1
|
Lei Y, Duong MC, Krivec N, Janssens C, Regin M, Huyghebaert A, Couvreu de Deckersberg E, Sermon K, Al Delbany D, Spits C. Loss of 18q Alters TGFβ Signalling Affecting Anteroposterior Neuroectodermal Fate in Human Embryonic Stem Cells. Cell Prolif 2025:e13813. [PMID: 39908990 DOI: 10.1111/cpr.13813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 02/07/2025] Open
Abstract
Chromosomal abnormalities acquired during cell culture can compromise the differentiation potential of human pluripotent stem cells (hPSCs). In this work, we identified a diminished differentiation capacity to retinal progenitor cells in human embryonic stem cells (hESCs) with complex karyotypes that had in common the loss of part of chromosome 18q. Time-course gene-expression analysis during spontaneous differentiation and single-cell RNA sequencing found that these variant cell lines poorly specified into anterior neuroectoderm, and, when progressing through differentiation, they yielded poorly pigmented cells, with proliferating and pluripotent cell populations. The variant cell lines showed dysregulation of TGFβ signalling during differentiation, and chemical modulation of the TGFβ pathways showed that the basis of the improper specification was due to imbalances in the anteroposterior neuroectodermal fate commitment.
Collapse
Affiliation(s)
- Yingnan Lei
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Brussels, Belgium
| | - Mai Chi Duong
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Brussels, Belgium
- Department of Biochemistry, Ho Chi Minh city, Vietnam
| | - Nuša Krivec
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Brussels, Belgium
| | - Charlotte Janssens
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Brussels, Belgium
| | - Marius Regin
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Brussels, Belgium
| | - Anfien Huyghebaert
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Brussels, Belgium
| | - Edouard Couvreu de Deckersberg
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Brussels, Belgium
| | - Karen Sermon
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Brussels, Belgium
| | - Diana Al Delbany
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Brussels, Belgium
| | - Claudia Spits
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Brussels, Belgium
| |
Collapse
|
2
|
Krivec N, Couvreu de Deckersberg E, Lei Y, Al Delbany D, Regin M, Verhulst S, van Grunsven LA, Sermon K, Spits C. Gain of 1q confers an MDM4-driven growth advantage to undifferentiated and differentiating hESC while altering their differentiation capacity. Cell Death Dis 2024; 15:852. [PMID: 39572522 PMCID: PMC11582570 DOI: 10.1038/s41419-024-07236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Gain of 1q is a highly recurrent chromosomal abnormality in human pluripotent stem cells. In this work, we show that gains of 1q impact the differentiation capacity to derivates of the three germ layers, leading to mis-specification to cranial placode and non-neural ectoderm during neuroectoderm differentiation. Also, we found a weaker expression of lineage-specific markers in hepatoblasts and cardiac progenitors. Competition assays show that the cells retain their selective advantage during differentiation, which is mediated by a higher expression of MDM4, a gene located in the common region of gain. MDM4 drives the winner phenotype of the mutant cells in both the undifferentiated and differentiating state by reducing the cells' sensitivity to DNA damage through decreased p53-mediated apoptosis. Finally, we found that cell density in culture plays a key role in promoting the competitive advantage of the cells by increasing DNA damage.
Collapse
Affiliation(s)
- Nuša Krivec
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Edouard Couvreu de Deckersberg
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Yingnan Lei
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Diana Al Delbany
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Marius Regin
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Stefaan Verhulst
- Liver Cell Biology Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Karen Sermon
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Claudia Spits
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium.
| |
Collapse
|
3
|
Al Delbany D, Ghosh MS, Krivec N, Huyghebaert A, Regin M, Duong MC, Lei Y, Sermon K, Olsen C, Spits C. De Novo Cancer Mutations Frequently Associate with Recurrent Chromosomal Abnormalities during Long-Term Human Pluripotent Stem Cell Culture. Cells 2024; 13:1395. [PMID: 39195283 PMCID: PMC11353044 DOI: 10.3390/cells13161395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Human pluripotent stem cells (hPSCs) are pivotal in regenerative medicine, yet their in vitro expansion often leads to genetic abnormalities, raising concerns about their safety in clinical applications. This study analyzed ten human embryonic stem cell lines across multiple passages to elucidate the dynamics of chromosomal abnormalities and single-nucleotide variants (SNVs) in 380 cancer-related genes. Prolonged in vitro culture resulted in 80% of the lines acquiring gains of chromosome 20q or 1q, both known for conferring an in vitro growth advantage. 70% of lines also acquired other copy number variants (CNVs) outside the recurrent set. Additionally, we detected 122 SNVs in 88 genes, with all lines acquiring at least one de novo SNV during culture. Our findings showed higher loads of both CNVs and SNVs at later passages, which were due to the cumulative acquisition of mutations over a longer time in culture, and not to an increased rate of mutagenesis over time. Importantly, we observed that SNVs and rare CNVs followed the acquisition of chromosomal gains in 1q and 20q, while most of the low-passage and genetically balanced samples were devoid of cancer-associated mutations. This suggests that recurrent chromosomal abnormalities are potential drivers for the acquisition of other mutations.
Collapse
Affiliation(s)
- Diana Al Delbany
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
| | - Manjusha S. Ghosh
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
| | - Nuša Krivec
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
| | - Anfien Huyghebaert
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
| | - Marius Regin
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
| | - Mai Chi Duong
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
- Department of Biochemistry, Military Hospital 175, 786 Nguyen Kiem Street, Ho Chi Minh City 71409, Vietnam
| | - Yingnan Lei
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
| | - Karen Sermon
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
| | - Catharina Olsen
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), Vrije Universiteit Brussel (VUB)-Université Libre de Bruxelles (ULB), Laarbeeklaan 101, 1090 Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles (ULB)-Vrije Universiteit Brussel (VUB), La Plaine Campus Triomflaan, 1050 Brussels, Belgium
| | - Claudia Spits
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
| |
Collapse
|
4
|
Florido MHC, Ziats NP. Endothelial dysfunction and cardiovascular diseases: The role of human induced pluripotent stem cells and tissue engineering. J Biomed Mater Res A 2024; 112:1286-1304. [PMID: 38230548 DOI: 10.1002/jbm.a.37669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
Cardiovascular disease (CVD) remains to be the leading cause of death globally today and therefore the need for the development of novel therapies has become increasingly important in the cardiovascular field. The mechanism(s) behind the pathophysiology of CVD have been laboriously investigated in both stem cell and bioengineering laboratories. Scientific breakthroughs have paved the way to better mimic cell types of interest in recent years, with the ability to generate any cell type from reprogrammed human pluripotent stem cells. Mimicking the native extracellular matrix using both organic and inorganic biomaterials has allowed full organs to be recapitulated in vitro. In this paper, we will review techniques from both stem cell biology and bioengineering which have been fruitfully combined and have fueled advances in the cardiovascular disease field. We will provide a brief introduction to CVD, reviewing some of the recent studies as related to the role of endothelial cells and endothelial cell dysfunction. Recent advances and the techniques widely used in both bioengineering and stem cell biology will be discussed, providing a broad overview of the collaboration between these two fields and their overall impact on tissue engineering in the cardiovascular devices and implications for treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mary H C Florido
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas P Ziats
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Departments of Biomedical Engineering and Anatomy, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Lei Y, Al Delbany D, Krivec N, Regin M, Couvreu de Deckersberg E, Janssens C, Ghosh M, Sermon K, Spits C. SALL3 mediates the loss of neuroectodermal differentiation potential in human embryonic stem cells with chromosome 18q loss. Stem Cell Reports 2024; 19:562-578. [PMID: 38552632 PMCID: PMC11096619 DOI: 10.1016/j.stemcr.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/12/2024] Open
Abstract
Human pluripotent stem cell (hPSC) cultures are prone to genetic drift, because cells that have acquired specific genetic abnormalities experience a selective advantage in vitro. These abnormalities are highly recurrent in hPSC lines worldwide, but their functional consequences in differentiating cells are scarcely described. In this work, we show that the loss of chromosome 18q impairs neuroectoderm commitment and that downregulation of SALL3, a gene located in the common 18q loss region, is responsible for this failed neuroectodermal differentiation. Knockdown of SALL3 in control lines impaired differentiation in a manner similar to the loss of 18q, and transgenic overexpression of SALL3 in hESCs with 18q loss rescued the differentiation capacity of the cells. Finally, we show that loss of 18q and downregulation of SALL3 leads to changes in the expression of genes involved in pathways regulating pluripotency and differentiation, suggesting that these cells are in an altered state of pluripotency.
Collapse
Affiliation(s)
- Yingnan Lei
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Diana Al Delbany
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Nuša Krivec
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Marius Regin
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Edouard Couvreu de Deckersberg
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Charlotte Janssens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Manjusha Ghosh
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Karen Sermon
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
6
|
Ceschin II, Ceschin AP, Joya MS, Mitsugi TG, Nishikawa LK, Krepischi AC, Okamoto OK. Functional assessment of donated human embryos for the generation of pluripotent embryonic stem cell lines. Reprod Biomed Online 2023; 46:491-501. [PMID: 36737274 DOI: 10.1016/j.rbmo.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022]
Abstract
RESEARCH QUESTION Can discarded embryos at blastocyst stage, donated to research because of genetic abnormalities and poor morphological quality, become a reliable source of human embryonic stem cell (HESC) lines? DESIGN This study was consecutively conducted with 23 discarded embryos that were donated to research between February 2020 and April 2021. All embryos, except one, were morphologically evaluated and underwent trophectoderm biopsy for preimplantation genetic testing using next-generation sequencing (NGS), and then vitrified. After warming, the embryos were placed in appropriate culture conditions for the generation of HESCs, which was functionally assessed with immunofluorescence and flow cytometry for pluripotency capacity and spontaneous in-vitro differentiation. Cytogenetic assessment of the HESC was conducted with multiplex ligation-dependent probe amplification, and micro array comparative genomic hybridization. RESULTS From the 23 embryos initially included, 17 survived warming, and 16 of them presented viability. Overall, the embryos presented poor morphological quality after warming. Only the previously untested embryo was capable of generating a new HESC line. Further characterization of this line revealed fully functional, euploid HESCs with preserved pluripotency, becoming a useful resource for research into human development and therapeutic investigation. CONCLUSIONS None of the donated blastocysts with poor morphological quality in association with genetic abnormalities detected by NGS had the capacity for further in-vitro expansion to originate pluripotent HESC lines. This finding seems to provide extra support to genetic counselling on the suitability of this type of embryo for clinical use.
