. [PMID: 27373274 PMCID: PMC4932183 DOI: 10.1038/ncomms12052] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/24/2016] [Indexed: 12/19/2022] Open
Abstract
Activins are growth factors with multiple roles in the development and homeostasis. Like all TGF-β family of growth factors, activins are synthesized as large precursors from which mature dimeric growth factors are released proteolytically. Here we have studied the activation of activin A and determined crystal structures of the unprocessed precursor and of the cleaved pro-mature complex. Replacing the natural furin cleavage site with a HRV 3C protease site, we show how the protein gains its bioactivity after proteolysis and is as active as the isolated mature domain. The complex remains associated in conditions used for biochemical analysis with a dissociation constant of 5 nM, but the pro-domain can be actively displaced from the complex by follistatin. Our high-resolution structures of pro-activin A share features seen in the pro-TGF-β1 and pro-BMP-9 structures, but reveal a new oligomeric arrangement, with a domain-swapped, cross-armed conformation for the protomers in the dimeric protein. Activins are members of the TGF-β family of growth factors that are processed from precursors into the mature proteins. Here, the authors use structural biology and biochemistry to examine the protein domain organisation and gain insights into the activation of pro-activin A.
Collapse
Affiliation(s)
- Xuelu Wang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Gerhard Fischer
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
50
|
Namwanje M, Brown CW. Activins and Inhibins: Roles in Development, Physiology, and Disease. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021881. [PMID: 27328872 DOI: 10.1101/cshperspect.a021881] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since their original discovery as regulators of follicle-stimulating hormone (FSH) secretion and erythropoiesis, the TGF-β family members activin and inhibin have been shown to participate in a variety of biological processes, from the earliest stages of embryonic development to highly specialized functions in terminally differentiated cells and tissues. Herein, we present the history, structures, signaling mechanisms, regulation, and biological processes in which activins and inhibins participate, including several recently discovered biological activities and functional antagonists. The potential therapeutic relevance of these advances is also discussed.
Collapse
Affiliation(s)
- Maria Namwanje
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Chester W Brown
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030 Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|