1
|
Iwata K, Nakabayashi K, Ishiwata K, Nakamura K, Kameno Y, Hata K, Matsuzaki H. Genome-wide DNA methylation profiles in the raphe nuclei of patients with autism spectrum disorder. Psychiatry Clin Neurosci 2025. [PMID: 40272067 DOI: 10.1111/pcn.13830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/26/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025]
Abstract
AIM Autism spectrum disorder (ASD) has a strong genetic basis, yet its genetic complexities remain elusive. Current research highlights environmental factors and epigenetic processes, such as DNA methylation, as crucial in ASD development. This exploratory study addresses a gap in understanding epigenetic regulation in the dorsal raphe (DR)-a region regulating multiple neurotransmitters and implicated in ASD-by examining DNA methylation profiles in postmortem ASD and control brains. METHODS We comprehensively analyzed genome-wide DNA methylation profiles in the DR brain region (seven controls and five ASD) using the Infinium HumanMethylation450 BeadChip (Illumina). Additionally, quantitative polymerase chain reaction was used to measure messenger RNA levels of differentially methylated genes in ASD (11 controls and six ASD). RESULTS We identified differentially methylated regions (DMRs) between ASD and controls. These DMRs were located among various genomic regions, including promoters, gene bodies, and intergenic regions. Notably, we found hypermethylation in genes related to olfaction (e.g. OR2C3), which is regulated by serotonin. Additionally, we observed that the hypomethylation of promoter-associated CpG islands in RABGGTB, a gene related to autophagy and synaptic function, corresponded with its increased expression. CONCLUSIONS Our findings reveal extensive DNA methylation changes in critical genomic regions, shedding light on potential mechanisms underlying ASD. The identification of RABGGTB as a novel candidate gene, not listed in the SFARI database, underscores its significance and warrants further research to explore its role in ASD diagnosis. This study enhances our understanding of the epigenetic landscape in ASD, emphasizing the interplay between genetic and environmental factors in its pathophysiology.
Collapse
Affiliation(s)
- Keiko Iwata
- Division of Development of Mental Functions, Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Department of Functional Brain Activities, United Graduate School of Child Development, Hamamatsu University School of Medicine, Osaka University, Kanazawa University, Chiba University, and University of Fukui, Osaka, Japan
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Keisuke Ishiwata
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakamura
- Department of Neuropsychiatry, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Yosuke Kameno
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, Japan
- Department of Human Molecular Genetics, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideo Matsuzaki
- Division of Development of Mental Functions, Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Department of Functional Brain Activities, United Graduate School of Child Development, Hamamatsu University School of Medicine, Osaka University, Kanazawa University, Chiba University, and University of Fukui, Osaka, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
| |
Collapse
|
2
|
Singh AK, Joshi I, Reddy NMN, Purushotham SS, Eswaramoorthy M, Vasudevan M, Banerjee S, Clement JP, Kundu TK. Epigenetic modulation rescues neurodevelopmental deficits in Syngap1 +/- mice. Aging Cell 2025; 24:e14408. [PMID: 39878322 PMCID: PMC11896221 DOI: 10.1111/acel.14408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/05/2024] [Accepted: 10/22/2024] [Indexed: 01/31/2025] Open
Abstract
SYNGAP1 is a Ras GTPase-activating protein that plays a crucial role during brain development and in synaptic plasticity. Sporadic heterozygous mutations in SYNGAP1 affect social and emotional behaviour observed in intellectual disability (ID) and autism spectrum disorder (ASD). Although neurophysiological deficits have been extensively studied, the epigenetic landscape of SYNGAP1 mutation-mediated intellectual disability is unexplored. Here, we have found that the p300/CBP specific acetylation marks of histones are significantly repressed in the hippocampus of adolescent Syngap1+/- mice. Additionally, we observed decreased dendritic branching of newly born DCX+ neurons in these mice, suggesting altered adult hippocampal neurogenesis. To establish the causal relationship of Syngap1+/- phenotype and the altered histone acetylation signature we have treated 2-4 months old Syngap1+/- mice with glucose-derived carbon nanosphere (CSP) conjugated potent small molecule activator (TTK21) of p300/CBP lysine acetyltransferase (CSP-TTK21). The enhancement of the p300/CBP specific acetylation marks of histones by CSP-TTK21 restored synaptic functions, increased dendritic branching of DCX+ neurons, enables the capability to reorganise cortical circuits in response to change in the sensory stimuli, and improves behavioural measures in Syngap1+/- mice that are very closely comparable to wild type littermates. Further, hippocampal RNA-Seq analysis of these mice revealed that the expression of many critical genes such as Adcy1, Ntrk3, Egr1, and Foxj1 which are key regulators of synaptic plasticity and neurogenesis and are well associated with ID/ASD reversed upon CSP-TTK21 treatment. This study could be the first demonstration of the reversal of autistic behaviour and neural wiring upon the modulation of altered epigenetic modification(s).
Collapse
Affiliation(s)
- Akash Kumar Singh
- Molecular Biology and Genetics Unit, Transcription and Disease LaboratoryJawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
- Neuroscience UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | - Ila Joshi
- Molecular Biology and Genetics Unit, Transcription and Disease LaboratoryJawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
| | - Neeharika M. N. Reddy
- Neuroscience UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | | | - M. Eswaramoorthy
- Chemistry and Physics of Materials UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
| | | | | | - James P. Clement
- Neuroscience UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
- Present address:
University of ExeterExeterUK
| | - Tapas K. Kundu
- Molecular Biology and Genetics Unit, Transcription and Disease LaboratoryJawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
- Neuroscience UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| |
Collapse
|
3
|
Xiao Y, Xiang W, Ma X, Zheng A, Rong D, Zhang N, Yang N, Bayram H, Lorimer GH, Wang J. Research Progress on the Correlation Between Atmospheric Particulate Matter and Autism. J Appl Toxicol 2024. [PMID: 39701085 DOI: 10.1002/jat.4722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/29/2024] [Accepted: 10/25/2024] [Indexed: 12/21/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder caused by the interaction of genetic and complex environmental factors. The prevalence of autism has dramatically increased in countries and regions undergoing rapid industrialization and urbanization. Recent studies have shown that particulate matter (PM) in air pollution affects the development of neurons and disrupts the function of the nervous system, leading to behavioral and cognitive problems and increasing the risk of ASD. However, research on the mechanism of environmental factors and ASD is still in its infancy. On this basis, we conducted a literature search and analysis to review epidemiological studies on the correlation between fine particulate matter (PM2.5) and inhalable particulate matter (PM10) and ASD. The signaling pathways and pathogenic mechanisms of PM in synaptic injury and neuroinflammation are presented, and the mechanism of the ASD candidate gene SHANK3 was reviewed. Additionally, the different sites of action of different particles in animal models and humans were highlighted, and the differences of their effects on the pathogenesis of ASD were explained. We summarized the aetiology and mechanisms of PM-induced autism and look forward to future research breakthroughs in improved assessment methods, multidisciplinary alliances and high-tech innovations.
Collapse
Affiliation(s)
- Yaqian Xiao
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Wang Xiang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Xuerui Ma
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Aijia Zheng
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Dechang Rong
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Nimeng Zhang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Ning Yang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Hasan Bayram
- Department of Pulmonary Medicine, School of Medicine, Koc University, Istanbul, Turkey
| | - George H Lorimer
- Department of Chemistry, University of Maryland, College Park, Maryland, USA
| | - Jun Wang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
Käver L, Hinney A, Rajcsanyi LS, Maier HB, Frieling H, Steiger H, Voelz C, Beyer C, Trinh S, Seitz J. Epigenetic alterations in patients with anorexia nervosa-a systematic review. Mol Psychiatry 2024; 29:3900-3914. [PMID: 38849516 PMCID: PMC11609096 DOI: 10.1038/s41380-024-02601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024]
Abstract
Anorexia nervosa (AN) is a complex metabolic and psychological disorder that is influenced by both heritable genetic components and environmental factors. Exposure to various environmental influences can lead to epigenetically induced changes in gene expression. Epigenetic research in AN is still in its infancy, and studies to date are limited in determining clear, valid links to disease onset and progression are limited. Therefore, the aim of this systematic review was to compile and critically evaluate the available results of epigenetic studies specifically in AN and to provide recommendations for future studies. In accordance with the PRISMA guidelines, a systematic literature search was performed in three different databases (PubMed, Embase, and Web of Science) through May 2023. Twenty-three original papers or conference abstracts on epigenetic studies in AN were collected. Epigenome-wide association studies (EWASs), which analyze DNA methylation across the genome in patients with AN and identify potential disease-relevant changes in promoter/regulatory regions of genes, are the most promising for future research. To date, five EWASs on AN have been published, suggesting a potential reversibility of malnutrition-induced epigenetic changes once patients recover. Hence, determining differential DNA methylation levels could serve as a biomarker for disease status or early diagnosis and might be involved in disease progression or chronification. For future research, EWASs with a larger sample size, longitudinal study design and uniform methods should be performed to contribute to the understanding of the pathophysiology of AN, the development of individual interventions and a better prognosis for affected patients.
Collapse
Affiliation(s)
- Larissa Käver
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, Virchowstrasse 174, 45147, Essen, Germany
- Center for Translational and Behavioral Neuroscience, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Luisa Sophie Rajcsanyi
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, Virchowstrasse 174, 45147, Essen, Germany
- Center for Translational and Behavioral Neuroscience, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Hannah Benedictine Maier
- Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Helge Frieling
- Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Howard Steiger
- Department of Psychiatry, McGill University, Montreal, QC, H3A 1A1, Canada
| | - Clara Voelz
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Stefanie Trinh
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Neuenhofer Weg 21, 52074, Aachen, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, LVR University Hospital Essen, Virchowstrasse 174, 45147, Essen, Germany
| |
Collapse
|
5
|
Kuodza GE, Kawai R, LaSalle JM. Intercontinental insights into autism spectrum disorder: a synthesis of environmental influences and DNA methylation. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae023. [PMID: 39703685 PMCID: PMC11658417 DOI: 10.1093/eep/dvae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder characterized by a broad range of symptoms. The etiology of ASD is thought to involve complex gene-environment interactions, which are crucial to understanding its various causes and symptoms. DNA methylation is an epigenetic mechanism that potentially links genetic predispositions to environmental factors in the development of ASD. This review provides a global perspective on ASD, focusing on how DNA methylation studies may reveal gene-environment interactions characteristic of specific geographical regions. It delves into the role of DNA methylation in influencing the causes and prevalence of ASD in regions where environmental influences vary significantly. We also address potential explanations for the high ASD prevalence in North America, considering lifestyle factors, environmental toxins, and diagnostic considerations. Asian and European studies offer insights into endocrine-disrupting compounds, persistent organic pollutants, maternal smoking, and their associations with DNA methylation alterations in ASD. In areas with limited data on DNA methylation and ASD, such as Africa, Oceania, and South America, we discuss prevalent environmental factors based on epidemiological studies. Additionally, the review integrates global and country-specific prevalence data from various studies, providing a comprehensive picture of the variables influencing ASD diagnoses over region and year of assessment. This prevalence data, coupled with regional environmental variables and DNA methylation studies, provides a perspective on the complexities of ASD research. Integrating global prevalence data, we underscore the need for a comprehensive global understanding of ASD's complex etiology. Expanded research into epigenetic mechanisms of ASD is needed, particularly in underrepresented populations and locations, to enhance biomarker development for diagnosis and intervention strategies for ASD that reflect the varied environmental and genetic landscapes worldwide.
Collapse
Affiliation(s)
- George E Kuodza
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA 95616, United States
| | - Ray Kawai
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA 95616, United States
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
6
|
Herrera ML, Paraíso-Luna J, Bustos-Martínez I, Barco Á. Targeting epigenetic dysregulation in autism spectrum disorders. Trends Mol Med 2024; 30:1028-1046. [PMID: 38971705 DOI: 10.1016/j.molmed.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/08/2024]
Abstract
Autism spectrum disorders (ASD) comprise a range of neurodevelopmental pathologies characterized by deficits in social interaction and repetitive behaviors, collectively affecting almost 1% of the worldwide population. Deciphering the etiology of ASD has proven challenging due to the intricate interplay of genetic and environmental factors and the variety of molecular pathways affected. Epigenomic alterations have emerged as key players in ASD etiology. Their research has led to the identification of biomarkers for diagnosis and pinpointed specific gene targets for therapeutic interventions. This review examines the role of epigenetic alterations, resulting from both genetic and environmental influences, as a central causative factor in ASD, delving into its contribution to pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Macarena L Herrera
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Juan Paraíso-Luna
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Isabel Bustos-Martínez
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Ángel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain.
| |
Collapse
|
7
|
You N, Liu C, Gu Y, Wang R, Jia H, Zhang T, Jiang S, Shi J, Chen M, Guan MX, Sun S, Pei S, Liu Z, Shen N. SpliceTransformer predicts tissue-specific splicing linked to human diseases. Nat Commun 2024; 15:9129. [PMID: 39443442 PMCID: PMC11500173 DOI: 10.1038/s41467-024-53088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
We present SpliceTransformer (SpTransformer), a deep-learning framework that predicts tissue-specific RNA splicing alterations linked to human diseases based on genomic sequence. SpTransformer outperforms all previous methods on splicing prediction. Application to approximately 1.3 million genetic variants in the ClinVar database reveals that splicing alterations account for 60% of intronic and synonymous pathogenic mutations, and occur at different frequencies across tissue types. Importantly, tissue-specific splicing alterations match their clinical manifestations independent of gene expression variation. We validate the enrichment in three brain disease datasets involving over 164,000 individuals. Additionally, we identify single nucleotide variations that cause brain-specific splicing alterations, and find disease-associated genes harboring these single nucleotide variations with distinct expression patterns involved in diverse biological processes. Finally, SpTransformer analysis of whole exon sequencing data from blood samples of patients with diabetic nephropathy predicts kidney-specific RNA splicing alterations with 83% accuracy, demonstrating the potential to infer disease-causing tissue-specific splicing events. SpTransformer provides a powerful tool to guide biological and clinical interpretations of human diseases.