Collapse
Affiliation(s)
- Ianaê I Ceschin
- Human Genome and Stem Cells Research Center, Biosciences Institute, University of São Paulo (IB-USP), Rua do Matão, Travessa 14, 321-05508-090, São Paulo, Brazil; Feliccità Instituto de Fertilidade, Rua Conselheiro Dantas, 1154-80220-191, Curitiba, Brazil.
| | - Alvaro P Ceschin
- Feliccità Instituto de Fertilidade, Rua Conselheiro Dantas, 1154-80220-191, Curitiba, Brazil
| | - Maria S Joya
- Human Genome and Stem Cells Research Center, Biosciences Institute, University of São Paulo (IB-USP), Rua do Matão, Travessa 14, 321-05508-090, São Paulo, Brazil
| | - Thiago G Mitsugi
- Human Genome and Stem Cells Research Center, Biosciences Institute, University of São Paulo (IB-USP), Rua do Matão, Travessa 14, 321-05508-090, São Paulo, Brazil
| | - Lucileine K Nishikawa
- Feliccità Instituto de Fertilidade, Rua Conselheiro Dantas, 1154-80220-191, Curitiba, Brazil
| | - Ana Cv Krepischi
- Human Genome and Stem Cells Research Center, Biosciences Institute, University of São Paulo (IB-USP), Rua do Matão, Travessa 14, 321-05508-090, São Paulo, Brazil
| | - Oswaldo K Okamoto
- Human Genome and Stem Cells Research Center, Biosciences Institute, University of São Paulo (IB-USP), Rua do Matão, Travessa 14, 321-05508-090, São Paulo, Brazil
| |
Collapse
|
7
|
Pluripotent Stem Cells in Disease Modeling and Drug Discovery for Myotonic Dystrophy Type 1. Cells 2023; 12:cells12040571. [PMID: 36831237 PMCID: PMC9954118 DOI: 10.3390/cells12040571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a progressive multisystemic disease caused by the expansion of a CTG repeat tract within the 3' untranslated region (3' UTR) of the dystrophia myotonica protein kinase gene (DMPK). Although DM1 is considered to be the most frequent myopathy of genetic origin in adults, DM1 patients exhibit a vast diversity of symptoms, affecting many different organs. Up until now, different in vitro models from patients' derived cells have largely contributed to the current understanding of DM1. Most of those studies have focused on muscle physiopathology. However, regarding the multisystemic aspect of DM1, there is still a crucial need for relevant cellular models to cover the whole complexity of the disease and open up options for new therapeutic approaches. This review discusses how human pluripotent stem cell-based models significantly contributed to DM1 mechanism decoding, and how they provided new therapeutic strategies that led to actual phase III clinical trials.
Collapse
|
8
|
Franck S, Couvreu De Deckersberg E, Bubenik JL, Markouli C, Barbé L, Allemeersch J, Hilven P, Duqué G, Swanson MS, Gheldof A, Spits C, Sermon KD. Myotonic dystrophy type 1 embryonic stem cells show decreased myogenic potential, increased CpG methylation at the DMPK locus and RNA mis-splicing. Biol Open 2022; 11:273965. [PMID: 35019138 PMCID: PMC8764412 DOI: 10.1242/bio.058978] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle tissue is severely affected in myotonic dystrophy type 1 (DM1) patients, characterised by muscle weakness, myotonia and muscle immaturity in the most severe congenital form of the disease. Previously, it was not known at what stage during myogenesis the DM1 phenotype appears. In this study we differentiated healthy and DM1 human embryonic stem cells to myoblasts and myotubes and compared their differentiation potential using a comprehensive multi-omics approach. We found myogenesis in DM1 cells to be abnormal with altered myotube generation compared to healthy cells. We did not find differentially expressed genes between DM1 and non-DM1 cell lines within the same developmental stage. However, during differentiation we observed an aberrant inflammatory response and increased CpG methylation upstream of the CTG repeat at the myoblast level and RNA mis-splicing at the myotube stage. We show that early myogenesis modelled in hESC reiterates the early developmental manifestation of DM1. Summary: Early developmental abnormalities in myotonic dystrophy type 1 are reiterated in vitro in myotubes differentiated from human embryonic stem cells that carry the mutation.
Collapse
Affiliation(s)
- Silvie Franck
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | | | - Jodi L Bubenik
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Christina Markouli
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Lise Barbé
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, 94107 CA, United States
| | | | - Pierre Hilven
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Geoffrey Duqué
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Alexander Gheldof
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels 1090, Belgium
| | - Claudia Spits
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Karen D Sermon
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| |
Collapse
|
9
|
Duchesne de Lamotte J, Perrier A, Martinat C, Nicoleau C. Emerging Opportunities in Human Pluripotent Stem-Cells Based Assays to Explore the Diversity of Botulinum Neurotoxins as Future Therapeutics. Int J Mol Sci 2021; 22:7524. [PMID: 34299143 PMCID: PMC8308099 DOI: 10.3390/ijms22147524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and are responsible for botulism, a fatal disorder of the nervous system mostly induced by food poisoning. Despite being one of the most potent families of poisonous substances, BoNTs are used for both aesthetic and therapeutic indications from cosmetic reduction of wrinkles to treatment of movement disorders. The increasing understanding of the biology of BoNTs and the availability of distinct toxin serotypes and subtypes offer the prospect of expanding the range of indications for these toxins. Engineering of BoNTs is considered to provide a new avenue for improving safety and clinical benefit from these neurotoxins. Robust, high-throughput, and cost-effective assays for BoNTs activity, yet highly relevant to the human physiology, have become indispensable for a successful translation of engineered BoNTs to the clinic. This review presents an emerging family of cell-based assays that take advantage of newly developed human pluripotent stem cells and neuronal function analyses technologies.
Collapse
Affiliation(s)
- Juliette Duchesne de Lamotte
- IPSEN Innovation, 91940 Les Ulis, France;
- I-STEM, INSERM UMR861, Université Evry-Paris Saclay, 91100 Corbeil-Essonne, France
| | - Anselme Perrier
- I-STEM, INSERM UMR861, Université Evry-Paris Saclay, 91100 Corbeil-Essonne, France
- Laboratoire des Maladies Neurodégénératives: Mécanismes, Thérapies, Imagerie, CEA/CNRS UMR9199, Université Paris Saclay, 92265 Fontenay-aux-Roses, France
| | - Cécile Martinat
- I-STEM, INSERM UMR861, Université Evry-Paris Saclay, 91100 Corbeil-Essonne, France
| | | |
Collapse
|
10
|
Monk R, Connor B. Cell Reprogramming to Model Huntington's Disease: A Comprehensive Review. Cells 2021; 10:cells10071565. [PMID: 34206228 PMCID: PMC8306243 DOI: 10.3390/cells10071565] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder characterized by the progressive decline of motor, cognitive, and psychiatric functions. HD results from an autosomal dominant mutation that causes a trinucleotide CAG repeat expansion and the production of mutant Huntingtin protein (mHTT). This results in the initial selective and progressive loss of medium spiny neurons (MSNs) in the striatum before progressing to involve the whole brain. There are currently no effective treatments to prevent or delay the progression of HD as knowledge into the mechanisms driving the selective degeneration of MSNs has been hindered by a lack of access to live neurons from individuals with HD. The invention of cell reprogramming provides a revolutionary technique for the study, and potential treatment, of neurological conditions. Cell reprogramming technologies allow for the generation of live disease-affected neurons from patients with neurological conditions, becoming a primary technique for modelling these conditions in vitro. The ability to generate HD-affected neurons has widespread applications for investigating the pathogenesis of HD, the identification of new therapeutic targets, and for high-throughput drug screening. Cell reprogramming also offers a potential autologous source of cells for HD cell replacement therapy. This review provides a comprehensive analysis of the use of cell reprogramming to model HD and a discussion on recent advancements in cell reprogramming technologies that will benefit the HD field.
Collapse
|
11
|
Sustained intrinsic WNT and BMP4 activation impairs hESC differentiation to definitive endoderm and drives the cells towards extra-embryonic mesoderm. Sci Rep 2021; 11:8242. [PMID: 33859268 PMCID: PMC8050086 DOI: 10.1038/s41598-021-87547-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
We identified a human embryonic stem cell subline that fails to respond to the differentiation cues needed to obtain endoderm derivatives, differentiating instead into extra-embryonic mesoderm. RNA-sequencing analysis showed that the subline has hyperactivation of the WNT and BMP4 signalling. Modulation of these pathways with small molecules confirmed them as the cause of the differentiation impairment. While activation of WNT and BMP4 in control cells resulted in a loss of endoderm differentiation and induction of extra-embryonic mesoderm markers, inhibition of these pathways in the subline restored its ability to differentiate. Karyotyping and exome sequencing analysis did not identify any changes in the genome that could account for the pathway deregulation. These findings add to the increasing evidence that different responses of stem cell lines to differentiation protocols are based on genetic and epigenetic factors, inherent to the line or acquired during cell culture.
Collapse
|
12
|
Dziedzicka D, Tewary M, Keller A, Tilleman L, Prochazka L, Östblom J, Couvreu De Deckersberg E, Markouli C, Franck S, Van Nieuwerburgh F, Spits C, Zandstra PW, Sermon K, Geens M. Endogenous suppression of WNT signalling in human embryonic stem cells leads to low differentiation propensity towards definitive endoderm. Sci Rep 2021; 11:6137. [PMID: 33731744 PMCID: PMC7969605 DOI: 10.1038/s41598-021-85447-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Low differentiation propensity towards a targeted lineage can significantly hamper the utility of individual human pluripotent stem cell (hPSC) lines in biomedical applications. Here, we use monolayer and micropatterned cell cultures, as well as transcriptomic profiling, to investigate how variability in signalling pathway activity between human embryonic stem cell lines affects their differentiation efficiency towards definitive endoderm (DE). We show that endogenous suppression of WNT signalling in hPSCs at the onset of differentiation prevents the switch from self-renewal to DE specification. Gene expression profiling reveals that this inefficient switch is reflected in NANOG expression dynamics. Importantly, we demonstrate that higher WNT stimulation or inhibition of the PI3K/AKT signalling can overcome the DE commitment blockage. Our findings highlight that redirection of the activity of Activin/NODAL pathway by WNT signalling towards mediating DE fate specification is a vulnerable spot, as disruption of this process can result in poor hPSC specification towards DE.
