1
|
Berkel C. Potential Impact of Climate Change-Induced Alterations on Pyroptotic Cell Death in Animal Cells: A Review. Mol Biotechnol 2025; 67:1784-1799. [PMID: 38748072 DOI: 10.1007/s12033-024-01182-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/16/2024] [Indexed: 04/10/2025]
Abstract
Climate change-induced alterations in temperature variation, ozone exposure, water salinity and acidification, and hypoxia might influence immunity and thus survival in diverse groups of animals from fish to mammals. Pyroptosis is a type of lytic pro-inflammatory programmed cell death, which participates in the innate immune response, and is involved in multiple diseases characterized by inflammation and cell death, mostly studied in human cells. Diverse extrinsic factors can induce pyroptosis, leading to the extracellular release of pro-inflammatory molecules such as IL-18. Climate change-related factors, either directly or indirectly, can also promote animal cell death via different regulated mechanisms, impacting organismal fitness. However, pyroptosis has been relatively less studied in this context compared to another cell death process, apoptosis. This review covers previous research pointing to the potential impact of climate change, through various abiotic stressors, on pyroptotic cell death in different animal cells in various contexts. It was proposed that temperature, ozone exposure, water salinity, water acidification and hypoxia have the potential to induce pyroptotic cell death in animal cells and promote inflammation, and that these pyroptotic events should be better understood to be able to mitigate the adverse effects of climate change on animal physiology and health. This is of high importance considering the increasing frequency, intensity and duration of climate-based changes in these environmental parameters, and the critical function of pyroptosis in immune responses of animals and in their predisposition to multiple diseases including cancer. Furthermore, the need for further mechanistic studies showing the more direct impact of climate change-induced environmental alterations on pyroptotic cell death in animals at the organismal level was highlighted. A complete picture of the association between climate change and pyroptosis in animals will be also highly valuable in terms of ecological and clinical applications, and it requires an interdisciplinary approach. SIGNIFICANCE: Climate change-induced alterations might influence animal physiology. Pyroptosis is a form of cell death with pro-inflammatory characteristics. Previous research suggests that temperature variation, ozone exposure, water salinity and acidification, and hypoxia might have the potential to contribute to pyroptotic cell death in certain cell types and contexts. Climate change-induced pyroptotic cell death should be better understood to be able to mitigate the adverse effects of climate change on animal health.
Collapse
Affiliation(s)
- Caglar Berkel
- Deparment of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Türkiye.
| |
Collapse
|
2
|
Williams RS, Curnick DJ, Baillie A, Barber JL, Barnett J, Brownlow A, Deaville R, Davison NJ, Ten Doeschate M, Jepson PD, Murphy S, Penrose R, Perkins M, Spiro S, Williams R, Williamson MJ, Cunningham AA, Johnson AC. Sea temperature and pollution are associated with infectious disease mortality in short-beaked common dolphins. Commun Biol 2025; 8:557. [PMID: 40217089 PMCID: PMC11992094 DOI: 10.1038/s42003-025-07858-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/28/2025] [Indexed: 04/14/2025] Open
Abstract
The concurrent pressures of climate change and chemical pollution, often studied in isolation, have been linked to increases in infectious disease that threaten biodiversity. Understanding their interconnected nature is vital, as the impacts of climate-mediated environmental changes can be exacerbated by chemical pollution and vice versa. Using data from 836 UK-stranded short-beaked common dolphins (Delphinus delphis) (n = 153 (analysed for polychlorinated biphenyl (PCB) blubber concentrations)) necropsied between 1990 and 2020, we show that PCB concentrations and sea surface temperatures (SSTs) are associated with an increased risk of infectious disease mortality. Specifically, a 1 mg/kg lipid increase in PCB concentration correlates with a 1.6% increase in disease mortality risk, while a 1 °C rise in SST corresponds to a 14% increase. Additionally, we derived a novel PCB threshold concentration (22 mg/kg lipid), defined as the level where PCB blubber concentrations are significantly associated with infectious disease mortality risk. International efforts to reduce carbon emissions have mostly failed, and despite regulatory efforts, PCBs remain a significant threat. We demonstrate the urgent need for conservation strategies that address both risk factors simultaneously to protect marine biodiversity.
Collapse
Affiliation(s)
- Rosie S Williams
- Institute of Zoology, Zoological Society of London, London, United Kingdom.
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom.
| | - David J Curnick
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | | | - Jonathan L Barber
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, United Kingdom
| | - James Barnett
- Cornwall Marine Pathology Team, Fishers Well, Higher Brill, Constantine, Falmouth, United Kingdom
| | - Andrew Brownlow
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences University of Glasgow, Glasgow, United Kingdom
| | - Robert Deaville
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Nicholas J Davison
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences University of Glasgow, Glasgow, United Kingdom
| | - Mariel Ten Doeschate
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences University of Glasgow, Glasgow, United Kingdom
| | | | - Sinéad Murphy
- Marine and Freshwater Research Centre, Department of Natural Sciences, School of Science and Computing, Atlantic Technological University, Galway, Ireland
| | - Rod Penrose
- Marine Environmental Monitoring, Penwalk, Llechryd, Cardigan, United Kingdom
| | - Matthew Perkins
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Simon Spiro
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Ruth Williams
- Cornwall Wildlife Trust, Five Acres, Allet, Truro, United Kingdom
| | | | | | - Andrew C Johnson
- UK Centre for Ecology and Hydrology, Wallingford, United Kingdom
| |
Collapse
|
3
|
Monteiro JP, Sousa T, Pinho M, Atroch F, Rangel LF, Pardo CA, Santos MJ, Barracosa R, Rey F, Domingues MR, Calado R. Evaluating fatty acid profiles in anisakid nematode parasites and adjacent tissue of European hake (Merluccius merluccius): a first insight into local host-parasite lipid dynamics. Parasitol Res 2025; 124:32. [PMID: 40080181 PMCID: PMC11906546 DOI: 10.1007/s00436-025-08477-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Parasitism in fish is a widespread and ecologically significant phenomenon, affecting fish in both wild and aquaculture environments. Comprehending parasitism is essential for managing fish populations, protecting fish health, and preventing human exposure to zoonotic parasites. Understanding lipid dynamics between parasitic organisms and their hosts is crucial for elucidating host-parasite interactions. Although the third larval (L3) stage of anisakid larvae is not a developing stage, and therefore not as dependent on the host for the acquisition of nutrients, there are hints of interplay between parasites and fish hosts, also in terms of lipid content. This study aimed to characterize for the first time the fatty acid profiles of anisakid nematode parasites and adjacent tissue in the European hake (Merluccius merluccius) in order to shed some light on these intricate relationships. Fatty acid analysis revealed significant differences in the percentages of individual fatty acids between anisakid nematodes and adjacent European hake tissue. Anisakids presented a higher content in stearic (18:0), vaccenic (18:1n-7), and linoleic (18:2n-6) acids, while in turn, the belly flap tissue of the fish presented significantly higher contents in palmitic (16:0) and especially docosahexaenoic acid (22:6n-3) than the parasite. These differences suggest unique lipid metabolic pathways between parasite and fish, and that parasitism and the possible acquisition of lipids from the host (hake) do not profoundly shape the fatty acid profile of the parasites. Furthermore, the distinct fatty acid signatures described for parasites and hosts may serve as baselines to follow possible changes in the ecological statuses of both species and even to appraise the nutritional features of European hake when affected by parasitism. This study provides valuable insights into the lipid dynamics within host-parasite systems and underscores the importance of further research to unravel the complexities of these interactions.
Collapse
Affiliation(s)
- João P Monteiro
- CESAM & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Espetrometria de Massa & LAQV-REQUIMTE & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- CIVG - Vasco da Gama Research Center / EUVG, Vasco da Gama University School, Coimbra, Portugal.
| | - Tiago Sousa
- CESAM & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Centro de Espetrometria de Massa & LAQV-REQUIMTE & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Marisa Pinho
- CESAM & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Centro de Espetrometria de Massa & LAQV-REQUIMTE & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Fernando Atroch
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and CIIMAR, Departmento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, FC4, 4169-007, Porto, Portugal
- CIIMAR, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| | - Luís Filipe Rangel
- CIIMAR, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| | - Camilo Ayra Pardo
- CIIMAR, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| | - Maria João Santos
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and CIIMAR, Departmento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, FC4, 4169-007, Porto, Portugal
- CIIMAR, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| | - Rita Barracosa
- MC Shared Services S.A. - Rua João Mendonça, 529, 4464-501 Senhora da Hora, Matosinhos, Portugal
| | - Felisa Rey
- CESAM & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Centro de Espetrometria de Massa & LAQV-REQUIMTE & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - M Rosário Domingues
- CESAM & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Espetrometria de Massa & LAQV-REQUIMTE & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Ricardo Calado
- ECOMARE & CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
4
|
de Buron I, Hill-Spanik KM, Atkinson SD, Vanhove MPM, Kmentová N, Georgieva S, Díaz-Morales DM, Kendrick MR, Roumillat WA, Rothman GK. ParasiteBlitz: Adaptation of the BioBlitz concept to parasitology. J Helminthol 2025; 99:e39. [PMID: 40045709 DOI: 10.1017/s0022149x25000197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
A BioBlitz is a rapid and intensive survey of a specific geographic area that brings together experts and often lay participants to assess biodiversity, typically of macrobiota that are easily observed and identifiable on-site. This concept has become popular across taxonomic fields, attracting interest globally to increase knowledge of local biodiversity. Inspired by the success of the approach, we undertook a 'ParasiteBlitz' at an unexplored locality (Stono Preserve, Charleston, South Carolina, USA) to determine its feasibility for parasites, whose assessment of diversity is largely neglected worldwide. We assembled a team of parasitologists with complementary expertise. Over 12 days (3 days in each habitat) in April 2023, we intensively screened fishes and aquatic invertebrates for parasites, and sampled sediment and water for environmental DNA (eDNA) metabarcoding from four aquatic habitats: wetland, freshwater pond, brackish impoundment, and tidal creek. We incorporated assistance from non-parasitologists and students. Details on methodologies and results are provided in individual papers in this Special Collection. Traditional methods revealed the presence of ca. 100 species of seven major metazoan parasite taxa, and the eDNA survey yielded over 1,000 amplicon sequence variants identified as parasites, most with sequences unmatched in GenBank, and resulting in only a few species identified as named species in the one-year post-Blitz timeframe we imposed upon ourselves for identification. Limitations and challenges of the ParasiteBlitz are discussed, and our results support that this approach can be effective for rapid discovery of the dimensions of parasite assemblages in an understudied environment and contribute to parasitology knowledge.