Collapse
Affiliation(s)
- Ningyuan You
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Chang Liu
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuxin Gu
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Rong Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanying Jia
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyun Zhang
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Song Jiang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jinsong Shi
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Min-Xin Guan
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Siqi Sun
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
| | - Shanshan Pei
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihong Liu
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| | - Ning Shen
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
Wang YZ, Perez-Rosello T, Smukowski SN, Surmeier DJ, Savas JN. Neuron type-specific proteomics reveals distinct Shank3 proteoforms in iSPNs and dSPNs lead to striatal synaptopathy in Shank3B -/- mice. Mol Psychiatry 2024; 29:2372-2388. [PMID: 38486049 PMCID: PMC11412912 DOI: 10.1038/s41380-024-02493-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 09/21/2024]
Abstract
Combinatorial expression of postsynaptic proteins underlies synapse diversity within and between neuron types. Thus, characterization of neuron-type-specific postsynaptic proteomes is key to obtaining a deeper understanding of discrete synaptic properties and how selective dysfunction manifests in synaptopathies. To overcome the limitations associated with bulk measures of synaptic protein abundance, we developed a biotin proximity protein tagging probe to characterize neuron-type-specific postsynaptic proteomes in vivo. We found Shank3 protein isoforms are differentially expressed by direct and indirect pathway spiny projection neurons (dSPNs and iSPNs). Investigation of Shank3B-/- mice lacking exons 13-16 within the Shank3 gene, reveal distinct Shank3 protein isoform expression in iSPNs and dSPNs. In Shank3B-/- striatum, Shank3E and Shank3NT are expressed by dSPNs but are undetectable in iSPNs. Proteomic analysis indicates significant and selective alterations in the postsynaptic proteome of Shank3B-/- iSPNs. Correspondingly, the deletion of exons 13-16 diminishes dendritic spine density, reduces spine head diameter, and hampers corticostriatal synaptic transmission in iSPNs. Remarkably, reintroducing Shank3E in adult Shank3B-/- iSPNs significantly rectifies the observed dendritic spine morphological and corticostriatal synaptic transmission deficits. We report unexpected cell-type specific synaptic protein isoform expression which could play a key causal role in specifying synapse diversity and selective synapse dysfunction in synaptopathies.
Collapse
Affiliation(s)
- Yi-Zhi Wang
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Tamara Perez-Rosello
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Samuel N Smukowski
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
9
|
Gholamalizadeh H, Amiri-Shahri M, Rasouli F, Ansari A, Baradaran Rahimi V, Reza Askari V. DNA Methylation in Autism Spectrum Disorders: Biomarker or Pharmacological Target? Brain Sci 2024; 14:737. [PMID: 39199432 PMCID: PMC11352561 DOI: 10.3390/brainsci14080737] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Autism spectrum disorder (ASD) is a group of heterogeneous neurodevelopmental disabilities with persistent impairments in cognition, communication, and social behavior. Although environmental factors play a role in ASD etiopathogenesis, a growing body of evidence indicates that ASD is highly inherited. In the last two decades, the dramatic rise in the prevalence of ASD has interested researchers to explore the etiologic role of epigenetic marking and incredibly abnormal DNA methylation. This review aimed to explain the current understanding of the association between changes in DNA methylation signatures and ASD in patients or animal models. We reviewed studies reporting alterations in DNA methylation at specific genes as well as epigenome-wide association studies (EWASs). Finally, we hypothesized that specific changes in DNA methylation patterns could be considered a potential biomarker for ASD diagnosis and prognosis and even a target for pharmacological intervention.
Collapse
Affiliation(s)
- Hanieh Gholamalizadeh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran;
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran
| | - Maedeh Amiri-Shahri
- Student Research Committee, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran; (M.A.-S.); (F.R.); (A.A.)
- Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Fatemeh Rasouli
- Student Research Committee, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran; (M.A.-S.); (F.R.); (A.A.)
- Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Arina Ansari
- Student Research Committee, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran; (M.A.-S.); (F.R.); (A.A.)
- Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran;
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran
| |
Collapse
|
10
|
Lu X, Ni P, Suarez-Meade P, Ma Y, Forrest EN, Wang G, Wang Y, Quiñones-Hinojosa A, Gerstein M, Jiang YH. Transcriptional determinism and stochasticity contribute to the complexity of autism-associated SHANK family genes. Cell Rep 2024; 43:114376. [PMID: 38900637 PMCID: PMC11328446 DOI: 10.1016/j.celrep.2024.114376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
Precision of transcription is critical because transcriptional dysregulation is disease causing. Traditional methods of transcriptional profiling are inadequate to elucidate the full spectrum of the transcriptome, particularly for longer and less abundant mRNAs. SHANK3 is one of the most common autism causative genes. Twenty-four Shank3-mutant animal lines have been developed for autism modeling. However, their preclinical validity has been questioned due to incomplete Shank3 transcript structure. We apply an integrative approach combining cDNA-capture and long-read sequencing to profile the SHANK3 transcriptome in humans and mice. We unexpectedly discover an extremely complex SHANK3 transcriptome. Specific SHANK3 transcripts are altered in Shank3-mutant mice and postmortem brain tissues from individuals with autism spectrum disorder. The enhanced SHANK3 transcriptome significantly improves the detection rate for potential deleterious variants from genomics studies of neuropsychiatric disorders. Our findings suggest that both deterministic and stochastic transcription of the genome is associated with SHANK family genes.
Collapse
Affiliation(s)
- Xiaona Lu
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Pengyu Ni
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Yu Ma
- Department of Neurology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Emily Niemitz Forrest
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Guilin Wang
- Keck Microarray Shared Resource, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai 201102, China
| | | | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Computer Science, Yale University, New Haven, CT 06520, USA; Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA; Department of Biomedical Informatics & Data Science, Yale University, New Haven, CT 06520, USA
| | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
11
|
Lu X, Ni P, Suarez-Meade P, Ma Y, Forrest EN, Wang G, Wang Y, Quiñones-Hinojosa A, Gerstein M, Jiang YH. Transcriptional Determinism and Stochasticity Contribute to the Complexity of Autism Associated SHANK Family Genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585480. [PMID: 38562714 PMCID: PMC10983920 DOI: 10.1101/2024.03.18.585480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Precision of transcription is critical because transcriptional dysregulation is disease causing. Traditional methods of transcriptional profiling are inadequate to elucidate the full spectrum of the transcriptome, particularly for longer and less abundant mRNAs. SHANK3 is one of the most common autism causative genes. Twenty-four Shank3 mutant animal lines have been developed for autism modeling. However, their preclinical validity has been questioned due to incomplete Shank3 transcript structure. We applied an integrative approach combining cDNA-capture and long-read sequencing to profile the SHANK3 transcriptome in human and mice. We unexpectedly discovered an extremely complex SHANK3 transcriptome. Specific SHANK3 transcripts were altered in Shank3 mutant mice and postmortem brains tissues from individuals with ASD. The enhanced SHANK3 transcriptome significantly improved the detection rate for potential deleterious variants from genomics studies of neuropsychiatric disorders. Our findings suggest the stochastic transcription of genome associated with SHANK family genes.
Collapse
Affiliation(s)
- Xiaona Lu
- Department of Genetics, Yale University School of Medicine New Haven, CT, 06520 USA
| | - Pengyu Ni
- Biomedical Informatics & Data Science, Yale University School of Medicine New Haven, CT, 06520 USA
| | | | - Yu Ma
- Department of Neurology, Children’s Hospital of Fudan University, Shanghai, 201102 China
| | | | - Guilin Wang
- Yale Center for Genome Analysis, Yale University School of Medicine New Haven, CT, 06520 USA
| | - Yi Wang
- Department of Neurology, Children’s Hospital of Fudan University, Shanghai, 201102 China
| | | | - Mark Gerstein
- Biomedical Informatics & Data Science, Yale University School of Medicine New Haven, CT, 06520 USA
- Yale Center for Genome Analysis, Yale University School of Medicine New Haven, CT, 06520 USA
| | - Yong-hui Jiang
- Department of Genetics, Yale University School of Medicine New Haven, CT, 06520 USA
- Neuroscienc, Yale University School of Medicine New Haven, CT, 06520 USA
- Pediatrics, Yale University School of Medicine New Haven, CT, 06520 USA
| |
Collapse
|
12
|
de Groot DMG, Linders L, Kayser R, Nederlof R, de Esch C, Slieker RC, Kuper CF, Wolterbeek A, de Groot VJ, Veltien A, Heerschap A, van Waarde A, Dierckx RAJO, de Vries EFJ. Perinatal exposure to the immune-suppressant di-n-octyltin dichloride affects brain development in rats. Toxicol Mech Methods 2024; 34:283-299. [PMID: 37946400 DOI: 10.1080/15376516.2023.2281610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Disruption of the immune system during embryonic brain development by environmental chemicals was proposed as a possible cause of neurodevelopmental disorders. We previously found adverse effects of di-n-octyltin dichloride (DOTC) on maternal and developing immune systems of rats in an extended one-generation reproductive toxicity study according to the OECD 443 test guideline. We hypothesize that the DOTC-induced changes in the immune system can affect neurodevelopment. Therefore, we used in-vivo MRI and PET imaging and genomics, in addition to behavioral testing and neuropathology as proposed in OECD test guideline 443, to investigate the effect of DOTC on structural and functional brain development. Male rats were exposed to DOTC (0, 3, 10, or 30 mg/kg of diet) from 2 weeks prior to mating of the F0-generation until sacrifice of F1-animals. The brains of rats, exposed to DOTC showed a transiently enlarged volume of specific brain regions (MRI), altered specific gravity, and transient hyper-metabolism ([18F]FDG PET). The alterations in brain development concurred with hyper-responsiveness in auditory startle response and slight hyperactivity in young adult animals. Genomics identified altered transcription of key regulators involved in neurodevelopment and neural function (e.g. Nrgrn, Shank3, Igf1r, Cck, Apba2, Foxp2); and regulators involved in cell size, cell proliferation, and organ development, especially immune system development and functioning (e.g. LOC679869, Itga11, Arhgap5, Cd47, Dlg1, Gas6, Cml5, Mef2c). The results suggest the involvement of immunotoxicity in the impairment of the nervous system by DOTC and support the hypothesis of a close connection between the immune and nervous systems in brain development.
Collapse
Affiliation(s)
- Didima M G de Groot
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Louisa Linders
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Reinier Kayser
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Rianne Nederlof
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Celine de Esch
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Roderick C Slieker
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - C Frieke Kuper
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Andre Wolterbeek
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - V Jeroen de Groot
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Andor Veltien
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
13
|
Parrella NF, Hill AT, Dipnall LM, Loke YJ, Enticott PG, Ford TC. Inhibitory dysfunction and social processing difficulties in autism: A comprehensive narrative review. J Psychiatr Res 2024; 169:113-125. [PMID: 38016393 DOI: 10.1016/j.jpsychires.2023.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/04/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
The primary inhibitory neurotransmitter γ-aminobutyric acid (GABA) has a prominent role in regulating neural development and function, with disruption to GABAergic signalling linked to behavioural phenotypes associated with neurodevelopmental disorders, particularly autism. Such neurochemical disruption, likely resulting from diverse genetic and molecular mechanisms, particularly during early development, can subsequently affect the cellular balance of excitation and inhibition in neuronal circuits, which may account for the social processing difficulties observed in autism and related conditions. This comprehensive narrative review integrates diverse streams of research from several disciplines, including molecular neurobiology, genetics, epigenetics, and systems neuroscience. In so doing it aims to elucidate the relevance of inhibitory dysfunction to autism, with specific focus on social processing difficulties that represent a core feature of this disorder. Many of the social processing difficulties experienced in autism have been linked to higher levels of the excitatory neurotransmitter glutamate and/or lower levels of inhibitory GABA. While current therapeutic options for social difficulties in autism are largely limited to behavioural interventions, this review highlights the psychopharmacological studies that explore the utility of GABA modulation in alleviating such difficulties.