Collapse
Affiliation(s)
- Dominika Dziedzicka
- grid.8767.e0000 0001 2290 8069Research Group Reproduction and Genetics, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mukul Tewary
- grid.17063.330000 0001 2157 2938Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3E1 Canada ,grid.13097.3c0000 0001 2322 6764Centre for Stem Cells and Regenerative Medicine, King’s College London, Guy’s Hospital, London, SE1 9RT UK
| | - Alexander Keller
- grid.8767.e0000 0001 2290 8069Research Group Reproduction and Genetics, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Laurentijn Tilleman
- grid.5342.00000 0001 2069 7798Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Laura Prochazka
- grid.17063.330000 0001 2157 2938Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - Joel Östblom
- grid.17063.330000 0001 2157 2938Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - Edouard Couvreu De Deckersberg
- grid.8767.e0000 0001 2290 8069Research Group Reproduction and Genetics, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christina Markouli
- grid.8767.e0000 0001 2290 8069Research Group Reproduction and Genetics, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Silvie Franck
- grid.8767.e0000 0001 2290 8069Research Group Reproduction and Genetics, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Filip Van Nieuwerburgh
- grid.5342.00000 0001 2069 7798Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Claudia Spits
- grid.8767.e0000 0001 2290 8069Research Group Reproduction and Genetics, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Peter W. Zandstra
- grid.17063.330000 0001 2157 2938Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3E1 Canada ,grid.17091.3e0000 0001 2288 9830Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4 Canada ,grid.17091.3e0000 0001 2288 9830School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Karen Sermon
- grid.8767.e0000 0001 2290 8069Research Group Reproduction and Genetics, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mieke Geens
- grid.8767.e0000 0001 2290 8069Research Group Reproduction and Genetics, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| |
Collapse
|
13
|
Induced Pluripotent Stem Cells to Understand Mucopolysaccharidosis. I: Demonstration of a Migration Defect in Neural Precursors. Cells 2020; 9:cells9122593. [PMID: 33287330 PMCID: PMC7761689 DOI: 10.3390/cells9122593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Mucopolysaccharidosis type I-Hurler (MPS1-H) is a severe genetic lysosomal storage disorder due to loss-of-function mutations in the IDUA gene. The subsequent complete deficiency of alpha l-iduronidase enzyme is directly responsible of a progressive accumulation of glycosaminoglycans (GAG) in lysosomes which affects the functions of many tissues. Consequently, MPS1 is characterized by systemic symptoms (multiorgan dysfunction) including respiratory and cardiac dysfunctions, skeletal abnormalities and early fatal neurodegeneration. Methods: To understand mechanisms underlying MPS1 neuropathology, we generated induced pluripotent stem cells (iPSC) from a MPS1-H patient with loss-of-function mutations in both IDUA alleles. To avoid variability due to different genetic background of iPSC, we established an isogenic control iPSC line by rescuing IDUA expression by a lentivectoral approach. Results: Marked differences between MPS1-H and IDUA-corrected isogenic controls were observed upon neural differentiation. A scratch assay revealed a strong migration defect of MPS1-H cells. Also, there was a massive impact of IDUA deficiency on gene expression (340 genes with an FDR <0.05). Conclusions: Our results demonstrate a hitherto unknown connection between lysosomal degradation, gene expression and neural motility, which might account at least in part for the phenotype of MPS1-H patients.
Collapse
|
14
|
Franck S, Barbé L, Ardui S, De Vlaeminck Y, Allemeersch J, Dziedzicka D, Spits C, Vanroye F, Hilven P, Duqué G, Vermeesch JR, Gheldof A, Sermon K. MSH2 knock-down shows CTG repeat stability and concomitant upstream demethylation at the DMPK locus in myotonic dystrophy type 1 human embryonic stem cells. Hum Mol Genet 2020; 29:3566-3577. [PMID: 33242073 DOI: 10.1093/hmg/ddaa250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by expansion of a CTG repeat in the DMPK gene, where expansion size and somatic mosaicism correlates with disease severity and age of onset. While it is known that the mismatch repair protein MSH2 contributes to the unstable nature of the repeat, its role on other disease-related features, such as CpG methylation upstream of the repeat, is unknown. In this study, we investigated the effect of an MSH2 knock-down (MSH2KD) on both CTG repeat dynamics and CpG methylation pattern in human embryonic stem cells (hESC) carrying the DM1 mutation. Repeat size in MSH2 wild-type (MSH2WT) and MSH2KD DM1 hESC was determined by PacBio sequencing and CpG methylation by bisulfite massive parallel sequencing. We found stabilization of the CTG repeat concurrent with a gradual loss of methylation upstream of the repeat in MSH2KD cells, while the repeat continued to expand and upstream methylation remained unchanged in MSH2WT control lines. Repeat instability was re-established and biased towards expansions upon MSH2 transgenic re-expression in MSH2KD lines while upstream methylation was not consistently re-established. We hypothesize that the hypermethylation at the mutant DM1 locus is promoted by the MMR machinery and sustained by a constant DNA repair response, establishing a potential mechanistic link between CTG repeat instability and upstream CpG methylation. Our work represents a first step towards understanding how epigenetic alterations and repair pathways connect and contribute to the DM1 pathology.
Collapse
Affiliation(s)
- Silvie Franck
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Lise Barbé
- Center for systems and Therapeutics, Gladstone Institutes, Finkbeiner lab, San Francisco, CA 94158, USA
| | - Simon Ardui
- Center of Human Genetics, University Hospital Leuven, KU Leuven, Laboratory for Cytogenetics and Genome Research, Leuven 3000, Belgium
| | - Yannick De Vlaeminck
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | | | - Dominika Dziedzicka
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Claudia Spits
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Fien Vanroye
- Laboratory HIV/STD, Institute of Tropical Medicine Antwerp, Antwerp 2000, Belgium
| | - Pierre Hilven
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Geoffrey Duqué
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Joris R Vermeesch
- Center of Human Genetics, University Hospital Leuven, KU Leuven, Laboratory for Cytogenetics and Genome Research, Leuven 3000, Belgium
| | - Alexander Gheldof
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium.,Center of Medical Genetics, UZ Brussel, Brussels 1090, Belgium
| | - Karen Sermon
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| |
Collapse
|
15
|
Wansink DG, Gourdon G, van Engelen BGM, Schoser B. 248th ENMC International Workshop: Myotonic dystrophies: Molecular approaches for clinical purposes, framing a European molecular research network, Hoofddorp, the Netherlands, 11-13 October 2019. Neuromuscul Disord 2020; 30:521-531. [PMID: 32417002 DOI: 10.1016/j.nmd.2020.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Derick G Wansink
- Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Geneviève Gourdon
- Inserm UMR 974, Sorbonne Université, Centre de Recherche en Myologie, Association Institut de Myologie, 75013 Paris, France
| | - Baziel G M van Engelen
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, 6525 GC Nijmegen, the Netherlands
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
16
|
GBA mutation promotes early mitochondrial dysfunction in 3D neurosphere models. Aging (Albany NY) 2019; 11:10338-10355. [PMID: 31751314 PMCID: PMC6914435 DOI: 10.18632/aging.102460] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022]
Abstract
Glucocerebrosidase (GBA) mutations are the most important genetic risk factor for the development of Parkinson disease (PD). GBA encodes the lysosomal enzyme glucocerebrosidase (GCase). Loss-of-GCase activity in cellular models has implicated lysosomal and mitochondrial dysfunction in PD disease pathogenesis, although the exact mechanisms remain unclear. We hypothesize that GBA mutations impair mitochondria quality control in a neurosphere model. We have characterized mitochondrial content, mitochondrial function and macroautophagy flux in 3D-neurosphere-model derived from neural crest stem cells containing heterozygous and homozygous N370SGBA mutations, under carbonyl cyanide-m-chlorophenyl-hydrazine (CCCP)- induced mitophagy. Our findings on mitochondrial markers and ATP levels indicate that mitochondrial accumulation occurs in mutant N370SGBA neurospheres under basal conditions, and clearance of depolarised mitochondria is impaired following CCCP-treatment. A significant increase in TFEB-mRNA levels, the master regulator of lysosomal and autophagy genes, may explain an unchanged macroautophagy flux in N370SGBA neurospheres. PGC1α-mRNA levels were also significantly increased following CCCP-treatment in heterozygote, but not homozygote neurospheres, and might contribute to the increased mitochondrial content seen in cells with this genotype, probably as a compensatory mechanism that is absent in homozygous lines. Mitochondrial impairment occurs early in the development of GCase-deficient neurons. Furthermore, impaired turnover of depolarised mitochondria is associated with early mitochondrial dysfunction. In summary, the presence of GBA mutation may be associated with higher levels of mitochondrial content in homozygous lines and lower clearance of damaged mitochondria in our neurosphere model.
Collapse
|
17
|
Markouli C, Couvreu De Deckersberg E, Regin M, Nguyen HT, Zambelli F, Keller A, Dziedzicka D, De Kock J, Tilleman L, Van Nieuwerburgh F, Franceschini L, Sermon K, Geens M, Spits C. Gain of 20q11.21 in Human Pluripotent Stem Cells Impairs TGF-β-Dependent Neuroectodermal Commitment. Stem Cell Reports 2019; 13:163-176. [PMID: 31178415 PMCID: PMC6627003 DOI: 10.1016/j.stemcr.2019.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Gain of 20q11.21 is one of the most common recurrent genomic aberrations in human pluripotent stem cells. Although it is known that overexpression of the antiapoptotic gene Bcl-xL confers a survival advantage to the abnormal cells, their differentiation capacity has not been fully investigated. RNA sequencing of mutant and control hESC lines, and a line transgenically overexpressing Bcl-xL, shows that overexpression of Bcl-xL is sufficient to cause most transcriptional changes induced by the gain of 20q11.21. Moreover, the differentially expressed genes in mutant and Bcl-xL overexpressing lines are enriched for genes involved in TGF-β- and SMAD-mediated signaling, and neuron differentiation. Finally, we show that this altered signaling has a dramatic negative effect on neuroectodermal differentiation, while the cells maintain their ability to differentiate to mesendoderm derivatives. These findings stress the importance of thorough genetic testing of the lines before their use in research or the clinic. Bcl-xL overexpression drives the transcriptomic profile of 20q11.21 mutant lines 20q11.21 mutant lines downregulate CHCHD2, a known TGF-β pathway modulator Mutant lines differentially express genes involved in TGF-β and SMAD signaling Mutant lines show impaired ectoderm commitment due to TGF-β signaling deregulation
Collapse
Affiliation(s)
- C Markouli
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - E Couvreu De Deckersberg
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - M Regin
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - H T Nguyen
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang 550000, Vietnam
| | - F Zambelli
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium; Clínica EUGIN, Travessera de les Corts 322, 08029 Barcelona, Spain
| | - A Keller
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - D Dziedzicka
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - J De Kock
- Department of In Vitro Toxicology & Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - L Tilleman
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - F Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - L Franceschini
- Laboratory of Molecular & Cellular Therapy, Department of Immunology - Physiology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - K Sermon
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - M Geens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - C Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
18
|
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by expanded polyglutamine (polyQ)-encoding repeats in the Huntingtin (HTT) gene. Traditionally, HD cellular models consisted of either patient cells not affected by disease or rodent neurons expressing expanded polyQ repeats in HTT. As these models can be limited in their disease manifestation or proper genetic context, respectively, human HD pluripotent stem cells (PSCs) are currently under investigation as a way to model disease in patient-derived neurons and other neural cell types. This chapter reviews embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) models of disease, including published differentiation paradigms for neurons and their associated phenotypes, as well as current challenges to the field such as validation of the PSCs and PSC-derived cells. Highlighted are potential future technical advances to HD PSC modeling, including transdifferentiation, complex in vitro multiorgan/system reconstruction, and personalized medicine. Using a human HD patient model of the central nervous system, hopefully one day researchers can tease out the consequences of mutant HTT (mHTT) expression on specific cell types within the brain in order to identify and test novel therapies for disease.
