1
|
Fan J, Xi P, Liu H, Song X, Zhao X, Zhou X, Zou Y, Fu Y, Li L, Jia R, Yin Z. Myricetin inhibits transmissible gastroenteritis virus replication by targeting papain-like protease deubiquitinating enzyme activity. Front Microbiol 2024; 15:1433664. [PMID: 39050632 PMCID: PMC11266173 DOI: 10.3389/fmicb.2024.1433664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Myricetin, a natural flavonoid found in various foods, was investigated for its antiviral effect against transmissible gastroenteritis virus (TGEV). This α-coronavirus causes significant economic losses in the global swine industry. The study focused on the papain-like protease (PLpro), which plays a crucial role in coronavirus immune evasion by mediating deubiquitination. Targeting PLpro could potentially disrupt viral replication and enhance antiviral responses. The results demonstrated that myricetin effectively inhibited TGEV-induced cytopathic effects in a dose-dependent manner, with an EC50 value of 31.19 μM. Myricetin significantly reduced TGEV viral load within 48 h after an 8-h co-incubation period. Further investigations revealed that myricetin at a concentration of 100 μM directly inactivated TGEV and suppressed its intracellular replication stage. Moreover, pretreatment with 100 μM myricetin conferred a protective effect on PK-15 cells against TGEV infection. Myricetin competitively inhibited PLpro with an IC50 value of 6.563 μM. Molecular docking experiments show that myricetin binds to the Cys102 residue of PLpro through conventional hydrogen bonds, Pi-sulfur, and Pi-alkyl interactions. This binding was confirmed through site-directed mutagenesis experiments, indicating myricetin as a potential candidate for preventing and treating TGEV infection.
Collapse
Affiliation(s)
- Jiahao Fan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Pengyuan Xi
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huimao Liu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinghong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xun Zhou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Sallam M, Khalil R. Contemporary Insights into Hepatitis C Virus: A Comprehensive Review. Microorganisms 2024; 12:1035. [PMID: 38930417 PMCID: PMC11205832 DOI: 10.3390/microorganisms12061035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Hepatitis C virus (HCV) remains a significant global health challenge. Approximately 50 million people were living with chronic hepatitis C based on the World Health Organization as of 2024, contributing extensively to global morbidity and mortality. The advent and approval of several direct-acting antiviral (DAA) regimens significantly improved HCV treatment, offering potentially high rates of cure for chronic hepatitis C. However, the promising aim of eventual HCV eradication remains challenging. Key challenges include the variability in DAA access across different regions, slightly variable response rates to DAAs across diverse patient populations and HCV genotypes/subtypes, and the emergence of resistance-associated substitutions (RASs), potentially conferring resistance to DAAs. Therefore, periodic reassessment of current HCV knowledge is needed. An up-to-date review on HCV is also necessitated based on the observed shifts in HCV epidemiological trends, continuous development and approval of therapeutic strategies, and changes in public health policies. Thus, the current comprehensive review aimed to integrate the latest knowledge on the epidemiology, pathophysiology, diagnostic approaches, treatment options and preventive strategies for HCV, with a particular focus on the current challenges associated with RASs and ongoing efforts in vaccine development. This review sought to provide healthcare professionals, researchers, and policymakers with the necessary insights to address the HCV burden more effectively. We aimed to highlight the progress made in managing and preventing HCV infection and to highlight the persistent barriers challenging the prevention of HCV infection. The overarching goal was to align with global health objectives towards reducing the burden of chronic hepatitis, aiming for its eventual elimination as a public health threat by 2030.
Collapse
Affiliation(s)
- Malik Sallam
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman 11942, Jordan
| | - Roaa Khalil
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
3
|
Pacchiarotti G, Nardini R, Scicluna MT. Equine Hepacivirus: A Systematic Review and a Meta-Analysis of Serological and Biomolecular Prevalence and a Phylogenetic Update. Animals (Basel) 2022; 12:2486. [PMID: 36230228 PMCID: PMC9558973 DOI: 10.3390/ani12192486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Viral hepatitis has recently assumed relevance for equine veterinary medicine since a variety of new viruses have been discovered. Equine Hepacivirus (EqHV) is an RNA virus belonging to the Flaviviridae family that can cause subclinical hepatitis in horses, occasionally evolving into a chronic disease. EqHV, to date, is considered the closest known relative of human HCV. EqHV has been reported worldwide therefore assessing its features is relevant, considering both the wide use of blood products and transfusions in veterinary therapies and its similitude to HCV. The present review resumes the actual knowledge on EqHV epidemiology, risk factors and immunology, together with potential diagnostics and good practices for prevention. Moreover, adhering to PRISMA guidelines for systematic reviews a meta-analysis of serological and biomolecular prevalence and an updated phylogenetic description is presented as a benchmark for further studies.
Collapse
|
4
|
de Martinis C, Cardillo L, Esposito C, Viscardi M, Barca L, Cavallo S, D'Alessio N, Martella V, Fusco G. First identification of bovine hepacivirus in wild boars. Sci Rep 2022; 12:11678. [PMID: 35804025 PMCID: PMC9270363 DOI: 10.1038/s41598-022-15928-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/01/2022] [Indexed: 11/11/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic hepatitis, cirrhosis and hepatocellular carcinoma in humans. Humans were long considered the only hosts of Hepacivirus. Recently HCV-like sequences have been found in several animal species. Hepaciviruses are considered species-specific but a wider host range and a zoonotic role has been hypothesized. We report the first detection of bovine hepacivirus (BovHepV) sequences in wild boars. A total of 310 wild boars hunted in Campania region were investigated with a pan-hepacivirus nested-PCR protocol for the NS3 gene. Hepacivirus RNA was detected in 5.8% of the animals. Sequence and phylogenetic analysis showed high homology with BovHepV subtype F, with nucleotide identity of 99%. The positive wild boars were georeferenced, revealing high density of livestock farms, with no clear distinction between animal husbandry and hunting areas. These findings might suggest the ability of BovHepV to cross the host-species barrier and infect wild boars.
Collapse
Affiliation(s)
- Claudio de Martinis
- Unit of Exotic and Vector-Borne Diseases, Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055, Portici, Naples, Italy
| | - Lorena Cardillo
- Unit of Exotic and Vector-Borne Diseases, Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055, Portici, Naples, Italy.
| | - Claudia Esposito
- Unit of Exotic and Vector-Borne Diseases, Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055, Portici, Naples, Italy
| | - Maurizio Viscardi
- Unit of Exotic and Vector-Borne Diseases, Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055, Portici, Naples, Italy
| | - Lorella Barca
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Calabria Section, Cosenza, Italy
| | - Stefania Cavallo
- Department of Epidemiologic and Biostatistic Regional Observatory (OREB), Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, Italy
| | - Nicola D'Alessio
- Unit of Exotic and Vector-Borne Diseases, Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055, Portici, Naples, Italy
| | - Vito Martella
- Department of Veterinary Medicine, Aldo Moro" University, Bari, Italy
| | - Giovanna Fusco
- Unit of Exotic and Vector-Borne Diseases, Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055, Portici, Naples, Italy
| |
Collapse
|
5
|
Expanded Diversity and Host Range of Bovine Hepacivirus—Genomic and Serological Evidence in Domestic and Wild Ruminant Species. Viruses 2022; 14:v14071457. [PMID: 35891438 PMCID: PMC9319978 DOI: 10.3390/v14071457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
The hepatitis C virus (HCV)-related bovine hepacivirus (BovHepV) can cause acute as well as persistent infections in cattle. The true clinical relevance of the virus is not yet known. As reliable antibody detection methods are lacking and prevalence studies have only been conducted in cattle and few countries to date, the true distribution, genetic diversity, and host range is probably greatly underestimated. In this study, we applied several RT-PCR methods and a nano-luciferase-based immunoprecipitation system (LIPS) assay to analyze bovine serum samples from Bulgaria as well as wild ruminant sera from Germany and the Czech Republic. Using these methods, BovHepV infections were confirmed in Bulgarian cattle, with viral genomes detected in 6.9% and serological reactions against the BovHepV NS3 helicase domain in 10% of bovine serum samples. Genetic analysis demonstrated co-circulation of highly diverse BovHepV strains in Bulgarian cattle, and three novel BovHepV subtypes within the genotype 1 could be defined. Furthermore, application of a nested RT-PCR led to the first description of a BovHepV variant (genotype 2) in a wild ruminant species. The results of this study significantly enhance our knowledge of BovHepV distribution, genetic diversity, and host range.
Collapse
|
6
|
Gaunt MW, Pettersson JHO, Kuno G, Gaunt B, de Lamballerie X, Gould EA. Widespread Interspecific Phylogenetic Tree Incongruence Between Mosquito-Borne and Insect-Specific Flaviviruses at Hotspots Originally Identified in Zika Virus. Virus Evol 2022; 8:veac027. [PMID: 35591877 PMCID: PMC9113262 DOI: 10.1093/ve/veac027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 10/22/2021] [Accepted: 04/17/2022] [Indexed: 11/16/2022] Open
Abstract
Intraspecies (homologous) phylogenetic incongruence, or ‘tree conflict’ between different loci within the same genome of mosquito-borne flaviviruses (MBFV), was first identified in dengue virus (DENV) and subsequently in Japanese encephalitis virus (JEV), St Louis encephalitis virus, and Zika virus (ZIKV). Recently, the first evidence of phylogenetic incongruence between interspecific members of the MBFV was reported in ZIKV and its close relative, Spondweni virus. Uniquely, these hybrid proteomes were derived from four incongruent trees involving an Aedes-associated DENV node (1 tree) and three different Culex-associated flavivirus nodes (3 trees). This analysis has now been extended across a wider spectrum of viruses within the MBFV lineage targeting the breakpoints between phylogenetic incongruent loci originally identified in ZIKV. Interspecies phylogenetic incongruence at these breakpoints was identified in 10 of 50 viruses within the MBFV lineage, representing emergent Aedes and Culex-associated viruses including JEV, West Nile virus, yellow fever virus, and insect-specific viruses. Thus, interspecies phylogenetic incongruence is widespread amongst the flaviviruses and is robustly associated with the specific breakpoints that coincide with the interspecific phylogenetic incongruence previously identified, inferring they are ‘hotspots’. The incongruence amongst the emergent MBFV group was restricted to viruses within their respective associated epidemiological boundaries. This MBFV group was RY-coded at the third codon position (‘wobble codon’) to remove transition saturation. The resulting ‘wobble codon’ trees presented a single topology for the entire genome that lacked any robust evidence of phylogenetic incongruence between loci. Phylogenetic interspecific incongruence was therefore observed for exactly the same loci between amino acid and the RY-coded ‘wobble codon’ alignments and this incongruence represented either a major part, or the entire genomes. Maximum likelihood codon analysis revealed positive selection for the incongruent lineages. Positive selection could result in the same locus producing two opposing trees. These analyses for the clinically important MBFV suggest that robust interspecific phylogenetic incongruence resulted from amino acid selection. Convergent or parallel evolutions are evolutionary processes that would explain the observation, whilst interspecific recombination is unlikely.
Collapse
Affiliation(s)
- Michael W Gaunt
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - John H-O Pettersson
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, the University of Sydney, Sydney, New South Wales 2006, Australia
| | - Goro Kuno
- Formerly, Centers for Disease Control, Fort Collins, CO 80521, USA
| | - Bill Gaunt
- Aeon-sys, MBCS Kensington Road, Barnsley S75 2TU, UK
| | - Xavier de Lamballerie
- UMR “Unité des Virus Emergents”, Aix-Marseille Université-IRD 190-Inserm 1207-IHU Méditerranée Infection, Marseille, France
- APHM Public Hospitals of Marseille, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Ernest A Gould
- UMR “Unité des Virus Emergents”, Aix-Marseille Université-IRD 190-Inserm 1207-IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
7
|
Yu Y, Wan Z, Wang JH, Yang X, Zhang C. Review of human pegivirus: Prevalence, transmission, pathogenesis, and clinical implication. Virulence 2022; 13:324-341. [PMID: 35132924 PMCID: PMC8837232 DOI: 10.1080/21505594.2022.2029328] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human pegivirus (HPgV-1), previously known as GB virus C (GBV-C) or hepatitis G virus (HGV), is a single-stranded positive RNA virus belonging to the genus Pegivirus of the Flaviviridae family. It is transmitted by percutaneous injuries (PIs), contaminated blood and/or blood products, sexual contact, and vertical mother-to-child transmission. It is widely prevalent in general population, especially in high-risk groups. HPgV-1 viremia is typically cleared within the first 1–2 years of infection in most healthy individuals, but may persist for longer periods of time in immunocompromised individuals and/or those co-infected by other viruses. A large body of evidences indicate that HPgV-1 persistent infection has a beneficial clinical effect on many infectious diseases, such as acquired immunodeficiency syndrome (AIDS) and hepatitis C. The beneficial effects seem to be related to a significant reduction of immune activation, and/or the inhabitation of co-infected viruses (e.g. HIV-1). HPgV-1 has a broad cellular tropism for lymphoid and myeloid cells, and preferentially replicates in bone marrow and spleen without cytopathic effect, implying a therapeutic potential. The paper aims to summarize the natural history, prevalence and distribution characteristics, and pathogenesis of HPgV-1, and discuss its association with other human viral diseases, and potential use in therapy as a biovaccine or viral vector.
Collapse
Affiliation(s)
- Yaqi Yu
- College of Life Sciences, Henan Normal University, Xinxiang, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhenzhou Wan
- Medical Laboratory of Taizhou Fourth People's Hospital, Taizhou, China
| | - Jian-Hua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xianguang Yang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Mrzljak A, Simunov B, Balen I, Jurekovic Z, Vilibic-Cavlek T. Human pegivirus infection after transplant: Is there an impact? World J Transplant 2022; 12:1-7. [PMID: 35096551 PMCID: PMC8771596 DOI: 10.5500/wjt.v12.i1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 10/25/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
The microbiome's role in transplantation has received growing interest, but the role of virome remains understudied. Pegiviruses are single-stranded positive-sense RNA viruses, historically associated with liver disease, but their path-ogenicity is controversial. In the transplantation setting, pegivirus infection does not seem to have a negative impact on the outcomes of solid-organ and hematopoietic stem cell transplant recipients. However, the role of pegiviruses as proxies in immunosuppression monitoring brings novelty to the field of virome research in immunocompromised individuals. The possible immunomodulatory effect of pegivirus infections remains to be elucidated in further trials.
Collapse
Affiliation(s)
- Anna Mrzljak
- Department of Gastroenterology and Hepatology, University Hospital Center Zagreb, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Bojana Simunov
- Department of Medicine, Merkur University Hospital, Zagreb 10000, Croatia
| | - Ivan Balen
- Department of Gastroenterology and Endocrinology, General Hospital “Dr. Josip Bencevic”, Slavonski Brod 35000, Croatia
| | - Zeljka Jurekovic
- Department of Medicine, Merkur University Hospital, Zagreb 10000, Croatia
| | - Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
9
|
Yoon J, Park T, Kim A, Song H, Park BJ, Ahn HS, Go HJ, Kim DH, Lee JB, Park SY, Song CS, Lee SW, Choi IS. First report of equine parvovirus-hepatitis and equine hepacivirus coinfection in horses in Korea. Transbound Emerg Dis 2021; 69:2735-2746. [PMID: 34919324 DOI: 10.1111/tbed.14425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 01/11/2023]
Abstract
Equine parvovirus-hepatitis (EqPV-H) and equine hepacivirus (EqHV) are etiologically associated with Theiler's disease (TD), causing fulminant equine hepatitis, but the transmission route and co-infection effect remain unclear. We determined EqPV-H and EqHV prevalence and coinfection rate in 160 serum and 114 faecal samples using nested polymerase chain reaction. Amino acid and nucleotide analyses were performed and phylogenetic trees were constructed. By measuring liver-specific parameters (AST, GGT, TBIL and A/G ratio), hepatopathological changes in viremia status were compared. We found a high prevalence (EqPV-H: 10.6% in serum, 5.3% in faeces; EqHV: 8.1% in serum) and coinfection rate (35.3% in EqPV-H) of TD-causing agents. The newly identified EqPV-H genomes showed high nucleotide and amino acid similarities with previously reported strains in the USA, China and Austria. In phylogenetic tree and recombination analysis, a natural recombination event was confirmed between Chinese and Korean strains. In the EqPV-H or EqHV viremic horses, AST was significantly elevated and at least two liver-specific parameters were outside the reference intervals in 43.5% (10/23) of horses. To our knowledge, this is the first prevalence field study of EqPV-H and EqHV using both serum and faeces, providing further evidence of faecal-oral transmission of TD. These epidemiologic and clinicopathologic analyses specify the risk factors of TD infection and promote disease prevention strategy.
Collapse
Affiliation(s)
- Jungho Yoon
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju, Korea.,Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Taemook Park
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju, Korea
| | - Ahram Kim
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju, Korea
| | - Heeeun Song
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju, Korea
| | - Byung-Joo Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Hee-Seop Ahn
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Hyeon-Jeong Go
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Dong-Hwi Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Joong-Bok Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Seung-Yong Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Chang-Seon Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Sang-Won Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - In-Soo Choi
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| |
Collapse
|
10
|
Blahove MR, Carter JR. Flavivirus Persistence in Wildlife Populations. Viruses 2021; 13:v13102099. [PMID: 34696529 PMCID: PMC8541186 DOI: 10.3390/v13102099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
A substantial number of humans are at risk for infection by vector-borne flaviviruses, resulting in considerable morbidity and mortality worldwide. These viruses also infect wildlife at a considerable rate, persistently cycling between ticks/mosquitoes and small mammals and reptiles and non-human primates and humans. Substantially increasing evidence of viral persistence in wildlife continues to be reported. In addition to in humans, viral persistence has been shown to establish in mammalian, reptile, arachnid, and mosquito systems, as well as insect cell lines. Although a considerable amount of research has centered on the potential roles of defective virus particles, autophagy and/or apoptosis-induced evasion of the immune response, and the precise mechanism of these features in flavivirus persistence have yet to be elucidated. In this review, we present findings that aid in understanding how vector-borne flavivirus persistence is established in wildlife. Research studies to be discussed include determining the critical roles universal flavivirus non-structural proteins played in flaviviral persistence, the advancement of animal models of viral persistence, and studying host factors that allow vector-borne flavivirus replication without destructive effects on infected cells. These findings underscore the viral–host relationships in wildlife animals and could be used to elucidate the underlying mechanisms responsible for the establishment of viral persistence in these animals.
Collapse
|
11
|
Jo WK, Alfonso-Toledo JA, Salas-Rojas M, Almazan-Marin C, Galvez-Romero G, García-Baltazar A, Obregón-Morales C, Rendón-Franco E, Kühne A, Carvalho-Urbieta V, Rasche A, Brünink S, Glebe D, Aguilar-Setién Á, Drexler JF. Natural co-infection of divergent hepatitis B and C virus homologues in carnivores. Transbound Emerg Dis 2021; 69:195-203. [PMID: 34606685 DOI: 10.1111/tbed.14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/10/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
In humans, co-infection of hepatitis B and C viruses (HBV, HCV) is common and aggravates disease outcome. Infection-mediated disease aggravation is poorly understood, partly due to lack of suitable animal models. Carnivores are understudied for hepatitis virus homologues. We investigated Mexican carnivores (ringtails, Bassariscus astutus) for HBV and HCV homologues. Three out of eight animals were infected with a divergent HBV termed ringtail HBV (RtHBV) at high viral loads of 5 × 109 -1.4 × 1010 copies/ml serum. Two of the RtHBV-infected animals were co-infected with a divergent hepacivirus termed ringtail hepacivirus (RtHV) at 4 × 106 -7.5 × 107 copies/ml in strain-specific qRT-PCR assays. Immunofluorescence assays relying on HBV core and RtHV NS3/4a proteins indicated that none of the animals had detectable hepadnavirus core-specific antibodies, whereas one RtHV-infected animal had concomitant RtHV-specific antibodies at 1:800 end-point titre. RtHBV and RtHV complete genomes showed typical HBV and HCV structure and length. All RtHBV genomes were identical, whereas RtHV genomes showed four amino acid substitutions located predominantly in the E1/E2-encoding genomic regions. Both RtHBV (>28% genomic nucleotide sequence distance) and RtHV (>30% partial NS3/NS5B amino acid sequence distance) formed new species within their virus families. Evolutionary analyses showed that RtHBV grouped with HBV homologues from different laurasiatherian hosts (carnivores, bats, and ungulates), whereas RtHV grouped predominantly with rodent-borne viruses. Ancestral state reconstructions showed that RtHV, but not RtHBV, likely emerged via a non-recent host switch involving rodent-borne hepacivirus ancestors. Conserved hepatitis virus infection patterns in naturally infected ringtails indicate that carnivores may be promising animal models to understand HBV/HCV co-infection.
Collapse
Affiliation(s)
- Wendy K Jo
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jorge A Alfonso-Toledo
- Unidad de Investigación Médica e Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México.,Unidad de Posgrado, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Monica Salas-Rojas
- Unidad de Investigación Médica e Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Cenia Almazan-Marin
- Unidad de Investigación Médica e Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Guillermo Galvez-Romero
- Unidad de Investigación Médica e Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Anahí García-Baltazar
- Unidad de Investigación Médica e Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Cirani Obregón-Morales
- Unidad de Investigación Médica e Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Emilio Rendón-Franco
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, México
| | - Arne Kühne
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Victor Carvalho-Urbieta
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrea Rasche
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Centre for Infection Research (DZIF), Associated Partner Site Berlin, Germany
| | - Sebastian Brünink
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dieter Glebe
- German Centre for Infection Research (DZIF), Associated Partner Site Berlin, Germany.,Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University Giessen, Giessen, Germany
| | - Álvaro Aguilar-Setién
- Unidad de Investigación Médica e Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Centre for Infection Research (DZIF), Associated Partner Site Berlin, Germany
| |
Collapse
|
12
|
Shaker EK, Al-Jebouri MM, Al-Mayah QS, Al-Matubsi HY. Phylogenetic analysis of human pegivirus from anti-hepatitis C virus IgG- positive patients. INFECTION GENETICS AND EVOLUTION 2021; 96:105099. [PMID: 34601095 DOI: 10.1016/j.meegid.2021.105099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022]
Abstract
Human pegivirus type 1 (HPgV-1) is a non-pathogenic RNA virus in the Flaviviridae family that usually occurs as a co-infection with hepatitis B virus (HBV) or hepatitis C virus (HCV), though some evidence suggests it may play a role in certain cancers. The present study aimed to determine the prevalence of HPgV-1 infection in Iraqi anti-HCV IgG-positive patients, the risk factors associated with this infection, and the genotype of local isolates of this virus. A total of 88 anti-HCV IgG-positive patients participated in this cross-sectional study. Viral RAN was extracted from whole blood samples, and cDNA was produced using reverse transcriptase-polymerase chain reaction (RT-PCR). Two pairs of primers were used in nested PCR to amplify the virus genome's 5'-untranslated region (5'UTR). For direct sequencing, fourteen PCR products from the second round of PCR were chosen at random. A homology search was performed using the basic local alignment search tool (BLAST) program to identify the resultant sequencing. The phylogenetic tree of the local isolates and 31 reference isolates was constructed using MEGA X software to estimate the virus's genetic diversity and relatedness. Out of 88 patients included in this study, 27(30.68%) of patients were found to be positive for HPgV-1 RNA. The nucleotide homology between the 14 local isolates and the reference isolates. was found to be 87-97%. Phylogenetic analysis results in a tree with four main parts, which are distributed as follows: 10 local isolates are genotype 2; 2 are genotype 1; 1 is genotype 5, and 1 is genotype 6. We conclude that when compared to other countries, the infection rate of Iraqi anti-HCV IgG-positive patients with HPgV-1 is relatively high (30.68%). The most common HPgV-1 genotype in Iraq is genotype 2.
Collapse
Affiliation(s)
- Ekremah K Shaker
- Medical Laboratory Technique, Al-Rasheed University College, Iraq
| | | | - Qasim S Al-Mayah
- Medical Research Unit, College of Medicine, Al-Nahrain University, Iraq
| | - Hisham Y Al-Matubsi
- Department of Pharmacology and Medical Sciences, University of Petra, Amman, Jordan.
| |
Collapse
|
13
|
Jacob Machado D, Scott R, Guirales S, Janies DA. Fundamental evolution of all Orthocoronavirinae including three deadly lineages descendent from Chiroptera-hosted coronaviruses: SARS-CoV, MERS-CoV and SARS-CoV-2. Cladistics 2021; 37:461-488. [PMID: 34570933 PMCID: PMC8239696 DOI: 10.1111/cla.12454] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in humans in 2002. Despite reports showing Chiroptera as the original animal reservoir of SARS-CoV, many argue that Carnivora-hosted viruses are the most likely origin. The emergence of the Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 also involves Chiroptera-hosted lineages. However, factors such as the lack of comprehensive phylogenies hamper our understanding of host shifts once MERS-CoV emerged in humans and Artiodactyla. Since 2019, the origin of SARS-CoV-2, causative agent of coronavirus disease 2019 (COVID-19), added to this episodic history of zoonotic transmission events. Here we introduce a phylogenetic analysis of 2006 unique and complete genomes of different lineages of Orthocoronavirinae. We used gene annotations to align orthologous sequences for total evidence analysis under the parsimony optimality criterion. Deltacoronavirus and Gammacoronavirus were set as outgroups to understand spillovers of Alphacoronavirus and Betacoronavirus among ten orders of animals. We corroborated that Chiroptera-hosted viruses are the sister group of SARS-CoV, SARS-CoV-2 and MERS-related viruses. Other zoonotic events were qualified and quantified to provide a comprehensive picture of the risk of coronavirus emergence among humans. Finally, we used a 250 SARS-CoV-2 genomes dataset to elucidate the phylogenetic relationship between SARS-CoV-2 and Chiroptera-hosted coronaviruses.
Collapse
Affiliation(s)
- Denis Jacob Machado
- Department of Bioinformatics and GenomicsUniversity of North Carolina at Charlotte9331 Robert D. Snyder RdCharlotteNC28223USA
| | - Rachel Scott
- Department of Bioinformatics and GenomicsUniversity of North Carolina at Charlotte9331 Robert D. Snyder RdCharlotteNC28223USA
| | - Sayal Guirales
- Department of Bioinformatics and GenomicsUniversity of North Carolina at Charlotte9331 Robert D. Snyder RdCharlotteNC28223USA
| | - Daniel A. Janies
- Department of Bioinformatics and GenomicsUniversity of North Carolina at Charlotte9331 Robert D. Snyder RdCharlotteNC28223USA
| |
Collapse
|
14
|
Human pegivirus 1 infection in lung transplant recipients: Prevalence, clinical relevance and kinetics of viral replication under immunosuppressive therapy. J Clin Virol 2021; 143:104937. [PMID: 34416522 DOI: 10.1016/j.jcv.2021.104937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/22/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Human pegivirus 1 (HPgV1) may cause persistent infections in immunocompetent and immunosuppressed individuals. Its clinical relevance, however, has not been determined. Previous studies have described a higher prevalence of HPgV1 infection in organ transplant recipients compared to healthy controls, but its occurrence in lung transplant recipients (LTRs) and its association with immunosuppressive therapy has not been assessed. OBJECTIVES The aim of this study was to evaluate the prevalence and clinical significance of HPgV1 infection in LTRs, and to compare HPgV1 loads and kinetics to Torque Teno Virus (TTV) kinetics, which reflects the level of immunosuppression. STUDY DESIGN From each of 110 LTRs, five consecutive plasma samples were collected within the first year after transplantation and tested for HPgV1 RNA and TTV DNA loads by quantitative PCR. Data were related to demographic data and clinical parameters followed up for 3 years post transplantation. RESULTS HPgV1 prevalence in LTRs was 18,2%. HPgV1 detection was significantly associated with younger age, but not with graft rejections or other microbial infections. The viral replication level remained unaffected by immunosuppressive therapy. This was in contrast to TTV loads which increased after initiation of immunosuppressive therapy, independent of the patients' HPgV1 infection status. CONCLUSIONS In contrast to TTV, HPgV1 kinetics do not reflect the level of immunosuppression after lung transplantation, and there is no correlation between the replication of both persistent viruses in the post transplantation follow up. Thus the individual virus host interactions seem to differ substantially and require further investigation.
Collapse
|
15
|
Pontremoli C, Forni D, Clerici M, Cagliani R, Sironi M. Possible European Origin of Circulating Varicella Zoster Virus Strains. J Infect Dis 2021; 221:1286-1294. [PMID: 31051029 DOI: 10.1093/infdis/jiz227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/02/2019] [Indexed: 11/13/2022] Open
Abstract
Varicella zoster virus (VZV) is the causative agent of chickenpox and shingles. The geographic distribution of VZV clades was taken as evidence that VZV migrated out of Africa with human populations. We show that extant VZV strains most likely originated in Europe and not in Africa. Europe was also identified as the ancestral location for most internal nodes of the VZV phylogeny, including the ancestor of clade 5 strains. We also show that strains from clades 1, 2, 3, and 5 derived a major proportion of their ancestry from each of 4 ancestral populations. Conversely, viruses from other clades displayed variable levels of admixture. Some low-level admixture was also observed for clade 5 genomes, but only for non-African viruses. This pattern indicates that the clade 5 VZV strains do not represent recent introductions from Africa due to migratory fluxes. These data have also relevance for the definition and classification of VZV clades.
Collapse
Affiliation(s)
- Chiara Pontremoli
- Istituto di ricovero e cura a carattere scientifico (IRCCS) E. Medea, Bioinformatics, Bosisio Parini, Milan, Italy
| | - Diego Forni
- Istituto di ricovero e cura a carattere scientifico (IRCCS) E. Medea, Bioinformatics, Bosisio Parini, Milan, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Rachele Cagliani
- Istituto di ricovero e cura a carattere scientifico (IRCCS) E. Medea, Bioinformatics, Bosisio Parini, Milan, Italy
| | - Manuela Sironi
- Istituto di ricovero e cura a carattere scientifico (IRCCS) E. Medea, Bioinformatics, Bosisio Parini, Milan, Italy
| |
Collapse
|
16
|
Bletsa M, Vrancken B, Gryseels S, Boonen I, Fikatas A, Li Y, Laudisoit A, Lequime S, Bryja J, Makundi R, Meheretu Y, Akaibe BD, Mbalitini SG, Van de Perre F, Van Houtte N, Těšíková J, Wollants E, Van Ranst M, Pybus OG, Drexler JF, Verheyen E, Leirs H, Gouy de Bellocq J, Lemey P. Molecular detection and genomic characterization of diverse hepaciviruses in African rodents. Virus Evol 2021; 7:veab036. [PMID: 34221451 PMCID: PMC8242229 DOI: 10.1093/ve/veab036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV; genus Hepacivirus) represents a major public health problem, infecting about three per cent of the human population. Because no animal reservoir carrying closely related hepaciviruses has been identified, the zoonotic origins of HCV still remain unresolved. Motivated by recent findings of divergent hepaciviruses in rodents and a plausible African origin of HCV genotypes, we have screened a large collection of small mammals samples from seven sub-Saharan African countries. Out of 4,303 samples screened, eighty were found positive for the presence of hepaciviruses in twenty-nine different host species. We, here, report fifty-six novel genomes that considerably increase the diversity of three divergent rodent hepacivirus lineages. Furthermore, we provide strong evidence for hepacivirus co-infections in rodents, which were exclusively found in four sampled species of brush-furred mice. We also detect evidence of recombination within specific host lineages. Our study expands the available hepacivirus genomic data and contributes insights into the relatively deep evolutionary history of these pathogens in rodents. Overall, our results emphasize the importance of rodents as a potential hepacivirus reservoir and as models for investigating HCV infection dynamics.
Collapse
Affiliation(s)
- Magda Bletsa
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sophie Gryseels
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Ine Boonen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Antonios Fikatas
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Yiqiao Li
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | | | - Sebastian Lequime
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Josef Bryja
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Rhodes Makundi
- Pest Management Center -Sokoine University of Agriculture, Morogoro, Tanzania
| | - Yonas Meheretu
- Department of Biology and Institute of Mountain Research & Development, Mekelle University, Mekelle, Ethiopia
| | - Benjamin Dudu Akaibe
- Department of Ecology and Animal Resource Management, Faculty of Science, Biodiversity Monitoring Center, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Sylvestre Gambalemoke Mbalitini
- Department of Ecology and Animal Resource Management, Faculty of Science, Biodiversity Monitoring Center, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Frederik Van de Perre
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Natalie Van Houtte
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Jana Těšíková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Elke Wollants
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Marc Van Ranst
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, UK
| | - Jan Felix Drexler
- Charite-Universitatsmedizin Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Erik Verheyen
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
- OD Taxonomy and Phylogeny-Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Herwig Leirs
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | | | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Porter AF, Pettersson JHO, Chang WS, Harvey E, Rose K, Shi M, Eden JS, Buchmann J, Moritz C, Holmes EC. Novel hepaci- and pegi-like viruses in native Australian wildlife and non-human primates. Virus Evol 2020; 6:veaa064. [PMID: 33240526 PMCID: PMC7673076 DOI: 10.1093/ve/veaa064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Flaviviridae family of positive-sense RNA viruses contains important pathogens of humans and other animals, including Zika virus, dengue virus, and hepatitis C virus. The Flaviviridae are currently divided into four genera-Hepacivirus, Pegivirus, Pestivirus, and Flavivirus-each with a diverse host range. Members of the genus Hepacivirus are associated with an array of animal species, including humans, non-human primates, other mammalian species, as well as birds and fish, while the closely related pegiviruses have been identified in a variety of mammalian taxa, also including humans. Using a combination of total RNA and whole-genome sequencing we identified four novel hepaci-like viruses and one novel variant of a known hepacivirus in five species of Australian wildlife. The hosts infected comprised native Australian marsupials and birds, as well as a native gecko (Gehyra lauta). From these data we identified a distinct marsupial clade of hepaci-like viruses that also included an engorged Ixodes holocyclus tick collected while feeding on Australian long-nosed bandicoots (Perameles nasuta). Distinct lineages of hepaci-like viruses associated with geckos and birds were also identified. By mining the SRA database we similarly identified three new hepaci-like viruses from avian and primate hosts, as well as two novel pegi-like viruses associated with primates. The phylogenetic history of the hepaci- and pegi-like viruses as a whole, combined with co-phylogenetic analysis, provided support for virus-host co-divergence over the course of vertebrate evolution, although with frequent cross-species virus transmission. Overall, our work highlights the diversity of the Hepacivirus and Pegivirus genera as well as the uncertain phylogenetic distinction between.
Collapse
Affiliation(s)
- Ashleigh F Porter
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| | - John H-O Pettersson
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| | - Wei-Shan Chang
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| | - Erin Harvey
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman 2088, Australia
| | - Mang Shi
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - John-Sebastian Eden
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| | - Jan Buchmann
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| | - Craig Moritz
- Research School of Biology, Centre for Biodiversity Analysis, Australian National University, Acton, ACT, Australia
| | - Edward C Holmes
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
18
|
de Bernadi Schneider A, Jacob Machado D, Guirales S, Janies DA. FLAVi: An Enhanced Annotator for Viral Genomes of Flaviviridae. Viruses 2020; 12:E892. [PMID: 32824044 PMCID: PMC7472247 DOI: 10.3390/v12080892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Responding to the ongoing and severe public health threat of viruses of the family Flaviviridae, including dengue, hepatitis C, West Nile, yellow fever, and Zika, demands a greater understanding of how these viruses emerge and spread. Updated phylogenies are central to this understanding. Most cladograms of Flaviviridae focus on specific lineages and ignore outgroups, hampering the efficacy of the analysis to test ingroup monophyly and relationships. This is due to the lack of annotated Flaviviridae genomes, which has gene content variation among genera. This variation makes analysis without partitioning difficult. Therefore, we developed an annotation pipeline for the genera of Flaviviridae (Flavirirus, Hepacivirus, Pegivirus, and Pestivirus, named "Fast Loci Annotation of Viruses" (FLAVi; http://flavi-web.com/), that combines ab initio and homology-based strategies. FLAVi recovered 100% of the genes in Flavivirus and Hepacivirus genomes. In Pegivirus and Pestivirus, annotation efficiency was 100% except for one partition each. There were no false positives. The combined phylogenetic analysis of multiple genes made possible by annotation has clear impacts over the tree topology compared to phylogenies that we inferred without outgroups or data partitioning. The final tree is largely congruent with previous hypotheses and adds evidence supporting the close phylogenetic relationship between dengue and Zika.
Collapse
Affiliation(s)
- Adriano de Bernadi Schneider
- AntiViral Research Center, Department of Medicine, University of California San Diego, San Diego, CA 92103, USA;
| | - Denis Jacob Machado
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (S.G.); (D.A.J.)
| | - Sayal Guirales
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (S.G.); (D.A.J.)
| | - Daniel A. Janies
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (S.G.); (D.A.J.)
| |
Collapse
|
19
|
Gao YW, Wan ZW, Wu Y, Li XF, Tang SX. PCR-based screening and phylogenetic analysis of rat pegivirus (RPgV) carried by rodents in China. J Vet Med Sci 2020; 82:1464-1471. [PMID: 32713889 PMCID: PMC7653312 DOI: 10.1292/jvms.19-0530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rodent-borne pegiviruses were initially identified in serum samples from desert wood-rats in 2013, and subsequently in serum samples from commensal rats in 2014. However, the prevalence and phylogenetic characteristics of rodent pegiviruses in China are poorly understood. In this study, we screened serum samples collected from wild rats in southern China between 2015 and 2016 for the presence of rat pegivirus (RPgV) by PCR. Among the 314 serum samples from murine rodents (Rattus norvegicus, Rattus tanezumi, and Rattus losea) and house shrews (Suncus murinus), 21.66% (68/314) tested positive for RPgV. Out of these, 23.81% (62/219) of samples from R. norvegicus tested positive, which was significantly higher than that for the other species: 7.69% (1/13), 5.88% (2/34), and 6.25% (3/48) for R. tanezumi, R. losea, and S. murinus, respectively (χ2=18.91, P<0.001). Phylogenetic analysis revealed clustering of viral sequences in the main rodent clade. Analysis of the 3 near-full-length genome sequences of RPgV obtained in this study showed that these viruses exhibited mean nucleic acid and amino acid identities of 94.1% and 98.5% with Chinese RPgV strains, and 90.3 and 97.1% with an RPgV strain from the USA, respectively. This study provides novel insights into the geographic distribution of rodent pegiviruses in China, and identifies potential animal hosts for future studies of these pegiviruses.
Collapse
Affiliation(s)
- You-Wen Gao
- Department of Epidemiology, School of Public Health, Southern Medical University, 1838 Guangzhou North Road Guangzhou 510515, China
| | - Zheng-Wei Wan
- Department of Epidemiology, School of Public Health, Southern Medical University, 1838 Guangzhou North Road Guangzhou 510515, China
| | - Yue Wu
- Department of Epidemiology, School of Public Health, Southern Medical University, 1838 Guangzhou North Road Guangzhou 510515, China
| | - Xiu-Fen Li
- Department of Epidemiology, School of Public Health, Southern Medical University, 1838 Guangzhou North Road Guangzhou 510515, China
| | - Shing-Xing Tang
- Department of Epidemiology, School of Public Health, Southern Medical University, 1838 Guangzhou North Road Guangzhou 510515, China
| |
Collapse
|
20
|
Arhab Y, Bulakhov AG, Pestova TV, Hellen CU. Dissemination of Internal Ribosomal Entry Sites (IRES) Between Viruses by Horizontal Gene Transfer. Viruses 2020; 12:E612. [PMID: 32512856 PMCID: PMC7354566 DOI: 10.3390/v12060612] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Members of Picornaviridae and of the Hepacivirus, Pegivirus and Pestivirus genera of Flaviviridae all contain an internal ribosomal entry site (IRES) in the 5'-untranslated region (5'UTR) of their genomes. Each class of IRES has a conserved structure and promotes 5'-end-independent initiation of translation by a different mechanism. Picornavirus 5'UTRs, including the IRES, evolve independently of other parts of the genome and can move between genomes, most commonly by intratypic recombination. We review accumulating evidence that IRESs are genetic entities that can also move between members of different genera and even between families. Type IV IRESs, first identified in the Hepacivirus genus, have subsequently been identified in over 25 genera of Picornaviridae, juxtaposed against diverse coding sequences. In several genera, members have either type IV IRES or an IRES of type I, II or III. Similarly, in the genus Pegivirus, members contain either a type IV IRES or an unrelated type; both classes of IRES also occur in members of the genus Hepacivirus. IRESs utilize different mechanisms, have different factor requirements and contain determinants of viral growth, pathogenesis and cell type specificity. Their dissemination between viruses by horizontal gene transfer has unexpectedly emerged as an important facet of viral evolution.
Collapse
Affiliation(s)
| | | | | | - Christopher U.T. Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (Y.A.); (A.G.B.); (T.V.P.)
| |
Collapse
|
21
|
Ploss A, Kapoor A. Animal Models of Hepatitis C Virus Infection. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036970. [PMID: 31843875 DOI: 10.1101/cshperspect.a036970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is an important and underreported infectious disease, causing chronic infection in ∼71 million people worldwide. The limited host range of HCV, which robustly infects only humans and chimpanzees, has made studying this virus in vivo challenging and hampered the development of a desperately needed vaccine. The restrictions and ethical concerns surrounding biomedical research in chimpanzees has made the search for an animal model all the more important. In this review, we discuss different approaches that are being pursued toward creating small animal models for HCV infection. Although efforts to use a nonhuman primate species besides chimpanzees have proven challenging, important advances have been achieved in a variety of humanized mouse models. However, such models still fall short of the overarching goal to have an immunocompetent, inheritably susceptible in vivo platform in which the immunopathology of HCV could be studied and putative vaccines development. Alternatives to overcome this include virus adaptation, such as murine-tropic HCV strains, or the use of related hepaciviruses, of which many have been recently identified. Of the latter, the rodent/rat hepacivirus from Rattus norvegicus species-1 (RHV-rn1) holds promise as a surrogate virus in fully immunocompetent rats that can inform our understanding of the interaction between the immune response and viral outcomes (i.e., clearance vs. persistence). However, further characterization of these animal models is necessary before their use for gaining new insights into the immunopathogenesis of HCV and for conceptualizing HCV vaccines.
Collapse
Affiliation(s)
- Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Amit Kapoor
- Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| |
Collapse
|
22
|
Moreira-Soto A, Arroyo-Murillo F, Sander AL, Rasche A, Corman V, Tegtmeyer B, Steinmann E, Corrales-Aguilar E, Wieseke N, Avey-Arroyo J, Drexler JF. Cross-order host switches of hepatitis C-related viruses illustrated by a novel hepacivirus from sloths. Virus Evol 2020; 6:veaa033. [PMID: 32704383 PMCID: PMC7368370 DOI: 10.1093/ve/veaa033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The genealogy of the hepatitis C virus (HCV) and the genus Hepacivirus remains elusive despite numerous recently discovered animal hepaciviruses (HVs). Viruses from evolutionarily ancient mammals might elucidate the HV macro-evolutionary patterns. Here, we investigated sixty-seven two-toed and nine three-toed sloths from Costa Rica for HVs using molecular and serological tools. A novel sloth HV was detected by reverse transcription polymerase chain reaction (RT-PCR) in three-toed sloths (2/9, 22.2%; 95% confidence interval (CI), 5.3-55.7). Genomic characterization revealed typical HV features including overall polyprotein gene structure, a type 4 internal ribosomal entry site in the viral 5'-genome terminus, an A-U-rich region and X-tail structure in the viral 3'-genome terminus. Different from other animal HVs, HV seropositivity in two-toed sloths was low at 4.5 per cent (3/67; CI, 1.0-12.9), whereas the RT-PCR-positive three-toed sloths were seronegative. Limited cross-reactivity of the serological assay implied exposure of seropositive two-toed sloths to HVs of unknown origin and recent infections in RT-PCR-positive animals preceding seroconversion. Recent infections were consistent with only 9 nucleotide exchanges between the two sloth HVs, located predominantly within the E1/E2 encoding regions. Translated sequence distances of NS3 and NS5 proteins and host comparisons suggested that the sloth HV represents a novel HV species. Event- and sequence distance-based reconciliations of phylogenies of HVs and of their hosts revealed complex macro-evolutionary patterns, including both long-term evolutionary associations and host switches, most strikingly from rodents into sloths. Ancestral state reconstructions corroborated rodents as predominant sources of HV host switches during the genealogy of extant HVs. Sequence distance comparisons, partial conservation of critical amino acid residues associated with HV entry and selection pressure signatures of host genes encoding entry and antiviral protein orthologs were consistent with HV host switches between genetically divergent mammals, including the projected host switch from rodents into sloths. Structural comparison of HCV and sloth HV E2 proteins suggested conserved modes of hepaciviral entry. Our data corroborate complex macro-evolutionary patterns shaping the genus Hepacivirus, highlight that host switches are possible across highly diverse host taxa, and elucidate a prominent role of rodent hosts during the Hepacivirus genealogy.
Collapse
Affiliation(s)
- Andres Moreira-Soto
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany.,Virology-CIET, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | | | - Anna-Lena Sander
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany
| | - Andrea Rasche
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany
| | - Victor Corman
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany
| | - Birthe Tegtmeyer
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover 30625, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr-University Bochum, Bochum 44801, Germany
| | | | - Nicolas Wieseke
- Swarm Intelligence and Complex Systems Group, Department of Computer Science, Leipzig University, Leipzig, Germany
| | | | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany.,German Centre for Infection Research (DZIF), Germany
| |
Collapse
|
23
|
Date T, Sugiyama M, Lkhagvasuren D, Wakita T, Oyunsuren T, Mizokami M. Prevalence of equine hepacivirus infection in Mongolia. Virus Res 2020; 282:197940. [PMID: 32259615 DOI: 10.1016/j.virusres.2020.197940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 01/05/2020] [Accepted: 03/15/2020] [Indexed: 01/17/2023]
Abstract
Equine hepacivirus (EHV) belongs to the hepacivirus A and is related to hepatitis C virus (HCV). This virus shows hepatic tropism and is known to chronically infect horses. EHV has been reported from various countries, but the prevalence in Mongolia, where large horse populations are pastured, remains unknown. This study collected serum samples from horses in six areas across Mongolia, in order to investigate the status of infection. The possibility of human infection was also examined. The results showed an infection rate among horses of about 40 % in all regions. However, no evidence of EHV viremia was found in human serum. A mutation characteristic of Mongolian EHV was found in the 5'-untranslated region of the viral sequence. Molecular phylogenetic trees for core, NS3, and NS5B sequences showed the formation of two clusters depending on the area from which samples were taken. The same results were obtained from molecular phylogenetic analyses using the full genome. From detailed calculations of genetic diversity calculated using the full genome, EHV appears divisible into two subgenotypes. Blood samples were collected again after a 7-month interval to examine infection persistence. Seventeen of 19 horses retested showed positive results for EHV after 7 months, suggesting a high rate of persistent infection. These results indicate a relatively higher frequency of EHV infection in Mongolia than in Europe or North America, with virus strains divided into at least two subgenotypes.
Collapse
Affiliation(s)
- Tomoko Date
- Genome Medical Sciences Project, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan.
| | - Damdindorj Lkhagvasuren
- Laboratory of Molecular Biology, Institute of Biology, Mongolian Academy of Sciences, Peace av.54b, Bayanzurkh 3, Ulaanbaatar, 13330, Mongolia
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Tsendsuren Oyunsuren
- Laboratory of Molecular Biology, Institute of Biology, Mongolian Academy of Sciences, Peace av.54b, Bayanzurkh 3, Ulaanbaatar, 13330, Mongolia
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| |
Collapse
|
24
|
Dos Santos Bezerra R, Santos EV, Maraninchi Silveira R, Silva Pinto AC, Covas DT, Kashima S, Slavov SN. Molecular prevalence and genotypes of human pegivirus-1 (HPgV-1) and SENV-like viruses among multiply transfused patients with beta-thalassemia. Transfus Apher Sci 2019; 59:102697. [PMID: 31859221 DOI: 10.1016/j.transci.2019.102697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/11/2019] [Accepted: 12/03/2019] [Indexed: 01/23/2023]
Abstract
Due to the high number of transfusions which patients with hereditary hemoglobinopathies (thalassemia, sickle cell disease) receive, they represent high risk of acquiring parenterally transmitted infectious diseases. In this respect, non pathogenic human commensal viruses, which also demonstrate parenteral transmission routes might also be acquired. One of the most widely spread parenterally-transmitted human commensal viruses include the Human Pegivirus-1 (HPgV-1, GBV-C) and Torque teno viruses (TTV) including its SEN virus-like (SENV) forms. The objective of this study was to evaluate the prevalence of HPgV-1 RNA and SENV-like viruses, among a group of patients with beta-thalassemia from a Blood Transfusion Center in the São Paulo State, Brazil. The prevalence of HPgV-1 RNA was 14.3 % (n = 6/42) and all of the positive samples were characterized as belonging to genotype 2 (83.3 % were referred to subgenotype 2A and 16.7 % to 2B). The prevalence of SENV-like viruses was 28.6 % (n = 12/42). SENV-like viruses of the genotypes SENV-H and SENV-A were classified during the performed phylogenetic analysis. Our study came as a continuation of a viral metagenomic survey among multiple transfused patients with beta-thalassemia. The obtained results shed a light on the prevalence and genotype distribution of commensal parenterally transmitted viruses like HPgV-1 and SENV in this specific population. However, more studies are needed to evaluate the clinical impact of these apparently non-pathogenic viruses in patients with thalassemia and their significance for the hemotherapy.
Collapse
Affiliation(s)
- Rafael Dos Santos Bezerra
- Master Degree Program in Clinical Oncology, Stem Cells and Cell Therapy, Faculty of Medicine of Ribeirão Preto, University of São Paulo, CEP 14049-900, Ribeirão Preto, São Paulo, Brazil; Regional Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, CEP 14051-140, Ribeirão Preto, São Paulo, Brazil
| | - Elaine Vieira Santos
- Regional Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, CEP 14051-140, Ribeirão Preto, São Paulo, Brazil
| | - Roberta Maraninchi Silveira
- Regional Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, CEP 14051-140, Ribeirão Preto, São Paulo, Brazil
| | - Ana Cristina Silva Pinto
- Regional Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, CEP 14051-140, Ribeirão Preto, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Regional Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, CEP 14051-140, Ribeirão Preto, São Paulo, Brazil; Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, CEP 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Simone Kashima
- Regional Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, CEP 14051-140, Ribeirão Preto, São Paulo, Brazil
| | - Svetoslav Nanev Slavov
- Regional Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, CEP 14051-140, Ribeirão Preto, São Paulo, Brazil; Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, CEP 14049-900, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
25
|
Wang H, Wan Z, Xu R, Guan Y, Zhu N, Li J, Xie Z, Lu A, Zhang F, Fu Y, Tang S. A Novel Human Pegivirus, HPgV-2 (HHpgV-1), Is Tightly Associated With Hepatitis C Virus (HCV) Infection and HCV/Human Immunodeficiency Virus Type 1 Coinfection. Clin Infect Dis 2019; 66:29-35. [PMID: 29020289 DOI: 10.1093/cid/cix748] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/17/2017] [Indexed: 12/28/2022] Open
Abstract
Background Human pegivirus type 2 (HPgV-2) is a novel blood-borne human pegivirus that mainly infects hepatitis C virus (HCV)-infected subjects. We have investigated the prevalence of HPgV-2 in China, its association with HCV and human immunodeficiency virus type 1 (HIV-1), and the impact on HCV viral load and liver damage. Methods A cross-sectional study was conducted with both blood donors and HCV- and HIV-1-infected patients in Guangzhou, China. All subjects were screened for anti-HPgV-2 and HPgV-2 RNA. Demographic and clinical information were obtained from electronic medical records. Results We tested 8198 serum or plasma samples. Only 0.15% (6/4017) of healthy blood donors were positive for anti-HPgV-2 and negative for HPgV-2 RNA. No HPgV-2 viremia was detected in hepatitis B virus- or HIV-1-monoinfected individuals. The relatively high frequency of HPgV-2 infection was observed in 1.23% (30/2440) and 0.29% (7/2440) of HCV-infected persons by serological assay and reverse-transcription polymerase chain reaction, respectively. Furthermore, anti-HPgV-2 and HPgV-2 RNA were detected in 8.91% (18/202) and 3.47% (7/202), respectively, of HCV/HIV-1-coinfected subjects. HPgV-2 persistent infection was documented in about 30% of anti-HPgV-2-positive individuals. In addition, HPgV-2 infection may not affect HCV-related liver injury and HCV viral load. Conclusions Our results indicate the rarity of HPgV-2 infection in the general population and tight association with HCV, in particular with HCV/HIV-1 coinfection. HPgV-2 appears not to worsen HCV-related liver damage. Our study provides new findings about the association of HPgV-2 and HCV/HIV-1 and the impact of HPgV-2 infection on HCV replication and pathogenesis.
Collapse
Affiliation(s)
- Haiying Wang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University
| | - Zhengwei Wan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University
| | - Ru Xu
- Guangzhou Blood Center, Guangzhou, Guangdong, China
| | - Yujuan Guan
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Naling Zhu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University
| | - Jianping Li
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhiwei Xie
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Aiqi Lu
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fuchun Zhang
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yongshui Fu
- Guangzhou Blood Center, Guangzhou, Guangdong, China
| | - Shixing Tang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University
| |
Collapse
|
26
|
Detection and characterization of a novel hepacivirus in long-tailed ground squirrels (Spermophilus undulatus) in China. Arch Virol 2019; 164:2401-2410. [PMID: 31243554 DOI: 10.1007/s00705-019-04303-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/02/2019] [Indexed: 12/13/2022]
Abstract
Rodent populations are known to be reservoirs of viruses with the potential to infect humans. However, a large number of such viruses remain undiscovered. In this study, we investigated the shedding of unknown viruses in long-tailed ground squirrel (Spermophilus undulatus) feces by high-throughput sequencing. A novel and highly divergent virus related to members of the genus Hepacivirus was identified in ground squirrel liver. This virus, tentatively named RHV-GS2015, was found to have a genome organization that is typical of hepaciviruses, including a long open reading frame encoding a polyprotein of 2763 aa. Sequence alignment of RHV-GS2015 with the most closely related hepaciviruses yielded p-distances of the NS3 and NS5B regions of 0.546 and 0.476, respectively, supporting the conclusion that RHV-GS2015 is a member of a new hepacivirus species, which we propose to be named "Hepacivirus P". Phylogenetic analysis of the NS3 and NS5B regions indicated that RHV-GS2015 shares common ancestry with other rodent hepaciviruses (species Hepacivirus E, and species Hepacivirus F), Norway rat hepacivirus 1 (species Hepacivirus G), and Norway rat hepacivirus 2 (species Hepacivirus H). A phylogenetic tree including the seven previously identified rodent hepaciviruses revealed extreme genetic heterogeneity among these viruses. RHV-GS2015 was detected in 7 out of 12 ground squirrel pools and was present in liver, lung, and spleen tissues. Furthermore, livers showed extremely high viral loads of RHV-GS2015, ranging from 2.5 × 106 to 2.0 × 108 copies/g. It is reasonable to assume that this novel virus is hepatotropic, like hepatitis C virus. The discovery of RHV-GS2015 extends our knowledge of the genetic diversity and host range of hepaciviruses, helping to elucidate their origins and evolution.
Collapse
|
27
|
Genetic variability of porcine pegivirus in pigs from Europe and China and insights into tissue tropism. Sci Rep 2019; 9:8174. [PMID: 31160748 PMCID: PMC6547670 DOI: 10.1038/s41598-019-44642-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/21/2019] [Indexed: 12/29/2022] Open
Abstract
Pegiviruses belong to the family Flaviviridae and have been found in humans and other mammalian species. To date eleven different pegivirus species (Pegivirus A-K) have been described. However, little is known about the tissue tropism and replication of pegiviruses. In 2016, a so far unknown porcine pegivirus (PPgV, Pegivirus K) was described and persistent infection in the host, similar to human pegivirus, was reported. In this study, qRT-PCR, phylogenetic analyses and fluorescence in situ hybridization (FISH) were implemented to detect and quantify PPgV genome content in serum samples from domestic pigs from Europe and Asia, in tissue and peripheral blood mononuclear cell (PBMC) samples and wild boar serum samples from Germany. PPgV was detectable in 2.7% of investigated domestic pigs from Europe and China (viral genome load 2.4 × 102 to 2.0 × 106 PPgV copies/ml), while all wild boar samples were tested negative. Phylogenetic analyses revealed pairwise nucleotide identities >90% among PPgVs. Finally, PPgV was detected in liver, thymus and PBMCs by qRT-PCR and FISH, suggesting liver- and lymphotropism. Taken together, this study provides first insights into the tissue tropism of PPgV and shows its distribution and genetic variability in Europe and China.
Collapse
|
28
|
Davis C, Mgomella GS, da Silva Filipe A, Frost EH, Giroux G, Hughes J, Hogan C, Kaleebu P, Asiki G, McLauchlan J, Niebel M, Ocama P, Pomila C, Pybus OG, Pépin J, Simmonds P, Singer JB, Sreenu VB, Wekesa C, Young EH, Murphy DG, Sandhu M, Thomson EC. Highly Diverse Hepatitis C Strains Detected in Sub-Saharan Africa Have Unknown Susceptibility to Direct-Acting Antiviral Treatments. Hepatology 2019; 69:1426-1441. [PMID: 30387174 PMCID: PMC6492010 DOI: 10.1002/hep.30342] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022]
Abstract
The global plan to eradicate hepatitis C virus (HCV) led by the World Health Organization outlines the use of highly effective direct-acting antiviral drugs (DAAs) to achieve elimination by 2030. Identifying individuals with active disease and investigation of the breadth of diversity of the virus in sub-Saharan Africa (SSA) is essential as genotypes in this region (where very few clinical trials have been carried out) are distinct from those found in other parts of the world. We undertook a population-based, nested case-control study in Uganda and obtained additional samples from the Democratic Republic of Congo (DRC) to estimate the prevalence of HCV, assess strategies for disease detection using serological and molecular techniques, and characterize genetic diversity of the virus. Using next-generation and Sanger sequencing, we aimed to identify strains circulating in East and Central Africa. A total of 7,751 Ugandan patients were initially screened for HCV, and 20 PCR-positive samples were obtained for sequencing. Serological assays were found to vary significantly in specificity for HCV. HCV strains detected in Uganda included genotype (g) 4k, g4p, g4q, and g4s and a newly identified unassigned g7 HCV strain. Two additional unassigned g7 strains were identified in patients originating from DRC (one partial and one full open reading frame sequence). These g4 and g7 strains contain nonstructural (ns) protein 3 and 5A polymorphisms associated with resistance to DAAs in other genotypes. Clinical studies are therefore indicated to investigate treatment response in infected patients. Conclusion: Although HCV prevalence and genotypes have been well characterized in patients in well-resourced countries, clinical trials are urgently required in SSA, where highly diverse g4 and g7 strains circulate.
Collapse
Affiliation(s)
- Chris Davis
- Medical Research Council ‐ University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - George S. Mgomella
- Department of Medicine ‐ University of CambridgeCambridgeCambridgeshireUnited Kingdom
- Wellcome Sanger InstituteHinxtonCambridgeshireUnited Kingdom
| | - Ana da Silva Filipe
- Medical Research Council ‐ University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | | | | | - Joseph Hughes
- Medical Research Council ‐ University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | | | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine Uganda Research UnitEntebbeUganda
- Uganda Virus Research InstituteEntebbeUganda
| | | | - John McLauchlan
- Medical Research Council ‐ University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Marc Niebel
- Medical Research Council ‐ University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Ponsiano Ocama
- Department of MedicineMakerere University College of Health SciencesKampalaUganda
| | - Cristina Pomila
- Department of Medicine ‐ University of CambridgeCambridgeCambridgeshireUnited Kingdom
| | - Oliver G. Pybus
- Department of ZoologyUniversity of OxfordOxfordUnited Kingdom
| | | | - Peter Simmonds
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordUnited Kingdom
| | - Joshua B. Singer
- Medical Research Council ‐ University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Vattipally B. Sreenu
- Medical Research Council ‐ University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | | | - Elizabeth H. Young
- Department of Medicine ‐ University of CambridgeCambridgeCambridgeshireUnited Kingdom
- Wellcome Sanger InstituteHinxtonCambridgeshireUnited Kingdom
| | - Donald G. Murphy
- National Institute of Public Health of Quebec, Laboratory of Public Health of QuebecSainte‐Anne‐de‐BellevueQuebecCanada
| | - Manj Sandhu
- Department of Medicine ‐ University of CambridgeCambridgeCambridgeshireUnited Kingdom
- Wellcome Sanger InstituteHinxtonCambridgeshireUnited Kingdom
| | - Emma C. Thomson
- Medical Research Council ‐ University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| |
Collapse
|
29
|
Chen F, Knutson TP, Braun E, Jiang Y, Rossow S, Marthaler DG. Semi-quantitative duplex RT-PCR reveals the low occurrence of Porcine Pegivirus and Atypical Porcine Pestivirus in diagnostic samples from the United States. Transbound Emerg Dis 2019; 66:1420-1425. [PMID: 30806022 PMCID: PMC6849716 DOI: 10.1111/tbed.13154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/24/2019] [Accepted: 02/16/2019] [Indexed: 02/06/2023]
Abstract
Porcine Pegivirus (PPgV) and Atypical Porcine Pestivirus (APPV) are two recently identified porcine viruses. In this study, the identification of two viruses by metagenomic sequencing, and a duplex semi‐quantitative RT‐PCR was developed to detect these pathogens simultaneously. The PPgV strain Minnesota‐1/2016 had a 95.5%–96.3% nucleotide identity and clustered with the recently identified US PPgV strains, which is a distant clade from the German PPgV strains. The APPV strain Minnesota‐1/2016 shared an 87.3%–92.0% nucleotide identity with the other global APPV strains identity but only shared an 82.8%–83.0% nucleotide identity with clade II consisting of strain identified in China. Detection of both PPgV and APPV was 9.0% of the diagnostic cases. Co‐infection of PPgV and APPV was identified in 7.5% of the diagnostic cases. The occurrence and genetic characterization of PPgV and APPV further enhance our knowledge regarding these new pathogens in the United States.
Collapse
Affiliation(s)
- Fangzhou Chen
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Todd P Knutson
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| | - Eli Braun
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| | - Yin Jiang
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| | - Stephanie Rossow
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| | - Douglas G Marthaler
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| |
Collapse
|
30
|
Rasche A, Sander AL, Corman VM, Drexler JF. Evolutionary biology of human hepatitis viruses. J Hepatol 2019; 70:501-520. [PMID: 30472320 PMCID: PMC7114834 DOI: 10.1016/j.jhep.2018.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023]
Abstract
Hepatitis viruses are major threats to human health. During the last decade, highly diverse viruses related to human hepatitis viruses were found in animals other than primates. Herein, we describe both surprising conservation and striking differences of the unique biological properties and infection patterns of human hepatitis viruses and their animal homologues, including transmission routes, liver tropism, oncogenesis, chronicity, pathogenesis and envelopment. We discuss the potential for translation of newly discovered hepatitis viruses into preclinical animal models for drug testing, studies on pathogenesis and vaccine development. Finally, we re-evaluate the evolutionary origins of human hepatitis viruses and discuss the past and present zoonotic potential of their animal homologues.
Collapse
Affiliation(s)
- Andrea Rasche
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany,German Center for Infection Research (DZIF), Germany
| | - Anna-Lena Sander
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany
| | - Victor Max Corman
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany,German Center for Infection Research (DZIF), Germany
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany; German Center for Infection Research (DZIF), Germany.
| |
Collapse
|
31
|
Abstract
The classification of viruses provides the structure necessary to appreciate their biological diversity. Herein, we provide an update to our previous review of changes in viral taxonomy, covering changes between 2016 and 2018.
Collapse
|
32
|
Virus discovery reveals frequent infection by diverse novel members of the Flaviviridae in wild lemurs. Arch Virol 2018; 164:509-522. [PMID: 30460488 DOI: 10.1007/s00705-018-4099-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022]
Abstract
Lemurs are highly endangered mammals inhabiting the forests of Madagascar. In this study, we performed virus discovery on serum samples collected from 84 wild lemurs and identified viral sequence fragments from 4 novel viruses within the family Flaviviridae, including members of the genera Hepacivirus and Pegivirus. The sifaka hepacivirus (SifHV, two genotypes) and pegivirus (SifPgV, two genotypes) were discovered in the diademed sifaka (Propithecus diadema), while other pegiviral fragments were detected in samples from the indri (Indri indri, IndPgV) and the weasel sportive lemur (Lepilemur mustelinus, LepPgV). Although data are preliminary, each viral species appeared host species-specific and frequent infection was detected (18 of 84 individuals were positive for at least one virus). The complete coding sequence and partial 5' and 3' untranslated regions (UTRs) were obtained for SifHV and its genomic organization was consistent with that of other hepaciviruses, with one unique polyprotein and highly structured UTRs. Phylogenetic analyses showed the SifHV belonged to a clade that includes several viral species identified in rodents from Asia and North America, while SifPgV and IndPgV were more closely related to pegiviral species A and C, that include viruses found in humans as well as New- and Old-World monkeys. Our results support the current proposed model of virus-host co-divergence with frequent occurrence of cross-species transmission for these genera and highlight how the discovery of more members of the Flaviviridae can help clarify the ecology and evolutionary history of these viruses. Furthermore, this knowledge is important for conservation and captive management of lemurs.
Collapse
|
33
|
Jordier F, Deligny ML, Barré R, Robert C, Galicher V, Uch R, Fournier PE, Raoult D, Biagini P. Human pegivirus isolates characterized by deep sequencing from hepatitis C virus-RNA and human immunodeficiency virus-RNA-positive blood donations, France. J Med Virol 2018; 91:38-44. [PMID: 30133782 DOI: 10.1002/jmv.25290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/14/2018] [Indexed: 01/18/2023]
Abstract
Human pegivirus (HPgV, formerly GBV-C) is a member of the genus Pegivirus, family Flaviviridae. Despite its identification more than 20 years ago, both natural history and distribution of this viral group in human hosts remain under exploration. Analysis of HPgV genomes characterized up to now points out the scarcity of French pegivirus sequences in databases. To bring new data regarding HPgV genomic diversity, we investigated 16 French isolates obtained from hepatitis C virus-RNA and human immunodeficiency virus-RNA-positive blood donations following deep sequencing and coupled molecular protocols. Initial phylogenetic analysis of 5'-untranslated region (5'-UTR)/E2 partial sequences permitted to assign HPgV isolates to genotypes 2 (n = 15) and 1 (n = 1), with up to 16% genetic diversity observed for both regions considered. Seven nearly full-length representative genomes were characterized subsequently, with complete polyprotein coding sequences exhibiting up to 13% genetic diversity; closest nucleotide (nt) divergence with available HPgV sequences was in the range 7% to 11%. A 36 nts deletion located on the NS4B coding region (N-terminal part, 12 amino acids) of the genotype 1 HPgV genome characterized was identified, along with single nucleotide deletions in two genotype 2, 5'-UTR sequences.
Collapse
Affiliation(s)
- François Jordier
- Biologie des Groupes Sanguins, Etablissement Français du Sang Provence Alpes Côte d'Azur Corse, Aix Marseille University, CNRS, EFS, ADES, Marseille, France
| | - Marie-Laurence Deligny
- Biologie des Groupes Sanguins, Etablissement Français du Sang Provence Alpes Côte d'Azur Corse, Aix Marseille University, CNRS, EFS, ADES, Marseille, France
| | - Romain Barré
- Biologie des Groupes Sanguins, Etablissement Français du Sang Provence Alpes Côte d'Azur Corse, Aix Marseille University, CNRS, EFS, ADES, Marseille, France
| | - Catherine Robert
- UMR MEPHI, IRD, Aix Marseille University, AP-HM, IHU Méditerranée-Infection, Marseille, France
| | - Vital Galicher
- Biologie des Groupes Sanguins, Etablissement Français du Sang Provence Alpes Côte d'Azur Corse, Aix Marseille University, CNRS, EFS, ADES, Marseille, France
| | - Rathviro Uch
- Biologie des Groupes Sanguins, Etablissement Français du Sang Provence Alpes Côte d'Azur Corse, Aix Marseille University, CNRS, EFS, ADES, Marseille, France
| | - Pierre-Edouard Fournier
- UMR VITROME, IRD, Aix Marseille University, SSA, AP-HM, IHU Méditerranée-Infection, Marseille, France
| | - Didier Raoult
- UMR MEPHI, IRD, Aix Marseille University, AP-HM, IHU Méditerranée-Infection, Marseille, France
| | - Philippe Biagini
- Biologie des Groupes Sanguins, Etablissement Français du Sang Provence Alpes Côte d'Azur Corse, Aix Marseille University, CNRS, EFS, ADES, Marseille, France
| |
Collapse
|
34
|
Baechlein C, Baron AL, Meyer D, Gorriz-Martin L, Pfankuche VM, Baumgärtner W, Polywka S, Peine S, Fischer N, Rehage J, Becher P. Further characterization of bovine hepacivirus: Antibody response, course of infection, and host tropism. Transbound Emerg Dis 2018; 66:195-206. [PMID: 30126081 DOI: 10.1111/tbed.12999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/19/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023]
Abstract
Bovine hepacivirus (BovHepV) is a recently added member to the growing genus Hepacivirus within the family Flaviviridae. Animal hepaciviruses are rarely characterized so far. Apart from norway rat hepacivirus which represents a promising HCV surrogate model, only equine hepaciviruses have been studied to some extent. BovHepV has been initially identified in bovine samples and was shown to establish persistent infections in cattle. However, consequences of those chronic infections, humoral immune response and the possibility of an extended host spectrum have not been explored so far. Therefore, we here investigated (a) the presence of anti-NS3-antibodies and viral RNA in cattle herds in Germany, (b) the course of infection in cattle, and (c) the host tropism including zoonotic potential of bovine hepaciviruses. Our results show that 19.9% of investigated bovine serum samples had antibodies against BovHepV. In 8.2% of investigated samples, viral RNA was detected. Subsequent genetic analysis revealed a novel genetic cluster of BovHepV variants. For 25 selected cattle in a BovHepV positive herd the presence of viral genomic RNA was monitored over one year in two to three months intervals by RT-PCR in order to discriminate acute versus persistent infection. In persistently infected animals, no serum antibodies were detected. Biochemical analyses could not establish a link between BovHepV infection and liver injury. Apart from a single sample of a pig providing a positive reaction in the antibody test, neither BovHepV-specific antibodies nor viral RNA were detected in porcine, equine or human samples implying a strict host specificity of BovHepV.
Collapse
Affiliation(s)
- Christine Baechlein
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany.,German Center for Infection Research, Partner Site Hannover, Braunschweig, Germany
| | - Anna Lena Baron
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Denise Meyer
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lara Gorriz-Martin
- Clinic for Cattle, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Susanne Polywka
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Jürgen Rehage
- Clinic for Cattle, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Paul Becher
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany.,German Center for Infection Research, Partner Site Hannover, Braunschweig, Germany
| |
Collapse
|
35
|
朱 娜, 许 如, 唐 伟, 王 海, 万 政, 吴 学, 付 涌, 唐 时, 俞 守. [Detection of a novel human pegivirus HPgV-2 in healthy blood donors and recipients of multiple transfusions: implications for blood safety]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:842-849. [PMID: 33168509 PMCID: PMC6765548 DOI: 10.3969/j.issn.1673-4254.2018.07.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the prevalence of HPgV-2 in blood donors, transfusion recipients and hemophilia patients and its impact on blood safety. METHODS Serum samples were collected from 1060 healthy blood donors, 1402 HCV-positive and 500 HBV- positive blood donors, 570 transfusion recipients and 248 hemophilia patients for screening anti-HPgV-2 antibodies, HPgV-2 RNA, anti-HCV and HBsAg/HBV-DNA using ELISA and RT-PCR. Phylogenetic analysis of near fulllength genome sequences and NS3 genes of pegiviruses and hepaciviruses were performed using MEGA software. RESULTS Anti-HPgV-2 positivity and HPgV-2 RNA positivity were found in 1.21% (17/1402) and 0.36% (5/1402) of the blood donors infected with HCV (RNA+/Ab+), respectively, indicating a close correlation between HPgV-2 and HCV infection (χ2=13.78, P= 0.004). Anti-HPgV-2 antibody was hardly detected in the other populations. A nucleotide identity as high as 97.11% was found in the NS3 fragments among the 5 isolated HPgV-2 strains, which had a nucleotide identity of 96.53% with the reported strains isolated out of China. CONCLUSIONS The prevalence of HPgV-2 infection is rather low in healthy blood donors and transfusion recipients. Coinfection with HCV is common in HPgV-2 infection, and no evidence has now been available to support HPgV-2 transmission via blood transfusion, indicating that HPgV-2 may not pose a threat to blood safety.
Collapse
Affiliation(s)
- 娜玲 朱
- 南方医科大学 公共卫生学院流行病系//热带病研究所,广东 广州 510515Guangdong Provincial Key Laboratory of Tropical Disease Research/Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 如 许
- 广州血液中心输血研究所,广东 广州 510000Institute of Blood Transfusion, Guangzhou Blood Center, Guangzhou 510000, China
| | - 伟平 唐
- 南方医科大学 公共卫生学院流行病系//热带病研究所,广东 广州 510515Guangdong Provincial Key Laboratory of Tropical Disease Research/Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 海鹰 王
- 南方医科大学 公共卫生学院流行病系//热带病研究所,广东 广州 510515Guangdong Provincial Key Laboratory of Tropical Disease Research/Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 政伟 万
- 南方医科大学 公共卫生学院流行病系//热带病研究所,广东 广州 510515Guangdong Provincial Key Laboratory of Tropical Disease Research/Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 学东 吴
- 南方医科大学 南方医院儿科,广东 广州 510515Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 涌水 付
- 广州血液中心输血研究所,广东 广州 510000Institute of Blood Transfusion, Guangzhou Blood Center, Guangzhou 510000, China
| | - 时幸 唐
- 南方医科大学 公共卫生学院流行病系//热带病研究所,广东 广州 510515Guangdong Provincial Key Laboratory of Tropical Disease Research/Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 守义 俞
- 南方医科大学 公共卫生学院流行病系//热带病研究所,广东 广州 510515Guangdong Provincial Key Laboratory of Tropical Disease Research/Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
36
|
Lu G, Huang J, Li S. Genomic sequencing and characterization of Theiler's disease-associated virus identified in commercial equine sera in China. J Gen Virol 2018; 99:1221-1226. [PMID: 30041711 DOI: 10.1099/jgv.0.001114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Theiler's disease-associated virus (TDAV) could be the aetiological agent of Theiler's disease. Horses experimentally inoculated with equine plasma containing TDAV develop acute and chronic infections with viraemia. Since its first identification in 2013, TDAV has not been detected in equines in the epidemiological studies that have been conducted. Until now, only one genome sequence of TDAV (HorseA1_serum) had been obtained. In this study, we sequenced the genome of four TDAV strains (A/China, F/China, H/USA and I/USA) in commercial equine sera used for cell culture propagation in China using three rounds of RT-PCR. The PCR primers were designed based on the HorseA1_serum genome sequence. All four TDAV strains had a polyprotein gene that was 9567 nt long, the same nucleotide length as the polyprotein gene of HorseA1_serum. Sequence analysis demonstrated the genetic diversity of TDAV. The nucleotide similarity of the polyprotein genes of the TDAV strains ranged between 90.3 and 93.6 %, with a high amino acid similarity that ranged from 98.2 to 98.8 %. Phylogenetic analysis using the polyprotein gene showed that A/China, F/China, H/USA and I/USA were clustered together with HorseA1_serum in the genus Pegivirus D. This study enriches our knowledge of the genetic diversity of TDAV.
Collapse
Affiliation(s)
- Gang Lu
- 1College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, PR China
- 2Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, PR China
- 3Guangdong Technological Engineering Research Center for Pet, Guangzhou, Guangdong Province, PR China
| | - Ji Huang
- 1College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, PR China
- 2Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, PR China
- 3Guangdong Technological Engineering Research Center for Pet, Guangzhou, Guangdong Province, PR China
| | - Shoujun Li
- 2Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, PR China
- 1College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, PR China
- 3Guangdong Technological Engineering Research Center for Pet, Guangzhou, Guangdong Province, PR China
| |
Collapse
|
37
|
da Silva MS, Junqueira DM, Baumbach LF, Cibulski SP, Mósena ACS, Weber MN, Silveira S, de Moraes GM, Maia RD, Coimbra VCS, Canal CW. Comprehensive evolutionary and phylogenetic analysis of Hepacivirus N (HNV). J Gen Virol 2018; 99:890-896. [DOI: 10.1099/jgv.0.001082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- M. S. da Silva
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9090 - Agronomia, CEP 91540-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - D. M. Junqueira
- Centro Universitário Ritter dos Reis – UniRitter, Rua Orfanotrófio, 555 - Santa Tereza, Porto Alegre – RS, CEP 90840-440. Porto Alegre, Rio Grande do Sul, Brazil
| | - L. F. Baumbach
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9090 - Agronomia, CEP 91540-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - S. P. Cibulski
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9090 - Agronomia, CEP 91540-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - A. C. S. Mósena
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9090 - Agronomia, CEP 91540-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - M. N. Weber
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9090 - Agronomia, CEP 91540-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - S. Silveira
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9090 - Agronomia, CEP 91540-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - G. M. de Moraes
- Ministério da Agricultura, Pecuária e Abastecimento, Brasília, Distrito Federal, Brazil
| | - R. D. Maia
- Instituto de Defesa e Inspeção Agropecuária do Rio Grande do Norte (IDIARN), Natal, Rio Grande do Norte, Brazil
| | - V. C. S. Coimbra
- Agência Estadual de Defesa Agropecuária do Maranhão (AGED-MA), São Luís, Maranhão, Brazil
| | - C. W. Canal
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9090 - Agronomia, CEP 91540-000, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
38
|
The Detection and Phylogenetic Analysis of Bovine Hepacivirus in China. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6216853. [PMID: 29955606 PMCID: PMC6000834 DOI: 10.1155/2018/6216853] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/07/2018] [Indexed: 01/08/2023]
Abstract
Hepacivirus has been identified in cattle in Africa, Europe, and South America. In this survey of bovine hepacivirus (BovHepV) in 131 serum samples from Chinese cattle herds using RT-PCR, five of 131 sera were BovHepV positive, with the infection rate of 3.82%. Phylogenetic analysis based on the partial NS3 coding sequence showed that the BovHepV of the five positive samples clustered with other BovHepV but formed a separate branch. The results indicated that these new BovHepV represent emerging and novel strains. Further investigations are necessary to determine the epidemiology and viral pathogenesis of these BovHepV strains, as well as the potential threat to ruminant and livestock workers in China.
Collapse
|
39
|
Tang W, Zhu N, Wang H, Gao Y, Wan Z, Cai Q, Yu S, Tang S. Identification and genetic characterization of equine Pegivirus in China. J Gen Virol 2018; 99:768-776. [PMID: 29658859 DOI: 10.1099/jgv.0.001063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In 2013, two new viruses, equine pegivirus (EPgV) and Theiler's disease-associated virus (TDAV), both belonging to the genus Pegivirus within the family Flaviviridae, were identified. To investigate the geographical distribution and genetic diversity of these two viruses in China, we screened EPgV and TDAV infection in imported race horses and Chinese work horses by using reverse-transcription polymerase chain reaction (RT-PCR). EPgV was detected in 10.8 % (8/74) of the total horses tested, with a prevalence of 5.8 and 22.7 % in the race horses and work horses, respectively. No TDAV infection was found. A near full-length genome sequence of EPgV was obtained that showed an identity of 89.5-90.6 % at the nucleotide level and 98.1-98.3 % at the amino acid level with an American strain, C0035, and another Chinese strain, LW/216, respectively. Phylogenetic analysis showed two different clusters of the sequences from the race horses and work horses, indicating a difference in virus origin. Our results demonstrated a higher positive rate of EPgV in the Chinese work horses than in the imported race horses, a moderate genetic diversity of EPgV strains worldwide and possibly no liver pathogenesis for EPgV infection.
Collapse
Affiliation(s)
- Weiping Tang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Naling Zhu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Haiying Wang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Youwen Gao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhengwei Wan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Qundi Cai
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Shouyi Yu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Shixing Tang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, PR China
| |
Collapse
|
40
|
Baechlein C, Grundhoff A, Fischer N, Alawi M, Hoeltig D, Waldmann KH, Becher P. Pegivirus Infection in Domestic Pigs, Germany. Emerg Infect Dis 2018; 22:1312-4. [PMID: 27314228 PMCID: PMC4918184 DOI: 10.3201/eid2207.160024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
41
|
Abstract
Hepaciviruses and pegiviruses constitute two closely related sister genera of the family Flaviviridae. In the past five years, the known phylogenetic diversity of the hepacivirus genera has absolutely exploded. What was once an isolated infection in humans (and possibly other primates) has now expanded to include horses, rodents, bats, colobus monkeys, cows, and, most recently, catsharks, shedding new light on the genetic diversity and host range of hepaciviruses. Interestingly, despite the identification of these many animal and primate hepaciviruses, the equine hepaciviruses remain the closest genetic relatives of the human hepaciviruses, providing an intriguing clue to the zoonotic source of hepatitis C virus. This review summarizes the significance of these studies and discusses current thinking about the origin and evolution of the animal hepaciviruses as well as their potential usage as surrogate models for the study of hepatitis C virus.
Collapse
Affiliation(s)
- Alex S Hartlage
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205;
| | - John M Cullen
- North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina 27606
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205; .,Department of Pediatrics, College of Medicine and Public Health, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
42
|
Fountain-Jones NM, Pearse WD, Escobar LE, Alba-Casals A, Carver S, Davies TJ, Kraberger S, Papeş M, Vandegrift K, Worsley-Tonks K, Craft ME. Towards an eco-phylogenetic framework for infectious disease ecology. Biol Rev Camb Philos Soc 2017; 93:950-970. [PMID: 29114986 DOI: 10.1111/brv.12380] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 12/12/2022]
Abstract
Identifying patterns and drivers of infectious disease dynamics across multiple scales is a fundamental challenge for modern science. There is growing awareness that it is necessary to incorporate multi-host and/or multi-parasite interactions to understand and predict current and future disease threats better, and new tools are needed to help address this task. Eco-phylogenetics (phylogenetic community ecology) provides one avenue for exploring multi-host multi-parasite systems, yet the incorporation of eco-phylogenetic concepts and methods into studies of host pathogen dynamics has lagged behind. Eco-phylogenetics is a transformative approach that uses evolutionary history to infer present-day dynamics. Here, we present an eco-phylogenetic framework to reveal insights into parasite communities and infectious disease dynamics across spatial and temporal scales. We illustrate how eco-phylogenetic methods can help untangle the mechanisms of host-parasite dynamics from individual (e.g. co-infection) to landscape scales (e.g. parasite/host community structure). An improved ecological understanding of multi-host and multi-pathogen dynamics across scales will increase our ability to predict disease threats.
Collapse
Affiliation(s)
| | - William D Pearse
- Ecology Center and Department of Biology, Utah State University, Logan, UT, 84321, U.S.A
| | - Luis E Escobar
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, 55108, U.S.A.,Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Ana Alba-Casals
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, 55108, U.S.A
| | - Scott Carver
- School of Biological Sciences, University of Tasmania, Hobart, 7001, Australia
| | | | - Simona Kraberger
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, U.S.A
| | - Monica Papeş
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, U.S.A
| | - Kurt Vandegrift
- Department of Biology, The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, U.S.A
| | - Katherine Worsley-Tonks
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, 55108, U.S.A
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, 55108, U.S.A
| |
Collapse
|
43
|
Yu Y, Scheel TKH, Luna JM, Chung H, Nishiuchi E, Scull MA, Echeverría N, Ricardo-Lax I, Kapoor A, Lipkin IW, Divers TJ, Antczak DF, Tennant BC, Rice CM. miRNA independent hepacivirus variants suggest a strong evolutionary pressure to maintain miR-122 dependence. PLoS Pathog 2017; 13:e1006694. [PMID: 29084265 PMCID: PMC5679655 DOI: 10.1371/journal.ppat.1006694] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 11/09/2017] [Accepted: 10/14/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) requires the liver specific micro-RNA (miRNA), miR-122, to replicate. This was considered unique among RNA viruses until recent discoveries of HCV-related hepaciviruses prompting the question of a more general miR-122 dependence. Among hepaciviruses, the closest known HCV relative is the equine non-primate hepacivirus (NPHV). Here, we used Argonaute cross-linking immunoprecipitation (AGO-CLIP) to confirm AGO binding to the single predicted miR-122 site in the NPHV 5'UTR in vivo. To study miR-122 requirements in the absence of NPHV-permissive cell culture systems, we generated infectious NPHV/HCV chimeric viruses with the 5' end of NPHV replacing orthologous HCV sequences. These chimeras were viable even in cells lacking miR-122, although miR-122 presence enhanced virus production. No other miRNAs bound this region. By random mutagenesis, we isolated HCV variants partially dependent on miR-122 as well as robustly replicating NPHV/HCV variants completely independent of any miRNAs. These miRNA independent variants even replicate and produce infectious particles in non-hepatic cells after exogenous delivery of apolipoprotein E (ApoE). Our findings suggest that miR-122 independent HCV and NPHV variants have arisen and been sampled during evolution, yet miR-122 dependence has prevailed. We propose that hepaciviruses may use this mechanism to guarantee liver tropism and exploit the tolerogenic liver environment to avoid clearance and promote chronicity.
Collapse
Affiliation(s)
- Yingpu Yu
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, United States of America
| | - Troels K. H. Scheel
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, United States of America
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joseph M. Luna
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, United States of America
| | - Hachung Chung
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, United States of America
| | - Eiko Nishiuchi
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, United States of America
| | - Margaret A. Scull
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, United States of America
| | - Natalia Echeverría
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, United States of America
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, United States of America
| | - Amit Kapoor
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States of America
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Ian W. Lipkin
- Center for Infection and Immunity, Mailman School of Public Health and College of Physicians & Surgeons, Columbia University, New York, NY, United States of America
| | - Thomas J. Divers
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Douglas F. Antczak
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Bud C. Tennant
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, United States of America
| |
Collapse
|
44
|
Elia G, Lanave G, Lorusso E, Parisi A, Cavaliere N, Patruno G, Terregino C, Decaro N, Martella V, Buonavoglia C. Identification and genetic characterization of equine hepaciviruses in Italy. Vet Microbiol 2017; 207:239-247. [PMID: 28757030 DOI: 10.1016/j.vetmic.2017.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/04/2017] [Accepted: 07/04/2017] [Indexed: 01/26/2023]
Abstract
Viruses similar to human hepatitis C virus, hepaciviruses, have been identified in various animal species. Equine hepacivirus (EqHV) is the closest relative of human hepaciviruses. Although detected worldwide, information on EqHV epidemiology, genetic diversity and pathogenicity is still limited. In this study we investigated the prevalence and genetic diversity of EqHV in Italian equids. The RNA of EqHV was detected in 91/1932 sera (4.7%) whilst it was not detectable in 134 donkey sera screened by a TaqMan-based quantitative assay. Upon sequencing and phylogenetic analysis of genomic portions located in the NS5B, 5'UTR and NS3 genes, the Italian EqHV strains segregated into two distinct clades that are also co-circulating globally, without apparent geographic restrictions.
Collapse
Affiliation(s)
- Gabriella Elia
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy.
| | - Gianvito Lanave
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy
| | - Eleonora Lorusso
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Foggia, Italy
| | - Nicola Cavaliere
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Foggia, Italy
| | | | - Calogero Terregino
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy
| | - Nicola Decaro
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy
| | - Vito Martella
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy
| | - Canio Buonavoglia
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy
| |
Collapse
|
45
|
The core protein of a pestivirus protects the incoming virus against IFN-induced effectors. Sci Rep 2017; 7:44459. [PMID: 28290554 PMCID: PMC5349576 DOI: 10.1038/srep44459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/08/2017] [Indexed: 01/21/2023] Open
Abstract
A multitude of viral factors - either inhibiting the induction of the IFN-system or its effectors – have been described to date. However, little is known about the role of structural components of the incoming virus particle in protecting against IFN-induced antiviral factors during or immediately after entry. In this study, we take advantage of the previously reported property of Classical swine fever virus (family Flaviviridae, genus Pestivirus) to tolerate a deletion of the core protein if a compensatory mutation is present in the NS3-helicase-domain (Vp447∆c). In contrast to the parental virus (Vp447), which causes a hemorrhagic-fever-like disease in pigs, Vp447∆c is avirulent in vivo. In comparison to Vp447, growth of Vp447∆c in primary porcine cells and IFN-treated porcine cell lines was reduced >20-fold. Also, primary porcine endothelial cells and IFN-pretreated porcine cell lines were 8–24 times less susceptible to Vp447∆c. This reduction of susceptibility could be partially reversed by loading Vp447∆c particles with different levels of core protein. In contrast, expression of core protein in the recipient cell did not have any beneficial effect. Therefore, a protective effect of core protein in the incoming virus particle against the products of IFN-stimulated genes could be demonstrated.
Collapse
|
46
|
Kim HS, Moon HW, Sung HW, Kwon HM. First identification and phylogenetic analysis of equine hepacivirus in Korea. INFECTION GENETICS AND EVOLUTION 2017; 49:268-272. [PMID: 28161473 DOI: 10.1016/j.meegid.2017.01.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/25/2017] [Accepted: 01/28/2017] [Indexed: 12/11/2022]
Abstract
Non-primate hepacivirus (NPHV) corresponds a group of isolates recently characterized in horses and dogs that present similar genomic organization and are closely related to hepatitis C virus. Since canine hapacivirus, NPHV identified in dogs, was first discovered in dogs in the United States, equine hepacivirus (EqHV, NPHV identified in horses) has been identified in horses in several countries. However, no epidemiological studies have investigated EqHV in horses in Korea. In this study, a total of 74 (n=74) serum samples collected from horses in four regions of Korea were tested for EqHV RNA using nested RT-PCR. Overall, 14 samples were identified as positive (18.9%) and further analyzed according to gender, age, breed, and region. There were high positive rates in males, young horses, and Thoroughbreds; however, these rates differed regionally. Sequencing of the partial NS3 region of 12 samples and the polyprotein encoding regions of two samples positive for EqHV RNA revealed that the Korean EqHV isolates shared approximately 85.3-99.6% and 97.7-100% homology at the nucleotide and deduced amino acid level, respectively. Phylogenetic analysis revealed that the partial NS3 genes clustered with sequences previously reported as NPHV. Notably, sequences of EqHV detected in horses in the same region showed sequence divergence. The sequences of the polyprotein encoding region of two representative EqHVs shared 83.9% and 95.7% homology with each other at the nucleotide and deduced amino acid level, respectively. Comparison of the sequences of polyprotein encoding regions of Korean EqHV isolates and hepaciviruses from different hosts revealed that the NS3 and NS5B regions were most conserved among hepaciviruses. The results of the present study demonstrate that there is a high positive rate of EqHV in Korea and provide significant information regarding the geographical distribution and genetic variability of Korean EqHV isolates that will help improve global epidemiology of EqHV.
Collapse
Affiliation(s)
- Ho-Seong Kim
- Laboratory of Veterinary Microbiology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyun-Woo Moon
- Laboratory of Veterinary Microbiology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Haan Woo Sung
- Laboratory of Veterinary Microbiology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyuk Moo Kwon
- Laboratory of Veterinary Microbiology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea.
| |
Collapse
|
47
|
Differential Infection Patterns and Recent Evolutionary Origins of Equine Hepaciviruses in Donkeys. J Virol 2016; 91:JVI.01711-16. [PMID: 27795428 DOI: 10.1128/jvi.01711-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/13/2016] [Indexed: 12/13/2022] Open
Abstract
The hepatitis C virus (HCV) is a major human pathogen. Genetically related viruses in animals suggest a zoonotic origin of HCV. The closest relative of HCV is found in horses (termed equine hepacivirus [EqHV]). However, low EqHV genetic diversity implies relatively recent acquisition of EqHV by horses, making a derivation of HCV from EqHV unlikely. To unravel the EqHV evolutionary history within equid sister species, we analyzed 829 donkeys and 53 mules sampled in nine European, Asian, African, and American countries by molecular and serologic tools for EqHV infection. Antibodies were found in 278 animals (31.5%), and viral RNA was found in 3 animals (0.3%), all of which were simultaneously seropositive. A low RNA prevalence in spite of high seroprevalence suggests a predominance of acute infection, a possible difference from the mostly chronic hepacivirus infection pattern seen in horses and humans. Limitation of transmission due to short courses of infection may explain the existence of entirely seronegative groups of animals. Donkey and horse EqHV strains were paraphyletic and 97.5 to 98.2% identical in their translated polyprotein sequences, making virus/host cospeciation unlikely. Evolutionary reconstructions supported host switches of EqHV between horses and donkeys without the involvement of adaptive evolution. Global admixture of donkey and horse hepaciviruses was compatible with anthropogenic alterations of EqHV ecology. In summary, our findings do not support EqHV as the origin of the significantly more diversified HCV. Identification of a host system with predominantly acute hepacivirus infection may enable new insights into the chronic infection pattern associated with HCV. IMPORTANCE The evolutionary origins of the human hepatitis C virus (HCV) are unclear. The closest animal-associated relative of HCV occurs in horses (equine hepacivirus [EqHV]). The low EqHV genetic diversity implies a relatively recent acquisition of EqHV by horses, limiting the time span for potential horse-to-human infections in the past. Horses are genetically related to donkeys, and EqHV may have cospeciated with these host species. Here, we investigated a large panel of donkeys from various countries using serologic and molecular tools. We found EqHV to be globally widespread in donkeys and identify potential differences in EqHV infection patterns, with donkeys potentially showing enhanced EqHV clearance compared to horses. We provide strong evidence against EqHV cospeciation and for its capability to switch hosts among equines. Differential hepacivirus infection patterns in horses and donkeys may enable new insights into the chronic infection pattern associated with HCV.
Collapse
|
48
|
Pronost S, Hue E, Fortier C, Foursin M, Fortier G, Desbrosse F, Rey FA, Pitel PH, Richard E, Saunier B. Prevalence of Equine Hepacivirus Infections in France and Evidence for Two Viral Subtypes Circulating Worldwide. Transbound Emerg Dis 2016; 64:1884-1897. [PMID: 27882682 DOI: 10.1111/tbed.12587] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Indexed: 12/20/2022]
Abstract
Like hepatitis C virus (HCV) in humans, the newly identified equine hepacivirus (NPHV) displays a predominating liver tropism that may evolve into chronic infections. The genomes of the two viruses share several organizational and functional features and are phylogenetically closest amongst the Hepacivirus genus. A limited amount of data is available regarding the spread of hepacivirus infections in horses. In this study, we asked whether in a more representative sample the prevalence and distribution of NPHV infections in France would resemble that reported so far in other countries. A total of 1033 horses sera from stud farms throughout France were analysed by qRT-PCR to determine the prevalence of ongoing NPHV infections and viral loads; in positive samples, partial sequences of NPHV's genome (5'UTR, NS3 and NS5B genes) were determined. Serum concentrations of biliary acids, glutamate dehydrogenase (GLDH) and L-gamma-glutamyl transferase (γ-GT) were measured for most horses. We detected NPHV infections in 6.2% of the horses, a prevalence that reached 8.3% in thoroughbreds and was significantly higher than in other breeds. The presence of circulating virus was neither significantly associated with biological disturbances nor with clinical hepatic impairment. Our phylogenetic analysis was based on both neighbour-joining and maximum-likelihood approaches. Its result shows that, like almost everywhere else in the world so far, two major groups of NPHV strains infect French domestic horses. Based on genetic distances, we propose a classification into two separate NPHV subtypes. Viral loads in the serum of horses infected by the main subtype were, in average, four times higher than in those infected by the second subtype. We hypothesize that amino acid substitutions in the palm domain of NS5B between NPHV subtypes could underlie viral phenotypes that explain this result.
Collapse
Affiliation(s)
- S Pronost
- Unité de Recherche Risques Microbiens (U2RM), EA 4655, Université de Caen Basse-Normandie, Caen, France.,LABÉO Frank Duncombe, Caen, France.,Hippolia Fondation, Caen, France
| | - E Hue
- Unité de Recherche Risques Microbiens (U2RM), EA 4655, Université de Caen Basse-Normandie, Caen, France.,LABÉO Frank Duncombe, Caen, France.,Hippolia Fondation, Caen, France
| | - C Fortier
- LABÉO Frank Duncombe, Caen, France.,Hippolia Fondation, Caen, France
| | - M Foursin
- Clinique Equine de la Boisrie, Chailloué, France
| | - G Fortier
- Unité de Recherche Risques Microbiens (U2RM), EA 4655, Université de Caen Basse-Normandie, Caen, France.,LABÉO Frank Duncombe, Caen, France.,Hippolia Fondation, Caen, France
| | - F Desbrosse
- Clinique Equine Desbrosse, Saint Lambert, France
| | - F A Rey
- Structural Virology Unit - CNRS UMR 3569, Institut Pasteur, Paris, France
| | - P-H Pitel
- LABÉO Frank Duncombe, Caen, France.,Hippolia Fondation, Caen, France
| | - E Richard
- LABÉO Frank Duncombe, Caen, France.,Hippolia Fondation, Caen, France
| | - B Saunier
- Structural Virology Unit - CNRS UMR 3569, Institut Pasteur, Paris, France
| |
Collapse
|
49
|
Smith DB, Becher P, Bukh J, Gould EA, Meyers G, Monath T, Muerhoff AS, Pletnev A, Rico-Hesse R, Stapleton JT, Simmonds P. Proposed update to the taxonomy of the genera Hepacivirus and Pegivirus within the Flaviviridae family. J Gen Virol 2016; 97:2894-2907. [PMID: 27692039 PMCID: PMC5770844 DOI: 10.1099/jgv.0.000612] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Proposals are described for the assignment of recently reported viruses, infecting rodents, bats and other mammalian species, to new species within the Hepacivirus and Pegivirus genera (family Flaviviridae). Assignments into 14 Hepacivirus species (Hepacivirus A–N) and 11 Pegivirus species (Pegivirus A–K) are based on phylogenetic relationships and sequence distances between conserved regions extracted from complete coding sequences for members of each proposed taxon. We propose that the species Hepatitis C virus is renamed Hepacivirus C in order to acknowledge its unique historical position and so as to minimize confusion. Despite the newly documented genetic diversity of hepaciviruses and pegiviruses, members of these genera remain phylogenetically distinct, and differ in hepatotropism and the possession of a basic core protein; pegiviruses in general lack these features. However, other characteristics that were originally used to support their division into separate genera are no longer definitive; there is overlap between the two genera in the type of internal ribosomal entry site and the presence of miR-122 sites in the 5′ UTR, the predicted number of N-linked glycosylation sites in the envelope E1 and E2 proteins, the presence of poly U tracts in the 3′ UTR and the propensity of viruses to establish a persistent infection. While all classified hepaciviruses and pegiviruses have mammalian hosts, the recent description of a hepaci-/pegi-like virus from a shark and the likely existence of further homologues in other non-mammalian species indicate that further species or genera remain to be defined in the future.
Collapse
Affiliation(s)
- Donald B Smith
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Scotland, UK
| | - Paul Becher
- Institute of Virology, University of Veterinary Medicine, Hannover, Germany
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Ernest A Gould
- EHESP French School of Public Health, French Institute of Research for Development (IRD), Aix Marseille Université, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas Monath
- Hookipa Biotech AG, Vienna, Austria.,PaxVax Inc., Menlo Park and Redwood City, CA, USA
| | - A Scott Muerhoff
- Abbott Diagnostics Research and Development, Abbott Park, IL, USA
| | - Alexander Pletnev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Rebecca Rico-Hesse
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jack T Stapleton
- Medical Service, Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Department of Microbiology, University of Iowa, Iowa City, IA, USA
| | - Peter Simmonds
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Scotland, UK.,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
50
|
Sironi M, Forni D, Clerici M, Cagliani R. Nonstructural Proteins Are Preferential Positive Selection Targets in Zika Virus and Related Flaviviruses. PLoS Negl Trop Dis 2016; 10:e0004978. [PMID: 27588756 PMCID: PMC5010288 DOI: 10.1371/journal.pntd.0004978] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/14/2016] [Indexed: 11/18/2022] Open
Abstract
The Flavivirus genus comprises several human pathogens such as dengue virus (DENV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV). Although ZIKV usually causes mild symptoms, growing evidence is linking it to congenital birth defects and to increased risk of Guillain-Barré syndrome. ZIKV encodes a polyprotein that is processed to produce three structural and seven nonstructural (NS) proteins. We investigated the evolution of the viral polyprotein in ZIKV and in related flaviviruses (DENV, Spondweni virus, and Kedougou virus). After accounting for saturation issues, alignment uncertainties, and recombination, we found evidence of episodic positive selection on the branch that separates DENV from the other flaviviruses. NS1 emerged as the major selection target, and selected sites were located in immune epitopes or in functionally important protein regions. Three of these sites are located in an NS1 region that interacts with structural proteins and is essential for virion biogenesis. Analysis of the more recent evolutionary history of ZIKV lineages indicated that positive selection acted on NS5 and NS4B, this latter representing the preferential target. All selected sites were located in the N-terminal portion of NS4B, which inhibits interferon response. One of the positively selected sites (26M/I/T/V) in ZIKV also represents a selection target in sylvatic DENV2 isolates, and a nearby residue evolves adaptively in JEV. Two additional positively selected sites are within a protein region that interacts with host (e.g. STING) and viral (i.e. NS1, NS4A) proteins. Notably, mutations in the NS4B region of other flaviviruses modulate neurovirulence and/or neuroinvasiveness. These results suggest that the positively selected sites we identified modulate viral replication and contribute to immune evasion. These sites should be prioritized in future experimental studies. However, analyses herein detected no selective events associated to the spread of the Asian/American ZIKV lineage.
Collapse
Affiliation(s)
- Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy
- Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|