Collapse
Affiliation(s)
- I de Buron
- Department of Biology, College of Charleston, Charleston, South Carolina, USA
| | - K M Hill-Spanik
- Department of Biology, College of Charleston, Charleston, South Carolina, USA
| | - S D Atkinson
- Oregon State University, Department of Microbiology, Corvallis, Oregon, USA
| | - M P M Vanhove
- Research Group Zoology: Biodiversity and Toxicology, Faculty of Sciences, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - N Kmentová
- Research Group Zoology: Biodiversity and Toxicology, Faculty of Sciences, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Freshwater Biology, Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - S Georgieva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - D M Díaz-Morales
- University of Duisburg-Essen and Centre for Water and Environmental Research, Essen, Germany; Current address: University of Washington, School of Aquatic and Fishery Sciences, Seattle, Washington, USA
| | - M R Kendrick
- South Carolina Department of Natural Resources, Marine Resources Research Institute, Charleston, South Carolina, USA
| | - W A Roumillat
- Department of Biology, College of Charleston, Charleston, South Carolina, USA
| | - G K Rothman
- Department of Biology, College of Charleston, Charleston, South Carolina, USA
- South Carolina Department of Natural Resources, Marine Resources Research Institute, Charleston, South Carolina, USA
| |
Collapse
|
5
|
Sripa B, Yurlova N, Suwannatrai AT, Serbina E, Tangkawattana S, Sayasone S, Varnakovida P. Potential impact of climate change on Opisthorchis viverrini and Opisthorchis felineus transmission in Eurasia. Acta Trop 2025; 263:107574. [PMID: 40037476 DOI: 10.1016/j.actatropica.2025.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/21/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
Human liver flukes of the family Opisthorchiidae, particularly Opisthorchis viverrini and Opisthorchis felineus, are major foodborne trematode parasites endemic to the Lower Mekong River Basin (Southeast Asia) and the Ob-Irtysh Basins (southern Western Siberia, Russian Federation), respectively. Together, these parasites infect over 14 million people, with an estimated 300 million at risk. Their transmission cycles involve Bithynia snails and Cyprinidae fish as first and second intermediate hosts, respectively, with humans and other fish-eating mammals serving as definitive hosts. The geographical distribution of these flukes is shaped by specific Bithynia species: B. siamensis, B. s. goniomphalos, and B. funiculata for O. viverrini, and B. troschelii, B. leachi, and B. inflata for O. felineus. Climate change directly influences liver fluke transmission by affecting parasite survival, host biology, and environmental conditions. Bithynia snails are highly temperature-sensitive, and O. viverrini transmission is notably temperature-dependent, with a 1 °C increase raising infection odds by 5.4 %. Temperatures exceeding 30 °C reduce cercarial survival and infectivity. In Western Siberia, favorable water temperatures for O. felineus transmission start at +15 °C, with higher temperatures leading to an increased infection rate in snails while permafrost regions lack Bithynia snails entirely. Projections from the Intergovernmental Panel on Climate Change (IPCC) indicate that warming will exceed the global average in northern Asia (affecting O. felineus) and approach the global average in Southeast Asia (impacting O. viverrini). These trends suggest that climate change may have a more pronounced impact on O. felineus transmission in Siberia than on O. viverrini transmission in Southeast Asia. This review provides an in-depth discussion of Bithynia biology and the effects of temperature on snail growth, cercarial release, survival, infection, and aestivation, emphasizing how global warming could influence the transmission dynamics of these liver flukes.
Collapse
Affiliation(s)
- Banchob Sripa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Tropical Disease Research Center, Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Natalia Yurlova
- Laboratory of Parasitology, Institute of Systematics and Ecology of Animals SB RAS, Frunze Str.,11, 630091 Novosibirsk, Russia.
| | - Apiporn T Suwannatrai
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Elena Serbina
- Laboratory of Parasitology, Institute of Systematics and Ecology of Animals SB RAS, Frunze Str.,11, 630091 Novosibirsk, Russia.
| | | | - Somphou Sayasone
- Lao Tropical and Public Health Institute, Ministry of Health, Vientiane Capital, Lao People's Democratic Republic
| | - Pariwate Varnakovida
- Geospatial Engineering and Innovation Center (KGEO), Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
6
|
Falkenberg JM, de Lima VMM, Ramos TPA, Lacerda ACF. Drivers of richness and abundance of parasites of fishes from an intermittent river before and after an interbasin water transfer in the Brazilian semi-arid region. Parasitol Res 2024; 123:328. [PMID: 39297998 DOI: 10.1007/s00436-024-08332-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024]
Abstract
This study examined the metrics of the macroparasite community in fishes from the Jaguaribe River basin, state of Ceará, before and after receiving water from the São Francisco River in Northeastern Brazil. This research assessed the association of environmental factors (water parameters) and the traits of 30 fish species on the parasite richness and abundance across space (river course) and time (seasons, pre- and post-transposition periods). Generalized linear models reveal associations between parasite metrics and host traits, water parameters, and river sub-basin. Host size and body condition positively correlated with parasite richness and abundance, while reproductive phase was negatively related. Water quality impacted ecto- and endoparasites differently, with seasonal and sub-basins variations and differences among sub-basins. The general models also indicate that the period is a significant variable, where parasite richness decreases while abundance increases in the post-transposition period. This study underscores the importance of considering diverse environmental and host variables for understanding parasite dynamics in river ecosystems. These findings could lead to valuable insights for ecosystem management and conservation, elucidating the potential consequences of environmental alterations on parasite-host interactions and ecosystem health.
Collapse
Affiliation(s)
- Julia Martini Falkenberg
- Departamento de Sistemática E Ecologia, Programa de Pós-Graduação Em Ciências Biológicas (Zoologia), Universidade Federal da Paraíba, Cidade Universitária, S/N, João Pessoa, PB, 58051-900, Brazil.
- Instituto Peixes da Caatinga, Rua Dr. Antônio Massa, 73, João Pessoa, PB, 58015-410, Brazil.
| | - Vitória Maria Moreira de Lima
- Departamento de Sistemática E Ecologia, Programa de Pós-Graduação Em Ciências Biológicas (Zoologia), Universidade Federal da Paraíba, Cidade Universitária, S/N, João Pessoa, PB, 58051-900, Brazil
- Instituto Peixes da Caatinga, Rua Dr. Antônio Massa, 73, João Pessoa, PB, 58015-410, Brazil
| | - Telton Pedro Anselmo Ramos
- Departamento de Sistemática E Ecologia, Programa de Pós-Graduação Em Ciências Biológicas (Zoologia), Universidade Federal da Paraíba, Cidade Universitária, S/N, João Pessoa, PB, 58051-900, Brazil
- Instituto Peixes da Caatinga, Rua Dr. Antônio Massa, 73, João Pessoa, PB, 58015-410, Brazil
| | - Ana Carolina Figueiredo Lacerda
- Departamento de Sistemática E Ecologia, Programa de Pós-Graduação Em Ciências Biológicas (Zoologia), Universidade Federal da Paraíba, Cidade Universitária, S/N, João Pessoa, PB, 58051-900, Brazil
| |
Collapse
|
7
|
Lattos A, Makri V, Papadopoulos DK, Gourzioti E, Pagonis C, Georgoulis I, Karagiannis D, Theodorou JA, Michaelidis B, Giantsis IA, Feidantsis K. Molecular characterization of Lernathropus kroyeri from intensive aquaculture and pathophysiology of infested sea bass. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109576. [PMID: 38670414 DOI: 10.1016/j.fsi.2024.109576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
The copepod Lernathropus kroyeri constitutes one of the major parasites for the Mediterranean aquaculture, infesting the sea bass Dicentrarchus labrax causing thus disruptions of growth performance and occasionally mortalities. Despite the large spread and the high frequency of this parasite in mariculture farms of Eastern Mediterranean, L. kroyeri genetic profile from aquaculture as well as the pathophysiological response of D. labrax have not been studied so far. Keeping this in mind, in the present study we investigated the L. kroyeri infestation on D. labrax from two farms in Greece, examining both healthy and heavy parasitized individuals. Assays included histopathology, phylogenetic reconstruction of the parasite and physiological response of the fish by the means of antioxidant, inflammatory metabolic and stress related gene expression analysis at both mRNA and protein levels. Genetic analysis indicated that L. kroyeri composes a monophyletic group, highly phylogenetically distant from other congeneric groups. Heavy infested D. labrax witnessed a significantly increased immune response that further led to oxidative stress and metabolic alterations. Overall, our results demonstrate the, seasonally independent, high infestation of this parasitic copepods, which continue to affect Mediterranean intensive aquaculture systems.
Collapse
Affiliation(s)
- Athanasios Lattos
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Vasiliki Makri
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Dimitrios K Papadopoulos
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Evgenia Gourzioti
- Department of Aquaculture and Fish Diseases, School of Health Sciences, University of Thessaly, GR-43100, Karditsa, Greece
| | - Charalampos Pagonis
- Department of Aquaculture and Fish Diseases, School of Health Sciences, University of Thessaly, GR-43100, Karditsa, Greece
| | - Ioannis Georgoulis
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Dimitrios Karagiannis
- Laboratory of Ichthyology - Culture and Pathology of Aquatic Animals, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - John A Theodorou
- Department of Fisheries and Aquaculture, School of Agricultural Sciences, University of Patras, GR-26504, Mesolonghi, Greece
| | - Basile Michaelidis
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Forestry and Natural Environment, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Department of Fisheries and Aquaculture, School of Agricultural Sciences, University of Patras, GR-26504, Mesolonghi, Greece.
| |
Collapse
|
8
|
Madge Pimentel I, Baikova D, Buchner D, Burfeid Castellanos A, David GM, Deep A, Doliwa A, Hadžiomerović U, Mayombo NAS, Prati S, Spyra MA, Vermiert AM, Beisser D, Dunthorn M, Piggott JJ, Sures B, Tiegs SD, Leese F, Beermann AJ. Assessing the response of an urban stream ecosystem to salinization under different flow regimes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171849. [PMID: 38537828 DOI: 10.1016/j.scitotenv.2024.171849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
Urban streams are exposed to a variety of anthropogenic stressors. Freshwater salinization is a key stressor in these ecosystems that is predicted to be further exacerbated by climate change, which causes simultaneous changes in flow parameters, potentially resulting in non-additive effects on aquatic ecosystems. However, the effects of salinization and flow velocity on urban streams are still poorly understood as multiple-stressor experiments are often conducted at pristine rather than urban sites. Therefore, we conducted a mesocosm experiment at the Boye River, a recently restored stream located in a highly urbanized area in Western Germany, and applied recurrent pulses of salinity along a gradient (NaCl, 9 h daily of +0 to +2.5 mS/cm) in combination with normal and reduced current velocities (20 cm/s vs. 10 cm/s). Using a comprehensive assessment across multiple organism groups (macroinvertebrates, eukaryotic algae, fungi, parasites) and ecosystem functions (primary production, organic-matter decomposition), we show that flow velocity reduction has a pervasive impact, causing community shifts for almost all assessed organism groups (except fungi) and inhibiting organic-matter decomposition. Salinization affected only dynamic components of community assembly by enhancing invertebrate emigration via drift and reducing fungal reproduction. We caution that the comparatively small impact of salt in our study can be due to legacy effects from past salt pollution by coal mining activities >30 years ago. Nevertheless, our results suggest that urban stream management should prioritize the continuity of a minimum discharge to maintain ecosystem integrity. Our study exemplifies a holistic approach for the assessment of multiple-stressor impacts on streams, which is needed to inform the establishment of a salinity threshold above which mitigation actions must be taken.
Collapse
Affiliation(s)
- Iris Madge Pimentel
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| | - Daria Baikova
- Aquatic Microbiology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Dominik Buchner
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Gwendoline M David
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Plankton and Microbial Ecology, Stechlin, Germany
| | - Aman Deep
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Annemie Doliwa
- Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Una Hadžiomerović
- Aquatic Microbiology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | | | - Sebastian Prati
- Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | | | - Anna-Maria Vermiert
- Ruhr University Bochum, Department of Animal Ecology, Evolution and Biodiversity, Bochum, Germany
| | - Daniela Beisser
- Department of Engineering and Natural Sciences, Westphalian University of Applied Sciences, Recklinghausen, Germany
| | - Micah Dunthorn
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Jeremy J Piggott
- Zoology and Trinity Centre for the Environment, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Bernd Sures
- Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany; Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
| | - Scott D Tiegs
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Florian Leese
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Arne J Beermann
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Paterson RA, Poulin R, Selbach C. Global analysis of seasonal changes in trematode infection levels reveals weak and variable link to temperature. Oecologia 2024; 204:377-387. [PMID: 37358648 PMCID: PMC10907458 DOI: 10.1007/s00442-023-05408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Seasonal changes in environmental conditions drive phenology, i.e., the annual timing of biological events ranging from the individual to the ecosystem. Phenological patterns and successional abundance cycles have been particularly well studied in temperate freshwater systems, showing strong and predictable synchrony with seasonal changes. However, seasonal successional changes in the abundance of parasites or their infection levels in aquatic hosts have not yet been shown to follow universal patterns. Here, using a compilation of several hundred estimates of spring-to-summer changes in infection by trematodes in their intermediate and definitive hosts, spanning multiple species and habitats, we test for general patterns of seasonal (temperature) driven changes in infection levels. The data include almost as many decreases in infection levels from spring to summer as there are increases, across different host types. Our results reveal that the magnitude of the spring-to-summer change in temperature had a weak positive effect on the concurrent change in prevalence of infection in first intermediate hosts, but no effect on the change in prevalence or abundance of infection in second intermediate or definitive hosts. This was true across habitat types and host taxa, indicating no universal effect of seasonal temperature increase on trematode infections. This surprising variation across systems suggests a predominance of idiosyncratic and species-specific responses in trematode infection levels, at odds with any clear phenological or successional pattern. We discuss possible reasons for the minimal and variable effect of seasonal temperature regimes, and emphasise the challenges this poses for predicting ecosystem responses to future climate change.
Collapse
Affiliation(s)
- Rachel A Paterson
- Norwegian Institute for Nature Research, Torgarden, PO Box 5685, 7485, Trondheim, Norway
| | - Robert Poulin
- Department of Zoology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| | - Christian Selbach
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Langnes, PO Box 6050, 9037, Tromsø, Norway
| |
Collapse
|
10
|
Virgilio LR, da Silva Lima F, Keppeler EC, Takemoto RM, Camargo LMA, de Oliveira Meneguetti DU. Endoparasite Communities of Fish at Different Trophic Levels in the Western Brazilian Amazon: Human, Environmental and Seasonal Influence. Acta Parasitol 2023; 68:612-636. [PMID: 37395992 DOI: 10.1007/s11686-023-00685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/08/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE The composition of the fish parasite community depends on several factors related to the environment, the host and its biology. This study aimed to evaluate the influence of environmental factors in anthropized and conserved areas on the endoparasite community structure in fish at different trophic levels, in addition to verifying that some species of Digenea are indicators of conserved environments. METHODS The study was carried out in the Upper Juruá River region, Western Amazon, Brazil. Six sampling sites were selected in this region and grouped in conserved and degraded environments. Fish were caught from periods of drought and flood, using passive and active sampling methods. Fish collected were measured, weighed, necropsied and the parasites found were counted, fixed, and subjected to morphological analysis. Physical and chemical variables and environmental characteristics were measured in all sites. RESULTS The present study demonstrated that environmental variables in a floodplain system can influence the richness, diversity, composition and abundance of endoparasites in hosts at different trophic levels. In addition, anthropized environments may favor the abundance of some generalist parasites and present a more homogeneous biota between seasonal periods compared to conserved environments. CONCLUSION Study contributed with information supporting the importance of conservation of aquatic environments, and demonstrated that fish parasites can be excellent indicators of environments.
Collapse
Affiliation(s)
- Lucena Rocha Virgilio
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Bionorte, Universidade Federal do Acre, Rio Branco, Acre, Brazil.
| | - Fabricia da Silva Lima
- Laboratório de Ecologia Aquática, Universidade Federal do Acre, Campus Floresta, Cruzeiro do Sul, Acre, Brazil
| | - Erlei Cassiano Keppeler
- Laboratório de Ecologia Aquática, Universidade Federal do Acre, Campus Floresta, Cruzeiro do Sul, Acre, Brazil
| | - Ricardo Massato Takemoto
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura, Laboratório de Ictioparasitologia, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | | | - Dionatas Ulises de Oliveira Meneguetti
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Bionorte, Universidade Federal do Acre, Rio Branco, Acre, Brazil
- Laboratório de Medicina Tropical, Universidade Federal do Acre, Rio Branco, Acre, Brazil
| |
Collapse
|
11
|
Carella F, Palić D, Šarić T, Župan I, Gorgoglione B, Prado P, Andree KB, Giantsis IA, Michaelidis B, Lattos A, Theodorou JA, Luis Barja Perez J, Rodriguez S, Scarpa F, Casu M, Antuofermo E, Sanna D, Otranto D, Panarese R, Iaria C, Marino F, Vico GD. Multipathogen infections and multifactorial pathogenesis involved in noble pen shell ( Pinna nobilis) mass mortality events: Background and current pathologic approaches. Vet Pathol 2023; 60:560-577. [PMID: 37458195 DOI: 10.1177/03009858231186737] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Disease outbreaks in several ecologically or commercially important invertebrate marine species have been reported in recent years all over the world. Mass mortality events (MMEs) have affected the noble pen shell (Pinna nobilis), causing its near extinction. Our knowledge of the dynamics of diseases affecting this species is still unclear. Early studies investigating the causative etiological agent focused on a novel protozoan parasite, Haplosporidium pinnae, although further investigations suggested that concurrent polymicrobial infections could have been pivotal in some MMEs, even in the absence of H. pinnae. Indeed, moribund specimens collected during MMEs in Italy, Greece, and Spain demonstrated the presence of a bacteria from within the Mycobacterium simiae complex and, in some cases, species similar to Vibrio mediterranei. The diagnostic processes used for investigation of MMEs are still not standardized and require the expertise of veterinary and para-veterinary pathologists, who could simultaneously evaluate a variety of factors, from clinical signs to environmental conditions. Here, we review the available literature on mortality events in P. nobilis and discuss approaches to define MMEs in P. nobilis. The proposed consensus approach should form the basis for establishing a foundation for future studies aimed at preserving populations in the wild.
Collapse
Affiliation(s)
| | - Dušan Palić
- Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | - Sergio Rodriguez
- University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | - Domenico Otranto
- University of Bari, Bari, Italy
- Bu-Ali Sina University, Hamedan, Iran
| | | | | | | | | |
Collapse
|
12
|
Douchet P, Gourbal B, Loker ES, Rey O. Schistosoma transmission: scaling-up competence from hosts to ecosystems. Trends Parasitol 2023; 39:563-574. [PMID: 37120369 PMCID: PMC10880732 DOI: 10.1016/j.pt.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 05/01/2023]
Abstract
In a One-Health context, it is urgent to establish the links between environmental degradation, biodiversity loss, and the circulation of pathogens. Here we review and literally draw a general vision of aquatic environmental factors that interface with Schistosoma species, agents of schistosomiasis, and ultimately modulate their transmission at the ecosystem scale. From this synthesis, we introduce the concept of ecosystem competence defined as 'the propensity of an ecosystem to amplify or mitigate an incoming quantity of a given pathogen that can be ultimately transmitted to their definitive hosts'. Ecosystem competence integrates all mechanisms at the ecosystem scale underlying the transmission risk of a given pathogen and offers a promising measure for operationalizing the One-Health concept.
Collapse
Affiliation(s)
- Philippe Douchet
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France
| | - Benjamin Gourbal
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France
| | - Eric S Loker
- Center for Evolutionary and Theoretical Immunology (CETI), Parasite Division - Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Olivier Rey
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.
| |
Collapse
|
13
|
Porter M, Barton DP, Hearnden M, Randall J, Crook DA, Shamsi S. Relationships between local variability in parasite communities of the black-spotted croaker (Protonibea diacanthus) (Teleostei: Sciaenidae) and host population structure and seasonality. Sci Rep 2023; 13:10291. [PMID: 37357255 DOI: 10.1038/s41598-023-37428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023] Open
Abstract
We evaluated spatial and temporal variability in parasite communities from the commercially important tropical marine fish the black-spotted croaker (Protonibea diacanthus) (Teleostei: Sciaenidae) to examine its population structure off the coast of the Northern Territory, Australia. Differences in parasite assemblage between four locations, across three seasons of the year, were used to evaluate the degree of connectivity of the sciaenid across coastal study areas. Analysis of parasite prevalence and mean intensity in these fish suggested the four sampling sites are distinct host populations. Across time, parasite assemblages at the four sites were distinct during the mid-dry (April-August) and build-up (September-November) seasons. During the wet season (December-March) there was substantial overlap in the parasite assemblages at three of the four sites indicating that fish population mixing may be occurring. Parasite assemblages at one nearshore site remained distinct across spatial and temporal scales. Our findings support the utility of parasitic organisms for elucidating the population structure of host species and reiterate the need to account for both spatial and temporal variability when performing stock discrimination analyses.
Collapse
Affiliation(s)
- Megan Porter
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
| | - Diane P Barton
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Mark Hearnden
- Department of Industry, Tourism and Trade, Northern Territory Government of Australia, Darwin, NT, 0801, Australia
| | - Jo Randall
- Department of Industry, Tourism and Trade, Northern Territory Government of Australia, Darwin, NT, 0801, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, NT, 0810, Australia
- Arafura Timor Research Facility, Australian Institute of Marine Science, Brinkin, NT, 0810, Australia
| | - David A Crook
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, NT, 0810, Australia
- Department of Primary Industries, Narrandera Fisheries Centre, Narrandera, NSW, 2700, Australia
| | - Shokoofeh Shamsi
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| |
Collapse
|
14
|
Shaw AK, Torstenson M, Craft ME, Binning SA. Gaps in modelling animal migration with evolutionary game theory: infection can favour the loss of migration. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210506. [PMID: 36934748 PMCID: PMC10024995 DOI: 10.1098/rstb.2021.0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/03/2022] [Indexed: 03/21/2023] Open
Abstract
Ongoing environmental changes alter how natural selection shapes animal migration. Understanding how these changes play out theoretically can be done using evolutionary game theoretic (EGT) approaches, such as looking for evolutionarily stable strategies. Here, we first describe historical patterns of how EGT models have explored different drivers of migration. We find that there are substantial gaps in both the taxa (mammals, amphibians, reptiles, insects) and mechanisms (mutualism, interspecific competition) included in past EGT models of migration. Although enemy interactions, including parasites, are increasingly considered in models of animal migration, they remain the least studied of factors for migration considered to date. Furthermore, few papers look at changes in migration in response to perturbations (e.g. climate change, new species interactions). To address this gap, we present a new EGT model to understand how infection with a novel parasite changes host migration. We find three possible outcomes when migrants encounter novel parasites: maintenance of migration (despite the added infection cost), loss of migration (evolutionary shift to residency) or population collapse, depending on the risk and cost of getting infected, and the cost currency. Our work demonstrates how emerging infection can alter animal behaviour such as migration. This article is part of the theme issue 'Half a century of evolutionary games: a synthesis of theory, application and future directions'.
Collapse
Affiliation(s)
- Allison K. Shaw
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN 55108, USA
| | - Martha Torstenson
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN 55108, USA
| | - Meggan E. Craft
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN 55108, USA
| | - Sandra A. Binning
- Département de sciences biologiques, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| |
Collapse
|
15
|
Sures B, Nachev M, Schwelm J, Grabner D, Selbach C. Environmental parasitology: stressor effects on aquatic parasites. Trends Parasitol 2023; 39:461-474. [PMID: 37061443 DOI: 10.1016/j.pt.2023.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 04/17/2023]
Abstract
Anthropogenic stressors are causing fundamental changes in aquatic habitats and to the organisms inhabiting these ecosystems. Yet, we are still far from understanding the diverse responses of parasites and their hosts to these environmental stressors and predicting how these stressors will affect host-parasite communities. Here, we provide an overview of the impacts of major stressors affecting aquatic ecosystems in the Anthropocene (habitat alteration, global warming, and pollution) and highlight their consequences for aquatic parasites at multiple levels of organisation, from the individual to the community level. We provide directions and ideas for future research to better understand responses to stressors in aquatic host-parasite systems.
Collapse
Affiliation(s)
- Bernd Sures
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany; Research Center One Health Ruhr, Research Alliance Ruhr, University Duisburg-Essen, Essen, Germany.
| | - Milen Nachev
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Jessica Schwelm
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany; Research Center One Health Ruhr, Research Alliance Ruhr, University Duisburg-Essen, Essen, Germany
| | - Daniel Grabner
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Christian Selbach
- Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany; Freshwater Ecology Group, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
16
|
Influence of habitat alteration on the structure of helminth communities in small mammals: a systematic review and critical appraisal of theory and current evidence. Parasitol Res 2023; 122:1053-1070. [PMID: 36894783 DOI: 10.1007/s00436-023-07804-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023]
Abstract
Despite the extensive information on the effects of habitat alteration on the structure of helminth communities in small mammals, the evidence is still inconclusive. A systematic review was carried out using the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guideline to compile and synthesize available literature on the influence of habitat alteration on the structure of helminth communities in small mammals. The aim of this review was to describe the variation in infection rates of helminth species associated with habitat alteration and to discuss the theoretical framework that may explain such changes in relation to parasite, host, and environmental features. Twenty-three scientific articles published between 2005 and 2022 were reviewed, 22 of which investigated parasite prevalence, 10 parasite burden, and 14 parasite richness in both altered and natural habitats. Information in assessed articles suggests that the structure of helminth communities in small mammals can be impacted by anthropogenic habitat alteration in various ways. Infection rates of monoxenous and heteroxenous helminths may increase or decrease in small mammals depending on whether their hosts (definitive and intermediate) are available, and environmental and host conditions modify the survival and transmission of parasitic forms. Also, given that habitat alteration may favor inter-species contacts, transmission rates of low host-specific helminths could be increased due to exposure to new reservoir hosts. In a continually changing world, it is essential to assess the spatio-temporal variations of helminth communities in wildlife inhabiting altered and natural habitats to determine potential impacts on wildlife conservation and public health.
Collapse
|
17
|
Bonacina L, Fasano F, Mezzanotte V, Fornaroli R. Effects of water temperature on freshwater macroinvertebrates: a systematic review. Biol Rev Camb Philos Soc 2023; 98:191-221. [PMID: 36173002 PMCID: PMC10088029 DOI: 10.1111/brv.12903] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 01/12/2023]
Abstract
Water temperature is one of the main abiotic factors affecting the structure and functioning of aquatic ecosystems and its alteration can have important effects on biological communities. Macroinvertebrates are excellent bio-indicators and have been used for decades to assess the status of aquatic ecosystems as a result of environmental stresses; however, their responses to temperature are poorly documented and have not been systematically evaluated. The aims of this review are: (i) to collate and summarize responses of freshwater macroinvertebrates to different temperature conditions, comparing the results of experimental and theoretical studies; (ii) to understand how the focus of research on the effects of temperature on macroinvertebrates has changed during the last 51 years; and (iii) to identify research gaps regarding temperature responses, ecosystem types, organism groups, spatiotemporal scales, and geographical regions to suggest possible research directions. We performed a comparative assessment of 223 publications that specifically consider freshwater macroinvertebrates and address the effects of temperature. Short-term studies performed in the laboratory and focusing on insects exposed to a range of temperatures dominated. Field studies were carried out mainly in Europe, at catchment scale and almost exclusively in rivers; they mainly investigated responses to water thermal regime at the community scale. The most frequent biological responses tested were growth rate, fecundity and the time and length of emergence, whereas ecological responses mainly involved composition, richness, and distribution. Thermal research on freshwater macroinvertebrates has undergone a shift since the 2000s when studies involving extended spatiotemporal scales and investigating the effects of global warming first appeared. In addition, recent studies have considered the effects of temperature at genetic and evolutionary scales. Our review revealed that the effects of temperature on macroinvertebrates are manifold with implications at different levels, from genes to communities. However, community-level physiological, phenological and fitness responses tested on individuals or populations should be studied in more detail given their macroecological effects are likely to be enhanced by climate warming. In addition, most field studies at regional scales have used air temperature as a proxy for water temperature; obtaining accurate water temperature data in future studies will be important to allow proper consideration of the spatial thermal heterogeneity of water bodies and any effects on macroinvertebrate distribution patterns. Finally, we found an uneven number of studies across different ecosystems and geographic areas, with lentic bodies and regions outside the West underrepresented. It will also be crucial to include macroinvertebrates of high-altitude and tropical areas in future work because these groups are most vulnerable to climate warming for multiple reasons. Further studies on temperature-macroinvertebrate relationships are needed to fill the current gaps and facilitate appropriate conservation strategies for freshwater ecosystems in an anthropogenic-driven era.
Collapse
Affiliation(s)
- Luca Bonacina
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Federica Fasano
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Valeria Mezzanotte
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Riccardo Fornaroli
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| |
Collapse
|
18
|
Giari L, Castaldelli G, Timi JT. Ecology and effects of metazoan parasites of fish in transitional waters. Parasitology 2022; 149:1829-1841. [PMID: 35946119 PMCID: PMC11010487 DOI: 10.1017/s0031182022001068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/29/2022]
Abstract
Given the abundance, heterogeneity and ubiquity of parasitic organisms, understanding how they influence biodiversity, evolution, health and ecosystem functionality is crucial, especially currently when anthropogenic pressures are altering host–parasite balances. This review describes the features, roles and impacts of metazoan parasites of fish occurring in transitional waters (TW). These aquatic ecosystems are highly productive and widespread around the globe and represent most favourable theatres for parasitism given the availability of hosts (invertebrates, fishes and birds) and an increased probability of parasite transmission, especially of those having complex life cycles. Fascinating examples of how parasitism can influence different hierarchical levels of biological systems, from host individuals and populations to entire aquatic communities, through effects on food webs come from this kind of ecosystem. Edible fish of commercial value found in TW can harbour some parasite species, significantly reducing host health, marketability and food safety, with possible economic and public health consequences. Many TW are historically exploited by humans as sources of relevant ecosystem services, including fisheries and aquaculture, and they are highly vulnerable ecosystems. Alteration of TW can be revealed through the study of parasite communities, contributing, as bioindicators, for assessing environmental changes, health and restoration. Fish parasites can provide much information about TW, but this potential appears to be not fully exploited. More studies are necessary to quantify the ecological, economic and medical impacts fish parasites can have on these important ecosystems.
Collapse
Affiliation(s)
- Luisa Giari
- Department of Environment and Prevention Sciences, University of Ferrara, St. L. Borsari 46, 44121 Ferrara, Italy
| | - Giuseppe Castaldelli
- Department of Environment and Prevention Sciences, University of Ferrara, St. L. Borsari 46, 44121 Ferrara, Italy
| | - Juan Tomás Timi
- Laboratorio de Ictioparasitología, Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3350, 7600 Mar del Plata, Argentina
| |
Collapse
|
19
|
Suresh K, Gopi S, Rakesh CG, Ittoop G, Pillai D. Occurrence of infestation with the isopod, Alitropus typus M. Edwards (Crustacea: Flabellifera: Aegidae) on commercially important freshwater fishes of Kerala, India. J Parasit Dis 2022; 46:695-703. [PMID: 36091279 PMCID: PMC9458801 DOI: 10.1007/s12639-022-01488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/28/2022] [Indexed: 10/18/2022] Open
Abstract
Rapidly rising temperatures and increasing organic load in the inland and coastal waters has led to a significant increase in parasite population. The isopod Alitropus typus infestation on fish in these waters have become more frequent, causing mortalities in both wild and cultured fishes. The present study was aimed to investigate the infestation on different fish hosts, mean intensity, prevalence, environmental influences on the parasite abundance and the histopathological changes it causes in the host. A total of 219 isopod specimens were collected from 149 infested fishes in two districts of Kerala, India. Among the different fish hosts, Channa striata was found to be the most susceptible, followed by Catla catla, Cyprinus carpio, and Wallago attu, with 81%, 10%, 7%, and 2% occurrence, respectively. The prevalence and mean intensity of infestation were found to be 69.8%, 44.4%, 68.2%, 62.5% and 1.33, 4.25, 1.26, 1.80 in C. striata, W. attu, C. catla, and C. carpio, respectively. The parasite abundance was directly influenced by temperature. The histopathology of affected gill tissues showed epithelial lifting, rupture of secondary gill filaments, vacuole formation and hemocytic infiltration. The findings indicated that the isopod parasite, A. typus had a negative impact on fish health and appearance, causing economic losses to the small scale farmers/fishermen. This is the first reported record of the infestation of isopod parasite, A. typus on the Indian major carp C. catla and C. carpio from India.
Collapse
Affiliation(s)
- Kummari Suresh
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala India
| | - Salini Gopi
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala India
| | - C. G. Rakesh
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala India
| | - Gijo Ittoop
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala India
| |
Collapse
|
20
|
Taskinen J, Choo JM, Mironova E, Gopko M. Contrasting temperature responses in seasonal timing of cercariae shedding by Rhipidocotyle trematodes. Parasitology 2022; 149:1045-1056. [PMID: 35570672 PMCID: PMC11010493 DOI: 10.1017/s0031182022000518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/07/2022]
Abstract
Global warming is likely to lengthen the seasonal duration of larval release by parasites. We exposed freshwater mussel hosts, Anodonta anatina, from 2 high-latitude populations to high, intermediate and low temperatures throughout the annual cercarial shedding period of the sympatric trematodes Rhipidocotyle fennica and R. campanula, sharing the same transmission pathway. At the individual host level, under warmer conditions, the timing of the cercarial release in both parasite species shifted towards seasonally earlier period while its duration did not change. At the host population level, evidence for the lengthening of larvae shedding period with warming was found for R. fennica. R. campanula started the cercarial release seasonally clearly earlier, and at a lower temperature, than R. fennica. Furthermore, the proportion of mussels shedding cercariae increased, while day-degrees required to start the cercariae shedding decreased in high-temperature treatment in R. fennica. In R. campanula these effects were not found, suggesting that warming can benefit more R. fennica. These results do not completely support the view that climate warming would invariably increase the seasonal duration of larval shedding by parasites, but emphasizes species-specific differences in temperature-dependence and in seasonality of cercarial release.
Collapse
Affiliation(s)
- Jouni Taskinen
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Jocelyn M. Choo
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Ekaterina Mironova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij prosp., 33, 119071 Moscow, Russia 3
| | - Mikhail Gopko
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij prosp., 33, 119071 Moscow, Russia 3
| |
Collapse
|
21
|
Williams MA, Faiad S, Claar DC, French B, Leslie KL, Oven E, Guerra AS, Micheli F, Zgliczynski BJ, Haupt AJ, Sandin SA, Wood CL. Life history mediates the association between parasite abundance and geographic features. J Anim Ecol 2022; 91:996-1009. [PMID: 35332535 DOI: 10.1111/1365-2656.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/16/2022] [Indexed: 11/27/2022]
Abstract
Though parasites are ubiquitous in marine ecosystems, predicting the abundance of parasites present within marine ecosystems has proven challenging due to the unknown effects of multiple interacting environmental gradients and stressors. Furthermore, parasites often are considered as a uniform group within ecosystems despite their significant diversity. We aim to determine the potential importance of multiple predictors of parasite abundance in coral reef ecosystems, including reef area, island area, human population density, chlorophyll-a, host diversity, coral cover, host abundance, and island isolation. Using a model selection approach within a database of more than 1200 individual fish hosts and their parasites from 11 islands within the Pacific Line Islands archipelago, we reveal that geographic gradients, including island area and island isolation, emerged as the best predictors of parasite abundance. Life history moderated the relationship; parasites with complex life cycles increased in abundance with increasing island isolation, while parasites with direct life cycles decreased with increasing isolation. Direct life cycle parasites increased in abundance with increasing island area, though complex life cycle parasite abundance was not associated with island area. This novel analysis of a unique dataset indicates that parasite abundance in marine systems cannot be predicted precisely without accounting for the independent and interactive effects of each parasite's life history and environmental conditions.
Collapse
Affiliation(s)
- Maureen A Williams
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA.,Department of Biology, McDaniel College, Baltimore, Maryland, USA
| | - Sara Faiad
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Danielle C Claar
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Beverly French
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Katie L Leslie
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Emily Oven
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Ana Sofia Guerra
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Fiorenza Micheli
- Center for Ocean Solutions, Stanford University, Pacific Grove, CA, USA.,Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Brian J Zgliczynski
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Alison J Haupt
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA.,Department of Marine Science, California State University Monterey Bay, Marina, CA, USA
| | - Stuart A Sandin
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Chelsea L Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
22
|
Mironova E, Gopko M, Pasternak A, Mikheev V, Taskinen J. Allee effect in a manipulative parasite within poikilothermic host under temperature change. Parasitology 2022; 149:35-43. [PMID: 35184786 PMCID: PMC11010467 DOI: 10.1017/s0031182021001529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/04/2021] [Accepted: 08/20/2021] [Indexed: 11/07/2022]
Abstract
Temperature and intraspecific competition are important factors influencing the growth of all organisms, including parasites. The temperature increase is suggested to stimulate the development of parasites within poikilothermic hosts. However, at high parasite densities, this effect could be diminished, due to stronger intraspecific competition. Our study, for the first time, addressed the joint effects of warming and parasite abundances on parasite growth in poikilothermic hosts. The growth of the common fish parasite larvae (trematode Diplostomum pseudospathaceum) within the rainbow trout at different infection intensities and temperatures (15°C and 18°C) was experimentally investigated. The results showed that temperature was positively correlated with both parasite infection success and growth rates. The growth rates increased much more compared to those in many free-living poikilothermic animals. Atypically for a majority of parasites, D. pseudospathaceum larvae grow faster when abundant (Allee effect). The possible causes for this phenomenon (manipulation cost sharing, etc.) are discussed in this study. Importantly, limited evidence of the interaction between temperature and population density was found. It is likely that temperature did not change the magnitude of the Allee effect but affected its timing. The impact of these effects is supposed to become more pronounced in freshwater ecosystems under current climate changes.
Collapse
Affiliation(s)
- Ekaterina Mironova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij prosp., 33, 119071Moscow, Russia
| | - Mikhail Gopko
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij prosp., 33, 119071Moscow, Russia
| | - Anna Pasternak
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Nahimovskiy prosp., 36, 117997Moscow, Russia
| | - Viktor Mikheev
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij prosp., 33, 119071Moscow, Russia
| | - Jouni Taskinen
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FIN-40014 Jyväskylä, Finland
| |
Collapse
|
23
|
Mathieu‐Bégné E, Blanchet S, Rey O, Scelsi O, Poesy C, Marselli G, Loot G. A fine‐scale analysis reveals microgeographic hotspots maximizing infection rate between a parasite and its fish host. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Eglantine Mathieu‐Bégné
- Evolution et Diversité Biologique Université Paul Sabatier (UPS)Centre National de la Recherche ScientifiqueEcole Nationale pour la Formation Agronomique (ENFA)UMR5174 EDB Toulouse France
- Station d'Ecologie Théorique et Expérimentale CNRSUPSUMR5321 SETE Moulis France
- Interactions Hôtes‐Pathogènes‐Environnements Univ. MontpellierCNRSIfremerUniv. Perpignan Via DomitiaUMR5244 IHPE Perpignan France
| | - Simon Blanchet
- Evolution et Diversité Biologique Université Paul Sabatier (UPS)Centre National de la Recherche ScientifiqueEcole Nationale pour la Formation Agronomique (ENFA)UMR5174 EDB Toulouse France
- Station d'Ecologie Théorique et Expérimentale CNRSUPSUMR5321 SETE Moulis France
| | - Olivier Rey
- Interactions Hôtes‐Pathogènes‐Environnements Univ. MontpellierCNRSIfremerUniv. Perpignan Via DomitiaUMR5244 IHPE Perpignan France
| | - Orlane Scelsi
- Evolution et Diversité Biologique Université Paul Sabatier (UPS)Centre National de la Recherche ScientifiqueEcole Nationale pour la Formation Agronomique (ENFA)UMR5174 EDB Toulouse France
| | - Camille Poesy
- Station d'Ecologie Théorique et Expérimentale CNRSUPSUMR5321 SETE Moulis France
| | - Geoffrey Marselli
- Station d'Ecologie Théorique et Expérimentale CNRSUPSUMR5321 SETE Moulis France
| | - Géraldine Loot
- Evolution et Diversité Biologique Université Paul Sabatier (UPS)Centre National de la Recherche ScientifiqueEcole Nationale pour la Formation Agronomique (ENFA)UMR5174 EDB Toulouse France
- Institut Universitaire de France Paris France
| |
Collapse
|
24
|
Cascarano MC, Stavrakidis-Zachou O, Mladineo I, Thompson KD, Papandroulakis N, Katharios P. Mediterranean Aquaculture in a Changing Climate: Temperature Effects on Pathogens and Diseases of Three Farmed Fish Species. Pathogens 2021; 10:1205. [PMID: 34578236 PMCID: PMC8466566 DOI: 10.3390/pathogens10091205] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Climate change is expected to have a drastic effect on aquaculture worldwide. As we move forward with the agenda to increase and diversify aquaculture production, rising temperatures will have a progressively relevant impact on fish farming, linked to a multitude of issues associated with fish welfare. Temperature affects the physiology of both fish and pathogens, and has the potential to lead to significant increases in disease outbreaks within aquaculture systems, resulting in severe financial impacts. Significant shifts in future temperature regimes are projected for the Mediterranean Sea. We therefore aim to review and discuss the existing knowledge relating to disease outbreaks in the context of climate change in Mediterranean finfish aquaculture. The objective is to describe the effects of temperature on the physiology of both fish and pathogens, and moreover to list and discuss the principal diseases of the three main fish species farmed in the Mediterranean, namely gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax), and meagre (Argyrosomus regius). We will attempt to link the pathology of each disease to a specific temperature range, while discussing potential future disease threats associated with the available climate change trends for the Mediterranean Sea.
Collapse
Affiliation(s)
- Maria Chiara Cascarano
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
- Department of Biology, University of Crete, 71003 Heraklion, Greece
| | - Orestis Stavrakidis-Zachou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
- Department of Biology, University of Crete, 71003 Heraklion, Greece
| | - Ivona Mladineo
- Biology Center of Czech Academy of Sciences, Laboratory of Functional Helminthology, Institute of Parasitology, 370 05 Ceske Budejovice, Czech Republic;
| | - Kim D. Thompson
- Vaccines and Diagnostics, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK;
| | - Nikos Papandroulakis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
| | - Pantelis Katharios
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
| |
Collapse
|
25
|
Friesen O, Poulin R, Lagrue C. Temperature and multiple parasites combine to alter host community structure. OIKOS 2021. [DOI: 10.1111/oik.07813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Huntley JW, Scarponi D. Parasitism and host behavior in the context of a changing environment: The Holocene record of the commercially important bivalve Chamelea gallina, northern Italy. PLoS One 2021; 16:e0247790. [PMID: 33793588 PMCID: PMC8016236 DOI: 10.1371/journal.pone.0247790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/12/2021] [Indexed: 12/04/2022] Open
Abstract
Rapid warming and sea-level rise are predicted to be major driving forces in shaping coastal ecosystems and their services in the next century. Though forecasts of the multiple and complex effects of temperature and sea-level rise on ecological interactions suggest negative impacts on parasite diversity, the effect of long term climate change on parasite dynamics is complex and unresolved. Digenean trematodes are complex life cycle parasites that can induce characteristic traces on their bivalve hosts and hold potential to infer parasite host-dynamics through time and space. Previous work has demonstrated a consistent association between sea level rise and increasing prevalence of trematode traces, but a number of fundamental questions remain unanswered about this paleoecological proxy. Here we examine the relationships of host size, shape, and functional morphology with parasite prevalence and abundance, how parasites are distributed across hosts, and how all of these relationships vary through time, using the bivalve Chamelea gallina from a Holocene shallow marine succession in the Po coastal plain. Trematode prevalence increased and decreased in association with the transition from a wave-influenced estuarine system to a wave-dominated deltaic setting. Prevalence and abundance of trematode pits are associated with large host body size, reflecting ontogenetic accumulation of parasites, but temporal trends in median host size do not explain prevalence trends. Ongoing work will test the roles of temperature, salinity, and nutrient availability on trematode parasitism. Parasitized bivalves in one sample were shallower burrowers than their non-parasitized counterparts, suggesting that hosts of trematodes can be more susceptible to their predators, though the effect is ephemeral. Like in living parasite-host systems, trematode-induced malformations are strongly aggregated among hosts, wherein most host individuals harbor very few parasites while a few hosts have many. We interpret trace aggregation to support the assumption that traces are a reliable proxy for trematode parasitism in the fossil record.
Collapse
Affiliation(s)
- John Warren Huntley
- Department of Geological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Daniele Scarponi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, University of Bologna, Bologna, Italy
| |
Collapse
|
27
|
Abstract
Climate change affects ecological processes and interactions, including parasitism. Because parasites are natural components of ecological systems, as well as agents of outbreak and disease-induced mortality, it is important to summarize current knowledge of the sensitivity of parasites to climate and identify how to better predict their responses to it. This need is particularly great in marine systems, where the responses of parasites to climate variables are less well studied than those in other biomes. As examples of climate's influence on parasitism increase, they enable generalizations of expected responses as well as insight into useful study approaches, such as thermal performance curves that compare the vital rates of hosts and parasites when exposed to several temperatures across a gradient. For parasites not killed by rising temperatures, some simple physiological rules, including the tendency of temperature to increase the metabolism of ectotherms and increase oxygen stress on hosts, suggest that parasites' intensity and pathologies might increase. In addition to temperature, climate-induced changes in dissolved oxygen, ocean acidity, salinity, and host and parasite distributions also affect parasitism and disease, but these factors are much less studied. Finally, because parasites are constituents of ecological communities, we must consider indirect and secondary effects stemming from climate-induced changes in host-parasite interactions, which may not be evident if these interactions are studied in isolation.
Collapse
Affiliation(s)
- James E Byers
- Odum School of Ecology, University of Georgia, Athens, Georgia 30602, USA;
| |
Collapse
|
28
|
Marcogliese DJ, Cone DK. Myxozoan Communities in Two Cyprinid Fishes from Mesotrophic and Eutrophic Rivers. J Parasitol 2021; 107:39-47. [PMID: 33535231 DOI: 10.1645/20-76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Few studies have examined community structure among myxozoan species in fish. Herein myxozoan communities are described from 2 cyprinid species, the spottail shiner (Notropis hudsonius) and the common shiner (Luxilus cornutus), from mesotrophic and eutrophic localities in rivers in southwestern Quebec, Canada. Four myxozoan species were found, and total prevalence ranged from 60 to 86.7% in spottail shiners at 4 localities along the Richelieu River. Component species richness ranged from 2 to 4 and mean infracommunity richness from 0.87 to 1.47. Prevalence, component species richness, and infracommunity species richness in the spottail shiner were comparable to those from other localities in the Great Lakes and St. Lawrence River that were exposed to municipal effluents. Nine myxozoan species were found in common shiners from the Bras d'Henri micro-watershed. Component species richness varied from 6 to 8 at 4 localities, with total prevalence being 100% at all localities except 1, where it was 80%. Mean infracommunity richness ranged from 1.73 to 2.27. Prevalence, component species richness, and infracommunity species richness in the common shiner from the Bras d'Henri micro-watershed were among the highest observed for myxozoan communities from any host species to date. It is concluded that moderate levels of eutrophication are sufficient to generate species-rich communities of myxozoan parasites in fishes.
Collapse
Affiliation(s)
- David J Marcogliese
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, St. Lawrence Centre, 105 McGill Street, 7th floor, Montreal, Quebec H2Y 2E7, Canada; and St. Andrews Biological Station, 125 Marine Science Drive, St. Andrews, New Brunswick E5B 0E4, Canada
| | - David K Cone
- 83 Rhodenizer Lake Road, Dayspring, Nova Scotia B4V 5R7, Canada
| |
Collapse
|
29
|
Ikiroma IA, Pollock KG. Influence of weather and climate on cryptosporidiosis-A review. Zoonoses Public Health 2020; 68:285-298. [PMID: 33225635 DOI: 10.1111/zph.12785] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 05/23/2020] [Accepted: 10/18/2020] [Indexed: 12/31/2022]
Abstract
Studies have shown that climatic factors can significantly influence transmission of many waterborne diseases. However, knowledge of the impact of climate variability on cryptosporidiosis is much less certain. Associations between the incidence of cryptosporidiosis and climatic variables have been reported in several countries. Given that the identified relationships were not consistently reported across studies, it is not known whether these were country-specific observations or can be considered more globally. Variation in the disease risk in both low- and middle-income countries and high-income countries presents new challenges and opportunities to enact responsive changes in research and public health policies. Available epidemiological evidence of the influence of weather and climate on cryptosporidiosis is reviewed. Fourteen studies met the inclusion criteria, and most studies showed that the incidence of cryptosporidiosis is highly sensitive to climatic conditions, especially temperature, rainfall and relative humidity. The identified associations varied across studies, with different conditions of importance and lag times across different locations. Therefore, there is a need for countries at risk to assess Cryptosporidium transmission routes based on the spatiotemporal patterns of the disease and what role climate and other socio-ecological changes play in the transmission. Information gathering will then allow us to provide information for evidence-based control strategies and mitigation of transmission. This review offers new perspectives on the role of climate variability on Cryptosporidium transmission. It highlights different epidemiological approaches adopted and provides the potential for future research and surveillance to reduce the disease burden. By evaluating the epidemiological transmission of this organism in high-income countries, all mitigation strategies, for example filtration and water catchment management, can be used as exemplars of preventing infection in low- to middle-income countries.
Collapse
|
30
|
Selbach C, Poulin R. Some like it hotter: trematode transmission under changing temperature conditions. Oecologia 2020; 194:745-755. [PMID: 33170408 DOI: 10.1007/s00442-020-04800-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Climate change-related increases in temperature will influence the interactions between organisms, including the infection dynamics of parasites in ecosystems. The distribution and transmission of parasites are expected to increase with warmer temperature, but to what extent this will affect closely related parasite taxa living in sympatry is currently impossible to predict, due to our extremely limited understanding of the interspecific variation in transmission potential among parasite species in changing ecosystems. Here, we analyse the transmission patterns of four trematode species from the New Zealand mudsnail Potamopyrgus antipodarum with different life cycles and transmission strategies under two temperature scenarios, simulating current and future warmer temperatures. In a comparative experimental study, we investigated the effects of temperature on the productivity, movement and survival of the parasites' transmission stages (cercariae) to quantify the net effect of temperature on their overall transmission potential. Our results show that increases in temperature positively affect cercarial transmission dynamics, yet these impacts varied considerably between the cercariae of different trematode species, depending on their host-searching behaviour. These different species-specific transmission abilities as well as the varying individual patterns of productivity, activity and longevity are likely to have far-reaching implications for disease dynamics in changing ecosystems, since increases in temperature can shift parasite community structure. Due to the parasites' capacity to regulate the functioning of whole ecological communities and their potential impact as disease agents, understanding these species-specific parasite transmission traits remains a fundamental requirement to predict parasite dynamics under changing environmental conditions.
Collapse
Affiliation(s)
- Christian Selbach
- Department of Zoology, University of Otago, Dunedin, New Zealand. .,Department of Biology, Aquatic Biology, Aarhus University, Aarhus, Denmark.
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
31
|
Petitjean Q, Jean S, Côte J, Larcher T, Angelier F, Ribout C, Perrault A, Laffaille P, Jacquin L. Direct and indirect effects of multiple environmental stressors on fish health in human-altered rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140657. [PMID: 32721751 DOI: 10.1016/j.scitotenv.2020.140657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Freshwater fish face multiple challenges in human-altered rivers such as trace metal contamination, temperature increase and parasitism. These multiple stressors could have unexpected interactive effects on fish health due to shared physiological pathways, but few studies investigated this question in wild fish populations. In this study, we compared 16 populations of gudgeon (Gobio occitaniae) distributed along perturbation gradients in human-altered rivers in the South of France. We tested the effects of single and combined stressors (i.e., metal contamination, temperature, parasitism) on key traits linked to fish health across different biological levels using a Structural Equation Modelling approach. Parasitism and temperature alone had limited deleterious effects on fish health. In contrast, fish living in metal-contaminated sites had higher metal bioaccumulation and higher levels of cellular damage in the liver through the induction of an inflammatory response. In addition, temperature and contamination had interactive negative effects on growth. These results suggest that trace metal contamination has deleterious effects on fish health at environmentally realistic concentrations and that temperature can modulate the effects of trace metals on fish growth. With this study, we hope to encourage integrative approaches in realistic field conditions to better predict the effects of natural and anthropogenic stressors on aquatic organisms.
Collapse
Affiliation(s)
- Quentin Petitjean
- EcoLab, Laboratoire écologie fonctionnelle et environnement, UMR5245, Université de Toulouse, CNRS, Toulouse, France; EDB, UMR5174 EDB, Université de Toulouse, CNRS, IRD, UPS, 118 route de Narbonne, Toulouse, France; LTSER France, Zone Atelier PYGAR "Pyrénées-Garonne", Auzeville-Tolosane, France.
| | - Séverine Jean
- EcoLab, Laboratoire écologie fonctionnelle et environnement, UMR5245, Université de Toulouse, CNRS, Toulouse, France; LTSER France, Zone Atelier PYGAR "Pyrénées-Garonne", Auzeville-Tolosane, France
| | - Jessica Côte
- EDB, UMR5174 EDB, Université de Toulouse, CNRS, IRD, UPS, 118 route de Narbonne, Toulouse, France; LTSER France, Zone Atelier PYGAR "Pyrénées-Garonne", Auzeville-Tolosane, France
| | - Thibaut Larcher
- INRA-Oniris, PAnTher APEX, La Chantrerie, 44307 Nantes, France
| | - Fréderic Angelier
- Centre d'Etudes Biologiques de Chizé, UMR 7372, Université de la Rochelle, CNRS, Villiers en Bois, France
| | - Cécile Ribout
- Centre d'Etudes Biologiques de Chizé, UMR 7372, Université de la Rochelle, CNRS, Villiers en Bois, France
| | - Annie Perrault
- EcoLab, Laboratoire écologie fonctionnelle et environnement, UMR5245, Université de Toulouse, CNRS, Toulouse, France; LTSER France, Zone Atelier PYGAR "Pyrénées-Garonne", Auzeville-Tolosane, France
| | - Pascal Laffaille
- EcoLab, Laboratoire écologie fonctionnelle et environnement, UMR5245, Université de Toulouse, CNRS, Toulouse, France; LTSER France, Zone Atelier PYGAR "Pyrénées-Garonne", Auzeville-Tolosane, France
| | - Lisa Jacquin
- EDB, UMR5174 EDB, Université de Toulouse, CNRS, IRD, UPS, 118 route de Narbonne, Toulouse, France; LTSER France, Zone Atelier PYGAR "Pyrénées-Garonne", Auzeville-Tolosane, France
| |
Collapse
|
32
|
Selbach C, Mouritsen KN. Mussel Shutdown: Does the Fear of Trematodes Regulate the Functioning of Filter Feeders in Coastal Ecosystems? Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.569319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Hagmayer A, Furness AI, Pollux BJA. Parasite infestation influences life history but not boldness behavior in placental live-bearing fish. Oecologia 2020; 194:635-648. [PMID: 33141323 PMCID: PMC7683485 DOI: 10.1007/s00442-020-04795-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/24/2020] [Indexed: 11/29/2022]
Abstract
Parasites can negatively affect the reproductive success of hosts. Placental species may be particularly susceptible, because parasite-induced stress during pregnancy could potentially influence embryo development. Here, we examine the consequences of a trematode infestation (black spot disease, BSD) for fetal development and adult behavior in 19 natural populations of the placental live-bearing fish species Poeciliopsis retropinna (Poeciliidae) in Costa Rica. First, we observed substantial variation in parasite infestation among populations which correlated with a number of local environmental conditions (elevation, river width, depth, and flow velocity). Furthermore, we observed substantial variation in parasite infestation among females within populations associated with maternal age and size. We found that the infestation rate significantly influenced embryonic development, with more heavily parasitized females producing smaller and worse-conditioned offspring at birth, possibly, because a costly immune response during pregnancy limits, either directly or indirectly, nourishment to developing embryos. Finally, a behavioral experiment in the field showed that the infestation rate did not affect an individual's boldness. Our study indicates that in placental live-bearing fish parasite infestation leads to reduced embryo provisioning during pregnancy, resulting in a smaller offspring size and quality at birth potentially with negative implications for offspring fitness.
Collapse
Affiliation(s)
- Andres Hagmayer
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University, 6708 WD, Wageningen, The Netherlands
| | - Andrew I Furness
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA.,Department of Biological and Marine Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Bart J A Pollux
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University, 6708 WD, Wageningen, The Netherlands.
| |
Collapse
|
34
|
Sanderson CE, Alexander KA. Unchartered waters: Climate change likely to intensify infectious disease outbreaks causing mass mortality events in marine mammals. GLOBAL CHANGE BIOLOGY 2020; 26:4284-4301. [PMID: 32558115 DOI: 10.1111/gcb.15163] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/21/2020] [Indexed: 05/09/2023]
Abstract
Infectious disease emergence has increased significantly over the last 30 years, with mass mortality events (MMEs) associated with epizootics becoming increasingly common. Factors influencing these events have been widely studied in terrestrial systems, but remain relatively unexplored in marine mammals. Infectious disease-induced MMEs (ID MMEs) have not been reported ubiquitously among marine mammal species, indicating that intrinsic (host) and/or extrinsic (environmental) ecological factors may influence this heterogeneity. We assess the occurrence of ID MMEs (1955-2018) across extant marine mammals (n = 129) in relation to key life-history characteristics (sociality, trophic level, habitat breadth) and environmental variables (season, sea surface temperature [SST] anomalies, El Niño occurrence). Our results show that ID MMEs have been reported in 14% of marine mammal species (95% CI 9%-21%), with 72% (n = 36; 95% CI 56%-84%) of these events caused predominantly by viruses, primarily morbillivirus and influenza A. Bacterial pathogens caused 25% (95% CI 14%-41%) of MMEs, with only one being the result of a protozoan pathogen. Overall, virus-induced MMEs involved a greater number of fatalities per event compared to other pathogens. No association was detected between the occurrence of ID MMEs and host characteristics, such as sociality or trophic level, but ID MMEs did occur more frequently in semiaquatic species (pinnipeds) compared to obligate ocean dwellers (cetaceans; χ2 = 9.6, p = .002). In contrast, extrinsic factors significantly influenced ID MMEs, with seasonality linked to frequency (χ2 = 19.85, p = .0002) and severity of these events, and global yearly SST anomalies positively correlated with their temporal occurrence (Z = 3.43, p = 2.7e-04). No significant association was identified between El Niño and ID MME occurrence (Z = 0.28, p = .81). With climate change forecasted to increase SSTs and the frequency of extreme seasonal weather events, epizootics causing MMEs are likely to intensify with significant consequences for marine mammal survival.
Collapse
Affiliation(s)
- Claire E Sanderson
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for African Resources: Animals, Communities and Land use (CARACAL), Kasane, Botswana
| | - Kathleen A Alexander
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for African Resources: Animals, Communities and Land use (CARACAL), Kasane, Botswana
| |
Collapse
|
35
|
Labaude S, Cézilly F, De Marco L, Rigaud T. Increased temperature has no consequence for behavioral manipulation despite effects on both partners in the interaction between a crustacean host and a manipulative parasite. Sci Rep 2020; 10:11670. [PMID: 32669670 PMCID: PMC7363812 DOI: 10.1038/s41598-020-68577-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/12/2020] [Indexed: 11/10/2022] Open
Abstract
Parasites alter many traits of their hosts. In particular, parasites known as "manipulative" may increase their probability of transmission by inducing phenotypic alterations in their intermediate hosts. Although parasitic-induced alterations can modify species' ecological roles, the proximate factors modulating this phenomenon remain poorly known. As temperature is known to affect host-parasite associations, understanding its precise impact has become a major challenge in a context of global warming. Gammarids are ecologically important freshwater crustaceans and serve as intermediate hosts for several acanthocephalan species. These parasites induce multiple effects on gammarids, including alterations of their behavior, ultimately leading to modifications in their functional role. Here, experimental infections were used to assess the effect of two temperatures on several traits of the association between Gammarus pulex and its acanthocephalan parasite Pomphorhynchus laevis. Elevated temperature affected hosts and parasites in multiple ways (decreased host survival, increased gammarids activity, faster parasites development and proboscis eversion). However, behavioral manipulation was unaffected by temperature. These results suggest that predicted change in temperature may have little consequences on the trophic transmission of parasites through changes in manipulation, although it may modify it through increased infection success and faster parasites development.
Collapse
Affiliation(s)
- Sophie Labaude
- Université de Bourgogne Franche-Comté, UMR CNRS 6282 Biogéosciences, Dijon, France.
- Laboratoire "Génétique Evolutive Expérimentale", Institut de Biologie de L'Ecole Normale Supérieure (IBENS), Paris, France.
| | - Frank Cézilly
- Université de Bourgogne Franche-Comté, UMR CNRS 6282 Biogéosciences, Dijon, France
| | - Lila De Marco
- Université de Bourgogne Franche-Comté, UMR CNRS 6282 Biogéosciences, Dijon, France
| | - Thierry Rigaud
- Université de Bourgogne Franche-Comté, UMR CNRS 6282 Biogéosciences, Dijon, France
| |
Collapse
|
36
|
da Costa JC, Val AL. Extreme climate scenario and parasitism affect the Amazonian fish Colossoma macropomum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138628. [PMID: 32315861 DOI: 10.1016/j.scitotenv.2020.138628] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Global warming caused by greenhouse gases accumulation, in particular carbon dioxide, is the major current environmental challenge, as it will affect all life forms over the next decades. Aquaculture, a fast growing food production sector, is already facing the effects of global warming. The fish immune system is expected to be especially affected by increased temperature and carbon dioxide, mainly when associated to infectious diseases outbreaks. Here, we experimentally investigated the associated effects of an extreme climate scenario and two levels of monogenean parasitism on the hematological and immunological response of an important Amazon fish for continental aquaculture: Colossoma macropomum. Individuals of C. macropomum with low and high levels of parasitism were exposed to current and extreme climate scenarios (4.5 °C and 900 ppm CO2 above current levels). We characterized their hematological profile using classical methods, and their immune-related gills gene expression (HSP70, IL-1β and IL-10) using quantitative real-time polymerase chain reaction (qPCR). After 7 days of exposure, we observed that exposure to extreme climate scenario caused rapid increase of parasitism intensity and likely acute inflammation, indicated by the higher expression of HSP70 and IL-1β. The IL-10 gene was downregulated in both groups exposed to extreme climate scenario, contrasting with animals exposed to current scenario. Thus, in the current scenario, the parasitized tambaqui showed a response to the tissue damage, which was not observed in the animals exposed to the extreme scenario.
Collapse
Affiliation(s)
- Jaqueline Custódio da Costa
- Laboratory of Ecophysiology and Molecular Evolution (LEEM), Brazilian National Institute for Research of the Amazon (INPA), 69.067-375 Manaus, Amazonas, Brazil.
| | - Adalberto Luis Val
- Laboratory of Ecophysiology and Molecular Evolution (LEEM), Brazilian National Institute for Research of the Amazon (INPA), 69.067-375 Manaus, Amazonas, Brazil
| |
Collapse
|
37
|
Gopko M, Mironova E, Pasternak A, Mikheev V, Taskinen J. Parasite transmission in aquatic ecosystems under temperature change: effects of host activity and elimination of parasite larvae by filter‐feeders. OIKOS 2020. [DOI: 10.1111/oik.07414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mikhail Gopko
- Severtsov Inst. of Ecology and Evolution RAS, Laboratory for Behaviour of Lower Vertebrates Moscow Russia
| | - Ekaterina Mironova
- Severtsov Inst. of Ecology and Evolution RAS, Center of Parasitology Moscow Russia
| | - Anna Pasternak
- Shirshov Inst. of Oceanology RAS, Plankton ecology laboratory Moscow Russia
| | - Victor Mikheev
- Severtsov Inst. of Ecology and Evolution RAS, Laboratory for Behaviour of Lower Vertebrates Moscow Russia
| | - Jouni Taskinen
- Jyväskylän Yliopisto, Dept of Biological and Environmental Science Jyväskylä Finland
| |
Collapse
|
38
|
Lymbery AJ, Lymbery SJ, Beatty SJ. Fish out of water: Aquatic parasites in a drying world. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 12:300-307. [PMID: 33101907 PMCID: PMC7569740 DOI: 10.1016/j.ijppaw.2020.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 11/27/2022]
Abstract
Although freshwater ecosystems are among the most diverse and endangered in the world, little attention has been paid to either the importance of parasitic disease as a threatening process for freshwater organisms, or the co-extinction risk of freshwater parasites. In this review, we use theoretical and empirical studies of host/parasite interactions to examine these issues, particularly with respect to the threat posed by climate change to fish and parasite communities in intermittent rivers. Intermittent rivers are those that cease to flow at any point in time or space, with isolated pools providing ecological refuges for freshwater biota between streamflow events. Intermittent rivers are the dominant river type in arid, semi-arid and Mediterranean regions; areas of the world that have experienced dramatic decreases in streamflow as a result of climate change. Reduced streamflow decreases the number, size and connectivity of refuge pools in intermittent rivers, with important consequences for free-living aquatic organisms, particularly fishes, and their parasitic fauna. As a result of more frequent and sustained periods of no flow, parasite diversity within refuge pools is expected to decrease, with a concomitant increase in the prevalence and intensity of those parasite species which do survive, particularly host generalists. Decreased connectivity between refuge pool communities should increase the spatial modularity of host/parasite interactions, leading to a greater structuring of host and parasite communities along the river. This increases the probability of species loss (for both hosts and their parasites), as local extinctions cannot be reversed by colonisation from other localities. Parasites in intermittent rivers must adapt to alternating lotic and lentic conditions. A drying climate will decrease number, size and connectivity of lentic refuges. As a result, parasite α-diversity will decrease, but β-diversity will increase. Increased parasite abundance in refuge pools may drive hosts to local extinction. Increased modularity of interactions increases host and parasite extinction risk.
Collapse
Affiliation(s)
- Alan J Lymbery
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia
| | - Samuel J Lymbery
- College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Stephen J Beatty
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia
| |
Collapse
|
39
|
Claar DC, Wood CL. Pulse Heat Stress and Parasitism in a Warming World. Trends Ecol Evol 2020; 35:704-715. [PMID: 32439076 DOI: 10.1016/j.tree.2020.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 01/15/2023]
Abstract
Infectious disease outbreaks emerged across the globe during the recent 2015-2016 El Niño event, re-igniting research interest in how climate events influence disease dynamics. While the relationship between long-term warming and the transmission of disease-causing parasites has received substantial attention, we do not yet know how pulse heat events - common phenomena in a warming world - will alter parasite transmission. The effects of pulse warming on ecological and evolutionary processes are complex and context dependent, motivating research to understand how climate oscillations drive host health and disease. Here, we develop a framework for evaluating and predicting the effects of pulse warming on parasitic infection. Specifically, we synthesize how pulse heat stress affects hosts, parasites, and the ecological interactions between them.
Collapse
Affiliation(s)
- Danielle C Claar
- University of Washington School of Aquatic and Fishery Sciences, Seattle, WA 98105, USA; NOAA Climate and Global Change Postdoctoral Scholar, Boulder, CO 80301, USA.
| | - Chelsea L Wood
- University of Washington School of Aquatic and Fishery Sciences, Seattle, WA 98105, USA
| |
Collapse
|
40
|
The Impact of Climate Change on Cholera: A Review on the Global Status and Future Challenges. ATMOSPHERE 2020. [DOI: 10.3390/atmos11050449] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Water ecosystems can be rather sensitive to evolving or sudden changes in weather parameters. These changes can result in alterations in the natural habitat of pathogens, vectors, and human hosts, as well as in the transmission dynamics and geographic distribution of infectious agents. However, the interaction between climate change and infectious disease is rather complicated and not deeply understood. In this narrative review, we discuss climate-driven changes in the epidemiology of Vibrio species-associated diseases with an emphasis on cholera. Changes in environmental parameters do shape the epidemiology of Vibrio cholerae. Outbreaks of cholera cause significant disease burden, especially in developing countries. Improved sanitation systems, access to clean water, educational strategies, and vaccination campaigns can help control vibriosis. In addition, real-time assessment of climatic parameters with remote-sensing technologies in combination with robust surveillance systems could help detect environmental changes in high-risk areas and result in early public health interventions that can mitigate potential outbreaks.
Collapse
|
41
|
Sudhagar A, Kumar G, El-Matbouli M. The Malacosporean Myxozoan Parasite Tetracapsuloides bryosalmonae: A Threat to Wild Salmonids. Pathogens 2019; 9:E16. [PMID: 31877926 PMCID: PMC7168663 DOI: 10.3390/pathogens9010016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/03/2019] [Accepted: 12/20/2019] [Indexed: 01/02/2023] Open
Abstract
Tetracapsuloides bryosalmonae is a myxozoan parasite responsible for proliferative kidney disease (PKD) in a wide range of salmonids. PKD, characterized by high mortality and morbidity, is well known for affecting aquaculture operations and wild salmonid populations across Europe and North America. The life cycle of T. bryosalmonae revolves around freshwater bryozoan and salmonid fish hosts. In recent years, T. bryosalmonae has been reported among wild salmonids from the European countries where it has not been reported previously. T. bryosalmonae is believed to be a possible reason for the diminishing wild salmonid populations in the natural water bodies of many European countries. Climate crisis driven rising water temperature can further accelerate the distribution of T. bryosalmonae. Expansion of the geographical distribution of T. bryosalmonae may further advocate the decline of wild salmonid populations, especially brown trout (Salmo trutta) in their habitats. Mathematical models are used to understand the pattern and distribution of T. bryosalmonae among the host in the natural water bodies. The present manuscript not only summarizes the incidences of T. bryosalmonae among the wild salmonid populations, but also discusses the contemporary understanding about the development of T. bryosalmonae in its hosts and the influences of various factors in the spread of the disease in the wild.
Collapse
Affiliation(s)
- Arun Sudhagar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna 1210, Austria; (A.S.); (M.E.-M.)
- Central Institute of Fisheries Education, Rohtak Centre, Haryana 124411, India
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna 1210, Austria; (A.S.); (M.E.-M.)
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna 1210, Austria; (A.S.); (M.E.-M.)
| |
Collapse
|
42
|
Franke F, Raifarth N, Kurtz J, Scharsack JP. Consequences of divergent temperature optima in a host–parasite system. OIKOS 2019. [DOI: 10.1111/oik.05864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Frederik Franke
- Inst. for Evolution and Biodiversity, Univ. of Münster Hüfferstrasse 1, DE‐48149 Münster Germany
| | - Nadja Raifarth
- Inst. for Evolution and Biodiversity, Univ. of Münster Hüfferstrasse 1, DE‐48149 Münster Germany
| | - Joachim Kurtz
- Inst. for Evolution and Biodiversity, Univ. of Münster Hüfferstrasse 1, DE‐48149 Münster Germany
| | - Jörn P. Scharsack
- Inst. for Evolution and Biodiversity, Univ. of Münster Hüfferstrasse 1, DE‐48149 Münster Germany
| |
Collapse
|
43
|
Walker JT. The influence of climate change on waterborne disease and Legionella: a review. Perspect Public Health 2019; 138:282-286. [PMID: 30156484 DOI: 10.1177/1757913918791198] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Climate change is predicted to have a major impact on people's lives with the recent extreme weather events and varying abnormal temperature profiles across the world raising concerns. The impacts of global warming are already being observed, from rising sea levels and melting snow and ice to changing weather patterns. Scientists state unequivocally that these trends cannot be explained by natural variability in climate alone. Human activities, especially the burning of fossil fuels, have warmed the earth by dramatically increasing concentrations of heat-trapping gases in the atmosphere; as these concentrations increase, the more the earth will warm. Climate change and related extreme weather events are being exacerbated sooner than has previously been considered and are already adversely affecting ecosystems and human health by increasing the burden and type of disease at a local level. Changes to the marine environment and freshwater supplies already affect significant parts of the world's population and warmer temperatures, especially in more temperate regions, may see an increased spread and transmission of diseases usually associated with warmer climes including, for example, cholera and malaria; these impacts are likely to become more severe in a greater number of countries. This review discusses the impacts of climate change including changes in infectious disease transmission, patterns of waterborne diseases and the likely consequences of climate change due to warmer water, drought, higher rainfall, rising sea levels and flooding.
Collapse
Affiliation(s)
- J T Walker
- Public Health England, Porton, Salisbury SP1 3DX, UK
| |
Collapse
|
44
|
Villar-Torres M, Montero FE, Raga JA, Repullés-Albelda A. Come rain or come shine: environmental effects on the infective stages of Sparicotyle chrysophrii, a key pathogen in Mediterranean aquaculture. Parasit Vectors 2018; 11:558. [PMID: 30359292 PMCID: PMC6202810 DOI: 10.1186/s13071-018-3139-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/10/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evidence concerning the environmental influence on monogenean transmission and infection processes is widely accepted, although only the effects of a limited number of abiotic factors on particular monogenean species have been explored. The current context of climate change calls for further research both on this subject, and also that concerning monogenean hosts, especially in aquaculture. METHODS In this study, four experiments were used to assess the response of the infective stages of Sparicotyle chrysophrii, a pathogenic monogenean from gilthead sea bream (Sparus aurata) cultures in the Mediterranean, to variations of temperature (from 10 °C to 30 °C), pH (7.0 and 7.9), photoperiod (LD 12:12, LD 0:24 and LD 24:0) and salinity (from 27 ppt to 47 ppt). RESULTS Thermal variations cause the strongest responses among the infective stages of S. chrysophrii, which reduced development and survival times as temperature increased. The optimal thermal range for maximum hatching success was found between 14 and 22 °C, whereas temperatures of 10 and 30 °C probably represent biological thermal limits. Reductions of development time and hatching rates were recorded at the lowest pH level, but hatching success remained above 50%, suggesting a certain degree of tolerance to slight pH variations. Photoperiod acts as an environmental cue synchronising the circadian hatching rhythm of S. chrysophrii with the first four hours of darkness. Response to a wide range of salinities was negligible, suggesting a high tolerance to variations of this abiotic factor. CONCLUSIONS Larval development and hatching of S. chrysophrii are modulated according to environmental factors, mainly temperature, thus parasite-host coordination and successful infections are enhanced. Therefore, abiotic factors should be broadly considered to design treatments against this monogenean. The high tolerance to the predicted environmental variations over the next century reported for gilthead sea bream and herein exposed for S. chrysophrii suggests that neither will be notably affected by climate change in the western Mediterranean region.
Collapse
Affiliation(s)
- Mar Villar-Torres
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Science Park, University of Valencia, Paterna, Valencia, Spain.
| | - Francisco Esteban Montero
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Science Park, University of Valencia, Paterna, Valencia, Spain
| | - Juan Antonio Raga
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Science Park, University of Valencia, Paterna, Valencia, Spain
| | - Aigües Repullés-Albelda
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Science Park, University of Valencia, Paterna, Valencia, Spain
| |
Collapse
|
45
|
Paull SH, Johnson PTJ. How Temperature, Pond-Drying, and Nutrients Influence Parasite Infection and Pathology. ECOHEALTH 2018; 15:396-408. [PMID: 29511903 PMCID: PMC6126996 DOI: 10.1007/s10393-018-1320-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
The rapid pace of environmental change is driving multi-faceted shifts in abiotic factors that influence parasite transmission. However, cumulative effects of these factors on wildlife diseases remain poorly understood. Here we used an information-theoretic approach to compare the relative influence of abiotic factors (temperature, diurnal temperature range, nutrients and pond-drying), on infection of snail and amphibian hosts by two trematode parasites (Ribeiroia ondatrae and Echinostoma spp.). A temperature shift from 20 to 25 °C was associated with an increase in infected snail prevalence of 10-20%, while overall snail densities declined by a factor of 6. Trematode infection abundance in frogs was best predicted by infected snail density, while Ribeiroia infection specifically also declined by half for each 10% reduction in pond perimeter, despite no effect of perimeter on the per snail release rate of cercariae. Both nutrient concentrations and Ribeiroia infection positively predicted amphibian deformities, potentially owing to reduced host tolerance or increased parasite virulence in more productive environments. For both parasites, temperature, pond-drying, and nutrients were influential at different points in the transmission cycle, highlighting the importance of detailed seasonal field studies that capture the importance of multiple drivers of infection dynamics and the mechanisms through which they operate.
Collapse
Affiliation(s)
- Sara H Paull
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, CO, USA.
- Research Applications Laboratory, National Center for Atmospheric Research, Boulder, CO, USA.
- Department of Environmental and Occupational Health, University of Colorado, 13001 E 17th Pl, Box B119, Aurora, CO, 80045, USA.
| | - Pieter T J Johnson
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, CO, USA
| |
Collapse
|
46
|
Gilbert BM, Avenant-Oldewage A. Parasites and pollution: the effectiveness of tiny organisms in assessing the quality of aquatic ecosystems, with a focus on Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:18742-18769. [PMID: 28660518 DOI: 10.1007/s11356-017-9481-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 06/07/2017] [Indexed: 06/07/2023]
Abstract
The aquatic environment represents the final repository for many human-generated pollutants associated with anthropogenic activities. The quality of natural freshwater systems is easily disrupted by the introduction of pollutants from urban, industrial and agricultural processes. To assess the extent of chemical perturbation and associated environmental degradation, physico-chemical parameters have been monitored in conjunction with biota in numerous biological monitoring protocols. Most studies incorporating organisms into such approaches have focussed on fish and macroinvertebrates. More recently, interest in the ecology of parasites in relation to environmental monitoring has indicated that these organisms are sensitive towards the quality of the macroenvironment. Variable responses towards exposure to pollution have been identified at the population and component community level of a number of parasites. Furthermore, such responses have been found to differ with the type of pollutant and the lifestyle of the parasite. Generally, endoparasite infection levels have been shown to become elevated in relation to poorer water quality conditions, while ectoparasites are more sensitive, and exposure to contaminated environments resulted in a decline in ectoparasite infections. Furthermore, endoparasites have been found to be suitable accumulation indicators for monitoring levels of several trace elements and metals in the environment. The ability of these organisms to accumulate metals has further been observed to be of benefit to the host, resulting in decreased somatic metal levels in infected hosts. These trends have similarly been found for host-parasite models in African freshwater environments, but such analyses are comparatively sparse compared to other countries. Recently, studies on diplozoids from two freshwater systems have indicated that exposure to poorer water quality resulted in decreased infections. In the Vaal River, the poor water quality resulted in the extinction of the parasite from a site below the Vaal River Barrage. Laboratory exposures have further indicated that oncomiracidia of Paradiplozoon ichthyoxanthon are sensitive to exposure to dissolved aluminium. Overall, parasites from African freshwater and marine ecosystems have merit as effect and accumulation indicators; however, more research is required to detail the effects of exposure on sensitive biological processes within these organisms.
Collapse
|
47
|
Surges in trematode prevalence linked to centennial-scale flooding events in the Adriatic. Sci Rep 2017; 7:5732. [PMID: 28720866 PMCID: PMC5516012 DOI: 10.1038/s41598-017-05979-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/31/2017] [Indexed: 11/30/2022] Open
Abstract
The forecasts of increasing global temperature and sea level rise have led to concern about the response of parasites to anthropogenic climate change. Whereas ecological studies of parasite response to environmental shifts are necessarily limited to short time scales, the fossil record can potentially provide a quantitative archive of long-term ecological responses to past climate transitions. Here, we document multi-centennial scale changes in prevalence of trematodes infesting the bivalve host Abra segmentum through multiple sea-level fluctuations preserved in brackish Holocene deposits of the Po Plain, Italy. Prevalence values were significantly elevated (p < 0.01) in samples associated with flooding surfaces, yet the temporal trends of parasite prevalence and host shell length, cannot be explained by Waltherian facies change, host availability, salinity, diversity, turnover, or community structure. The observed surges in parasite prevalence during past flooding events indicate that the ongoing global warming and sea-level rise will lead to significant intensification of trematode parasitism, suppressed fecundity of common benthic organisms, and negative impacts on marine ecosystems, ecosystem services, and, eventually, to human well-being.
Collapse
|
48
|
Sures B, Nachev M, Pahl M, Grabner D, Selbach C. Parasites as drivers of key processes in aquatic ecosystems: Facts and future directions. Exp Parasitol 2017; 180:141-147. [PMID: 28456692 DOI: 10.1016/j.exppara.2017.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/10/2017] [Accepted: 03/25/2017] [Indexed: 02/07/2023]
Abstract
Despite the advances in our understanding of the ecological importance of parasites that we have made in recent years, we are still far away from having a complete picture of the ecological implications connected to parasitism. In the present paper we highlight key issues that illustrate (1) important contributions of parasites to biodiversity, (2) their integral role in ecosystems, (3) as well as their ecological effects as keystone species (4) and in biological invasion processes. By using selected examples from aquatic ecosystems we want to provide an insight and generate interest into the topic, and want to show directions for future research in the field of ecological parasitology. This may help to convince more parasitologists and ecologists contributing and advancing our understanding of the complex and fascinating interplay of parasites, hosts and ecosystems.
Collapse
Affiliation(s)
- B Sures
- Aquatic Ecology, University of Duisburg-Essen, Universitätsstr. 5, D-45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, D-45141 Essen, Germany; Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park 2006, Johannesburg, South Africa.
| | - M Nachev
- Aquatic Ecology, University of Duisburg-Essen, Universitätsstr. 5, D-45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, D-45141 Essen, Germany
| | - M Pahl
- Aquatic Ecology, University of Duisburg-Essen, Universitätsstr. 5, D-45141 Essen, Germany
| | - D Grabner
- Aquatic Ecology, University of Duisburg-Essen, Universitätsstr. 5, D-45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, D-45141 Essen, Germany
| | - C Selbach
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| |
Collapse
|
49
|
The cestode parasite Schistocephalus pungitii: castrator or nutrient thief of ninespine stickleback fish? Parasitology 2017; 144:834-840. [PMID: 28073385 DOI: 10.1017/s0031182016002596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this investigation, the host-parasite relationship of ninespine stickleback fish Pungitius pungitius and the cestode parasite Schistocephalus pungitii was studied using samples from Dog Bone Lake, Kenai Peninsula, Alaska, to test the hypothesis that S. pungitii is a castrator of ninespine stickleback. Infected, adult females of all sizes (ages) were capable of producing clutches of eggs. S. pungitii had a negative effect on the ability of host females to produce a clutch, which was related to increasing parasite:host mass ratio (parasite index, PI). Among infected females with egg clutches, both clutch size and egg size were reduced; and the reduction increased with greater PI. The results of this study are consistent with the hypothesis that S. pungitii causes host sterility as a result of simple nutrient theft and is not a true castrator as hypothesized in earlier reports. The degree of parasite-induced sterility appears to vary among populations of the ninespine stickleback, perhaps reflecting differences in resource availability. Populations of ninespine stickleback appear to show a greater reduction in host reproductive capacity with PI than populations of the threespine stickleback infected by Schistocephalus solidus, possibly owing, in part, to the length-adjusted somatic mass of the threespine stickleback being greater.
Collapse
|
50
|
Costello MJ. Parasite Rates of Discovery, Global Species Richness and Host Specificity. Integr Comp Biol 2016; 56:588-99. [PMID: 27400977 DOI: 10.1093/icb/icw084] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
If every metazoan species has at least one host-specific parasite, as several local scale studies have suggested, then half of all species could be parasites. However, host specificity varies significantly depending on host phylogeny, body size, habitat, and geographic distribution. The best studied hosts tend to be vertebrates, larger animals, and/or widespread, and thus have a higher number of parasites and host-specific parasites. Thus, host specificity for these well-known taxa cannot be simply extrapolated to other taxa, notably invertebrates, small sized, and more endemic species, which comprise the major portion of yet to be discovered species. At present, parasites of animals comprise about 5% of named species. This article analyzed the rate of description of several largely parasitic taxa within crustaceans (copepods, amphipods, isopods, pentastomids, cirripeds), marine helminths (nematodes, acanthocephalans, flukes), gastropod molluscs, insects (ticks, fleas, biting flies, strepispterans), and microsporidia. The period of highest discovery has been most recent for the marine helminths and microsporids. The number of people describing parasites has been increasing since the 1960s, as it has for all other taxa. However, the number of species being described per decade relative to the number of authors has been decreasing except for the helminths. The results indicate that more than half of all parasites have been described, and two-thirds of host taxa, although the proportion varies between taxa. It is highly unlikely that the number of named species of parasites will ever approach that of their hosts. This contrast between the proportion that parasites comprise of local and global faunas suggests that parasites are less host specific and more widespread than local scale studies suggest.
Collapse
Affiliation(s)
- Mark John Costello
- Institute of Marine Science, University of Auckland, Auckland, 1142, New Zealand
| |
Collapse
|