Collapse
|
19
|
Goncalves K, Przyborski S. The utility of stem cells for neural regeneration. Brain Neurosci Adv 2018; 2:2398212818818071. [PMID: 32166173 PMCID: PMC7058206 DOI: 10.1177/2398212818818071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 12/22/2022] Open
Abstract
The use of stem cells in biomedical research is an extremely active area of science. This is because they provide tools that can be used both in vivo and vitro to either replace cells lost in degenerative processes, or to model such diseases to elucidate their underlying mechanisms. This review aims to discuss the use of stem cells in terms of providing regeneration within the nervous system, which is particularly important as neurons of the central nervous system lack the ability to inherently regenerate and repair lost connections. As populations are ageing, incidence of neurodegenerative diseases are increasing, highlighting the need to better understand the regenerative capacity and many uses of stem cells in this field.
Collapse
Affiliation(s)
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, UK.,Reprocell Europe, Sedgefield, UK
| |
Collapse
|
20
|
Bioinformatics analysis of Ronin gene and their potential role in pluripotency control. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Golas MM. Human cellular models of medium spiny neuron development and Huntington disease. Life Sci 2018; 209:179-196. [PMID: 30031060 DOI: 10.1016/j.lfs.2018.07.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/22/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
The loss of gamma-aminobutyric acid (GABA)-ergic medium spiny neurons (MSNs) in the striatum is the hallmark of Huntington disease (HD), an incurable neurodegenerative disorder characterized by progressive motor, psychiatric, and cognitive symptoms. Transplantation of MSNs or their precursors represents a promising treatment strategy for HD. In initial clinical trials in which HD patients received fetal neurografts directly into the striatum without a pretransplant cell-differentiation step, some patients exhibited temporary benefits. Meanwhile, major challenges related to graft overgrowth, insufficient survival of grafted cells, and limited availability of donated fetal tissue remain. Thus, the development of approaches that allow modeling of MSN differentiation and HD development in cell culture platforms may improve our understanding of HD and translate, ultimately, into HD treatment options. Here, recent advances in the in vitro differentiation of MSNs derived from fetal neural stem cells/progenitor cells (NSCs/NPCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and induced NSCs (iNSCs) as well as advances in direct transdifferentiation are reviewed. Progress in non-allele specific and allele specific gene editing of HTT is presented as well. Cell characterization approaches involving phenotyping as well as in vitro and in vivo functional assays are also discussed.
Collapse
Affiliation(s)
- Monika M Golas
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 3, Building 1233, DK-8000 Aarhus C, Denmark; Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
22
|
Zambelli F, Mertens J, Dziedzicka D, Sterckx J, Markouli C, Keller A, Tropel P, Jung L, Viville S, Van de Velde H, Geens M, Seneca S, Sermon K, Spits C. Random Mutagenesis, Clonal Events, and Embryonic or Somatic Origin Determine the mtDNA Variant Type and Load in Human Pluripotent Stem Cells. Stem Cell Reports 2018; 11:102-114. [PMID: 29910126 PMCID: PMC6117474 DOI: 10.1016/j.stemcr.2018.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 01/13/2023] Open
Abstract
In this study, we deep-sequenced the mtDNA of human embryonic and induced pluripotent stem cells (hESCs and hiPSCs) and their source cells and found that the majority of variants pre-existed in the cells used to establish the lines. Early-passage hESCs carried few and low-load heteroplasmic variants, similar to those identified in oocytes and inner cell masses. The number and heteroplasmic loads of these variants increased with prolonged cell culture. The study of 120 individual cells of early- and late-passage hESCs revealed a significant diversity in mtDNA heteroplasmic variants at the single-cell level and that the variants that increase during time in culture are always passenger to the appearance of chromosomal abnormalities. We found that early-passage hiPSCs carry much higher loads of mtDNA variants than hESCs, which single-fibroblast sequencing proved pre-existed in the source cells. Finally, we show that these variants are stably transmitted during short-term differentiation.
Collapse
Affiliation(s)
- Filippo Zambelli
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium; S.I.S.Me.R. Reproductive Medicine Unit, Via Mazzini 12, Bologna 40100, Italy
| | - Joke Mertens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium
| | - Dominika Dziedzicka
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium
| | - Johan Sterckx
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels, Belgium
| | - Christina Markouli
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium
| | - Alexander Keller
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium
| | | | - Laura Jung
- Institut de Parasitologie et Pathologie Tropicale, EA 7292, Fédérationde Médecine Translationelle, Université de Strasbourg, 3 rue Koeberlé, Strasbourg 67000, France
| | - Stephane Viville
- Institut de Parasitologie et Pathologie Tropicale, EA 7292, Fédérationde Médecine Translationelle, Université de Strasbourg, 3 rue Koeberlé, Strasbourg 67000, France; Laboratoire de Diagnostic Génétique, UF3472-génétique de l'infertilité, Hôpitaux Universitaires de Strasbourg, Strasbourg 67000, France
| | - Hilde Van de Velde
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium; Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels, Belgium
| | - Mieke Geens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium
| | - Sara Seneca
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium; Centre for Medical Genetics, UZ Brussel, Laarbeeklaan 101, Brussels, Belgium
| | - Karen Sermon
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium.
| |
Collapse
|
23
|
Matloka M, Klein AF, Rau F, Furling D. Cells of Matter- In Vitro Models for Myotonic Dystrophy. Front Neurol 2018; 9:361. [PMID: 29875732 PMCID: PMC5974047 DOI: 10.3389/fneur.2018.00361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/03/2018] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1 also known as Steinert disease) is a multisystemic disorder mainly characterized by myotonia, progressive muscle weakness and wasting, cognitive impairments, and cardiac defects. This autosomal dominant disease is caused by the expression of nuclear retained RNAs containing pathologic expanded CUG repeats that alter the function of RNA-binding proteins in a tissue-specific manner, leading ultimately to neuromuscular dysfunction and clinical symptoms. Although considerable knowledge has been gathered on myotonic dystrophy since its first description, the development of novel relevant disease models remains of high importance to investigate pathophysiologic mechanisms and to assess new therapeutic approaches. In addition to animal models, in vitro cell cultures provide a unique resource for both fundamental and translational research. This review discusses how cellular models broke ground to decipher molecular basis of DM1 and describes currently available cell models, ranging from exogenous expression of the CTG tracts to variable patients' derived cells.
Collapse
Affiliation(s)
| | | | | | - Denis Furling
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| |
Collapse
|
24
|
Kalra S, Montanaro F, Denning C. Can Human Pluripotent Stem Cell-Derived Cardiomyocytes Advance Understanding of Muscular Dystrophies? J Neuromuscul Dis 2018; 3:309-332. [PMID: 27854224 PMCID: PMC5123622 DOI: 10.3233/jnd-150133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Muscular dystrophies (MDs) are clinically and molecularly a highly heterogeneous group of single-gene disorders that primarily affect striated muscles. Cardiac disease is present in several MDs where it is an important contributor to morbidity and mortality. Careful monitoring of cardiac issues is necessary but current management of cardiac involvement does not effectively protect from disease progression and cardiac failure. There is a critical need to gain new knowledge on the diverse molecular underpinnings of cardiac disease in MDs in order to guide cardiac treatment development and assist in reaching a clearer consensus on cardiac disease management in the clinic. Animal models are available for the majority of MDs and have been invaluable tools in probing disease mechanisms and in pre-clinical screens. However, there are recognized genetic, physiological, and structural differences between human and animal hearts that impact disease progression, manifestation, and response to pharmacological interventions. Therefore, there is a need to develop parallel human systems to model cardiac disease in MDs. This review discusses the current status of cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSC) to model cardiac disease, with a focus on Duchenne muscular dystrophy (DMD) and myotonic dystrophy (DM1). We seek to provide a balanced view of opportunities and limitations offered by this system in elucidating disease mechanisms pertinent to human cardiac physiology and as a platform for treatment development or refinement.
Collapse
Affiliation(s)
- Spandan Kalra
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, UK
| | - Federica Montanaro
- Dubowitz Neuromuscular Centre, Department of Molecular Neurosciences, University College London - Institute of Child Health, London, UK
| | - Chris Denning
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, UK
| |
Collapse
|
25
|
Dziedzicka D, Markouli C, Barbé L, Spits C, Sermon K, Geens M. A High Proliferation Rate is Critical for Reproducible and Standardized Embryoid Body Formation from Laminin-521-Based Human Pluripotent Stem Cell Cultures. Stem Cell Rev Rep 2017; 12:721-730. [PMID: 27544201 DOI: 10.1007/s12015-016-9679-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
When aiming for homogenous embryoid body (EB) differentiation, the use of equal-sized EBs is required to avoid a size-induced differentiation bias. In this study we developed an efficient and standardized EB formation protocol for human pluripotent stem cells (hPSC) cultured in a laminin-521-based xeno-free system. As the cell proliferation rate of the cells growing on laminin-521 strongly affected the efficiency of aggregate formation, we found that recently passaged cells, as well as the addition of ROCK inhibitor, were essential for reproducible EB formation from hPSC single-cell suspensions. EBs could be obtained in a variety of differentiation media, in 96-well round-bottom plates and in hanging drops. Gene expression studies on differentially sized EBs from three individual human embryonic stem cell lines demonstrated that the medium used for differentiation influenced the differentiation outcome to a much greater extent than the number of cells used for the initial EB formation. Our findings give a new insight into factors that influence the EB formation and differentiation process. This optimized method allows us to easily manipulate EB formation and provide an excellent starting point for downstream EB-based differentiation protocols.
Collapse
Affiliation(s)
- Dominika Dziedzicka
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Christina Markouli
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Lise Barbé
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Karen Sermon
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Mieke Geens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| |
Collapse
|
26
|
Huntington Disease as a Neurodevelopmental Disorder and Early Signs of the Disease in Stem Cells. Mol Neurobiol 2017; 55:3351-3371. [PMID: 28497201 PMCID: PMC5842500 DOI: 10.1007/s12035-017-0477-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
Abstract
Huntington disease (HD) is a dominantly inherited disorder caused by a CAG expansion mutation in the huntingtin (HTT) gene, which results in the HTT protein that contains an expanded polyglutamine tract. The adult form of HD exhibits a late onset of the fully symptomatic phase. However, there is also a long presymptomatic phase, which has been increasingly investigated and recognized as important for the disease development. Moreover, the juvenile form of HD, evoked by a higher number of CAG repeats, resembles a neurodevelopmental disorder and has recently been the focus of additional interest. Multiple lines of data, such as the developmental necessity of HTT, its role in the cell cycle and neurogenesis, and findings from pluripotent stem cells, suggest the existence of a neurodevelopmental component in HD pathogenesis. Therefore, we discuss the early molecular pathogenesis of HD in pluripotent and neural stem cells, with respect to the neurodevelopmental aspects of HD.