Collapse
Affiliation(s)
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Department of Psychiatry, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lillian M Dipnall
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Early Life Epigenetics Group, Deakin University, Geelong, Australia
| | - Yuk Jing Loke
- Epigenetics Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Talitha C Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Centre for Human Psychopharmacology, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Iwashita M, Tran A, Garcia M, Cashon J, Burbano D, Salgado V, Hasegawa M, Balmilero-Unciano R, Politan K, Wong M, Lee RWY, Yoshizawa M. Metabolic shift toward ketosis in asocial cavefish increases social-like affinity. BMC Biol 2023; 21:219. [PMID: 37840141 PMCID: PMC10577988 DOI: 10.1186/s12915-023-01725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Social affinity and collective behavior are nearly ubiquitous in the animal kingdom, but many lineages feature evolutionarily asocial species. These solitary species may have evolved to conserve energy in food-sparse environments. However, the mechanism by which metabolic shifts regulate social affinity is not well investigated. RESULTS In this study, we used the Mexican tetra (Astyanax mexicanus), which features riverine sighted surface (surface fish) and cave-dwelling populations (cavefish), to address the impact of metabolic shifts on asociality and other cave-associated behaviors in cavefish, including repetitive turning, sleeplessness, swimming longer distances, and enhanced foraging behavior. After 1 month of ketosis-inducing ketogenic diet feeding, asocial cavefish exhibited significantly higher social affinity, whereas social affinity regressed in cavefish fed the standard diet. The ketogenic diet also reduced repetitive turning and swimming in cavefish. No major behavioral shifts were found regarding sleeplessness and foraging behavior, suggesting that other evolved behaviors are not largely regulated by ketosis. We further examined the effects of the ketogenic diet via supplementation with exogenous ketone bodies, revealing that ketone bodies are pivotal molecules positively associated with social affinity. CONCLUSIONS Our study indicated that fish that evolved to be asocial remain capable of exhibiting social affinity under ketosis, possibly linking the seasonal food availability and sociality.
Collapse
Affiliation(s)
- Motoko Iwashita
- School of Life Sciences, University of Hawai'I at Mānoa, Honolulu, HI, 96822, USA
| | - Amity Tran
- School of Life Sciences, University of Hawai'I at Mānoa, Honolulu, HI, 96822, USA
| | - Marianne Garcia
- School of Life Sciences, University of Hawai'I at Mānoa, Honolulu, HI, 96822, USA
| | - Jia Cashon
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Devanne Burbano
- School of Life Sciences, University of Hawai'I at Mānoa, Honolulu, HI, 96822, USA
| | - Vanessa Salgado
- School of Life Sciences, University of Hawai'I at Mānoa, Honolulu, HI, 96822, USA
| | - Malia Hasegawa
- School of Life Sciences, University of Hawai'I at Mānoa, Honolulu, HI, 96822, USA
| | | | - Kaylah Politan
- School of Life Sciences, University of Hawai'I at Mānoa, Honolulu, HI, 96822, USA
| | - Miki Wong
- Nā Pu'uwai Native Hawaiian Healthcare System, Kaunakakai, HI, 96748, USA
- Nutrition Services Department, Shriners Hospitals for Children, Honolulu, HI, 96826, USA
| | - Ryan W Y Lee
- Medical Staff Department, Shriners Hospitals for Children, Honolulu, HI, 96826, USA
| | - Masato Yoshizawa
- School of Life Sciences, University of Hawai'I at Mānoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
15
|
Morales-Marín ME, Castro Martínez XH, Centeno Cruz F, Barajas-Olmos F, Náfate López O, Gómez Cotero AG, Orozco L, Nicolini Sánchez H. Differential DNA Methylation from Autistic Children Enriches Evidence for Genes Associated with ASD and New Candidate Genes. Brain Sci 2023; 13:1420. [PMID: 37891789 PMCID: PMC10605446 DOI: 10.3390/brainsci13101420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The etiology of Autism Spectrum Disorders (ASD) is a result of the interaction between genes and the environment. The study of epigenetic factors that affect gene expression, such as DNA methylation, has become an important area of research in ASD. In recent years, there has been an increasing body of evidence pointing to epigenetic mechanisms that influence brain development, as in the case of ASD, when gene methylation dysregulation is present. Our analysis revealed 853 differentially methylated CpG in ASD patients, affecting 509 genes across the genome. Enrichment analysis showed five related diseases, including autistic disorder and mental disorders, which are particularly significant. In this work, we identified 64 genes that were previously reported in the SFARI gene database, classified according to their impact index. Additionally, we identified new genes that have not been previously reported as candidates with differences in the methylation patterns of Mexican children with ASD.
Collapse
Affiliation(s)
- Mirna Edith Morales-Marín
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (X.H.C.M.); (H.N.S.)
| | - Xochitl Helga Castro Martínez
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (X.H.C.M.); (H.N.S.)
| | - Federico Centeno Cruz
- Laboratorio de Inmunogenómica y Enfermedades Metabólicas, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (F.C.C.); (F.B.-O.); (L.O.)
| | - Francisco Barajas-Olmos
- Laboratorio de Inmunogenómica y Enfermedades Metabólicas, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (F.C.C.); (F.B.-O.); (L.O.)
| | - Omar Náfate López
- Hospital de Especialidades Pediátricas, Tuxtla Gutiérrez 29045, Mexico;
| | - Amalia Guadalupe Gómez Cotero
- Centro de Investigación en Ciencias de la Salud, Unidad Santo Tomás, Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| | - Lorena Orozco
- Laboratorio de Inmunogenómica y Enfermedades Metabólicas, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (F.C.C.); (F.B.-O.); (L.O.)
| | - Humberto Nicolini Sánchez
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (X.H.C.M.); (H.N.S.)
- Grupo Médico Carracci, Mexico City 03740, Mexico
| |
Collapse
|
16
|
Shorey-Kendrick LE, Roberts VHJ, D'Mello RJ, Sullivan EL, Murphy SK, Mccarty OJT, Schust DJ, Hedges JC, Mitchell AJ, Terrobias JJD, Easley CA, Spindel ER, Lo JO. Prenatal delta-9-tetrahydrocannabinol exposure is associated with changes in rhesus macaque DNA methylation enriched for autism genes. Clin Epigenetics 2023; 15:104. [PMID: 37415206 PMCID: PMC10324248 DOI: 10.1186/s13148-023-01519-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND With the growing availability of cannabis and the popularization of additional routes of cannabis use beyond smoking, including edibles, the prevalence of cannabis use in pregnancy is rapidly increasing. However, the potential effects of prenatal cannabis use on fetal developmental programming remain unknown. RESULTS We designed this study to determine whether the use of edible cannabis during pregnancy is deleterious to the fetal and placental epigenome. Pregnant rhesus macaques consumed a daily edible containing either delta-9-tetrahydrocannabinol (THC) (2.5 mg/7 kg/day) or placebo. DNA methylation was measured in 5 tissues collected at cesarean delivery (placenta, lung, cerebellum, prefrontal cortex, and right ventricle of the heart) using the Illumina MethylationEPIC platform and filtering for probes previously validated in rhesus macaque. In utero exposure to THC was associated with differential methylation at 581 CpGs, with 573 (98%) identified in placenta. Loci differentially methylated with THC were enriched for candidate autism spectrum disorder (ASD) genes from the Simons Foundation Autism Research Initiative (SFARI) database in all tissues. The placenta demonstrated greatest SFARI gene enrichment, including genes differentially methylated in placentas from a prospective ASD study. CONCLUSIONS Overall, our findings reveal that prenatal THC exposure alters placental and fetal DNA methylation at genes involved in neurobehavioral development that may influence longer-term offspring outcomes. The data from this study add to the limited existing literature to help guide patient counseling and public health polices focused on prenatal cannabis use in the future.
Collapse
Affiliation(s)
- Lyndsey E Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA.
| | - Victoria H J Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Rahul J D'Mello
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Elinor L Sullivan
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, 27701, USA
| | - Owen J T Mccarty
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Danny J Schust
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, 27701, USA
| | - Jason C Hedges
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
- Department of Urology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - A J Mitchell
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Jose Juanito D Terrobias
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Charles A Easley
- Department of Environmental Health Science, University of Georgia College of Public Health, Athens, GA, 30602, USA
| | - Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Jamie O Lo
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| |
Collapse
|
17
|
Strathearn L, Momany A, Kovács EH, Guiler W, Ladd-Acosta C. The intersection of genome, epigenome and social experience in autism spectrum disorder: Exploring modifiable pathways for intervention. Neurobiol Learn Mem 2023; 202:107761. [PMID: 37121464 PMCID: PMC10330448 DOI: 10.1016/j.nlm.2023.107761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 02/22/2023] [Accepted: 04/22/2023] [Indexed: 05/02/2023]
Abstract
The number of children diagnosed with autism spectrum disorder (ASD) has increased substantially over the past two decades. Current research suggests that both genetic and environmental risk factors are involved in the etiology of ASD. The goal of this paper is to examine how one specific environmental factor, early social experience, may be correlated with DNA methylation (DNAm) changes in genes associated with ASD. We present an innovative model which proposes that polygenic risk and changes in DNAm due to social experience may both contribute to the symptoms of ASD. Previous research on genetic and environmental factors implicated in the etiology of ASD will be reviewed, with an emphasis on the oxytocin receptor gene, which may be epigenetically altered by early social experience, and which plays a crucial role in social and cognitive development. Identifying an environmental risk factor for ASD (e.g., social experience) that could be modified via early intervention and which results in epigenetic (DNAm) changes, could transform our understanding of this condition, facilitate earlier identification of ASD, and guide early intervention efforts.
Collapse
Affiliation(s)
- Lane Strathearn
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA; Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 51 Newton Road 2-471 Bowen Science Building, Iowa City, IA 52241, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA 52242, USA; Center for Disabilities and Development, University of Iowa Stead Family Children's Hospital, 100 Hawkins Drive, Iowa City, IA 52242, USA; Hawkeye Intellectual and Developmental Disabilities Research Center (Hawk-IDDRC), University of Iowa, 100 Hawkins Drive, Iowa City, IA 52242, USA.
| | - Allison Momany
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA; Hawkeye Intellectual and Developmental Disabilities Research Center (Hawk-IDDRC), University of Iowa, 100 Hawkins Drive, Iowa City, IA 52242, USA.
| | - Emese Hc Kovács
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 51 Newton Road 2-471 Bowen Science Building, Iowa City, IA 52241, USA.
| | - William Guiler
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA 52242, USA.
| | - Christine Ladd-Acosta
- Department of Epidemiology and the Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Zappala C, Barrios CD, Depino AM. Social deficits in mice prenatally exposed to valproic acid are intergenerationally inherited and rescued by social enrichment. Neurotoxicology 2023; 97:89-100. [PMID: 37207798 DOI: 10.1016/j.neuro.2023.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/06/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Intergenerational transmission of the effects of environmental factors on brain function and behavior can occur through epigenetic mechanisms. Valproic acid (VPA) is an anticonvulsant drug that, when administered during pregnancy, causes various birth defects. The mechanisms of action are largely unclear: VPA can reduce neuronal excitability, but it also inhibits the histone deacetylases, affecting gene expression. Here we evaluated whether the effects of valproic acid prenatal exposure on autism spectrum disorder (ASD)-related behavioral phenotypes can be transmitted to the second generation (F2) through the paternal or the maternal lineage. Indeed, we found that F2 males of the VPA pedigree show reduced sociability, which can be rescued by exposing the animals to social enrichment. Moreover, as is the case for F1 males, F2 VPA males show increased c-Fos expression in the piriform cortex. However, F3 males show normal sociability, indicating that VPA's effects on this behavior are not transgenerationally inherited. Female behavior is not affected by VPA exposure, and we found no evidence of maternal transmission of the consequences of this pharmacological treatment. Finally, all animals exposed to VPA and their descendants show reduced body weight, highlighting an intriguing effect of this compound on metabolism. We propose the VPA model of ASD as a valuable mouse model to study the role of epigenetic inheritance and its underlying mechanisms affecting behavior and neuronal function.
