1
|
Tian Y, Liu M, Lu Y, Zhao X, Yan Z, Sun Y, Ma J, Tang W, Wang H, Xu H. Exonic Deletions and Deep Intronic Variants of the SLC26A4 Gene Contribute to the Genetic Diagnosis of Unsolved Patients With Enlarged Vestibular Aqueduct. Hum Mutat 2024; 2024:8444122. [PMID: 40225947 PMCID: PMC11919234 DOI: 10.1155/2024/8444122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 04/15/2025]
Abstract
Enlarged vestibular aqueduct (EVA) is a frequently occurring inner ear malformation that associates with sensorineural hearing loss (SNHL), with SLC26A4 being the responsible gene. Based on multiplex PCR enrichment and sequencing of the exonic and flanking regions of the SLC26A4 gene, we developed a panel specifically for EVA and found that up to 95% of EVA patients in our Chinese cohorts carried biallelic SLC26A4 pathogenic variants (M2). In this study, we tried to investigate the genetic etiology of 13 previously undiagnosed EVA patients with monoallelic (M1) or none (M0) SLC26A4 variant using a stepwise approach, including copy number variation (CNV) analysis of multiplex PCR enrichment and next-generation sequencing data, single-molecule real-time (SMRT) sequencing of the whole SLC26A4 gene, whole exome sequencing (WES), and whole genome sequencing (WGS). CNV analysis revealed deletions in Exons 1-3, Exons 5-6, and Exons 9-10 of the SLC26A4 gene in seven patients, and SMRT sequencing identified the same heterozygous deep intronic variant (NM_000441.2:c.304+941C>T) in two patients, resulting in a final diagnosis in 9/13 patients. Notably, the variants of Exons 9-10 deletion and c.304+941C>T have not been reported previously. We further showed that the variant c.304+941C>T led to the exonization of partial AluSz6 element (126 bp) where the variant is located through sequencing of the mRNA extracted from the blood of a heterozygous variant carrier. In conclusion, our stepwise approach improved the diagnosis rate of EVA, expanded the mutational spectrum of the SLC26A4 gene, and highlighted the contribution of exonic deletions and deep intronic variants to EVA.
Collapse
Affiliation(s)
- Yongan Tian
- Precision Medicine Center, Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
| | - Mengli Liu
- Precision Medicine Center, Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China
| | - Yu Lu
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaoyan Zhao
- Precision Medicine Center, Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China
| | - Zhiqiang Yan
- Department of Otolaryngology Head and Neck Surgery, Hospital of the 71st Group Army/Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Yi Sun
- Department of Otolaryngology Head and Neck Surgery, General Hospital of Central Theater Command, Wuhan 430070, China
| | - Jingyuan Ma
- Department of Otolaryngology, Henan Provincial People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Wenxue Tang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
| | - Haili Wang
- Longhu Laboratory, Zhengzhou University, No. 100, Science Avenue, Zhengzhou 450001, China
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou 450002, China
| | - Hongen Xu
- Precision Medicine Center, Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
| |
Collapse
|
2
|
Takahashi S, Homma K. The molecular principles underlying diverse functions of the SLC26 family of proteins. J Biol Chem 2024; 300:107261. [PMID: 38582450 PMCID: PMC11078650 DOI: 10.1016/j.jbc.2024.107261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/07/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024] Open
Abstract
Mammalian SLC26 proteins are membrane-based anion transporters that belong to the large SLC26/SulP family, and many of their variants are associated with hereditary diseases. Recent structural studies revealed a strikingly similar homodimeric molecular architecture for several SLC26 members, implying a shared molecular principle. Now a new question emerges as to how these structurally similar proteins execute diverse physiological functions. In this study, we sought to identify the common versus distinct molecular mechanism among the SLC26 proteins using both naturally occurring and artificial missense changes introduced to SLC26A4, SLC26A5, and SLC26A9. We found: (i) the basic residue at the anion binding site is essential for both anion antiport of SLC26A4 and motor functions of SLC26A5, and its conversion to a nonpolar residue is crucial but not sufficient for the fast uncoupled anion transport in SLC26A9; (ii) the conserved polar residues in the N- and C-terminal cytosolic domains are likely involved in dynamic hydrogen-bonding networks and are essential for anion antiport of SLC26A4 but not for motor (SLC26A5) and uncoupled anion transport (SLC26A9) functions; (iii) the hydrophobic interaction between each protomer's last transmembrane helices, TM14, is not of functional significance in SLC26A9 but crucial for the functions of SLC26A4 and SLC26A5, likely contributing to optimally orient the axis of the relative movements of the core domain with respect to the gate domains within the cell membrane. These findings advance our understanding of the molecular mechanisms underlying the diverse physiological roles of the SLC26 family of proteins.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Center for Mechanical Excitability, The University of Chicago, Chicago, Illinois, USA
| | - Kazuaki Homma
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Center for Mechanical Excitability, The University of Chicago, Chicago, Illinois, USA; The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, Illinois, USA.
| |
Collapse
|
3
|
Takahashi S, Kojima T, Wasano K, Homma K. Functional Studies of Deafness-Associated Pendrin and Prestin Variants. Int J Mol Sci 2024; 25:2759. [PMID: 38474007 PMCID: PMC10931795 DOI: 10.3390/ijms25052759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Pendrin and prestin are evolutionary-conserved membrane proteins that are essential for normal hearing. Dysfunction of these proteins results in hearing loss in humans, and numerous deafness-associated pendrin and prestin variants have been identified in patients. However, the pathogenic impacts of many of these variants are ambiguous. Here, we report results from our ongoing efforts to experimentally characterize pendrin and prestin variants using in vitro functional assays. With previously established fluorometric anion transport assays, we determined that many of the pendrin variants identified on transmembrane (TM) 10, which contains the essential anion binding site, and on the neighboring TM9 within the core domain resulted in impaired anion transport activity. We also determined the range of functional impairment in three deafness-associated prestin variants by measuring nonlinear capacitance (NLC), a proxy for motor function. Using the results from our functional analyses, we also evaluated the performance of AlphaMissense (AM), a computational tool for predicting the pathogenicity of missense variants. AM prediction scores correlated well with our experimental results; however, some variants were misclassified, underscoring the necessity of experimentally assessing the effects of variants. Together, our experimental efforts provide invaluable information regarding the pathogenicity of deafness-associated pendrin and prestin variants.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Otolaryngology—Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Takashi Kojima
- Department of Otolaryngology—Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Otolaryngology, Head and Neck Surgery, National Hospital Organization Tochigi Medical Center, Tochigi 320-0057, Japan
| | - Koichiro Wasano
- Department of Otolaryngology—Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Otolaryngology, Head and Neck Surgery, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Kazuaki Homma
- Department of Otolaryngology—Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
4
|
Takahashi S, Kojima T, Wasano K, Homma K. Functional studies of deafness-associated pendrin and prestin variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576877. [PMID: 38328051 PMCID: PMC10849616 DOI: 10.1101/2024.01.23.576877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pendrin and prestin are evolutionary conserved membrane proteins that are essential for normal hearing. Pendrin is an anion transporter required for normal development and maintenance of ion homeostasis in the inner ear, while prestin is a voltage-dependent motor responsible for cochlear amplification essential for high sensitivity and frequency selectivity of mammalian hearing. Dysfunction of these proteins result in hearing loss in humans, and numerous deafness-associated pendrin and prestin variants have been identified in patients. However, the pathogenic impacts of many of these variants are ambiguous. Here we report results from our ongoing efforts in experimentally characterizing pendrin and prestin variants using in vitro functional assays, providing invaluable information regarding their pathogenicity.
Collapse
|
5
|
Takahashi S, Homma K. The molecular principles underlying diverse functions of the SLC26 family of proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570988. [PMID: 38106153 PMCID: PMC10723444 DOI: 10.1101/2023.12.10.570988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mammalian SLC26 proteins are membrane-based anion transporters that belong to the large SLC26/SulP family, and many of their variants are associated with hereditary diseases. Recent structural studies revealed a strikingly similar homodimeric molecular architecture for several SLC26 members, implying a shared molecular principle. Now a new question emerges as to how these structurally similar proteins execute diverse physiological functions. In this study we sought to identify the common vs. distinct molecular mechanism among the SLC26 proteins using both naturally occurring and artificial missense changes introduced to SLC26A4, SLC26A5, and SLC26A9. We found: (i) the basic residue at the anion binding site is essential for both anion antiport of SLC26A4 and motor functions of SLC26A5, and its conversion to a nonpolar residue is crucial but not sufficient for the fast uncoupled anion transport in SLC26A9; (ii) the conserved polar residues in the N- and C-terminal cytosolic domains are likely involved in dynamic hydrogen-bonding networks and are essential for anion antiport of SLC26A4 but not for motor (SLC26A5) and uncoupled anion transport (SLC26A9) functions; (iii) the hydrophobic interaction between each protomer's last transmembrane helices, TM14, is not of functional significance in SLC26A9 but crucial for the functions of SLC26A4 and SLC26A5, likely contributing to optimally orient the axis of the relative movements of the core domain with respect to the gate domains within the cell membrane. These findings advance our understanding of the molecular mechanisms underlying the diverse physiological roles of the SLC26 family of proteins.
Collapse
|
6
|
Aboagye ET, Adadey SM, Wonkam-Tingang E, Amenga-Etego L, Awandare GA, Wonkam A. Global Distribution of Founder Variants Associated with Non-Syndromic Hearing Impairment. Genes (Basel) 2023; 14:399. [PMID: 36833326 PMCID: PMC9957346 DOI: 10.3390/genes14020399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The genetic etiology of non-syndromic hearing impairment (NSHI) is highly heterogeneous with over 124 distinct genes identified. The wide spectrum of implicated genes has challenged the implementation of molecular diagnosis with equal clinical validity in all settings. Differential frequencies of allelic variants in the most common NSHI causal gene, gap junction beta 2 (GJB2), has been described as stemming from the segregation of a founder variant and/or spontaneous germline variant hot spots. We aimed to systematically review the global distribution and provenance of founder variants associated with NSHI. The study protocol was registered on PROSPERO, the International Prospective Register of Systematic Reviews, with the registration number "CRD42020198573". Data from 52 reports, involving 27,959 study participants from 24 countries, reporting 56 founder pathogenic or likely pathogenic (P/LP) variants in 14 genes (GJB2, GJB6, GSDME, TMC1, TMIE, TMPRSS3, KCNQ4, PJVK, OTOF, EYA4, MYO15A, PDZD7, CLDN14, and CDH23), were reviewed. Varied number short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) were used for haplotype analysis to identify the shared ancestral informative markers in a linkage disequilibrium and variants' origins, age estimates, and common ancestry computations in the reviewed reports. Asia recorded the highest number of NSHI founder variants (85.7%; 48/56), with variants in all 14 genes, followed by Europe (16.1%; 9/56). GJB2 had the highest number of ethnic-specific P/LP founder variants. This review reports on the global distribution of NSHI founder variants and relates their evolution to population migration history, bottleneck events, and demographic changes in populations linked with the early evolution of deleterious founder alleles. International migration and regional and cultural intermarriage, coupled to rapid population growth, may have contributed to re-shaping the genetic architecture and structural dynamics of populations segregating these pathogenic founder variants. We have highlighted and showed the paucity of data on hearing impairment (HI) variants in Africa, establishing unexplored opportunities in genetic traits.
Collapse
Affiliation(s)
- Elvis Twumasi Aboagye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra LG Box 54, Ghana
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Samuel Mawuli Adadey
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra LG Box 54, Ghana
| | - Edmond Wonkam-Tingang
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Lucas Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra LG Box 54, Ghana
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra LG Box 54, Ghana
| | - Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- McKusick-Nathans Institute and Department of Genetic Medicine, John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Genetic profiles of non-syndromic severe-profound hearing loss in Chinese Hans by whole-exome sequencing. Gene 2022; 819:146258. [PMID: 35114279 DOI: 10.1016/j.gene.2022.146258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/07/2022] [Accepted: 01/27/2022] [Indexed: 11/20/2022]
Abstract
Hereditary hearing loss is highly heterogeneous. Despite over 120 non-syndromic deafness genes have been identified, there are still some of novel genes and variants being explored. In the study, we investigated 105 Chinese Han children with non-syndromic, prelingual, severe-profound hearing loss by whole-exome sequencing on DNA samples. The most common deafness gene was GJB2, mainly in variant c.235delC (p.Leu79CysfsTer3). 14 children were identified with pathogenic mutations in three genes, GJB2, SLC26A4, and OTOF. Two mutations have been identified to be pathogenic and not recorded previously, including c.4691G > A (p.Trp1564Ter) and c.3928_3930dup (p.Lys1310dup) in OTOF. The rare variants c.1349G > A (p.Arg450His) and c.456 T > G (p.Asn152Lys) in GSDME, and c.1595G > T (p.Ser532Ile) in SLC26A4 were detected. The frequency of nonsense variant c.2359G > T (p.Glu787Ter) in OTOA was very high in 17 cases. Four of them were identified to be digenic inheritance, including GJB2 and COL4A4, GJB2 and EYA1, GJB2 and COL4A5, and GJB2 and DFNA5. The findings showed that a novel pathogenic variant and rare variants may be associated with severe and profound hearing loss.
Collapse
|
8
|
Byun JC, Lee KY, Hwang SK. Atypical Presentation of Enlarged Vestibular Aqueducts Caused by SLC26A4 Variants. CHILDREN 2022; 9:children9020165. [PMID: 35204885 PMCID: PMC8869968 DOI: 10.3390/children9020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
Enlarged vestibular aqueduct is the most common inner ear malformation in pediatric patients with sensorineural hearing loss. Here, we report a new presentation of enlarged vestibular aqueduct in a Korean family. The family consists of two parents and five daughters, and the first and second daughters were diagnosed with bilateral enlarged vestibular aqueducts. The third daughter, who showed no signs of hearing deterioration, came to medical attention with incomplete Horner syndrome. Evaluations for localization of Horner syndrome on the patient and Sanger sequencing of SLC26A4 on the family members were performed. Although auditory brainstem response and pure tone audiometry of the third daughter were normal, temporal bone computed tomography demonstrated bilateral enlarged vestibular aqueducts. Sanger sequencing of SLC26A4 revealed compound heterozygous variants c.2168A>G and c.919-2A>G in the first, second, and third daughters. Diagnosis of enlarged vestibular aqueduct is often delayed because the degree of hearing loss can vary, and a considerable phenotypic variability can be shown even in family members with the same SLC26A4 variations. Fluctuations of CSF pressure into the cochlear duct and recurrent microruptures of the endolymphatic membrane could result in damage of sympathetic nerve supplying to the inner ear, which could explain the mechanism of Horner syndrome associated with enlarged vestibular aqueduct.
Collapse
Affiliation(s)
- Jun Chul Byun
- Department of Pediatrics, School of Medicine, Keimyung University Dongsan Medical Center, Daegu 42601, Korea;
| | - Kyu-Yup Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Su-Kyeong Hwang
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-53-200-5704; Fax: +82-53-425-6683
| |
Collapse
|
9
|
Diagnostic Yield of Targeted Hearing Loss Gene Panel Sequencing in a Large German Cohort With a Balanced Age Distribution from a Single Diagnostic Center: An Eight-year Study. Ear Hear 2021; 43:1049-1066. [PMID: 34753855 PMCID: PMC9007094 DOI: 10.1097/aud.0000000000001159] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objectives: Hereditary hearing loss exhibits high degrees of genetic and clinical heterogeneity. To elucidate the population-specific and age-related genetic and clinical spectra of hereditary hearing loss, we investigated the sequencing data of causally associated hearing loss genes in a large cohort of hearing-impaired probands with a balanced age distribution from a single center in Southwest Germany. Design: Genetic testing was applied to 305 hearing-impaired probands/families with a suspected genetic hearing loss etiology and a balanced age distribution over a period of 8 years (2011–2018). These individuals were representative of the regional population according to age and sex distributions. The genetic testing workflow consisted of single-gene screening (n = 21) and custom-designed hearing loss gene panel sequencing (n = 284) targeting known nonsyndromic and syndromic hearing loss genes in a diagnostic setup. Retrospective reanalysis of sequencing data was conducted by applying the current American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines. Results: A genetic diagnosis was established for 75 (25%) of the probands that involved 75 causal variants in 35 genes, including 16 novel causal variants and 9 medically significant variant reclassifications. Nearly half of the solved cases (47%; n = 35) were related to variants in the five most frequently affected genes: GJB2 (25%), MYO15A, WFS1, SLC26A4, and COL11A1 (all 5%). Nearly one-quarter of the cases (23%; n = 17) were associated with variants in seven additional genes (TMPRSS3, COL4A3, LOXHD1, EDNRB, MYO6, TECTA, and USH2A). The remaining one-third of single cases (33%; n = 25) were linked to variants in 25 distinct genes. Diagnostic rates and gene distribution were highly dependent on phenotypic characteristics. A positive family history of autosomal-recessive inheritance in combination with early onset and higher grades of hearing loss significantly increased the solve rate up to 60%, while late onset and lower grades of hearing loss yielded significantly fewer diagnoses. Regarding genetic diagnoses, autosomal-dominant genes accounted for 37%, autosomal-recessive genes for 60%, and X-linked genes for 3% of the solved cases. Syndromic/nonsyndromic hearing loss mimic genes were affected in 27% of the genetic diagnoses. Conclusions: The genetic epidemiology of the largest German cohort subjected to comprehensive targeted sequencing for hereditary hearing loss to date revealed broad causal gene and variant spectra in this population. Targeted hearing loss gene panel analysis proved to be an effective tool for ensuring an appropriate diagnostic yield in a routine clinical setting including the identification of novel variants and medically significant reclassifications. Solve rates were highly sensitive to phenotypic characteristics. The unique population-adapted and balanced age distribution of the cohort favoring late hearing loss onset uncovered a markedly large contribution of autosomal-dominant genes to the diagnoses which may be a representative for other age balanced cohorts in other populations.
Collapse
|
10
|
Tesolin P, Fiorino S, Lenarduzzi S, Rubinato E, Cattaruzzi E, Ammar L, Castro V, Orzan E, Granata C, Dell’Orco D, Morgan A, Girotto G. Pendred Syndrome, or Not Pendred Syndrome? That Is the Question. Genes (Basel) 2021; 12:1569. [PMID: 34680964 PMCID: PMC8535891 DOI: 10.3390/genes12101569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Pendred syndrome (PDS) is the most common form of syndromic Hearing Loss (HL), characterized by sensorineural HL, inner ear malformations, and goiter, with or without hypothyroidism. SLC26A4 is the major gene involved, even though ~50% of the patients carry only one pathogenic mutation. This study aims to define the molecular diagnosis for a cohort of 24 suspected-PDS patients characterized by a deep radiological and audiological evaluation. Whole-Exome Sequencing (WES), the analysis of twelve variants upstream of SLC26A4, constituting the "CEVA haplotype" and Multiplex Ligation Probe Amplification (MLPA) searching for deletions/duplications in SLC26A4 gene have been carried out. In five patients (20.8%) homozygous/compound heterozygous SLC26A4 mutations, or pathogenic mutation in trans with the CEVA haplotype have been identified, while five subjects (20.8%) resulted heterozygous for a single variant. In silico protein modeling supported the pathogenicity of the detected variants, suggesting an effect on the protein stabilization/function. Interestingly, we identified a genotype-phenotype correlation among those patients carrying SLC26A4 mutations, whose audiograms presented a characteristic slope at the medium and high frequencies, providing new insights into PDS. Finally, an interesting homozygous variant in MYO5C has been identified in one patient negative to SLC26A4 gene, suggesting the identification of a new HL candidate gene.
Collapse
Affiliation(s)
- Paola Tesolin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy;
| | - Sofia Fiorino
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Stefania Lenarduzzi
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34127 Trieste, Italy; (S.L.); (E.R.); (E.C.); (L.A.); (V.C.); (E.O.); (C.G.); (A.M.)
| | - Elisa Rubinato
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34127 Trieste, Italy; (S.L.); (E.R.); (E.C.); (L.A.); (V.C.); (E.O.); (C.G.); (A.M.)
| | - Elisabetta Cattaruzzi
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34127 Trieste, Italy; (S.L.); (E.R.); (E.C.); (L.A.); (V.C.); (E.O.); (C.G.); (A.M.)
| | - Lydie Ammar
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34127 Trieste, Italy; (S.L.); (E.R.); (E.C.); (L.A.); (V.C.); (E.O.); (C.G.); (A.M.)
| | - Veronica Castro
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34127 Trieste, Italy; (S.L.); (E.R.); (E.C.); (L.A.); (V.C.); (E.O.); (C.G.); (A.M.)
| | - Eva Orzan
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34127 Trieste, Italy; (S.L.); (E.R.); (E.C.); (L.A.); (V.C.); (E.O.); (C.G.); (A.M.)
| | - Claudio Granata
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34127 Trieste, Italy; (S.L.); (E.R.); (E.C.); (L.A.); (V.C.); (E.O.); (C.G.); (A.M.)
| | - Daniele Dell’Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37129 Verona, Italy;
| | - Anna Morgan
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34127 Trieste, Italy; (S.L.); (E.R.); (E.C.); (L.A.); (V.C.); (E.O.); (C.G.); (A.M.)
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy;
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34127 Trieste, Italy; (S.L.); (E.R.); (E.C.); (L.A.); (V.C.); (E.O.); (C.G.); (A.M.)
| |
Collapse
|
11
|
Batissoco AC, Pedroso-Campos V, Pardono E, Sampaio-Silva J, Sonoda CY, Vieira-Silva GA, da Silva de Oliveira Longati EU, Mariano D, Hoshino ACH, Tsuji RK, Jesus-Santos R, Abath-Neto O, Bento RF, Oiticica J, Lezirovitz K. Molecular and genetic characterization of a large Brazilian cohort presenting hearing loss. Hum Genet 2021; 141:519-538. [PMID: 34599368 DOI: 10.1007/s00439-021-02372-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022]
Abstract
Hearing loss is one of the most common sensory defects, affecting 5.5% of the worldwide population and significantly impacting health and social life. It is mainly attributed to genetic causes, but their relative contribution reflects the geographical region's socio-economic development. Extreme genetic heterogeneity with hundreds of deafness genes involved poses challenges for molecular diagnosis. Here we report the investigation of 542 hearing-impaired subjects from all Brazilian regions to search for genetic causes. Biallelic GJB2/GJB6 causative variants were identified in 12.9% (the lowest frequency was found in the Northern region, 7.7%), 0.4% carried GJB2 dominant variants, and 0.6% had the m.1555A > G variant (one aminoglycoside-related). In addition, other genetic screenings, employed in selected probands according to clinical presentation and presumptive inheritance patterns, identified causative variants in 2.4%. Ear malformations and auditory neuropathy were diagnosed in 10.8% and 3.5% of probands, respectively. In 3.8% of prelingual/perilingual cases, Waardenburg syndrome was clinically diagnosed, and in 71.4%, these diagnoses were confirmed with pathogenic variants revealed; seven out of them were novel, including one CNV. All these genetic screening strategies revealed causative variants in 16.2% of the cases. Based on causative variants in the molecular diagnosis and genealogy analyses, a probable genetic etiology was found in ~ 50% of the cases. The present study highlights the relevance of GJB2/GJB6 as a cause of hearing loss in all Brazilian regions and the importance of screening unselected samples for estimating frequencies. Moreover, when a comprehensive screening is not available, molecular diagnosis can be enhanced by selecting probands for specific screenings.
Collapse
Affiliation(s)
- Ana Carla Batissoco
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- ENT Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Vinicius Pedroso-Campos
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Eliete Pardono
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Instituto de Ciências de Saúde da UNIP, São Paulo, SP, Brasil
| | - Juliana Sampaio-Silva
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Cindy Yukimi Sonoda
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Gleiciele Alice Vieira-Silva
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | - Diego Mariano
- Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Ana Cristina Hiromi Hoshino
- ENT Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Robinson Koji Tsuji
- ENT Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Rafaela Jesus-Santos
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Osório Abath-Neto
- Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Ricardo Ferreira Bento
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- ENT Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Jeanne Oiticica
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- ENT Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Karina Lezirovitz
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil.
- ENT Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil.
| |
Collapse
|
12
|
Naz S. Molecular genetic landscape of hereditary hearing loss in Pakistan. Hum Genet 2021; 141:633-648. [PMID: 34308486 DOI: 10.1007/s00439-021-02320-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/17/2021] [Indexed: 01/13/2023]
Abstract
Approximately 14.5 million Pakistani individuals have a hearing loss and half of these cases may be due to genetic causes. Though significant progress has been made in uncovering genetic variants for recessively inherited nonsyndromic deafness, Pendred syndrome, and Usher syndromes, the same is not true for dominantly inherited hearing loss, most syndromic cases and deafness with complex inheritance patterns. Variants of 57 genes have been reported to cause nonsyndromic recessive deafness in Pakistan, though most are rare. Variants of just five genes GJB2, HGF, MYO7A, SLC26A4, and TMC1 together explain 57% of profound deafness while those of GJB2, MYO15A, OTOF, SLC26A4, TMC1, and TMPRSS3 account for 47% of moderate to severe hearing loss. In contrast, although variants of at least 39 genes have been implicated in different deafness syndromes, their prevalence in the population and the spectrum of mutations have not been explored. Furthermore, research on genetics of deafness has mostly focused on individuals from the Punjab province and needs to be extended to other regions of Pakistan. Identifying the genes and their variants causing deafness in all ethnic groups is important as it will pinpoint rare as well as recurrent mutations. This information may ultimately help in offering genetic counseling and future treatments.
Collapse
Affiliation(s)
- Sadaf Naz
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
13
|
Follicular thyroid cancer in a patient with Pendred syndrome. ANNALES D'ENDOCRINOLOGIE 2021; 82:622-624. [PMID: 34118212 DOI: 10.1016/j.ando.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/28/2021] [Accepted: 05/21/2021] [Indexed: 11/23/2022]
Abstract
We present the clinical and molecular studies of a family with Pendred syndrome, in which one affected individual developed follicular thyroid cancer. Two siblings with classic Pendred syndrome triad were operated on because of enormous multinodular goiter. Histopathology showed a follicular thyroid cancer in the male and a multinodular goiter in the female. PDS gene analysis revealed G-to-A transition in the splice donor site of intron 8 (IVS8+1G>A/c.1001+1G>A). Careful surveillance is needed in all cases of thyroid nodules in patients with Pendred syndrome, due to the high risk of malignancy.
Collapse
|
14
|
Clinical heterogeneity of the SLC26A4 gene in UAE patients with hearing loss and bioinformatics investigation of DFNB4/Pendred syndrome missense mutations. Int J Pediatr Otorhinolaryngol 2021; 140:110467. [PMID: 33199029 DOI: 10.1016/j.ijporl.2020.110467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The development of next generation sequencing-based techniques showed an important progress in the identification of pathogenic variants related to monogenetic diseases with genetic and phenotypic heterogeneities. Hereditary hearing loss is considered as one of these heterogeneous diseases, given the large number of deafness causing genes, the different modes of inheritance and the phenotypic variabilities associated to the severity, age of onset and/or presence or absence of other clinical manifestations. MATERIAL AND METHODS In this study, we performed next-generation sequencing (NGS) in 51 UAE patients with hearing loss and no GJB2 mutations. In addition, we reviewed all reported SLC26A4 missense mutations with a confirmed DFNB4/Pendred syndrome phenotype and tried to find a genotype/phenotype correlation using different criteria. RESULTS By analyzing the NGS data, we identified one new SLC26A4 variant c.1150G > C (p.Glu384Gln) and one known SLC26A4 mutation c.716T > A (p.Val239Asp) in two different patients. Direct Sanger sequencing and segregation analyses confirmed the implication of both DNA variants in the deafness phenotype. Moreover, the clinical examination of both patients showed that one patient has syndromic deafness (Pendred syndrome) and the second one has non-syndromic deafness. The analysis of all confirmed missense mutations didn't reveal a complete genotype/phenotype correlation. CONCLUSION To the best of our knowledge, this is the first report of mutations associated with DFNB4/Pendred deafness in the GCC region.
Collapse
|
15
|
Roman TS, Crowley SB, Roche MI, Foreman AKM, O'Daniel JM, Seifert BA, Lee K, Brandt A, Gustafson C, DeCristo DM, Strande NT, Ramkissoon L, Milko LV, Owen P, Roy S, Xiong M, Paquin RS, Butterfield RM, Lewis MA, Souris KJ, Bailey DB, Rini C, Booker JK, Powell BC, Weck KE, Powell CM, Berg JS. Genomic Sequencing for Newborn Screening: Results of the NC NEXUS Project. Am J Hum Genet 2020; 107:596-611. [PMID: 32853555 PMCID: PMC7536575 DOI: 10.1016/j.ajhg.2020.08.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023] Open
Abstract
Newborn screening (NBS) was established as a public health program in the 1960s and is crucial for facilitating detection of certain medical conditions in which early intervention can prevent serious, life-threatening health problems. Genomic sequencing can potentially expand the screening for rare hereditary disorders, but many questions surround its possible use for this purpose. We examined the use of exome sequencing (ES) for NBS in the North Carolina Newborn Exome Sequencing for Universal Screening (NC NEXUS) project, comparing the yield from ES used in a screening versus a diagnostic context. We enrolled healthy newborns and children with metabolic diseases or hearing loss (106 participants total). ES confirmed the participant's underlying diagnosis in 15 out of 17 (88%) children with metabolic disorders and in 5 out of 28 (∼18%) children with hearing loss. We discovered actionable findings in four participants that would not have been detected by standard NBS. A subset of parents was eligible to receive additional information for their child about childhood-onset conditions with low or no clinical actionability, clinically actionable adult-onset conditions, and carrier status for autosomal-recessive conditions. We found pathogenic variants associated with hereditary breast and/or ovarian cancer in two children, a likely pathogenic variant in the gene associated with Lowe syndrome in one child, and an average of 1.8 reportable variants per child for carrier results. These results highlight the benefits and limitations of using genomic sequencing for NBS and the challenges of using such technology in future precision medicine approaches.
Collapse
Affiliation(s)
- Tamara S Roman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie B Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Myra I Roche
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ann Katherine M Foreman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Julianne M O'Daniel
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bryce A Seifert
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristy Lee
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alicia Brandt
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chelsea Gustafson
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniela M DeCristo
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natasha T Strande
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lori Ramkissoon
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura V Milko
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Phillips Owen
- Renaissance Computing Institute, Chapel Hill, NC 27517, USA
| | - Sayanty Roy
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mai Xiong
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ryan S Paquin
- Center for Communication Science, RTI International, Research Triangle Park, NC 27709, USA
| | - Rita M Butterfield
- Department of Family Medicine and Community Health, Duke University School of Medicine, Durham, NC 27705, USA
| | - Megan A Lewis
- Center for Communication Science, RTI International, Research Triangle Park, NC 27709, USA
| | - Katherine J Souris
- Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Donald B Bailey
- Genomics, Bioinformatics and Translational Research Center, RTI International, Research Triangle Park, NC 27709, USA
| | - Christine Rini
- Feinberg School of Medicine, Department of Medical Social Sciences, and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Jessica K Booker
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bradford C Powell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karen E Weck
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cynthia M Powell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jonathan S Berg
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
16
|
Targovnik HM, Scheps KG, Rivolta CM. Defects in protein folding in congenital hypothyroidism. Mol Cell Endocrinol 2020; 501:110638. [PMID: 31751626 DOI: 10.1016/j.mce.2019.110638] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022]
Abstract
Primary congenital hypothyroidism (CH) is the most common endocrine disease in children and one of the most common preventable causes of both cognitive and motor deficits. CH is a heterogeneous group of thyroid disorders in which inadequate production of thyroid hormone occurs due to defects in proteins involved in the gland organogenesis (dysembryogenesis) or in multiple steps of thyroid hormone biosynthesis (dyshormonogenesis). Dysembryogenesis is associated with genes responsible for the development or growth of thyroid cells: such as NKX2-1, FOXE1, PAX8, NKX2-5, TSHR, TBX1, CDCA8, HOXD3 and HOXB3 resulting in agenesis, hypoplasia or ectopia of thyroid gland. Nevertheless, the etiology of the dysembryogenesis remains unknown for most cases. In contrast, the majority of patients with dyshormonogenesis has been linked to mutations in the SLC5A5, SLC26A4, SLC26A7, TPO, DUOX1, DUOX2, DUOXA1, DUOXA2, IYD or TG genes, which usually originate goiter. About 800 genetic mutations have been reported to cause CH in patients so far, including missense, nonsense, in-frame deletion and splice-site variations. Many of these mutations are implicated in specific domains, cysteine residues or glycosylation sites, affecting the maturation of nascent proteins that go through the secretory pathway. Consequently, misfolded proteins are permanently entrapped in the endoplasmic reticulum (ER) and are translocated to the cytosol for proteasomal degradation by the ER-associated degradation (ERAD) machinery. Despite of all these remarkable advances in the field of the CH pathogenesis, several points on the development of this disease remain to be elucidated. The continuous study of thyroid gene mutations with the application of new technologies will be useful for the understanding of the intrinsic mechanisms related to CH. In this review we summarize the present status of knowledge on the disorders in the protein folding caused by thyroid genes mutations.
Collapse
Affiliation(s)
- Héctor M Targovnik
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| | - Karen G Scheps
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Carina M Rivolta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| |
Collapse
|
17
|
Hasnain MJU, Shoaib M, Qadri S, Afzal B, Anwar T, Abbas SH, Sarwar A, Talha Malik HM, Tariq Pervez M. Computational analysis of functional single nucleotide polymorphisms associated with SLC26A4 gene. PLoS One 2020; 15:e0225368. [PMID: 31971949 PMCID: PMC6977751 DOI: 10.1371/journal.pone.0225368] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 11/03/2019] [Indexed: 11/25/2022] Open
Abstract
Single Nucleotide Polymorphisms (SNPs) are the most common candidate mutations in human beings that play a vital role in the genetic basis of certain diseases. Previous studies revealed that Solute Carrier Family 26 Member 4 (SLC26A4) being an essential gene of the multi-faceted transporter family SLC26 facilitates reflexive movement of Iodide into follicular lumen through apical membrane of thyrocyte. SLC26A4 gene encodes Pendred protein, a membrane glycoprotein, highly hydrophobic in nature, present at the apical membrane of thyrocyte functioning as transporter of iodide for thyroid cells. A minor genetic variation in SLC26A4 can cause Pendred syndrome, a syndrome associated with thyroid glands and deafness. In this study, we performed in-silico analysis of 674 missense SNPs of SLC26A4 using different computational platforms. The bunch of tools including SNPNEXUS, SNAP-2, PhD-SNP, SNPs&GO, I-Mutant, ConSurf, and ModPred were used to predict 23 highly confident damaging and disease causing nsSNPs (G209V, G197R, L458P, S427P, Q101P, W472R, N392Y, V359E, R409C, Q235R, R409P, G139V, G497S, H723R, D87G, Y127H, F667C, G334A, G95R, S427C, R291W, Q383H and E384G) that could potentially alter the SLC26A4 gene. Moreover, protein structure prediction, protein-ligand docking and Molecular Dynamics simulation were performed to confirm the impact of two evident alterations (Y127H and G334A) on the protein structure and function.
Collapse
Affiliation(s)
| | - Muhammad Shoaib
- Department of Computer Science and Engineering, UET, Lahore, Pakistan
| | - Salman Qadri
- Department of CS & IT, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Bakhtawar Afzal
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Tehreem Anwar
- Department of Bioinformatics, Virtual University of Pakistan, Lahore, Pakistan
| | - Syed Hassan Abbas
- Department of Bioinformatics, Virtual University of Pakistan, Lahore, Pakistan
| | - Amina Sarwar
- Department of Bioinformatics, Virtual University of Pakistan, Lahore, Pakistan
| | | | - Muhammad Tariq Pervez
- Department of Bioinformatics, Virtual University of Pakistan, Lahore, Pakistan
- * E-mail:
| |
Collapse
|
18
|
Mey K, Muhamad AA, Tranebjaerg L, Rendtorff ND, Rasmussen SH, Bille M, Cayé-Thomasen P. Association of SLC26A4 mutations, morphology, and hearing in pendred syndrome and NSEVA. Laryngoscope 2019; 129:2574-2579. [PMID: 31633822 DOI: 10.1002/lary.27319] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/07/2018] [Accepted: 05/03/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To investigate the relations of monoallelic (M1), biallelic (M2), or the absence of mutations (M0) in SLC26A4 to inner ear morphology and hearing levels in individuals with Pendred syndrome (PS) or nonsyndromic enlarged vestibular aqueduct (NSEVA) associated with hearing loss. METHODS In a cohort of 139 PS/NSEVA individuals, 115 persons from 95 unrelated families had full genetic sequencing of SLC26A4, and 113 had retrievable images for re-assessment of inner ear morphology. The association between the number of mutant alleles in SLC26A4, inner ear morphology (including endolymphatic sac size and protein content on magnetic resonance imaging), and hearing level (pure tone average) was explored. RESULTS Biallelic SLC26A4 mutations (M2) occurred in three-quarters of the cohort and was invariably associated with poor hearing; in 87%, it was associated with incomplete partition type II of the cochlea as well as enlarged endolymphatic sac and vestibular aqueduct. M1 or M0 individuals exhibited a greater variability in inner ear morphology. Endolymphatic sac size and presence of "high-protein" sac contents were significantly higher in M2 individuals compared to M1 and M0 individuals. CONCLUSION The number of SLC26A4 mutations is associated with severity and variability of inner ear morphology and hearing level in individuals with PS or NSEVA. M2 individuals have poorer hearing and present largely incomplete partition type II of the cochleas with enlarged endolymphatic sacs, whereas individuals with M1 and no detectable SLC26A4 mutations have less severe hearing loss and more diverse inner ear morphology. LEVEL OF EVIDENCE 4. Laryngoscope, 129:2574-2579, 2019.
Collapse
Affiliation(s)
- Kristianna Mey
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology Rigshospitalet/Gentofte, Hellerup
| | | | - Lisbeth Tranebjaerg
- the Department of Clinical Genetics, Rigshospitalet/The Kennedy Center.,the Institute of Clinical Medicine
| | - Nanna D Rendtorff
- the Department of Clinical Genetics, Rigshospitalet/The Kennedy Center
| | | | - Michael Bille
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology Rigshospitalet/Gentofte, Hellerup
| | - Per Cayé-Thomasen
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology Rigshospitalet/Gentofte, Hellerup.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Wu CC, Tsai CY, Lin YH, Chen PY, Lin PH, Cheng YF, Wu CM, Lin YH, Lee CY, Erdenechuluun J, Liu TC, Chen PL, Hsu CJ. Genetic Epidemiology and Clinical Features of Hereditary Hearing Impairment in the Taiwanese Population. Genes (Basel) 2019; 10:genes10100772. [PMID: 31581539 PMCID: PMC6826657 DOI: 10.3390/genes10100772] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
Hereditary hearing impairment (HHI) is a common but heterogeneous clinical entity caused by mutations in a plethora of deafness genes. Research over the past few decades has shown that the genetic epidemiology of HHI varies significantly across populations. In this study, we used different genetic examination strategies to address the genetic causes of HHI in a large Taiwanese cohort composed of >5000 hearing-impaired families. We also analyzed the clinical features associated with specific genetic mutations. Our results demonstrated that next-generation sequencing-based examination strategies could achieve genetic diagnosis in approximately half of the families. Common deafness-associated genes in the Taiwanese patients assessed, in the order of prevalence, included GJB2, SLC26A4, OTOF, MYO15A, and MTRNR1, which were similar to those found in other populations. However, the Taiwanese patients had some unique mutations in these genes. These findings may have important clinical implications for refining molecular diagnostics, facilitating genetic counseling, and enabling precision medicine for the management of HHI.
Collapse
Affiliation(s)
- Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan.
| | - Cheng-Yu Tsai
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan.
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 10055, Taiwan.
| | - Yi-Hsin Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan.
| | - Pey-Yu Chen
- Department of Otolaryngology, Mackay Memorial Hospital, Taipei 10449, Taiwan.
| | - Pei-Hsuan Lin
- Department of Otolaryngology, National Taiwan University Hospital Yunlin Branch, Yunlin 64041, Taiwan.
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Che-Ming Wu
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou 33302, Taiwan.
| | - Yin-Hung Lin
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 10055, Taiwan.
| | - Chee-Yee Lee
- Department of Otolaryngology, Buddhist Tzuchi General Hospital, Taichung Branch, Taichung 42743, Taiwan.
| | - Jargalkhuu Erdenechuluun
- Department of Otolaryngology, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia.
- The EMJJ Otolaryngology Hospital, Ulaanbaatar 14210, Mongolia.
- Department of Otolaryngology, National Center for Maternal and Child Health, Ulaanbaatar 16060, Mongolia.
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan.
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 10055, Taiwan.
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan.
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan.
- Department of Otolaryngology, Buddhist Tzuchi General Hospital, Taichung Branch, Taichung 42743, Taiwan.
| |
Collapse
|
20
|
Lenarduzzi S, Morgan A, Faletra F, Cappellani S, Morgutti M, Mezzavilla M, Peruzzi A, Ghiselli S, Ambrosetti U, Graziano C, Seri M, Gasparini P, Girotto G. Next generation sequencing study in a cohort of Italian patients with syndromic hearing loss. Hear Res 2019; 381:107769. [PMID: 31387071 DOI: 10.1016/j.heares.2019.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/01/2019] [Accepted: 07/12/2019] [Indexed: 11/19/2022]
Abstract
Hearing loss (HL), one of the most common congenital disorder, affects about one child in 1000. Among the genetic forms of HL, ∼30% of the cases are associated with other signs or symptoms, leading to Syndromic Hearing Loss (SHL) with about 700 different forms described so far. In this report, we refer the clinical and molecular data of 38 Italian SHL unrelated patients, and their relatives, affected by the most common syndromes associated with HL (i.e., Usher, Pendred, Charge, Waardenburg, Alport, Stickler, Branchiootorenal and Microdeletions syndromes). Patients have been analysed using next-generation sequencing (NGS) and High Density (HD)-SNP array technologies. Data analysis led to the identification of nine novel and 27 known causative mutations in 12 genes and two microdeletions in chromosomes 1 and 10, respectively. In particular, as regards to Usher syndrome, that affects 32% of our patients, we were able to reach a molecular diagnosis in 83% of the cases and to identify in Northern Eastern Italy a very common USH2A gene mutation (39%) (c.11864G > A, p.(Trp3955*) which can be defined "Central-Eastern European allele." As regards to Alport syndrome, we were able to potentially reclassify a pathogenic allele in the COL4A3 gene, previously associated only with benign familial hematuria. In all the other cases, the genomic analysis allowed us to confirm the role of known causative genes and to identify several novel and known alleles. Overall, our results highlight the effectiveness of combining an accurate clinical characterization with the use of genomic technologies (NGS and SNP arrays) for the molecular diagnosis of SHL, with a clear positive impact in the management and treatment of all the patients.
Collapse
Affiliation(s)
- Stefania Lenarduzzi
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy.
| | - Anna Morgan
- University of Trieste, Department of Medicine, Surgery and Health Sciences, Trieste, Italy
| | - Flavio Faletra
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Stefania Cappellani
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Marcello Morgutti
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Massimo Mezzavilla
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Adelaide Peruzzi
- University of Trieste, Department of Medicine, Surgery and Health Sciences, Trieste, Italy
| | - Sara Ghiselli
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Umberto Ambrosetti
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Italy; U.O.S.D. of Audiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Italy
| | - Claudio Graziano
- Unit of Medical Genetics, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Marco Seri
- Unit of Medical Genetics, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Paolo Gasparini
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy; University of Trieste, Department of Medicine, Surgery and Health Sciences, Trieste, Italy
| | - Giorgia Girotto
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy; University of Trieste, Department of Medicine, Surgery and Health Sciences, Trieste, Italy
| |
Collapse
|
21
|
Zeinali S, Davoudi-Dehaghani E, Mahdieh N, Shirkavand A, Bagherian H, DabbaghBagheri S. SLC26A4 pathogenic variants as a third cause of hearing loss: Role of three exons in DFNB4 deafness in Iran. INDIAN JOURNAL OF OTOLOGY 2019. [DOI: 10.4103/indianjotol.indianjotol_36_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Erdenechuluun J, Lin YH, Ganbat K, Bataakhuu D, Makhbal Z, Tsai CY, Lin YH, Chan YH, Hsu CJ, Hsu WC, Chen PL, Wu CC. Unique spectra of deafness-associated mutations in Mongolians provide insights into the genetic relationships among Eurasian populations. PLoS One 2018; 13:e0209797. [PMID: 30576380 PMCID: PMC6303056 DOI: 10.1371/journal.pone.0209797] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023] Open
Abstract
Genetic factors are an important cause of idiopathic sensorineural hearing impairment (SNHI). From the epidemiological perspective, mutations of three deafness genes: GJB2, SLC26A4, and MT-RNR1, are much more prevalent than those of other genes worldwide. However, mutation spectra of common deafness genes differ remarkably across different populations. Here, we performed comprehensive genetic examination and haplotype analyses in 188 unrelated Mongolian families with idiopathic SNHI, and compared their mutation spectra and haplotypes to those of other European and Asian cohorts. We confirmed genetic diagnoses in 18 (9.6%) of the 188 families, including 13 with bi-allelic GJB2 mutations, three with bi-allelic SLC26A4 mutations, and two with homoplasmic MT-RNR1 m.1555A>G mutation. Moreover, mono-allelic mutations were identified in 17 families (9.0%), including 14 with mono-allelic GJB2 mutations and three with mono-allelic SLC26A4 mutations. Interestingly, three GJB2 mutations prevalent in other populations, including c.35delG in Caucasians, c.235delC in East Asians, and c.-23+1G>A in Southwest and South Asians, were simultaneously detected in Mongolian patients. Haplotype analyses further confirmed founder effects for each of the three mutations, indicating that each mutation derived from its ancestral origin independently. By demonstrating the unique spectra of deafness-associated mutations, our findings may have important clinical and scientific implications for refining the molecular diagnostics of SNHI in Mongolian patients, and for elucidating the genetic relationships among Eurasian populations.
Collapse
Affiliation(s)
- Jargalkhuu Erdenechuluun
- Department of Otolaryngology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
- The EMJJ Otolaryngology Hospital, Ulaanbaatar, Mongolia
| | - Yin-Hung Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Khongorzul Ganbat
- The EMJJ Otolaryngology Hospital, Ulaanbaatar, Mongolia
- Department of Otolaryngology, National Center for Maternal and Child Health, Ulaanbaatar, Mongolia
| | - Delgermaa Bataakhuu
- Department of Otolaryngology, National Center for Maternal and Child Health, Ulaanbaatar, Mongolia
| | - Zaya Makhbal
- Department of Otolaryngology, National Center for Maternal and Child Health, Ulaanbaatar, Mongolia
| | - Cheng-Yu Tsai
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Hsin Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Hui Chan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Chung Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
23
|
Morgan A, Lenarduzzi S, Cappellani S, Pecile V, Morgutti M, Orzan E, Ghiselli S, Ambrosetti U, Brumat M, Gajendrarao P, La Bianca M, Faletra F, Grosso E, Sirchia F, Sensi A, Graziano C, Seri M, Gasparini P, Girotto G. Genomic Studies in a Large Cohort of Hearing Impaired Italian Patients Revealed Several New Alleles, a Rare Case of Uniparental Disomy (UPD) and the Importance to Search for Copy Number Variations. Front Genet 2018; 9:681. [PMID: 30622556 PMCID: PMC6309105 DOI: 10.3389/fgene.2018.00681] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 12/07/2018] [Indexed: 11/13/2022] Open
Abstract
Hereditary hearing loss (HHL) is a common disorder characterized by a huge genetic heterogeneity. The definition of a correct molecular diagnosis is essential for proper genetic counseling, recurrence risk estimation, and therapeutic options. From 20 to 40% of patients carry mutations in GJB2 gene, thus, in more than half of cases it is necessary to look for causative variants in the other genes so far identified (~100). In this light, the use of next-generation sequencing technologies has proved to be the best solution for mutational screening, even though it is not always conclusive. Here we describe a combined approach, based on targeted re-sequencing (TRS) of 96 HHL genes followed by high-density SNP arrays, aimed at the identification of the molecular causes of non-syndromic HHL (NSHL). This strategy has been applied to study 103 Italian unrelated cases, negative for mutations in GJB2, and led to the characterization of 31% of them (i.e., 37% of familial and 26.3% of sporadic cases). In particular, TRS revealed TECTA and ACTG1 genes as major players in the Italian population. Furthermore, two de novo missense variants in ACTG1 have been identified and investigated through protein modeling and molecular dynamics simulations, confirming their likely pathogenic effect. Among the selected patients analyzed by SNP arrays (negative to TRS, or with a single variant in a recessive gene) a molecular diagnosis was reached in ~36% of cases, highlighting the importance to look for large insertions/deletions. Moreover, copy number variants analysis led to the identification of the first case of uniparental disomy involving LOXHD1 gene. Overall, taking into account the contribution of GJB2, plus the results from TRS and SNP arrays, it was possible to reach a molecular diagnosis in ~51% of NSHL cases. These data proved the usefulness of a combined approach for the analysis of NSHL and for the definition of the epidemiological picture of HHL in the Italian population.
Collapse
Affiliation(s)
- Anna Morgan
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | | | | | - Vanna Pecile
- IRCCS Materno Infantile Burlo Garofolo, Trieste, Italy
| | | | - Eva Orzan
- IRCCS Materno Infantile Burlo Garofolo, Trieste, Italy
| | - Sara Ghiselli
- IRCCS Materno Infantile Burlo Garofolo, Trieste, Italy
| | - Umberto Ambrosetti
- Audiologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Marco Brumat
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | | | | | | | - Enrico Grosso
- Medical Genetics Unit, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Fabio Sirchia
- IRCCS Materno Infantile Burlo Garofolo, Trieste, Italy
| | - Alberto Sensi
- Medical Genetics Unit, Department of Clinical Pathology, Azienda Unità Sanitaria Locale (AUSL) della Romagna, Cesena, Italy
| | - Claudio Graziano
- Unit of Medical Genetics, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Marco Seri
- Unit of Medical Genetics, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,IRCCS Materno Infantile Burlo Garofolo, Trieste, Italy
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,IRCCS Materno Infantile Burlo Garofolo, Trieste, Italy
| |
Collapse
|
24
|
Zhu GJ, Shi LS, Zhou H, Yang Y, Chen J, Gao X. A novel compound heterozygous mutation of SLC26A4 in two Chinese families with nonsyndromic hearing loss and enlarged vestibular aqueducts. Mol Med Rep 2017; 16:9011-9016. [PMID: 28990112 DOI: 10.3892/mmr.2017.7690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/10/2017] [Indexed: 11/06/2022] Open
Abstract
Enlarged vestibular aqueduct (EVA)‑associated hearing loss is frequently detected in individuals carrying the SLC26A4 mutation in the Chinese population. The present study aimed to identify the causative SLC26A4 coding mutations in a patient group with nonsyndromic hearing loss (NSHL) and EVA. Genomic DNA was extracted from blood samples obtained from 52 NSHL patients with EVA and from 60 normal controls. The mutation analysis for 20 coding exons of SLC26A4 was performed by direct sequencing. The results of the mutational analysis showed that there were two probands from two separate families suffering from bilateral sensorineural hearing loss with EVA, carrying the same novel compound heterozygous mutation of SLC26A4 (c.1644_1645insA and c.2168A>G). Other members of the two families had heterozygous mono‑allelic mutations with normal hearing. However, neither of these mutations were detected in the 60 normal controls. These results are the first, to the best of our knowledge, to link the compound heterozygote mutation, c.1644_1645insA and c.2168A>G, in the SLC26A4 gene to NSHL patients with EVA. The two mutations identified in the present study were located in the anti‑sigma factor antagonist domain, the core region for plasma membrane targeting of anion transporters, which suggested that the reduced or complete loss of SLC26A4 function was the direct cause of hearing loss in the two patients. These results provide a foundation for further elucidating the genetic factors responsible for EVA‑associated NSHL.
Collapse
Affiliation(s)
- Guang-Jie Zhu
- Department of Otorhinolaryngology, Head and Neck Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Lu-Sen Shi
- Department of Otorhinolaryngology, Head and Neck Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Han Zhou
- Department of Otorhinolaryngology, Head and Neck Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Ye Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Jie Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Xia Gao
- Department of Otorhinolaryngology, Head and Neck Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
25
|
Novel pathogenic variants underlie SLC26A4-related hearing loss in a multiethnic cohort. Int J Pediatr Otorhinolaryngol 2017; 101:167-171. [PMID: 28964290 PMCID: PMC5679420 DOI: 10.1016/j.ijporl.2017.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/04/2017] [Accepted: 08/05/2017] [Indexed: 01/26/2023]
Abstract
OBJECTIVES The genetics of sensorineural hearing loss is characterized by a high degree of heterogeneity. Despite this heterogeneity, DNA variants found within SLC26A4 have been reported to be the second most common contributor after those of GJB2 in many populations. METHODS Whole exome sequencing and/or Sanger sequencing of SLC26A4 in 117 individuals with sensorineural hearing loss with or without inner ear anomalies but not with goiter from Turkey, Iran, and Mexico were performed. RESULTS We identified 27 unique SLC26A4 variants in 31 probands. The variants c.1673A > G (p.N558S), c.1708-1G > A, c.1952C > T (p.P651L), and c.2090-1G > A have not been previously reported. The p.N558S variant was detected in two unrelated Mexican families. CONCLUSION A range of SLC26A4 variants without a common recurrent mutation underlies SLC26A4-related hearing loss in Turkey, Iran, and Mexico.
Collapse
|
26
|
Abstract
BACKGROUND Heterozygous mutations in GJB2 (MIM: 121011) encoding the gap junction protein connexin 26 are overrepresented in patient groups suffering from nonsyndromic sensorineural hearing impairment (HI) implying the involvement of additional genetic factors. Mutations in SLC26A4 (MIM: 605646), encoding the protein pendrin can cause both Pendred syndrome and autosomal recessive, nonsyndromic HI locus 4 type sensorineural HI (MIM: 600791). OBJECTIVES Aim of this study was to investigate the role of SLC26A4 coding mutations in a nonsyndromic hearing impairment (NSHI) patient group bearing heterozygous GJB2 35delG mutations. DESIGN We analyzed the 20 coding exons of SLC26A4 in a group of patients (n = 15) bearing heterozygous 35delG mutations and exclusively suffering from congenital HI. RESULTS In a case of bilateral congenital hearing loss we identified a rare, novel SLC26A4 exon 2 splice donor mutation (c.164+1delG) predicted to truncate pendrin in the first cytoplasmic domain, as a compound heterozygote with the pathogenic missense mutation c.1061T>C (p.354F>S; rs111033243). CONCLUSIONS Screening for SLC26A4 mutations may identify the genetic causes of hearing loss in patients bearing heterozygous mutations in GJB2. HYPOTHESIS SLC26A4 coding mutations are genetic causes for nonsyndromic HI in patients bearing heterozygous GJB2 35delG mutations.
Collapse
|
27
|
Lacruz RS, Habelitz S, Wright JT, Paine ML. DENTAL ENAMEL FORMATION AND IMPLICATIONS FOR ORAL HEALTH AND DISEASE. Physiol Rev 2017; 97:939-993. [PMID: 28468833 DOI: 10.1152/physrev.00030.2016] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/16/2022] Open
Abstract
Dental enamel is the hardest and most mineralized tissue in extinct and extant vertebrate species and provides maximum durability that allows teeth to function as weapons and/or tools as well as for food processing. Enamel development and mineralization is an intricate process tightly regulated by cells of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the developing enamel tissue and move as a single forming front in specified directions as they lay down a proteinaceous matrix that serves as a template for crystal growth. Ameloblasts maintain intercellular connections creating a semi-permeable barrier that at one end (basal/proximal) receives nutrients and ions from blood vessels, and at the opposite end (secretory/apical/distal) forms extracellular crystals within specified pH conditions. In this unique environment, ameloblasts orchestrate crystal growth via multiple cellular activities including modulating the transport of minerals and ions, pH regulation, proteolysis, and endocytosis. In many vertebrates, the bulk of the enamel tissue volume is first formed and subsequently mineralized by these same cells as they retransform their morphology and function. Cell death by apoptosis and regression are the fates of many ameloblasts following enamel maturation, and what cells remain of the enamel organ are shed during tooth eruption, or are incorporated into the tooth's epithelial attachment to the oral gingiva. In this review, we examine key aspects of dental enamel formation, from its developmental genesis to the ever-increasing wealth of data on the mechanisms mediating ionic transport, as well as the clinical outcomes resulting from abnormal ameloblast function.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Stefan Habelitz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - J Timothy Wright
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Michael L Paine
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| |
Collapse
|
28
|
Sommen M, Wuyts W, Van Camp G. Molecular diagnostics for hereditary hearing loss in children. Expert Rev Mol Diagn 2017; 17:751-760. [PMID: 28593790 DOI: 10.1080/14737159.2017.1340834] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Hearing loss (HL) is the most common birth defect in industrialized countries with far-reaching social, psychological and cognitive implications. It is an extremely heterogeneous disease, complicating molecular testing. The introduction of next-generation sequencing (NGS) has resulted in great progress in diagnostics allowing to study all known HL genes in a single assay. The diagnostic yield is currently still limited, but has the potential to increase substantially. Areas covered: In this review the utility of NGS and the problems for comprehensive molecular testing for HL are evaluated and discussed. Expert commentary: Different publications have proven the appropriateness of NGS for molecular testing of heterogeneous diseases such as HL. However, several problems still exist, such as pseudogenic background of some genes and problematic copy number variant analysis on targeted NGS data. Another main challenge for the future will be the establishment of population specific mutation-spectra to achieve accurate personalized comprehensive molecular testing for HL.
Collapse
Affiliation(s)
- Manou Sommen
- a Center of Medical Genetics , University of Antwerp & Antwerp University Hospital , Antwerp , Belgium
| | - Wim Wuyts
- a Center of Medical Genetics , University of Antwerp & Antwerp University Hospital , Antwerp , Belgium
| | - Guy Van Camp
- a Center of Medical Genetics , University of Antwerp & Antwerp University Hospital , Antwerp , Belgium
| |
Collapse
|
29
|
Abstract
Congenital hypothyroidism (CH) is the most common inborn endocrine disorder and causes significant morbidity. To date, we are only aware of the molecular basis responsible for the defects in a small portion of patients with CH. A better understanding of the pathophysiology of these cases at the genetic and molecular basis provides useful information for proper counseling to patients and their families a well as for the development of better targeted therapies. This article provides a succinct outline of the pathophysiology and genetics of the known causes of thyroid dysgenesis, dyshormonogenesis, and syndrome of impaired sensitivity to thyroid hormone.
Collapse
Affiliation(s)
- Zeina C Hannoush
- Department of Medicine, University of Miami Miller School of Medicine, 1120 NW 14th Street, Suite 310F, Miami, FL 33136, USA
| | - Roy E Weiss
- Department of Medicine, University of Miami Miller School of Medicine, 1120 NW 14th Street, Suite 310F, Miami, FL 33136, USA.
| |
Collapse
|
30
|
Wang R, Han S, Khan A, Zhang X. Molecular Analysis of Twelve Pakistani Families with Nonsyndromic or Syndromic Hearing Loss. Genet Test Mol Biomarkers 2017; 21:316-321. [PMID: 28281779 DOI: 10.1089/gtmb.2016.0328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AIM To investigate the causative genetic mutations in 12 Pakistani families with nonsyndromic or syndromic hearing loss. METHODS Mutations in the most common causative gene for hearing loss, GJB2, were evaluated by Sanger sequencing. Targeted next-generation sequencing or whole-exome sequencing was used to analyze the genomic DNA samples from 11 probands with hearing loss. Sanger sequencing was performed to verify all identified variants. RESULTS We found pathogenic, or likely to be pathogenic, mutations in all 12 families, including six known mutations in GJB2, SLC26A4, LHFPL5, and USH2A and eight novel mutations in ESPN, MYO7A, LRTOMT, PCDH15, USH2A, or EPS8L2. Notably, four compound heterozygous mutations in the MYO7A and USH2A genes were detected in two consanguineous families. In addition, the novel frameshift mutation in EPS8L2 was first documented in Pakistan. CONCLUSIONS Our study increases the spectrum of mutations associated with hearing loss in the Pakistani population. In addition, our study highlights the fact that compound heterozygous mutations, although rare, can occur in consanguineous families.
Collapse
Affiliation(s)
- Rongrong Wang
- 1 Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, McKusick-Zhang Center for Genetic Medicine, School of Basic Medicine Peking Union Medical College , Beijing, China
| | - Shirui Han
- 2 The Research Center for Medical Genomics, China Medical University , Shenyang, China
| | - Amjad Khan
- 2 The Research Center for Medical Genomics, China Medical University , Shenyang, China
| | - Xue Zhang
- 1 Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, McKusick-Zhang Center for Genetic Medicine, School of Basic Medicine Peking Union Medical College , Beijing, China
| |
Collapse
|
31
|
Mironovich OL, Bliznetz EA, Markova TG, Geptner EN, Lalayants MR, Zelikovich EI, Tavartkiladze GA, Polyakov AV. Results of molecular genetic testing in Russian patients with Pendred syndrome and allelic disorders. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795416120085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
A New Genetic Diagnostic for Enlarged Vestibular Aqueduct Based on Next-Generation Sequencing. PLoS One 2016; 11:e0168508. [PMID: 27997596 PMCID: PMC5173027 DOI: 10.1371/journal.pone.0168508] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
Enlarged vestibular aqueduct (EVA) is one of the most common congenital inner ear malformations and accounts for 1–12% of sensorineural deafness in children and adolescents. Multiple genetic defects contribute to EVA; therefore, early molecular diagnosis is critical for EVA patients to ensure that the most effective treatment strategies are employed. This study explored a new genetic diagnosis method for EVA and applied it to clinic diagnoses of EVA patients. Using next-generation sequencing technology, we set up a multiple polymerase chain reaction enrichment system for target regions of EVA pathogenic genes (SLC26A4, FOXI1, and KCNJ10). Forty-six EVA samples were sequenced by this system. Variants were detected in 87.0% (40/46) of cases, including three novel variants (SLC26A4 c.923_929del, c.1002-8C>G, and FOXI1 c.519C>A). Biallelic potential pathogenic variants were detected in 27/46 patient samples, leading to a purported diagnostic rate of 59%. All results were verified by Sanger sequencing. Our target region capture system was validated to amplify and measure SLC26A4, FOXI1, and KCNJ10 in one reaction system. The result supplemented the mutation spectrum of EVA. Thus, this strategy is an economic, rapid, accurate, and reliable method with many useful applications in the clinical diagnosis of EVA patients.
Collapse
|
33
|
Mapping pathogenic mutations suggests an innovative structural model for the pendrin (SLC26A4) transmembrane domain. Biochimie 2016; 132:109-120. [PMID: 27771369 DOI: 10.1016/j.biochi.2016.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/03/2016] [Indexed: 12/16/2022]
Abstract
Human pendrin (SLC26A4) is an anion transporter mostly expressed in the inner ear, thyroid and kidney. SLC26A4 gene mutations are associated with a broad phenotypic spectrum, including Pendred Syndrome and non-syndromic hearing loss with enlarged vestibular aqueduct (ns-EVA). No experimental structure of pendrin is currently available, making phenotype-genotype correlations difficult as predictions of transmembrane (TM) segments vary in number. Here, we propose a novel three-dimensional (3D) pendrin transmembrane domain model based on the SLC26Dg transporter. The resulting 14 TM topology was found to include two non-canonical transmembrane segments crucial for pendrin activity. Mutation mapping of 147 clinically validated pathological mutations shows that most affect two previously undescribed TM regions.
Collapse
|
34
|
Vestibular function is associated with residual low-frequency hearing loss in patients with bi-allelic mutations in the SLC26A4 gene. Hear Res 2016; 335:33-39. [DOI: 10.1016/j.heares.2016.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/20/2016] [Accepted: 02/15/2016] [Indexed: 11/22/2022]
|
35
|
Tong GX, Chang Q, Hamele-Bena D, Carew J, Hoffman RS, Nikiforova MN, Nikiforov YE. Targeted Next-Generation Sequencing Analysis of a Pendred Syndrome-Associated Thyroid Carcinoma. Endocr Pathol 2016; 27:70-5. [PMID: 26744121 DOI: 10.1007/s12022-015-9413-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pendred syndrome is an autosomal recessive disorder characterized by hearing loss and goiter and is caused by bi-allelic mutations (homozygous or compound heterozygous) of the PDS (SLC26A4) gene. The incidence of Pendred syndrome is 7.5-10/100,000 in the general population, and it carries a 1 % risk of developing thyroid carcinoma. Herein, we report a case of a patient with Pendred syndrome who developed a follicular variant of papillary thyroid carcinoma (FVPTC)-that is approximately at an odd of 1/1,000,000. Targeted next-generation sequencing with ThyroSeq v2 was performed on the tumor, and only a TP53 mutation (TP53 p.R175H) was identified. The mutation was limited to the tumor nodule of FVPTC as shown by immunohistochemistry. This report represents the first extensive molecular study of a Pendred syndrome-associated thyroid carcinoma. The evidences support that thyroid carcinomas arising from dyshormonogenetic goiter require additional genetic alteration in addition to the purported thyroid-stimulating hormone (TSH) overstimulation. It is intrigue to note that the mutant p53 is involved in the development of a low-grade malignant thyroid tumor as FVPTC in this patient.
Collapse
Affiliation(s)
- Guo-Xia Tong
- Department of Pathology and Laboratory Medicine, and Center for Thyroid and Parathyroid disease, Staten Island University Hospital, 475 Seaview Avenue, New York, NY, 10305, USA.
| | - Qing Chang
- Department of Pathology and Laboratory Medicine, and Center for Thyroid and Parathyroid disease, Staten Island University Hospital, 475 Seaview Avenue, New York, NY, 10305, USA
| | - Diane Hamele-Bena
- Department of Pathology and Cell Biology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - John Carew
- Department of Pathology and Laboratory Medicine, and Center for Thyroid and Parathyroid disease, Staten Island University Hospital, 475 Seaview Avenue, New York, NY, 10305, USA
| | - Richard S Hoffman
- Department of Pathology and Laboratory Medicine, and Center for Thyroid and Parathyroid disease, Staten Island University Hospital, 475 Seaview Avenue, New York, NY, 10305, USA
| | - Marina N Nikiforova
- Department of Pathology, University of Pittsburgh Medical Center, 3477 Euler Way, Pittsburgh, PA, 15213, USA
| | - Yuri E Nikiforov
- Department of Pathology, University of Pittsburgh Medical Center, 3477 Euler Way, Pittsburgh, PA, 15213, USA
| |
Collapse
|
36
|
Svidnicki MCCM, Silva-Costa SM, Ramos PZ, dos Santos NZP, Martins FTA, Castilho AM, Sartorato EL. Screening of genetic alterations related to non-syndromic hearing loss using MassARRAY iPLEX® technology. BMC MEDICAL GENETICS 2015; 16:85. [PMID: 26399936 PMCID: PMC4581412 DOI: 10.1186/s12881-015-0232-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 09/15/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recent advances in molecular genetics have enabled to determine the genetic causes of non-syndromic hearing loss, and more than 100 genes have been related to the phenotype. Due to this extraordinary genetic heterogeneity, a large percentage of patients remain without any molecular diagnosis. This condition imply the need for new methodological strategies in order to detect a greater number of mutations in multiple genes. In this work, we optimized and tested a panel of 86 mutations in 17 different genes screened using a high-throughput genotyping technology to determine the molecular etiology of hearing loss. METHODS The technology used in this work was the MassARRAY iPLEX® platform. This technology uses silicon chips and DNA amplification products for accurate genotyping by mass spectrometry of previous reported mutations. The generated results were validated using conventional techniques, as direct sequencing, multiplex PCR and RFLP-PCR. RESULTS An initial genotyping of control subjects, showed failures in 20 % of the selected alterations. To optimize these results, the failed tests were re-designed and new primers were synthesized. Then, the specificity and sensitivity of the panel demonstrated values above 97 %. Additionally, a group of 180 individuals with NSHL without a molecular diagnosis was screened to test the diagnostic value of our panel, and mutations were identified in 30 % of the cases. In 20 % of the individuals, it was possible to explain the etiology of the HL. Mutations in GJB2 gene were the most prevalent, followed by other mutations in in SLC26A4, CDH23, MT-RNR1, MYO15A, and OTOF genes. CONCLUSIONS The MassARRAY technology has the potential for high-throughput identification of genetic variations. However, we demonstrated that optimization is required to increase the genotyping success and accuracy. The developed panel proved to be efficient and cost-effective, being suitable for applications involving the molecular diagnosis of hearing loss.
Collapse
Affiliation(s)
- Maria Carolina Costa Melo Svidnicki
- Human Molecular Genetics Laboratory, Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Sueli Matilde Silva-Costa
- Human Molecular Genetics Laboratory, Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Priscila Zonzini Ramos
- Human Molecular Genetics Laboratory, Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Nathalia Zocal Pereira dos Santos
- Human Molecular Genetics Laboratory, Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Fábio Tadeu Arrojo Martins
- Human Molecular Genetics Laboratory, Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Arthur Menino Castilho
- ENT Department, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Edi Lúcia Sartorato
- Human Molecular Genetics Laboratory, Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
37
|
Tsukada K, Nishio SY, Hattori M, Usami SI. Ethnic-specific spectrum of GJB2 and SLC26A4 mutations: their origin and a literature review. Ann Otol Rhinol Laryngol 2015; 124 Suppl 1:61S-76S. [PMID: 25999548 DOI: 10.1177/0003489415575060] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The mutation spectrum of the GJB2 and SLC26A4 genes, the 2 most common genes causing deafness, are known to be ethnic specific. In this study, the spectrum of the reported GJB2 and SLC26A4 mutations in different populations are reviewed and considered from a human migration perspective. METHODS Fifty-two and 17 articles on GJB2 and SLC26A4 mutations, respectively, were reviewed through the PubMed database from April 1996 to September 2014. The 4 most prevalent mutations were selected and compared. A cluster analysis was subsequently performed for these selected mutations. RESULTS The present review of frequent mutations shows the ethnic-specific GJB2 and SLC26A4 gene mutation spectrum. A cluster analysis of the GJB2 and SLC26A4 genes revealed similarities between ethnic populations. CONCLUSION The mutation spectrum reviewed in this study clearly indicated that the frequent mutations in the GJB2 and SLC26A4 genes are consistent with the founder mutation hypothesis. A comparison with the Y-chromosome phylogenetic tree indicated that these mutations may have occurred during human migration.
Collapse
Affiliation(s)
- Keita Tsukada
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shin-Ya Nishio
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Mitsuru Hattori
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shin-Ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
38
|
Government-funded universal newborn hearing screening and genetic analyses of deafness predisposing genes in Taiwan. Int J Pediatr Otorhinolaryngol 2015; 79:584-90. [PMID: 25724631 DOI: 10.1016/j.ijporl.2015.01.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/09/2015] [Accepted: 01/31/2015] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the association of eight connexin genes (GJB2, GJB4, GJA1P1, GJB6, GJB3, GJA1, GJB1, and GJC3) and the SLC26A4 gene with congenital hearing impairment among infants in a universal newborn hearing screening program. METHOD From September 2009 to October 2013, the consecutive neonates born in all six branches of Taipei City Hospital were enrolled. Infants who failed the newborn hearing screening and were diagnosed with hearing impairment underwent the genetic analyses. RESULT 15,404 neonates were born at Taipei City Hospital, and 15,345 neonates underwent newborn hearing screening. Among them, 32 infants were diagnosed with unilateral or bilateral hearing impairment. 26 of them underwent analyses of the connexin genes and the SLC26A4 gene. Of the connexin genes, two infants carried a GJB3 mutation (heterozygous c.580G>A and heterozygous c.520G>A, respectively). Only one infant carried a GJB2 mutation (homozygous c.235delC). One infant carried a GJA1P1 mutation (heterozygous c.929delC) and another carried a GJB4 mutation (heterozygous c.302G>A). Additionally, one infant carried a GJA1P1 novel variant (heterozygous c.1081C>T). Another infant carried a GJA1 novel variant (heterozygous c.1-33C>G). Of the SLC26A4 gene, one infant carried heterozygous c.919-2A>G mutation and a novel variant (heterozygous c.164+1G>C), and high-resolution computed tomography (HRCT) of the temporal bone revealed bilateral enlarged vestibular aqueducts. One infant carried heterozygous c.919-2A>G mutation and no inner ear anomalies were demonstrated by HRCT of the temporal bone. Another infant carried a novel variant (heterozygous c.818C>T). CONCLUSION These results provide a genetic profile of the connexin genes and SLC26A4 gene among infants with hearing impairment detected by a universal newborn hearing screening program in Taiwan. Further studies and long-term follow up of this cohort are warranted to determine the pathogenicity of each variants and the long-term hearing consequence.
Collapse
|
39
|
Yazdanpanahi N, Tabatabaiefar MA, Bagheri N, Azadegan Dehkordi F, Farrokhi E, Hashemzadeh Chaleshtori M. The role and spectrum of SLC26A4 mutations in Iranian patients with autosomal recessive hereditary deafness. Int J Audiol 2014; 54:124-30. [PMID: 25290043 DOI: 10.3109/14992027.2014.944276] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To determine the prevalence and types of SLC26A4 mutations and the relevant phenotypes in a series of Iranian deaf patients. DESIGN A descriptive laboratory study. STUDY SAMPLE One hundred and twenty-one families including 60 unrelated patients and 61 unrelated multiplex families with autosomal recessive deafness were included. In the 61 multiplex families, linkage was conducted for short tandem repeats (STRs) of the DFNB4. Selected individuals from the linked families and all of the 60 deaf individuals were subjected to sequencing of SLC26A4. RESULTS Seven out of the 61 (11.5%) families were linked to the locus which upon further inquiry led to identification of eight different mutations. Also, five out of the 60 (8.3%) patients were positive for the mutations. The SLC26A4 mutations clarified in 9.1% (12 families) of total investigated alleles included: c.2106delG, c.65-66insT, c.881-882delAC, c.863-864insT, c.1226G> A, c.1238A> G, c.1334T> G, c.1790T> C, c.1489G> A, c.919-2A> G (IVS7-2A> G), c.1412delT, and c.1197delT. Six out of 12 (50%) families with mutations were confirmed to be Pendred syndrome (PS). CONCLUSIONS The results probably suggest a high prevalence and specificity of SLC26A4 mutations among Iranian deaf patients. Molecular study of SLC26A4 may lead to elucidation of the population-specific mutation profile which is of importance in diagnostics of deafness.
Collapse
Affiliation(s)
- Nasrin Yazdanpanahi
- * Department of Biochemistry, Falavarjan Branch, Islamic Azad University , Isfahan , Iran
| | | | | | | | | | | |
Collapse
|
40
|
Price GD, Howitt SM. Topology mapping to characterize cyanobacterial bicarbonate transporters: BicA (SulP/SLC26 family) and SbtA. Mol Membr Biol 2014; 31:177-82. [DOI: 10.3109/09687688.2014.953222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Ladsous M, Vlaeminck-Guillem V, Dumur V, Vincent C, Dubrulle F, Dhaenens CM, Wémeau JL. Analysis of the thyroid phenotype in 42 patients with Pendred syndrome and nonsyndromic enlargement of the vestibular aqueduct. Thyroid 2014; 24:639-48. [PMID: 24224479 DOI: 10.1089/thy.2013.0164] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Pendred syndrome (PS), a recessive disorder caused by mutations in the SLC26A4 (PDS) gene, is associated with deafness and goiter. SLC26A4 mutations have also been identified in patients exhibiting isolated sensorineural hearing loss without apparent thyroid abnormality (nonsyndromic enlargement of the vestibular aqueduct; nonsyndromic EVA). Our aim was to describe systematically the thyroidal phenotypes and the SLC26A4 genotypes of patients presenting with PS or nonsyndromic EVA. METHODS Nineteen patients with PS and 23 patients with nonsyndromic EVA, aged 5-53 years, were included. They underwent thyroid evaluation (physical examination, biological thyroid function tests, measurement of thyroglobulin level, thyroid ultrasonography, and thyroid (123)I scintigraphy with perchlorate discharge test), otological evaluation, and SLC26A4 mutation screening. RESULTS In 19 patients with PS, goiter was identified in 15 (79%) and hypothyroidism in 15 (79%); hypothyroidism was subclinical in four patients and congenital in six patients. The perchlorate discharge test (PDT) was positive in 10/16 (63%). Morphological evaluation of the inner ear using MRI and/or CT showed bilateral EVA in 15/15 PS patients. Mutation screening revealed two SLC26A4 mutant alleles in all 19 PS patients that were homozygous in two families and compound heterozygous in 12 families. In the 23 patients with nonsyndromic EVA, systematic thyroid evaluation found no abnormalities except for slightly increased thyroglobulin levels in two patients. SLC26A4 mutations were identified in 9/23 (39%). Mutations were biallelic in two (compound heterozygous) and monoallelic in seven patients. CONCLUSION The thyroid phenotype is widely variable in PS. SLC26A4 mutation screening is needed in patients exhibiting PS or nonsyndromic EVA. PS is associated with biallelic SLC26A4 mutations and nonsyndromic EVA with no, monoallelic, or biallelic SLC26A4 mutations. Systematic thyroid evaluation is recommended in patients with nonsyndromic EVA associated with one or two SLC26A4 mutations. We propose using a combination of three parameters to define and diagnose PS: (i) sensorineural deafness with bilateral EVA; (ii) thyroid abnormality comprising goiter and/or hypothyroidism and/or a positive PDT; (iii) biallelic SLC26A4 mutations.
Collapse
Affiliation(s)
- Miriam Ladsous
- 1 Department of Endocrinology, Regional University Hospital Center (CHRU) of Lille, Lille, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Mutation spectrum and genotype-phenotype correlation of hearing loss patients caused by SLC26A4 mutations in the Japanese: a large cohort study. J Hum Genet 2014; 59:262-8. [PMID: 24599119 PMCID: PMC4521295 DOI: 10.1038/jhg.2014.12] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/29/2013] [Accepted: 01/05/2014] [Indexed: 11/08/2022]
Abstract
Mutations in SLC26A4 cause a broad phenotypic spectrum, from typical Pendred syndrome to nonsyndromic hearing loss associated with enlarged vestibular aqueduct. Identification of these mutations is important for accurate diagnosis, proper medical management and appropriate genetic counseling and requires updated information regarding spectrum, clinical characteristics and genotype-phenotype correlations, based on a large cohort. In 100 patients with bilateral enlarged vestibular aqueduct among 1511 Japanese hearing loss probands registered in our gene bank, goiter data were available for 79, of whom 15 had Pendred syndrome and 64 had nonsyndromic hearing loss. We clarified the mutation spectrum for the SLC26A4 mutations and also summarized hearing levels, progression, fluctuation and existence of genotype-phenotype correlation. SLC26A4 mutations were identified in 82 of the 100 patients (82.0%). Of the Pendred syndrome patients, 93% (14/15) were carriers, as were 77% (49/64) of the nonsyndromic hearing loss patients. Clinical characteristics of patients with SLC26A4 mutations were congenital, fluctuating and progressive hearing loss usually associated with vertigo and/or goiter. We found no genotype-phenotype correlations, indicating that, unlike in the case of GJB2 mutations, the phenotype cannot be predicted from the genotype. Our mutation analysis confirmed the importance of mutations in the SLC26A4 gene among hearing loss patients with enlarged vestibular aqueduct and revealed the mutation spectrum, essential information when performing genetic testing.
Collapse
|
43
|
Balmiki N, Bankura B, Guria S, Das TK, Pattanayak AK, Sinha A, Chakrabarti S, Chowdhury S, Das M. Genetic analysis of thyroid peroxidase (TPO) gene in patients whose hypothyroidism was found in adulthood in West Bengal, India. Endocr J 2014; 61:289-96. [PMID: 24420335 DOI: 10.1507/endocrj.ej13-0237] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Recent research has revealed that genetic defects due to mutation in the Thyroid Peroxidase (TPO ) gene can lead to thyroid dysfunction in the population. We aimed to study the association between genetic defects in TPO gene and patients with hypothyroidism found in adult age. Two hundred consecutive treatment naive hypothyroid patients (age ≥ 18 years) (cases) who were negative for anti TPO antibody and their corresponding sex and age matched two hundred normal individuals (controls) were enrolled. The 17 exonic regions of the TPO gene were amplified and sequenced directly. We identified 6 different previously known single nucleotide polymorphisms (SNPs) and 2 novel deletions in TPO gene. Two of the six SNPs revealed a significant association with hypothyroidism; Thr725Pro (rs732609) and Asp666Asp (rs1126797). The c.2173C allele of the Thr725Pro in TPO showed a significant association among hypothyroid patients compared to controls (p = 0.01; Odds ratio=1.45; 95% CI: 1.09-1.92) suggesting it to be a potential risk allele toward disease predisposition. Analysis of genotype frequencies of the polymorphism between the two groups demonstrated CC as a potential risk genotype (p = 0.006; Odds ratio=1.95; 95% CI: 1.2-3.15) for the disease while another SNP Asp666Asp (c.1998T allele) showed protectiveness towards the disease (p = 0.006; Odds ratio = 0.67; 95%CI: 0.50-0.89). To our knowledge, this is first study reporting the role of TPO gene with hypothyroidism in a population of Asian Indian origin. The study threw up the possibility of TPO gene polymorphisms as a possible pathogenetic mechanism of hypothyroidism.
Collapse
Affiliation(s)
- Nisha Balmiki
- Department of Zoology, University of Calcutta, Kolkata-700 019, India
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cordat E, Reithmeier RA. Structure, Function, and Trafficking of SLC4 and SLC26 Anion Transporters. CURRENT TOPICS IN MEMBRANES 2014; 73:1-67. [DOI: 10.1016/b978-0-12-800223-0.00001-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Huang CJ, Lei TH, Chang WL, Tu TY, Shiao AS, Chiu CY, Jap TS. A Novel mutation in the SLC26A4 gene in a Chinese family with Pendred syndrome. Int J Pediatr Otorhinolaryngol 2013; 77:1495-9. [PMID: 23838540 DOI: 10.1016/j.ijporl.2013.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/15/2013] [Accepted: 06/18/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate the mutations in the SLC26A4 gene in a Chinese patient with Pendred syndrome. METHODS The diagnosis of Pendred syndrome was confirmed by the family history, pure tone audiogram, perchlorate discharge test (PDT), and computed tomography (CT) of the temporal bone. DNA extraction, PCR and DNA sequencing were performed according to standard procedures. Mutations in the SLC26A4 gene were compared with 100 unrelated subjects to exclude common polymorphism. Splice-site mutation was further confirmed by restriction enzyme length polymorphism (RFLP) with the specifically designed primers. RESULTS The proband presented with typical features of bilateral sensorineural deafness since childhood and goiter development in the early adulthood. Thyroid studies disclosed euthyroidism with elevated thyroglobulin, but negative for PDT. Marked enlargement of bilateral vestibular aqueduct (>1.5 mm) was found by CT of the temporal bone. A novel SLC26A4 splice-site mutation c.1263+1G>A (IVS10+1G>A) was identified in compound heterozygosity with the missense mutation c.1079C>T (p.A360V) in the proband. Both mutations were not found in the 100 unrelated Chinese. CONCLUSIONS Our results support previous findings that Pendred syndrome can be caused by compound heterozygous mutation in the SLC26A4 gene, in which IVS10+1G>A is a novel pathogenic mutation.
Collapse
MESH Headings
- Asian People/genetics
- Case-Control Studies
- China
- DNA Mutational Analysis
- Female
- Genetic Predisposition to Disease
- Goiter, Nodular/diagnosis
- Goiter, Nodular/ethnology
- Goiter, Nodular/genetics
- Hearing Loss, Sensorineural/diagnosis
- Hearing Loss, Sensorineural/ethnology
- Hearing Loss, Sensorineural/genetics
- Heterozygote
- Humans
- Male
- Membrane Transport Proteins/genetics
- Mutation, Missense/genetics
- Pedigree
- Perchlorates
- Polymorphism, Genetic
- Polymorphism, Restriction Fragment Length
- Reference Values
- Sequence Analysis, DNA
- Sulfate Transporters
- Tomography, X-Ray Computed
Collapse
Affiliation(s)
- Chun-Jui Huang
- Division of Endocrinology & Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
46
|
Anion translocation through an Slc26 transporter mediates lumen expansion during tubulogenesis. Proc Natl Acad Sci U S A 2013; 110:14972-7. [PMID: 23980138 DOI: 10.1073/pnas.1220884110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lumen formation is a critical event in biological tube formation, yet its molecular mechanisms remain poorly understood. Specifically, how lumen expansion is coordinated with other processes of tubulogenesis is not well known, and the role of membrane transporters in tubulogenesis during development has not been adequately addressed. Here we identify a solute carrier 26 (Slc26) family protein as an essential regulator of tubulogenesis using the notochord of the invertebrate chordate Ciona intestinalis as a model. Ci-Slc26aα is indispensable for lumen formation and expansion, but not for apical/luminal membrane formation and lumen connection. Ci-Slc26aα acts as an anion transporter, mediating the electrogenic exchange of sulfate or oxalate for chloride or bicarbonate and electroneutral chloride:bicarbonate exchange. Mutant rescue assays show that this transport activity is essential for Ci-Slc26aα's in vivo function. Our work reveals the consequences and relationships of several key processes in lumen formation, and establishes an in vivo assay for studying the molecular basis of the transport properties of SLC26 family transporters and their related diseases.
Collapse
|
47
|
Landa P, Differ AM, Rajput K, Jenkins L, Bitner-Glindzicz M. Lack of significant association between mutations of KCNJ10 or FOXI1 and SLC26A4 mutations in Pendred syndrome/enlarged vestibular aqueducts. BMC MEDICAL GENETICS 2013; 14:85. [PMID: 23965030 PMCID: PMC3765178 DOI: 10.1186/1471-2350-14-85] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 08/06/2013] [Indexed: 12/11/2022]
Abstract
Background Pendred syndrome is a common autosomal recessive disorder causing deafness. Features include sensorineural hearing impairment, goitre, enlarged vestibular aqueducts (EVA) and occasionally Mondini dysplasia. Hearing impairment and EVA may occur in the absence of goitre or thyroid dyshormonogensis in a condition known as non-syndromic EVA. A significant number of patients with Pendred syndrome and non-syndromic EVA show only one mutation in SLC26A4. Two genes, KCNJ10, encoding an inwardly rectifying potassium channel and FOXI1, a transcriptional factor gene, are thought to play a role in the disease phenotypes. Methods Using Polymerase Chain Reaction and Sanger sequencing, sixty-eight patients with monoallelic mutations of SLC26A4 were tested for mutations in KCNJ10 and FOXI1. Results Two variants were observed in the KCNJ10 gene, p.Arg271Cys in three patients and p.Arg18Gln in one patient; only one variant, p.Arg123Trp was observed in the FOXI1 gene in a single patient. Both p.Arg271Cys and p.Arg18Gln are likely to be polymorphisms as judged by their frequency in the general population. Conclusion Therefore we found no evidence for a significant association between mutations of KCNJ10 and FOXI1 with SLC26A4. It was also observed that the variant, p.Arg271Cys in KCNJ10, previously thought to have a protective effect against seizure susceptibility, was found in a patient with Pendred syndrome with co-existing epilepsy.
Collapse
Affiliation(s)
- Priya Landa
- North East Thames Regional Genetics Service Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, 37 Queen Square,York House, London WC1N 3BH, UK
| | | | | | | | | |
Collapse
|
48
|
Cangul H, Aycan Z, Olivera-Nappa A, Saglam H, Schoenmakers NA, Boelaert K, Cetinkaya S, Tarim O, Bober E, Darendeliler F, Bas V, Demir K, Aydin BK, Kendall M, Cole T, Högler W, Chatterjee VKK, Barrett TG, Maher ER. Thyroid dyshormonogenesis is mainly caused by TPO mutations in consanguineous community. Clin Endocrinol (Oxf) 2013; 79:275-81. [PMID: 23236987 DOI: 10.1111/cen.12127] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 10/29/2012] [Accepted: 12/06/2012] [Indexed: 12/31/2022]
Abstract
OBJECTIVE In this study, we aimed to investigate the genetic background of thyroid dyshormonogenesis (TDH). CONTEXT Thyroid dyshormonogenesis comprises 10-15% of all cases of congenital hypothyroidism (CH), which is the most common neonatal endocrine disorder, and might result from disruptions at any stage of thyroid hormone biosynthesis. Currently seven genes (NIS, TPO, PDS, TG, IYD, DUOX2 and DUOXA2) have been implicated in the aetiology of the disease. DESIGN As TDH is mostly inherited in an autosomal recessive manner, we planned to conduct the study in consanguineous/multi-case families. PATIENTS One hundred and four patients with congenital TDH all coming from consanguineous and/or multi-case families. MEASUREMENTS Initially, we performed potential linkage analysis of cases to all seven causative-TDH loci as well as direct sequencing of the TPO gene in cases we could not exclude linkage to this locus. In addition, in silico analyses of novel missense mutations were carried out. RESULTS TPO had the highest potential for linkage and we identified 21 TPO mutations in 28 TDH cases showing potential linkage to this locus. Four of 10 distinct TPO mutations detected in this study were novel (A5T, Y55X, E596X, D633N). CONCLUSIONS This study underlines the importance of molecular genetic studies in diagnosis, classification and prognosis of CH and proposes a comprehensive mutation screening by new sequencing technology in all newly diagnosed primary CH cases.
Collapse
Affiliation(s)
- Hakan Cangul
- Department of Medical Genetics, Bahcesehir University School of Medicine, Istanbul, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
de Moraes VCS, dos Santos NZP, Ramos PZ, Svidnicki MCCM, Castilho AM, Sartorato EL. Molecular analysis of SLC26A4 gene in patients with nonsyndromic hearing loss and EVA: identification of two novel mutations in Brazilian patients. Int J Pediatr Otorhinolaryngol 2013; 77:410-3. [PMID: 23273637 DOI: 10.1016/j.ijporl.2012.11.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022]
Abstract
UNLABELLED The SLC26A4 gene has been described as the second gene involved in most cases of sensorineural non-syndromic hearing loss, since the first is the GJB2 gene. Recessive mutations in the SLC26A4 gene encoding pendrin, an anion transporter, are responsible for non-syndromic hearing loss associated with an enlarged vestibular aqueduct (EVA) and Pendred syndrome, which causes early hearing loss and affects the thyroid gland. Typically, the hearing loss is profound and prelingual. However, in some individuals, hearing impairment may develop later in childhood and then progress. Over 200 different SLC26A4 mutations have been reported, with each ethnic population having its own distinctive mutant allele series including a few prevalent founder mutations. OBJECTIVE Perform the screening of the 20 coding exons of SLC26A4 gene in Brazilian deaf individuals with EVA. PATIENTS AND METHODS Among the 23 unrelated non-syndromic hearing loss Brazilian patients with EVA, in whom no deafness-causing mutations of the GJB2 gene, the direct sequencing was performed to screen the 20 exons and their flanking regions of the SLC26A4 gene. RESULTS The sequencing results revealed 9 cases (39%) carrying 13 different SLC26A4 mutations, including 11 known mutations (279delT, V138F, T193I, IVS8+1G>A, T410M, Q413R, R409H, L445W, IVS15+5G>A, V609G, and R776C) and 2 novel mutation (G149R and P142L). CONCLUSION The SLC26A4 mutations have a high carrying rate in non-syndromic hearing loss Brazilian patients. The identification of a disease-causing mutation can be used to establish a genotypic diagnosis and provide important information to the patients and their families.
Collapse
Affiliation(s)
- Vanessa Cristine Sousa de Moraes
- Center of Molecular Biology and Genetic Engineering (CBMEG), Molecular Biology Laboratory, State University of Campinas - UNICAMP, Campinas, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
50
|
Masuda S, Usui S, Matsunaga T. High prevalence of inner-ear and/or internal auditory canal malformations in children with unilateral sensorineural hearing loss. Int J Pediatr Otorhinolaryngol 2013. [PMID: 23200870 DOI: 10.1016/j.ijporl.2012.11.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Radiological and genetic examination has recently advanced for diagnosis of congenital hearing loss. The aim of this study was to elucidate the prevalence of inner-ear and/or internal auditory canal malformations in children with unilateral sensorineural hearing loss (USNHL) for better management of hearing loss and genetic and lifestyle counseling. METHODS We conducted a retrospective study of charts and temporal bone computed tomography (CT) findings of 69 consecutive patients 0-15 years old with USNHL. In two cases, genetic examination was conducted. RESULTS Of these patients, 66.7% had inner-ear and/or internal auditory canal malformations. The prevalence of malformations in infants (age <1 year) was 84.6%, which was significantly higher than that in children 1-15 years old (55.8%; p<0.01). Almost half of the patients (32; 46.4%) had cochlear nerve canal stenosis; 13 of them had cochlear nerve canal stenosis alone, and in 19 it accompanied other malformations. Internal auditory canal malformations were observed in 22 subjects (31.8%), 14 (20.3%) had cochlear malformations, and 5 (7.2%) had vestibular/semicircular canal malformations. These anomalies were seen only in the affected ear, except in two of five patients with vestibular and/or semicircular canal malformations. Two patients (2.9%) had bilateral enlarged vestibular aqueducts. Mutations were found in SLC26A4 in one of the two patients with bilateral large vestibular aqueducts. The prevalence of a narrow internal auditory canal was significantly higher in subjects with cochlear nerve canal stenosis (50.0%) than in subjects with normal cochlear nerve canals (11.1%; p<0.01). There were no correlations between the type and number of malformations and hearing level. CONCLUSIONS The prevalence of inner-ear and/or internal auditory canal malformations detected by high-resolution temporal bone CT in children with USNHL was very high. Radiological and genetic examination provided important information to consider the pathogenesis and management of hearing loss. Temporal bone CT should be recommended to children with USNHL early in life. SLC26A4 mutation also should be examined in cases with bilateral enlarged vestibular aqueduct.
Collapse
Affiliation(s)
- Sawako Masuda
- Department of Otorhinolaryngology, Institute for Clinical Research, National Mie Hospital, Tsu, Mie, Japan.
| | | | | |
Collapse
|