Collapse
|
27
|
The role of methylation, DNA polymorphisms and microRNAs on HLA-G expression in human embryonic stem cells. Stem Cell Res 2017; 19:118-127. [DOI: 10.1016/j.scr.2017.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/29/2016] [Accepted: 01/04/2017] [Indexed: 11/18/2022] Open
|
28
|
Huang B, Jiang C, Chen A, Cui Y, Xie J, Shen J, Chen J, Cai L, Liao T, Ning S, Jiang SW, Fan G, Qin L, Liu J. Establishment of human-embryonic-stem-cell line from mosaic trisomy 9 embryo. Taiwan J Obstet Gynecol 2016; 54:505-11. [PMID: 26522100 DOI: 10.1016/j.tjog.2015.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2014] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Human-embryonic-stem-cell (hESC) lines derived from chromosomally or genetically abnormal embryos obtained following preimplantation genetic diagnosis are valuable in investigating genetic disorders. MATERIALS AND METHODS In this study, a new hESC line, Center of Clinical Reproductive Medicine 8 (CCRM8) was established by isolation, culture, and passaging of the inner cell mass of mosaic trisomy 9 embryos. RESULTS A karyotype analysis showed that the hESC line possessed a euploid (46 chromosomes). The undifferentiated hESCs exhibited long-term proliferation capacity and expressed typical markers of OCT4, TRA-1-60, and TRA-1-81. In vitro embryoid-body (EB) formation, differentiation, and in vivo teratoma production confirmed the pluripotency of the hESC line. The data represented here are the first detailed report on the characterization and differentiation of one Chinese hESC line generated from mosaic trisomy 9 embryos. CONCLUSION Our study showed that chromosomally aberrant embryos could generate a normal hESC line, which would be useful in investigating gene function and embryo development.
Collapse
Affiliation(s)
- Boxian Huang
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210038, China
| | - Chunyan Jiang
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Aiqin Chen
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jiazi Xie
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jiandong Shen
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Juan Chen
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Lingbo Cai
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Tingting Liao
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Song Ning
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Shi-Wen Jiang
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, USA
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210038, China.
| |
Collapse
|
29
|
Abstract
Preimplantation genetic testing (PGT) of oocytes and embryos is the earliest form of prenatal testing. PGT requires in vitro fertilization for embryo creation. In the past 25 years, the use of PGT has increased dramatically. The indications of PGT include identification of embryos harboring single-gene disorders, chromosomal structural abnormalities, chromosomal numeric abnormalities, and mitochondrial disorders; gender selection; and identifying unaffected, HLA-matched embryos to permit the creation of a savior sibling. PGT is not without risks, limitations, or ethical controversies. This review discusses the techniques and clinical applications of different forms of PGT and the debate surrounding its associated uncertainty and expanded use.
Collapse
Affiliation(s)
- Anthony N Imudia
- Division of Reproductive Endocrinology and Infertility, University of South Florida Morsani College of Medicine, 2 Tampa General Circle, Suite 6022, Tampa, FL 33606, USA.
| | - Shayne Plosker
- Division of Reproductive Endocrinology and Infertility, University of South Florida Morsani College of Medicine, 2 Tampa General Circle, Suite 6022, Tampa, FL 33606, USA
| |
Collapse
|
30
|
Jacobs K, Zambelli F, Mertzanidou A, Smolders I, Geens M, Nguyen HT, Barbé L, Sermon K, Spits C. Higher-Density Culture in Human Embryonic Stem Cells Results in DNA Damage and Genome Instability. Stem Cell Reports 2016; 6:330-41. [PMID: 26923824 PMCID: PMC4788786 DOI: 10.1016/j.stemcr.2016.01.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/24/2016] [Accepted: 01/25/2016] [Indexed: 12/01/2022] Open
Abstract
Human embryonic stem cells (hESC) show great promise for clinical and research applications, but their well-known proneness to genomic instability hampers the development to their full potential. Here, we demonstrate that medium acidification linked to culture density is the main cause of DNA damage and genomic alterations in hESC grown on feeder layers, and this even in the short time span of a single passage. In line with this, we show that increasing the frequency of the medium refreshments minimizes the levels of DNA damage and genetic instability. Also, we show that cells cultured on laminin-521 do not present this increase in DNA damage when grown at high density, although the (long-term) impact on their genomic stability remains to be elucidated. Our results explain the high levels of genome instability observed over the years by many laboratories worldwide, and show that the development of optimal culture conditions is key to solving this problem. Increased culture density induces DNA damage and genomic alterations in hESC Medium acidification due to lactic acid accumulation is the main driver More frequent medium refreshments rescues genomic integrity in high-density culture Laminin-521 reduces DNA damage but has no clear effect on genomic instability
Collapse
Affiliation(s)
- Kurt Jacobs
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Institute of Molecular Cancer Research, University of Zurich (UZH), Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Filippo Zambelli
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Afroditi Mertzanidou
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ilse Smolders
- Research Group Experimental Neuropharmacology, Center for Neurosciences C4N, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Mieke Geens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ha Thi Nguyen
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Center for Molecular Biology, Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang 550000, Vietnam
| | - Lise Barbé
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Karen Sermon
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
31
|
Rungsiwiwut R, Numchaisrika P, Ahnonkitpanit V, Virutamasen P, Pruksananonda K. Triploid human embryonic stem cells derived from tripronuclear zygotes displayed pluripotency and trophoblast differentiation ability similar to the diploid human embryonic stem cells. J Reprod Dev 2016; 62:167-76. [PMID: 26821869 PMCID: PMC4848574 DOI: 10.1262/jrd.2015-113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Because the diploid human embryonic stem cells (hESCs) can be successfully derived from tripronuclear
zygotes thus, they can serve as an alternative source of derivation of normal karyotype hESC lines. The aim of
the present study was to compare the pluripotency and trophoblast differentiation ability of hESCs derived
from tripronuclear zygotes and diploid hESCs. In the present study, a total of 20 tripronuclear zygotes were
cultured; 8 zygotes developed to the blastocyst stage and 1 hESC line was generated. Unlike the previous
studies, chromosomal correction of tripronuclear zygotes during derivation of hESCs did not occur. The
established line carries 3 sets of chromosomes and showed a numerical aberration. Although the cell line
displayed an abnormal chromosome number, it was found the cell line has been shown to be pluripotent with the
ability to differentiate into 3 embryonic germ layers both in vitro and in
vivo. The expression of X inactive specific transcript (XIST) in mid-passage (passage 42) of
undifferentiated triploid hESCs was detected, indicating X chromosome inactivation of the cell line. Moreover,
when this cell line was induced to differentiate toward the trophoblast lineage, morphological and functional
trophoblast cells were observed, similar to the diploid hESC line.
Collapse
Affiliation(s)
- Ruttachuk Rungsiwiwut
- Reproductive Medicine Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
32
|
Avior Y, Sagi I, Benvenisty N. Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol 2016; 17:170-82. [DOI: 10.1038/nrm.2015.27] [Citation(s) in RCA: 413] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Golas MM, Sander B. Use of human stem cells in Huntington disease modeling and translational research. Exp Neurol 2016; 278:76-90. [PMID: 26826449 DOI: 10.1016/j.expneurol.2016.01.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 02/08/2023]
Abstract
Huntington disease (HD) is a devastating neurological disorder caused by an extended CAG repeat in exon 1 of the gene that encodes the huntingtin (HTT) protein. HD pathology involves a loss of striatal medium spiny neurons (MSNs) and progressive neurodegeneration affects the striatum and other brain regions. Because HTT is involved in multiple cellular processes, the molecular mechanisms of HD pathogenesis should be investigated on multiple levels. On the cellular level, in vitro stem cell models, such as induced pluripotent stem cells (iPSCs) derived from HD patients and HD embryonic stem cells (ESCs), have yielded progress. Approaches to differentiate functional MSNs from ESCs, iPSCs, and neural stem/progenitor cells (NSCs/NPCs) have been established, enabling MSN differentiation to be studied and disease phenotypes to be recapitulated. Isolation of target stem cells and precursor cells may also provide a resource for grafting. In animal models, transplantation of striatal precursors differentiated in vitro to the striatum has been reported to improve disease phenotype. Initial clinical trials examining intrastriatal transplantation of fetal neural tissue suggest a more favorable clinical course in a subset of HD patients, though shortcomings persist. Here, we review recent advances in the development of cellular HD models and approaches aimed at cell regeneration with human stem cells. We also describe how genome editing tools could be used to correct the HTT mutation in patient-specific stem cells. Finally, we discuss the potential and the remaining challenges of stem cell-based approaches in HD research and therapy development.
Collapse
Affiliation(s)
- Monika M Golas
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| | - Bjoern Sander
- Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
34
|
Geens M, Seriola A, Barbé L, Santalo J, Veiga A, Dée K, Van Haute L, Sermon K, Spits C. Female human pluripotent stem cells rapidly lose X chromosome inactivation marks and progress to a skewed methylation pattern during culture. Mol Hum Reprod 2016; 22:285-98. [DOI: 10.1093/molehr/gaw004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/13/2016] [Indexed: 12/25/2022] Open
|
35
|
Dittrich R, Beckmann MW, Würfel W. Non-embryo-destructive Extraction of Pluripotent Embryonic Stem Cells: Implications for Regenerative Medicine and Reproductive Medicine. Geburtshilfe Frauenheilkd 2015; 75:1239-1242. [PMID: 26726264 DOI: 10.1055/s-0035-1558183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
On August 1, 2013, the German Patent and Trademark Office issued a patent for the "Non-embryo-destructive extraction of pluripotent embryonic stem cells, stem cells obtained by this process and their uses" (DE 10 2004 062 184 B4). The patent document describes a non-embryo-destructive process to harvest embryonic stem cells from the inner cell mass (ICM) during the blastocyst development stage. The patent application was filed with the German Patent Office in Munich on December 23, 2004 and the patent claim was published in 2006. The patent was granted on August 1, 2013. Processing the patent application was a lengthy affair due to the fact that, for a long time, the prevailing opinion in Germany was that genetic screening of embryos (preimplantation genetic diagnosis) was prohibited under the German Embryo Protection Act (ESchG). A ruling by the German Federal Court in 2010 proved this opinion to be false. Animal studies have provided the evidence that the described procedure is technically feasible; healthy offspring were born after stem cells were harvested from the blastocyst and stored. We report here on a technique for the non-embryo-destructive extraction of pluripotent embryonic stem cells together with potential future applications for stem cells harvested in this manner.
