1
|
Fage C, Loison S, Zwygart ACA, Poli R, Rosset S, Medaglia C, Hubert M, Suter-Boquete P, Vadas O, Huang S, Constant S, Silva P, Stellacci F, Clément S, Tapparel C. Influenza A(H1N1)pdm09 virus resistance to baloxavir, oseltamivir and sialic acid mimetics in single and dual therapies: Insights from human airway epithelia and murine models. Antiviral Res 2025; 239:106174. [PMID: 40324597 DOI: 10.1016/j.antiviral.2025.106174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 04/15/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
Influenza viruses pose a significant threat due to annual epidemics and pandemic potential. Resistance to current antivirals underscores the need for new drugs and strategies to prevent its emergence. We previously developed two novel HA-targeting compounds (CD-6'SLN and CD-SA) with demonstrated efficacy against influenza A and B strains. Here, we compared their resistance barrier to that of FDA-approved oseltamivir (OS) and baloxavir marboxil (BXM). We established a resistance testing assay in human airway epithelia (HAE) and in mice. We also evaluated the impact of combination therapies on resistance emergence. In HAE, highly reduced inhibition (HRI) by CD-6'SLN and CD-SA occurred within 2 and 4 weeks respectively without fitness loss, while reduced inhibition (RI) by baloxavir acid (BXA) emerged within 4 weeks. No reduction of susceptibility to OS was observed in the same time frame. Of note, emergence of RI by CD-SA was not delayed in BXA/CD-SA co-treatment, and slightly reduced upon OS/CD-SA co-treatment. In mice, RI by CD-SA was observed after 8 passages in one of three mice treated with OS/CD-SA, but not in mice with single therapies. This study demonstrates that (1) HAE represents a relevant model to detect emergence of resistance and (2) HA-targeting compounds are prone to induce resistance followed by BXA and OS. Importantly, combination of clinically available antivirals and HA-targeting compounds did not prevent the emergence of variants with HA substitutions. Additional research is needed to develop anti-influenza antivirals with high resistance barrier and compounds should be tested in HAE before moving to animal experimentation.
Collapse
Affiliation(s)
- Clément Fage
- Department of Microbiology and Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1206, Geneva, Switzerland
| | - Sheryline Loison
- Department of Microbiology and Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1206, Geneva, Switzerland
| | | | - Romain Poli
- Department of Microbiology and Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1206, Geneva, Switzerland
| | - Stéphane Rosset
- Department of Microbiology and Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1206, Geneva, Switzerland
| | - Chiara Medaglia
- Department of Microbiology and Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1206, Geneva, Switzerland
| | - Mathieu Hubert
- Department of Microbiology and Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1206, Geneva, Switzerland
| | - Patricia Suter-Boquete
- Geneva Center for Emerging Viral Diseases, Swiss National Reference Center of Influenza, Geneva University Hospitals, Geneva, Switzerland
| | - Oscar Vadas
- Protein Biochemistry Platform, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Song Huang
- Epithelix Sarl, 18 chemin des Aulx, 1228, Plan-les-Ouates, Switzerland
| | - Samuel Constant
- Epithelix Sarl, 18 chemin des Aulx, 1228, Plan-les-Ouates, Switzerland
| | - Paulo Silva
- Institute of Materials, École polytechnique fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Francesco Stellacci
- Institute of Materials, École polytechnique fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Sophie Clément
- Department of Microbiology and Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1206, Geneva, Switzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1206, Geneva, Switzerland.
| |
Collapse
|
2
|
Vieira Antão A, Oltmanns F, Schmidt A, Viherlehto V, Irrgang P, Rameix-Welti MA, Bayer W, Lapuente D, Tenbusch M. Filling two needs with one deed: a combinatory mucosal vaccine against influenza A virus and respiratory syncytial virus. Front Immunol 2024; 15:1376395. [PMID: 38975350 PMCID: PMC11224462 DOI: 10.3389/fimmu.2024.1376395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Influenza A Virus (IAV) and Respiratory Syncytial Virus (RSV) are both responsible for millions of severe respiratory tract infections every year worldwide. Effective vaccines able to prevent transmission and severe disease, are important measures to reduce the burden for the global health system. Despite the strong systemic immune responses induced upon current parental immunizations, this vaccination strategy fails to promote a robust mucosal immune response. Here, we investigated the immunogenicity and efficacy of a mucosal adenoviral vector vaccine to tackle both pathogens simultaneously at their entry site. For this purpose, BALB/c mice were immunized intranasally with adenoviral vectors (Ad) encoding the influenza-derived proteins, hemagglutinin (HA) and nucleoprotein (NP), in combination with an Ad encoding for the RSV fusion (F) protein. The mucosal combinatory vaccine induced neutralizing antibodies as well as local IgA responses against both viruses. Moreover, the vaccine elicited pulmonary CD8+ and CD4+ tissue resident memory T cells (TRM) against the immunodominant epitopes of RSV-F and IAV-NP. Furthermore, the addition of Ad-TGFβ or Ad-CCL17 as mucosal adjuvant enhanced the formation of functional CD8+ TRM responses against the conserved IAV-NP. Consequently, the combinatory vaccine not only provided protection against subsequent infections with RSV, but also against heterosubtypic challenges with pH1N1 or H3N2 strains. In conclusion, we present here a potent combinatory vaccine for mucosal applications, which provides protection against two of the most relevant respiratory viruses.
Collapse
Affiliation(s)
- Ana Vieira Antão
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Friederike Oltmanns
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Schmidt
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Vera Viherlehto
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Pascal Irrgang
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Marie-Anne Rameix-Welti
- Université Paris-Saclay – Université de Versailles St. Quentin, UMR 1173 (2I), Institut national de la santé et de la recherche médicale (INSERM), Montigny-le-Bretonneux, France
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Dennis Lapuente
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
van Geffen C, Lange T, Kolahian S. Myeloid-derived suppressor cells in influenza virus-induced asthma exacerbation. Front Immunol 2024; 15:1342497. [PMID: 38694499 PMCID: PMC11061804 DOI: 10.3389/fimmu.2024.1342497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/01/2024] [Indexed: 05/04/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a phenotypically heterogenous group of cells that potently suppress the immune response. A growing body of evidence supports the important role of MDSCs in a variety of lung diseases, such as asthma. However, the role of MDSCs in asthma exacerbation has so far not been investigated. Here, we studied the role of MDSCs in a murine model of influenza virus-induced asthma exacerbation. BALB/c mice were exposed to house dust mite (HDM) three times a week for a total of five weeks to induce a chronic asthmatic phenotype, which was exacerbated by additional exposure to the A/Hamburg/5/2009 hemagglutinin 1 neuraminidase 1 (H1N1) influenza virus. Induction of lung inflammatory features, production of T helper (Th) 1- and Th2- associated inflammatory cytokines in the lavage fluid and an increased airway hyper-responsiveness were observed, establishing the asthma exacerbation model. The number and activity of pulmonary M-MDSCs increased in exacerbated asthmatic mice compared to non-exacerbated asthmatic mice. Furthermore, depletion of MDSCs aggravated airway hyper-responsiveness in exacerbated asthmatic mice. These findings further denote the role of MDSCs in asthma and provide some of the first evidence supporting a potential important role of MDSCs in asthma exacerbation.
Collapse
Affiliation(s)
- Chiel van Geffen
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), The Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University of Tübingen, Tübingen, Germany
| | - Tim Lange
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), The Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Saeed Kolahian
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), The Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
- Small Animal Imaging Core Facility, Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany
| |
Collapse
|
4
|
Li J, Takeda M, Imahatakenaka M, Ikeda M. Identification of dihydroorotate dehydrogenase inhibitor, vidofludimus, as a potent and novel inhibitor for influenza virus. J Med Virol 2024; 96:e29372. [PMID: 38235544 DOI: 10.1002/jmv.29372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/19/2024]
Abstract
Influenza A virus (IAV) infection causes respiratory disease. Recently, infection of IAV H5N1 among mammals are reported in farmed mink. Therefore, to discover antivirals against IAV, we screened a compound library by using the RNA-dependent RNA polymerase (RdRp) assay system derived from H5N1 IAV including a drug-resistant PA mutant (I38T) and a viral polymerase activity enhancing PB2 mutant (T271A). Upon screening, we found vidofludimus can be served as a potential inhibitor for IAV. Vidofludimus an orally active inhibitor for dihydroorotate dehydrogenase (DHODH), a key enzyme for the cellular de novo pyrimidine biosynthesis pathway. We found that vidofludimus exerted antiviral activity against wild-type and drug-resistant mutant IAV, with effective concentrations (EC50 ) of 2.10 and 2.11 μM, respectively. The anti-IAV activity of vidofludimus was canceled by the treatment of uridine or cytidine through pyrimidine salvage synthesis pathway, or orotic acid through pyrimidine de novo synthesis pathway. This indicated that the main target of vidofludimus is DHODH in IAV RdRp expressing cells. We also produced recombinant seasonal IAV H1N1 virion and influenza B virus (IBV) RdRp assay system and confirmed vidofludimus also carried highly antiviral activity against seasonal IAV and IBV. Vidofludimus is a candidate drug for the future threat of IAV H5N1 infection among humans as well as seasonal influenza virus infection.
Collapse
Affiliation(s)
- Jiazhou Li
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Midori Takeda
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Mikiko Imahatakenaka
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Masanori Ikeda
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
5
|
Yin R, Luo Z, Zhuang P, Zeng M, Li M, Lin Z, Kwoh CK. ViPal: A framework for virulence prediction of influenza viruses with prior viral knowledge using genomic sequences. J Biomed Inform 2023; 142:104388. [PMID: 37178781 PMCID: PMC10602211 DOI: 10.1016/j.jbi.2023.104388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Influenza viruses pose great threats to public health and cause enormous economic losses every year. Previous work has revealed the viral factors associated with the virulence of influenza viruses in mammals. However, taking prior viral knowledge represented by heterogeneous categorical and discrete information into account to explore virus virulence is scarce in the existing work. How to make full use of the preceding domain knowledge in virulence study is challenging but beneficial. This paper proposes a general framework named ViPal for virulence prediction in mice that incorporates discrete prior viral mutation and reassortment information based on all eight influenza segments. The posterior regularization technique is leveraged to transform prior viral knowledge into constraint features and integrated into the machine learning models. Experimental results on influenza genomic datasets validate that our proposed framework can improve virulence prediction performance over baselines. The comparison between ViPal and other existing methods shows the computational efficiency of our framework with comparable or superior performance. Moreover, the interpretable analysis through SHAP (SHapley Additive exPlanations) identifies the scores of constraint features contributing to the prediction. We hope this framework could provide assistance for the accurate detection of influenza virulence and facilitate flu surveillance.
Collapse
Affiliation(s)
- Rui Yin
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, USA; School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Zihan Luo
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Zhuang
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Min Zeng
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Zhuoyi Lin
- School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
6
|
Del Sarto J, Gerlt V, Friedrich ME, Anhlan D, Wixler V, Teixeira MM, Boergeling Y, Ludwig S. Phosphorylation of JIP4 at S730 Presents Antiviral Properties against Influenza A Virus Infection. J Virol 2021; 95:e0067221. [PMID: 34319782 PMCID: PMC8475540 DOI: 10.1128/jvi.00672-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/27/2021] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus (IAV) is the causative agent of flu disease that results in annual epidemics and occasional pandemics. IAV alters several signaling pathways of the cellular host response in order to promote its replication. Therefore, some of these pathways can serve as targets for novel antiviral agents. Here, we show that c-Jun NH2-terminal kinase (JNK)-interacting protein 4 (JIP4) is dynamically phosphorylated in IAV infection. The lack of JIP4 resulted in higher virus titers, with significant differences in viral protein and mRNA accumulation as early as within the first replication cycle. In accordance, decreased IAV titers and protein accumulation were observed during the overexpression of JIP4. Strikingly, the antiviral function of JIP4 does not originate from modulation of JNK or p38 mitogen-activated protein kinase (MAPK) pathways or from altered expression of interferons or interferon-stimulated genes but rather originates from a direct reduction of viral polymerase activity. Furthermore, the interference of JIP4 with IAV replication seems to be linked to the phosphorylation of the serine at position 730 that is sufficient to impede the viral polymerase. Collectively, we provide evidence that JIP4, a host protein modulated in IAV infection, exhibits antiviral properties that are dynamically controlled by its phosphorylation at S730. IMPORTANCE Influenza A virus (IAV) infection is a world health concern, and current treatment options encounter high rates of resistance. Our group investigates host pathways modified in IAV infection as promising new targets. The host protein JIP4 is dynamically phosphorylated in IAV infection. JIP4 absence resulted in higher virus titers and viral protein and mRNA accumulation within the first replication cycle. Accordingly, decreased IAV titers and protein accumulation were observed during JIP4 overexpression. Strikingly, the antiviral function of JIP4 does not originate from modulation of JNK or p38 MAPK pathways or from altered expression of interferons or interferon-stimulated genes but rather originates from a reduction in viral polymerase activity. The interference of JIP4 with IAV replication is linked to the phosphorylation of serine 730. We provide evidence that JIP4, a host protein modulated in IAV infection, exhibits antiviral properties that are dynamically controlled by its phosphorylation at S730.
