1
|
Bobone S, Storti C, Fulci C, Damiani A, Innamorati C, Roversi D, Calligari P, Pannone L, Martinelli S, Tartaglia M, Bocchinfuso G, Formaggio F, Peggion C, Biondi B, Stella L. Fluorescent Labeling Can Significantly Perturb Measured Binding Affinity and Selectivity of Peptide-Protein Interactions. J Phys Chem Lett 2024; 15:10252-10257. [PMID: 39360979 DOI: 10.1021/acs.jpclett.4c01767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Peptide-based drugs are powerful inhibitors of therapeutically relevant protein-protein interactions. Their affinity and selectivity for target proteins are commonly assessed using fluorescence-based assays such as anisotropy/polarization or quantitative microarrays. This study reveals that labeling can perturb peptide/protein binding by more than 1 order of magnitude. We have recently developed inhibitors targeted to the N-terminal Src homology 2 (SH2) domain of oncogenic phosphatase SHP2. Despite their high activity and selectivity, these molecules demonstrated an undesired interaction with the SH2 domain of another protein, known as APS, in a fluorescence microarray assay. Fluorescence anisotropy measurement in solution showed that the dissociation constant was significantly influenced by labeling (∼10 times), and the effect depended on the specific fluorophore and SH2 domain. Notably, displacement assays performed with unlabeled peptides were successfully used to eliminate these artifacts, demonstrating that the inhibitors' affinity for their target is over 1,000 times higher than for APS.
Collapse
Affiliation(s)
- Sara Bobone
- Tor Vergata University of Rome, 00133 Rome, Italy
| | - Claudia Storti
- Tor Vergata University of Rome, 00133 Rome, Italy
- University of Padova, 35131 Padova, Italy
| | - Chiara Fulci
- Tor Vergata University of Rome, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy
| | | |
Collapse
|
2
|
van Vlimmeren AE, Voleti R, Chartier CA, Jiang Z, Karandur D, Humphries PA, Lo WL, Shah NH. The pathogenic T42A mutation in SHP2 rewires the interaction specificity of its N-terminal regulatory domain. Proc Natl Acad Sci U S A 2024; 121:e2407159121. [PMID: 39012820 PMCID: PMC11287265 DOI: 10.1073/pnas.2407159121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024] Open
Abstract
Mutations in the tyrosine phosphatase Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) are associated with a variety of human diseases. Most mutations in SHP2 increase its basal catalytic activity by disrupting autoinhibitory interactions between its phosphatase domain and N-terminal SH2 (phosphotyrosine recognition) domain. By contrast, some disease-associated mutations located in the ligand-binding pockets of the N- or C-terminal SH2 domains do not increase basal activity and likely exert their pathogenicity through alternative mechanisms. We lack a molecular understanding of how these SH2 mutations impact SHP2 structure, activity, and signaling. Here, we characterize five SHP2 SH2 domain ligand-binding pocket mutants through a combination of high-throughput biochemical screens, biophysical and biochemical measurements, and molecular dynamics simulations. We show that while some of these mutations alter binding affinity to phosphorylation sites, the T42A mutation in the N-SH2 domain is unique in that it also substantially alters ligand-binding specificity, despite being 8 to 10 Å from the specificity-determining region of the SH2 domain. This mutation exerts its effect on sequence specificity by remodeling the phosphotyrosine-binding pocket, altering the mode of engagement of both the phosphotyrosine and surrounding residues on the ligand. The functional consequence of this altered specificity is that the T42A mutant has biased sensitivity toward a subset of activating ligands and enhances downstream signaling. Our study highlights an example of a nuanced mechanism of action for a disease-associated mutation, characterized by a change in protein-protein interaction specificity that alters enzyme activation.
Collapse
Affiliation(s)
- Anne E. van Vlimmeren
- Department of Chemistry, Columbia University, New York, NY10027
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Rashmi Voleti
- Department of Chemistry, Columbia University, New York, NY10027
| | | | - Ziyuan Jiang
- Department of Chemistry, Columbia University, New York, NY10027
| | - Deepti Karandur
- Department of Biochemistry, Vanderbilt University, Nashville, TN37232
| | - Preston A. Humphries
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Wan-Lin Lo
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Neel H. Shah
- Department of Chemistry, Columbia University, New York, NY10027
| |
Collapse
|
3
|
van Vlimmeren AE, Voleti R, Chartier CA, Jiang Z, Karandur D, Humphries PA, Lo WL, Shah NH. The pathogenic T42A mutation in SHP2 rewires the interaction specificity of its N-terminal regulatory domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.10.548257. [PMID: 37502916 PMCID: PMC10369915 DOI: 10.1101/2023.07.10.548257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Mutations in the tyrosine phosphatase SHP2 are associated with a variety of human diseases. Most mutations in SHP2 increase its basal catalytic activity by disrupting auto-inhibitory interactions between its phosphatase domain and N-terminal SH2 (phosphotyrosine recognition) domain. By contrast, some disease-associated mutations located in the ligand-binding pockets of the N- or C-terminal SH2 domains do not increase basal activity and likely exert their pathogenicity through alternative mechanisms. We lack a molecular understanding of how these SH2 mutations impact SHP2 structure, activity, and signaling. Here, we characterize five SHP2 SH2 domain ligand-binding pocket mutants through a combination of high-throughput biochemical screens, biophysical and biochemical measurements, and molecular dynamics simulations. We show that, while some of these mutations alter binding affinity to phosphorylation sites, the T42A mutation in the N-SH2 domain is unique in that it also substantially alters ligand-binding specificity, despite being 8-10 Å from the specificity-determining region of the SH2 domain. This mutation exerts its effect on sequence specificity by remodeling the phosphotyrosine binding pocket, altering the mode of engagement of both the phosphotyrosine and surrounding residues on the ligand. The functional consequence of this altered specificity is that the T42A mutant has biased sensitivity toward a subset of activating ligands and enhances downstream signaling. Our study highlights an example of a nuanced mechanism of action for a disease-associated mutation, characterized by a change in protein-protein interaction specificity that alters enzyme activation.
Collapse
Affiliation(s)
- Anne E. van Vlimmeren
- Department of Chemistry, Columbia University, New York, NY 10027
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Rashmi Voleti
- Department of Chemistry, Columbia University, New York, NY 10027
| | | | - Ziyuan Jiang
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Deepti Karandur
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232
| | - Preston A. Humphries
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Wan-Lin Lo
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Neel H. Shah
- Department of Chemistry, Columbia University, New York, NY 10027
| |
Collapse
|
4
|
Holguin-Cruz JA, Bui JM, Jha A, Na D, Gsponer J. Widespread alteration of protein autoinhibition in human cancers. Cell Syst 2024; 15:246-263.e7. [PMID: 38366601 DOI: 10.1016/j.cels.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/20/2023] [Accepted: 01/26/2024] [Indexed: 02/18/2024]
Abstract
Autoinhibition is a prevalent allosteric regulatory mechanism in signaling proteins. Reduced autoinhibition underlies the tumorigenic effect of some known cancer drivers, but whether autoinhibition is altered generally in cancer remains elusive. Here, we demonstrate that cancer-associated missense mutations, in-frame insertions/deletions, and fusion breakpoints are enriched within inhibitory allosteric switches (IASs) across all cancer types. Selection for IASs that are recurrently mutated in cancers identifies established and unknown cancer drivers. Recurrent missense mutations in IASs of these drivers are associated with distinct, cancer-specific changes in molecular signaling. For the specific case of PPP3CA, the catalytic subunit of calcineurin, we provide insights into the molecular mechanisms of altered autoinhibition by cancer mutations using biomolecular simulations, and demonstrate that such mutations are associated with transcriptome changes consistent with increased calcineurin signaling. Our integrative study shows that autoinhibition-modulating genetic alterations are positively selected for by cancer cells.
Collapse
Affiliation(s)
- Jorge A Holguin-Cruz
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jennifer M Bui
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ashwani Jha
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Jörg Gsponer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
5
|
Pugliese A, Della Marina A, de Paula Estephan E, Zanoteli E, Roos A, Schara-Schmidt U, Hentschel A, Azuma Y, Töpf A, Thompson R, Polavarapu K, Lochmüller H. Mutations in PTPN11 could lead to a congenital myasthenic syndrome phenotype: a Noonan syndrome case series. J Neurol 2024; 271:1331-1341. [PMID: 37923938 DOI: 10.1007/s00415-023-12070-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/06/2023]
Abstract
The RASopathies are a group of genetic rare diseases caused by mutations affecting genes involved in the RAS/MAPK (RAS-mitogen activated protein kinase) pathway. Among them, PTPN11 pathogenic variants are responsible for approximately 50% of Noonan syndrome (NS) cases and, albeit to a lesser extent, of Leopard syndrome (LPRD1), which present a few overlapping clinical features, such as facial dysmorphism, developmental delay, cardiac defects, and skeletal deformities. Motor impairment and decreased muscle strength have been recently reported. The etiology of the muscle involvement in these disorders is still not clear but probably multifactorial, considering the role of the RAS/MAPK pathway in skeletal muscle development and Acetylcholine Receptors (AChR) clustering at the neuromuscular junction (NMJ). We report, herein, four unrelated children carrying three different heterozygous mutations in the PTPN11 gene. Intriguingly, their phenotypic features first led to a clinical suspicion of congenital myasthenic syndrome (CMS), due to exercise-induced fatigability with a variable degree of muscle weakness, and serum proteomic profiling compatible with a NMJ defect. Moreover, muscle fatigue improved after treatment with CMS-specific medication. Although the link between PTPN11 gene and neuromuscular transmission is unconfirmed, an increasing number of patients with RASopathies are affected by muscle weakness and fatigability. Hence, NS or LPDR1 should be considered in children with suspected CMS but negative genetic workup for known CMS genes or additional symptoms indicative of NS, such as facial dysmorphism or intellectual disability.
Collapse
Affiliation(s)
- Alessia Pugliese
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Rd., Ottawa, ON, K1H 8L1, Canada
| | - Adela Della Marina
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147, Essen, Germany
| | - Eduardo de Paula Estephan
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Department of Neurological Sciences, Psychiatry, and Medical Psychology, Sao Jose do Rio Preto State Medical School, Sao Jose do Rio Preto, São Paulo, Brazil
| | - Edmar Zanoteli
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Andreas Roos
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Rd., Ottawa, ON, K1H 8L1, Canada
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147, Essen, Germany
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789, Bochum, Germany
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147, Essen, Germany
| | - Andreas Hentschel
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| | - Yoshiteru Azuma
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, University of Newcastle, Newcastle Upon Tyne, UK
| | - Rachel Thompson
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Rd., Ottawa, ON, K1H 8L1, Canada
| | - Kiran Polavarapu
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Rd., Ottawa, ON, K1H 8L1, Canada
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Rd., Ottawa, ON, K1H 8L1, Canada.
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada.
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada.
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany.
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Catalonia, Spain.
| |
Collapse
|
6
|
Anselmi M, Hub JS. Atomistic ensemble of active SHP2 phosphatase. Commun Biol 2023; 6:1289. [PMID: 38129686 PMCID: PMC10739809 DOI: 10.1038/s42003-023-05682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
SHP2 phosphatase plays an important role in regulating several intracellular signaling pathways. Pathogenic mutations of SHP2 cause developmental disorders and are linked to hematological malignancies and cancer. SHP2 comprises two tandemly-arranged SH2 domains, a catalytic PTP domain, and a disordered C-terminal tail. Under physiological, non-stimulating conditions, the catalytic site of PTP is occluded by the N-SH2 domain, so that the basal activity of SHP2 is low. Whereas the autoinhibited structure of SHP2 has been known for two decades, its active, open structure still represents a conundrum. Since the oncogenic mutant SHP2E76K almost completely populates the active, open state, this mutant has been extensively studied as a model for activated SHP2. By molecular dynamics simulations and accurate explicit-solvent SAXS curve predictions, we present the heterogeneous atomistic ensemble of constitutively active SHP2E76K in solution, encompassing a set of conformational arrangements and radii of gyration in agreement with experimental SAXS data.
Collapse
Affiliation(s)
- Massimiliano Anselmi
- Theoretical Physics and Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany.
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
7
|
Calligari P, Stella L, Bocchinfuso G. Computational Evaluation of Peptide-Protein Binding Affinities: Application of Potential of Mean Force Calculations to SH2 Domains. Methods Mol Biol 2023; 2705:113-133. [PMID: 37668972 DOI: 10.1007/978-1-0716-3393-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Many biological functions are mediated by protein-protein interactions (PPIs), often involving specific structural modules, such as SH2 domains. Inhibition of PPIs is a pharmaceutical strategy of growing importance. However, a major challenge in the design of PPI inhibitors is the large interface involved in these interactions, which, in many cases, makes inhibition by small organic molecules ineffective. Peptides, which cover a wide range of dimensions and can be opportunely designed to mimic protein sequences at PPI interfaces, represent a valuable alternative to small molecules. Computational techniques able to predict the binding affinity of peptides for the target domain or protein represent a crucial stage in the workflow for the design of peptide-based drugs. This chapter describes a protocol to obtain the potential of mean force (PMF) for peptide-SH2 domain binding, starting from umbrella sampling (US) molecular dynamics (MD) simulations. The PMF profiles can be effectively used to predict the relative standard binding free energies of different peptide sequences.