Collapse
Affiliation(s)
- R Dittrich
- Frauenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen
| | - M W Beckmann
- Frauenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen
| | - W Würfel
- Kinderwunsch-Centrum München, München
| |
Collapse
|
36
|
Fonseca SAS, Costas RM, Morato-Marques M, Costa S, Alegretti JR, Rosenberg C, da Motta ELA, Serafini PC, Pereira LV. A Euploid Line of Human Embryonic Stem Cells Derived from a 43,XX,dup(9q),+12,-14,-15,-18,-21 Embryo. PLoS One 2015; 10:e0140999. [PMID: 26540511 PMCID: PMC4634922 DOI: 10.1371/journal.pone.0140999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/02/2015] [Indexed: 11/18/2022] Open
Abstract
Aneuploid embryos diagnosed by FISH-based preimplantation genetic screening (PGS) have been shown to yield euploid lines of human embryonic stem cells (hESCs) with a relatively high frequency. Given that the diagnostic procedure is usually based on the analysis of 1–2 blastomeres of 5 to 10-cell cleavage-stage embryos, mosaicism has been a likely explanation for the phenomena. However, FISH-based PGS can have a significant rate of misdiagnosis, and therefore some of those lines may have been derived from euploid embryos misdiagnosed as aneuploid. More recently, coupling of trophectoderm (TE) biopsy at the blastocyst stage and array-CGH lead to a more informative form of PGS. Here we describe the establishment of a new line of hESCs from an embryo with a 43,XX,dup(9q),+12,-14,-15,-18,-21 chromosomal content based on array-CGH of TE biopsy. We show that, despite the complex chromosomal abnormality, the corresponding hESC line BR-6 is euploid (46,XX). Single nucleotide polymorphism analysis showed that the embryo´s missing chromosomes were not duplicated in BR-6, suggesting the existence of extensive mosaicism in the TE lineage.
Collapse
Affiliation(s)
- Simone Aparecida Siqueira Fonseca
- National Laboratory of Embryonic Stem Cell (LaNCE), University of São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Roberta Montero Costas
- National Laboratory of Embryonic Stem Cell (LaNCE), University of São Paulo, São Paulo, Brazil
| | - Mariana Morato-Marques
- National Laboratory of Embryonic Stem Cell (LaNCE), University of São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Silvia Costa
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | | | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | | | | | - Lygia V. Pereira
- National Laboratory of Embryonic Stem Cell (LaNCE), University of São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
37
|
Laustriat D, Gide J, Barrault L, Chautard E, Benoit C, Auboeuf D, Boland A, Battail C, Artiguenave F, Deleuze JF, Bénit P, Rustin P, Franc S, Charpentier G, Furling D, Bassez G, Nissan X, Martinat C, Peschanski M, Baghdoyan S. In Vitro and In Vivo Modulation of Alternative Splicing by the Biguanide Metformin. MOLECULAR THERAPY-NUCLEIC ACIDS 2015; 4:e262. [PMID: 26528939 PMCID: PMC4877444 DOI: 10.1038/mtna.2015.35] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/22/2015] [Indexed: 01/02/2023]
Abstract
Major physiological changes are governed by alternative splicing of RNA, and its misregulation may lead to specific diseases. With the use of a genome-wide approach, we show here that this splicing step can be modified by medication and demonstrate the effects of the biguanide metformin, on alternative splicing. The mechanism of action involves AMPK activation and downregulation of the RBM3 RNA-binding protein. The effects of metformin treatment were tested on myotonic dystrophy type I (DM1), a multisystemic disease considered to be a spliceopathy. We show that this drug promotes a corrective effect on several splicing defects associated with DM1 in derivatives of human embryonic stem cells carrying the causal mutation of DM1 as well as in primary myoblasts derived from patients. The biological effects of metformin were shown to be compatible with typical therapeutic dosages in a clinical investigation involving diabetic patients. The drug appears to act as a modifier of alternative splicing of a subset of genes and may therefore have novel therapeutic potential for many more diseases besides those directly linked to defective alternative splicing.
Collapse
Affiliation(s)
| | | | | | - Emilie Chautard
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, Centre Léon Bérard, Lyon, France.,Université Lyon 1, CNRS, UMR 5558, INRIA Bamboo, Villeurbanne, France
| | - Clara Benoit
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, Centre Léon Bérard, Lyon, France
| | - Didier Auboeuf
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, Centre Léon Bérard, Lyon, France
| | - Anne Boland
- Centre National de Génotypage, Institut de Génomique, CEA, Evry, France
| | | | | | | | - Paule Bénit
- INSERM UMR 1141, Hôpital Robert Debré, Paris, France.,Université Paris 7, Faculté de Médecine Denis Diderot, Paris, France
| | - Pierre Rustin
- INSERM UMR 1141, Hôpital Robert Debré, Paris, France.,Université Paris 7, Faculté de Médecine Denis Diderot, Paris, France
| | - Sylvia Franc
- Centre Hospitalier Sud Francilien and CERITD, Evry Cedex, France
| | | | - Denis Furling
- Sorbonne Universités, UPMC Université Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, Paris 75013, France
| | - Guillaume Bassez
- GH Henri Mondor, Inserm U955, Université Paris Est, Créteil, France
| | | | | | | | | |
Collapse
|
38
|
Denning C, Borgdorff V, Crutchley J, Firth KSA, George V, Kalra S, Kondrashov A, Hoang MD, Mosqueira D, Patel A, Prodanov L, Rajamohan D, Skarnes WC, Smith JGW, Young LE. Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1728-48. [PMID: 26524115 PMCID: PMC5221745 DOI: 10.1016/j.bbamcr.2015.10.014] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/12/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022]
Abstract
Cardiomyocytes from human pluripotent stem cells (hPSCs-CMs) could revolutionise biomedicine. Global burden of heart failure will soon reach USD $90bn, while unexpected cardiotoxicity underlies 28% of drug withdrawals. Advances in hPSC isolation, Cas9/CRISPR genome engineering and hPSC-CM differentiation have improved patient care, progressed drugs to clinic and opened a new era in safety pharmacology. Nevertheless, predictive cardiotoxicity using hPSC-CMs contrasts from failure to almost total success. Since this likely relates to cell immaturity, efforts are underway to use biochemical and biophysical cues to improve many of the ~30 structural and functional properties of hPSC-CMs towards those seen in adult CMs. Other developments needed for widespread hPSC-CM utility include subtype specification, cost reduction of large scale differentiation and elimination of the phenotyping bottleneck. This review will consider these factors in the evolution of hPSC-CM technologies, as well as their integration into high content industrial platforms that assess structure, mitochondrial function, electrophysiology, calcium transients and contractility. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Chris Denning
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom.
| | - Viola Borgdorff
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - James Crutchley
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Karl S A Firth
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Vinoj George
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Spandan Kalra
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Alexander Kondrashov
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Minh Duc Hoang
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Diogo Mosqueira
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Asha Patel
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Ljupcho Prodanov
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Divya Rajamohan
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - William C Skarnes
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - James G W Smith
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Lorraine E Young
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
39
|
Lefler S, Cohen MA, Kantor G, Cheishvili D, Even A, Birger A, Turetsky T, Gil Y, Even-Ram S, Aizenman E, Bashir N, Maayan C, Razin A, Reubinoff BE, Weil M. Familial Dysautonomia (FD) Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation. PLoS One 2015; 10:e0138807. [PMID: 26437462 PMCID: PMC4593545 DOI: 10.1371/journal.pone.0138807] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 09/03/2015] [Indexed: 12/21/2022] Open
Abstract
A splicing mutation in the IKBKAP gene causes Familial Dysautonomia (FD), affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS). Here we found new molecular insights for the IKAP role and the impact of the FD mutation in the human PNS lineage by using a novel and unique human embryonic stem cell (hESC) line homozygous to the FD mutation originated by pre implantation genetic diagnosis (PGD) analysis. We found that IKBKAP downregulation during PNS differentiation affects normal migration in FD-hESC derived neural crest cells (NCC) while at later stages the PNS neurons show reduced intracellular colocalization between vesicular proteins and IKAP. Comparative wide transcriptome analysis of FD and WT hESC-derived neurons together with the analysis of human brains from FD and WT 12 weeks old embryos and experimental validation of the results confirmed that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation in FD neurons. Moreover we show that kinetin (a drug that corrects IKBKAP alternative splicing) promotes the recovery of IKAP expression and these IKAP functional associated genes identified in the study. Altogether, these results support the view that IKAP might be a vesicular like protein that might be involved in neuronal transport in hESC derived PNS neurons. This function seems to be mostly affected in FD-hESC derived PNS neurons probably reflecting some PNS neuronal dysfunction observed in FD.
Collapse
Affiliation(s)
- Sharon Lefler
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Malkiel A Cohen
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Gal Kantor
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - David Cheishvili
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Aviel Even
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Anastasya Birger
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Tikva Turetsky
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Yaniv Gil
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Sharona Even-Ram
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Einat Aizenman
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Nibal Bashir
- Department of Obstetric and Gynecology, Hadassah Hospital Mount Scopus, Hebrew University Medical School, Jerusalem, Israel
| | - Channa Maayan
- Department of Pediatrics, Hadassah Hospital Mount Scopus, Hebrew University Medical School, Jerusalem, Israel
| | - Aharon Razin
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Benjamim E Reubinoff
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel; Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Miguel Weil
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
40
|
Krivega MV, Geens M, Heindryckx B, Santos-Ribeiro S, Tournaye H, Van de Velde H. Cyclin E1 plays a key role in balancing between totipotency and differentiation in human embryonic cells. Mol Hum Reprod 2015; 21:942-56. [PMID: 26416983 DOI: 10.1093/molehr/gav053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 09/21/2015] [Indexed: 12/17/2022] Open
Abstract
STUDY HYPOTHESIS We aimed to investigate if Cyclin E1 (CCNE1) plays a role in human embryogenesis, in particular during the early developmental stages characterized by a short cell cycle. STUDY FINDING CCNE1 is expressed in plenipotent human embryonic cells and plays a critical role during hESC derivation via the naïve state and, potentially, normal embryo development. WHAT IS KNOWN ALREADY A short cell cycle due to a truncated G1 phase has been associated with the high developmental capacity of embryonic cells. CCNE1 is a critical G1/S transition regulator. CCNE1 overexpression can cause shortening of the cell cycle and it is constitutively expressed in mouse embryonic stem cells and cancer cells. STUDY DESIGN, SAMPLES/MATERIALS, METHODS We investigated expression of CCNE1 in human preimplantation embryo development and embryonic stem cells (hESC). Functional studies included CCNE1 overexpression in hESC and CCNE1 downregulation in the outgrowths formed by plated human blastocysts. Analysis was performed by immunocytochemistry and quantitative real-time PCR. Mann-Whitney statistical test was applied. MAIN RESULTS AND THE ROLE OF CHANCE The CCNE1 protein was ubiquitously and constitutively expressed in the plenipotent cells of the embryo from the 4-cell stage up to and including the full blastocyst. During blastocyst expansion, CCNE1 was downregulated in the trophectoderm (TE) cells. CCNE1 shortly co-localized with NANOG in the inner cell mass (ICM) of expanding blastocysts, mimicking the situation in naïve hESC. In the ICM of expanded blastocysts, which corresponds with primed hESC, CCNE1 defined a subpopulation of cells different from NANOG/POU5F1-expressing pluripotent epiblast (EPI) cells and GATA4/SOX17-expressing primitive endoderm (PrE) cells. This CCNE1-positive cell population was associated with visceral endoderm based on transthyretin expression and marked the third cell lineage within the ICM, besides EPI and PrE, which had never been described before. We also investigated the role of CCNE1 by plating expanded blastocysts for hESC derivation. As a result, all the cells including TE cells re-gained CCNE1 and, consequently, NANOG expression, resembling the phenotype of naïve hESC. The inhibition of CCNE1 expression with siRNA blocked proliferation and caused degeneration of those plated cells. LIMITATIONS, REASONS FOR CAUTION The study is based on a limited number of good-quality human embryos donated to research. WIDER IMPLICATIONS OF THE FINDINGS Our study sheds light on the processes underlying the high developmental potential of early human embryonic cells. The CCNE1-positive plenipotent cell type corresponds with a phenotype that enables early human embryos to recover after fragmentation, cryodamage or (single cell) biopsy on day 3 for preimplantation genetic diagnosis. Knowledge on the expression and function of genes responsible for this flexibility will help us to better understand the undifferentiated state in stem cell biology and might enable us to improve technologies in assisted reproduction. LARGE SCALE DATA NA STUDY FUNDING AND COMPETING INTERESTS: This research is supported by grants from the Fund for Scientific Research - Flanders (FWO-Vlaanderen), the Methusalem (METH) of the VUB and Scientific Research Fond Willy Gepts of UZ Brussel. There are no competing interests.