Collapse
Affiliation(s)
- Juliana Del Sarto
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Research Center for Drug Development, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vanessa Gerlt
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | | | - Darisuren Anhlan
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Viktor Wixler
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Research Center for Drug Development, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Yvonne Boergeling
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| |
Collapse
|
7
|
Masemann D, Meissner R, Schied T, Lichty BD, Rapp UR, Wixler V, Ludwig S. Synergistic anti-tumor efficacy of oncolytic influenza viruses and B7-H3 immune- checkpoint inhibitors against IC-resistant lung cancers. Oncoimmunology 2021; 10:1885778. [PMID: 33643696 PMCID: PMC7894418 DOI: 10.1080/2162402x.2021.1885778] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Non-small cell lung cancers (NSCLCs) establish a highly immunosuppressive tumor microenvironment supporting cancer growth. To interfere with cancer-mediated immunosuppression, selective immune-checkpoint inhibitors (ICIs) have been approved as a standard-of-care treatment for NSCLCs. However, the majority of patients poorly respond to ICI-based immunotherapies. Oncolytic viruses are amongst the many promising immunomodulatory treatments tested as standalone therapy or in combination with ICIs to improve therapeutic outcome. Previously, we demonstrated the oncolytic and immunomodulatory efficacy of low-pathogenic influenza Aviruses (IAVs) against NSCLCs in immunocompetent transgenic mice with alung-specific overexpression of active Raf kinase (Raf-BxB). IAV infection not only resulted in significant primary virus-induced oncolysis, but also caused afunctional reversion of tumor-associated macrophages (TAMs) comprising additional anti-cancer activity. Here we show that NSCLCs as well as TAMs and cytotoxic immune cells overexpress IC molecules of the PD-L2/PD-1 and B7-H3 signaling axes. Thus, we aimed to combine oncolytic IAV-infection with ICIs to exploit the benefits of both anti-cancer approaches. Strikingly, IAV infection combined with the novel B7-H3 ICI led to increased levels of M1-polarized alveolar macrophages and increased lung infiltration by cytotoxic Tlymphocytes, which finally resulted in significantly improved oncolysis of about 80% of existing tumors. In contrast, application of clinically approved α-PD-1 IC antibodies alone or in combination with oncolytic IAV did not provide additional oncolytic or immunomodulatory efficacy. Thus, individualized therapy with synergistically acting oncolytic IAV and B7-H3 ICI might be an innovative future approach to target NSCLCs that are resistant to approved ICIs in patients.
Collapse
Affiliation(s)
- Dörthe Masemann
- Cells in Motion" Interfaculty Center (Cimic), University of Muenster, Muenster, Germany.,Center for Molecular Biology of Inflammation, Institute of Virology, University of Muenster, Muenster, Germany
| | - Ramona Meissner
- Cells in Motion" Interfaculty Center (Cimic), University of Muenster, Muenster, Germany.,Center for Molecular Biology of Inflammation, Institute of Virology, University of Muenster, Muenster, Germany
| | - Tanja Schied
- Center for Molecular Biology of Inflammation, Institute of Virology, University of Muenster, Muenster, Germany
| | - Brian D Lichty
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Ulf R Rapp
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Viktor Wixler
- Cells in Motion" Interfaculty Center (Cimic), University of Muenster, Muenster, Germany.,Center for Molecular Biology of Inflammation, Institute of Virology, University of Muenster, Muenster, Germany
| | - Stephan Ludwig
- Cells in Motion" Interfaculty Center (Cimic), University of Muenster, Muenster, Germany.,Center for Molecular Biology of Inflammation, Institute of Virology, University of Muenster, Muenster, Germany
| |
Collapse
|
8
|
PD-1 IC Inhibition Synergistically Improves Influenza A Virus-Mediated Oncolysis of Metastatic Pulmonary Melanoma. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:190-204. [PMID: 32346609 PMCID: PMC7178321 DOI: 10.1016/j.omto.2020.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 01/02/2023]
Abstract
Recently, we showed that infection of primary lung tumor-bearing mice with oncolytic influenza A viruses (IAVs) led to strong virus-induced tumor cell lysis but also to restoration of immune competence of innate immune cells. Murine B16-F10 melanoma cells are known for their high lung tropism and progressive growth. As these cells are also highly permissive for IAVs, we analyzed their oncolytic and immunomodulatory efficiency against pulmonary B16-F10 lung metastases in vivo. IAV infection abrogated the melanoma-mediated immune suppression in the lung and induced a more than 50% cancer cell lysis. The oncolytic effect reached maximal efficacy 3 days post-infection, but it was not sustained over time. In order to maintain the virus-induced anti-tumor effect, mice with melanoma-derived lung cancers were treated in addition to influenza virus infection with an immune checkpoint inhibitor against programmed death-1 receptor (PD-1). The combined IAV and immune checkpoint inhibition (ICI) therapy resulted in a sustained anti-tumor efficacy, keeping the lung melanoma mass at day 12 of IAV infection still reduced by 50% over the control mice. In conclusion, ICI treatment strongly enhanced the oncolytic effect of influenza virus infection, suggesting that combined treatment is a promising approach against metastatic pulmonary melanoma.
Collapse
|
9
|
Honce R, Karlsson EA, Wohlgemuth N, Estrada LD, Meliopoulos VA, Yao J, Schultz-Cherry S. Obesity-Related Microenvironment Promotes Emergence of Virulent Influenza Virus Strains. mBio 2020; 11:e03341-19. [PMID: 32127459 PMCID: PMC7064783 DOI: 10.1128/mbio.03341-19] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/17/2020] [Indexed: 01/25/2023] Open
Abstract
Obesity is associated with increased disease severity, elevated viral titers in exhaled breath, and significantly prolonged viral shed during influenza A virus infection. Due to the mutable nature of RNA viruses, we questioned whether obesity could also influence influenza virus population diversity. Here, we show that minor variants rapidly emerge in obese mice. The variants exhibit increased viral replication, resulting in enhanced virulence in wild-type mice. The increased diversity of the viral population correlated with decreased type I interferon responses, and treatment of obese mice with recombinant interferon reduced viral diversity, suggesting that the delayed antiviral response exhibited in obesity permits the emergence of a more virulent influenza virus population. This is not unique to obese mice. Obesity-derived normal human bronchial epithelial (NHBE) cells also showed decreased interferon responses and increased viral replication, suggesting that viral diversity also was impacted in this increasing population.IMPORTANCE Currently, 50% of the adult population worldwide is overweight or obese. In these studies, we demonstrate that obesity not only enhances the severity of influenza infection but also impacts viral diversity. The altered microenvironment associated with obesity supports a more diverse viral quasispecies and affords the emergence of potentially pathogenic variants capable of inducing greater disease severity in lean hosts. This is likely due to the impaired interferon response, which is seen in both obese mice and obesity-derived human bronchial epithelial cells, suggesting that obesity, aside from its impact on influenza virus pathogenesis, permits the stochastic accumulation of potentially pathogenic viral variants, raising concerns about its public health impact as the prevalence of obesity continues to rise.
Collapse
Affiliation(s)
- Rebekah Honce
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Erik A Karlsson
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Nicholas Wohlgemuth
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Leonardo D Estrada
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Victoria A Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
10
|
Ivan FX, Kwoh CK. Rule-based meta-analysis reveals the major role of PB2 in influencing influenza A virus virulence in mice. BMC Genomics 2019; 20:973. [PMID: 31874643 PMCID: PMC6929465 DOI: 10.1186/s12864-019-6295-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
Background Influenza A virus (IAV) poses threats to human health and life. Many individual studies have been carried out in mice to uncover the viral factors responsible for the virulence of IAV infections. Nonetheless, a single study may not provide enough confident about virulence factors, hence combining several studies for a meta-analysis is desired to provide better views. For this, we documented more than 500 records of IAV infections in mice, whose viral proteins could be retrieved and the mouse lethal dose 50 or alternatively, weight loss and/or survival data, was/were available for virulence classification. Results IAV virulence models were learned from various datasets containing aligned IAV proteins and the corresponding two virulence classes (avirulent and virulent) or three virulence classes (low, intermediate and high virulence). Three proven rule-based learning approaches, i.e., OneR, JRip and PART, and additionally random forest were used for modelling. PART models achieved the best performance, with moderate average model accuracies ranged from 65.0 to 84.4% and from 54.0 to 66.6% for the two-class and three-class problems, respectively. PART models were comparable to or even better than random forest models and should be preferred based on the Occam’s razor principle. Interestingly, the average accuracy of the models was improved when host information was taken into account. For model interpretation, we observed that although many sites in HA were highly correlated with virulence, PART models based on sites in PB2 could compete against and were often better than PART models based on sites in HA. Moreover, PART had a high preference to include sites in PB2 when models were learned from datasets containing the concatenated alignments of all IAV proteins. Several sites with a known contribution to virulence were found as the top protein sites, and site pairs that may synergistically influence virulence were also uncovered. Conclusion Modelling IAV virulence is a challenging problem. Rule-based models generated using viral proteins are useful for its advantage in interpretation, but only achieve moderate performance. Development of more advanced approaches that learn models from features extracted from both viral and host proteins shall be considered for future works.
Collapse
Affiliation(s)
- Fransiskus Xaverius Ivan
- Biomedical Informatics Lab, School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Chee Keong Kwoh
- Biomedical Informatics Lab, School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
11
|
Comparative In Vitro and In Vivo Analysis of H1N1 and H1N2 Variant Influenza Viruses Isolated from Humans between 2011 and 2016. J Virol 2018; 92:JVI.01444-18. [PMID: 30158292 DOI: 10.1128/jvi.01444-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023] Open
Abstract
Influenza A virus pandemics are rare events caused by novel viruses which have the ability to spread in susceptible human populations. With respect to H1 subtype viruses, swine H1N1 and H1N2 viruses occasionally cross the species barrier to cause human infection. Recently isolated from humans (termed variants), swine viruses were shown to display great genetic and antigenic diversity, hence posing considerable public health risk. Here, we utilized in vitro and in vivo approaches to provide characterization of H1 subtype variant viruses isolated since the 2009 pandemic and discuss the findings in context with previously studied H1 subtype human isolates. The variant viruses were well adapted to replicate in the human respiratory cell line Calu-3 and the respiratory tracts of mice and ferrets. However, with respect to hemagglutinin (HA) activation pH, the variant viruses had fusion pH thresholds closer to that of most classical swine and triple-reassortant H1 isolates rather than viruses that had adapted to humans. Consistent with previous observations for swine isolates, the tested variant viruses were capable of efficient transmission between cohoused ferrets but could transmit via respiratory droplets to differing degrees. Overall, this investigation demonstrates that swine H1 viruses that infected humans possess adaptations required for robust replication and, in some cases, efficient respiratory droplet transmission in a mammalian model and therefore need to be closely monitored for additional molecular changes that could facilitate transmission among humans. This work highlights the need for risk assessments of emerging H1 viruses as they continue to evolve and cause human infections.IMPORTANCE Influenza A virus is a continuously evolving respiratory pathogen. Endemic in swine, H1 and H3 subtype viruses sporadically cause human infections. As each zoonotic infection represents an opportunity for human adaptation, the emergence of a transmissible influenza virus to which there is little or no preexisting immunity is an ongoing threat to public health. Recently isolated variant H1 subtype viruses were shown to display extensive genetic diversity and in many instances were antigenically distinct from seasonal vaccine strains. In this study, we provide characterization of representative H1N1v and H1N2v viruses isolated since the 2009 pandemic. Our results show that although recent variant H1 viruses possess some adaptation markers of concern, these viruses have not fully adapted to humans and require further adaptation to present a pandemic threat. This investigation highlights the need for close monitoring of emerging variant influenza viruses for molecular changes that could facilitate efficient transmission among humans.