Collapse
Affiliation(s)
- Paolo Calligari
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Gianfranco Bocchinfuso
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
8
|
SH2 Domains: Folding, Binding and Therapeutical Approaches. Int J Mol Sci 2022; 23:ijms232415944. [PMID: 36555586 PMCID: PMC9783222 DOI: 10.3390/ijms232415944] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
SH2 (Src Homology 2) domains are among the best characterized and most studied protein-protein interaction (PPIs) modules able to bind and recognize sequences presenting a phosphorylated tyrosine. This post-translational modification is a key regulator of a plethora of physiological and molecular pathways in the eukaryotic cell, so SH2 domains possess a fundamental role in cell signaling. Consequently, several pathologies arise from the dysregulation of such SH2-domains mediated PPIs. In this review, we recapitulate the current knowledge about the structural, folding stability, and binding properties of SH2 domains and their roles in molecular pathways and pathogenesis. Moreover, we focus attention on the different strategies employed to modulate/inhibit SH2 domains binding. Altogether, the information gathered points to evidence that pharmacological interest in SH2 domains is highly strategic to developing new therapeutics. Moreover, a deeper understanding of the molecular determinants of the thermodynamic stability as well as of the binding properties of SH2 domains appears to be fundamental in order to improve the possibility of preventing their dysregulated interactions.
Collapse
|
9
|
Eboreime J, Choi SK, Yoon SR, Sadybekov A, Katritch V, Calabrese P, Arnheim N. Germline selection of PTPN11 (HGNC:9644) variants make a major contribution to both Noonan syndrome's high birth rate and the transmission of sporadic cancer variants resulting in fetal abnormality. Hum Mutat 2022; 43:2205-2221. [PMID: 36349709 PMCID: PMC10099774 DOI: 10.1002/humu.24493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/20/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022]
Abstract
Some spontaneous germline gain-of-function mutations promote spermatogonial stem cell clonal expansion and disproportionate variant sperm production leading to unexpectedly high transmission rates for some human genetic conditions. To measure the frequency and spatial distribution of de novo mutations we divided three testes into 192 pieces each and used error-corrected deep-sequencing on each piece. We focused on PTPN11 (HGNC:9644) Exon 3 that contains 30 different PTPN11 Noonan syndrome (NS) mutation sites. We found 14 of these variants formed clusters among the testes; one testis had 11 different variant clusters. The mutation frequencies of these different clusters were not correlated with their case-recurrence rates nor were case recurrence rates of PTPN11 variants correlated with their tyrosine phosphatase levels thereby confusing PTPN11's role in germline clonal expansion. Six of the PTPN11 exon 3 de novo variants associated with somatic mutation-induced sporadic cancers (but not NS) also formed testis clusters. Further, three of these six variants were observed among fetuses that underwent prenatal ultrasound screening for NS-like features. Mathematical modeling showed that germline selection can explain both the mutation clusters and the high incidence of NS (1/1000-1/2500).
Collapse
Affiliation(s)
- Jordan Eboreime
- Department of Biological Sciences, Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
| | - Soo-Kyung Choi
- Department of Biological Sciences, Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
| | - Song-Ro Yoon
- Department of Biological Sciences, Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
| | - Anastasiia Sadybekov
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California, USA
| | - Vsevolod Katritch
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California, USA
| | - Peter Calabrese
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
| | - Norman Arnheim
- Department of Biological Sciences, Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
10
|
Song Y, Yang X, Wang S, Zhao M, Yu B. Crystallographic landscape of SHP2 provides molecular insights for SHP2 targeted drug discovery. Med Res Rev 2022; 42:1781-1821. [DOI: 10.1002/med.21890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Yihui Song
- School of Pharmaceutical Sciences Zhengzhou University 450001 Henan Zhengzhou China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment Zhengzhou University 450000 Henan Zhengzhou China
| | - Xinyu Yang
- School of Pharmaceutical Sciences Zhengzhou University 450001 Henan Zhengzhou China
| | - Shu Wang
- School of Pharmaceutical Sciences Zhengzhou University 450001 Henan Zhengzhou China
| | - Min Zhao
- School of Pharmaceutical Sciences Zhengzhou University 450001 Henan Zhengzhou China
| | - Bin Yu
- School of Pharmaceutical Sciences Zhengzhou University 450001 Henan Zhengzhou China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment Zhengzhou University 450000 Henan Zhengzhou China
| |
Collapse
|
11
|
Kong J, Long YQ. Recent advances in the discovery of protein tyrosine phosphatase SHP2 inhibitors. RSC Med Chem 2022; 13:246-257. [PMID: 35434626 PMCID: PMC8942255 DOI: 10.1039/d1md00386k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/14/2022] [Indexed: 01/17/2023] Open
Abstract
Src homology 2 domain-containing protein tyrosine phosphatase (SHP2) is a non-receptor protein tyrosine phosphatase encoded by the Ptpn11 gene, which regulates cell growth, differentiation and apoptosis via modulating various signaling pathways, such as the RAS/ERK signaling pathway, and participates in the PD-1/PD-L1 pathway governing immune surveillance. It has been recognized as a breakthrough antitumor therapeutic target. Besides, numerous studies have shown that SHP2 plays an important role in the regulation of inflammatory diseases. However, inhibitors targeting the active site of SHP2 lack drug-likeness due to their low selectivity and poor bioavailability, thus none has advanced to clinical development. Recently, allosteric inhibitors that stabilize the inactive conformation of SHP2 have achieved breakthrough progress, providing the clinical proof for the druggability of SHP2 as an antitumor drug target. This paper reviews the recently reported design and discovery of SHP2 small molecule inhibitors, focused on the structure-activity relationship (SAR) analysis of several representative SHP2 inhibitors, outlining the evolution and therapeutic potential of the small molecule inhibitors targeting SHP2.
Collapse
Affiliation(s)
- Jiao Kong
- Laboratory of Medicinal Chemical Biology, Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College Suzhou 215123 China
| | - Ya-Qiu Long
- Laboratory of Medicinal Chemical Biology, Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College Suzhou 215123 China
| |
Collapse
|
12
|
Abstract
The RASopathies are a group of disorders caused by a germline mutation in one of the genes encoding a component of the RAS/MAPK pathway. These disorders, including neurofibromatosis type 1, Noonan syndrome, cardiofaciocutaneous syndrome, Costello syndrome and Legius syndrome, among others, have overlapping clinical features due to RAS/MAPK dysfunction. Although several of the RASopathies are very rare, collectively, these disorders are relatively common. In this Review, we discuss the pathogenesis of the RASopathy-associated genetic variants and the knowledge gained about RAS/MAPK signaling that resulted from studying RASopathies. We also describe the cell and animal models of the RASopathies and explore emerging RASopathy genes. Preclinical and clinical experiences with targeted agents as therapeutics for RASopathies are also discussed. Finally, we review how the recently developed drugs targeting RAS/MAPK-driven malignancies, such as inhibitors of RAS activation, direct RAS inhibitors and RAS/MAPK pathway inhibitors, might be leveraged for patients with RASopathies.
Collapse
Affiliation(s)
- Katie E Hebron
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Edjay Ralph Hernandez
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Marielle E Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
He D, Li Y, Yang W, Chen S, Sun H, Li P, Zhang M, Ban B. Molecular diagnosis for growth hormone deficiency in Chinese children and adolescents and evaluation of impact of rare genetic variants on treatment efficacy of growth hormone. Clin Chim Acta 2022; 524:1-10. [PMID: 34826401 DOI: 10.1016/j.cca.2021.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/20/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Growth hormone is an effective therapy for growth hormone deficiency (GHD) but with a rather variable individual sensitivity. It is unclear whether rare genetic variants may contribute to the differential GH responsiveness. METHODS The present study aims to investigate the molecular etiology of GHD in Chinese children and adolescents and evaluate the impact of rare variants on therapeutic efficacies of GH. RESULTS Twenty-one rare heterozygous variant were classified as promising uncertain significance (n = 14), pathogenic (n = 5) or likely pathogenic (n = 2) for 21 of the 93 GHD patients. After GHD patients harboring these rare variants were excluded, inter-individual variability in the response to GH therapy obviously reduced and the negative correlation between initiation age of treatment and height SDS change became stronger in the group without rare variants. Among rare variants, 7 (likely) pathogenic variants (7.5%, 7/93) involved a total of 6 genes not only associated with GH secretion (PROKR2, LZTR1), but also growth plate chondrocyte signaling (ACAN, FBN1, COL9A1) or genetic syndromes (PTPN11). CONCLUSIONS Rare genetic variants are an important factor contributing to differential GH responsiveness and genetic testing should be factored into accurate diagnosis and treatment decision making in the future. CLINICAL TRIAL REGISTRATION NUMBER ChiCTR1900026510.
Collapse
Affiliation(s)
- Dongye He
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China
| | - Yanying Li
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, PR China
| | - Shuxiong Chen
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China
| | - Hailing Sun
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China
| | - Ping Li
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China
| | - Mei Zhang
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China.
| | - Bo Ban
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China.
| |
Collapse
|
14
|
Bobone S, Pannone L, Biondi B, Solman M, Flex E, Canale VC, Calligari P, De Faveri C, Gandini T, Quercioli A, Torini G, Venditti M, Lauri A, Fasano G, Hoeksma J, Santucci V, Cattani G, Bocedi A, Carpentieri G, Tirelli V, Sanchez M, Peggion C, Formaggio F, den Hertog J, Martinelli S, Bocchinfuso G, Tartaglia M, Stella L. Targeting Oncogenic Src Homology 2 Domain-Containing Phosphatase 2 (SHP2) by Inhibiting Its Protein-Protein Interactions. J Med Chem 2021; 64:15973-15990. [PMID: 34714648 PMCID: PMC8591604 DOI: 10.1021/acs.jmedchem.1c01371] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We developed a new class of inhibitors of protein-protein interactions of the SHP2 phosphatase, which is pivotal in cell signaling and represents a central target in the therapy of cancer and rare diseases. Currently available SHP2 inhibitors target the catalytic site or an allosteric pocket but lack specificity or are ineffective for disease-associated SHP2 mutants. Considering that pathogenic lesions cause signaling hyperactivation due to increased levels of SHP2 association with cognate proteins, we developed peptide-based molecules with nanomolar affinity for the N-terminal Src homology domain of SHP2, good selectivity, stability to degradation, and an affinity for pathogenic variants of SHP2 that is 2-20 times higher than for the wild-type protein. The best peptide reverted the effects of a pathogenic variant (D61G) in zebrafish embryos. Our results provide a novel route for SHP2-targeted therapies and a tool for investigating the role of protein-protein interactions in the function of SHP2.
Collapse
Affiliation(s)
- Sara Bobone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Luca Pannone
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy.,Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Padova 35131, Italy
| | - Maja Solman
- Hubrecht institute-KNAW and University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | - Elisabetta Flex
- Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Viviana Claudia Canale
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Paolo Calligari
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Chiara De Faveri
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Tommaso Gandini
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Andrea Quercioli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Giuseppe Torini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Martina Venditti
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Giulia Fasano
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Jelmer Hoeksma
- Hubrecht institute-KNAW and University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | - Valerio Santucci
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Giada Cattani
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Alessio Bocedi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Giovanna Carpentieri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy.,Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Valentina Tirelli
- Centre of Core Facilities, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Massimo Sanchez
- Centre of Core Facilities, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Cristina Peggion
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Fernando Formaggio
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Padova 35131, Italy.,Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Jeroen den Hertog
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Padova 35131, Italy.,Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Simone Martinelli
- Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Gianfranco Bocchinfuso
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| |
Collapse
|
15
|
Calligari P, Santucci V, Stella L, Bocchinfuso G. Discriminating between competing models for the allosteric regulation of oncogenic phosphatase SHP2 by characterizing its active state. Comput Struct Biotechnol J 2021; 19:6125-6139. [PMID: 34900129 PMCID: PMC8632847 DOI: 10.1016/j.csbj.2021.10.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/31/2021] [Accepted: 10/31/2021] [Indexed: 11/07/2022] Open
Abstract
The Src-homology 2 domain containing phosphatase 2 (SHP2) plays a critical role in crucial signaling pathways and is involved in oncogenesis and in developmental disorders. Its structure includes two SH2 domains (N-SH2 and C-SH2), and a protein tyrosine phosphatase (PTP) domain. Under basal conditions, SHP2 is auto-inhibited, with the N-SH2 domain blocking the PTP active site. Activation involves a rearrangement of the domains that makes the catalytic site accessible, coupled to the association between the SH2 domains and cognate proteins containing phosphotyrosines. Several aspects of this transition are debated and competing mechanistic models have been proposed. A crystallographic structure of SHP2 in an active state has been reported (PDB code 6crf), but several lines of evidence suggests that it is not fully representative of the conformations populated in solution. To clarify the structural rearrangements involved in SHP2 activation, enhanced sampling simulations of the autoinhibited and active states have been performed, for wild type SHP2 and its pathogenic E76K variant. Our results demonstrate that the crystallographic conformation of the active state is unstable in solution, and multiple interdomain arrangements are populated, thus allowing association to bisphosphorylated sequences. Contrary to a recent proposal, activation is coupled to the conformational changes of the N-SH2 binding site, which is significantly more accessible in the active sate, rather than to the structure of the central β-sheet of the domain. In this coupling, a previously undescribed role for the N-SH2 BG loop emerged.