Collapse
Affiliation(s)
- Cecilia Zappala
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Claudio Dario Barrios
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Amaicha Mara Depino
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Perini S, Filosi M, Domenici E. Candidate biomarkers from the integration of methylation and gene expression in discordant autistic sibling pairs. Transl Psychiatry 2023; 13:109. [PMID: 37012247 PMCID: PMC10070641 DOI: 10.1038/s41398-023-02407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
While the genetics of autism spectrum disorders (ASD) has been intensively studied, resulting in the identification of over 100 putative risk genes, the epigenetics of ASD has received less attention, and results have been inconsistent across studies. We aimed to investigate the contribution of DNA methylation (DNAm) to the risk of ASD and identify candidate biomarkers arising from the interaction of epigenetic mechanisms with genotype, gene expression, and cellular proportions. We performed DNAm differential analysis using whole blood samples from 75 discordant sibling pairs of the Italian Autism Network collection and estimated their cellular composition. We studied the correlation between DNAm and gene expression accounting for the potential effects of different genotypes on DNAm. We showed that the proportion of NK cells was significantly reduced in ASD siblings suggesting an imbalance in their immune system. We identified differentially methylated regions (DMRs) involved in neurogenesis and synaptic organization. Among candidate loci for ASD, we detected a DMR mapping to CLEC11A (neighboring SHANK1) where DNAm and gene expression were significantly and negatively correlated, independently from genotype effects. As reported in previous studies, we confirmed the involvement of immune functions in the pathophysiology of ASD. Notwithstanding the complexity of the disorder, suitable biomarkers such as CLEC11A and its neighbor SHANK1 can be discovered using integrative analyses even with peripheral tissues.
Collapse
Affiliation(s)
- Samuel Perini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy
| | - Michele Filosi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy
- EURAC Research, Bolzano, Italy
| | - Enrico Domenici
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy.
- Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto (TN), Italy.
| |
Collapse
|
20
|
Okuzono S, Fujii F, Matsushita Y, Setoyama D, Shinmyo Y, Taira R, Yonemoto K, Akamine S, Motomura Y, Sanefuji M, Sakurai T, Kawasaki H, Han K, Kato TA, Torisu H, Kang D, Nakabeppu Y, Sakai Y, Ohga S. Shank3a/b isoforms regulate the susceptibility to seizures and thalamocortical development in the early postnatal period of mice. Neurosci Res 2023:S0168-0102(23)00051-2. [PMID: 36871873 DOI: 10.1016/j.neures.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Epileptic seizures are distinct but frequent comorbidities in children with autism spectrum disorder (ASD). The hyperexcitability of cortical and subcortical neurons appears to be involved in both phenotypes. However, little information is available concerning which genes are involved and how they regulate the excitability of the thalamocortical network. In this study, we investigate whether an ASD-associated gene, SH3 and multiple ankyrin repeat domains 3 (Shank3), plays a unique role in the postnatal development of thalamocortical neurons. We herein report that Shank3a/b, the splicing isoforms of mouse Shank3, were uniquely expressed in the thalamic nuclei, peaking from two to four weeks after birth. Shank3a/b-knockout mice showed lower parvalbumin signals in the thalamic nuclei. Consistently, Shank3a/b-knockout mice were more susceptible to generalized seizures than wild-type mice after kainic acid treatments. Together, these data indicate that NT-Ank domain of Shank3a/b regulates molecular pathways that protect thalamocortical neurons from hyperexcitability during the early postnatal period of mice.
Collapse
Affiliation(s)
- Sayaka Okuzono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Fumihiko Fujii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuki Matsushita
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| | - Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kousuke Yonemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Satoshi Akamine
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshitomo Motomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masafumi Sanefuji
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takeshi Sakurai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroyuki Torisu
- Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
21
|
Li K, Liang X, Xie X, Tian L, Yan J, Lin B, Liu H, Lai W, Liu X, Xi Z. Role of SHANK3 in concentrated ambient PM2. 5 exposure induced autism-like phenotype. Heliyon 2023; 9:e14328. [PMID: 36938421 PMCID: PMC10018567 DOI: 10.1016/j.heliyon.2023.e14328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Perinatal air pollution plays an important role in the development of autism. However, research on the pathogenic mechanism remains limited. In this study, the model of systemic inhalation of concentrated approximately 8-fold the level (mean concentration was 224 μg/m3) reported in ambient outdoor air of PM2.5 (particulate matters that are 2.5 μm or less in diameter)in early-postnatal male Sprague-Dawley (SD) rats was established. Through a series of autism-related behavioral tests, it was identified that young rats (postnatal day 1-day21, named PND1-PND21) exposed to PM2.5 exhibited typical autistic phenotypes, such as impaired language communication, abnormal repetitive and stereotyped behaviors, and impaired social skills. Moreover, synaptic abnormalities have been found in the brain tissues of young rats exposed to PM2.5. In terms of the molecular mechanism, we found that the levels of SH3 and multiple ankyrin repeat domains 3 (SHANK3) expression and key molecular proteins in the downstream signaling pathways were decreased in the brain tissues of the exposed rats. Finally, at the epigenetic level, SHANK3 methylation levels were increased in young rats exposed to PM2.5. In conclusion, the study revealed that PM2.5 exposure might induce the early postnatal autism through the SHANK3 signaling pathway by affecting the SHANK3 methylation levels and reducing the SHANK3 expression levels. The study could provide new ideas for autism etiology and a theoretical basis for the prevention and treatment of autism in children.
Collapse
Affiliation(s)
- Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Xiaotian Liang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
- Binzhou Medical College, Yantai, 264000, China
| | - Xiaoqian Xie
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
- Binzhou Medical College, Yantai, 264000, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Wenqin Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Xiaohua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
- Corresponding author.
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
- Binzhou Medical College, Yantai, 264000, China
- Corresponding author. Tianjin Institute of Environmental and Operational Medicine, No. 1, Dali Road, Heping District, Tianjin, 300050, PR China.
| |
Collapse
|
22
|
Chaudhary R, Steinson E. Genes and their Involvement in the Pathogenesis of Autism Spectrum Disorder: Insights from Earlier Genetic Studies. NEUROBIOLOGY OF AUTISM SPECTRUM DISORDERS 2023:375-415. [DOI: 10.1007/978-3-031-42383-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
23
|
Zhang F, Icyuz M, Tollefsbol T, Cox PA, Banack SA, Sun LY. L-Serine Influences Epigenetic Modifications to Improve Cognition and Behaviors in Growth Hormone-Releasing Hormone Knockout Mice. Biomedicines 2022; 11:biomedicines11010104. [PMID: 36672612 PMCID: PMC9856181 DOI: 10.3390/biomedicines11010104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Neurodegenerative diseases feature changes in cognition, and anxiety-like and autism-like behaviors, which are associated with epigenetic alterations such as DNA methylation and histone modifications. The amino acid L-serine has been shown to have beneficial effects on neurological symptoms. Here, we found that growth hormone-releasing hormone knockout (GHRH-KO) mice, a GH-deficiency mouse model characterized by extended lifespan and enhanced insulin sensitivity, showed a lower anxiety symptom and impairment of short-term object recognition memory and autism-like behaviors. Interestingly, L-serine administration exerted anxiolytic effects in mice and ameliorated the behavioral deficits in GHRH-KO. L-serine treatment upregulated histone epigenetic markers of H3K4me, H3K9ac, H3K14ac and H3K18ac in the hippocampus and H3K4me in the cerebral cortex in both GHRH-KO mice and wild type controls. L-serine-modulated epigenetic marker changes, in turn, were found to regulate mRNA expression of BDNF, grm3, foxp1, shank3, auts2 and marcksl1, which are involved in anxiety-, cognitive- and autism-like behaviors. Our study provides a novel insight into the beneficial effects of L-serine intervention on neuropsychological impairments.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35254, USA
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mert Icyuz
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35254, USA
| | - Trygve Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35254, USA
| | - Paul Alan Cox
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY 83001, USA
| | - Sandra Anne Banack
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY 83001, USA
| | - Liou Y. Sun
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35254, USA
- Correspondence: ; Tel.: +(001)-205-934-48243
| |
Collapse
|
24
|
Differential diagnosis between autism spectrum disorder and other developmental disorders with emphasis on the preschool period. World J Pediatr 2022:10.1007/s12519-022-00629-y. [PMID: 36282408 DOI: 10.1007/s12519-022-00629-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/27/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Neurodevelopmental disorders are a heterogeneous group of conditions that manifest as delays or deviations in the acquisition of expected developmental milestones and behavioral changes. Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in communication and social interaction and by repetitive and restricted patterns of behavior, interests and activities. The aim of this review is to discuss the clinical features of the differential diagnoses of ASD that are prevalent among preschoolers, focusing on their similarities and disparities. DATA SOURCES The international medical literature search was conducted using PubMed and was revised regarding the subject using single and/or combined keywords as follows: differential diagnosis, preschoolers, diagnostic challenge, attention deficit hyperactivity disorder, intellectual disability, high abilities/giftedness, childhood apraxia of speech, social communication disorder, Landau-Kleffner syndrome, stereotyped movement disorder and excessive screen time. RESULTS We describe conditions commonly found in clinical practice, taking ASD as a reference. We addressed converging and divergent aspects of behavior, cognition, communication, language, speech, socialization, and stereotypes for the diagnosis of ASD and other disorders identified as potential differential or comorbid diagnoses. CONCLUSIONS The ranking and characterization of symptoms appear to be essential for better understanding the underlying common ground between children with developmental disorders and children with ASD, thus properly diagnosing and directing social, professional, or medication interventions. This detailed discussion adds to the literature since, although ASD differential diagnoses are frequently mentioned and discussed in textbooks and journal articles, they rarely occupy a prominent place as we aimed herein.
Collapse
|
25
|
Sun L, Wang X, Wang X, Cui X, Li G, Wang L, Wang L, Song M, Yu L. Genome-wide DNA methylation profiles of autism spectrum disorder. Psychiatr Genet 2022; 32:131-145. [PMID: 35353793 DOI: 10.1097/ypg.0000000000000314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES We aimed to identify differentially methylated genes and related signaling pathways in autism spectrum disorder (ASD). METHODS First, the DNA methylation profile in the brain samples (GSE131706 and GSE80017) and peripheral blood samples (GSE109905) was downloaded from the Gene Expression Omnibus database (GEO) dataset, followed by identification of differentially methylated genes and functional analysis. Second, the GSE109905 data set was used to further validate the methylation state and test the ability to diagnose disease of identified differentially methylated genes. Third, expression measurement of selected differentially methylated genes was performed in whole blood from an independent sample. Finally, protein-protein interaction (PPI) network of core differentially methylated genes was constructed. RESULTS Totally, 74 differentially methylated genes were identified in ASD, including 38 hypermethylated genes and 36 hypomethylated genes. 15 differentially methylated genes were further identified after validation in the GSE109905 data set. Among these, major histocompatibility complex (HLA)-DQA1 was involved in the molecular function of myosin heavy chain class II receptor activity; HLA-DRB5 was involved in the signaling pathways of cell adhesion molecules, Epstein-Barr virus infection and antigen processing and presentation. In the PPI analysis, the interaction pairs of HLA-DQA1 and HLA-DRB5, FMN2 and ACTR3, and CALCOCO2 and BAZ2B were identified. Interestingly, FMN2, BAZ2B, HLA-DRB5, CALCOCO2 and DUSP22 had a potential diagnostic value for patients with ASD. The expression result of four differentially methylated genes (HLA-DRB5, NTM, IL16 and COL5A3) in the independent sample was consistent with the integrated analysis. CONCLUSIONS Identified differentially methylated genes and enriched signaling pathway could be associated with ASD.
Collapse
Affiliation(s)
- Ling Sun
- Mental Health Center, The First Hospital of Hebei Medical University
- Medical Department
| | - Xueyi Wang
- Mental Health Center, The First Hospital of Hebei Medical University
| | - Xia Wang
- Child Health Department (Psychological Behavior Department)
| | | | | | - Le Wang
- Institute of Pediatric Research, Children's Hospital of Hebei Province, China
| | - Lan Wang
- Mental Health Center, The First Hospital of Hebei Medical University
| | - Mei Song
- Mental Health Center, The First Hospital of Hebei Medical University
| | - Lulu Yu
- Mental Health Center, The First Hospital of Hebei Medical University
| |
Collapse
|
26
|
Differential Methylation Profile in Fragile X Syndrome-Prone Offspring Mice after in Utero Exposure to Lactobacillus Reuteri. Genes (Basel) 2022; 13:genes13081300. [PMID: 35893036 PMCID: PMC9331364 DOI: 10.3390/genes13081300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 01/13/2023] Open
Abstract
Environmental factors such as diet, gut microbiota, and infections have proven to have a significant role in epigenetic modifications. It is known that epigenetic modifications may cause behavioral and neuronal changes observed in neurodevelopmental disabilities, including fragile X syndrome (FXS) and autism (ASD). Probiotics are live microorganisms that provide health benefits when consumed, and in some cases are shown to decrease the chance of developing neurological disorders. Here, we examined the epigenetic outcomes in offspring mice after feeding of a probiotic organism, Lactobacillus reuteri (L. reuteri), to pregnant mother animals. In this study, we tested a cohort of Western diet-fed descendant mice exhibiting a high frequency of behavioral features and lower FMRP protein expression similar to what is observed in FXS in humans (described in a companion manuscript in this same GENES special topic issue). By investigating 17,735 CpG sites spanning the whole mouse genome, we characterized the epigenetic profile in two cohorts of mice descended from mothers treated and non-treated with L. reuteri to determine the effect of prenatal probiotic exposure on the prevention of FXS-like symptoms. We found several genes involved in different neurological pathways being differentially methylated (p ≤ 0.05) between the cohorts. Among the key functions, synaptogenesis, neurogenesis, synaptic modulation, synaptic transmission, reelin signaling pathway, promotion of specification and maturation of neurons, and long-term potentiation were observed. The results of this study are relevant as they could lead to a better understanding of the pathways involved in these disorders, to novel therapeutics approaches, and to the identification of potential biomarkers for early detection of these conditions.
Collapse
|
27
|
Legüe M. Relevancia de los mecanismos epigenéticos en el neurodesarrollo normal y consecuencias de sus perturbaciones. REVISTA MÉDICA CLÍNICA LAS CONDES 2022. [DOI: 10.1016/j.rmclc.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
28
|
Khogeer AA, AboMansour IS, Mohammed DA. The Role of Genetics, Epigenetics, and the Environment in ASD: A Mini Review. EPIGENOMES 2022; 6:15. [PMID: 35735472 PMCID: PMC9222497 DOI: 10.3390/epigenomes6020015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 01/21/2023] Open
Abstract
According to recent findings, variances in autism spectrum disorder (ASD) risk factors might be determined by several factors, including molecular genetic variants. Accumulated evidence has also revealed the important role of biological and chemical pathways in ASD aetiology. In this paper, we assess several reviews with regard to their quality of evidence and provide a brief outline of the presumed mechanisms of the genetic, epigenetic, and environmental risk factors of ASD. We also review some of the critical literature, which supports the basis of each factor in the underlying and specific risk patterns of ASD. Finally, we consider some of the implications of recent research regarding potential molecular targets for future investigations.
Collapse
Affiliation(s)
- Asim A. Khogeer
- Research Department, The Strategic Planning Administration, General Directorate of Health Affairs of Makkah Region, Ministry of Health, Makkah 24382, Saudi Arabia
- Medical Genetics Unit, Maternity & Children Hospital, Makkah Healthcare Cluster, Ministry of Health, Makkah 24382, Saudi Arabia;
- Scientific Council, Molecular Research and Training Center, iGene, Jeddah 3925, Saudi Arabia
| | - Iman S. AboMansour
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
- Neurogenetic Section, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah 2865, Saudi Arabia
| | - Dia A. Mohammed
- Medical Genetics Unit, Maternity & Children Hospital, Makkah Healthcare Cluster, Ministry of Health, Makkah 24382, Saudi Arabia;
| |
Collapse
|
29
|
Barbé L, Finkbeiner S. Genetic and Epigenetic Interplay Define Disease Onset and Severity in Repeat Diseases. Front Aging Neurosci 2022; 14:750629. [PMID: 35592702 PMCID: PMC9110800 DOI: 10.3389/fnagi.2022.750629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Repeat diseases, such as fragile X syndrome, myotonic dystrophy, Friedreich ataxia, Huntington disease, spinocerebellar ataxias, and some forms of amyotrophic lateral sclerosis, are caused by repetitive DNA sequences that are expanded in affected individuals. The age at which an individual begins to experience symptoms, and the severity of disease, are partially determined by the size of the repeat. However, the epigenetic state of the area in and around the repeat also plays an important role in determining the age of disease onset and the rate of disease progression. Many repeat diseases share a common epigenetic pattern of increased methylation at CpG islands near the repeat region. CpG islands are CG-rich sequences that are tightly regulated by methylation and are often found at gene enhancer or insulator elements in the genome. Methylation of CpG islands can inhibit binding of the transcriptional regulator CTCF, resulting in a closed chromatin state and gene down regulation. The downregulation of these genes leads to some disease-specific symptoms. Additionally, a genetic and epigenetic interplay is suggested by an effect of methylation on repeat instability, a hallmark of large repeat expansions that leads to increasing disease severity in successive generations. In this review, we will discuss the common epigenetic patterns shared across repeat diseases, how the genetics and epigenetics interact, and how this could be involved in disease manifestation. We also discuss the currently available stem cell and mouse models, which frequently do not recapitulate epigenetic patterns observed in human disease, and propose alternative strategies to study the role of epigenetics in repeat diseases.
Collapse
Affiliation(s)
- Lise Barbé
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
| | - Steve Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Steve Finkbeiner,
| |
Collapse
|
30
|
Neklyudova A, Smirnov K, Rebreikina A, Martynova O, Sysoeva O. Electrophysiological and Behavioral Evidence for Hyper- and Hyposensitivity in Rare Genetic Syndromes Associated with Autism. Genes (Basel) 2022; 13:671. [PMID: 35456477 PMCID: PMC9027402 DOI: 10.3390/genes13040671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 01/27/2023] Open
Abstract
Our study reviewed abnormalities in spontaneous, as well as event-related, brain activity in syndromes with a known genetic underpinning that are associated with autistic symptomatology. Based on behavioral and neurophysiological evidence, we tentatively subdivided the syndromes on primarily hyper-sensitive (Fragile X, Angelman) and hypo-sensitive (Phelan-McDermid, Rett, Tuberous Sclerosis, Neurofibromatosis 1), pointing to the way of segregation of heterogeneous idiopathic ASD, that includes both hyper-sensitive and hypo-sensitive individuals. This segmentation links abnormalities in different genes, such as FMR1, UBE3A, GABRB3, GABRA5, GABRG3, SHANK3, MECP2, TSC1, TSC2, and NF1, that are causative to the above-mentioned syndromes and associated with synaptic transmission and cell growth, as well as with translational and transcriptional regulation and with sensory sensitivity. Excitation/inhibition imbalance related to GABAergic signaling, and the interplay of tonic and phasic inhibition in different brain regions might underlie this relationship. However, more research is needed. As most genetic syndromes are very rare, future investigations in this field will benefit from multi-site collaboration with a common protocol for electrophysiological and event-related potential (EEG/ERP) research that should include an investigation into all modalities and stages of sensory processing, as well as potential biomarkers of GABAergic signaling (such as 40-Hz ASSR).
Collapse
Affiliation(s)
- Anastasia Neklyudova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.N.); (K.S.); (A.R.); (O.M.)
| | - Kirill Smirnov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.N.); (K.S.); (A.R.); (O.M.)
| | - Anna Rebreikina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.N.); (K.S.); (A.R.); (O.M.)
- Sirius Center for Cognitive Research, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Olga Martynova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.N.); (K.S.); (A.R.); (O.M.)
| | - Olga Sysoeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.N.); (K.S.); (A.R.); (O.M.)
- Sirius Center for Cognitive Research, Sirius University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|
31
|
Srancikova A, Reichova A, Bacova Z, Bakos J. Gene expression levels of DNA methyltransferase enzymes in Shank3-deficient mouse model of autism during early development. Endocr Regul 2021; 55:234-237. [PMID: 34879184 DOI: 10.2478/enr-2021-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objectives. The balance between DNA methylation and demethylation is crucial for the brain development. Therefore, alterations in the expression of enzymes controlling DNA methylation patterns may contribute to the etiology of neurodevelopmental disorders, including autism. SH3 and multiple ankyrin repeat domains 3 (Shank3)-deficient mice are commonly used as a well-characterized transgenic model to investigate the molecular mechanisms of autistic symptoms. DNA methyltransferases (DNMTs), which modulate several cellular processes in neurodevelopment, are implicated in the pathophysiology of autism. In this study, we aimed to describe the gene expression changes of major Dnmts in the brain of Shank3-deficient mice during early development. Methods and Results. The Dnmts gene expression was analyzed by qPCR in 5-day-old homo-zygous Shank3-deficient mice. We found significantly lower Dnmt1 and Dnmt3b gene expression levels in the frontal cortex. However, no such changes were observed in the hippocampus. However, significant increase was observed in the expression of Dnmt3a and Dnmt3b genes in the hypothalamus of Shank3-deficient mice. Conclusions. The present data indicate that abnormalities in the Shank3 gene are accompanied by an altered expression of DNA methylation enzymes in the early brain development stages, therefore, specific epigenetic control mechanisms in autism-relevant models should be more extensively investigated.
Collapse
Affiliation(s)
- Annamaria Srancikova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexandra Reichova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
32
|
Salomaa SI, Miihkinen M, Kremneva E, Paatero I, Lilja J, Jacquemet G, Vuorio J, Antenucci L, Kogan K, Hassani Nia F, Hollos P, Isomursu A, Vattulainen I, Coffey ET, Kreienkamp HJ, Lappalainen P, Ivaska J. SHANK3 conformation regulates direct actin binding and crosstalk with Rap1 signaling. Curr Biol 2021; 31:4956-4970.e9. [PMID: 34610274 DOI: 10.1016/j.cub.2021.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/09/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022]
Abstract
Actin-rich cellular protrusions direct versatile biological processes from cancer cell invasion to dendritic spine development. The stability, morphology, and specific biological functions of these protrusions are regulated by crosstalk between three main signaling axes: integrins, actin regulators, and small guanosine triphosphatases (GTPases). SHANK3 is a multifunctional scaffold protein, interacting with several actin-binding proteins and a well-established autism risk gene. Recently, SHANK3 was demonstrated to sequester integrin-activating small GTPases Rap1 and R-Ras to inhibit integrin activity via its Shank/ProSAP N-terminal (SPN) domain. Here, we demonstrate that, in addition to scaffolding actin regulators and actin-binding proteins, SHANK3 interacts directly with actin through its SPN domain. Molecular simulations and targeted mutagenesis of the SPN-ankyrin repeat region (ARR) interface reveal that actin binding is inhibited by an intramolecular closed conformation of SHANK3, where the adjacent ARR domain covers the actin-binding interface of the SPN domain. Actin and Rap1 compete with each other for binding to SHANK3, and mutation of SHANK3, resulting in reduced actin binding, augments inhibition of Rap1-mediated integrin activity. This dynamic crosstalk has functional implications for cell morphology and integrin activity in cancer cells. In addition, SHANK3-actin interaction regulates dendritic spine morphology in neurons and autism-linked phenotypes in vivo.
Collapse
Affiliation(s)
- Siiri I Salomaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - Mitro Miihkinen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - Elena Kremneva
- HiLIFE Institute of Biotechnology, University of Helsinki, Viikinkaari 5B, PO Box 56, 00014 Helsinki, Finland
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - Johanna Lilja
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - Joni Vuorio
- Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2, Helsinki, Finland
| | - Lina Antenucci
- HiLIFE Institute of Biotechnology, University of Helsinki, Viikinkaari 5B, PO Box 56, 00014 Helsinki, Finland
| | - Konstantin Kogan
- HiLIFE Institute of Biotechnology, University of Helsinki, Viikinkaari 5B, PO Box 56, 00014 Helsinki, Finland
| | - Fatemeh Hassani Nia
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Patrik Hollos
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - Aleksi Isomursu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2, Helsinki, Finland
| | - Eleanor T Coffey
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - Hans-Jürgen Kreienkamp
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, Viikinkaari 5B, PO Box 56, 00014 Helsinki, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland; Department of Life Technologies, University of Turku, Tykistökatu 6, Turku 20520, Finland.
| |
Collapse
|
33
|
Delling JP, Boeckers TM. Comparison of SHANK3 deficiency in animal models: phenotypes, treatment strategies, and translational implications. J Neurodev Disord 2021; 13:55. [PMID: 34784886 PMCID: PMC8594088 DOI: 10.1186/s11689-021-09397-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental condition, which is characterized by clinical heterogeneity and high heritability. Core symptoms of ASD include deficits in social communication and interaction, as well as restricted, repetitive patterns of behavior, interests, or activities. Many genes have been identified that are associated with an increased risk for ASD. Proteins encoded by these ASD risk genes are often involved in processes related to fetal brain development, chromatin modification and regulation of gene expression in general, as well as the structural and functional integrity of synapses. Genes of the SH3 and multiple ankyrin repeat domains (SHANK) family encode crucial scaffolding proteins (SHANK1-3) of excitatory synapses and other macromolecular complexes. SHANK gene mutations are highly associated with ASD and more specifically the Phelan-McDermid syndrome (PMDS), which is caused by heterozygous 22q13.3-deletion resulting in SHANK3-haploinsufficiency, or by SHANK3 missense variants. SHANK3 deficiency and potential treatment options have been extensively studied in animal models, especially in mice, but also in rats and non-human primates. However, few of the proposed therapeutic strategies have translated into clinical practice yet. MAIN TEXT This review summarizes the literature concerning SHANK3-deficient animal models. In particular, the structural, behavioral, and neurological abnormalities are described and compared, providing a broad and comprehensive overview. Additionally, the underlying pathophysiologies and possible treatments that have been investigated in these models are discussed and evaluated with respect to their effect on ASD- or PMDS-associated phenotypes. CONCLUSIONS Animal models of SHANK3 deficiency generated by various genetic strategies, which determine the composition of the residual SHANK3-isoforms and affected cell types, show phenotypes resembling ASD and PMDS. The phenotypic heterogeneity across multiple models and studies resembles the variation of clinical severity in human ASD and PMDS patients. Multiple therapeutic strategies have been proposed and tested in animal models, which might lead to translational implications for human patients with ASD and/or PMDS. Future studies should explore the effects of new therapeutic approaches that target genetic haploinsufficiency, like CRISPR-mediated activation of promotors.
Collapse
Affiliation(s)
- Jan Philipp Delling
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany.
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany. .,Ulm Site, DZNE, Ulm, Germany.
| |
Collapse
|
34
|
Yoo YE, Lee S, Kim W, Kim H, Chung C, Ha S, Park J, Chung Y, Kang H, Kim E. Early Chronic Memantine Treatment-Induced Transcriptomic Changes in Wild-Type and Shank2-Mutant Mice. Front Mol Neurosci 2021; 14:712576. [PMID: 34594187 PMCID: PMC8477010 DOI: 10.3389/fnmol.2021.712576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/16/2021] [Indexed: 12/28/2022] Open
Abstract
Shank2 is an excitatory postsynaptic scaffolding protein strongly implicated in autism spectrum disorders (ASDs). Shank2-mutant mice with a homozygous deletion of exons 6 and 7 (Shank2-KO mice) show decreased NMDA receptor (NMDAR) function and autistic-like behaviors at juvenile [∼postnatal day (P21)] and adult (>P56) stages that are rescued by NMDAR activation. However, at ∼P14, these mice show the opposite change – increased NMDAR function; moreover, suppression of NMDAR activity with early, chronic memantine treatment during P7–21 prevents NMDAR hypofunction and autistic-like behaviors at later (∼P21 and >P56) stages. To better understand the mechanisms underlying this rescue, we performed RNA-Seq gene-set enrichment analysis of forebrain transcriptomes from wild-type (WT) and Shank2-KO juvenile (P25) mice treated early and chronically (P7–21) with vehicle or memantine. Vehicle-treated Shank2-KO mice showed upregulation of synapse-related genes and downregulation of ribosome- and mitochondria-related genes compared with vehicle-treated WT mice. They also showed a transcriptomic pattern largely opposite that observed in ASD (reverse-ASD pattern), based on ASD-related/risk genes and cell-type–specific genes. In memantine-treated Shank2-KO mice, chromatin-related genes were upregulated; mitochondria, extracellular matrix (ECM), and actin-related genes were downregulated; and the reverse-ASD pattern was weakened compared with that in vehicle-treated Shank2-KO mice. In WT mice, memantine treatment, which does not alter NMDAR function, upregulated synaptic genes and downregulated ECM genes; memantine-treated WT mice also exhibited a reverse-ASD pattern. Therefore, early chronic treatment of Shank2-KO mice with memantine alters expression of chromatin, mitochondria, ECM, actin, and ASD-related genes.
Collapse
Affiliation(s)
- Ye-Eun Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Seungjoon Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Woohyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hyosang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Changuk Chung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Seungmin Ha
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Jinsu Park
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Yeonseung Chung
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| |
Collapse
|
35
|
Zhou Q, Tian Y, Xu C, Wang J, Jin Y. Prenatal and postnatal traffic pollution exposure, DNA methylation in Shank3 and MeCP2 promoter regions, H3K4me3 and H3K27me3 and sociability in rats' offspring. Clin Epigenetics 2021; 13:180. [PMID: 34565458 PMCID: PMC8474908 DOI: 10.1186/s13148-021-01170-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022] Open
Abstract
Background Road traffic air pollution is linked with an increased risk of autistic spectrum disorder (ASD). The aim of this study is to assess the effect of exposure to prenatal or postnatal traffic-related air pollution combining concomitant noise pollution on ASD-related epigenetic and behavioral alternations on offspring. Methods A 2 × 2 factorial analysis experiment was designed. Wistar rats were exposed at different sites (L group: green space; H group: crossroads) and timings (E group: full gestation; P group: 21 days after birth) at the same time, and air pollutants of nitrogen dioxide (NO2) and fine particles (PM2.5) were meanwhile sampled. On postnatal day 25, brains from offspring of each group were extracted to determine the levels of DNA methylation in Shank3 (three parts: Shank3_01, Shank3_02, Shank3_03) and MeCP2 (two parts: MeCP2_01, MeCP2_02) promoter regions, H3K4me3 and H3K27me3 after three-chamber social test. Meanwhile, the Shank3 and MeCP2 levels were quantified. Results The concentrations of PM2.5 (L: 58.33 µg/m3; H: 88.33 µg/m3, P < 0.05) and NO2 (L: 52.76 µg/m3; H: 146.03 µg/m3, P < 0.01) as well as the intensity of noise pollution (L: 44.4 dB (A); H: 70.1 dB (A), P < 0.001) differed significantly from 18:00 to 19:00 between experimental sites. Traffic pollution exposure (P = 0.006) and neonatal exposure (P = 0.001) led to lower weight of male pups on PND25. Male rats under early-life exposure had increased levels of Shank3 (Shank3_02: timing P < 0.001; site P < 0.05, Shank3_03: timing P < 0.001) and MeCP2 (MeCP2_01: timing P < 0.001, MeCP2_02: timing P < 0.001) methylation and H3K4me3 (EL: 11.94 µg/mg; EH: 11.98; PL: 17.14; PH: 14.78, timing P < 0.05), and reduced levels of H3K27me3 (EL: 71.07 µg/mg; EH: 44.76; PL: 29.15; PH: 28.67, timing P < 0.001; site P < 0.05) in brain compared to those under prenatal exposure. There was, for female pups, a same pattern of Shank3 (Shank3_02: timing P < 0.001; site P < 0.05, Shank3_03: timing P < 0.001) and MeCP2 (MeCP2_01: timing P < 0.05, MeCP2_02: timing P < 0.001) methylation and H3K4me3 (EL: 11.27 µg/mg; EH: 11.55; PL: 16.11; PH: 15.44, timing P < 0.001), but the levels of H3K27me3 exhibited an inverse trend concerning exposure timing. Hypermethylation at the MeCP2 and Shank3 promoter was correlated with the less content of MeCP2 (female: EL: 32.23 ng/mg; EH: 29.58; PL: 25.01; PH: 23.03, timing P < 0.001; site P < 0.05; male: EL: 31.05 ng/mg; EH: 32.75; PL: 23.40; PH: 25.91, timing P < 0.001) and Shank3 (female: EL: 5.10 ng/mg; EH: 5.31; PL: 4.63; PH: 4.82, timing P < 0.001; male: EL: 5.40 ng/mg; EH: 5.48; PL: 4.82; PH: 4.87, timing P < 0.001). Rats with traffic pollution exposure showed aberrant sociability preference and social novelty, while those without it behaved normally. Conclusions Our findings suggest early life under environmental risks is a crucial window for epigenetic perturbations and then abnormalities in protein expression, and traffic pollution impairs behaviors either during pregnancy or after birth. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01170-x.
Collapse
Affiliation(s)
- Qinfeng Zhou
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Yu Tian
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Chenlu Xu
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Juling Wang
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Yongtang Jin
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang Province, People's Republic of China. .,Department of General Practice, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
36
|
|
37
|
Fetit R, Hillary RF, Price DJ, Lawrie SM. The neuropathology of autism: A systematic review of post-mortem studies of autism and related disorders. Neurosci Biobehav Rev 2021; 129:35-62. [PMID: 34273379 DOI: 10.1016/j.neubiorev.2021.07.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/13/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023]
Abstract
Post-mortem studies allow for the direct investigation of brain tissue in those with autism and related disorders. Several review articles have focused on aspects of post-mortem abnormalities but none has brought together the entire post-mortem literature. Here, we systematically review the evidence from post-mortem studies of autism, and of related disorders that present with autistic features. The literature consists of a small body of studies with small sample sizes, but several remarkably consistent findings are evident. Cortical layering is largely undisturbed, but there are consistent reductions in minicolumn numbers and aberrant myelination. Transcriptomics repeatedly implicate abberant synaptic, metabolic, proliferation, apoptosis and immune pathways. Sufficient replicated evidence is available to implicate non-coding RNA, aberrant epigenetic profiles, GABAergic, glutamatergic and glial dysfunction in autism pathogenesis. Overall, the cerebellum and frontal cortex are most consistently implicated, sometimes revealing distinct region-specific alterations. The literature on related disorders such as Rett syndrome, Fragile X and copy number variations (CNVs) predisposing to autism is particularly small and inconclusive. Larger studies, matched for gender, developmental stage, co-morbidities and drug treatment are required.
Collapse
Affiliation(s)
- Rana Fetit
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - David J Price
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Stephen M Lawrie
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH10 5HF, UK; Patrick Wild Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH10 5HF, UK
| |
Collapse
|
38
|
Stanton JE, Malijauskaite S, McGourty K, Grabrucker AM. The Metallome as a Link Between the "Omes" in Autism Spectrum Disorders. Front Mol Neurosci 2021; 14:695873. [PMID: 34290588 PMCID: PMC8289253 DOI: 10.3389/fnmol.2021.695873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022] Open
Abstract
Metal dyshomeostasis plays a significant role in various neurological diseases such as Alzheimer's disease, Parkinson's disease, Autism Spectrum Disorders (ASD), and many more. Like studies investigating the proteome, transcriptome, epigenome, microbiome, etc., for years, metallomics studies have focused on data from their domain, i.e., trace metal composition, only. Still, few have considered the links between other "omes," which may together result in an individual's specific pathologies. In particular, ASD have been reported to have multitudes of possible causal effects. Metallomics data focusing on metal deficiencies and dyshomeostasis can be linked to functions of metalloenzymes, metal transporters, and transcription factors, thus affecting the proteome and transcriptome. Furthermore, recent studies in ASD have emphasized the gut-brain axis, with alterations in the microbiome being linked to changes in the metabolome and inflammatory processes. However, the microbiome and other "omes" are heavily influenced by the metallome. Thus, here, we will summarize the known implications of a changed metallome for other "omes" in the body in the context of "omics" studies in ASD. We will highlight possible connections and propose a model that may explain the so far independently reported pathologies in ASD.
Collapse
Affiliation(s)
- Janelle E Stanton
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland
| | - Sigita Malijauskaite
- Bernal Institute, University of Limerick, Limerick, Ireland.,Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Kieran McGourty
- Bernal Institute, University of Limerick, Limerick, Ireland.,Department of Chemical Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Andreas M Grabrucker
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
39
|
Freitag CM, Chiocchetti AG, Haslinger D, Yousaf A, Waltes R. [Genetic risk factors and their influence on neural development in autism spectrum disorders]. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2021; 50:187-202. [PMID: 34128703 DOI: 10.1024/1422-4917/a000803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Genetic risk factors and their influence on neural development in autism spectrum disorders Abstract. Abstract. Autism spectrum disorders are etiologically based on genetic and specific gene x biologically relevant environmental risk factors. They are diagnosed based on behavioral characteristics, such as impaired social communication and stereotyped, repetitive behavior and sensory as well as special interests. The genetic background is heterogeneous, i. e., it comprises diverse genetic risk factors across the disorder and high interindividual differences of specific genetic risk factors. Nevertheless, risk factors converge regarding underlying biological mechanisms and shared pathways, which likely cause the autism-specific behavioral characteristics. The current selective literature review summarizes differential genetic risk factors and focuses particularly on mechanisms and pathways currently being discussed by international research. In conclusion, clinically relevant aspects and open translational research questions are presented.
Collapse
Affiliation(s)
- Christine M Freitag
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main
| | - Andreas G Chiocchetti
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main
| | - Denise Haslinger
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main
| | - Afsheen Yousaf
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main
| | - Regina Waltes
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main
| |
Collapse
|
40
|
Lee S, Kang H, Jung H, Kim E, Lee E. Gene Dosage- and Age-Dependent Differential Transcriptomic Changes in the Prefrontal Cortex of Shank2-Mutant Mice. Front Mol Neurosci 2021; 14:683196. [PMID: 34177464 PMCID: PMC8226033 DOI: 10.3389/fnmol.2021.683196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/18/2021] [Indexed: 11/20/2022] Open
Abstract
Shank2 is an abundant postsynaptic scaffolding protein that is known to regulate excitatory synapse assembly and synaptic transmission and has been implicated in various neurodevelopmental disorders, including autism spectrum disorders (ASD). Previous studies on Shank2-mutant mice provided mechanistic insights into their autistic-like phenotypes, but it remains unclear how transcriptomic patterns are changed in brain regions of the mutant mice in age- and gene dosage-dependent manners. To this end, we performed RNA-Seq analyses of the transcripts from the prefrontal cortex (PFC) of heterozygous and homozygous Shank2-mutant mice lacking exons 6 and 7 at juvenile (week 3) and adult (week 12) stages. Juvenile heterozygous Shank2-mutant mice showed upregulation of glutamate synapse-related genes, downregulation of ribosomal and mitochondrial genes, and transcriptomic changes that are opposite to those observed in ASD (anti-ASD) such as upregulation of ASD_down (downregulated in ASD), GABA neuron-related, and oligodendrocyte-related genes. Juvenile homozygous Shank2 mice showed upregulation of chromatin-related genes and transcriptomic changes that are in line with those occurring in ASD (pro-ASD) such as downregulation of ASD_down, GABA neuron-related, and oligodendrocyte-related genes. Adult heterozygous and homozygous Shank2-mutant mice both exhibited downregulation of ribosomal and mitochondrial genes and pro-ASD transcriptomic changes. Therefore, the gene dosage- and age-dependent effects of Shank2 deletions in mice include differential transcriptomic changes across distinct functional contexts, including synapses, chromatin, ribosomes, mitochondria, GABA neurons, and oligodendrocytes.
Collapse
Affiliation(s)
- Seungjoon Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Hyojin Kang
- Division of National Supercomputing, KISTI, Daejeon, South Korea
| | - Hwajin Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Eunee Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea.,Department of Anatomy, School of Medicine, Yonsei University, Seoul, South Korea
| |
Collapse
|
41
|
Srancikova A, Bacova Z, Bakos J. The epigenetic regulation of synaptic genes contributes to the etiology of autism. Rev Neurosci 2021; 32:791-802. [PMID: 33939901 DOI: 10.1515/revneuro-2021-0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 12/30/2022]
Abstract
Epigenetic mechanisms greatly affect the developing brain, as well as the maturation of synapses with pervasive, long-lasting consequences on behavior in adults. Substantial evidence exists that implicates dysregulation of epigenetic mechanisms in the etiology of neurodevelopmental disorders. Therefore, this review explains the role of enzymes involved in DNA methylation and demethylation in neurodevelopment by emphasizing changes of synaptic genes and proteins. Epigenetic causes of sex-dependent differences in the brain are analyzed in conjunction with the pathophysiology of autism spectrum disorders. Special attention is devoted to the epigenetic regulation of the melanoma-associated antigen-like gene 2 (MAGEL2) found in Prader-Willi syndrome, which is known to be accompanied by autistic symptoms.
Collapse
Affiliation(s)
- Annamaria Srancikova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
42
|
Jangjoo M, Goodman SJ, Choufani S, Trost B, Scherer SW, Kelley E, Ayub M, Nicolson R, Georgiades S, Crosbie J, Schachar R, Anagnostou E, Grunebaum E, Weksberg R. An Epigenetically Distinct Subset of Children With Autism Spectrum Disorder Resulting From Differences in Blood Cell Composition. Front Neurol 2021; 12:612817. [PMID: 33935932 PMCID: PMC8085304 DOI: 10.3389/fneur.2021.612817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/15/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that often involves impaired cognition, communication difficulties and restrictive, repetitive behaviors. ASD is extremely heterogeneous both clinically and etiologically, which represents one of the greatest challenges in studying the molecular underpinnings of ASD. While hundreds of ASD-associated genes have been identified that confer varying degrees of risk, no single gene variant accounts for >1% of ASD cases. Notably, a large number of ASD-risk genes function as epigenetic regulators, indicating potential epigenetic dysregulation in ASD. As such, we compared genome-wide DNA methylation (DNAm) in the blood of children with ASD (n = 265) to samples from age- and sex-matched, neurotypical controls (n = 122) using the Illumina Infinium HumanMethylation450 arrays. Results: While DNAm patterns did not distinctly separate ASD cases from controls, our analysis identified an epigenetically unique subset of ASD cases (n = 32); these individuals exhibited significant differential methylation from both controls than the remaining ASD cases. The CpG sites at which this subset was differentially methylated mapped to known ASD risk genes that encode proteins of the nervous and immune systems. Moreover, the observed DNAm differences were attributable to altered blood cell composition, i.e., lower granulocyte proportion and granulocyte-to-lymphocyte ratio in the ASD subset, as compared to the remaining ASD cases and controls. This ASD subset did not differ from the rest of the ASD cases in the frequency or type of high-risk genomic variants. Conclusion: Within our ASD cohort, we identified a subset of individuals that exhibit differential methylation from both controls and the remaining ASD group tightly associated with shifts in immune cell type proportions. This is an important feature that should be assessed in all epigenetic studies of blood cells in ASD. This finding also builds on past reports of changes in the immune systems of children with ASD, supporting the potential role of altered immunological mechanisms in the complex pathophysiology of ASD. The discovery of significant molecular and immunological features in subgroups of individuals with ASD may allow clinicians to better stratify patients, facilitating personalized interventions and improved outcomes.
Collapse
Affiliation(s)
- Maryam Jangjoo
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sarah J. Goodman
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sanaa Choufani
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Brett Trost
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephen W. Scherer
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - Elizabeth Kelley
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Muhammad Ayub
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Rob Nicolson
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural Neurosciences, Offord Centre for Child Studies, McMaster University, Hamilton, ON, Canada
| | - Jennifer Crosbie
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Russell Schachar
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, School of Graduate Studies, University of Toronto, Toronto, ON, Canada
| | - Evdokia Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Eyal Grunebaum
- Institute of Medical Science, School of Graduate Studies, University of Toronto, Toronto, ON, Canada
- Division of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rosanna Weksberg
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, School of Graduate Studies, University of Toronto, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
43
|
Neklyudova AK, Portnova GV, Rebreikina AB, Voinova VY, Vorsanova SG, Iourov IY, Sysoeva OV. 40-Hz Auditory Steady-State Response (ASSR) as a Biomarker of Genetic Defects in the SHANK3 Gene: A Case Report of 15-Year-Old Girl with a Rare Partial SHANK3 Duplication. Int J Mol Sci 2021; 22:1898. [PMID: 33673024 PMCID: PMC7917917 DOI: 10.3390/ijms22041898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/26/2021] [Accepted: 02/09/2021] [Indexed: 12/02/2022] Open
Abstract
SHANK3 encodes a scaffold protein involved in postsynaptic receptor density in glutamatergic synapses, including those in the parvalbumin (PV)+ inhibitory neurons-the key players in the generation of sensory gamma oscillations, such as 40-Hz auditory steady-state response (ASSR). However, 40-Hz ASSR was not studied in relation to SHANK3 functioning. Here, we present a 15-year-old girl (SH01) with previously unreported duplication of the first seven exons of the SHANK3 gene (22q13.33). SH01's electroencephalogram (EEG) during 40-Hz click trains of 500 ms duration binaurally presented with inter-trial intervals of 500-800 ms were compared with those from typically developing children (n = 32). SH01 was diagnosed with mild mental retardation and learning disabilities (F70.88), dysgraphia, dyslexia, and smaller vocabulary than typically developing (TD) peers. Her clinical phenotype resembled the phenotype of previously described patients with 22q13.33 microduplications (≈30 reported so far). SH01 had mild autistic symptoms but below the threshold for ASD diagnosis and microcephaly. No seizures or MRI abnormalities were reported. While SH01 had relatively preserved auditory event-related potential (ERP) with slightly attenuated P1, her 40-Hz ASSR was totally absent significantly deviating from TD's ASSR. The absence of 40-Hz ASSR in patients with microduplication, which affected the SHANK3 gene, indicates deficient temporal resolution of the auditory system, which might underlie language problems and represent a neurophysiological biomarker of SHANK3 abnormalities.
Collapse
Affiliation(s)
- Anastasia K. Neklyudova
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.K.N.); (G.V.P.); (A.B.R.)
| | - Galina V. Portnova
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.K.N.); (G.V.P.); (A.B.R.)
| | - Anna B. Rebreikina
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.K.N.); (G.V.P.); (A.B.R.)
| | - Victoria Yu Voinova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov, Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia; (V.Y.V.); (S.G.V.); (I.Y.I.)
- Mental Health Research Center, 117152 Moscow, Russia
| | - Svetlana G. Vorsanova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov, Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia; (V.Y.V.); (S.G.V.); (I.Y.I.)
- Mental Health Research Center, 117152 Moscow, Russia
| | - Ivan Y. Iourov
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov, Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia; (V.Y.V.); (S.G.V.); (I.Y.I.)
- Mental Health Research Center, 117152 Moscow, Russia
| | - Olga V. Sysoeva
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.K.N.); (G.V.P.); (A.B.R.)
| |
Collapse
|
44
|
García-Ortiz MV, de la Torre-Aguilar MJ, Morales-Ruiz T, Gómez-Fernández A, Flores-Rojas K, Gil-Campos M, Martin-Borreguero P, Ariza RR, Roldán-Arjona T, Perez-Navero JL. Analysis of Global and Local DNA Methylation Patterns in Blood Samples of Patients With Autism Spectrum Disorder. Front Pediatr 2021; 9:685310. [PMID: 34676183 PMCID: PMC8524094 DOI: 10.3389/fped.2021.685310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/06/2021] [Indexed: 01/04/2023] Open
Abstract
The goal of this investigation was to determine whether there are alterations in DNA methylation patterns in children with autism spectrum disorder (ASD). Material and Methods: Controlled prospective observational case-control study. Within the ASD group, children were sub-classified based on the presence (AMR subgroup) or absence (ANMR subgroup) of neurodevelopmental regression during the first 2 years of life. We analyzed the global levels of DNA methylation, reflected in LINE-1, and the local DNA methylation pattern in two candidate genes, Neural Cell Adhesion Molecule (NCAM1) and Nerve Growth Factor (NGF) that, according to our previous studies, might be associated to an increased risk for ASD. For this purpose, we utilized blood samples from pediatric patients with ASD (n = 53) and their corresponding controls (n = 45). Results: We observed a slight decrease in methylation levels of LINE-1 in the ASD group, compared to the control group. One of the CpG in LINE-1 (GenBank accession no.X58075, nucleotide position 329) was the main responsible for such reduction, highly significant in the ASD subgroup of children with AMR (p < 0.05). Furthermore, we detected higher NCAM1 methylation levels in ASD children, compared to healthy children (p < 0.001). The data, moreover, showed higher NGF methylation levels in the AMR subgroup, compared to the control group and the ANMR subgroup. These results are consistent with our prior study, in which lower plasma levels of NCAM1 and higher levels of NGF were found in the ANMR subgroup, compared to the subgroup that comprised neurotypically developing children. Conclusions: We have provided new clues about the epigenetic changes that occur in ASD, and suggest two potential epigenetic biomarkers that would facilitate the diagnosis of the disorder. We similarly present with evidence of a clear differentiation in DNA methylation between the ASD subgroups, with or without mental regression.
Collapse
Affiliation(s)
- María Victoria García-Ortiz
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,Department of Genetics, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain
| | - María José de la Torre-Aguilar
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,Department of Pediatrics, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Teresa Morales-Ruiz
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,Department of Genetics, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain
| | - Antonio Gómez-Fernández
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,Department of Pediatrics, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Katherine Flores-Rojas
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,Pediatric Metabolism Unit, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain.,Physiopathology of Obesity and Nutrition Networking Biomedical Research Center (CIBEROBN), Córdoba, Spain
| | - Mercedes Gil-Campos
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,Pediatric Metabolism Unit, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain.,Physiopathology of Obesity and Nutrition Networking Biomedical Research Center (CIBEROBN), Córdoba, Spain
| | - Pilar Martin-Borreguero
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,Department of Child and Adolescent Clinical Psychiatry and Psychology, Reina Sofia University Hospital, Córdoba, Spain
| | - Rafael R Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,Department of Genetics, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain
| | - Teresa Roldán-Arjona
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,Department of Genetics, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain
| | - Juan Luis Perez-Navero
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,Department of Pediatrics, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain.,Biomedical Research Center-Rare Diseases (CIBERER), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
45
|
Jacot-Descombes S, Keshav NU, Dickstein DL, Wicinski B, Janssen WGM, Hiester LL, Sarfo EK, Warda T, Fam MM, Harony-Nicolas H, Buxbaum JD, Hof PR, Varghese M. Altered synaptic ultrastructure in the prefrontal cortex of Shank3-deficient rats. Mol Autism 2020; 11:89. [PMID: 33203459 PMCID: PMC7671669 DOI: 10.1186/s13229-020-00393-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/21/2020] [Indexed: 01/06/2023] Open
Abstract
Background Deletion or mutations of SHANK3 lead to Phelan–McDermid syndrome and monogenic forms of autism spectrum disorder (ASD). SHANK3 encodes its eponymous scaffolding protein at excitatory glutamatergic synapses. Altered morphology of dendrites and spines in the hippocampus, cerebellum, and striatum have been associated with behavioral impairments in Shank3-deficient animal models. Given the attentional deficit in these animals, our study explored whether deficiency of Shank3 in a rat model alters neuron morphology and synaptic ultrastructure in the medial prefrontal cortex (mPFC). Methods We assessed dendrite and spine morphology and spine density in mPFC layer III neurons in Shank3-homozygous knockout (Shank3-KO), heterozygous (Shank3-Het), and wild-type (WT) rats. We used electron microscopy to determine the density of asymmetric synapses in mPFC layer III excitatory neurons in these rats. We measured postsynaptic density (PSD) length, PSD area, and head diameter (HD) of spines at these synapses. Results Basal dendritic morphology was similar among the three genotypes. Spine density and morphology were comparable, but more thin and mushroom spines had larger head volumes in Shank3-Het compared to WT and Shank3-KO. All three groups had comparable synapse density and PSD length. Spine HD of total and non-perforated synapses in Shank3-Het rats, but not Shank3-KO rats, was significantly larger than in WT rats. The total and non-perforated PSD area was significantly larger in Shank3-Het rats compared to Shank3-KO rats. These findings represent preliminary evidence for synaptic ultrastructural alterations in the mPFC of rats that lack one copy of Shank3 and mimic the heterozygous loss of SHANK3 in Phelan–McDermid syndrome. Limitations The Shank3 deletion in the rat model we used does not affect all isoforms of the protein and would only model the effect of mutations resulting in loss of the N-terminus of the protein. Given the higher prevalence of ASD in males, the ultrastructural study focused only on synaptic structure in male Shank3-deficient rats. Conclusions We observed increased HD and PSD area in Shank3-Het rats. These observations suggest the occurrence of altered synaptic ultrastructure in this animal model, further pointing to a key role of defective expression of the Shank3 protein in ASD and Phelan–McDermid syndrome.
Collapse
Affiliation(s)
- Sarah Jacot-Descombes
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Unit of Psychiatry, Department of Children and Teenagers, University Hospital and School of Medicine, Geneva, Switzerland.,Department of Legal Medicine, University Hospital and School of Medicine, Geneva, Switzerland
| | - Neha U Keshav
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dara L Dickstein
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.,Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences (USU), Bethesda, MD, USA
| | - Bridget Wicinski
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William G M Janssen
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Liam L Hiester
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edward K Sarfo
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tahia Warda
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Psychology Department, Rutgers University Brain Imaging Center (RUBIC), Rutgers University, Newark, NJ, 07102, USA
| | - Matthew M Fam
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hala Harony-Nicolas
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph D Buxbaum
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Merina Varghese
- Nash Family Department of Neuroscience, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
46
|
An autism-linked missense mutation in SHANK3 reveals the modularity of Shank3 function. Mol Psychiatry 2020; 25:2534-2555. [PMID: 30610205 PMCID: PMC6609509 DOI: 10.1038/s41380-018-0324-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 10/09/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022]
Abstract
Genome sequencing has revealed an increasing number of genetic variations that are associated with neuropsychiatric disorders. Frequently, studies limit their focus to likely gene-disrupting mutations because they are relatively easy to interpret. Missense variants, instead, have often been undervalued. However, some missense variants can be informative for developing a more profound understanding of disease pathogenesis and ultimately targeted therapies. Here we present an example of this by studying a missense variant in a well-known autism spectrum disorder (ASD) causing gene SHANK3. We analyzed Shank3's in vivo phosphorylation profile and identified S685 as one phosphorylation site where one ASD-linked variant has been reported. Detailed analysis of this variant revealed a novel function of Shank3 in recruiting Abelson interactor 1 (ABI1) and the WAVE complex to the post-synaptic density (PSD), which is critical for synapse and dendritic spine development. This function was found to be independent of Shank3's other functions such as binding to GKAP and Homer. Introduction of this human ASD mutation into mice resulted in a small subset of phenotypes seen previously in constitutive Shank3 knockout mice, including increased allogrooming, increased social dominance, and reduced pup USV. Together, these findings demonstrate the modularity of Shank3 function in vivo. This modularity further indicates that there is more than one independent pathogenic pathway downstream of Shank3 and correcting a single downstream pathway is unlikely to be sufficient for clear clinical improvement. In addition, this study illustrates the value of deep biological analysis of select missense mutations in elucidating the pathogenesis of neuropsychiatric phenotypes.
Collapse
|
47
|
Wang L, Adamski CJ, Bondar VV, Craigen E, Collette JR, Pang K, Han K, Jain A, Y Jung S, Liu Z, Sifers RN, Holder JL, Zoghbi HY. A kinome-wide RNAi screen identifies ERK2 as a druggable regulator of Shank3 stability. Mol Psychiatry 2020; 25:2504-2516. [PMID: 30696942 PMCID: PMC6663662 DOI: 10.1038/s41380-018-0325-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 10/09/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022]
Abstract
Neurons are sensitive to changes in the dosage of many genes, especially those regulating synaptic functions. Haploinsufficiency of SHANK3 causes Phelan-McDermid syndrome and autism, whereas duplication of the same gene leads to SHANK3 duplication syndrome, a disorder characterized by neuropsychiatric phenotypes including hyperactivity and bipolar disorder as well as epilepsy. We recently demonstrated the functional modularity of Shank3, which suggests that normalizing levels of Shank3 itself might be more fruitful than correcting pathways that function downstream of it for treatment of disorders caused by alterations in SHANK3 dosage. To identify upstream regulators of Shank3 abundance, we performed a kinome-wide siRNA screen and identified multiple kinases that potentially regulate Shank3 protein stability. Interestingly, we discovered that several kinases in the MEK/ERK2 pathway destabilize Shank3 and that genetic deletion and pharmacological inhibition of ERK2 increases Shank3 abundance in vivo. Mechanistically, we show that ERK2 binds Shank3 and phosphorylates it at three residues to promote its poly-ubiquitination-dependent degradation. Altogether, our findings uncover a druggable pathway as a potential therapeutic target for disorders with reduced SHANK3 dosage, provide a rich resource for studying Shank3 regulation, and demonstrate the feasibility of this approach for identifying regulators of dosage-sensitive genes.
Collapse
Affiliation(s)
- Li Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
| | - Carolyn J Adamski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Vitaliy V Bondar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
| | - Evelyn Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
| | - John R Collette
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kaifang Pang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kihoon Han
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Neuroscience and Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Antrix Jain
- Alkek Center for Molecular Discovery, Verna and Marrs McLean, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sung Y Jung
- Alkek Center for Molecular Discovery, Verna and Marrs McLean, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard N Sifers
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - J Lloyd Holder
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA.
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
48
|
Casanovas S, Schlichtholz L, Mühlbauer S, Dewi S, Schüle M, Strand D, Strand S, Zografidou L, Winter J. Rbfox1 Is Expressed in the Mouse Brain in the Form of Multiple Transcript Variants and Contains Functional E Boxes in Its Alternative Promoters. Front Mol Neurosci 2020; 13:66. [PMID: 32431595 PMCID: PMC7214753 DOI: 10.3389/fnmol.2020.00066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/06/2020] [Indexed: 01/25/2023] Open
Abstract
The RNA-binding protein RBFOX1 is an important regulator of neuron development and neuronal excitability. Rbfox1 is a dosage-sensitive gene and in both mice and humans, decreased expression of Rbfox1 has been linked to neurodevelopmental disorders. Alternative promoters drive expression of Rbfox1 transcript isoforms that encode an identical protein. The tissue- and developmental stage-specific expression of these isoforms, as well as the underlying regulatory mechanisms, are, however, unclear. Here, we set out to capture all of the Rbfox1 transcript isoforms and identify transcriptional mechanisms that regulate brain-specific Rbfox1 expression. Isoform sequencing identified multiple alternative Rbfox1 transcript variants in the mouse cerebral cortex, including transcripts with novel first exons, alternatively spliced exons and 3′-truncations. Quantitative RT-PCR determined the expression of the alternative first exons in the developing cerebral cortex and different subregions of the juvenile brain. Alternative first exons were found to be highly stage- and subregion specific in their expression patterns suggesting that they fulfill specific functions during cortex development and in different brain regions. Using reporter assays we found that the promoter regions of the two first exons E1B and E1C/E1C.1 contain several functional E-boxes. Together, we provide an extensive picture of Rbfox1 isoform expression. We further identified important regulatory mechanisms that drive neuron-specific Rbfox1 expression. Thus, our study forms the basis for further research into the mechanisms that ensure physiological Rbfox1 expression in the brain. It also helps to understand why, in patients with neurodevelopmental disorders deletion of individual RBFOX1 transcript isoforms could affect brain function.
Collapse
Affiliation(s)
- Sonia Casanovas
- Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany.,Focus Program of Translational Neurosciences, University Medical Center Mainz, Mainz, Germany
| | - Laura Schlichtholz
- Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany.,Focus Program of Translational Neurosciences, University Medical Center Mainz, Mainz, Germany
| | - Sophia Mühlbauer
- Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany
| | - Sri Dewi
- Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany
| | - Martin Schüle
- Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany
| | - Dennis Strand
- First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| | - Susanne Strand
- First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| | - Lea Zografidou
- Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany
| | - Jennifer Winter
- Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany.,Focus Program of Translational Neurosciences, University Medical Center Mainz, Mainz, Germany.,German Resilience Centre, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
49
|
Yoon SH, Choi J, Lee WJ, Do JT. Genetic and Epigenetic Etiology Underlying Autism Spectrum Disorder. J Clin Med 2020; 9:E966. [PMID: 32244359 PMCID: PMC7230567 DOI: 10.3390/jcm9040966] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 12/19/2022] Open
Abstract
Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disorder characterized by difficulties in social interaction, language development delays, repeated body movements, and markedly deteriorated activities and interests. Environmental factors, such as viral infection, parental age, and zinc deficiency, can be plausible contributors to ASD susceptibility. As ASD is highly heritable, genetic risk factors involved in neurodevelopment, neural communication, and social interaction provide important clues in explaining the etiology of ASD. Accumulated evidence also shows an important role of epigenetic factors, such as DNA methylation, histone modification, and noncoding RNA, in ASD etiology. In this review, we compiled the research published to date and described the genetic and epigenetic epidemiology together with environmental risk factors underlying the etiology of the different phenotypes of ASD.
Collapse
Affiliation(s)
| | | | | | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Technology, Konkuk University, Seoul 05029, Korea; (S.H.Y.); (J.C.); (W.J.L.)
| |
Collapse
|
50
|
Wei F, Wang Q, Han J, Goswamee P, Gupta A, McQuiston AR, Liu Q, Zhou L. Photodynamic Modification of Native HCN Channels Expressed in Thalamocortical Neurons. ACS Chem Neurosci 2020; 11:851-863. [PMID: 32078767 DOI: 10.1021/acschemneuro.9b00475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The photodynamic process requires three elements: light, oxygen, and photosensitizer, and involves the formation of singlet oxygen, the molecular oxygen in excited electronic states. Previously, we reported that heterologously expressed hyperpolarization-activated cAMP-gated (HCN) channels in excised membrane patches are sensitive to photodynamic modification (PDM). Here we extend this study to native HCN channels expressed in thalamocortical (TC) neurons in the ventrobasal (VB) complex of the thalamus and dopaminergic neurons (DA) of the ventral tegmental area (VTA). To do this, we introduced the photosensitizer FITC-cAMP into TCs or DAs of rodent brain slices via a whole-cell patch-clamp recording pipette. After illumination with blue light pulses, we observed an increase in the voltage-insensitive, instantaneous Iinst component, accompanied by a long-lasting decrease in the hyperpolarization-dependent Ih component. Both Ih and the increased Iinst after PDM could be blocked by the HCN blockers Cs+ and ZD7288. When FITC and cAMP were dissociated and loaded into neurons as two separate chemicals, light application did not result in any long-lasting changes of the HCN currents. In contrast, light pulses applied to HCN2-/- neurons loaded with FITC-cAMP generated a much greater reduction in the Iinst component compared to that of WT neurons. Next, we investigated the impact of the long-lasting increases in Iinst after PDM on the cellular physiology of VB neurons. Consistent with an upregulation of HCN channel function, PDM elicited a depolarization of the resting membrane potential (RMP). Importantly, Trolox-C, an effective quencher for singlet oxygen, could block the PDM-dependent increase in Iinst and depolarization of the RMP. We propose that PDM of native HCN channels under physiological conditions may provide a photodynamic approach to alleviate HCN channelopathy in certain pathological conditions.
Collapse
Affiliation(s)
- Fusheng Wei
- Department of Physiology and Biophysics, Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang 330031, Jiangxi, China
| | - Qiang Wang
- Department of Physiology and Biophysics, Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Jizhong Han
- Department of Physiology and Biophysics, Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Priyodarshan Goswamee
- Department of Physiology and Biophysics, Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Ankush Gupta
- Department of Physiology and Biophysics, Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Adam Rory McQuiston
- Department of Physiology and Biophysics, Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Qinglian Liu
- Department of Physiology and Biophysics, Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Lei Zhou
- Department of Physiology and Biophysics, Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|