Collapse
Affiliation(s)
- M V Krivega
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - M Geens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - B Heindryckx
- Ghent Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - S Santos-Ribeiro
- Centre for Reproductive Medicine (CRG), Brussels University Hospital, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - H Tournaye
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium Centre for Reproductive Medicine (CRG), Brussels University Hospital, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - H Van de Velde
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium Centre for Reproductive Medicine (CRG), Brussels University Hospital, Laarbeeklaan 101, 1090 Brussels, Belgium
| |
Collapse
|
41
|
de la Kethulle de Ryhove L, Ansseau E, Nachtegael C, Pieters K, Vanderplanck C, Geens M, Sermon K, Wilton SD, Coppée F, Lagneaux L, Belayew A. The Role of D4Z4-Encoded Proteins in the Osteogenic Differentiation of Mesenchymal Stromal Cells Isolated from Bone Marrow. Stem Cells Dev 2015; 24:2674-86. [PMID: 26192274 DOI: 10.1089/scd.2014.0575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is associated with an activation of the double homeobox 4 (DUX4) gene, which we previously identified within the D4Z4 repeated elements in the 4q35 subtelomeric region. The pathological DUX4 mRNA is derived from the most distal D4Z4 unit and extends unexpectedly within the flanking pLAM region, which provides an intron and polyadenylation signal. The conditions that are required to develop FSHD are a permissive allele providing the polyadenylation signal and hypomethylation of the D4Z4 repeat array compared with the healthy muscle. The DUX4 protein is a 52-kDa transcription factor that initiates a large gene deregulation cascade leading to muscle atrophy, inflammation, differentiation defects, and oxidative stress, which are the key features of FSHD. DUX4 is a retrogene that is normally expressed in germline cells and is submitted to repeat-induced silencing in adult tissues. Since DUX4 mRNAs have been detected in human embryonic and induced pluripotent stem cells, we investigated whether they could also be expressed in human mesenchymal stromal cells (hMSCs). We found that DUX4 mRNAs were induced during the differentiation of hMSCs into osteoblasts and that this process involved DUX4 and new longer protein forms (58 and 70 kDa). A DUX4 mRNA with a more distant 5' start site was characterized that presented a 60-codon reading frame extension and encoded the 58-kDa protein. Transfections of hMSCs with an antisense oligonucleotide targeting DUX4 mRNAs decreased both the 52- and 58-kDa protein levels and confirmed their identity. Gain- and loss-of-function experiments in hMSCs suggested these DUX4 proteins had opposite roles in osteogenic differentiation as evidenced by the alkaline phosphatase activity and calcium deposition. Differentiation was delayed by the 58-kDa DUX4 expression and it was increased by 52-kDa DUX4. These data indicate a role for DUX4 protein forms in the osteogenic differentiation of hMSCs.
Collapse
Affiliation(s)
| | - Eugénie Ansseau
- 1 Laboratory of Molecular Biology, University of Mons , Mons, Belgium
| | | | - Karlien Pieters
- 2 Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles , Brussels, Belgium
| | | | - Mieke Geens
- 3 Department of Embryology and Genetics, Vrije Universiteit Brussel , Jette, Belgium
| | - Karen Sermon
- 3 Department of Embryology and Genetics, Vrije Universiteit Brussel , Jette, Belgium
| | - Steve D Wilton
- 4 Centre for Comparative Genomics, Murdoch University , Murdoch, and The University of Western Australia, Crawley, and Western Australian Neuroscience Institute, Nedlands, Western Australia, Australia
| | - Frédérique Coppée
- 1 Laboratory of Molecular Biology, University of Mons , Mons, Belgium
| | - Laurence Lagneaux
- 2 Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles , Brussels, Belgium
| | - Alexandra Belayew
- 1 Laboratory of Molecular Biology, University of Mons , Mons, Belgium
| |
Collapse
|
42
|
Qin Y, Gao WQ. Concise Review: Patient-Derived Stem Cell Research for Monogenic Disorders. Stem Cells 2015; 34:44-54. [DOI: 10.1002/stem.2112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/05/2015] [Accepted: 06/20/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Yiren Qin
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine; hanghai Jiao Tong University; Shanghai People's Republic of China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine; hanghai Jiao Tong University; Shanghai People's Republic of China
- School of Biomedical Engineering & Med-X Research Institute; Shanghai Jiao Tong University; Shanghai People's Republic of China
- Collaborative Innovation Center of Systems Biomedicine; Shanghai Jiao Tong University; Shanghai People's Republic of China
| |
Collapse
|
43
|
Pappas A, Chaiworapongsa T, Romero R, Korzeniewski SJ, Cortez JC, Bhatti G, Gomez-Lopez N, Hassan SS, Shankaran S, Tarca AL. Transcriptomics of maternal and fetal membranes can discriminate between gestational-age matched preterm neonates with and without cognitive impairment diagnosed at 18-24 months. PLoS One 2015; 10:e0118573. [PMID: 25822971 PMCID: PMC4379164 DOI: 10.1371/journal.pone.0118573] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/20/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Neurocognitive impairment among children born preterm may arise from complex interactions between genes and the intra-uterine environment. OBJECTIVES (1) To characterize the transcriptomic profiles of chorioamniotic membranes in preterm neonates with and without neurocognitive impairment via microarrays and (2) to determine if neonates with neurocognitive impairment can be identified at birth. MATERIALS/METHODS A retrospective case-control study was conducted to examine the chorioamniotic transcriptome of gestational-age matched very preterm neonates with and without neurocognitive impairment at 18-24 months' corrected-age defined by a Bayley-III Cognitive Composite Score <80 (n = 14 each). Pathway analysis with down-weighting of overlapping genes (PADOG) was performed to identify KEGG pathways relevant to the phenotype. Select differentially expressed genes were profiled using qRT-PCR and a multi-gene disease prediction model was developed using linear discriminant analysis. The model's predictive performance was tested on a new set of cases and controls (n = 19 each). RESULTS 1) 117 genes were differentially expressed among neonates with and without subsequent neurocognitive impairment (p<0.05 and fold change >1.5); 2) Gene ontology analysis indicated enrichment of 19 biological processes and 3 molecular functions; 3)PADOG identified 4 significantly perturbed KEGG pathways: oxidative phosphorylation, Parkinson's disease, Alzheimer's disease and Huntington's disease (q-value <0.1); 4) 48 of 90 selected differentially expressed genes were confirmed by qRT-PCR, including genes implicated in energy metabolism, neuronal signaling, vascular permeability and response to injury (e.g., up-regulation of SEPP1, APOE, DAB2, CD163, CXCL12, VWF; down-regulation of HAND1, OSR1)(p<0.05); and 5) a multi-gene model predicted 18-24 month neurocognitive impairment (using the ratios of OSR1/VWF and HAND1/VWF at birth) in a larger, independent set (sensitivity = 74%, at specificity = 83%). CONCLUSIONS Gene expression patterns in the chorioamniotic membranes link neurocognitive impairment in preterm infants to neurodegenerative disease pathways and might be used to predict neurocognitive impairment. Further prospective studies are needed.
Collapse
Affiliation(s)
- Athina Pappas
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development / NIH / DHHS, Bethesda, MD and Detroit, MI, United States of America
- Department of Pediatrics, Division of Neonatal and Perinatal Medicine, Wayne State University, Detroit, MI, United States of America
- * E-mail: (AP); (AT)
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development / NIH / DHHS, Bethesda, MD and Detroit, MI, United States of America
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States of America
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development / NIH / DHHS, Bethesda, MD and Detroit, MI, United States of America
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States of America
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States of America
| | - Steven J. Korzeniewski
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development / NIH / DHHS, Bethesda, MD and Detroit, MI, United States of America
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States of America
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States of America
| | - Josef C. Cortez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development / NIH / DHHS, Bethesda, MD and Detroit, MI, United States of America
- Department of Pediatrics, Division of Neonatal and Perinatal Medicine, Wayne State University, Detroit, MI, United States of America
| | - Gaurav Bhatti
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development / NIH / DHHS, Bethesda, MD and Detroit, MI, United States of America
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development / NIH / DHHS, Bethesda, MD and Detroit, MI, United States of America
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States of America
- Department of Immunology and Microbiology, Wayne State University, Detroit, MI, United States of America
| | - Sonia S. Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development / NIH / DHHS, Bethesda, MD and Detroit, MI, United States of America
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States of America
| | - Seetha Shankaran
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development / NIH / DHHS, Bethesda, MD and Detroit, MI, United States of America
- Department of Pediatrics, Division of Neonatal and Perinatal Medicine, Wayne State University, Detroit, MI, United States of America
| | - Adi L. Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development / NIH / DHHS, Bethesda, MD and Detroit, MI, United States of America
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States of America
- * E-mail: (AP); (AT)
| |
Collapse
|
44
|
Abdelalim EM, Bonnefond A, Bennaceur-Griscelli A, Froguel P. Pluripotent stem cells as a potential tool for disease modelling and cell therapy in diabetes. Stem Cell Rev Rep 2014; 10:327-37. [PMID: 24577791 DOI: 10.1007/s12015-014-9503-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus is the most prevailing disease with progressive incidence worldwide. To date, the pathogenesis of diabetes is far to be understood, and there is no permanent treatment available for diabetes. One of the promising approaches to understand and cure diabetes is to use pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced PCSs (iPSCs). ESCs and iPSCs have a great potential to differentiate into all cell types, and they have a high ability to differentiate into insulin-secreting β cells. Obtaining PSCs genetically identical to the patient presenting with diabetes has been a longstanding dream for the in vitro modeling of disease and ultimately cell therapy. For several years, somatic cell nuclear transfer (SCNT) was the method of choice to generate patient-specific ESC lines. However, this technology faces ethical and practical concerns. Interestingly, the recently established iPSC technology overcomes the major problems of other stem cell types including the lack of ethical concern and no risk of immune rejection. Several iPSC lines have been recently generated from patients with different types of diabetes, and most of these cell lines are able to differentiate into insulin-secreting β cells. In this review, we summarize recent advances in the differentiation of pancreatic β cells from PSCs, and describe the challenges for their clinical use in diabetes cell therapy. Furthermore, we discuss the potential use of patient-specific PSCs as an in vitro model, providing new insights into the pathophysiology of diabetes.
Collapse
Affiliation(s)
- Essam M Abdelalim
- Qatar Biomedical Research Institute, Qatar Foundation, Education City, 5825, Doha, Qatar,
| | | | | | | |
Collapse
|
45
|
Chintawar S, Graf M, Cader Z. Utility of Human Stem Cells for Drug Discovery. HUMAN-BASED SYSTEMS FOR TRANSLATIONAL RESEARCH 2014. [DOI: 10.1039/9781782620136-00162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The pharmaceutical industry continues to struggle to deliver novel and innovative medicines to the market. One of the major challenges in deriving new therapeutics is to more accurately predict the safety and efficacy of the candidate molecule. The current paradigm of drug discovery has several limitations but perhaps the most conspicuous deficiency is the lack of human-based experimental models. The advent of human embryonic stem cells followed by the discovery of induced pluripotent stem (iPS) cells offers unprecedented opportunities for integrating human cellular assays in drug discovery and development. Human iPS cell lines of many diseases have been obtained and iPSC-derived disease affected cells have been utilised for proof-of-concept drug screens to assess efficacy or potential toxicology. The incorporation of iPSC technology thus provides an invaluable opportunity to reduce drug attrition during the process of drug development.
Collapse
Affiliation(s)
- Satyan Chintawar
- Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford Oxford OX3 9DU UK
| | - Martin Graf
- Roche Pharmaceutical Research and Early Development, Discovery Technologies, Roche Innovation Center Basel 124 Grenzacherstrasse CH 4070 Basel Switzerland
| | - Zameel Cader
- Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford Oxford OX3 9DU UK
| |
Collapse
|
46
|
Krivega M, Geens M, Van de Velde H. CAR expression in human embryos and hESC illustrates its role in pluripotency and tight junctions. Reproduction 2014; 148:531-44. [PMID: 25118298 DOI: 10.1530/rep-14-0253] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Coxsackie virus and adenovirus receptor, CXADR (CAR), is present during embryogenesis and is involved in tissue regeneration, cancer and intercellular adhesion. We investigated the expression of CAR in human preimplantation embryos and embryonic stem cells (hESC) to identify its role in early embryogenesis and differentiation. CAR protein was ubiquitously present during preimplantation development. It was localised in the nucleus of uncommitted cells, from the cleavage stage up to the precursor epiblast, and corresponded with the presence of soluble CXADR3/7 splice variant. CAR was displayed on the membrane, involving in the formation of tight junction at compaction and blastocyst stages in both outer and inner cells, and CAR corresponded with the full-length CAR-containing transmembrane domain. In trophectodermal cells of hatched blastocysts, CAR was reduced in the membrane and concentrated in the nucleus, which correlated with the switch in RNA expression to the CXADR4/7 and CXADR2/7 splice variants. The cells in the outer layer of hESC colonies contained CAR on the membrane and all the cells of the colony had CAR in the nucleus, corresponding with the transmembrane CXADR and CXADR4/7. Upon differentiation of hESC into cells representing the three germ layers and trophoblast lineage, the expression of CXADR was downregulated. We concluded that CXADR is differentially expressed during human preimplantation development. We described various CAR expressions: i) soluble CXADR marking undifferentiated blastomeres; ii) transmembrane CAR related with epithelial-like cell types, such as the trophectoderm (TE) and the outer layer of hESC colonies; and iii) soluble CAR present in TE nuclei after hatching. The functions of these distinct forms remain to be elucidated.
Collapse
Affiliation(s)
- M Krivega
- Research Group Reproduction and GeneticsFaculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, BelgiumCentre for Reproductive Medicine (CRG)UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - M Geens
- Research Group Reproduction and GeneticsFaculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, BelgiumCentre for Reproductive Medicine (CRG)UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - H Van de Velde
- Research Group Reproduction and GeneticsFaculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, BelgiumCentre for Reproductive Medicine (CRG)UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium Research Group Reproduction and GeneticsFaculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, BelgiumCentre for Reproductive Medicine (CRG)UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| |
Collapse
|
47
|
Nguyen HT, Markouli C, Geens M, Barbe L, Sermon K, Spits C. Human embryonic stem cells show low-grade microsatellite instability. Mol Hum Reprod 2014; 20:981-9. [DOI: 10.1093/molehr/gau059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
48
|
Sterneckert JL, Reinhardt P, Schöler HR. Investigating human disease using stem cell models. Nat Rev Genet 2014; 15:625-39. [PMID: 25069490 DOI: 10.1038/nrg3764] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tractable and accurate disease models are essential for understanding disease pathogenesis and for developing new therapeutics. As stem cells are capable of self-renewal and differentiation, they are ideally suited both for generating these models and for obtaining the large quantities of cells required for drug development and transplantation therapies. Although proof of principle for the use of adult stem cells and embryonic stem cells in disease modelling has been established, induced pluripotent stem cells (iPSCs) have demonstrated the greatest utility for modelling human diseases. Furthermore, combining gene editing with iPSCs enables the generation of models of genetically complex disorders.
Collapse
Affiliation(s)
- Jared L Sterneckert
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Peter Reinhardt
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| |
Collapse
|
49
|
Jacobs K, Mertzanidou A, Geens M, Thi Nguyen H, Staessen C, Spits C. Low-grade chromosomal mosaicism in human somatic and embryonic stem cell populations. Nat Commun 2014; 5:4227. [DOI: 10.1038/ncomms5227] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/23/2014] [Indexed: 12/14/2022] Open
|
50
|
Drouet V, Ruiz M, Zala D, Feyeux M, Auregan G, Cambon K, Troquier L, Carpentier J, Aubert S, Merienne N, Bourgois-Rocha F, Hassig R, Rey M, Dufour N, Saudou F, Perrier AL, Hantraye P, Déglon N. Allele-specific silencing of mutant huntingtin in rodent brain and human stem cells. PLoS One 2014; 9:e99341. [PMID: 24926995 PMCID: PMC4057216 DOI: 10.1371/journal.pone.0099341] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/14/2014] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder resulting from polyglutamine expansion in the huntingtin (HTT) protein and for which there is no cure. Although suppression of both wild type and mutant HTT expression by RNA interference is a promising therapeutic strategy, a selective silencing of mutant HTT represents the safest approach preserving WT HTT expression and functions. We developed small hairpin RNAs (shRNAs) targeting single nucleotide polymorphisms (SNP) present in the HTT gene to selectively target the disease HTT isoform. Most of these shRNAs silenced, efficiently and selectively, mutant HTT in vitro. Lentiviral-mediated infection with the shRNAs led to selective degradation of mutant HTT mRNA and prevented the apparition of neuropathology in HD rat's striatum expressing mutant HTT containing the various SNPs. In transgenic BACHD mice, the mutant HTT allele was also silenced by this approach, further demonstrating the potential for allele-specific silencing. Finally, the allele-specific silencing of mutant HTT in human embryonic stem cells was accompanied by functional recovery of the vesicular transport of BDNF along microtubules. These findings provide evidence of the therapeutic potential of allele-specific RNA interference for HD.
Collapse
Affiliation(s)
- Valérie Drouet
- Institute of Biomedical Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Atomic Energy Commission (CEA), Fontenay-aux-Roses, France
- URA2210, Centre National de Recherché Scientifique (CNRS), Fontenay-aux-Roses, France
| | - Marta Ruiz
- Institute of Biomedical Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Atomic Energy Commission (CEA), Fontenay-aux-Roses, France
- URA2210, Centre National de Recherché Scientifique (CNRS), Fontenay-aux-Roses, France
| | - Diana Zala
- Institut Curie, Orsay, France
- UMR3306, Centre National de Recherché Scientifique (CNRS), Orsay, France
- U1005, Institut National de la Santé et de la Recherche Médicale (INSERM), Orsay France
| | - Maxime Feyeux
- U861, Institut National de la Santé et de la Recherche Médicale (INSERM), AFM, Evry, France
- UEVE U861, I-STEM, AFM, Evry, France
| | - Gwennaëlle Auregan
- Institute of Biomedical Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Atomic Energy Commission (CEA), Fontenay-aux-Roses, France
- URA2210, Centre National de Recherché Scientifique (CNRS), Fontenay-aux-Roses, France
| | - Karine Cambon
- Institute of Biomedical Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Atomic Energy Commission (CEA), Fontenay-aux-Roses, France
- URA2210, Centre National de Recherché Scientifique (CNRS), Fontenay-aux-Roses, France
| | - Laetitia Troquier
- Department of Clinical Neurosciences (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Johann Carpentier
- Institute of Biomedical Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Atomic Energy Commission (CEA), Fontenay-aux-Roses, France
- URA2210, Centre National de Recherché Scientifique (CNRS), Fontenay-aux-Roses, France
| | | | - Nicolas Merienne
- Department of Clinical Neurosciences (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Fany Bourgois-Rocha
- U861, Institut National de la Santé et de la Recherche Médicale (INSERM), AFM, Evry, France
- UEVE U861, I-STEM, AFM, Evry, France
| | - Raymonde Hassig
- Institute of Biomedical Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Atomic Energy Commission (CEA), Fontenay-aux-Roses, France
- URA2210, Centre National de Recherché Scientifique (CNRS), Fontenay-aux-Roses, France
| | - Maria Rey
- Department of Clinical Neurosciences (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Noëlle Dufour
- Institute of Biomedical Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Atomic Energy Commission (CEA), Fontenay-aux-Roses, France
- URA2210, Centre National de Recherché Scientifique (CNRS), Fontenay-aux-Roses, France
| | - Frédéric Saudou
- Institut Curie, Orsay, France
- UMR3306, Centre National de Recherché Scientifique (CNRS), Orsay, France
- U1005, Institut National de la Santé et de la Recherche Médicale (INSERM), Orsay France
| | - Anselme L. Perrier
- U861, Institut National de la Santé et de la Recherche Médicale (INSERM), AFM, Evry, France
- UEVE U861, I-STEM, AFM, Evry, France
| | - Philippe Hantraye
- Institute of Biomedical Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Atomic Energy Commission (CEA), Fontenay-aux-Roses, France
- URA2210, Centre National de Recherché Scientifique (CNRS), Fontenay-aux-Roses, France
| | - Nicole Déglon
- Institute of Biomedical Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Atomic Energy Commission (CEA), Fontenay-aux-Roses, France
- URA2210, Centre National de Recherché Scientifique (CNRS), Fontenay-aux-Roses, France
- Department of Clinical Neurosciences (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|