Collapse
Key Words
- BTLA, B and T lymphocyte attenuator
- CTLA-4, cytotoxic T lymphocyte-associated antigen 4
- FRET, Förster resonance energy transfer
- Inter-domain dynamics
- JMML, juvenile myelomonocytic leukemia
- MD, molecular dynamics
- NS, Noonan syndrome
- NSML, Noonan syndrome with multiple lentigines
- PD-1, programmed cell death protein 1
- PDB, protein data bank
- PMF, potential of mean force
- PTP, protein tyrosine phosphatase
- Protein flexibility
- REMD, replica exchange molecular dynamics
- RMSD, root mean square deviation
- RMSF, root mean square fluctuation
- RTK, receptor tyrosine kinase
- Replica exchange molecular dynamics simulations
- SASA, solvent accessible surface area
- SAXS, small angle X-ray scattering
- SH2, Src homology 2
- SHP2 regulatory mechanism
- SHP2, Src homology 2 domain-containing phosphatase 2
- SIRPalpha, signal regulatory protein alpha
- pY, phosphorylated tyrosine
Collapse
Affiliation(s)
- Paolo Calligari
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Rome, Italy
| | - Valerio Santucci
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Rome, Italy
| | - Lorenzo Stella
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Rome, Italy
| | - Gianfranco Bocchinfuso
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Rome, Italy
| |
Collapse
|
16
|
Double-edged roles of protein tyrosine phosphatase SHP2 in cancer and its inhibitors in clinical trials. Pharmacol Ther 2021; 230:107966. [PMID: 34403682 DOI: 10.1016/j.pharmthera.2021.107966] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022]
Abstract
Phosphorylation is a reversible post-translational modification regulated by phosphorylase and dephosphorylase to mediate important cellular events. Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) encoded by PTPN11 is the first identified oncogenic protein in protein tyrosine phosphatases family. Serving as a convergent node, SHP2 is involved in multiple cascade signaling pathways including Ras-Raf-MEK-ERK, PI3K-AKT, JAK-STAT and PD-1/PD-L1 pathways. Especially, the double-edged roles of SHP2 based on the substrate specificity in various biological contexts dramatically increase the effect complexity in different SHP2-associated diseases. Evidences suggest that by collaborating with other mutations in associated pathways, dysregulation of SHP2 contributes to the pathogenesis of different cancers, making SHP2 a promising therapeutic target for cancer treatment. SHP2 can either act as oncogenic factor or tumor suppressor in different diseases, and both the conserved catalytic dephosphorylation mechanism and the unique allosteric regulation mechanism of SHP2 provide opportunities for the development of SHP2 inhibitors and activators. To date, several small-molecule SHP2 inhibitors have advanced into clinical trials for mono- or combined therapy of cancers. Moreover, SHP2 activators and proteolysis-targeting chimera (PROTAC)-based degraders also display therapeutic promise. In this review, we comprehensively summarize the overall structures, regulation mechanisms, double-edged roles of SHP2 in both physiological and carcinogenic pathways, and SHP2 inhibitors in clinical trials. SHP2 activators and degraders are also briefly discussed. This review aims to provide in-depth understanding of the biological roles of SHP2 and highlight therapeutic potential of targeting SHP2.
Collapse
|
17
|
Park KJ. Clinical Interpretation Challenges of Germline-Shared Somatic Variants in Cancer. Lab Med 2021; 53:24-29. [PMID: 34184037 DOI: 10.1093/labmed/lmab020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To investigate the interpretation differences of germline-shared somatic variants. METHODS A total of 123,302 COSMIC variants associated with hematologic malignant neoplasms were used. The pathogenicity and actionability of shared variants were analyzed based on the standardized guidelines. RESULTS The overall frequency of variants shared in ClinVar/HGMD and COSMIC was 10%. The pathogenicity of 54 shared variants was pathogenic/likely pathogenic (P/LP; n = 30), variants of unknown significance (n = 3), and benign/likely benign (n = 21). In total, 30 P/LP variants were reclassified to tier I/tier II (83%) and tier III (17%) variants. CONCLUSIONS This is the first study about different clinical interpretations of shared variants based on the current standard guidelines. This study takes a meaningful step in bridging the interpretation gap between the somatic and germline variants.
Collapse
Affiliation(s)
- Kyoung-Jin Park
- Department of Laboratory Medicine & Genetics, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Gyeongsangnam-do, Korea
| |
Collapse
|
18
|
The loops of the N-SH2 binding cleft do not serve as allosteric switch in SHP2 activation. Proc Natl Acad Sci U S A 2021; 118:2025107118. [PMID: 33888588 DOI: 10.1073/pnas.2025107118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Src-homology-2 domain-containing phosphatase SHP2 is a critical regulator of signal transduction, being implicated in cell growth and differentiation. Activating mutations cause developmental disorders and act as oncogenic drivers in hematologic cancers. SHP2 is activated by phosphopeptide binding to the N-SH2 domain, triggering the release of N-SH2 from the catalytic PTP domain. Based on early crystallographic data, it has been widely accepted that opening of the binding cleft of N-SH2 serves as the key "allosteric switch" driving SHP2 activation. To test the putative coupling between binding cleft opening and SHP2 activation as assumed by the allosteric switch model, we critically reviewed structural data of SHP2, and we used extensive molecular dynamics (MD) simulation and free energy calculations of isolated N-SH2 in solution, SHP2 in solution, and SHP2 in a crystal environment. Our results demonstrate that the binding cleft in N-SH2 is constitutively flexible and open in solution and that a closed cleft found in certain structures is a consequence of crystal contacts. The degree of opening of the binding cleft has only a negligible effect on the free energy of SHP2 activation. Instead, SHP2 activation is greatly favored by the opening of the central β-sheet of N-SH2. We conclude that opening of the N-SH2 binding cleft is not the key allosteric switch triggering SHP2 activation.
Collapse
|
19
|
Marasco M, Kirkpatrick J, Nanna V, Sikorska J, Carlomagno T. Phosphotyrosine couples peptide binding and SHP2 activation via a dynamic allosteric network. Comput Struct Biotechnol J 2021; 19:2398-2415. [PMID: 34025932 PMCID: PMC8113834 DOI: 10.1016/j.csbj.2021.04.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 11/18/2022] Open
Abstract
SHP2 is a ubiquitous protein tyrosine phosphatase, whose activity is regulated by phosphotyrosine (pY)-containing peptides generated in response to extracellular stimuli. Its crystal structure reveals a closed, auto-inhibited conformation in which the N-terminal Src homology 2 (N-SH2) domain occludes the catalytic site of the phosphatase (PTP) domain. High-affinity mono-phosphorylated peptides promote catalytic activity by binding to N-SH2 and disrupting the interaction with the PTP. The mechanism behind this process is not entirely clear, especially because N-SH2 is incapable of accommodating complete peptide binding when SHP2 is in the auto-inhibited state. Here, we show that pY performs an essential role in this process; in addition to its contribution to overall peptide-binding energy, pY-recognition leads to enhanced dynamics of the N-SH2 EF and BG loops via an allosteric communication network, which destabilizes the N-SH2-PTP interaction surface and simultaneously generates a fully accessible binding pocket for the C-terminal half of the phosphopeptide. Subsequently, full binding of the phosphopeptide is associated with the stabilization of activated SHP2. We demonstrate that this allosteric network exists only in N-SH2, which is directly involved in the regulation of SHP2 activity, while the C-terminal SH2 domain (C-SH2) functions primarily to recruit high-affinity bidentate phosphopeptides.
Collapse
Affiliation(s)
- Michelangelo Marasco
- Leibniz University Hannover, Center of Biomolecular Drug Research and Institute of Organic Chemistry, Schneiderberg 38, 30167 Hannover, Germany
| | - John Kirkpatrick
- Leibniz University Hannover, Center of Biomolecular Drug Research and Institute of Organic Chemistry, Schneiderberg 38, 30167 Hannover, Germany
- Helmholtz Center for Infection Research, Group of NMR-based Structural Chemistry, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Vittoria Nanna
- Leibniz University Hannover, Center of Biomolecular Drug Research and Institute of Organic Chemistry, Schneiderberg 38, 30167 Hannover, Germany
| | - Justyna Sikorska
- Helmholtz Center for Infection Research, Group of NMR-based Structural Chemistry, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Teresa Carlomagno
- Leibniz University Hannover, Center of Biomolecular Drug Research and Institute of Organic Chemistry, Schneiderberg 38, 30167 Hannover, Germany
- Helmholtz Center for Infection Research, Group of NMR-based Structural Chemistry, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
20
|
Lin CC, Wieteska L, Suen KM, Kalverda AP, Ahmed Z, Ladbury JE. Grb2 binding induces phosphorylation-independent activation of Shp2. Commun Biol 2021; 4:437. [PMID: 33795832 PMCID: PMC8016844 DOI: 10.1038/s42003-021-01969-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/25/2021] [Indexed: 11/12/2022] Open
Abstract
The regulation of phosphatase activity is fundamental to the control of intracellular signalling and in particular the tyrosine kinase-mediated mitogen-activated protein kinase (MAPK) pathway. Shp2 is a ubiquitously expressed protein tyrosine phosphatase and its kinase-induced hyperactivity is associated with many cancer types. In non-stimulated cells we find that binding of the adaptor protein Grb2, in its monomeric state, initiates Shp2 activity independent of phosphatase phosphorylation. Grb2 forms a bidentate interaction with both the N-terminal SH2 and the catalytic domains of Shp2, releasing the phosphatase from its auto-inhibited conformation. Grb2 typically exists as a dimer in the cytoplasm. However, its monomeric state prevails under basal conditions when it is expressed at low concentration, or when it is constitutively phosphorylated on a specific tyrosine residue (Y160). Thus, Grb2 can activate Shp2 and downstream signal transduction, in the absence of extracellular growth factor stimulation or kinase-activating mutations, in response to defined cellular conditions. Therefore, direct binding of Grb2 activates Shp2 phosphatase in the absence of receptor tyrosine kinase up-regulation.
Collapse
Affiliation(s)
- Chi-Chuan Lin
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| | - Lukasz Wieteska
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Kin Man Suen
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Arnout P Kalverda
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Zamal Ahmed
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John E Ladbury
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
21
|
Lorca R, Pannone L, Cuesta-Llavona E, Bocchinfuso G, Rodríguez-Reguero J, Carpentieri G, Hernando I, Flex E, Tartaglia M, Coto E, Gómez J, Martinelli S. Compound heterozygosity for PTPN11 variants in a subject with Noonan syndrome provides insights into the mechanism of SHP2-related disorders. Clin Genet 2021; 99:457-461. [PMID: 33354767 DOI: 10.1111/cge.13904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/26/2020] [Accepted: 12/19/2020] [Indexed: 12/31/2022]
Abstract
The RASopathies are a family of clinically related disorders caused by mutations affecting genes participating in the RAS-MAPK signaling cascade. Among them, Noonan syndrome (NS) and Noonan syndrome with multiple lentigines (NSML) are allelic conditions principally associated with dominant mutations in PTPN11, which encodes the nonreceptor SH2 domain-containing protein tyrosine phosphatase SHP2. Individual PTPN11 mutations are specific to each syndrome and have opposite consequences on catalysis, but all favor SHP2's interaction with signaling partners. Here, we report on a subject with NS harboring biallelic variants in PTPN11. While the former (p.Leu261Phe) had previously been reported in NS, the latter (p.Thr357Met) is a novel change impairing catalysis. Members of the family carrying p.Thr357Met, however, did not show any obvious feature fitting NSML or within the RASopathy phenotypic spectrum. A major impact of this change on transcript processing and protein stability was excluded. These findings further support the view that NSML cannot be ascribed merely to impaired SHP2's catalytic activity and suggest that PTPN11 mutations causing this condition act through an alternative dominant mechanism.
Collapse
Affiliation(s)
- Rebeca Lorca
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Hospital Universitario Central de Asturias (HUCA) - Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Luca Pannone
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Elías Cuesta-Llavona
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Hospital Universitario Central de Asturias (HUCA) - Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Grupo Eje Cardio-Renal, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Gianfranco Bocchinfuso
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Rome, Italy
| | - Julian Rodríguez-Reguero
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Hospital Universitario Central de Asturias (HUCA) - Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Grupo Eje Cardio-Renal, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Giovanna Carpentieri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Inés Hernando
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Hospital Universitario Central de Asturias (HUCA) - Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Elisabetta Flex
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Eliecer Coto
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Hospital Universitario Central de Asturias (HUCA) - Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Grupo Eje Cardio-Renal, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Medicine Department, Universidad de Oviedo, Oviedo, Spain.,HUCA. Eje Cardio-Renal, Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Juan Gómez
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Hospital Universitario Central de Asturias (HUCA) - Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Grupo Eje Cardio-Renal, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,HUCA. Eje Cardio-Renal, Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
22
|
Anselmi M, Hub JS. An allosteric interaction controls the activation mechanism of SHP2 tyrosine phosphatase. Sci Rep 2020; 10:18530. [PMID: 33116231 PMCID: PMC7595171 DOI: 10.1038/s41598-020-75409-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
SHP2 is a protein tyrosine phosphatase (PTP) involved in multiple signaling pathways. Mutations of SHP2 can result in Noonan syndrome or pediatric malignancies. Inhibition of wild-type SHP2 represents a novel strategy against several cancers. SHP2 is activated by binding of a phosphopeptide to the N-SH2 domain of SHP2, thereby favoring dissociation of the N-SH2 domain and exposing the active site on the PTP domain. The conformational transitions controlling ligand affinity and PTP dissociation remain poorly understood. Using molecular simulations, we revealed an allosteric interaction restraining the N-SH2 domain into a SHP2-activating and a stabilizing state. Only ligands selecting for the activating N-SH2 conformation, depending on ligand sequence and binding mode, are effective activators. We validate the model of SHP2 activation by rationalizing modified basal activity and responsiveness to ligand stimulation of several N-SH2 variants. This study provides mechanistic insight into SHP2 activation and may open routes for SHP2 regulation.
Collapse
Affiliation(s)
- Massimiliano Anselmi
- Institute for Microbiology and Genetics, Georg-August-Universität Göttingen, 37077, Göttingen, Germany. .,Theoretical Physics and Center for Biophysics, Saarland University, Campus E2.6, 66123, Saarbrücken, Germany.
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Campus E2.6, 66123, Saarbrücken, Germany
| |
Collapse
|
23
|
Motta M, Pannone L, Pantaleoni F, Bocchinfuso G, Radio FC, Cecchetti S, Ciolfi A, Di Rocco M, Elting MW, Brilstra EH, Boni S, Mazzanti L, Tamburrino F, Walsh L, Payne K, Fernández-Jaén A, Ganapathi M, Chung WK, Grange DK, Dave-Wala A, Reshmi SC, Bartholomew DW, Mouhlas D, Carpentieri G, Bruselles A, Pizzi S, Bellacchio E, Piceci-Sparascio F, Lißewski C, Brinkmann J, Waclaw RR, Waisfisz Q, van Gassen K, Wentzensen IM, Morrow MM, Álvarez S, Martínez-García M, De Luca A, Memo L, Zampino G, Rossi C, Seri M, Gelb BD, Zenker M, Dallapiccola B, Stella L, Prada CE, Martinelli S, Flex E, Tartaglia M. Enhanced MAPK1 Function Causes a Neurodevelopmental Disorder within the RASopathy Clinical Spectrum. Am J Hum Genet 2020; 107:499-513. [PMID: 32721402 DOI: 10.1016/j.ajhg.2020.06.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/24/2020] [Indexed: 12/23/2022] Open
Abstract
Signal transduction through the RAF-MEK-ERK pathway, the first described mitogen-associated protein kinase (MAPK) cascade, mediates multiple cellular processes and participates in early and late developmental programs. Aberrant signaling through this cascade contributes to oncogenesis and underlies the RASopathies, a family of cancer-prone disorders. Here, we report that de novo missense variants in MAPK1, encoding the mitogen-activated protein kinase 1 (i.e., extracellular signal-regulated protein kinase 2, ERK2), cause a neurodevelopmental disease within the RASopathy phenotypic spectrum, reminiscent of Noonan syndrome in some subjects. Pathogenic variants promote increased phosphorylation of the kinase, which enhances translocation to the nucleus and boosts MAPK signaling in vitro and in vivo. Two variant classes are identified, one of which directly disrupts binding to MKP3, a dual-specificity protein phosphatase negatively regulating ERK function. Importantly, signal dysregulation driven by pathogenic MAPK1 variants is stimulus reliant and retains dependence on MEK activity. Our data support a model in which the identified pathogenic variants operate with counteracting effects on MAPK1 function by differentially impacting the ability of the kinase to interact with regulators and substrates, which likely explains the minor role of these variants as driver events contributing to oncogenesis. After nearly 20 years from the discovery of the first gene implicated in Noonan syndrome, PTPN11, the last tier of the MAPK cascade joins the group of genes mutated in RASopathies.
Collapse
|
24
|
Anselmi M, Calligari P, Hub JS, Tartaglia M, Bocchinfuso G, Stella L. Structural Determinants of Phosphopeptide Binding to the N-Terminal Src Homology 2 Domain of the SHP2 Phosphatase. J Chem Inf Model 2020; 60:3157-3171. [PMID: 32395997 PMCID: PMC8007070 DOI: 10.1021/acs.jcim.0c00307] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 11/28/2022]
Abstract
SH2 domain-containing tyrosine phosphatase 2 (SHP2), encoded by PTPN11, plays a fundamental role in the modulation of several signaling pathways. Germline and somatic mutations in PTPN11 are associated with different rare diseases and hematologic malignancies, and recent studies have individuated SHP2 as a central node in oncogenesis and cancer drug resistance. The SHP2 structure includes two Src homology 2 domains (N-SH2 and C-SH2) followed by a catalytic protein tyrosine phosphatase (PTP) domain. Under basal conditions, the N-SH2 domain blocks the active site, inhibiting phosphatase activity. Association of the N-SH2 domain with binding partners containing short amino acid motifs comprising a phosphotyrosine residue (pY) leads to N-SH2/PTP dissociation and SHP2 activation. Considering the relevance of SHP2 in signaling and disease and the central role of the N-SH2 domain in its allosteric regulation mechanism, we performed microsecond-long molecular dynamics (MD) simulations of the N-SH2 domain complexed to 12 different peptides to define the structural and dynamical features determining the binding affinity and specificity of the domain. Phosphopeptide residues at position -2 to +5, with respect to pY, have significant interactions with the SH2 domain. In addition to the strong interaction of the pY residue with its conserved binding pocket, the complex is stabilized hydrophobically by insertion of residues +1, +3, and +5 in an apolar groove of the domain and interaction of residue -2 with both the pY and a protein surface residue. Additional interactions are provided by hydrogen bonds formed by the backbone of residues -1, +1, +2, and +4. Finally, negatively charged residues at positions +2 and +4 are involved in electrostatic interactions with two lysines (Lys89 and Lys91) specific for the SHP2 N-SH2 domain. Interestingly, the MD simulations illustrated a previously undescribed conformational flexibility of the domain, involving the core β sheet and the loop that closes the pY binding pocket.
Collapse
Affiliation(s)
- Massimiliano Anselmi
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133, Rome, Italy
| | - Paolo Calligari
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133, Rome, Italy
| | - Jochen S. Hub
- Theoretical
Physics and Center for Biophysics, Saarland
University, Campus E2 6, 66123 Saarbrücken, Germany
| | - Marco Tartaglia
- Genetics
and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Gianfranco Bocchinfuso
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133, Rome, Italy
| | - Lorenzo Stella
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133, Rome, Italy
| |
Collapse
|
25
|
Martinelli S, Pannone L, Lissewski C, Brinkmann J, Flex E, Schanze D, Calligari P, Anselmi M, Pantaleoni F, Canale VC, Radio FC, Ioannides A, Rahner N, Schanze I, Josifova D, Bocchinfuso G, Ryten M, Stella L, Tartaglia M, Zenker M. Pathogenic PTPN11 variants involving the poly-glutamine Gln 255 -Gln 256 -Gln 257 stretch highlight the relevance of helix B in SHP2's functional regulation. Hum Mutat 2020; 41:1171-1182. [PMID: 32112654 DOI: 10.1002/humu.24007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 01/28/2023]
Abstract
Germline PTPN11 mutations cause Noonan syndrome (NS), the most common disorder among RASopathies. PTPN11 encodes SHP2, a protein tyrosine-phosphatase controlling signaling through the RAS-MAPK and PI3K-AKT pathways. Generally, NS-causing PTPN11 mutations are missense changes destabilizing the inactive conformation of the protein or enhancing its binding to signaling partners. Here, we report on two PTPN11 variants resulting in the deletion or duplication of one of three adjacent glutamine residues (Gln255 -to-Gln257 ). While p.(Gln257dup) caused a typical NS phenotype in carriers of a first family, p.(Gln257del) had incomplete penetrance in a second family. Missense mutations involving Gln256 had previously been reported in NS. This poly-glutamine stretch is located on helix B of the PTP domain, a region involved in stabilizing SHP2 in its autoinhibited state. Molecular dynamics simulations predicted that changes affecting this motif perturb the SHP2's catalytically inactive conformation and/or substrate recognition. Biochemical data showed that duplication and deletion of Gln257 variably enhance SHP2's catalytic activity, while missense changes involving Gln256 affect substrate specificity. Expression of mutants in HEK293T cells documented their activating role on MAPK signaling, uncoupling catalytic activity and modulation of intracellular signaling. These findings further document the relevance of helix B in the regulation of SHP2's function.
Collapse
Affiliation(s)
- Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Luca Pannone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.,Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Christina Lissewski
- Institute of Human Genetics, University Hospital of Magdeburg, Otto-von-Guericke-University, Magdeburg, Germany
| | - Julia Brinkmann
- Institute of Human Genetics, University Hospital of Magdeburg, Otto-von-Guericke-University, Magdeburg, Germany
| | - Elisabetta Flex
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Denny Schanze
- Institute of Human Genetics, University Hospital of Magdeburg, Otto-von-Guericke-University, Magdeburg, Germany
| | - Paolo Calligari
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Rome, Italy
| | - Massimiliano Anselmi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Rome, Italy
| | - Francesca Pantaleoni
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Viviana Claudia Canale
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Rome, Italy
| | | | - Adonis Ioannides
- Clinical Genetics, University of Nicosia Medical School, Nicosia, Cyprus.,South East Thames Regional Genetics Service, Guy's Hospital, London, UK
| | - Nils Rahner
- Medical Faculty, Institute of Human Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Ina Schanze
- Institute of Human Genetics, University Hospital of Magdeburg, Otto-von-Guericke-University, Magdeburg, Germany
| | - Dragana Josifova
- South East Thames Regional Genetics Service, Guy's Hospital, London, UK
| | - Gianfranco Bocchinfuso
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Rome, Italy
| | - Mina Ryten
- South East Thames Regional Genetics Service, Guy's Hospital, London, UK
| | - Lorenzo Stella
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Martin Zenker
- Institute of Human Genetics, University Hospital of Magdeburg, Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
26
|
Unveiling the Molecular Basis of the Noonan Syndrome-Causing Mutation T42A of SHP2. Int J Mol Sci 2020; 21:ijms21020461. [PMID: 31936901 PMCID: PMC7013464 DOI: 10.3390/ijms21020461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/30/2022] Open
Abstract
Noonan syndrome (NS) is a genetic disorder caused by the hyperactivation of the RAS-MAPK molecular pathway. About 50% of NS cases are caused by mutations affecting the SHP2 protein, a multi-domain phosphatase with a fundamental role in the regulation of the RAS-MAPK pathway. Most NS-causing mutations influence the stability of the inactive form of SHP2. However, one NS-causing mutation, namely T42A, occurs in the binding pocket of the N-SH2 domain of the protein. Here, we present a quantitative characterization of the effect of the T42A mutation on the binding of the N-terminal SH2 domain of SHP2 with a peptide mimicking Gab2, a fundamental interaction that triggers the activation of the phosphatase in the cellular environment. Our results show that whilst the T42A mutation does not affect the association rate constant with the ligand, it causes a dramatic increase of the affinity for Gab2. This effect is due to a remarkable decrease of the microscopic dissociation rate constant of over two orders of magnitudes. In an effort to investigate the molecular basis of the T42A mutation in causing Noonan syndrome, we also compare the experimental results with a more conservative variant, T42S. Our findings are discussed in the context of the structural data available on SHP2.
Collapse
|
27
|
Yang L, Zhang C, Wang W, Wang J, Xiao Y, Lu W, Ma X, Chen L, Ni J, Wang D, Shi J, Dong Z. Pathogenic gene screening in 91 Chinese patients with short stature of unknown etiology with a targeted next-generation sequencing panel. BMC MEDICAL GENETICS 2018; 19:212. [PMID: 30541462 PMCID: PMC6292044 DOI: 10.1186/s12881-018-0730-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/28/2018] [Indexed: 12/27/2022]
Abstract
Background Dwarfism is a common severe growth disorder, but the etiology is unclear in the majority of cases. Recombinant human growth hormone may be a treatment option, but it has limited efficacy. The currently known laboratory assays do not meet the precision requirements for clinical diagnosis. Here, we have constructed a targeted next-generation sequencing (NGS) panel of selected genes that are suspected to be associated with dwarfism for genetic screening. Methods Genetic screening of 91 children with short stature of unknown etiology was performed with the help of the NGS panel. All the coding regions and exon-intron boundaries of 166 genes were included in the panel. To clarify the pathogenicity of these mutations, their clinical data were reviewed and analyzed. Results The assay identified p.A72G, p.I282V, and p.P491S variants of the PTPN11 gene and a p.I437T variant of the SOS1 gene in 4 cases with Noonan syndrome. A frameshift mutation (p.D2407fs) of the ACAN gene was identified in a case of idiopathic short stature with moderately advanced bone age. A p.R904C variant of the COL2A1 gene was found in a patient, who was accordingly diagnosed with Stickler syndrome. Severe short stature without limb deformity was associated with a p.G11A variant of HOXD13. In addition, we evaluated evidence that a p.D401N variant of the COMP gene may cause multiple epiphyseal dysplasia. Conclusions Our findings suggest that syndromes, particularly Noonan syndrome, may be overlooked due to atypical clinical features. This gene panel has been verified to be effective for the rapid screening of genetic etiologies associated with short stature and for guiding precision medicine-based clinical management.
Collapse
Affiliation(s)
- Lulu Yang
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Road 197, Shanghai, 200025, China
| | - Chenhui Zhang
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute (SITI), Keyuan Road 1278, Shanghai, 201203, China
| | - Wei Wang
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Road 197, Shanghai, 200025, China
| | - Junqi Wang
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Road 197, Shanghai, 200025, China
| | - Yuan Xiao
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Road 197, Shanghai, 200025, China
| | - Wenli Lu
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Road 197, Shanghai, 200025, China
| | - Xiaoyu Ma
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Road 197, Shanghai, 200025, China
| | - Lifen Chen
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Road 197, Shanghai, 200025, China
| | - Jihong Ni
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Road 197, Shanghai, 200025, China
| | - Defen Wang
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Road 197, Shanghai, 200025, China
| | - Jinxiu Shi
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute (SITI), Keyuan Road 1278, Shanghai, 201203, China.
| | - Zhiya Dong
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Road 197, Shanghai, 200025, China.
| |
Collapse
|
28
|
Py C, Christinat Y, Kreutzfeldt M, McKee TA, Dietrich PY, Tsantoulis P. Response of NF1-Mutated Melanoma to an MEK Inhibitor. JCO Precis Oncol 2018; 2:1-11. [DOI: 10.1200/po.18.00028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Céline Py
- All authors: University Hospital of Geneva, Geneva, Switzerland
| | - Yann Christinat
- All authors: University Hospital of Geneva, Geneva, Switzerland
| | | | - Thomas A. McKee
- All authors: University Hospital of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
29
|
Tajan M, Paccoud R, Branka S, Edouard T, Yart A. The RASopathy Family: Consequences of Germline Activation of the RAS/MAPK Pathway. Endocr Rev 2018; 39:676-700. [PMID: 29924299 DOI: 10.1210/er.2017-00232] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
Noonan syndrome [NS; Mendelian Inheritance in Men (MIM) #163950] and related syndromes [Noonan syndrome with multiple lentigines (formerly called LEOPARD syndrome; MIM #151100), Noonan-like syndrome with loose anagen hair (MIM #607721), Costello syndrome (MIM #218040), cardio-facio-cutaneous syndrome (MIM #115150), type I neurofibromatosis (MIM #162200), and Legius syndrome (MIM #611431)] are a group of related genetic disorders associated with distinctive facial features, cardiopathies, growth and skeletal abnormalities, developmental delay/mental retardation, and tumor predisposition. NS was clinically described more than 50 years ago, and disease genes have been identified throughout the last 3 decades, providing a molecular basis to better understand their physiopathology and identify targets for therapeutic strategies. Most of these genes encode proteins belonging to or regulating the so-called RAS/MAPK signaling pathway, so these syndromes have been gathered under the name RASopathies. In this review, we provide a clinical overview of RASopathies and an update on their genetics. We then focus on the functional and pathophysiological effects of RASopathy-causing mutations and discuss therapeutic perspectives and future directions.
Collapse
Affiliation(s)
- Mylène Tajan
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Romain Paccoud
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Sophie Branka
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Thomas Edouard
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Armelle Yart
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| |
Collapse
|
30
|
Tamura A, Uemura S, Matsubara K, Kozuki E, Tanaka T, Nino N, Yokoi T, Saito A, Ishida T, Hasegawa D, Umeki I, Niihori T, Nakazawa Y, Koike K, Aoki Y, Kosaka Y. Co-occurrence of hypertrophic cardiomyopathy and juvenile myelomonocytic leukemia in a neonate with Noonan syndrome, leading to premature death. Clin Case Rep 2018; 6:1202-1207. [PMID: 29988639 PMCID: PMC6028379 DOI: 10.1002/ccr3.1568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 11/09/2022] Open
Abstract
We report a case of a neonate with Noonan syndrome presenting with concurrent hypertrophic cardiomyopathy and juvenile myelomonocytic leukemia, which resulted in premature death. Cases with Noonan syndrome diagnosed during the neonatal period might not necessarily show mild clinical course, and premature death is a possible outcome to be considered.
Collapse
Affiliation(s)
- Akihiro Tamura
- Department of Hematology and OncologyKobe Children's HospitalKobeJapan
| | - Suguru Uemura
- Department of Hematology and OncologyKobe Children's HospitalKobeJapan
- Department of PediatricsKobe University School of MedicineKobeJapan
| | - Kousaku Matsubara
- Department of PediatricsKobe City Nishi‐Kobe Medical CenterKobeJapan
| | - Eru Kozuki
- Department of PediatricsKobe City Nishi‐Kobe Medical CenterKobeJapan
| | | | - Nanako Nino
- Department of Hematology and OncologyKobe Children's HospitalKobeJapan
- Department of PediatricsKobe University School of MedicineKobeJapan
| | - Takehito Yokoi
- Department of Hematology and OncologyKobe Children's HospitalKobeJapan
- Department of PediatricsOsaka University HospitalSuitaJapan
| | - Atsuro Saito
- Department of Hematology and OncologyKobe Children's HospitalKobeJapan
| | - Toshiaki Ishida
- Department of Hematology and OncologyKobe Children's HospitalKobeJapan
| | | | - Ikumi Umeki
- Department of Medical GeneticsTohoku University School of MedicineSendaiJapan
| | - Tetsuya Niihori
- Department of Medical GeneticsTohoku University School of MedicineSendaiJapan
| | - Yozo Nakazawa
- Department of PediatricsShinshu University School of MedicineMatsumotoJapan
| | - Kenichi Koike
- Department of PediatricsShinonoi General HospitalMinami Nagano Medical CenterNaganoJapan
| | - Yoko Aoki
- Department of Medical GeneticsTohoku University School of MedicineSendaiJapan
| | - Yoshiyuki Kosaka
- Department of Hematology and OncologyKobe Children's HospitalKobeJapan
| |
Collapse
|
31
|
Yu ZH, Zhang ZY. Regulatory Mechanisms and Novel Therapeutic Targeting Strategies for Protein Tyrosine Phosphatases. Chem Rev 2018; 118:1069-1091. [PMID: 28541680 PMCID: PMC5812791 DOI: 10.1021/acs.chemrev.7b00105] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An appropriate level of protein phosphorylation on tyrosine is essential for cells to react to extracellular stimuli and maintain cellular homeostasis. Faulty operation of signal pathways mediated by protein tyrosine phosphorylation causes numerous human diseases, which presents enormous opportunities for therapeutic intervention. While the importance of protein tyrosine kinases in orchestrating the tyrosine phosphorylation networks and in target-based drug discovery has long been recognized, the significance of protein tyrosine phosphatases (PTPs) in cellular signaling and disease biology has historically been underappreciated, due to a large extent to an erroneous assumption that they are largely constitutive and housekeeping enzymes. Here, we provide a comprehensive examination of a number of regulatory mechanisms, including redox modulation, allosteric regulation, and protein oligomerization, that control PTP activity. These regulatory mechanisms are integral to the myriad PTP-mediated biochemical events and reinforce the concept that PTPs are indispensable and specific modulators of cellular signaling. We also discuss how disruption of these PTP regulatory mechanisms can cause human diseases and how these diverse regulatory mechanisms can be exploited for novel therapeutic development.
Collapse
Affiliation(s)
- Zhi-Hong Yu
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907
| |
Collapse
|
32
|
Martinelli S, Krumbach OH, Pantaleoni F, Coppola S, Amin E, Pannone L, Nouri K, Farina L, Dvorsky R, Lepri F, Buchholzer M, Konopatzki R, Walsh L, Payne K, Pierpont ME, Vergano SS, Langley KG, Larsen D, Farwell KD, Tang S, Mroske C, Gallotta I, Di Schiavi E, della Monica M, Lugli L, Rossi C, Seri M, Cocchi G, Henderson L, Baskin B, Alders M, Mendoza-Londono R, Dupuis L, Nickerson DA, Chong JX, Meeks N, Brown K, Causey T, Cho MT, Demuth S, Digilio MC, Gelb BD, Bamshad MJ, Zenker M, Ahmadian MR, Hennekam RC, Tartaglia M, Mirzaa GM, Mirzaa GM. Functional Dysregulation of CDC42 Causes Diverse Developmental Phenotypes. Am J Hum Genet 2018; 102:309-320. [PMID: 29394990 DOI: 10.1016/j.ajhg.2017.12.015] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022] Open
Abstract
Exome sequencing has markedly enhanced the discovery of genes implicated in Mendelian disorders, particularly for individuals in whom a known clinical entity could not be assigned. This has led to the recognition that phenotypic heterogeneity resulting from allelic mutations occurs more commonly than previously appreciated. Here, we report that missense variants in CDC42, a gene encoding a small GTPase functioning as an intracellular signaling node, underlie a clinically heterogeneous group of phenotypes characterized by variable growth dysregulation, facial dysmorphism, and neurodevelopmental, immunological, and hematological anomalies, including a phenotype resembling Noonan syndrome, a developmental disorder caused by dysregulated RAS signaling. In silico, in vitro, and in vivo analyses demonstrate that mutations variably perturb CDC42 function by altering the switch between the active and inactive states of the GTPase and/or affecting CDC42 interaction with effectors, and differentially disturb cellular and developmental processes. These findings reveal the remarkably variable impact that dominantly acting CDC42 mutations have on cell function and development, creating challenges in syndrome definition, and exemplify the importance of functional profiling for syndrome recognition and delineation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ghayda M Mirzaa
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| |
Collapse
|
33
|
Pucci S, Zonetti MJ, Fisco T, Polidoro C, Bocchinfuso G, Palleschi A, Novelli G, Spagnoli LG, Mazzarelli P. Carnitine palmitoyl transferase-1A (CPT1A): a new tumor specific target in human breast cancer. Oncotarget 2018; 7:19982-96. [PMID: 26799588 PMCID: PMC4991433 DOI: 10.18632/oncotarget.6964] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/01/2016] [Indexed: 12/03/2022] Open
Abstract
Transcriptional mechanisms epigenetically-regulated in tumoral tissues point out new targets for anti-cancer therapies. Carnitine palmitoyl transferase I (CPT1) is the rate-limiting enzyme in the transport of long-chain fatty acids for β-oxidation. Here we identified the tumor specific nuclear CPT1A as a product of the transcript variant 2, that doesn't retain the classical transferase activity and is strongly involved in the epigenetic regulation of cancer pro-survival, cell death escaping and tumor invasion pathways. The knockdown of CPT1A variant 2 by small interfering RNAs (siRNAs), was sufficient to induce apoptosis in MCF-7, SK-BR3 and MDA-MB-231 breast cancer cells. The cell death triggered by CPT1A silencing correlated with reduction of HDAC activity and histone hyperacetylation. Docking experiments and molecular dynamics simulations confirmed an high binding affinity of the variant 2 for HDAC1. The CPT1A silenced cells showed an up-regulated transcription of pro-apoptotic genes (BAD, CASP9, COL18A1) and down-modulation of invasion and metastasis related-genes (TIMP-1, PDGF-A, SERPINB2). These findings provide evidence of the CPT1 variant 2 involvement in breast cancer survival, cell death escape and invasion. Thus, we propose nuclear CPT1A as a striking tumor specific target for anticancer therapeutics, more selective and effective as compared with the well-known HDAC inhibitors.
Collapse
Affiliation(s)
- Sabina Pucci
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Maria Josè Zonetti
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Tommaso Fisco
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Chiara Polidoro
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Gianfranco Bocchinfuso
- Department of Chemical Sciences and Technologies, Tor Vergata University of Rome, Rome, Italy
| | - Antonio Palleschi
- Department of Chemical Sciences and Technologies, Tor Vergata University of Rome, Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Luigi G Spagnoli
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Paola Mazzarelli
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| |
Collapse
|
34
|
Yamazawa K, Yamada Y, Kuroda T, Mutai H, Matsunaga T, Komiyama O, Takahashi T. Spontaneous intramural duodenal hematoma as the manifestation of Noonan syndrome. Am J Med Genet A 2017; 176:496-498. [PMID: 29226542 DOI: 10.1002/ajmg.a.38556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/03/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Kazuki Yamazawa
- Medical Genetics Center, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Pediatrics, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Yamada
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuo Kuroda
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideki Mutai
- Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Tatsuo Matsunaga
- Medical Genetics Center, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Osamu Komiyama
- Department of Pediatrics, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Takao Takahashi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Pannone L, Bocchinfuso G, Flex E, Rossi C, Baldassarre G, Lissewski C, Pantaleoni F, Consoli F, Lepri F, Magliozzi M, Anselmi M, Delle Vigne S, Sorge G, Karaer K, Cuturilo G, Sartorio A, Tinschert S, Accadia M, Digilio MC, Zampino G, De Luca A, Cavé H, Zenker M, Gelb BD, Dallapiccola B, Stella L, Ferrero GB, Martinelli S, Tartaglia M. Structural, Functional, and Clinical Characterization of a Novel PTPN11 Mutation Cluster Underlying Noonan Syndrome. Hum Mutat 2017; 38:451-459. [PMID: 28074573 DOI: 10.1002/humu.23175] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/06/2017] [Indexed: 01/12/2023]
Abstract
Germline mutations in PTPN11, the gene encoding the Src-homology 2 (SH2) domain-containing protein tyrosine phosphatase (SHP2), cause Noonan syndrome (NS), a relatively common, clinically variable, multisystem disorder. Here, we report on the identification of five different PTPN11 missense changes affecting residues Leu261 , Leu262 , and Arg265 in 16 unrelated individuals with clinical diagnosis of NS or with features suggestive for this disorder, specifying a novel disease-causing mutation cluster. Expression of the mutant proteins in HEK293T cells documented their activating role on MAPK signaling. Structural data predicted a gain-of-function role of substitutions at residues Leu262 and Arg265 exerted by disruption of the N-SH2/PTP autoinhibitory interaction. Molecular dynamics simulations suggested a more complex behavior for changes affecting Leu261 , with possible impact on SHP2's catalytic activity/selectivity and proper interaction of the PTP domain with the regulatory SH2 domains. Consistent with that, biochemical data indicated that substitutions at codons 262 and 265 increased the catalytic activity of the phosphatase, while those affecting codon 261 were only moderately activating but impacted substrate specificity. Remarkably, these mutations underlie a relatively mild form of NS characterized by low prevalence of cardiac defects, short stature, and cognitive and behavioral issues, as well as less evident typical facial features.
Collapse
Affiliation(s)
- Luca Pannone
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy.,Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy.,Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Rome, Italy
| | - Gianfranco Bocchinfuso
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Rome, Italy
| | - Elisabetta Flex
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Cesare Rossi
- Genetica Medica, Policlinico S. Orsola-Malpighi, Bologna, Italy
| | | | - Christina Lissewski
- Institute of Human Genetics, University Hospital of Magdeburg, Otto-von-Guericke-University, Magdeburg, Germany
| | - Francesca Pantaleoni
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Federica Consoli
- Ospedale Casa Sollievo della Sofferenza, IRCCS, San Giovanni Rotondo, Italy
| | - Francesca Lepri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Monia Magliozzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy.,Ospedale Casa Sollievo della Sofferenza, IRCCS, San Giovanni Rotondo, Italy
| | - Massimiliano Anselmi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Rome, Italy
| | - Silvia Delle Vigne
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Sorge
- Unità Operativa Complessa di Clinica Pediatrica, Dipartimento di Medicina Clinica e Sperimentale, Università di Catania, Catania, Italy
| | - Kadri Karaer
- Dr. Ersin Arslan Research and Training Hospital, Department of Medical Genetics, Gaziantep, Turkey
| | - Goran Cuturilo
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,University Children's Hospital, Belgrade, Serbia
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, Experimental Laboratory for Auxo-Endocrinological Research, Milan and Verbania, Italy.,Istituto Auxologico Italiano, Division of Auxology, Verbania, Italy
| | - Sigrid Tinschert
- Institute of Clinical Genetics, Technical University of Dresden, Dresden, Germany
| | - Maria Accadia
- Ospedale Casa Sollievo della Sofferenza, IRCCS, San Giovanni Rotondo, Italy
| | - Maria C Digilio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Giuseppe Zampino
- Istituto di Clinica Pediatrica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro De Luca
- Ospedale Casa Sollievo della Sofferenza, IRCCS, San Giovanni Rotondo, Italy
| | - Hélène Cavé
- Département de Génétique, Hôpital Robert Debré, Paris, France.,INSERM UMR_S1131, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris-Sorbonne-Cité, Paris, France
| | - Martin Zenker
- Institute of Human Genetics, University Hospital of Magdeburg, Otto-von-Guericke-University, Magdeburg, Germany
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Lorenzo Stella
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Rome, Italy
| | - Giovanni B Ferrero
- Department of Pediatric and Public Health Sciences, University of Torino, Torino, Italy
| | - Simone Martinelli
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
36
|
Noda S, Takahashi A, Hayashi T, Tanuma SI, Hatakeyama M. Determination of the catalytic activity of LEOPARD syndrome-associated SHP2 mutants toward parafibromin, a bona fide SHP2 substrate involved in Wnt signaling. Biochem Biophys Res Commun 2015; 469:1133-9. [PMID: 26742426 DOI: 10.1016/j.bbrc.2015.12.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 12/27/2015] [Indexed: 12/24/2022]
Abstract
SHP2, encoded by the PTPN11 gene, is a protein tyrosine phosphatase that plays a key role in the proliferation of cells via RAS-ERK activation. SHP2 also promotes Wnt signaling by dephosphorylating parafibromin. Germline missense mutations of PTPN11 are found in more than half of patients with Noonan syndrome (NS) and LEOPARD syndrome (LS), both of which are congenital developmental disorders with multiple common symptoms. However, whereas NS-associated PTPN11 mutations give rise to gain-of-function SHP2 mutants, LS-associated SHP2 mutants are reportedly loss-of-function mutants. To determine the phosphatase activity of LS-associated SHP2 more appropriately, we performed an in vitro phosphatase assay using tyrosine-phosphorylated parafibromin, a biologically relevant substrate of SHP2 and the positive regulator of Wnt signaling that is activated through SHP2-mediated dephosphorylation. We found that LS-associated SHP2 mutants (Y279C, T468M, Q506P, and Q510E) exhibited a substantially reduced phosphatase activity toward parafibromin when compared with wild-type SHP2. Furthermore, each of the LS-associated mutants displayed a differential degree of decrease in phosphatase activity. Deviation of the SHP2 catalytic activity from a certain range, either too strong or too weak, may therefore lead to similar clinical outcomes in NS and LS, possibly through an imbalanced Wnt signal caused by inadequate dephosphorylation of parafibromin.
Collapse
Affiliation(s)
- Saori Noda
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Atsushi Takahashi
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeru Hayashi
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sei-ichi Tanuma
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
37
|
SHP2 sails from physiology to pathology. Eur J Med Genet 2015; 58:509-25. [PMID: 26341048 DOI: 10.1016/j.ejmg.2015.08.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/24/2015] [Accepted: 08/30/2015] [Indexed: 02/08/2023]
Abstract
Over the two past decades, mutations of the PTPN11 gene, encoding the ubiquitous protein tyrosine phosphatase SHP2 (SH2 domain-containing tyrosine phosphatase 2), have been identified as the causal factor of several developmental diseases (Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NS-ML), and metachondromatosis), and malignancies (juvenile myelomonocytic leukemia). SHP2 plays essential physiological functions in organism development and homeostasis maintenance by regulating fundamental intracellular signaling pathways in response to a wide range of growth factors and hormones, notably the pleiotropic Ras/Mitogen-Activated Protein Kinase (MAPK) and the Phosphoinositide-3 Kinase (PI3K)/AKT cascades. Analysis of the biochemical impacts of PTPN11 mutations first identified both loss-of-function and gain-of-function mutations, as well as more subtle defects, highlighting the major pathophysiological consequences of SHP2 dysregulation. Then, functional genetic studies provided insights into the molecular dysregulations that link SHP2 mutants to the development of specific traits of the diseases, paving the way for the design of specific therapies for affected patients. In this review, we first provide an overview of SHP2's structure and regulation, then describe its molecular roles, notably its functions in modulating the Ras/MAPK and PI3K/AKT signaling pathways, and its physiological roles in organism development and homeostasis. In the second part, we describe the different PTPN11 mutation-associated pathologies and their clinical manifestations, with particular focus on the biochemical and signaling outcomes of NS and NS-ML-associated mutations, and on the recent advances regarding the pathophysiology of these diseases.
Collapse
|
38
|
Corallino S, Iwai LK, Payne LS, Huang PH, Sacco F, Cesareni G, Castagnoli L. Alterations in the phosphoproteomic profile of cells expressing a non-functional form of the SHP2 phosphatase. N Biotechnol 2015; 33:524-36. [PMID: 26316256 DOI: 10.1016/j.nbt.2015.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 08/09/2015] [Accepted: 08/14/2015] [Indexed: 12/13/2022]
Abstract
The phosphatase SHP-2 plays an essential role in growth factor signaling and mutations in its locus is the cause of congenital and acquired pathologies. Mutations of SHP-2 are known to affect the activation of the RAS pathway. Gain-of-function mutations cause the Noonan syndrome, the most common non-chromosomal congenital disorder. In order to obtain a holistic picture of the intricate regulatory mechanisms underlying SHP-2 physiology and pathology, we set out to characterize perturbations of the cell phosphorylation profile caused by an altered localization of SHP-2. To describe the proteins whose activity may be directly or indirectly modulated by SHP-2 activity, we identified tyrosine peptides that are differentially phosphorylated in wild type SHP-2 cells and isogenic cells expressing a non-functional SHP-2 variant that cannot dephosphorylate the physiological substrates due to a defect in cellular localization upon growth factor stimulation. By an iTRAQ based strategy coupled to mass spectrometry, we have identified 63 phosphorylated tyrosine residues in 53 different proteins whose phosphorylation is affected by SHP-2 activity. Some of these confirm already established regulatory mechanisms while many others suggest new possible signaling routes that may contribute to the modulation of the ERK and p38 pathways by SHP-2. Interestingly many new proteins that we found to be regulated by SHP-2 activity are implicated in the formation and regulation of focal adhesions.
Collapse
Affiliation(s)
- Salvatore Corallino
- Department of Biology, University of Rome Tor Vergata, Via della ricerca scientifica, 00133 Rome, Italy.
| | - Leo K Iwai
- Protein Networks Team, Division of Cancer Biology, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Leo S Payne
- Protein Networks Team, Division of Cancer Biology, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Paul H Huang
- Protein Networks Team, Division of Cancer Biology, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Francesca Sacco
- Department of Biology, University of Rome Tor Vergata, Via della ricerca scientifica, 00133 Rome, Italy
| | - Gianni Cesareni
- Department of Biology, University of Rome Tor Vergata, Via della ricerca scientifica, 00133 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy.
| | - Luisa Castagnoli
- Department of Biology, University of Rome Tor Vergata, Via della ricerca scientifica, 00133 Rome, Italy.
| |
Collapse
|
39
|
Kamiya N, Kim HKW, King PD. Regulation of bone and skeletal development by the SHP-2 protein tyrosine phosphatase. Bone 2014; 69:55-60. [PMID: 25178522 DOI: 10.1016/j.bone.2014.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 08/15/2014] [Accepted: 08/22/2014] [Indexed: 01/06/2023]
Abstract
Src homology-2 protein tyrosine phosphatase (SHP-2) that is encoded by the PTPN11 gene in humans is an intracellular signaling molecule that couples growth factor receptors to activation of the Ras small GTP-binding protein that regulates cell growth, proliferation and differentiation. Germline mutations of PTPN11 are causative of Noonan syndrome and LEOPARD syndrome in humans in which there are recognized skeletal abnormalities that include growth retardation, spinal curvature and chest malformations. In addition, combined somatic and germline PTPN11 mutations have been shown to be responsible for a rare benign bone cartilaginous tumor disease known as metachondromatosis. In parallel, gene targeting studies performed in mice have revealed an essential role for SHP-2 as a regulator of bone and skeletal development. In this review the significance of these findings in mice to the understanding of the pathogenesis of skeletal abnormalities in humans with SHP-2 mutations is discussed.
Collapse
Affiliation(s)
- Nobuhiro Kamiya
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, Dallas, TX 75219, USA; Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390-8883, USA; Sports Medicine, Tenri University, Tenri, Nara 632-0071, Japan.
| | - Harry K W Kim
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, Dallas, TX 75219, USA; Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390-8883, USA.
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA.
| |
Collapse
|
40
|
Guerin A, So J, Mireskandari K, Jougeh-Doust S, Chisholm C, Klatt R, Richer J. Expanding the clinical spectrum of ocular anomalies in Noonan syndrome: Axenfeld-anomaly in a child withPTPN11mutation. Am J Med Genet A 2014; 167A:403-6. [DOI: 10.1002/ajmg.a.36841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/29/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Andrea Guerin
- The Hospital for Sick Children; Department of Pediatrics; Division of Clinical and Metabolic Genetics; Toronto Ontario Canada
- Kingston General Hospital; Department of Pediatrics; Division of Medical Genetics; Kingston Ontario Canada
| | - Joyce So
- The Hospital for Sick Children; Department of Pediatrics; Division of Clinical and Metabolic Genetics; Toronto Ontario Canada
- The Centre for Addiction and Mental Health; Toronto; Ontario Canada
| | - Kamiar Mireskandari
- The Hospital for Sick Children; Department of Ophthalmology and Vision Sciences; Toronto Ontario Canada
| | - Soghra Jougeh-Doust
- The Hospital for Sick Children; Department of Pediatrics; Division of Clinical and Metabolic Genetics; Toronto Ontario Canada
| | - Caitlin Chisholm
- Children's Hospital of Eastern Ontario; Department of Medical Genetics; Ottawa Ontario Canada
| | - Regan Klatt
- The Hospital for Sick Children; Department of Pediatrics; Division of Clinical and Metabolic Genetics; Toronto Ontario Canada
| | - Julie Richer
- Children's Hospital of Eastern Ontario; Department of Medical Genetics; Ottawa Ontario Canada
| |
Collapse
|
41
|
Li S, Wang L, Zhao Q, Liu Y, He L, Xu Q, Sun X, Teng L, Cheng H, Ke Y. SHP2 positively regulates TGFβ1-induced epithelial-mesenchymal transition modulated by its novel interacting protein Hook1. J Biol Chem 2014; 289:34152-60. [PMID: 25331952 PMCID: PMC4256348 DOI: 10.1074/jbc.m113.546077] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is an essential process for embryogenesis. It also plays a critical role in the initiation of tumor metastasis. Src homology 2 (SH2)-domain containing protein-tyrosine phosphatase-2 (SHP2) is a ubiquitously expressed protein-tyrosine phosphatase and is mutated in many tumors. However, its functional role in tumor metastasis remains largely unknown. We found that TGFβ1-induced EMT in lung epithelial A549 cells was partially blocked when SHP2 was decreased by transfected siRNA. The constitutively active form (E76V) promoted EMT while the phosphatase-dead mutation (C459S) and the SHP2 inhibitor PHPS1 blocked EMT, which further demonstrated that the phosphatase activity of SHP2 was required for promoting TGFβ1-induced EMT. Using the protein-tyrosine phosphatase domain of SHP2 as bait, we identified a novel SHP2-interacting protein Hook1. Hook1 was down-regulated during EMT in A549 cells. Overexpression of Hook1 inhibited EMT while knockdown of Hook1 promoted EMT. Moreover, both the protein-tyrosine phosphatase domain and N-terminal SH2 domain of SHP2 directly interacted with Hook1. Down-regulation of Hook1 increased SHP2 activity. These results suggested that Hook1 was an endogenous negative regulator of SHP2 phosphatase activity. Our data showed that the protein-tyrosine phosphatase SHP2 was involved in the process of EMT and Hook1 repressed EMT by regulating the activation of SHP2. SHP2-Hook1 complex may play important roles in tumor metastases by regulating EMT in cancer cells.