Collapse
|
12
|
Preugschas HF, Hrincius ER, Mewis C, Tran GVQ, Ludwig S, Ehrhardt C. Late activation of the Raf/MEK/ERK pathway is required for translocation of the respiratory syncytial virus F protein to the plasma membrane and efficient viral replication. Cell Microbiol 2018; 21:e12955. [PMID: 30223301 DOI: 10.1111/cmi.12955] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
Abstract
Activation of the Raf/MEK/ERK cascade is required for efficient propagation of several RNA and DNA viruses, including human respiratory syncytial virus (RSV). In RSV infection, activation of the Raf/MEK/ERK cascade is biphasic. An early induction within minutes after infection is associated with viral attachment. Subsequently, a second activation occurs with, so far, unknown function in the viral life cycle. In this study, we aimed to characterise the role of Raf/MEK/ERK-mediated signalling during ongoing RSV infection. Our data show that inhibition of the kinase MEK after the virus has been internalised results in a reduction of viral titers. Further functional investigations revealed that the late-stage activation of ERK is required for a specific step in RSV replication, namely, the secretory transport of the RSV fusion protein F. Thus, MEK inhibition resulted in impaired surface accumulation of the F protein. F protein surface expression is essential for efficient replication as it is involved in viral filament formation, cell fusion, and viral transmission. In summary, we provide detailed insights of how host cell signalling interferes with RSV replication and identified the Raf/MEK/ERK kinase cascade as potential target for novel anti-RSV strategies.
Collapse
Affiliation(s)
- Hannah F Preugschas
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany
| | - Eike R Hrincius
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany
| | - Carolin Mewis
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany
| | - Giao V Q Tran
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany.,The Graduate School of the Cluster of Excellence "Cells-in-Motion" (EXC 1003-CiM), WWU Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany.,Cluster of Excellence "Cells-in-Motion" (EXC 1003-CiM), WWU Muenster, Muenster, Germany.,Interdisciplinary Center of Clinical Research (IZKF), WWU Muenster, Muenster, Germany
| | - Christina Ehrhardt
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany.,Cluster of Excellence "Cells-in-Motion" (EXC 1003-CiM), WWU Muenster, Muenster, Germany.,Interdisciplinary Center of Clinical Research (IZKF), WWU Muenster, Muenster, Germany.,Section for Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| |
Collapse
|
13
|
Gao Z, Hu J, Wang X, Yang Q, Liang Y, Ma C, Liu D, Liu K, Hao X, Gu M, Liu X, Jiao XA, Liu X. The PA-interacting host protein nucleolin acts as an antiviral factor during highly pathogenic H5N1 avian influenza virus infection. Arch Virol 2018; 163:2775-2786. [PMID: 29974255 DOI: 10.1007/s00705-018-3926-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/19/2018] [Indexed: 01/08/2023]
Abstract
Polymerase acidic (PA) protein is a multifunctional regulator of influenza A virus (IAV) replication and pathogenesis. In a previous study, we reported that nucleolin (NCL) is a novel PA-interacting host protein. In this study, we further explored the role of NCL during highly pathogenic H5N1 avian influenza virus infection. We found that depletion of endogenous NCL in mammalian cells by siRNA targeting during H5N1 infection resulted in significantly increased viral polymerase activity, elevated viral mRNA, cRNA and vRNA synthesis, accelerated viral replication, and enhanced apoptosis and necrosis. Moreover, siRNA silencing of NCL significantly exacerbated the inflammatory response, resulting in increased secretion of IL-6, TNF-α, TNF-β, CCL-4, CCL-8, IFN-α, IFN-β and IFN-γ. Conversely, overexpression of NCL significantly decreased IAV replication. Collectively, these data show that NCL acts as a novel potential antiviral factor during H5N1 infection. Further studies exploring the antiviral mechanisms of NCL may accelerate the development of new anti-influenza drugs.
Collapse
Affiliation(s)
- Zhao Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Qian Yang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Yanyan Liang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Chunxi Ma
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Dong Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Kaituo Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaoli Hao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xin-An Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China.
| |
Collapse
|
14
|
Gambaryan AS, Lomakina NF, Boravleva EY, Mochalova LV, Sadykova GK, Prilipov AG, Matrosovich TY, Matrosovich MN. Mutations in Hemagglutinin and Polymerase Alter the Virulence of Pandemic A(H1N1) Influenza Virus. Mol Biol 2018. [DOI: 10.1134/s0026893318040052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Directed Evolution of an Influenza Reporter Virus To Restore Replication and Virulence and Enhance Noninvasive Bioluminescence Imaging in Mice. J Virol 2018; 92:JVI.00593-18. [PMID: 29899096 DOI: 10.1128/jvi.00593-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023] Open
Abstract
Reporter viruses provide a powerful tool to study infection, yet incorporating a nonessential gene often results in virus attenuation and genetic instability. Here, we used directed evolution of a luciferase-expressing pandemic H1N1 (pH1N1) 2009 influenza A virus in mice to restore replication kinetics and virulence, increase the bioluminescence signal, and maintain reporter gene expression. An unadapted pH1N1 virus with NanoLuc luciferase inserted into the 5' end of the PA gene segment grew to titers 10-fold less than those of the wild type in MDCK cells and in DBA/2 mice and was less virulent. For 12 rounds, we propagated DBA/2 lung samples with the highest bioluminescence-to-titer ratios. Every three rounds, we compared in vivo replication, weight loss, mortality, and bioluminescence. Mouse-adapted virus after 9 rounds (MA-9) had the highest relative bioluminescence signal and had wild-type-like fitness and virulence in DBA/2 mice. Using reverse genetics, we discovered fitness was restored in virus rPB2-MA9/PA-D479N by a combination of PA-D479N and PB2-E158G amino acid mutations and PB2 noncoding mutations C1161T and C1977T. rPB2-MA9/PA-D479N has increased mRNA transcription, which helps restore wild-type-like phenotypes in DBA/2 and BALB/c mice. Overall, the results demonstrate that directed evolution that maximizes foreign-gene expression while maintaining genetic stability is an effective method to restore wild-type-like in vivo fitness of a reporter virus. Virus rPB2-MA9/PA-D479N is expected to be a useful tool for noninvasive imaging of pH1N1 influenza virus infection and clearance while analyzing virus-host interactions and developing new therapeutics and vaccines.IMPORTANCE Influenza viruses contribute to 290,000 to 650,000 deaths globally each year. Infection is studied in mice to learn how the virus causes sickness and to develop new drugs and vaccines. During experiments, scientists have needed to euthanize groups of mice at different times to measure the amount of infectious virus in mouse tissues. By inserting a foreign gene that causes infected cells to light up, scientists could see infection spread in living mice. Unfortunately, adding an extra gene not needed by the virus slowed it down and made it weaker. Here, we used a new strategy to restore the fitness and lethality of an influenza reporter virus; we adapted it to mouse lungs and selected for variants that had the greatest light signal. The adapted virus can be used to study influenza virus infection, immunology, and disease in living mice. The strategy can also be used to adapt other viruses.
Collapse
|
16
|
IL-1β as mucosal vaccine adjuvant: the specific induction of tissue-resident memory T cells improves the heterosubtypic immunity against influenza A viruses. Mucosal Immunol 2018; 11:1265-1278. [PMID: 29545648 DOI: 10.1038/s41385-018-0017-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/19/2018] [Accepted: 02/08/2018] [Indexed: 02/04/2023]
Abstract
A universal influenza vaccine must provide protection against antigenically divergent influenza viruses either through broadly neutralizing antibodies or cross-reactive T cells. Here, intranasal immunizations with recombinant adenoviral vectors (rAd) encoding hemagglutinin (HA) and nucleoprotein (NP) in combination with rAd-Interleukin-(IL)-1β or rAd-IL-18 were evaluated for their efficacy in BALB/c mice. Mucosal delivery of rAd-IL-1β enhanced HA-specific antibody responses including strain-specific neutralizing antibodies. Nevertheless, the beneficial effects on the local T cell responses were much more impressive reflected by increased numbers of CD103+CD69+ tissue-resident memory T cells (TRM). This increased immunogenicity translated into superior protection against infections with homologous and heterologous strains including H1N1, pH1N1, H3N2, and H7N7. Inhibition of the egress of circulating T cells out of the lymph nodes during the heterologous infection had no impact on the degree of protection underscoring the unique potential of TRM for the local containment of mucosal infections. The local co-expression of IL-1β and antigen lead to the activation of critical checkpoints in the formation of TRM including activation of epithelial cells, expression of chemokines and adhesion molecules, recruitment of lung-derived CD103+ DCs, and finally local TRM imprinting. Given the importance of TRM-mediated protection at mucosal barriers, this study has major implications for vaccine development.
Collapse
|
17
|
Lee CY, An SH, Kim I, Choi JG, Lee YJ, Kim JH, Kwon HJ. Novel mutations in avian PA in combination with an adaptive mutation in PR8 NP exacerbate the virulence of PR8-derived recombinant influenza A viruses in mice. Vet Microbiol 2018; 221:114-121. [PMID: 29981696 DOI: 10.1016/j.vetmic.2018.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
Abstract
The polymerase complex of the low-pathogenic avian influenza virus [A/chicken/Korea/KBNP-0028/2000] (0028) has previously been characterized, and novel amino acid residues present in the polymerase acidic protein (PA) that likely contribute to pathogenicity toward mammals have been identified. In the present study, our aims were to generate A/Puerto Rico/8/34 (PR8)-derived recombinant viruses containing the 0028-PA gene with a single amino acid mutation and to test their pathogenicity and replication ability. We found that the recombinant viruses acquired additional single mutations in the nucleoprotein (NP). Because the additional mutations in NP did not affect viral pathogenicity, but rather attenuated viral replication and polymerase activity, the incompatibility of the avian PA gene within the PR8 backbone may have induced an adaptive mutation in NP. To minimize the differences due to NP mutations, we generated 0028-PA mutants with an E375G mutation, not affecting viral replication and pathogenicity, in the NP gene. The PR8-PA(0028)-E684G mutant showed significantly higher viral replication in mammalian cells as compared to PR8-PA(0028) and led to 100% mortality in mice, with significantly increased interferon β expression. Thus, the E684G mutation in the PA gene may play an important role in viral pathogenicity in mice by increasing viral replication and the host immune response.
Collapse
Affiliation(s)
- Chung-Young Lee
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea
| | - Se-Hee An
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea
| | - Ilhwan Kim
- Division of Antimicrobial Resistance, Center for Infectious Diseases, National Research Institute of Health, KCDC, Cheongju, Republic of Korea
| | - Jun-Gu Choi
- Avian Disease Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Youn-Jeong Lee
- Avian Disease Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Jae-Hong Kim
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea
| | - Hyuk-Joon Kwon
- Laboratory of Poultry Production Medicine, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea; Farm Animal Clinical Training and Research Center (FACTRC), GBST, Seoul National University, Kangwon-do, Republic of Korea.
| |
Collapse
|
18
|
Pham PTV, Turan K, Nagata K, Kawaguchi A. Biochemical characterization of avian influenza viral polymerase containing PA or PB2 subunit from human influenza A virus. Microbes Infect 2018; 20:353-359. [PMID: 29729434 DOI: 10.1016/j.micinf.2018.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 01/17/2023]
Abstract
Adaptive mutations in viral polymerase, which is composed of PB1, PB2, and PA, of avian influenza viruses are major genetic determinants of the host range. In this study, to elucidate the molecular mechanism of mammalian adaptation of avian viral polymerase, we performed cell-based vRNP reconstitution assays and biochemical analyses using purified recombinant viral polymerase complexes. We found that avian viral polymerase from A/duck/Pennsylvania/10,218/84 (DkPen) enhances the viral polymerase activity in mammalian cells by replacing the PA or PB2 gene with that from human influenza virus A/WSN/33 (WSN). Chimeric constructs between DkPen PA and WSN PA showed that the N-terminal endonuclease domain of WSN PA was essential for the mammalian adaptation of DkPen viral polymerase. We also found that the cap-snatching activity of purified DkPen viral polymerase was more than 5 times weaker than that of WSN in vitro in a PB2 Glu627-dependent manner. However, the cap-snatching activity of DkPen viral polymerase was hardly increased by replacing DkPen PA to WSN PA. These results suggest that the activity of viral genome replication may be enhanced in the DkPen reassortant containing WSN PA.
Collapse
Affiliation(s)
- Phu Tran Vinh Pham
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kadir Turan
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Kyosuke Nagata
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Atsushi Kawaguchi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan; Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
19
|
Masemann D, Köther K, Kuhlencord M, Varga G, Roth J, Lichty BD, Rapp UR, Wixler V, Ludwig S. Oncolytic influenza virus infection restores immunocompetence of lung tumor-associated alveolar macrophages. Oncoimmunology 2018; 7:e1423171. [PMID: 29721377 PMCID: PMC5927530 DOI: 10.1080/2162402x.2017.1423171] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/30/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the most frequent type of lung cancer and demonstrates high resistance to radiation and chemotherapy. These tumors evade immune system detection by promoting an immunosuppressive tumor microenvironment. Genetic analysis has revealed oncogenic activation of the Ras/Raf/MEK/ERK signaling pathway to be a hallmark of NSCLCs, which promotes influenza A virus (IAV) infection and replication in these cells. Thus, we aimed to unravel the oncolytic properties of IAV infection against NSCLCs in an immunocompetent model in vivo. Using Raf-BxB transgenic mice that spontaneously develop NSCLCs, we demonstrated that infection with low-pathogenic IAV leads to rapid and efficient oncolysis, eliminating 70% of the initial tumor mass. Interestingly, IAV infection of Raf-BxB mice caused a functional reversion of immunosuppressed tumor-associated lung macrophages into a M1-like pro-inflammatory active phenotype that additionally supported virus-induced oncolysis of cancer cells. Altogether, our data demonstrate for the first time in an immunocompetent in vivo model that oncolytic IAV infection is capable of restoring and redirecting immune cell functions within the tumor microenvironment of NSCLCs.
Collapse
Affiliation(s)
- Dörthe Masemann
- Institute of Virology (IMV), Westfaelische-Wilhelms University, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, University of Muenster, Muenster, Germany
| | - Katharina Köther
- Institute of Virology (IMV), Westfaelische-Wilhelms University, Muenster, Germany
- Rentschler Biotechnologie GmbH, Laupheim, Germany
| | - Meike Kuhlencord
- Institute of Immunology, Westfaelische-Wilhelms University, Muenster, Germany
| | - Georg Varga
- Department of Pediatric, Rheumatology and Immunology, University Children´s Hospital Muenster, Muenster, Germany
| | - Johannes Roth
- Institute of Immunology, Westfaelische-Wilhelms University, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, University of Muenster, Muenster, Germany
| | - Brian Dennis Lichty
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Ulf Rüdiger Rapp
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Viktor Wixler
- Institute of Virology (IMV), Westfaelische-Wilhelms University, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, University of Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology (IMV), Westfaelische-Wilhelms University, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, University of Muenster, Muenster, Germany
| |
Collapse
|
20
|
Chen Y, Bai T, Zhu W, Gao R, Deng Z, Shi Y, Zou S, Huang Y, Li X, Li F, Feng Z, Chen T, Yang J, Wang D, Gao L, Shu Y. The S190R mutation in the hemagglutinin protein of pandemic H1N1 2009 influenza virus increased its pathogenicity in mice. SCIENCE CHINA-LIFE SCIENCES 2018; 61:836-843. [PMID: 29445999 DOI: 10.1007/s11427-017-9156-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/25/2017] [Indexed: 12/01/2022]
Abstract
Human influenza viruses preferentially bind to sialic acid-α2,6-galactose (SAα2,6Gal) receptors, which are predominant in human upper respiratory epithelia, whereas avian influenza viruses preferentially bind to SAα2,3Gal receptors. However, variants with amino acid substitutions around the receptor-binding sites of the hemagglutinin (HA) protein can be selected after several passages of human influenza viruses from patients' respiratory samples in the allantoic cavities of embryonated chicken eggs. In this study, we detected an egg-adapted HA S190R mutation in the pandemic H1N1 virus 2009 (pdmH1N1), and evaluated the effects of this mutation on receptor binding affinity and pathogenicity in mice. Our results revealed that residue 190 is located within the pocket structure of the receptor binding site. The single mutation to arginine at position 190 slightly increased the binding affinity of the virus to the avian receptor and decreased its binding to the long human α2,6-linked sialic acid receptor. Our study demonstrated that the S190R mutation resulted in earlier death and higher weight loss in mice compared with the wild-type virus. Higher viral titers at 1 dpi (days post infection) and diffuse damage at 4 dpi were observed in the lung tissues of mice infected with the mutant virus.
Collapse
Affiliation(s)
- Yongkun Chen
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, 102206, China
| | - Tian Bai
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, 102206, China
| | - Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, 102206, China
| | - Rongbao Gao
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, 102206, China
| | - Zhihong Deng
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shumei Zou
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, 102206, China
| | - Yiwei Huang
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, 102206, China
| | - Fangcai Li
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| | - Zhaomin Feng
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, 102206, China
| | - Tao Chen
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, 102206, China
| | - Jing Yang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, 102206, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, 102206, China
| | - Lidong Gao
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China.
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China. .,Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, 102206, China. .,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
21
|
Bhoye D, Cherian SS. Computational analysis of the effect of polymerase acidic (PA) gene mutation F35L in the 2009 pandemic influenza A (H1N1) virus on binding aspects of mononucleotides in the endonuclease domain. Arch Virol 2017; 163:1031-1036. [PMID: 29273880 DOI: 10.1007/s00705-017-3681-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/05/2017] [Indexed: 11/26/2022]
Abstract
An F35L mutation in the N-terminal domain of the polymerase acidic protein (PA-Nter), which contains the active site of the endonuclease, has been reported to result in higher polymerase activity in mouse-adapted strains of the 2009 pandemic influenza A H1N1 virus. We modeled wild and mutant complexes of uridine 5'-monophosphate (UMP) as the endonuclease substrate and performed molecular dynamics simulations. The results demonstrated that the F35L mutation could result in a changed orientation of a helix containing active site residues and improve the ligand affinity in the mutant strain. This study suggests a molecular mechanism of enhanced polymerase activity.
Collapse
Affiliation(s)
- Dipali Bhoye
- Bioinformatics and Data Management Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, Post Box No. 11, Pune, Maharashtra, 411001, India
| | - Sarah S Cherian
- Bioinformatics and Data Management Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, Post Box No. 11, Pune, Maharashtra, 411001, India.
| |
Collapse
|
22
|
Holzberg M, Boergeling Y, Schräder T, Ludwig S, Ehrhardt C. Vemurafenib Limits Influenza A Virus Propagation by Targeting Multiple Signaling Pathways. Front Microbiol 2017; 8:2426. [PMID: 29312159 PMCID: PMC5735105 DOI: 10.3389/fmicb.2017.02426] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/23/2017] [Indexed: 12/12/2022] Open
Abstract
Influenza A viruses (IAV) can cause severe global pandemic outbreaks. The currently licensed antiviral drugs are not very effective and prone to viral resistance. Thus, novel effective and broadly active drugs are urgently needed. We have identified the cellular Raf/MEK/ERK signaling cascade as crucial for IAV replication and suitable target for an antiviral intervention. Since this signaling cascade is aberrantly activated in many human cancers, several clinically approved inhibitors of Raf and MEK are now available. Here we explored the anti-IAV action of the licensed B-RafV600E inhibitor Vemurafenib. Treatment of B-RafWT cells with Vemurafenib induced a hyperactivation of the Raf/MEK/ERK cascade rather than inhibiting its activation upon IAV infection. Despite this hyperactivation, which has also been confirmed by others, Vemurafenib still strongly limited IAV-induced activation of other signaling cascades especially of p38 and JNK mitogen-activated protein kinase (MAPK) pathways. Most interestingly, Vemurafenib inhibited virus-induced apoptosis via impaired expression of apoptosis-inducing cytokines and led to hampered viral protein expression most likely due to the decreased activation of p38 and JNK MAPK. These multiple actions resulted in a profound and broadly active inhibition of viral replication, up to a titer reduction of three orders of a magnitude. Thus, while Vemurafenib did not act similar to MEK inhibitors, it displays strong antiviral properties via a distinct and multi-target mode of action.
Collapse
Affiliation(s)
- Magdalena Holzberg
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Yvonne Boergeling
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence Cells in Motion, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Tobias Schräder
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence Cells in Motion, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Christina Ehrhardt
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence Cells in Motion, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| |
Collapse
|
23
|
Arellano-Llamas R, Alfaro-Ruiz L, Arriaga Canon C, Imaz Rosshandler I, Cruz-Lagunas A, Zúñiga J, Rebollar Vega R, Wong CW, Maurer-Stroh S, Romero Córdoba S, Liu ET, Hidalgo-Miranda A, Vázquez-Pérez JA. Molecular features of influenza A (H1N1)pdm09 prevalent in Mexico during winter seasons 2012-2014. PLoS One 2017; 12:e0180419. [PMID: 28692701 PMCID: PMC5503254 DOI: 10.1371/journal.pone.0180419] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/23/2017] [Indexed: 12/28/2022] Open
Abstract
Since the emergence of the pandemic H1N1pdm09 virus in Mexico and California, biannual increases in the number of cases have been detected in Mexico. As observed in previous seasons, pandemic A/H1N1 09 virus was detected in severe cases during the 2011-2012 winter season and finally, during the 2013-2014 winter season it became the most prevalent influenza virus. Molecular and phylogenetic analyses of the whole viral genome are necessary to determine the antigenic and pathogenic characteristics of influenza viruses that cause severe outcomes of the disease. In this paper, we analyzed the evolution, antigenic and genetic drift of Mexican isolates from 2009, at the beginning of the pandemic, to 2014. We found a clear variation of the virus in Mexico from the 2011-2014 season due to different markers and in accordance with previous reports. In this study, we identified 13 novel substitutions with important biological effects, including virulence, T cell epitope presented by MHC and host specificity shift and some others substitutions might have more than one biological function. The systematic monitoring of mutations on whole genome of influenza A pH1N1 (2009) virus circulating at INER in Mexico City might provide valuable information to predict the emergence of new pathogenic influenza virus.
Collapse
Affiliation(s)
| | | | | | | | - Alfredo Cruz-Lagunas
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Joaquín Zúñiga
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | | | | | | | - Edison T. Liu
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Joel A. Vázquez-Pérez
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
24
|
Gao Z, Hu J, Liang Y, Yang Q, Yan K, Liu D, Wang X, Gu M, Liu X, Hu S, Hu Z, Liu H, Liu W, Chen S, Peng D, Jiao XA, Liu X. Generation and Comprehensive Analysis of Host Cell Interactome of the PA Protein of the Highly Pathogenic H5N1 Avian Influenza Virus in Mammalian Cells. Front Microbiol 2017; 8:739. [PMID: 28503168 PMCID: PMC5408021 DOI: 10.3389/fmicb.2017.00739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/10/2017] [Indexed: 12/26/2022] Open
Abstract
Accumulating data have identified the important roles of PA protein in replication and pathogenicity of influenza A virus (IAV). Identification of host factors that interact with the PA protein may accelerate our understanding of IAV pathogenesis. In this study, using immunoprecipitation assay combined with liquid chromatography-tandem mass spectrometry, we identified 278 human cellular proteins that might interact with PA of H5N1 IAV. Gene Ontology annotation revealed that the identified proteins are highly associated with viral translation and replication. Further KEGG pathway analysis of the interactome profile highlighted cellular pathways associated with translation, infectious disease, and signal transduction. In addition, Diseases and Functions analysis suggested that these cellular proteins are highly related with Organismal Injury and Abnormalities and Cell Death and Survival. Moreover, two cellular proteins (nucleolin and eukaryotic translation elongation factor 1-alpha 1) identified both in this study and others were further validated to interact with PA using co-immunoprecipitation and co-localization assays. Therefore, this study presented the interactome data of H5N1 IAV PA protein in human cells which may provide novel cellular target proteins for elucidating the potential molecular functions of PA in regulating the lifecycle of IAV in human cells.
Collapse
Affiliation(s)
- Zhao Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Yanyan Liang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Qian Yang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Kun Yan
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Dong Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Huimou Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Wenbo Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Sujuan Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Xin-An Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou UniversityYangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| |
Collapse
|
25
|
Reduction of Neuraminidase Activity Exacerbates Disease in 2009 Pandemic Influenza Virus-Infected Mice. J Virol 2016; 90:9931-9941. [PMID: 27558428 DOI: 10.1128/jvi.01188-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/18/2016] [Indexed: 11/20/2022] Open
Abstract
During the first wave of the 2009 pandemic, caused by a H1N1 influenza virus (pH1N1) of swine origin, antivirals were the only form of therapeutic available to control the proliferation of disease until the conventional strain-matched vaccine was produced. Oseltamivir is an antiviral that inhibits the sialidase activity of the viral neuraminidase (NA) protein and was shown to be effective against pH1N1 viruses in ferrets. Furthermore, it was used in humans to treat infections during the pandemic and is still used for current infections without reported complication or exacerbation of illness. However, in an evaluation of the effectiveness of oseltamivir against pH1N1 infection, we unexpectedly observed an exacerbation of disease in virus-infected mice treated with oseltamivir, transforming an otherwise mild illness into one with high morbidity and mortality. In contrast, an identical treatment regime alleviated all signs of illness in mice infected with the pathogenic mouse-adapted virus A/WSN/33 (H1N1). The worsened clinical outcome with pH1N1 viruses occurred over a range of oseltamivir doses and treatment schedules and was directly linked to a reduction in NA enzymatic activity. Our results suggest that the suppression of NA activity with antivirals may exacerbate disease in a host-dependent manner by increasing replicative fitness in viruses that are not optimally adapted for replication in that host. IMPORTANCE Here, we report that treatment of pH1N1-infected mice with oseltamivir enhanced disease progression, transforming a mild illness into a lethal infection. This raises a potential pitfall of using the mouse model for evaluation of the therapeutic efficacy of neuraminidase inhibitors. We show that antiviral efficacy determined in a single animal species may not represent treatment in humans and that caution should be used when interpreting the outcome. Furthermore, increased virulence due to oseltamivir treatment was the effect of a shift in the hemagglutinin (HA) and neuraminidase (NA) activity balance. This is the first study that has demonstrated that altering the HA/NA activity balance by reduction in NA activity can result in an increase in virulence in any animal model from nonpathogenic to lethal and the first to demonstrate a situation in which treatment with a NA activity inhibitor has an effect opposite to the intended therapeutic effect of ameliorating the infection.
Collapse
|
26
|
Manchanda H, Seidel N, Blaess MF, Claus RA, Linde J, Slevogt H, Sauerbrei A, Guthke R, Schmidtke M. Differential Biphasic Transcriptional Host Response Associated with Coevolution of Hemagglutinin Quasispecies of Influenza A Virus. Front Microbiol 2016; 7:1167. [PMID: 27536272 PMCID: PMC4971777 DOI: 10.3389/fmicb.2016.01167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/13/2016] [Indexed: 01/20/2023] Open
Abstract
Severe influenza associated with strong symptoms and lung inflammation can be caused by intra-host evolution of quasispecies with aspartic acid or glycine in hemagglutinin position 222 (HA-222D/G; H1 numbering). To gain insights into the dynamics of host response to this coevolution and to identify key mechanisms contributing to copathogenesis, the lung transcriptional response of BALB/c mice infected with an A(H1N1)pdm09 isolate consisting HA-222D/G quasispecies was analyzed from days 1 to 12 post infection (p.i). At day 2 p.i. 968 differentially expressed genes (DEGs) were detected. The DEG number declined to 359 at day 4 and reached 1001 at day 7 p.i. prior to recovery. Interestingly, a biphasic expression profile was shown for the majority of these genes. Cytokine assays confirmed these results on protein level exemplarily for two key inflammatory cytokines, interferon gamma and interleukin 6. Using a reverse engineering strategy, a regulatory network was inferred to hypothetically explain the biphasic pattern for selected DEGs. Known regulatory interactions were extracted by Pathway Studio 9.0 and integrated during network inference. The hypothetic gene regulatory network revealed a positive feedback loop of Ifng, Stat1, and Tlr3 gene signaling that was triggered by the HA-G222 variant and correlated with a clinical symptom score indicating disease severity.
Collapse
Affiliation(s)
- Himanshu Manchanda
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell InstituteJena, Germany; Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | - Nora Seidel
- Department of Virology and Antiviral Therapy, Jena University Hospital Jena, Germany
| | - Markus F Blaess
- Integrated Research and Treatment Center - Center for Sepsis Control and Care, Jena University HospitalJena, Germany; Department of Anaesthesiology and Intensive Care Medicine, Research Unit Experimental Anesthesiology, Jena University HospitalJena, Germany
| | - Ralf A Claus
- Integrated Research and Treatment Center - Center for Sepsis Control and Care, Jena University HospitalJena, Germany; Department of Anaesthesiology and Intensive Care Medicine, Research Unit Experimental Anesthesiology, Jena University HospitalJena, Germany
| | - Joerg Linde
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena, Germany
| | - Hortense Slevogt
- Centre of Innovation Competence (ZIK) Septomics, Jena University Hospital Jena, Germany
| | - Andreas Sauerbrei
- Department of Virology and Antiviral Therapy, Jena University Hospital Jena, Germany
| | - Reinhard Guthke
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena, Germany
| | - Michaela Schmidtke
- Department of Virology and Antiviral Therapy, Jena University Hospital Jena, Germany
| |
Collapse
|
27
|
Multiple Natural Substitutions in Avian Influenza A Virus PB2 Facilitate Efficient Replication in Human Cells. J Virol 2016; 90:5928-5938. [PMID: 27076644 DOI: 10.1128/jvi.00130-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/10/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED A strong restriction of the avian influenza A virus polymerase in mammalian cells generally limits viral host-range switching. Although substitutions like E627K in the PB2 polymerase subunit can facilitate polymerase activity to allow replication in mammals, many human H5N1 and H7N9 viruses lack this adaptive substitution. Here, several previously unknown, naturally occurring, adaptive substitutions in PB2 were identified by bioinformatics, and their enhancing activity was verified using in vitro assays. Adaptive substitutions enhanced polymerase activity and virus replication in mammalian cells for avian H5N1 and H7N9 viruses but not for a partially human-adapted H5N1 virus. Adaptive substitutions toward basic amino acids were frequent and were mostly clustered in a putative RNA exit channel in a polymerase crystal structure. Phylogenetic analysis demonstrated divergent dependency of influenza viruses on adaptive substitutions. The novel adaptive substitutions found in this study increase basic understanding of influenza virus host adaptation and will help in surveillance efforts. IMPORTANCE Influenza viruses from birds jump the species barrier into humans relatively frequently. Such influenza virus zoonoses may pose public health risks if the virus adapts to humans and becomes a pandemic threat. Relatively few amino acid substitutions-most notably in the receptor binding site of hemagglutinin and at positions 591 and 627 in the polymerase protein PB2-have been identified in pandemic influenza virus strains as determinants of host adaptation, to facilitate efficient virus replication and transmission in humans. Here, we show that substantial numbers of amino acid substitutions are functionally compensating for the lack of the above-mentioned mutations in PB2 and could facilitate influenza virus emergence in humans.
Collapse
|
28
|
Short KR, Richard M, Verhagen JH, van Riel D, Schrauwen EJA, van den Brand JMA, Mänz B, Bodewes R, Herfst S. One health, multiple challenges: The inter-species transmission of influenza A virus. One Health 2015; 1:1-13. [PMID: 26309905 PMCID: PMC4542011 DOI: 10.1016/j.onehlt.2015.03.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Influenza A viruses are amongst the most challenging viruses that threaten both human and animal health. Influenza A viruses are unique in many ways. Firstly, they are unique in the diversity of host species that they infect. This includes waterfowl (the original reservoir), terrestrial and aquatic poultry, swine, humans, horses, dog, cats, whales, seals and several other mammalian species. Secondly, they are unique in their capacity to evolve and adapt, following crossing the species barrier, in order to replicate and spread to other individuals within the new species. Finally, they are unique in the frequency of inter-species transmission events that occur. Indeed, the consequences of novel influenza virus strain in an immunologically naïve population can be devastating. The problems that influenza A viruses present for human and animal health are numerous. For example, influenza A viruses in humans represent a major economic and disease burden, whilst the poultry industry has suffered colossal damage due to repeated outbreaks of highly pathogenic avian influenza viruses. This review aims to provide a comprehensive overview of influenza A viruses by shedding light on interspecies virus transmission and summarising the current knowledge regarding how influenza viruses can adapt to a new host.
Collapse
Affiliation(s)
- Kirsty R Short
- Department of Viroscience, Erasmus Medical Centre, the Netherlands ; School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Centre, the Netherlands
| | | | - Debby van Riel
- Department of Viroscience, Erasmus Medical Centre, the Netherlands
| | | | | | - Benjamin Mänz
- Department of Viroscience, Erasmus Medical Centre, the Netherlands
| | - Rogier Bodewes
- Department of Viroscience, Erasmus Medical Centre, the Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Centre, the Netherlands
| |
Collapse
|
29
|
Influenza virus polymerase: Functions on host range, inhibition of cellular response to infection and pathogenicity. Virus Res 2015; 209:23-38. [DOI: 10.1016/j.virusres.2015.03.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 01/06/2023]
|
30
|
Boergeling Y, Rozhdestvensky TS, Schmolke M, Resa-Infante P, Robeck T, Randau G, Wolff T, Gabriel G, Brosius J, Ludwig S. Evidence for a Novel Mechanism of Influenza Virus-Induced Type I Interferon Expression by a Defective RNA-Encoded Protein. PLoS Pathog 2015; 11:e1004924. [PMID: 26024522 PMCID: PMC4449196 DOI: 10.1371/journal.ppat.1004924] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 04/29/2015] [Indexed: 12/21/2022] Open
Abstract
Influenza A virus (IAV) defective RNAs are generated as byproducts of error-prone viral RNA replication. They are commonly derived from the larger segments of the viral genome and harbor deletions of various sizes resulting in the generation of replication incompatible viral particles. Furthermore, small subgenomic RNAs are known to be strong inducers of pattern recognition receptor RIG-I-dependent type I interferon (IFN) responses. The present study identifies a novel IAV-induced defective RNA derived from the PB2 segment of A/Thailand/1(KAN-1)/2004 (H5N1). It encodes a 10 kDa protein (PB2∆) sharing the N-terminal amino acid sequence of the parental PB2 protein followed by frame shift after internal deletion. PB2∆ induces the expression of IFNβ and IFN-stimulated genes by direct interaction with the cellular adapter protein MAVS, thereby reducing viral replication of IFN-sensitive viruses such as IAV or vesicular stomatitis virus. This induction of IFN is completely independent of the defective RNA itself that usually serves as pathogen-associated pattern and thus does not require the cytoplasmic sensor RIG-I. These data suggest that not only defective RNAs, but also some defective RNA-encoded proteins can act immunostimulatory. In this particular case, the KAN-1-induced defective RNA-encoded protein PB2∆ enhances the overwhelming immune response characteristic for highly pathogenic H5N1 viruses, leading to a more severe phenotype in vivo. Error-prone polymerase function of RNA viruses can result in expression of defective RNAs harboring internal deletions of various sizes. Small subgenomic RNAs are strong inducers of the antiviral response by serving as pathogen-associated patterns that are predominantly detected by cellular sensors. Recently, it has been shown that influenza A virus defective RNAs are not only generated upon passages in cell culture, but also in infected humans, indicating that these subgenomic RNAs may also be relevant in infections in vivo. Here, we characterize a novel defective RNA derived from the PB2 segment of a highly pathogenic H5N1 influenza A virus. This RNA encodes a 10 kDa peptide (PB2Δ) which activates type I interferon (IFN) responses through direct interaction with the adapter protein MAVS, a key component of the RIG-I-dependent IFN induction. This is the first time that such a function was described for a defective RNA-encoded protein, a finding that has several important implications with regard to deciphering viral protein functions and options for immunostimulatory approaches. Furthermore, this is an example of how influenza viruses may acquire novel polypeptides with altered functions from its limited genome.
Collapse
Affiliation(s)
- Yvonne Boergeling
- Institute of Molecular Virology (IMV), Center for Molecular Biology of Inflammation (ZMBE), University of Muenster, Muenster, Germany
| | - Timofey S. Rozhdestvensky
- Institute of Experimental Pathology, Center for Molecular Biology of Inflammation (ZMBE), University of Muenster, Muenster, Germany
| | - Mirco Schmolke
- Institute of Molecular Virology (IMV), Center for Molecular Biology of Inflammation (ZMBE), University of Muenster, Muenster, Germany
| | - Patricia Resa-Infante
- Viral Zoonosis and Adaptation, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Robeck
- Institute of Experimental Pathology, Center for Molecular Biology of Inflammation (ZMBE), University of Muenster, Muenster, Germany
| | - Gerrit Randau
- Institute of Experimental Pathology, Center for Molecular Biology of Inflammation (ZMBE), University of Muenster, Muenster, Germany
| | - Thorsten Wolff
- Division of Influenza Viruses and Other Respiratory Viruses, Robert Koch Institute, Berlin, Germany
| | - Gülsah Gabriel
- Viral Zoonosis and Adaptation, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Jürgen Brosius
- Institute of Experimental Pathology, Center for Molecular Biology of Inflammation (ZMBE), University of Muenster, Muenster, Germany
- Institute of Evolutionary and Medical Genomics, Brandenburg Medical School (MHB), Neuruppin, Germany
| | - Stephan Ludwig
- Institute of Molecular Virology (IMV), Center for Molecular Biology of Inflammation (ZMBE), University of Muenster, Muenster, Germany
- Interdisciplinary Center of Clinical Research (IZKF), Medical Faculty, University of Muenster, Muenster, Germany
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
- * E-mail:
| |
Collapse
|
31
|
Kamal RP, Katz JM, York IA. Molecular determinants of influenza virus pathogenesis in mice. Curr Top Microbiol Immunol 2015; 385:243-74. [PMID: 25038937 DOI: 10.1007/82_2014_388] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mice are widely used for studying influenza virus pathogenesis and immunology because of their low cost, the wide availability of mouse-specific reagents, and the large number of mouse strains available, including knockout and transgenic strains. However, mice do not fully recapitulate the signs of influenza infection of humans: transmission of influenza between mice is much less efficient than in humans, and influenza viruses often require adaptation before they are able to efficiently replicate in mice. In the process of mouse adaptation, influenza viruses acquire mutations that enhance their ability to attach to mouse cells, replicate within the cells, and suppress immunity, among other functions. Many such mouse-adaptive mutations have been identified, covering all 8 genomic segments of the virus. Identification and analysis of these mutations have provided insight into the molecular determinants of influenza virulence and pathogenesis, not only in mice but also in humans and other species. In particular, several mouse-adaptive mutations of avian influenza viruses have proved to be general mammalian-adaptive changes that are potential markers of pre-pandemic viruses. As well as evaluating influenza pathogenesis, mice have also been used as models for evaluation of novel vaccines and anti-viral therapies. Mice can be a useful animal model for studying influenza biology as long as differences between human and mice infections are taken into account.
Collapse
Affiliation(s)
- Ram P Kamal
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA,
| | | | | |
Collapse
|
32
|
Mammalian adaptive mutations of the PA protein of highly pathogenic avian H5N1 influenza virus. J Virol 2015; 89:4117-25. [PMID: 25631084 DOI: 10.1128/jvi.03532-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Highly pathogenic H5N1 influenza A viruses continue to circulate among avian species and cause sporadic cases of human infection. Therefore, the threat of a pandemic persists. However, the human cases of H5N1 infection have been limited mainly to individuals in close contact with infected poultry. These findings suggest that the H5N1 viruses need to acquire adaptive mutations to gain a replicative advantage in mammalian cells to break through the species barrier. Many amino acid mutations of the polymerase complex have been reported to enhance H5N1 virus growth in mammalian cells; however, the mechanism for H5N1 virus of adaptation to humans remains unclear. Here, we propose that the PA of an H5N1 influenza virus isolated from a human in Vietnam (A/Vietnam/UT36285/2010 [36285]) increased the ability of an avian H5N1 virus (A/chicken/Vietnam/TY31/2005 [Ck/TY31]) to grow in human lung epithelial A549 cells. The five PA amino acid substitutions V44I, V127A, C241Y, A343T, and I573V, which are rare in H5N1 viruses from human and avian sources, enhanced the growth capability of this virus in A549 cells. Moreover, these mutations increased the pathogenicity of the virus in mice, suggesting that they contribute to adaptation to mammalian hosts. Intriguingly, PA-241Y, which 36285 encodes, is conserved in more than 90% of human seasonal H1N1 viruses, suggesting that PA-241Y contributes to virus adaptation to human lung cells and mammalian hosts. IMPORTANCE Many amino acid substitutions in highly pathogenic H5N1 avian influenza viruses have been shown to contribute to adaptation to mammalian hosts. However, no naturally isolated H5N1 virus has caused extensive human-to-human transmission, suggesting that additional, as-yet unidentified amino acid mutations are needed for adaptation to humans. Here, we report that five amino acid substitutions in PA (V44I, V127A, C241Y, A343T, and I573V) contribute to the replicative efficiency of H5N1 viruses in human lung cells and to high virulence in mice. These results are helpful for assessing the pandemic risk of isolates and further our understanding of the mechanism of H5N1 virus adaptation to mammalian hosts.
Collapse
|
33
|
Hrincius ER, Liedmann S, Finkelstein D, Vogel P, Gansebom S, Ehrhardt C, Ludwig S, Hains DS, Webby R, McCullers JA. Nonstructural protein 1 (NS1)-mediated inhibition of c-Abl results in acute lung injury and priming for bacterial co-infections: insights into 1918 H1N1 pandemic? J Infect Dis 2014; 211:1418-28. [PMID: 25367299 DOI: 10.1093/infdis/jiu609] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/17/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Nonstructural protein 1 (NS1) proteins from avian influenza viruses like the 1918 pandemic NS1 are capable of inhibiting the key signaling integrator c-Abl (Abl1), resulting in massive cytopathic cell alterations. METHODS In the current study, we addressed the consequences of NS1-mediated alteration of c-Abl on acute lung injury and pathogenicity in an in vivo mouse model. RESULTS Comparing isogenic strains that differ only in their ability to inhibit c-Abl, we observed elevated pathogenicity for the c-Abl-inhibiting virus. NS1-mediated blockade of c-Abl resulted in severe lung pathology and massive edema formation and facilitated secondary bacterial pneumonia. This phenotype was independent of differences in replication and immune responses, defining it as an NS1 virulence mechanism distinct from its canonical functions. Microarray analysis revealed extensive downregulation of genes involved in cell integrity and vascular endothelial regulation. CONCLUSIONS NS1 protein-mediated blockade of c-Abl signaling drives acute lung injury and primes for bacterial coinfections revealing potential insights into the pathogenicity of the 1918 pandemic virus.
Collapse
Affiliation(s)
| | - Swantje Liedmann
- Institute of Molecular Virology, University of Muenster, Germany
| | | | - Peter Vogel
- Department of Veterinary Pathology, St Jude Children's Research Hospital
| | | | | | - Stephan Ludwig
- Institute of Molecular Virology, University of Muenster, Germany
| | - David S Hains
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis
| | | | - Jonathan A McCullers
- Department of Infectious Diseases Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis
| |
Collapse
|
34
|
Accumulation of human-adapting mutations during circulation of A(H1N1)pdm09 influenza virus in humans in the United Kingdom. J Virol 2014; 88:13269-83. [PMID: 25210166 PMCID: PMC4249111 DOI: 10.1128/jvi.01636-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The influenza pandemic that emerged in 2009 provided an unprecedented opportunity to study adaptation of a virus recently acquired from an animal source during human transmission. In the United Kingdom, the novel virus spread in three temporally distinct waves between 2009 and 2011. Phylogenetic analysis of complete viral genomes showed that mutations accumulated over time. Second- and third-wave viruses replicated more rapidly in human airway epithelial (HAE) cells than did the first-wave virus. In infected mice, weight loss varied between viral isolates from the same wave but showed no distinct pattern with wave and did not correlate with viral load in the mouse lungs or severity of disease in the human donor. However, second- and third-wave viruses induced less alpha interferon in the infected mouse lungs. NS1 protein, an interferon antagonist, had accumulated several mutations in second- and third-wave viruses. Recombinant viruses with the third-wave NS gene induced less interferon in human cells, but this alone did not account for increased virus fitness in HAE cells. Mutations in HA and NA genes in third-wave viruses caused increased binding to α-2,6-sialic acid and enhanced infectivity in human mucus. A recombinant virus with these two segments replicated more efficiently in HAE cells. A mutation in PA (N321K) enhanced polymerase activity of third-wave viruses and also provided a replicative advantage in HAE cells. Therefore, multiple mutations allowed incremental changes in viral fitness, which together may have contributed to the apparent increase in severity of A(H1N1)pdm09 influenza virus during successive waves. IMPORTANCE Although most people infected with the 2009 pandemic influenza virus had mild or unapparent symptoms, some suffered severe and devastating disease. The reasons for this variability were unknown, but the numbers of severe cases increased during successive waves of human infection in the United Kingdom. To determine the causes of this variation, we studied genetic changes in virus isolates from individual hospitalized patients. There were no consistent differences between these viruses and those circulating in the community, but we found multiple evolutionary changes that in combination over time increased the virus's ability to infect human cells. These adaptations may explain the remarkable ability of A(H1N1)pdm09 virus to continue to circulate despite widespread immunity and the apparent increase in severity of influenza over successive waves of infection.
Collapse
|
35
|
Seidel N, Sauerbrei A, Wutzler P, Schmidtke M. Hemagglutinin 222D/G polymorphism facilitates fast intra-host evolution of pandemic (H1N1) 2009 influenza A viruses. PLoS One 2014; 9:e104233. [PMID: 25162520 PMCID: PMC4146462 DOI: 10.1371/journal.pone.0104233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/09/2014] [Indexed: 01/17/2023] Open
Abstract
The amino acid substitution of aspartic acid to glycine in hemagglutinin (HA) in position 222 (HA-D222G) as well as HA-222D/G polymorphism of pandemic (H1N1) 2009 influenza viruses (A(H1N1)pdm09) were frequently reported in severe influenza in humans and mice. Their impact on viral pathogenicity and the course of influenza has been discussed controversially and the underlying mechanism remained unclarified. In the present study, BALB/c mice, infected with the once mouse lung- and cell-passaged A(H1N1)pdm09 isolate A/Jena/5258/09 (mpJena/5258), developed severe pneumonia. From day 2 to 3 or 4 post infection (p.i.) symptoms (body weight loss and clinical score) continuously worsened. After a short disease stagnation or even recovery phase in most mice, severity of disease further increased on days 6 and 7 p.i. Thereafter, surviving mice recovered. A 45 times higher virus titer maximum in the lung than in the trachea on day 2 p.i. and significantly higher tracheal virus titers compared to lung on day 6 p.i. indicated changes in the organ tropism during infection. Sequence analysis revealed an HA-222D/G polymorphism. HA-D222 and HA-G222 variants co-circulated in lung and trachea. Whereas, HA-D222 variant predominated in the lung, HA-G222 became the major variant in the trachea after day 4 p.i. This was accompanied by lower neutralizing antibody titers and broader receptor recognition including terminal sialic acid α-2,3-linked galactose, which is abundant on mouse trachea epithelial cells. Plaque-purified HA-G222-mpJena/5258 virus induced severe influenza with maximum symptom on day 6 p.i. These results demonstrated for the first time that HA-222D/G quasispecies of A(H1N1)pdm09 caused severe biphasic influenza because of fast viral intra-host evolution, which enabled partial antibody escape and minor changes in receptor binding.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Base Sequence
- Evolution, Molecular
- Gene Expression
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Host Specificity
- Humans
- Immune Evasion
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Lung/immunology
- Lung/pathology
- Lung/virology
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/pathology
- Orthomyxoviridae Infections/virology
- Polymorphism, Genetic
- Receptors, Virus/chemistry
- Receptors, Virus/immunology
- Sialic Acids/chemistry
- Sialic Acids/immunology
- Trachea/immunology
- Trachea/pathology
- Trachea/virology
- Viral Tropism
Collapse
Affiliation(s)
- Nora Seidel
- Jena University Hospital, Friedrich Schiller University Jena, Department of Virology and Antiviral Therapy, Jena, Germany
| | - Andreas Sauerbrei
- Jena University Hospital, Friedrich Schiller University Jena, Department of Virology and Antiviral Therapy, Jena, Germany
| | - Peter Wutzler
- Jena University Hospital, Friedrich Schiller University Jena, Department of Virology and Antiviral Therapy, Jena, Germany
| | - Michaela Schmidtke
- Jena University Hospital, Friedrich Schiller University Jena, Department of Virology and Antiviral Therapy, Jena, Germany
- * E-mail:
| |
Collapse
|
36
|
Hrincius ER, Liedmann S, Anhlan D, Wolff T, Ludwig S, Ehrhardt C. Avian influenza viruses inhibit the major cellular signalling integrator c-Abl. Cell Microbiol 2014; 16:1854-74. [PMID: 25052580 DOI: 10.1111/cmi.12332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 11/27/2022]
Abstract
The non-structural protein 1 (NS1) of influenza A viruses (IAV) encodes several src homology (SH) binding motifs (bm) (one SH2bm, up to two SH3bm), which mediate interactions with host cell proteins. In contrast to NS1 of human IAV, NS1 of avian strains possess the second SH3bm (SH3(II)bm) consensus sequence. Since our former studies demonstrated an NS1-CRK interaction, mediated by this motif, here, we addressed the regulatory properties of this SH3bm for cellular signalling. Initially, we observed a reduced basal CRK phosphorylation upon infection with avian IAV harbouring an NS1 with an SH3(II)bm in contrast to human IAV. Reduced activity of the tyrosine kinase c-Abl was identified to be responsible for reduced CRK phosphorylation. Further, binding of NS1 to c-Abl was determined, and mutational manipulation of the SH3(II)bm illustrated the necessity of this motif for c-Abl inhibition. Interestingly, Abl kinase inhibition resulted in impaired avian IAV propagation and pathogenicity and mutational analysis linked the pronounced inhibition of c-Abl to cytopathogenic cell alterations upon avian IAV infections. Taken together, NS1 proteins of avian IAV interfere with the kinase activity of c-Abl, a major cellular signalling integrator that controls multiple signalling processes and cell fate regulations apparently including IAV infections.
Collapse
Affiliation(s)
- Eike R Hrincius
- Institute of Molecular Virology (IMV), Center of Molecular Biology of Inflammation (ZMBE), University of Muenster, Von Esmarch-Str. 56, D-48149, Muenster, Germany; Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105-3678, USA
| | | | | | | | | | | |
Collapse
|
37
|
Goka EA, Vallely PJ, Mutton KJ, Klapper PE. Mutations associated with severity of the pandemic influenza A(H1N1)pdm09 in humans: a systematic review and meta-analysis of epidemiological evidence. Arch Virol 2014; 159:3167-83. [PMID: 25078388 DOI: 10.1007/s00705-014-2179-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/12/2014] [Indexed: 10/25/2022]
Abstract
Mutations in the haemagglutinin (HA), non-structural protein 1 (NS1) and polymerase basic protein 2 (PB2) of influenza viruses have been associated with virulence. This study investigated the association between mutations in these genes in influenza A(H1N1)pdm09 virus and the risk of severe or fatal disease. Searches were conducted on the MEDLINE, EMBASE and Web of Science electronic databases and the reference lists of published studies. The PRISMA and STROBE guidelines were followed in assessing the quality of studies and writing-up. Eighteen (18) studies, from all continents, were included in the systematic review (recruiting patients 0 - 77 years old). The mutation D222G was associated with a significant increase in severe disease (pooled RD: 11 %, 95 % CI: 3.0 % - 18.0 %, p = 0.004) and the risk of fatality (RD: 23 %, 95 % CI: 14.0 %-31.0 %, p = < 0.0001). No association was observed between the mutations HA-D222N, D222E, PB2-E627K and NS1-T123V and severe/fatal disease. The results suggest that no virus quasispecies bearing virulence-conferring mutations in the HA, PB2 and NS1 predominated. However issues of sampling bias, and bias due to uncontrolled confounders such as comorbidities, and viral and bacterial coinfection, should be born in mind. Influenza A viruses should continue to be monitored for the occurrence of virulence-conferring mutations in HA, PB2 and NS1. There are suggestions that respiratory virus coinfections also affect virus virulence. Studies investigating the role of genetic mutations on disease outcome should make efforts to also investigate the role of respiratory virus coinfections.
Collapse
Affiliation(s)
- E A Goka
- Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, University of Manchester, 1st Floor Stopford building, Oxford Road, Manchester, M13 9PL, UK,
| | | | | | | |
Collapse
|
38
|
Hu J, Liu X. Crucial role of PA in virus life cycle and host adaptation of influenza A virus. Med Microbiol Immunol 2014; 204:137-49. [PMID: 25070354 DOI: 10.1007/s00430-014-0349-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/16/2014] [Indexed: 02/01/2023]
Abstract
The PA protein is the third subunit of the polymerase complex of influenza A virus. Compared with the other two polymerase subunits (PB2 and PB1), its precise functions are less defined. However, in recent years, advances in protein expression and crystallization technologies and also the reverse genetics, greatly accelerate our understanding of the essential role of PA in virus infection. Here, we first review the current literature on this remarkably multifunctional viral protein regarding virus life cycle, including viral RNA transcription and replication, viral genome packaging and assembly. We then discuss the various roles of PA in host adaption in avian species and mammals, general virus-host interaction, and host protein synthesis shutoff. We also review the recent findings about the novel proteins derived from PA. Finally, we discuss the prospects of PA as a target for the development of new antiviral approaches and drugs.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | | |
Collapse
|
39
|
Hillesheim A, Nordhoff C, Boergeling Y, Ludwig S, Wixler V. β-catenin promotes the type I IFN synthesis and the IFN-dependent signaling response but is suppressed by influenza A virus-induced RIG-I/NF-κB signaling. Cell Commun Signal 2014; 12:29. [PMID: 24767605 PMCID: PMC4021428 DOI: 10.1186/1478-811x-12-29] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/15/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The replication cycle of most pathogens, including influenza viruses, is perfectly adapted to the metabolism and signal transduction pathways of host cells. After infection, influenza viruses activate several cellular signaling cascades that support their propagation but suppress those that interfere with viral replication. Accumulation of viral RNA plays thereby a central role. Its sensing by the pattern recognition receptors of the host cells leads to the activation of several signal transduction waves that result in induction of genes, responsible for the cellular innate immune response. Type I interferon (IFN) genes and interferon-stimulated genes (ISG) coding for antiviral-acting proteins, such as MxA, OAS-1 or PKR, are primary targets of these signaling cascades. β- and γ-catenin are closely related armadillo repeat-containing proteins with dual roles. At the cell membrane they serve as adapter molecules linking cell-cell contacts to microfilaments. In the cytosol and nucleus, the proteins form a transcriptional complex with the lymphoid enhancer factor/T-cell factor (LEF/TCF), regulating the transcription of many genes, thereby controlling different cellular functions such as cell cycle progression and differentiation. RESULTS In this study, we demonstrate that β- and γ-catenin are important regulators of the innate cellular immune response to influenza A virus (IAV) infections. They inhibit viral replication in lung epithelial cells by enhancing the virus-dependent induction of the IFNB1 gene and interferon-stimulated genes. Simultaneously, the prolonged infection counteracts the antiviral effect of β- and γ-catenin. Influenza viruses suppress β-catenin-dependent transcription by misusing the RIG-I/NF-κB signaling cascade that is induced in the course of infection by viral RNA. CONCLUSION We identified β- and γ-catenin as novel antiviral-acting proteins. While these factors support the induction of common target genes of the cellular innate immune response, their functional activity is suppressed by pathogen evasion.
Collapse
Affiliation(s)
- Andrea Hillesheim
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - Carolin Nordhoff
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - Yvonne Boergeling
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - Stephan Ludwig
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - Viktor Wixler
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| |
Collapse
|
40
|
Abstract
Influenza is caused by influenza A virus (IAV), an enveloped, negative-stranded RNA virus that derives its envelope lipids from the host cell plasma membrane. Here, we examined the functional role of cellular cholesterol in the IAV infection cycle. We show that shifting of cellular cholesterol pools via the Ca2+-regulated membrane-binding protein annexin A6 (AnxA6) affects the infectivity of progeny virus particles. Elevated levels of cellular AnxA6, which decrease plasma membrane and increase late endosomal cholesterol levels, impaired IAV replication and propagation, whereas RNA interference-mediated AnxA6 ablation increased viral progeny titers. Pharmacological accumulation of late endosomal cholesterol also diminished IAV virus propagation. Decreased IAV replication caused by upregulated AnxA6 expression could be restored either by exogenous replenishment of host cell cholesterol or by ectopic expression of the late endosomal cholesterol transporter Niemann-Pick C1 (NPC1). Virus released from AnxA6-overexpressing cells displayed significantly reduced cholesterol levels. Our results show that IAV replication depends on maintenance of the cellular cholesterol balance and identify AnxA6 as a critical factor in linking IAV to cellular cholesterol homeostasis. Influenza A virus (IAV) is a major public health concern, and yet, major host-pathogen interactions regulating IAV replication still remain poorly understood. It is known that host cell cholesterol is a critical factor in the influenza virus life cycle. The viral envelope is derived from the host cell membrane during the process of budding and, hence, equips the virus with a special lipid-protein mixture which is high in cholesterol. However, the influence of host cell cholesterol homeostasis on IAV infection is largely unknown. We show that IAV infection success critically depends on host cell cholesterol distribution. Cholesterol sequestration in the endosomal compartment impairs progeny titer and infectivity and is associated with reduced cholesterol content in the viral envelope.
Collapse
|
41
|
Börgeling Y, Schmolke M, Viemann D, Nordhoff C, Roth J, Ludwig S. Inhibition of p38 mitogen-activated protein kinase impairs influenza virus-induced primary and secondary host gene responses and protects mice from lethal H5N1 infection. J Biol Chem 2013; 289:13-27. [PMID: 24189062 PMCID: PMC3879537 DOI: 10.1074/jbc.m113.469239] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIV) induce severe inflammation in poultry and men. One characteristic of HPAIV infections is the induction of a cytokine burst that strongly contributes to viral pathogenicity. This cell-intrinsic hypercytokinemia seems to involve hyperinduction of p38 mitogen-activated protein kinase. Here we investigate the role of p38 MAPK signaling in the antiviral response against HPAIV in mice as well as in human endothelial cells, the latter being a primary source of cytokines during systemic infections. Global gene expression profiling of HPAIV-infected endothelial cells in the presence of the p38-specific inhibitor SB 202190 revealed that inhibition of p38 MAPK leads to reduced expression of IFNβ and other cytokines after H5N1 and H7N7 infection. More than 90% of all virus-induced genes were either partially or fully dependent on p38 signaling. Moreover, promoter analysis confirmed a direct impact of p38 on the IFNβ promoter activity. Furthermore, upon treatment with IFN or conditioned media from HPAIV-infected cells, p38 controls interferon-stimulated gene expression by coregulating STAT1 by phosphorylation at serine 727. In vivo inhibition of p38 MAPK greatly diminishes virus-induced cytokine expression concomitant with reduced viral titers, thereby protecting mice from lethal infection. These observations show that p38 MAPK acts on two levels of the antiviral IFN response. Initially the kinase regulates IFN induction and, at a later stage, p38 controls IFN signaling and thereby expression of IFN-stimulated genes. Thus, inhibition of MAP kinase p38 may be an antiviral strategy that protects mice from lethal influenza by suppressing excessive cytokine expression.
Collapse
Affiliation(s)
- Yvonne Börgeling
- From the Institute of Molecular Virology, Center for Molecular Biology of Inflammation
| | | | | | | | | | | |
Collapse
|
42
|
Liedmann S, Hrincius ER, Anhlan D, McCullers JA, Ludwig S, Ehrhardt C. New virulence determinants contribute to the enhanced immune response and reduced virulence of an influenza A virus A/PR8/34 variant. J Infect Dis 2013; 209:532-41. [PMID: 23983213 DOI: 10.1093/infdis/jit463] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The identification of amino acid motifs responsible for increased virulence and/or transmission of influenza viruses is of enormous importance to predict pathogenicity of upcoming influenza strains. We phenotypically and genotypically compared 2 variants of influenza virus A/PR/8/34 with different passage histories. The analysis revealed differences in virulence due to an altered type I interferon (IFN) induction, as evidenced by experiments using IFNAR(-/-) mice. Interestingly, these differences were not due to altered functions of the well-known viral IFN antagonists NS1 or PB1-F2. Using reassortant viruses, we showed that differences in the polymerase proteins and nucleoprotein determined the altered virulence. In particular, changes in PB1 and PA contributed to an altered host type I IFN response, indicating IFN antagonistic properties of these proteins. Thus, PB1 and PA appear to harbor previously unknown virulence markers, which may prove helpful in assessing the risk potential of emerging influenza viruses.
Collapse
Affiliation(s)
- Swantje Liedmann
- Institute of Molecular Virology, Center for Molecular Biology of Inflammation, University of Muenster, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Jiménez-Alberto A, Alvarado-Facundo E, Ribas-Aparicio RM, Castelán-Vega JA. Analysis of adaptation mutants in the hemagglutinin of the influenza A(H1N1)pdm09 virus. PLoS One 2013; 8:e70005. [PMID: 23894575 PMCID: PMC3720954 DOI: 10.1371/journal.pone.0070005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/17/2013] [Indexed: 12/17/2022] Open
Abstract
Hemagglutinin is the major surface glycoprotein of influenza viruses. It participates in the initial steps of viral infection through receptor binding and membrane fusion events. The influenza pandemic of 2009 provided a unique scenario to study virus evolution. We performed molecular dynamics simulations with four hemagglutinin variants that appeared throughout the 2009 influenza A (H1N1) pandemic. We found that variant 1 (S143G, S185T) likely arose to avoid immune recognition. Variant 2 (A134T), and variant 3 (D222E, P297S) had an increased binding affinity for the receptor. Finally, variant 4 (E374K) altered hemagglutinin stability in the vicinity of the fusion peptide. Variants 1 and 4 have become increasingly predominant, while variants 2 and 3 declined as the pandemic progressed. Our results show some of the different strategies that the influenza virus uses to adapt to the human host and provide an example of how selective pressure drives antigenic drift in viral proteins.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/metabolism
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza Pandemic, 1918-1919
- Influenza, Human/epidemiology
- Influenza, Human/virology
- Molecular Dynamics Simulation
- Molecular Epidemiology
- Static Electricity
- Surface Properties
- Thermodynamics
Collapse
Affiliation(s)
- Alicia Jiménez-Alberto
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Distrito Federal, Mexico City, Mexico
| | - Esmeralda Alvarado-Facundo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Distrito Federal, Mexico City, Mexico
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Rosa María Ribas-Aparicio
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Distrito Federal, Mexico City, Mexico
| | - Juan A. Castelán-Vega
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Distrito Federal, Mexico City, Mexico
- * E-mail:
| |
Collapse
|
44
|
Lee HK, Tang JWT, Kong DHL, Koay ESC. Simplified large-scale Sanger genome sequencing for influenza A/H3N2 virus. PLoS One 2013; 8:e64785. [PMID: 23741393 PMCID: PMC3669369 DOI: 10.1371/journal.pone.0064785] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/18/2013] [Indexed: 01/03/2023] Open
Abstract
Background The advent of next-generation sequencing technologies and the resultant lower costs of sequencing have enabled production of massive amounts of data, including the generation of full genome sequences of pathogens. However, the small genome size of the influenza virus arguably justifies the use of the more conventional Sanger sequencing technology which is still currently more readily available in most diagnostic laboratories. Results We present a simplified Sanger-based genome sequencing method for sequencing the influenza A/H3N2 virus in a large-scale format. The entire genome sequencing was completed with 19 reverse transcription-polymerase chain reactions (RT-PCRs) and 39 sequencing reactions. This method was tested on 15 native clinical samples and 15 culture isolates, respectively, collected between 2009 and 2011. The 15 native clinical samples registered quantification cycle values ranging from 21.0 to 30.56, which were equivalent to 2.4×103–1.4×106 viral copies/µL of RNA extract. All the PCR-amplified products were sequenced directly without PCR product purification. Notably, high quality sequencing data up to 700 bp were generated for all the samples tested. The completed sequence covered 408,810 nucleotides in total, with 13,627 nucleotides per genome, attaining 100% coding completeness. Of all the bases produced, an average of 89.49% were Phred quality value 40 (QV40) bases (representing an accuracy of circa one miscall for every 10,000 bases) or higher, and an average of 93.46% were QV30 bases (one miscall every 1000 bases) or higher. Conclusions This sequencing protocol has been shown to be cost-effective and less labor-intensive in obtaining full influenza genomes. The constant high quality of sequences generated imparts confidence in extending the application of this non-purified amplicon sequencing approach to other gene sequencing assays, with appropriate use of suitably designed primers.
Collapse
Affiliation(s)
- Hong Kai Lee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Molecular Diagnosis Centre, Department of Laboratory Medicine, National University Hospital, National University Health System, Singapore
| | - Julian Wei-Tze Tang
- Alberta Provincial Laboratory for Public Health, University of Alberta Hospital, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Debra Han-Lin Kong
- Molecular Diagnosis Centre, Department of Laboratory Medicine, National University Hospital, National University Health System, Singapore
| | - Evelyn Siew-Chuan Koay
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Molecular Diagnosis Centre, Department of Laboratory Medicine, National University Hospital, National University Health System, Singapore
- * E-mail:
| |
Collapse
|
45
|
Ehrhardt C, Dudek SE, Holzberg M, Urban S, Hrincius ER, Haasbach E, Seyer R, Lapuse J, Planz O, Ludwig S. A plant extract of Ribes nigrum folium possesses anti-influenza virus activity in vitro and in vivo by preventing virus entry to host cells. PLoS One 2013; 8:e63657. [PMID: 23717460 PMCID: PMC3662772 DOI: 10.1371/journal.pone.0063657] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/04/2013] [Indexed: 11/18/2022] Open
Abstract
Infections with influenza A viruses (IAV) are still amongst the major causes of highly contagious severe respiratory diseases not only bearing a devastating effect to human health, but also significantly impact the economy. Besides vaccination that represents the best option to protect from IAV infections, only two classes of anti-influenza drugs, inhibitors of the M2 ion channel and the neuraminidase, often causing resistant IAV variants have been approved. That is why the need for effective and amply available antivirals against IAV is of high priority. Here we introduce LADANIA067 from the leaves of the wild black currant (Ribes nigrum folium) as a potent compound against IAV infections in vitro and in vivo. LADANIA067 treatment resulted in a reduction of progeny virus titers in cell cultures infected with prototype avian and human influenza virus strains of different subtypes. At the effective dose of 100 µg/ml the extract did not exhibit apparent harming effects on cell viability, metabolism or proliferation. Further, viruses showed no tendency to develop resistance to LADANIA067 when compared to amantadine that resulted in the generation of resistant variants after only a few passages. On a molecular basis the protective effect of LADANIA067 appears to be mainly due to interference with virus internalisation. In the mouse infection model LADANIA067 treatment reduces progeny virus titers in the lung upon intranasal application. In conclusion, an extract from the leaves of the wild black currant might be a promising source for the development of new antiviral compounds to fight IAV infections.
Collapse
Affiliation(s)
- Christina Ehrhardt
- Institute of Molecular Virology (IMV), Centre of Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-University of Muenster, Muenster, Germany
| | - Sabine Eva Dudek
- Institute of Molecular Virology (IMV), Centre of Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-University of Muenster, Muenster, Germany
| | - Magdalena Holzberg
- Institute of Molecular Virology (IMV), Centre of Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-University of Muenster, Muenster, Germany
| | - Sabine Urban
- Institute of Molecular Virology (IMV), Centre of Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-University of Muenster, Muenster, Germany
| | - Eike Roman Hrincius
- Institute of Molecular Virology (IMV), Centre of Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-University of Muenster, Muenster, Germany
| | - Emanuel Haasbach
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Roman Seyer
- Institute of Molecular Virology (IMV), Centre of Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-University of Muenster, Muenster, Germany
| | - Julia Lapuse
- Dr. Pandalis NatUrprodukte GmbH, Glandorf, Germany
| | - Oliver Planz
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Stephan Ludwig
- Institute of Molecular Virology (IMV), Centre of Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-University of Muenster, Muenster, Germany
- * E-mail:
| |
Collapse
|
46
|
Ehrhardt C, Rückle A, Hrincius ER, Haasbach E, Anhlan D, Ahmann K, Banning C, Reiling SJ, Kühn J, Strobl S, Vitt D, Leban J, Planz O, Ludwig S. The NF-κB inhibitor SC75741 efficiently blocks influenza virus propagation and confers a high barrier for development of viral resistance. Cell Microbiol 2013; 15:1198-211. [PMID: 23320394 DOI: 10.1111/cmi.12108] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 12/16/2012] [Accepted: 01/08/2013] [Indexed: 11/30/2022]
Abstract
Ongoing human infections with highly pathogenic avian H5N1 viruses and the emergence of the pandemic swine-origin influenza viruses (IV) highlight the permanent threat elicited by these pathogens. Occurrence of resistant seasonal and pandemic strains against the currently licensed antiviral medications points to the urgent need for new and amply available anti-influenza drugs. The recently identified virus-supportive function of the cellular IKK/NF-κB signalling pathway suggests this signalling module as a potential target for antiviral intervention. We characterized the NF-κB inhibitor SC75741 as a broad and efficient blocker of IV replication in non-toxic concentrations. The underlying molecular mechanism of SC75741 action involves impaired DNA binding of the NF-κB subunit p65, resulting in reduced expression of cytokines, chemokines, and pro-apoptotic factors, subsequent inhibition of caspase activation and block of caspase-mediated nuclear export of viralribonucleoproteins. SC75741 reduces viral replication and H5N1-induced IL-6 and IP-10 expression in the lung of infected mice. Besides its virustatic effect the drug suppresses virus-induced overproduction of cytokines and chemokines, suggesting that it might prevent hypercytokinemia that is discussed to be an important pathogenicity determinant of highly pathogenic IV. Importantly the drug exhibits a high barrier for development of resistant virus variants. Thus, SC75741-derived drugs may serve as broadly non-toxic anti-influenza agents.
Collapse
Affiliation(s)
- Christina Ehrhardt
- ZMBE, Institute of Molecular Virology (IMV), Von Esmarch-Str. 56, D-48149, Muenster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Obuchi M, Toda S, Tsukagoshi H, Oogane T, Abiko C, Funatogawa K, Mizuta K, Shirabe K, Kozawa K, Noda M, Kimura H, Tashiro M. Molecular analysis of genome of the pandemic influenza A(H1N1) 2009 virus associated with fatal infections in Gunma, Tochigi, Yamagata, and Yamaguchi prefectures in Japan during the first pandemic wave. Jpn J Infect Dis 2012; 65:363-7. [PMID: 22814167 DOI: 10.7883/yoken.65.363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Masatsugu Obuchi
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan. masatsugu.obuchi@pref.toyama.lg.jp
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Khoufache K, Berri F, Nacken W, Vogel AB, Delenne M, Camerer E, Coughlin SR, Carmeliet P, Lina B, Rimmelzwaan GF, Planz O, Ludwig S, Riteau B. PAR1 contributes to influenza A virus pathogenicity in mice. J Clin Invest 2012. [PMID: 23202729 DOI: 10.1172/jci61667] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Influenza causes substantial morbidity and mortality, and highly pathogenic and drug-resistant strains are likely to emerge in the future. Protease-activated receptor 1 (PAR1) is a thrombin-activated receptor that contributes to inflammatory responses at mucosal surfaces. The role of PAR1 in pathogenesis of virus infections is unknown. Here, we demonstrate that PAR1 contributed to the deleterious inflammatory response after influenza virus infection in mice. Activating PAR1 by administering the agonist TFLLR-NH2 decreased survival and increased lung inflammation after influenza infection. Importantly, both administration of a PAR1 antagonist and PAR1 deficiency protected mice from infection with influenza A viruses (IAVs). Treatment with the PAR1 agonist did not alter survival of mice deficient in plasminogen (PLG), which suggests that PLG permits and/or interacts with a PAR1 function in this model. PAR1 antagonists are in human trials for other indications. Our findings suggest that PAR1 antagonism might be explored as a treatment for influenza, including that caused by highly pathogenic H5N1 and oseltamivir-resistant H1N1 viruses.
Collapse
Affiliation(s)
- Khaled Khoufache
- Virologie et Pathologie Humaine, EA 4610, Université Lyon1, Faculté de Médecine RTH Laennec, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Niemann S, