1
|
Tian Y, Cipollo JF. Comparison of N- and O-Glycosylation on Spike Glycoprotein 1 of SARS-CoV-1 and MERS-CoV. J Proteome Res 2025; 24:2256-2265. [PMID: 40193531 DOI: 10.1021/acs.jproteome.4c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
SARS-CoV-1 and MERS-CoV were the infective agents of the 2002 and 2012 coronavirus outbreaks, respectively. Here, we report a comparative liquid chromatography/mass spectrometry (LC/MS) Orbitrap N- and O-glycosylation glycoproteomics study of the recombinant S1 spike derived from these two viruses. The former was produced in HEK293 cells and the latter in both HEK293 and insect cells. Both proteins were highly glycosylated, with SARS-CoV-1 S1 having 13 and MERS-CoV S1 having 12 N-glycosites. Nearly all were occupied at 85% or more. Between 2 and 113 unique N-glycan compositions were detected at each N-glycosite across the three proteins. Complex N-glycans dominated in HEK293 cell-derived spike S1 proteins. While glycosylation differs between HEK293 and insect cells, the extent of glycan processing at glycosites was similar for the two MERS-CoV S1 forms. The HEK293-derived SARS-CoV-1 S1 N-glycans were more highly sialylated and fucosylated compared to MERS S1, while the latter had more high-mannose glycosides, particularly in the N-terminus and near the RBD. Seven and 8 O-glycosites were identified in SARS-CoV-1 S1 and MERS-CoV S1, respectively. Mapping of predicted antigenic and glycosylation sites reveals colocalization consistent with a role for glycosylation in immune system avoidance. Glycosylation patterns of these S1 proteins differ from those of other SARS-CoV-1 and MERS-CoV spike reported forms such as recombinant trimeric and virus-propagated forms, which has implications for virus research, including vaccine development, as glycosylation plays a role in spike function and epitope structure.
Collapse
Affiliation(s)
- Yuan Tian
- Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Product Quality Assessment V, Parasitic and Allergenic Products, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
- Food and Drug Administration, Center for Drug Evaluation and Research, Division of Product Quality Assessment, Parasitic and Allergenic Products, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| | - John F Cipollo
- Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Product Quality Assessment V, Parasitic and Allergenic Products, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| |
Collapse
|
2
|
Blazhynska M, Lagardère L, Liu C, Adjoua O, Ren P, Piquemal JP. Water-glycan interactions drive the SARS-CoV-2 spike dynamics: insights into glycan-gate control and camouflage mechanisms. Chem Sci 2024:d4sc04364b. [PMID: 39220162 PMCID: PMC11359970 DOI: 10.1039/d4sc04364b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
To develop therapeutic strategies against COVID-19, we introduce a high-resolution all-atom polarizable model capturing many-body effects of protein, glycan, solvent, and membrane components in SARS-CoV-2 spike protein open and closed states. Employing μs-long molecular dynamics simulations powered by high-performance cloud-computing and unsupervised density-driven adaptive sampling, we investigated the differences in bulk-solvent-glycan and protein-solvent-glycan interfaces between these states. We unraveled a sophisticated solvent-glycan polarization interaction network involving the N165/N343 glycan-gate patterns that provide structural support for the open state and identified key water molecules that could potentially be targeted to destabilize this configuration. In the closed state, the reduced solvent polarization diminishes the overall N165/N343 dipoles, yet internal interactions and a reorganized sugar coat stabilize this state. Despite variations, our glycan-solvent accessibility analysis reveals the glycan shield capability to conserve constant interactions with the solvent, effectively camouflaging the virus from immune detection in both states. The presented insights advance our comprehension of viral pathogenesis at an atomic level, offering potential to combat COVID-19.
Collapse
Affiliation(s)
- Marharyta Blazhynska
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS 75005 Paris France
| | - Louis Lagardère
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS 75005 Paris France
| | - Chengwen Liu
- Department of Biomedical Engineering, The University of Texas at Austin Texas 78712 USA
- Qubit Pharmaceuticals 75014 Paris France
| | - Olivier Adjoua
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS 75005 Paris France
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin Texas 78712 USA
| | - Jean-Philip Piquemal
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS 75005 Paris France
| |
Collapse
|
3
|
Wang S, Ran W, Sun L, Fan Q, Zhao Y, Wang B, Yang J, He Y, Wu Y, Wang Y, Chen L, Chuchuay A, You Y, Zhu X, Wang X, Chen Y, Wang Y, Chen YQ, Yuan Y, Zhao J, Mao Y. Sequential glycosylations at the multibasic cleavage site of SARS-CoV-2 spike protein regulate viral activity. Nat Commun 2024; 15:4162. [PMID: 38755139 PMCID: PMC11099032 DOI: 10.1038/s41467-024-48503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
The multibasic furin cleavage site at the S1/S2 boundary of the spike protein is a hallmark of SARS-CoV-2 and plays a crucial role in viral infection. However, the mechanism underlying furin activation and its regulation remain poorly understood. Here, we show that GalNAc-T3 and T7 jointly initiate clustered O-glycosylations in the furin cleavage site of the SARS-CoV-2 spike protein, which inhibit furin processing, suppress the incorporation of the spike protein into virus-like-particles and affect viral infection. Mechanistic analysis reveals that the assembly of the spike protein into virus-like particles relies on interactions between the furin-cleaved spike protein and the membrane protein of SARS-CoV-2, suggesting a possible mechanism for furin activation. Interestingly, mutations in the spike protein of the alpha and delta variants of the virus confer resistance against glycosylation by GalNAc-T3 and T7. In the omicron variant, additional mutations reverse this resistance, making the spike protein susceptible to glycosylation in vitro and sensitive to GalNAc-T3 and T7 expression in human lung cells. Our findings highlight the role of glycosylation as a defense mechanism employed by host cells against SARS-CoV-2 and shed light on the evolutionary interplay between the host and the virus.
Collapse
Affiliation(s)
- Shengjun Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Wei Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lingyu Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qingchi Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanqi Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Foshan Institute for Food and Drug Control, Foshan, China
| | - Bowen Wang
- College of Life Science, Northwest University, Xi'an, China
| | - Jinghong Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuqi He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Luoyi Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Arpaporn Chuchuay
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuyu You
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xinhai Zhu
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaojuan Wang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ye Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yanqiu Yuan
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Laboratory, Bio-island, Guangzhou, China.
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.
| | - Yang Mao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou, China.
| |
Collapse
|
4
|
Chatterjee S, Zaia J. Proteomics-based mass spectrometry profiling of SARS-CoV-2 infection from human nasopharyngeal samples. MASS SPECTROMETRY REVIEWS 2024; 43:193-229. [PMID: 36177493 PMCID: PMC9538640 DOI: 10.1002/mas.21813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the on-going global pandemic of coronavirus disease 2019 (COVID-19) that continues to pose a significant threat to public health worldwide. SARS-CoV-2 encodes four structural proteins namely membrane, nucleocapsid, spike, and envelope proteins that play essential roles in viral entry, fusion, and attachment to the host cell. Extensively glycosylated spike protein efficiently binds to the host angiotensin-converting enzyme 2 initiating viral entry and pathogenesis. Reverse transcriptase polymerase chain reaction on nasopharyngeal swab is the preferred method of sample collection and viral detection because it is a rapid, specific, and high-throughput technique. Alternate strategies such as proteomics and glycoproteomics-based mass spectrometry enable a more detailed and holistic view of the viral proteins and host-pathogen interactions and help in detection of potential disease markers. In this review, we highlight the use of mass spectrometry methods to profile the SARS-CoV-2 proteome from clinical nasopharyngeal swab samples. We also highlight the necessity for a comprehensive glycoproteomics mapping of SARS-CoV-2 from biological complex matrices to identify potential COVID-19 markers.
Collapse
Affiliation(s)
- Sayantani Chatterjee
- Department of Biochemistry, Center for Biomedical Mass SpectrometryBoston University School of MedicineBostonMassachusettsUSA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass SpectrometryBoston University School of MedicineBostonMassachusettsUSA
- Bioinformatics ProgramBoston University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
5
|
Sauvageau J, Koyuturk I, St Michael F, Brochu D, Goneau MF, Schoenhofen I, Perret S, Star A, Robotham A, Haqqani A, Kelly J, Gilbert M, Durocher Y. Simplifying glycan monitoring of complex antigens such as the SARS-CoV-2 spike to accelerate vaccine development. Commun Chem 2023; 6:189. [PMID: 37684364 PMCID: PMC10491790 DOI: 10.1038/s42004-023-00988-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Glycosylation is a key quality attribute that must be closely monitored for protein therapeutics. Established assays such as HILIC-Fld of released glycans and LC-MS of glycopeptides work well for glycoproteins with a few glycosylation sites but are less amenable for those with multiple glycosylation sites, resulting in complex datasets that are time consuming to generate and difficult to analyze. As part of efforts to improve preparedness for future pandemics, researchers are currently assessing where time can be saved in the vaccine development and production process. In this context, we evaluated if neutral and acidic monosaccharides analysis via HPAEC-PAD could be used as a rapid and robust alternative to LC-MS and HILIC-Fld for monitoring glycosylation between protein production batches. Using glycoengineered spike proteins we show that the HPAEC-PAD monosaccharide assays could quickly and reproducibly detect both major and minor glycosylation differences between batches. Moreover, the monosaccharide results aligned well with those obtained by HILIC-Fld and LC-MS.
Collapse
Affiliation(s)
- Janelle Sauvageau
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada.
| | - Izel Koyuturk
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, H3C 3J7, Canada
- Human Health Therapeutics Research Centre, National Research Council of Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| | - Frank St Michael
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Denis Brochu
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Marie-France Goneau
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Ian Schoenhofen
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Sylvie Perret
- Human Health Therapeutics Research Centre, National Research Council of Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| | - Alexandra Star
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Anna Robotham
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Arsalan Haqqani
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - John Kelly
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Michel Gilbert
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Yves Durocher
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, H3C 3J7, Canada
- Human Health Therapeutics Research Centre, National Research Council of Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| |
Collapse
|
6
|
Chen P, Wu M, He Y, Jiang B, He ML. Metabolic alterations upon SARS-CoV-2 infection and potential therapeutic targets against coronavirus infection. Signal Transduct Target Ther 2023; 8:237. [PMID: 37286535 DOI: 10.1038/s41392-023-01510-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/18/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by coronavirus SARS-CoV-2 infection has become a global pandemic due to the high viral transmissibility and pathogenesis, bringing enormous burden to our society. Most patients infected by SARS-CoV-2 are asymptomatic or have mild symptoms. Although only a small proportion of patients progressed to severe COVID-19 with symptoms including acute respiratory distress syndrome (ARDS), disseminated coagulopathy, and cardiovascular disorders, severe COVID-19 is accompanied by high mortality rates with near 7 million deaths. Nowadays, effective therapeutic patterns for severe COVID-19 are still lacking. It has been extensively reported that host metabolism plays essential roles in various physiological processes during virus infection. Many viruses manipulate host metabolism to avoid immunity, facilitate their own replication, or to initiate pathological response. Targeting the interaction between SARS-CoV-2 and host metabolism holds promise for developing therapeutic strategies. In this review, we summarize and discuss recent studies dedicated to uncovering the role of host metabolism during the life cycle of SARS-CoV-2 in aspects of entry, replication, assembly, and pathogenesis with an emphasis on glucose metabolism and lipid metabolism. Microbiota and long COVID-19 are also discussed. Ultimately, we recapitulate metabolism-modulating drugs repurposed for COVID-19 including statins, ASM inhibitors, NSAIDs, Montelukast, omega-3 fatty acids, 2-DG, and metformin.
Collapse
Affiliation(s)
- Peiran Chen
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Mandi Wu
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Binghua Jiang
- Cell Signaling and Proteomic Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China.
| |
Collapse
|
7
|
Aramyan S, McGregor K, Sandeep S, Haczku A. SP-A binding to the SARS-CoV-2 spike protein using hybrid quantum and classical in silico modeling and molecular pruning by Quantum Approximate Optimization Algorithm (QAOA) Based MaxCut with ZDOCK. Front Immunol 2022; 13:945317. [PMID: 36189278 PMCID: PMC9519185 DOI: 10.3389/fimmu.2022.945317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
The pulmonary surfactant protein A (SP-A) is a constitutively expressed immune-protective collagenous lectin (collectin) in the lung. It binds to the cell membrane of immune cells and opsonizes infectious agents such as bacteria, fungi, and viruses through glycoprotein binding. SARS-CoV-2 enters airway epithelial cells by ligating the Angiotensin Converting Enzyme 2 (ACE2) receptor on the cell surface using its Spike glycoprotein (S protein). We hypothesized that SP-A binds to the SARS-CoV-2 S protein and this binding interferes with ACE2 ligation. To study this hypothesis, we used a hybrid quantum and classical in silico modeling technique that utilized protein graph pruning. This graph pruning technique determines the best binding sites between amino acid chains by utilizing the Quantum Approximate Optimization Algorithm (QAOA)-based MaxCut (QAOA-MaxCut) program on a Near Intermediate Scale Quantum (NISQ) device. In this, the angles between every neighboring three atoms were Fourier-transformed into microwave frequencies and sent to a quantum chip that identified the chemically irrelevant atoms to eliminate based on their chemical topology. We confirmed that the remaining residues contained all the potential binding sites in the molecules by the Universal Protein Resource (UniProt) database. QAOA-MaxCut was compared with GROMACS with T-REMD using AMBER, OPLS, and CHARMM force fields to determine the differences in preparing a protein structure docking, as well as with Goemans-Williamson, the best classical algorithm for MaxCut. The relative binding affinity of potential interactions between the pruned protein chain residues of SP-A and SARS-CoV-2 S proteins was assessed by the ZDOCK program. Our data indicate that SP-A could ligate the S protein with a similar affinity to the ACE2-Spike binding. Interestingly, however, the results suggest that the most tightly-bound SP-A binding site is localized to the S2 chain, in the fusion region of the SARS-CoV-2 S protein, that is responsible for cell entry Based on these findings we speculate that SP-A may not directly compete with ACE2 for the binding site on the S protein, but interferes with viral entry to the cell by hindering necessary conformational changes or the fusion process.
Collapse
Affiliation(s)
- Sona Aramyan
- If and Only If (Iff) Technologies, Pleasanton, CA, United States
| | - Kirk McGregor
- If and Only If (Iff) Technologies, Pleasanton, CA, United States
| | - Samarth Sandeep
- If and Only If (Iff) Technologies, Pleasanton, CA, United States
- *Correspondence: Samarth Sandeep, ; Angela Haczku,
| | - Angela Haczku
- University of California (UC) Davis Lung Center Pulmonary, Critical Care and Sleep Division, Department of Medicine, School of Medicine, University of California, Davis, CA, United States
- *Correspondence: Samarth Sandeep, ; Angela Haczku,
| |
Collapse
|
8
|
Campos D, Girgis M, Sanda M. Site-specific glycosylation of SARS-CoV-2: Big challenges in mass spectrometry analysis. Proteomics 2022; 22:e2100322. [PMID: 35700310 PMCID: PMC9349404 DOI: 10.1002/pmic.202100322] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022]
Abstract
Glycosylation of viral proteins is required for the progeny formation and infectivity of virtually all viruses. It is increasingly clear that distinct glycans also play pivotal roles in the virus's ability to shield and evade the host's immune system. Recently, there has been a great advancement in structural identification and quantitation of viral glycosylation, especially spike proteins. Given the ongoing pandemic and the high demand for structure analysis of SARS-CoV-2 densely glycosylated spike protein, mass spectrometry methodologies have been employed to accurately determine glycosylation patterns. There are still many challenges in the determination of site-specific glycosylation of SARS-CoV-2 viral spike protein. This is compounded by some conflicting results regarding glycan site occupancy and glycan structural characterization. These are probably due to differences in the expression systems, form of expressed spike glycoprotein, MS methodologies, and analysis software. In this review, we recap the glycosylation of spike protein and compare among various studies. Also, we describe the most recent advancements in glycosylation analysis in greater detail and we explain some misinterpretation of previously observed data in recent publications. Our study provides a comprehensive view of the spike protein glycosylation and highlights the importance of consistent glycosylation determination.
Collapse
Affiliation(s)
- Diana Campos
- Max‐Planck‐Institut fuer Herz‐ und LungenforschungBad NauheimGermany
| | - Michael Girgis
- Department of BioengineeringVolgenau School of Engineering and ComputingGeorge Mason UniversityFairfaxVirginiaUSA
| | - Miloslav Sanda
- Max‐Planck‐Institut fuer Herz‐ und LungenforschungBad NauheimGermany
- Clinical and Translational Glycoscience Research CenterGeorgetown UniversityWashingtonDCUSA
| |
Collapse
|
9
|
Liu B, Yin Y, Liu Y, Wang T, Sun P, Ou Y, Gong X, Hou X, Zhang J, Ren H, Luo S, Ke Q, Yao Y, Xu J, Wu J. A Vaccine Based on the Receptor-Binding Domain of the Spike Protein Expressed in Glycoengineered Pichia pastoris Targeting SARS-CoV-2 Stimulates Neutralizing and Protective Antibody Responses. ENGINEERING (BEIJING, CHINA) 2022; 13:107-115. [PMID: 34457370 PMCID: PMC8378774 DOI: 10.1016/j.eng.2021.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/05/2021] [Accepted: 06/11/2021] [Indexed: 05/24/2023]
Abstract
In 2020 and 2021, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, caused a global pandemic. Vaccines are expected to reduce the pressure of prevention and control, and have become the most effective strategy to solve the pandemic crisis. SARS-CoV-2 infects the host by binding to the cellular receptor angiotensin converting enzyme 2 (ACE2) via the receptor-binding domain (RBD) of the surface spike (S) glycoprotein. In this study, a candidate vaccine based on a RBD recombinant subunit was prepared by means of a novel glycoengineered yeast Pichia pastoris expression system with characteristics of glycosylation modification similar to those of mammalian cells. The candidate vaccine effectively stimulated mice to produce high-titer anti-RBD specific antibody. Furthermore, the specific antibody titer and virus-neutralizing antibody (NAb) titer induced by the vaccine were increased significantly by the combination of the double adjuvants Al(OH)3 and CpG. Our results showed that the virus-NAb lasted for more than six months in mice. To summarize, we have obtained a SARS-CoV-2 vaccine based on the RBD of the S glycoprotein expressed in glycoengineered Pichia pastoris, which stimulates neutralizing and protective antibody responses. A technical route for fucose-free complex-type N-glycosylation modified recombinant subunit vaccine preparation has been established.
Collapse
Affiliation(s)
- Bo Liu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Ying Yin
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Yuxiao Liu
- Medical Innovation Research Division & Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Tiantian Wang
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Peng Sun
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Yangqin Ou
- Shenzhen Taihe Biotechnology Co. Ltd., Shenzhen 518001, China
| | - Xin Gong
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xuchen Hou
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jun Zhang
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Hongguang Ren
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Shiqiang Luo
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230000, China
| | - Qian Ke
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230000, China
| | - Yongming Yao
- Medical Innovation Research Division & Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Junjie Xu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jun Wu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| |
Collapse
|
10
|
Zhang L, Yao L, Guo Y, Li X, Ma L, Sun R, Han X, Liu J, Huang J. Oral SARS-CoV-2 Spike Protein Recombinant Yeast Candidate Prompts Specific Antibody and Gut Microbiota Reconstruction in Mice. Front Microbiol 2022; 13:792532. [PMID: 35464985 PMCID: PMC9022078 DOI: 10.3389/fmicb.2022.792532] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
A recent study showed that patients with coronavirus disease 2019 (COVID-19) have gastrointestinal symptoms and intestinal flora dysbiosis. Yeast probiotics shape the gut microbiome and improve immune homeostasis. In this study, an oral candidate of yeast-derived spike protein receptor-binding domain (RBD) and fusion peptide displayed on the surface of the yeast cell wall was generated. The toxicity and immune efficacy of oral administration were further performed in Institute of Cancer Research (ICR) mice. No significant difference in body weights, viscera index, and other side effects were detected in the oral-treated group. The detectable RBD-specific immunoglobulin G (IgG) and immunoglobulin A (IgA) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and more complex microbiota were detected from oral administration mice compared with those of the control group. Interestingly, the recombinant yeast was identified in female fetal of the high-dose group. These results revealed that the displaying yeast could fulfill the agent-driven immunoregulation and gut microbiome reconstitution. The findings will shed light on new dimensions against SARS-CoV-2 infection with the synergistic oral agents as promising non-invasive immunization and restoring gut flora.
Collapse
Affiliation(s)
- Lilin Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Lan Yao
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yanyu Guo
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Xiaoyang Li
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Li Ma
- Tianjin Institute of Pharmaceutical Research Co., Ltd., Tianjin, China
| | - Ruiqi Sun
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Xueqing Han
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Jing Liu
- Tianjin Institute of Pharmaceutical Research Co., Ltd., Tianjin, China
- Jing Liu,
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin, China
- *Correspondence: Jinhai Huang,
| |
Collapse
|
11
|
Tian Y, Parsons LM, Jankowska E, Cipollo JF. Site-Specific Glycosylation Patterns of the SARS-CoV-2 Spike Protein Derived From Recombinant Protein and Viral WA1 and D614G Strains. Front Chem 2021; 9:767448. [PMID: 34869209 PMCID: PMC8640487 DOI: 10.3389/fchem.2021.767448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/14/2021] [Indexed: 01/03/2023] Open
Abstract
The SARS-CoV-2 spike protein is heavily glycosylated, having 22 predicted N-glycosylation sites per monomer. It is also O-glycosylated, although the number of O-glycosites is less defined. Recent studies show that spike protein glycans play critical roles in viral entry and infection. The spike monomer has two subdomains, S1 and S2, and a receptor-binding domain (RBD) within the S1 domain. In this study, we have characterized the site-specific glycosylation patterns of the HEK293 recombinant spike RBD and S1 domains as well as the intact spike derived from the whole virus produced in Vero cells. The Vero cell-derived spike from the WA1 strain and a D614G variant was analyzed. All spike proteins, S1, and RBDs were analyzed using hydrophilic interaction chromatography (HILIC) and LC-MS/MS on an Orbitrap Eclipse Tribrid mass spectrometer. N-glycans identified in HEK293-derived S1 were structurally diverse. Those found in the HEK293-derived RBD were highly similar to those in HEK293 S1 where N-glycosites were shared. Comparison of the whole cell-derived WA1 and D614G spike proteins revealed that N-glycosites local to the mutation site appeared to be more readily detected, hinting that these sites are more exposed to glycosylation machinery. Moreover, recombinant HEK293-derived S1 was occupied almost completely with complex glycan, while both WA1 and D614G derived from the Vero E6 cell whole virus were predominantly high-mannose glycans. This stands in stark contrast to glycosylation patterns seen in both CHO- and HEK cell-derived recombinant S1, S2, and the whole spike previously reported. Concerning O-glycosylation, our analyses revealed that HEK293 recombinant proteins possessed a range of O-glycosites with compositions consistent with Core type 1 and 2 glycans. The O-glycosites shared between the S1 and RBD constructs, sites T323 and T523, were occupied by a similar range of Core 1 and 2 type O-glycans. Overall, this study reveals that the sample nature and cell substrate used for production of these proteins can have a dramatic impact on the glycosylation profile. SARS-CoV-2 spike glycans are associated with host ACE2 receptor interaction efficiency. Therefore, understanding such differences will serve to better understand these host–pathogen interactions and inform the choice of cell substrates to suite downstream investigations.
Collapse
Affiliation(s)
- Yuan Tian
- Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Silver Spring, MD, United States
| | - Lisa M Parsons
- Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Silver Spring, MD, United States
| | - Ewa Jankowska
- Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Silver Spring, MD, United States
| | - John F Cipollo
- Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Silver Spring, MD, United States
| |
Collapse
|
12
|
Shajahan A, Pepi LE, Rouhani DS, Heiss C, Azadi P. Glycosylation of SARS-CoV-2: structural and functional insights. Anal Bioanal Chem 2021; 413:7179-7193. [PMID: 34235568 PMCID: PMC8262766 DOI: 10.1007/s00216-021-03499-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Similar to other coronaviruses, its particles are composed of four structural proteins: spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins. S, E, and M proteins are glycosylated, and the N protein is phosphorylated. The S protein is involved in the interaction with the host receptor human angiotensin-converting enzyme 2 (hACE2), which is also heavily glycosylated. Recent studies have revealed several other potential host receptors or factors that can increase or modulate the SARS-CoV-2 infection. Interestingly, most of these molecules bear carbohydrate residues. While glycans acquired by the viruses through the hijacking of the host machinery help the viruses in their infectivity, they also play roles in immune evasion or modulation. Glycans play complex roles in viral pathobiology, both on their own and in association with carrier biomolecules, such as proteins or glycosaminoglycans (GAGs). Understanding these roles in detail can help in developing suitable strategies for prevention and therapy of COVID-19. In this review, we sought to emphasize the interplay of SARS-CoV-2 glycosylated proteins and their host receptors in viral attachment, entry, replication, and infection. Moreover, the implications for future therapeutic interventions targeting these glycosylated biomolecules are also discussed in detail.
Collapse
Affiliation(s)
- Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Lauren E. Pepi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Daniel S. Rouhani
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
13
|
Wu ZL, Ertelt JM. Fluorescent glycan fingerprinting of SARS2 spike proteins. Sci Rep 2021; 11:20428. [PMID: 34650101 PMCID: PMC8516889 DOI: 10.1038/s41598-021-98919-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 09/15/2021] [Indexed: 11/08/2022] Open
Abstract
Glycosylation is the most common post-translational modification and has myriad of biological functions. However, glycan analysis has always been a challenge. Here, we would like to present new techniques for glycan fingerprinting based on enzymatic fluorescent labeling and gel electrophoresis. The method is illustrated on SARS2 spike (S) glycoproteins. SARS2, a novel coronavirus and the causative agent of the COVID-19 pandemic, has had significant social and economic impacts since the end of 2019. To obtain the N-glycan fingerprint of an S protein, glycans released from the protein are first labeled through enzymatic incorporation of fluorophore-conjugated sialic acid or fucose, then separated by SDS-PAGE, and finally visualized with a fluorescent imager. To identify the labeled glycans of a fingerprint, glycan standards and glycan ladders are enzymatically generated and run alongside the samples as references. By comparing the mobility of a labeled glycan to that of a glycan standard, the identity of glycans maybe determined. O-glycans can also be fingerprinted. Due to the lack of an enzyme for broad O-glycan release, O-glycans on the S protein can be labeled with fluorescent sialic acid and digested with trypsin to obtain labeled glycan peptides that are then separated by gel electrophoresis. Glycan fingerprinting could serve as a quick method for globally assessing the glycosylation of a specific glycoprotein.
Collapse
Affiliation(s)
- Zhengliang L Wu
- Bio-techne, R&D Systems, Inc., 614 McKinley Place N.E., Minneapolis, MN, 55413, USA.
| | - James M Ertelt
- Bio-techne, R&D Systems, Inc., 614 McKinley Place N.E., Minneapolis, MN, 55413, USA
| |
Collapse
|
14
|
Zhang Y, Zhao W, Mao Y, Chen Y, Zheng S, Cao W, Zhu J, Hu L, Gong M, Cheng J, Yang H. O-Glycosylation Landscapes of SARS-CoV-2 Spike Proteins. Front Chem 2021; 9:689521. [PMID: 34552909 PMCID: PMC8450404 DOI: 10.3389/fchem.2021.689521] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023] Open
Abstract
The densely glycosylated spike (S) proteins that are highly exposed on the surface of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) facilitate viral attachment, entry, and membrane fusion. We have previously reported all the 22 N-glycosites and site-specific N-glycans in the S protein protomer. Herein, we report the O-glycosylation landscapes of SARS-CoV-2 S proteins, which were characterized through high-resolution mass spectrometry. Following digestion with trypsin and trypsin/Glu-C, and de-N-glycosylation using PNGase F, we determined the GalNAc-type O-glycosylation pattern of S proteins, including O-glycosites and the six most common O-glycans occupying them, via Byonic identification and manual validation. Finally, 255 intact O-glycopeptides composed of 50 peptides sequences and 43 O-glycosites were discovered by higher energy collision-induced dissociation (HCD), and three O-glycosites were confidently identified by electron transfer/higher energy collision-induced dissociation (EThcD) in the insect cell-expressed S protein. Most glycosites were modified by non-sialylated O-glycans such as HexNAc(1) and HexNAc(1)Hex (1). In contrast, in the human cell-expressed S protein S1 subunit, 407 intact O-glycopeptides composed of 34 peptides sequences and 30 O-glycosites were discovered by HCD, and 11 O-glycosites were unambiguously assigned by EThcD. However, the measurement of O-glycosylation occupancy hasn’t been made. Most glycosites were modified by sialylated O-glycans such as HexNAc(1)Hex (1)NeuAc (1) and HexNAc(1)Hex (1)NeuAc (2). Our results reveal that the SARS-CoV-2 S protein is an O-glycoprotein; the O-glycosites and O-glycan compositions vary with the host cell type. These comprehensive O-glycosylation landscapes of the S protein are expected to provide novel insights into the viral binding mechanism and present a strategy for the development of vaccines and targeted drugs.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Transplant Engineering and Immunology, MOH, Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Wanjun Zhao
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yonghong Mao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yaohui Chen
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Shanshan Zheng
- Key Laboratory of Transplant Engineering and Immunology, MOH, Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Cao
- Key Laboratory of Transplant Engineering and Immunology, MOH, Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiang Zhu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Liqiang Hu
- Key Laboratory of Transplant Engineering and Immunology, MOH, Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Gong
- Key Laboratory of Transplant Engineering and Immunology, MOH, Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, MOH, Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Yang
- Key Laboratory of Transplant Engineering and Immunology, MOH, Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Cho BG, Gautam S, Peng W, Huang Y, Goli M, Mechref Y. Direct Comparison of N-Glycans and Their Isomers Derived from Spike Glycoprotein 1 of MERS-CoV, SARS-CoV-1, and SARS-CoV-2. J Proteome Res 2021; 20:4357-4365. [PMID: 34369795 PMCID: PMC8370124 DOI: 10.1021/acs.jproteome.1c00323] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 12/16/2022]
Abstract
The emergence of COVID-19 pandemic has engaged the scientific community around the globe in the rapid development of effective therapeutics and vaccines. Owing to its crucial role in the invasion of the host cell, spike (S) glycoprotein is one of the major targets in these studies. The S1 subunit of the S protein (S1 protein) accommodates the receptor-binding domain, which enables the initial binding of the virus to the host cell. Being a heavily glycosylated protein, numerous studies have investigated its glycan composition. However, none of the studies have explored the isomeric glycan distribution of this protein. Furthermore, this isomeric glycan distribution has never been compared to that in S1 proteins of other coronaviruses, severe acute respiratory syndrome coronavirus 1 and Middle East respiratory syndrome coronavirus, which were responsible for past epidemics. This study explores the uncharted territory of the isomeric glycan distribution in the coronaviruses' S1 protein using liquid chromatography coupled to tandem mass spectrometry. We believe that our data would facilitate future investigations to study the role of isomeric glycans in coronavirus viral pathogenesis.
Collapse
Affiliation(s)
- Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| |
Collapse
|
16
|
Remoroza CA, Burke MC, Liu Y, Mirokhin YA, Tchekhovskoi DV, Yang X, Stein SE. Representing and Comparing Site-Specific Glycan Abundance Distributions of Glycoproteins. J Proteome Res 2021; 20:4475-4486. [PMID: 34327998 PMCID: PMC9830564 DOI: 10.1021/acs.jproteome.1c00442] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A method for representing and comparing distributions of N-linked glycans located at specific sites on proteins is presented. The representation takes the form of a simple mass spectrum for a given peptide sequence, with each peak corresponding to a different glycopeptide. The mass (in place of m/z) of each peak is that of the glycan mass, and its abundance corresponds to its relative abundance in the electrospray MS1 spectrum. This provides a facile means of representing all identifiable glycopeptides arising from a single protein "sequon" on a specific sequence, thereby enabling the comparison and searching of these distributions as routinely done for mass spectra. Likewise, these reference glycopeptide abundance distribution spectra (GADS) can be stored in searchable libraries. A set of such libraries created from available data is provided along with an adapted version of the widely used NIST-MS library-search software. Since GADS contain only MS1 abundances and identifications, they are equally suitable for expressing collision-induced fragmentation and electron-transfer dissociation determinations of glycopeptide identity. Comparisons of GADS for N-glycosylated sites on several proteins, especially the SARS-CoV-2 spike protein, demonstrate the potential reproducibility of GADS and their utility for comparing site-specific distributions.
Collapse
|
17
|
Cheng L, Zhang X, Chen Y, Wang D, Zhang D, Yan S, Wang H, Xiao M, Liang T, Li H, Xu M, Hou X, Dai J, Wu X, Li M, Lu M, Wu D, Tian R, Zhao J, Zhang Y, Cao W, Wang J, Yan X, Zhou X, Liu Z, Xu Y, He F, Li Y, Yu X, Zhang S. Dynamic landscape mapping of humoral immunity to SARS-CoV-2 identifies non-structural protein antibodies associated with the survival of critical COVID-19 patients. Signal Transduct Target Ther 2021; 6:304. [PMID: 34404759 PMCID: PMC8368053 DOI: 10.1038/s41392-021-00718-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/19/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022] Open
Abstract
A comprehensive analysis of the humoral immune response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential in understanding COVID-19 pathogenesis and developing antibody-based diagnostics and therapy. In this work, we performed a longitudinal analysis of antibody responses to SARS-CoV-2 proteins in 104 serum samples from 49 critical COVID-19 patients using a peptide-based SARS-CoV-2 proteome microarray. Our data show that the binding epitopes of IgM and IgG antibodies differ across SARS-CoV-2 proteins and even within the same protein. Moreover, most IgM and IgG epitopes are located within nonstructural proteins (nsps), which are critical in inactivating the host's innate immune response and enabling SARS-CoV-2 replication, transcription, and polyprotein processing. IgM antibodies are associated with a good prognosis and target nsp3 and nsp5 proteases, whereas IgG antibodies are associated with high mortality and target structural proteins (Nucleocapsid, Spike, ORF3a). The epitopes targeted by antibodies in patients with a high mortality rate were further validated using an independent serum cohort (n = 56) and using global correlation mapping analysis with the clinical variables that are associated with COVID-19 severity. Our data provide fundamental insight into humoral immunity during SARS-CoV-2 infection. SARS-CoV-2 immunogenic epitopes identified in this work could also help direct antibody-based COVID-19 treatment and triage patients.
Collapse
Affiliation(s)
- Linlin Cheng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaomei Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Yu Chen
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Dan Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Dong Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Songxin Yan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongye Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Meng Xiao
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Te Liang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Meng Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Xin Hou
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jiayu Dai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Xian Wu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Mingyuan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Minya Lu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Dong Wu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ran Tian
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jing Zhao
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yan Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Cao
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinglan Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaowei Yan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiang Zhou
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhengyin Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China.
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China.
| | - Shuyang Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
18
|
The challenge of structural heterogeneity in the native mass spectrometry studies of the SARS-CoV-2 spike protein interactions with its host cell-surface receptor. Anal Bioanal Chem 2021; 413:7205-7214. [PMID: 34389878 PMCID: PMC8362873 DOI: 10.1007/s00216-021-03601-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022]
Abstract
Native mass spectrometry (MS) enjoyed tremendous success in the past two decades in a wide range of studies aiming at understanding the molecular mechanisms of physiological processes underlying a variety of pathologies and accelerating the drug discovery process. However, the success record of native MS has been surprisingly modest with respect to the most recent challenge facing the biomedical community—the novel coronavirus infection (COVID-19). The major reason for the paucity of successful studies that use native MS to target various aspects of SARS-CoV-2 interaction with its host is the extreme degree of heterogeneity of the viral protein playing a key role in the host cell invasion. Indeed, the SARS-CoV-2 spike protein (S-protein) is extensively glycosylated, presenting a formidable challenge for native MS as a means of characterizing its interactions with both the host cell–surface receptor ACE2 and the drug candidates capable of disrupting this interaction. In this work, we evaluate the utility of native MS complemented with the experimental methods using gas-phase chemistry (limited charge reduction) to obtain meaningful information on the association of the S1 domain of the S-protein with the ACE2 ectodomain, and the influence of a small synthetic heparinoid on this interaction. Native MS reveals the presence of several different S1 oligomers in solution and allows the stoichiometry of the most prominent S1/ACE2 complexes to be determined. This enables meaningful interpretation of the changes in native MS that are observed upon addition of a small synthetic heparinoid (the pentasaccharide fondaparinux) to the S1/ACE2 solution, confirming that the small polyanion destabilizes the protein/receptor binding.
Collapse
|
19
|
Mamedov T, Yuksel D, Ilgın M, Gurbuzaslan I, Gulec B, Yetiskin H, Uygut MA, Islam Pavel ST, Ozdarendeli A, Mammadova G, Say D, Hasanova G. Plant-Produced Glycosylated and In Vivo Deglycosylated Receptor Binding Domain Proteins of SARS-CoV-2 Induce Potent Neutralizing Responses in Mice. Viruses 2021; 13:1595. [PMID: 34452461 PMCID: PMC8402646 DOI: 10.3390/v13081595] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/08/2021] [Accepted: 08/08/2021] [Indexed: 02/08/2023] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has rapidly spread to more than 222 countries and has put global public health at high risk. The world urgently needs cost-effective and safe SARS-CoV-2 vaccines, antiviral, and therapeutic drugs to control it. In this study, we engineered the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein and produced it in the plant Nicotiana benthamiana in a glycosylated and deglycosylated form. Expression levels of both glycosylated (gRBD) and deglycosylated (dRBD) RBD were greater than 45 mg/kg fresh weight. The purification yields were 22 mg of pure protein/kg of plant biomass for gRBD and 20 mg for dRBD, which would be sufficient for commercialization of these vaccine candidates. The purified plant-produced RBD protein was recognized by an S protein-specific monoclonal antibody, demonstrating specific reactivity of the antibody to the plant-produced RBD proteins. The SARS-CoV-2 RBD showed specific binding to angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 receptor. In mice, the plant-produced RBD antigens elicited high titers of antibodies with a potent virus-neutralizing activity. To our knowledge, this is the first report demonstrating that mice immunized with plant-produced deglycosylated RBD form elicited high titer of RBD-specific antibodies with potent neutralizing activity against SARS-CoV-2 infection. Thus, obtained data support that plant-produced glycosylated and in vivo deglycosylated RBD antigens, developed in this study, are promising vaccine candidates for the prevention of COVID-19.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Chlorocebus aethiops
- Glycosylation
- Male
- Mice
- Mice, Inbred BALB C
- Neutralization Tests
- Plants, Genetically Modified
- Protein Binding
- Protein Domains
- Protein Engineering
- Protein Stability
- Receptors, Coronavirus/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Nicotiana/genetics
- Nicotiana/metabolism
- Vero Cells
Collapse
Affiliation(s)
- Tarlan Mamedov
- Department of Agricultural Biotechnology, Akdeniz University, 07058 Antalya, Turkey; (D.Y.); (M.I.); (I.G.); (B.G.); (G.M.); (D.S.); (G.H.)
| | - Damla Yuksel
- Department of Agricultural Biotechnology, Akdeniz University, 07058 Antalya, Turkey; (D.Y.); (M.I.); (I.G.); (B.G.); (G.M.); (D.S.); (G.H.)
| | - Merve Ilgın
- Department of Agricultural Biotechnology, Akdeniz University, 07058 Antalya, Turkey; (D.Y.); (M.I.); (I.G.); (B.G.); (G.M.); (D.S.); (G.H.)
| | - Irem Gurbuzaslan
- Department of Agricultural Biotechnology, Akdeniz University, 07058 Antalya, Turkey; (D.Y.); (M.I.); (I.G.); (B.G.); (G.M.); (D.S.); (G.H.)
| | - Burcu Gulec
- Department of Agricultural Biotechnology, Akdeniz University, 07058 Antalya, Turkey; (D.Y.); (M.I.); (I.G.); (B.G.); (G.M.); (D.S.); (G.H.)
| | - Hazel Yetiskin
- Department of Microbiology, Medical Faculty, Erciyes University, 38280 Kayseri, Turkey; (H.Y.); (M.A.U.); (S.T.I.P.); (A.O.)
- Vaccine Research, Development and Application Center, Erciyes University, 38280 Kayseri, Turkey
| | - Muhammet Ali Uygut
- Department of Microbiology, Medical Faculty, Erciyes University, 38280 Kayseri, Turkey; (H.Y.); (M.A.U.); (S.T.I.P.); (A.O.)
| | - Shaikh Terkis Islam Pavel
- Department of Microbiology, Medical Faculty, Erciyes University, 38280 Kayseri, Turkey; (H.Y.); (M.A.U.); (S.T.I.P.); (A.O.)
- Vaccine Research, Development and Application Center, Erciyes University, 38280 Kayseri, Turkey
| | - Aykut Ozdarendeli
- Department of Microbiology, Medical Faculty, Erciyes University, 38280 Kayseri, Turkey; (H.Y.); (M.A.U.); (S.T.I.P.); (A.O.)
- Vaccine Research, Development and Application Center, Erciyes University, 38280 Kayseri, Turkey
| | - Gulshan Mammadova
- Department of Agricultural Biotechnology, Akdeniz University, 07058 Antalya, Turkey; (D.Y.); (M.I.); (I.G.); (B.G.); (G.M.); (D.S.); (G.H.)
| | - Deniz Say
- Department of Agricultural Biotechnology, Akdeniz University, 07058 Antalya, Turkey; (D.Y.); (M.I.); (I.G.); (B.G.); (G.M.); (D.S.); (G.H.)
| | - Gulnara Hasanova
- Department of Agricultural Biotechnology, Akdeniz University, 07058 Antalya, Turkey; (D.Y.); (M.I.); (I.G.); (B.G.); (G.M.); (D.S.); (G.H.)
| |
Collapse
|
20
|
Hackett WE, Zaia J. The Need for Community Standards to Enable Accurate Comparison of Glycoproteomics Algorithm Performance. Molecules 2021; 26:molecules26164757. [PMID: 34443345 PMCID: PMC8398183 DOI: 10.3390/molecules26164757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Protein glycosylation that mediates interactions among viral proteins, host receptors, and immune molecules is an important consideration for predicting viral antigenicity. Viral spike proteins, the proteins responsible for host cell invasion, are especially important to be examined. However, there is a lack of consensus within the field of glycoproteomics regarding identification strategy and false discovery rate (FDR) calculation that impedes our examinations. As a case study in the overlap between software, here as a case study, we examine recently published SARS-CoV-2 glycoprotein datasets with four glycoproteomics identification software with their recommended protocols: GlycReSoft, Byonic, pGlyco2, and MSFragger-Glyco. These software use different Target-Decoy Analysis (TDA) forms to estimate FDR and have different database-oriented search methods with varying degrees of quantification capabilities. Instead of an ideal overlap between software, we observed different sets of identifications with the intersection. When clustering by glycopeptide identifications, we see higher degrees of relatedness within software than within glycosites. Taking the consensus between results yields a conservative and non-informative conclusion as we lose identifications in the desire for caution; these non-consensus identifications are often lower abundance and, therefore, more susceptible to nuanced changes. We conclude that present glycoproteomics softwares are not directly comparable, and that methods are needed to assess their overall results and FDR estimation performance. Once such tools are developed, it will be possible to improve FDR methods and quantify complex glycoproteomes with acceptable confidence, rather than potentially misleading broad strokes.
Collapse
Affiliation(s)
| | - Joseph Zaia
- Bioinformatics Program, Boston University, Boston, MA 02215, USA;
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA 02215, USA
- Correspondence:
| |
Collapse
|
21
|
Yang B, Yang KD. Immunopathogenesis of Different Emerging Viral Infections: Evasion, Fatal Mechanism, and Prevention. Front Immunol 2021; 12:690976. [PMID: 34335596 PMCID: PMC8320726 DOI: 10.3389/fimmu.2021.690976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Different emerging viral infections may emerge in different regions of the world and pose a global pandemic threat with high fatality. Clarification of the immunopathogenesis of different emerging viral infections can provide a plan for the crisis management and prevention of emerging infections. This perspective article describes how an emerging viral infection evolves from microbial mutation, zoonotic and/or vector-borne transmission that progresses to a fatal infection due to overt viremia, tissue-specific cytotropic damage or/and immunopathology. We classified immunopathogenesis of common emerging viral infections into 4 categories: 1) deficient immunity with disseminated viremia (e.g., Ebola); 2) pneumocytotropism with/without later hyperinflammation (e.g., COVID-19); 3) augmented immunopathology (e.g., Hanta); and 4) antibody-dependent enhancement of infection with altered immunity (e.g., Dengue). A practical guide to early blocking of viral evasion, limiting viral load and identifying the fatal mechanism of an emerging viral infection is provided to prevent and reduce the transmission, and to do rapid diagnoses followed by the early treatment of virus neutralization for reduction of morbidity and mortality of an emerging viral infection such as COVID-19.
Collapse
Affiliation(s)
- Betsy Yang
- Department of Medicine, Kaiser Permanente Oakland Medical Center, Oakland, CA, United States
| | - Kuender D. Yang
- DIvision of Medical Research, Mackay Children’s Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan
- Department of Microbiology & Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
22
|
Guo W, Lakshminarayanan H, Rodriguez-Palacios A, Salata RA, Xu K, Draz MS. Glycan Nanostructures of Human Coronaviruses. Int J Nanomedicine 2021; 16:4813-4830. [PMID: 34290504 PMCID: PMC8289332 DOI: 10.2147/ijn.s302516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/22/2021] [Indexed: 12/18/2022] Open
Abstract
Human coronaviruses present a substantial global disease burden, causing damage to populations’ health, economy, and social well-being. Glycans are one of the main structural components of all microbes and organismic structures, including viruses—playing multiple essential roles in virus infection and immunity. Studying and understanding virus glycans at the nanoscale provide new insights into the diagnosis and treatment of viruses. Glycan nanostructures are considered potential targets for molecular diagnosis, antiviral therapeutics, and the development of vaccines. This review article describes glycan nanostructures (eg, glycoproteins and glycolipids) that exist in cells, subcellular structures, and microbes. We detail the structure, characterization, synthesis, and functions of virus glycans. Furthermore, we describe the glycan nanostructures of different human coronaviruses, such as human coronavirus 229E (HCoV-229E), human coronavirus OC43 (HCoV-OC43), severe acute respiratory syndrome-associated coronavirus (SARS-CoV), human coronavirus NL63 (HCoV-NL63), human coronavirus HKU1 (HCoV-HKU1), the Middle East respiratory syndrome-associated coronavirus (MERS-CoV), and how glycan nanotechnology can be useful to prevent and combat human coronaviruses infections, along with possibilities that are not yet explored.
Collapse
Affiliation(s)
- Wanru Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Harini Lakshminarayanan
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA.,Germ-Free and Gut Microbiome Core, Cleveland Digestive Diseases Research Core Center, Case Western Reserve University, Cleveland, OH, USA.,University Hospitals Research and Education Institute, University Hospital Cleveland Medical Center, Cleveland, OH, USA
| | - Robert A Salata
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kaijin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Mohamed S Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
23
|
Zong G, Li C, Prabhu SK, Zhang R, Zhang X, Wang LX. A facile chemoenzymatic synthesis of SARS-CoV-2 glycopeptides for probing glycosylation functions. Chem Commun (Camb) 2021; 57:6804-6807. [PMID: 34236361 PMCID: PMC8294178 DOI: 10.1039/d1cc02790e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycosylation plays important roles in SARS-CoV-2 infection. We describe here a facile chemoenzymatic synthesis of core-fucosylated N-glycopeptides derived from the SARS-CoV-2 Spike protein and their binding with glycan-dependent neutralizing antibody S309 and human lectin CLEC4G. The synthetic glycopeptides provide tools for further functional characterization of viral glycosylation.
Collapse
Affiliation(s)
- Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | - Sunaina Kiran Prabhu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | - Roushu Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | - Xiao Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
24
|
Wang Y, Wu Z, Hu W, Hao P, Yang S. Impact of Expressing Cells on Glycosylation and Glycan of the SARS-CoV-2 Spike Glycoprotein. ACS OMEGA 2021; 6:15988-15999. [PMID: 34179644 PMCID: PMC8204757 DOI: 10.1021/acsomega.1c01785] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/02/2021] [Indexed: 05/09/2023]
Abstract
The spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the first point of contact for the virus to recognize and bind to host receptors, is the focus of biomedical research seeking to effectively prevent and treat coronavirus disease (COVID-19). The mass production of spike glycoproteins is usually carried out in different cell systems. Studies have been shown that different expression cell systems alter protein glycosylation of hemagglutinin and neuraminidase in the influenza virus. However, it is not clear whether the cellular system affects the spike protein glycosylation. In this work, we investigated the effect of an expression system on the glycosylation of the spike glycoprotein and its receptor-binding domain. We found that there are significant differences in the glycosylation and glycans attached at each glycosite of the spike glycoprotein obtained from different expression cells. Since glycosylation at the binding site and adjacent amino acids affects the interaction between the spike glycoprotein and the host cell receptor, we recognize that caution should be taken when selecting an expression system to develop inhibitors, antibodies, and vaccines.
Collapse
Affiliation(s)
- Yan Wang
- Mass
Spectrometry Facility, National Institute
of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhen Wu
- State
Key Laboratory of Genetic Engineering, Department of Biochemistry,
School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wenhua Hu
- Center
for Clinical Mass Spectrometry, Department of Pharmaceutical Analysis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Piliang Hao
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Shuang Yang
- Center
for Clinical Mass Spectrometry, Department of Pharmaceutical Analysis, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
25
|
Shrivastava T, Singh B, Rizvi ZA, Verma R, Goswami S, Vishwakarma P, Jakhar K, Sonar S, Mani S, Bhattacharyya S, Awasthi A, Surjit M. Comparative Immunomodulatory Evaluation of the Receptor Binding Domain of the SARS-CoV-2 Spike Protein; a Potential Vaccine Candidate Which Imparts Potent Humoral and Th1 Type Immune Response in a Mouse Model. Front Immunol 2021; 12:641447. [PMID: 34108961 PMCID: PMC8182375 DOI: 10.3389/fimmu.2021.641447] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
The newly emerged novel coronavirus, SARS-CoV-2, the causative agent of COVID-19 has proven to be a threat to the human race globally, thus, vaccine development against SARS-CoV-2 is an unmet need driving mass vaccination efforts. The receptor binding domain of the spike protein of this coronavirus has multiple neutralizing epitopes and is associated with viral entry. Here we have designed and characterized the SARS-CoV-2 spike protein fragment 330-526 as receptor binding domain 330-526 (RBD330-526) with two native glycosylation sites (N331 and N343); as a potential subunit vaccine candidate. We initially characterized RBD330-526 biochemically and investigated its thermal stability, humoral and T cell immune response of various RBD protein formulations (with or without adjuvant) to evaluate the inherent immunogenicity and immunomodulatory effect. Our result showed that the purified RBD immunogen is stable up to 72 h, without any apparent loss in affinity or specificity of interaction with the ACE2 receptor. Upon immunization in mice, RBD generates a high titer humoral response, elevated IFN-γ producing CD4+ cells, cytotoxic T cells, and robust neutralizing antibodies against live SARS-CoV-2 virus. Our results collectively support the potential of RBD330-526 as a promising vaccine candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Tripti Shrivastava
- Infection and Immunology, Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Beeckmans S, Van Driessche E. Scrutinizing Coronaviruses Using Publicly Available Bioinformatic Tools: The Viral Structural Proteins as a Case Study. Front Mol Biosci 2021; 8:671923. [PMID: 34109214 PMCID: PMC8181738 DOI: 10.3389/fmolb.2021.671923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/15/2021] [Indexed: 01/18/2023] Open
Abstract
Since early 2020, the world suffers from a new beta-coronavirus, called SARS-CoV-2, that has devastating effects globally due to its associated disease, Covid-19. Until today, Covid-19, which not only causes life-threatening lung infections but also impairs various other organs and tissues, has killed hundreds of thousands of people and caused irreparable damage to many others. Since the very onset of the pandemic, huge efforts were made worldwide to fully understand this virus and numerous studies were, and still are, published. Many of these deal with structural analyses of the viral spike glycoprotein and with vaccine development, antibodies and antiviral molecules or immunomodulators that are assumed to become essential tools in the struggle against the virus. This paper summarizes knowledge on the properties of the four structural proteins (spike protein S, membrane protein M, envelope protein E and nucleocapsid protein N) of the SARS-CoV-2 virus and its relatives, SARS-CoV and MERS-CoV, that emerged few years earlier. Moreover, attention is paid to ways to analyze such proteins using freely available bioinformatic tools and, more importantly, to bring these proteins alive by looking at them on a computer/laptop screen with the easy-to-use but highly performant and interactive molecular graphics program DeepView. It is hoped that this paper will stimulate non-bioinformaticians and non-specialists in structural biology to scrutinize these and other macromolecules and as such will contribute to establishing procedures to fight these and maybe other forthcoming viruses.
Collapse
Affiliation(s)
- Sonia Beeckmans
- Research Unit Protein Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | | |
Collapse
|
27
|
Nascimento da Silva LC, Mendonça JSP, de Oliveira WF, Batista KLR, Zagmignan A, Viana IFT, Dos Santos Correia MT. Exploring lectin-glycan interactions to combat COVID-19: Lessons acquired from other enveloped viruses. Glycobiology 2021; 31:358-371. [PMID: 33094324 PMCID: PMC7665446 DOI: 10.1093/glycob/cwaa099] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/30/2020] [Accepted: 09/26/2020] [Indexed: 01/08/2023] Open
Abstract
The emergence of a new human coronavirus (SARS-CoV-2) has imposed great pressure on the health system worldwide. The presence of glycoproteins on the viral envelope opens a wide range of possibilities for application of lectins to address some urgent problems involved in this pandemic. In this work, we discuss the potential contributions of lectins from non-mammalian sources in the development of several fields associated with viral infections, most notably COVID-19. We review the literature on the use of non-mammalian lectins as a therapeutic approach against members of the Coronaviridae family, including recent advances in strategies of protein engineering to improve their efficacy. The applications of lectins as adjuvants for antiviral vaccines are also discussed. Finally, we present some emerging strategies employing lectins for the development of biosensors, microarrays, immunoassays and tools for purification of viruses from whole blood. Altogether, the data compiled in this review highlights the importance of structural studies aiming to improve our knowledge about the basis of glycan recognition by lectins and its repercussions in several fields, providing potential solutions for complex aspects that are emerging from different health challenges.
Collapse
Affiliation(s)
- Luís Cláudio Nascimento da Silva
- Programa de Pós-graduação em Biologia Microbiana, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil.,Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia Legal, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | - Juliana Silva Pereira Mendonça
- Programa de Pós-graduação em Biologia Microbiana, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50.670-901, Brazil
| | - Karla Lílian Rodrigues Batista
- Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia Legal, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | - Adrielle Zagmignan
- Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia Legal, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | | | | |
Collapse
|
28
|
Li Y, Liu D, Wang Y, Su W, Liu G, Dong W. The Importance of Glycans of Viral and Host Proteins in Enveloped Virus Infection. Front Immunol 2021; 12:638573. [PMID: 33995356 PMCID: PMC8116741 DOI: 10.3389/fimmu.2021.638573] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Animal viruses are parasites of animal cells that have characteristics such as heredity and replication. Viruses can be divided into non-enveloped and enveloped viruses if a lipid bilayer membrane surrounds them or not. All the membrane proteins of enveloped viruses that function in attachment to target cells or membrane fusion are modified by glycosylation. Glycosylation is one of the most common post-translational modifications of proteins and plays an important role in many biological behaviors, such as protein folding and stabilization, virus attachment to target cell receptors and inhibition of antibody neutralization. Glycans of the host receptors can also regulate the attachment of the viruses and then influence the virus entry. With the development of glycosylation research technology, the research and development of novel virus vaccines and antiviral drugs based on glycan have received increasing attention. Here, we review the effects of host glycans and viral proteins on biological behaviors of viruses, and the opportunities for prevention and treatment of viral infectious diseases.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Dongqi Liu
- The Queen's University of Belfast Joint College, China Medical University, Shenyang, China
| | - Yating Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Wenquan Su
- Dalian Medical University, Dalian, China
| | - Gang Liu
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Weijie Dong
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| |
Collapse
|
29
|
Gstöttner C, Zhang T, Resemann A, Ruben S, Pengelley S, Suckau D, Welsink T, Wuhrer M, Domínguez-Vega E. Structural and Functional Characterization of SARS-CoV-2 RBD Domains Produced in Mammalian Cells. Anal Chem 2021; 93:6839-6847. [PMID: 33871970 PMCID: PMC8078197 DOI: 10.1021/acs.analchem.1c00893] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is still ongoing and dramatically influences our life, the need for recombinant viral proteins for diagnostics, vaccine development, and research is very high. The spike (S) protein, and particularly its receptor-binding domain (RBD), mediates the interaction with the angiotensin-converting enzyme 2 (ACE2) receptor on host cells and may be modulated by its structural features. Therefore, well-characterized recombinant RBDs are essential. We have performed an in-depth structural and functional characterization of RBDs expressed in Chinese hamster ovary (CHO) and human embryonic kidney 293 (HEK293) cells. To structurally characterize the native RBDs (comprising N- and O-glycans and additional post translational modifications), a multilevel mass spectrometric approach was employed. Released glycan and glycopeptide analysis were integrated with intact mass analysis, glycan-enzymatic dissection, and top-down sequencing for comprehensive annotation of RBD proteoforms. The data showed distinct glycosylation for CHO- and HEK293-RBD with the latter exhibiting antenna fucosylation, a higher level of sialylation, and a combination of core 1 and core 2 type O-glycans. Additionally, using an alternative approach based on N-terminal cleavage of the O-glycosylation, the previously unknown O-glycosylation site was localized at T323. For both RBDs, the binding to SARS-CoV-2 antibodies of positive patients and affinity to the ACE2 receptor was addressed showing comparable results. This work not only offers insights into RBD structural and functional features but also provides an analytical workflow for characterization of new RBDs and batch-to-batch comparison.
Collapse
Affiliation(s)
- Christoph Gstöttner
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Anja Resemann
- Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany
| | - Sophia Ruben
- InVivo BioTech Services GmbH, Neuendorfstr. 24A, 16761 Hennigsdorf, Germany
| | | | - Detlev Suckau
- Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany
| | - Tim Welsink
- InVivo BioTech Services GmbH, Neuendorfstr. 24A, 16761 Hennigsdorf, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Elena Domínguez-Vega
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
30
|
Tong J, Zhu C, Lai H, Feng C, Zhou D. Potent Neutralization Antibodies Induced by a Recombinant Trimeric Spike Protein Vaccine Candidate Containing PIKA Adjuvant for COVID-19. Vaccines (Basel) 2021; 9:296. [PMID: 33810026 PMCID: PMC8004863 DOI: 10.3390/vaccines9030296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
The structures of immunogens that elicit the most potent neutralization antibodies to prevent COVID-19 infection are still under investigation. In this study, we tested the efficacy of a recombinant trimeric Spike protein containing polyI:C (PIKA) adjuvant in mice immunized by a 0-7-14 day schedule. The results showed that a Spike protein-specific antibody was induced at Day 21 with titer of above 50,000 on average, as measured by direct binding. The neutralizing titer was above 1000 on average, as determined by a pseudo-virus using monoclonal antibodies (40592-MM57 and 40591-MM43) with IC50 at 1 μg/mL as standards. The protein/peptide array-identified receptor-binding domain (RBD) was considered as immunodominant. No linear epitopes were found in the RBD, although several linear epitopes were found in the C-terminal domain right after the RBD and heptad repeat regions. Our study supports the efficacy of a recombinant trimeric Spike protein vaccine candidate for COVID-19 that is safe and ready for storage and distribution in developing countries.
Collapse
Affiliation(s)
- Jiao Tong
- Tongji University School of Medicine, Shanghai 200092, China; (J.T.); (C.Z.); (H.L.); (C.F.)
- Shanghai Pudong New Area Mental Health Center Affiliated with Tongji University School of Medicine, 165 Sanlin Road, Shanghai 200124, China
| | - Chenxi Zhu
- Tongji University School of Medicine, Shanghai 200092, China; (J.T.); (C.Z.); (H.L.); (C.F.)
- Shanghai Pudong New Area Mental Health Center Affiliated with Tongji University School of Medicine, 165 Sanlin Road, Shanghai 200124, China
| | - Hanyu Lai
- Tongji University School of Medicine, Shanghai 200092, China; (J.T.); (C.Z.); (H.L.); (C.F.)
- Shanghai Pudong New Area Mental Health Center Affiliated with Tongji University School of Medicine, 165 Sanlin Road, Shanghai 200124, China
| | - Chunchao Feng
- Tongji University School of Medicine, Shanghai 200092, China; (J.T.); (C.Z.); (H.L.); (C.F.)
- Shanghai Pudong New Area Mental Health Center Affiliated with Tongji University School of Medicine, 165 Sanlin Road, Shanghai 200124, China
| | - Dapeng Zhou
- Tongji University School of Medicine, Shanghai 200092, China; (J.T.); (C.Z.); (H.L.); (C.F.)
- Shanghai Pudong New Area Mental Health Center Affiliated with Tongji University School of Medicine, 165 Sanlin Road, Shanghai 200124, China
| |
Collapse
|
31
|
Wang J, Wang D, Zhang Y, Dong J. Synthesis and Biopharmaceutical Applications of Sugar-Based Polymers: New Advances and Future Prospects. ACS Biomater Sci Eng 2021; 7:963-982. [PMID: 33523642 DOI: 10.1021/acsbiomaterials.0c01710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The rapid rise in research interest in carbohydrate-based polymers is undoubtedly due to the nontoxic nature of such materials in an in vivo environment and the versatile roles that the polymers can play in cellular functions. Such polymers have served as therapeutic tools for drug delivery, including antigens, proteins, and genes, as well as diagnostic devices. Our focus in the first half of this Review is on synthetic methods based on ring-opening polymerization and enzyme-catalyzed polymerization, along with controlled radical polymerization. In the second half of this Review, sugar-based polymers are discussed on the basis of their remarkable success in competitive receptor binding, as multifunctional nanocarriers of targeting inhibitors for cancer treatment, in genome-editing delivery, in immunotherapy based on endogenous antibody recruitment, and in treatment of respiratory diseases, including influenza A. Particular emphasis is put on the synthesis and biopharmaceutical applications of sugar-based polymers published in the most recent 5 years. A noticeable attribute of carbohydrate-based polymers is that the sugar-receptor interactions can be facilitated by the cooperative effect of multiple sugar units. Their diversified topology and structures will drive the development of new synthetic strategies and bring about important applications, including coronavirus-related drug therapy.
Collapse
Affiliation(s)
- Jie Wang
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province 312000, China
| | - Dong Wang
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province 312000, China
| | - Yixian Zhang
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province 312000, China
| | - Jian Dong
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province 312000, China
| |
Collapse
|
32
|
Verkhivker GM, Di Paola L. Dynamic Network Modeling of Allosteric Interactions and Communication Pathways in the SARS-CoV-2 Spike Trimer Mutants: Differential Modulation of Conformational Landscapes and Signal Transmission via Cascades of Regulatory Switches. J Phys Chem B 2021; 125:850-873. [PMID: 33448856 PMCID: PMC7839160 DOI: 10.1021/acs.jpcb.0c10637] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/08/2021] [Indexed: 12/13/2022]
Abstract
The rapidly growing body of structural and biochemical studies of the SARS-CoV-2 spike glycoprotein has revealed a variety of distinct functional states with radically different arrangements of the receptor-binding domain, highlighting a remarkable function-driven conformational plasticity and adaptability of the spike proteins. In this study, we examined molecular mechanisms underlying conformational and dynamic changes in the SARS-CoV-2 spike mutant trimers through the lens of dynamic analysis of allosteric interaction networks and atomistic modeling of signal transmission. Using an integrated approach that combined coarse-grained molecular simulations, protein stability analysis, and perturbation-based modeling of residue interaction networks, we examined how mutations in the regulatory regions of the SARS-CoV-2 spike protein can differentially affect dynamics and allosteric signaling in distinct functional states. The results of this study revealed key functional regions and regulatory centers that govern collective dynamics, allosteric interactions, and control signal transmission in the SARS-CoV-2 spike proteins. We found that the experimentally confirmed regulatory hotspots that dictate dynamic switching between conformational states of the SARS-CoV-2 spike protein correspond to the key hinge sites and global mediating centers of the allosteric interaction networks. The results of this study provide a novel insight into allosteric regulatory mechanisms of SARS-CoV-2 spike proteins showing that mutations at the key regulatory positions can differentially modulate distribution of states and determine topography of signal communication pathways operating through state-specific cascades of control switch points. This analysis provides a plausible strategy for allosteric probing of the conformational equilibrium and therapeutic intervention by targeting specific hotspots of allosteric interactions and communications in the SARS-CoV-2 spike proteins.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Keck
Center for Science and Engineering, Schmid College of Science and
Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Department
of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| | - Luisa Di Paola
- Unit
of Chemical-Physics Fundamentals in Chemical Engineering, Department
of Engineering, Università Campus
Bio-Medico di Roma, via
Álvaro del Portillo 21, 00128 Rome, Italy
| |
Collapse
|
33
|
Finkelstein MT, Mermelstein AG, Parker Miller E, Seth PC, Stancofski ESD, Fera D. Structural Analysis of Neutralizing Epitopes of the SARS-CoV-2 Spike to Guide Therapy and Vaccine Design Strategies. Viruses 2021; 13:134. [PMID: 33477902 PMCID: PMC7833398 DOI: 10.3390/v13010134] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/01/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus research has gained tremendous attention because of the COVID-19 pandemic, caused by the novel severe acute respiratory syndrome coronavirus (nCoV or SARS-CoV-2). In this review, we highlight recent studies that provide atomic-resolution structural details important for the development of monoclonal antibodies (mAbs) that can be used therapeutically and prophylactically and for vaccines against SARS-CoV-2. Structural studies with SARS-CoV-2 neutralizing mAbs have revealed a diverse set of binding modes on the spike's receptor-binding domain and N-terminal domain and highlight alternative targets on the spike. We consider this structural work together with mAb effects in vivo to suggest correlations between structure and clinical applications. We also place mAbs against severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses in the context of the SARS-CoV-2 spike to suggest features that may be desirable to design mAbs or vaccines capable of conferring broad protection.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniela Fera
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, USA; (M.T.F.); (A.G.M.); (E.P.M.); (P.C.S.); (E.-S.D.S.)
| |
Collapse
|
34
|
Affiliation(s)
- Tobias
P. Wörner
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Tatiana M. Shamorkina
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
35
|
Lokhande KB, Apte GR, Shrivastava A, Singh A, Pal JK, K Venkateswara Swamy, Gupta RK. Sensing the interactions between carbohydrate-binding agents and N-linked glycans of SARS-CoV-2 spike glycoprotein using molecular docking and simulation studies. J Biomol Struct Dyn 2020; 40:3880-3898. [PMID: 33292056 PMCID: PMC7745641 DOI: 10.1080/07391102.2020.1851303] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
A recent surge in finding new candidate vaccines and potential antivirals to tackle atypical pneumonia triggered by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) needs new and unexplored approaches in solving this global pandemic. The homotrimeric transmembrane spike (S) glycoprotein of coronaviruses which facilitates virus entry into the host cells is covered with N-linked glycans having oligomannose and complex sugars. These glycans provide a unique opportunity for their targeting via carbohydrate-binding agents (CBAs) which have shown their antiviral potential against coronaviruses and enveloped viruses. However, CBA-ligand interaction is not fully explored in developing novel carbohydrate-binding-based antivirals due to associated unfavorable responses with CBAs. CBAs possess unique carbohydrate-binding specificity, therefore, CBAs like mannose-specific plant lectins/lectin-like mimic Pradimicin-A (PRM-A) can be used for targeting N-linked glycans of S glycoproteins. Here, we report studies on the binding and stability of lectins (NPA, UDA, GRFT, CV-N and wild-type and mutant BanLec) and PRM-A with the S glycoprotein glycans via docking and MD simulation. MM/GBSA calculations were also performed for docked complexes. Interestingly, stable BanLec mutant (H84T) also showed similar docking affinity and interactions as compared to wild-type BanLec, thus, confirming that uncoupling the mitogenic activity did not alter the lectin binding activity of BanLec. The stability of the docked complexes, i.e. PRM-A and lectins with SARS-CoV-2 S glycoprotein showed favorable intermolecular hydrogen-bond formation during the 100 ns MD simulation. Taking these together, our predicted in silico results will be helpful in the design and development of novel CBA-based antivirals for the SARS-CoV-2 neutralization.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Girish R Apte
- Protein Biochemistry Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune Maharashtra, India
| | - Ashish Shrivastava
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar University, G.B. Nagar, Uttar Pradesh, India
| | - Ashutosh Singh
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar University, G.B. Nagar, Uttar Pradesh, India
| | - Jayanta K Pal
- Protein Biochemistry Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune Maharashtra, India
| | - K Venkateswara Swamy
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Rajesh Kumar Gupta
- Protein Biochemistry Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune Maharashtra, India
| |
Collapse
|
36
|
Robson B. Techniques assisting peptide vaccine and peptidomimetic design. Sidechain exposure in the SARS-CoV-2 spike glycoprotein. Comput Biol Med 2020; 128:104124. [PMID: 33276271 PMCID: PMC7679524 DOI: 10.1016/j.compbiomed.2020.104124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 01/15/2023]
Abstract
The aim of the present study is to discuss the design of peptide vaccines and peptidomimetics against SARS-COV-2, to develop and apply a method of protein structure analysis that is particularly appropriate to applying and discussing such design, and also to use that method to summarize some important features of the SARS-COV-2 spike protein sequence. A tool for assessing sidechain exposure in the SARS-CoV-2 spike glycoprotein is described. It extends to assessing accessibility of sidechains by considering several different three-dimensional structure determinations of SARS-CoV-2 and SARS-CoV-1 spike protein. The method is designed to be insensitive to a distance limit for counting neighboring atoms and the results are in good agreement with the physical chemical properties and exposure trends of the 20 naturally occurring sidechains. The spike protein sequence is analyzed with comment regarding exposable character. It includes studies of complexes with antibody elements and ACE2. These indicate changes in exposure at sites remote to those at which the antibody binds. They are of interest concerning design of synthetic peptide vaccines, and for peptidomimetics as a basis of drug discovery. The method was also developed in order to provide linear (one-dimensional) information that can be used along with other bioinformatics data of this kind in data mining and machine learning, potentially as genomic data regarding protein polymorphisms to be combined with more traditional clinical data. Bioinformatics studies are carried out on SARS-CoV-2 spike, studying solvent exposure. The methods are particularly suited for synthetic vaccines and d-amino acid peptidomimetics. Methods of generating d-amino acid peptidomimetics are described and reviewed. The effect of antibody binding in stabilizing loop conformation and exposing remote sites is noted.
Collapse
Affiliation(s)
- B Robson
- Ingine Inc. Cleveland Ohio USA and the Dirac Foundation, Oxfordshire, UK.
| |
Collapse
|
37
|
Wang L, Deng Y. The Need for Ocular Protection for Health Care Workers During SARS-CoV-2 Outbreak and a Hypothesis for a Potential Personal Protective Equipment. Front Public Health 2020; 8:599757. [PMID: 33282819 PMCID: PMC7690622 DOI: 10.3389/fpubh.2020.599757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/19/2020] [Indexed: 02/05/2023] Open
Abstract
SARS-CoV-2 is a coronavirus with high infectivity and has caused dramatic pressure on health systems all over the world. Appropriate personal protection for medical staffs is critical. For ocular protection, there is ongoing hot debate and concern for potential ocular transmission of SARS-CoV-2. Ocular manifestations and positive detection of viral RNA in ocular samples were only reported in very small number of patients infected with SARS-CoV-2. However, health care workers need to face patients more closely and have higher risk of aerosol contamination. Thus, appropriate ocular protection for medical workers is still recommended by organizations such as WHO and American Academy of Ophthalmology. Although eye goggles provide excellent protection and are mandatory for medical practitioners with high risk of exposure, they are not ideal for common clinical practice, because they can disturb vision due to extensive formation of water droplets and frequently cause moderate to severe discomfort after longtime wearing, which have been reported to interfere with working status. For the majority of medical workers who don't deal with high risk patients, they are not advised to wear goggles in daily practice. However, they also face the risk of infection due to the presence of asymptomatic carriers. Especially in situations with high risk of ocular exposure, such as close physical examination, eye surgery, dental clinics and surgery, ocular protection may be needed. Griffithsin has been shown to directly bind to spike proteins and has anti-viral activity against a broad spectrum of viruses, including coronavirus. Griffithsin is found to inhibit the entry of SARS-CoV at relatively low concentration and is stable and non-toxic. SARS-CoV-2 and SARS-CoV share the same entry receptors and their spike proteins are similar in conformation. We hypothesize that contact lenses containing nanoparticles loaded with griffithsin may provide sufficient ocular protection for medical staffs without high risk of exposure during the outbreak period of SARS-CoV-2. If proven effective, griffithsin-loaded contact lens can be considered as a supplementary ocular protective equipment for medical workers who can tolerate well. The daily disposable contact lens should be applied as needed and refrain from extended wearing in order to reduce potential side effects.
Collapse
Affiliation(s)
- Lixiang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yingping Deng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Rahman MS, Hoque MN, Islam MR, Akter S, Rubayet Ul Alam ASM, Siddique MA, Saha O, Rahaman MM, Sultana M, Crandall KA, Hossain MA. Epitope-based chimeric peptide vaccine design against S, M and E proteins of SARS-CoV-2, the etiologic agent of COVID-19 pandemic: an in silico approach. PeerJ 2020; 8:e9572. [PMID: 33194329 PMCID: PMC7394063 DOI: 10.7717/peerj.9572] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of the ongoing pandemic of coronavirus disease 2019 (COVID-19), a public health emergency of international concerns declared by the World Health Organization (WHO). An immuno-informatics approach along with comparative genomics was applied to design a multi-epitope-based peptide vaccine against SARS-CoV-2 combining the antigenic epitopes of the S, M, and E proteins. The tertiary structure was predicted, refined and validated using advanced bioinformatics tools. The candidate vaccine showed an average of ≥90.0% world population coverage for different ethnic groups. Molecular docking and dynamics simulation of the chimeric vaccine with the immune receptors (TLR3 and TLR4) predicted efficient binding. Immune simulation predicted significant primary immune response with increased IgM and secondary immune response with high levels of both IgG1 and IgG2. It also increased the proliferation of T-helper cells and cytotoxic T-cells along with the increased IFN-γ and IL-2 cytokines. The codon optimization and mRNA secondary structure prediction revealed that the chimera is suitable for high-level expression and cloning. Overall, the constructed recombinant chimeric vaccine candidate demonstrated significant potential and can be considered for clinical validation to fight against this global threat, COVID-19.
Collapse
Affiliation(s)
| | - M. Nazmul Hoque
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
- Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M. Rafiul Islam
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Salma Akter
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
- Department of Microbiology, Jahangirnagar University, Savar, Bangladesh
| | | | | | - Otun Saha
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | | | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Keith A. Crandall
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, Washington D.C., United States of America
| | - M. Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
- Vice–Chancellor, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|