Collapse
Affiliation(s)
- Shuomin Li
- From the Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Linrun Wang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China, and
| | - Qingwei Zhao
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China, and
| | - Yu Liu
- From the Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lingjuan He
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China, and
| | - Qinqin Xu
- From the Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xu Sun
- From the Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Li Teng
- From the Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hongqiang Cheng
- From the Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Yuehai Ke
- From the Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
42
|
Karunamuni GH, Ma P, Gu S, Rollins AM, Jenkins MW, Watanabe M. Connecting teratogen-induced congenital heart defects to neural crest cells and their effect on cardiac function. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2014; 102:227-50. [PMID: 25220155 PMCID: PMC4238913 DOI: 10.1002/bdrc.21082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/26/2014] [Indexed: 12/26/2022]
Abstract
Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol-exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest in regulating the morphogenesis of the heart and associated great vessels. The paradox is that their derivatives constitute a small proportion of cells to the cardiovascular system. Findings supporting that these cells impact early cardiac function raises the interesting possibility that they indirectly control cardiovascular development at least partially through regulating function. Making connections between insults to the neural crest, cardiac function, and morphogenesis is more approachable with technological advances. Expanding our understanding of early functional consequences could be useful in improving diagnosis and testing therapies.
Collapse
Affiliation(s)
- Ganga H. Karunamuni
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
| | - Pei Ma
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Michael W. Jenkins
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
| |
Collapse
|
43
|
Flex E, Jaiswal M, Pantaleoni F, Martinelli S, Strullu M, Fansa EK, Caye A, De Luca A, Lepri F, Dvorsky R, Pannone L, Paolacci S, Zhang SC, Fodale V, Bocchinfuso G, Rossi C, Burkitt-Wright EMM, Farrotti A, Stellacci E, Cecchetti S, Ferese R, Bottero L, Castro S, Fenneteau O, Brethon B, Sanchez M, Roberts AE, Yntema HG, Van Der Burgt I, Cianci P, Bondeson ML, Cristina Digilio M, Zampino G, Kerr B, Aoki Y, Loh ML, Palleschi A, Di Schiavi E, Carè A, Selicorni A, Dallapiccola B, Cirstea IC, Stella L, Zenker M, Gelb BD, Cavé H, Ahmadian MR, Tartaglia M. Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and contribute to leukaemogenesis. Hum Mol Genet 2014; 23:4315-27. [PMID: 24705357 PMCID: PMC4103678 DOI: 10.1093/hmg/ddu148] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/04/2014] [Indexed: 12/29/2022] Open
Abstract
RASopathies, a family of disorders characterized by cardiac defects, defective growth, facial dysmorphism, variable cognitive deficits and predisposition to certain malignancies, are caused by constitutional dysregulation of RAS signalling predominantly through the RAF/MEK/ERK (MAPK) cascade. We report on two germline mutations (p.Gly39dup and p.Val55Met) in RRAS, a gene encoding a small monomeric GTPase controlling cell adhesion, spreading and migration, underlying a rare (2 subjects among 504 individuals analysed) and variable phenotype with features partially overlapping Noonan syndrome, the most common RASopathy. We also identified somatic RRAS mutations (p.Gly39dup and p.Gln87Leu) in 2 of 110 cases of non-syndromic juvenile myelomonocytic leukaemia, a childhood myeloproliferative/myelodysplastic disease caused by upregulated RAS signalling, defining an atypical form of this haematological disorder rapidly progressing to acute myeloid leukaemia. Two of the three identified mutations affected known oncogenic hotspots of RAS genes and conferred variably enhanced RRAS function and stimulus-dependent MAPK activation. Expression of an RRAS mutant homolog in Caenorhabditis elegans enhanced RAS signalling and engendered protruding vulva, a phenotype previously linked to the RASopathy-causing SHOC2(S2G) mutant. Overall, these findings provide evidence of a functional link between RRAS and MAPK signalling and reveal an unpredicted role of enhanced RRAS function in human disease.
Collapse
Affiliation(s)
- Elisabetta Flex
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare and
| | - Mamta Jaiswal
- Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine Universitat, Düsseldorf 40225, Germany
| | | | | | - Marion Strullu
- Genetics Department, INSERM UMR_S940, Institut Universitaire D'Hématologie (IUH), Université Paris-Diderot Sorbonne-Paris-Cité, Paris 75010, France
| | - Eyad K Fansa
- Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine Universitat, Düsseldorf 40225, Germany
| | - Aurélie Caye
- Genetics Department, INSERM UMR_S940, Institut Universitaire D'Hématologie (IUH), Université Paris-Diderot Sorbonne-Paris-Cité, Paris 75010, France
| | - Alessandro De Luca
- Laboratorio Mendel, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo Della Sofferenza, Rome 00198, Italy
| | | | - Radovan Dvorsky
- Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine Universitat, Düsseldorf 40225, Germany
| | - Luca Pannone
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare and
| | | | - Si-Cai Zhang
- Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine Universitat, Düsseldorf 40225, Germany
| | | | - Gianfranco Bocchinfuso
- Dipartimento di Scienze e Tecnologie Chimiche, Università 'Tor Vergata', Rome 00133, Italy
| | - Cesare Rossi
- UO Genetica Medica, Policlinico S.Orsola-Malpighi, Bologna 40138, Italy
| | - Emma M M Burkitt-Wright
- Genetic Medicine, Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Andrea Farrotti
- Dipartimento di Scienze e Tecnologie Chimiche, Università 'Tor Vergata', Rome 00133, Italy
| | | | - Serena Cecchetti
- Dipartimento di Biologia Cellulare e Neuroscienze, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Rosangela Ferese
- Laboratorio Mendel, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo Della Sofferenza, Rome 00198, Italy
| | | | - Silvana Castro
- Istituto di Genetica e Biofisica 'A. Buzzati Traverso', Consiglio Nazionale Delle Ricerche, Naples 80131, Italy
| | | | - Benoît Brethon
- Pediatric Hematology Department, Robert Debré Hospital, Paris 75019, France
| | - Massimo Sanchez
- Dipartimento di Biologia Cellulare e Neuroscienze, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Amy E Roberts
- Department of Cardiology and Division of Genetics, and Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Helger G Yntema
- Department of Human Genetics, Radboud University Medical Centre, and Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen 6500, The Netherlands
| | - Ineke Van Der Burgt
- Department of Human Genetics, Radboud University Medical Centre, and Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen 6500, The Netherlands
| | - Paola Cianci
- Genetica Clinica Pediatrica, Clinica Pediatrica Università Milano Bicocca, Fondazione MBBM, A.O. S. Gerardo, Monza 20900, Italy
| | - Marie-Louise Bondeson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75237, Sweden
| | | | - Giuseppe Zampino
- Istituto di Clinica Pediatrica, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Bronwyn Kerr
- Genetic Medicine, Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital, University of California School of Medicine, and the Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94143, USA
| | - Antonio Palleschi
- Dipartimento di Scienze e Tecnologie Chimiche, Università 'Tor Vergata', Rome 00133, Italy
| | - Elia Di Schiavi
- Istituto di Genetica e Biofisica 'A. Buzzati Traverso', Consiglio Nazionale Delle Ricerche, Naples 80131, Italy
| | - Alessandra Carè
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare and
| | - Angelo Selicorni
- Genetica Clinica Pediatrica, Clinica Pediatrica Università Milano Bicocca, Fondazione MBBM, A.O. S. Gerardo, Monza 20900, Italy
| | | | - Ion C Cirstea
- Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine Universitat, Düsseldorf 40225, Germany, Leibniz Institute for Age Research, Jena 07745, Germany
| | - Lorenzo Stella
- Dipartimento di Scienze e Tecnologie Chimiche, Università 'Tor Vergata', Rome 00133, Italy
| | - Martin Zenker
- Institute of Human Genetics, University Hospital of Magdeburg, Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Bruce D Gelb
- Department of Pediatrics and Department of Genetics and Department of Genomic Sciences, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hélène Cavé
- Genetics Department, INSERM UMR_S940, Institut Universitaire D'Hématologie (IUH), Université Paris-Diderot Sorbonne-Paris-Cité, Paris 75010, France
| | - Mohammad R Ahmadian
- Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine Universitat, Düsseldorf 40225, Germany
| | - Marco Tartaglia
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare and
| |
Collapse
|
44
|
Strullu M, Caye A, Lachenaud J, Cassinat B, Gazal S, Fenneteau O, Pouvreau N, Pereira S, Baumann C, Contet A, Sirvent N, Méchinaud F, Guellec I, Adjaoud D, Paillard C, Alberti C, Zenker M, Chomienne C, Bertrand Y, Baruchel A, Verloes A, Cavé H. Juvenile myelomonocytic leukaemia and Noonan syndrome. J Med Genet 2014; 51:689-97. [PMID: 25097206 DOI: 10.1136/jmedgenet-2014-102611] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Infants with Noonan syndrome (NS) are predisposed to developing juvenile myelomonocytic leukaemia (JMML) or JMML-like myeloproliferative disorders (MPD). Whereas sporadic JMML is known to be aggressive, JMML occurring in patients with NS is often considered as benign and transitory. However, little information is available regarding the occurrence and characteristics of JMML in NS. METHODS AND RESULTS Within a large prospective cohort of 641 patients with a germline PTPN11 mutation, we identified MPD features in 36 (5.6%) patients, including 20 patients (3%) who fully met the consensus diagnostic criteria for JMML. Sixty percent of the latter (12/20) had severe neonatal manifestations, and 10/20 died in the first month of life. Almost all (11/12) patients with severe neonatal JMML were males. Two females who survived MPD/JMML subsequently developed another malignancy during childhood. Although the risk of developing MPD/JMML could not be fully predicted by the underlying PTPN11 mutation, some germline PTPN11 mutations were preferentially associated with myeloproliferation: 10/48 patients with NS (20.8%) with a mutation in codon Asp61 developed MPD/JMML in infancy. Patients with a p.Thr73Ile mutation also had more chances of developing MPD/JMML but with a milder clinical course. SNP array and whole exome sequencing in paired tumoral and constitutional samples identified no second acquired somatic mutation to explain the occurrence of myeloproliferation. CONCLUSIONS JMML represents the first cause of death in PTPN11-associated NS. Few patients have been reported so far, suggesting that JMML may sometimes be overlooked due to early death, comorbidities or lack of confirmatory tests.
Collapse
Affiliation(s)
- Marion Strullu
- INSERM UMR_S1131, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris-Sorbonne-Cité, Paris, France Département de Génétique, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Paris, France
| | - Aurélie Caye
- INSERM UMR_S1131, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris-Sorbonne-Cité, Paris, France Département de Génétique, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Paris, France
| | - Julie Lachenaud
- INSERM UMR_S1131, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris-Sorbonne-Cité, Paris, France Département de Génétique, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Paris, France
| | - Bruno Cassinat
- INSERM UMR_S1131, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris-Sorbonne-Cité, Paris, France Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint Louis, Paris, France
| | - Steven Gazal
- INSERM UMR_1137, IAME, Plateforme de Génétique constitutionnelle-Nord (PfGC-Nord), Université Paris Diderot, Paris, France
| | - Odile Fenneteau
- Service d'Hématologie Biologique, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Paris, France
| | - Nathalie Pouvreau
- Département de Génétique, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Paris, France
| | - Sabrina Pereira
- Département de Génétique, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Paris, France
| | - Clarisse Baumann
- Département de Génétique, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Paris, France
| | - Audrey Contet
- Service d'Onco-Hématologie pédiatrique, Hôpital d'Enfants de Brabois, Vandoeuvre lès Nancy, France
| | - Nicolas Sirvent
- Service d'Onco-Hématologie pédiatrique, CHU de Nice, Nice, France
| | | | - Isabelle Guellec
- Réanimation néonatale pédiatrique, Paris Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Trousseau, Paris, France
| | - Dalila Adjaoud
- Service d'Onco-Hématologie pédiatrique, CHU de Grenoble, Grenoble, France
| | | | - Corinne Alberti
- Unité d'Epidémiolgie Clinique, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Paris, France INSERM, U1123 et CIC-EC 1426, ECEVE, Université Paris Diderot, Paris-Sorbonne-Cité, Paris, France
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Christine Chomienne
- INSERM UMR_S1131, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris-Sorbonne-Cité, Paris, France Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint Louis, Paris, France
| | - Yves Bertrand
- Département d'Immunologie et Hématologie Pédiatrique, Institut d'Hémato-Oncologie Pédiatrique (IHOP), Lyon, France
| | - André Baruchel
- Service d'Hématologie pédiatrique, Assistance Publique des Hôpitaux de Paris AP-HP, Hôpital Robert Debré, Paris, France
| | - Alain Verloes
- Département de Génétique, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Paris, France INSERM UMR_S1141, Hôpital Robert Debré, Université Paris Diderot, Paris-Sorbonne-Cité, Paris, France
| | - Hélène Cavé
- INSERM UMR_S1131, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris-Sorbonne-Cité, Paris, France Département de Génétique, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Paris, France
| |
Collapse
|
45
|
Yu ZH, Zhang RY, Walls CD, Chen L, Zhang S, Wu L, Liu S, Zhang ZY. Molecular basis of gain-of-function LEOPARD syndrome-associated SHP2 mutations. Biochemistry 2014; 53:4136-51. [PMID: 24935154 PMCID: PMC4081049 DOI: 10.1021/bi5002695] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 2 (SHP2) is a critical signal transducer downstream of growth factors that promotes the activation of the RAS-ERK1/2 cascade. In its basal state, SHP2 exists in an autoinhibited closed conformation because of an intramolecular interaction between its N-SH2 and protein tyrosine phosphatase (PTP) domains. Binding to pTyr ligands present on growth factor receptors and adaptor proteins with its N-SH2 domain localizes SHP2 to its substrates and frees the active site from allosteric inhibition. Germline mutations in SHP2 are known to cause both Noonan syndrome (NS) and LEOPARD syndrome (LS), two clinically similar autosomal dominant developmental disorders. NS-associated SHP2 mutants display elevated phosphatase activity, while LS-associated SHP2 mutants exhibit reduced catalytic activity. A conundrum in how clinically similar diseases result from mutations to SHP2 that have opposite effects on this enzyme's catalytic functionality exists. Here we report a comprehensive investigation of the kinetic, structural, dynamic, and biochemical signaling properties of the wild type as well as all reported LS-associated SHP2 mutants. The results reveal that LS-causing mutations not only affect SHP2 phosphatase activity but also induce a weakening of the intramolecular interaction between the N-SH2 and PTP domains, leading to mutants that are more readily activated by competing pTyr ligands. Our data also indicate that the residual phosphatase activity associated with the LS SHP2 mutant is required for enhanced ERK1/2 activation. Consequently, catalytically impaired SHP2 mutants could display gain-of-function properties because of their ability to localize to the vicinity of substrates for longer periods of time, thereby affording the opportunity for prolonged substrate turnover and sustained RAS-ERK1/2 activation.
Collapse
Affiliation(s)
- Zhi-Hong Yu
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Ruo-Yu Zhang
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Chad D. Walls
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Lan Chen
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States,Chemical
Genomics Core Facility, Indiana University
School of Medicine, 635
Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Sheng Zhang
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States,Chemical
Genomics Core Facility, Indiana University
School of Medicine, 635
Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Li Wu
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States,Chemical
Genomics Core Facility, Indiana University
School of Medicine, 635
Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Sijiu Liu
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Zhong-Yin Zhang
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States,E-mail:
| |
Collapse
|
46
|
Edwards JJ, Martinelli S, Pannone L, Lo IFM, Shi L, Edelmann L, Tartaglia M, Luk HM, Gelb BD. A PTPN11 allele encoding a catalytically impaired SHP2 protein in a patient with a Noonan syndrome phenotype. Am J Med Genet A 2014; 164A:2351-5. [PMID: 24891296 DOI: 10.1002/ajmg.a.36620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/04/2014] [Indexed: 11/10/2022]
Abstract
The RASopathies are a relatively common group of phenotypically similar and genetically related autosomal dominant genetic syndromes caused by missense mutations affecting genes participating in the RAS/mitogen-activated protein kinase (MAPK) pathway that include Noonan syndrome (NS) and Noonan syndrome with multiple lentigines (NSML, formerly LEOPARD syndrome). NS and NSML can be difficult to differentiate during infancy, but the presence of multiple lentigines, café au lait spots, and specific cardiac defects facilitate the diagnosis. Furthermore, individual PTPN11 missense mutations are highly specific to each syndrome and engender opposite biochemical alterations on the function of SHP-2, the protein product of that gene. Here, we report on a 5-year-old male with two de novo PTPN11 mutations in cis, c.1471C>T (p.Pro491Ser), and c.1492C>T (p.Arg498Trp), which are associated with NS and NSML, respectively. This boy's phenotype is intermediate between NS and NSML with facial dysmorphism, short stature, mild global developmental delay, pulmonic stenosis, and deafness but absence of café au lait spots or lentigines. The double-mutant SHP-2 was found to be catalytically impaired. This raises the question of whether clinical differences between NS and NSML can be ascribed solely to the relative SHP-2 catalytic activity.
Collapse
Affiliation(s)
- Jonathan J Edwards
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bocchinfuso G, Conflitti P, Raniolo S, Caruso M, Mazzuca C, Gatto E, Placidi E, Formaggio F, Toniolo C, Venanzi M, Palleschi A. Aggregation propensity of Aib homo-peptides of different length: an insight from molecular dynamics simulations. J Pept Sci 2014; 20:494-507. [DOI: 10.1002/psc.2648] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Gianfranco Bocchinfuso
- Department of Chemical Sciences and Technologies; University of Rome ‘Tor Vergata’; I-00133 Rome Italy
| | - Paolo Conflitti
- Department of Chemical Sciences and Technologies; University of Rome ‘Tor Vergata’; I-00133 Rome Italy
| | - Stefano Raniolo
- Department of Chemical Sciences and Technologies; University of Rome ‘Tor Vergata’; I-00133 Rome Italy
| | - Mario Caruso
- Department of Chemical Sciences and Technologies; University of Rome ‘Tor Vergata’; I-00133 Rome Italy
| | - Claudia Mazzuca
- Department of Chemical Sciences and Technologies; University of Rome ‘Tor Vergata’; I-00133 Rome Italy
| | - Emanuela Gatto
- Department of Chemical Sciences and Technologies; University of Rome ‘Tor Vergata’; I-00133 Rome Italy
| | - Ernesto Placidi
- Department of Physics; University of Rome ‘Tor Vergata’; I-00133 Rome Italy
- CNR-ISM; Via Fosso del Cavaliere 100 I-00133 Roma Italy
| | - Fernando Formaggio
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Department of Chemistry; University of Padova; I-35131 Padua Italy
| | - Claudio Toniolo
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Department of Chemistry; University of Padova; I-35131 Padua Italy
| | - Mariano Venanzi
- Department of Chemical Sciences and Technologies; University of Rome ‘Tor Vergata’; I-00133 Rome Italy
| | - Antonio Palleschi
- Department of Chemical Sciences and Technologies; University of Rome ‘Tor Vergata’; I-00133 Rome Italy
| |
Collapse
|
48
|
Rodríguez FA, Unanue N, Hernández MI, Heath KE, Cassorla F. Molecular characterization of Chilean patients with a clinical diagnosis of Noonan syndrome. J Pediatr Endocrinol Metab 2014; 27:305-9. [PMID: 24150203 DOI: 10.1515/jpem-2013-0176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/29/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND Noonan syndrome (NS) is an autosomal dominant syndrome characterized by typical dysmorphic features, cardiac anomalies as well as postnatal growth retardation, and is associated with Ras-MAPK pathway gene mutations. The purpose of this study was to improve the diagnosis of Chilean patients with suspected NS through molecular analysis. METHODS We screened 18 Chilean patients with a clinical diagnosis of NS for mutations in PTPN11 by high resolution melting (HRM) and subsequent sequencing. RESULTS Three PTPN11 missense mutations were detected in 22% of analyzed patients. Of these, two (c.181G>A and c.1510A>G) were previously reported and one was the novel substitution c.328G>A (p.E110K) affecting the linker stretch between the N-SH2 and C-SH2 domains of SHP-2 protein. CONCLUSION Molecular studies confirmed the clinical diagnosis of NS in 4 of 18 patients, which provided support for therapeutic decisions and improved genetic counseling for their families.
Collapse
|
49
|
Noël LA, Arts FA, Montano-Almendras CP, Cox L, Gielen O, Toffalini F, Marbehant CY, Cools J, Demoulin JB. The tyrosine phosphatase SHP2 is required for cell transformation by the receptor tyrosine kinase mutants FIP1L1-PDGFRα and PDGFRα D842V. Mol Oncol 2014; 8:728-40. [PMID: 24618081 DOI: 10.1016/j.molonc.2014.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/27/2014] [Accepted: 02/05/2014] [Indexed: 02/06/2023] Open
Abstract
Activated forms of the platelet derived growth factor receptor alpha (PDGFRα) have been described in various tumors, including FIP1L1-PDGFRα in patients with myeloproliferative diseases associated with hypereosinophilia and the PDGFRα(D842V) mutant in gastrointestinal stromal tumors and inflammatory fibroid polyps. To gain a better insight into the signal transduction mechanisms of PDGFRα oncogenes, we mutated twelve potentially phosphorylated tyrosine residues of FIP1L1-PDGFRα and identified three mutations that affected cell proliferation. In particular, mutation of tyrosine 720 in FIP1L1-PDGFRα or PDGFRα(D842V) inhibited cell growth and blocked ERK signaling in Ba/F3 cells. This mutation also decreased myeloproliferation in transplanted mice and the proliferation of human CD34(+) hematopoietic progenitors transduced with FIP1L1-PDGFRα. We showed that the non-receptor protein tyrosine phosphatase SHP2 bound directly to tyrosine 720 of FIP1L1-PDGFRα. SHP2 knock-down decreased proliferation of Ba/F3 cells transformed with FIP1L1-PDGFRα and PDGFRα(D842V) and affected ERK signaling, but not STAT5 phosphorylation. Remarkably, SHP2 was not essential for cell proliferation and ERK phosphorylation induced by the wild-type PDGF receptor in response to ligand stimulation, suggesting a shift in the function of SHP2 downstream of oncogenic receptors. In conclusion, our results indicate that SHP2 is required for cell transformation and ERK activation by mutant PDGF receptors.
Collapse
Affiliation(s)
- Laura A Noël
- de Duve Institute, Université catholique de Louvain, MEXP - UCL B1.74.05, Avenue Hippocrate 75, BE-1200 Brussels, Belgium.
| | - Florence A Arts
- de Duve Institute, Université catholique de Louvain, MEXP - UCL B1.74.05, Avenue Hippocrate 75, BE-1200 Brussels, Belgium.
| | - Carmen P Montano-Almendras
- de Duve Institute, Université catholique de Louvain, MEXP - UCL B1.74.05, Avenue Hippocrate 75, BE-1200 Brussels, Belgium.
| | - Luk Cox
- Center for The Biology of Disease, VIB, Herestraat 49, BE-3000 Leuven, Belgium; Center for Human Genetics, KU Leuven, Leuven, Belgium.
| | - Olga Gielen
- Center for The Biology of Disease, VIB, Herestraat 49, BE-3000 Leuven, Belgium; Center for Human Genetics, KU Leuven, Leuven, Belgium.
| | - Federica Toffalini
- de Duve Institute, Université catholique de Louvain, MEXP - UCL B1.74.05, Avenue Hippocrate 75, BE-1200 Brussels, Belgium.
| | - Catherine Y Marbehant
- de Duve Institute, Université catholique de Louvain, MEXP - UCL B1.74.05, Avenue Hippocrate 75, BE-1200 Brussels, Belgium.
| | - Jan Cools
- Center for The Biology of Disease, VIB, Herestraat 49, BE-3000 Leuven, Belgium; Center for Human Genetics, KU Leuven, Leuven, Belgium.
| | - Jean-Baptiste Demoulin
- de Duve Institute, Université catholique de Louvain, MEXP - UCL B1.74.05, Avenue Hippocrate 75, BE-1200 Brussels, Belgium.
| |
Collapse
|
50
|
Lapinski PE, Meyer MF, Feng GS, Kamiya N, King PD. Deletion of SHP-2 in mesenchymal stem cells causes growth retardation, limb and chest deformity, and calvarial defects in mice. Dis Model Mech 2013; 6:1448-58. [PMID: 24077964 PMCID: PMC3820267 DOI: 10.1242/dmm.012849] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/23/2013] [Indexed: 12/11/2022] Open
Abstract
In mice, induced global disruption of the Ptpn11 gene, which encodes the SHP-2 tyrosine phosphatase, results in severe skeletal abnormalities. To understand the extent to which skeletal abnormalities can be attributed to perturbation of SHP-2 function in bone-forming osteoblasts and chondrocytes, we generated mice in which disruption of Ptpn11 is restricted to mesenchymal stem cells (MSCs) and their progeny, which include both cell types. MSC-lineage-specific SHP-2 knockout (MSC SHP-2 KO) mice exhibited postnatal growth retardation, limb and chest deformity, and calvarial defects. These skeletal abnormalities were associated with an absence of mature osteoblasts and massive chondrodysplasia with a vast increase in the number of terminally differentiated hypertrophic chondrocytes in affected bones. Activation of mitogen activated protein kinases (MAPKs) and protein kinase B (PKB; also known as AKT) was impaired in bone-forming cells of MSC SHP-2 KO mice, which provides an explanation for the skeletal defects that developed. These findings reveal a cell-autonomous role for SHP-2 in bone-forming cells in mice in the regulation of skeletal development. The results add to our understanding of the pathophysiology of skeletal abnormalities observed in humans with germline mutations in the PTPN11 gene (e.g. Noonan syndrome and LEOPARD syndrome).
Collapse
Affiliation(s)
- Philip E. Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Melissa F. Meyer
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gen-Sheng Feng
- Department of Pathology, University of California San Diego, San Diego, CA 92093, USA
| | - Nobuhiro Kamiya
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, Dallas, TX 75219, USA
| | - Philip D. King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|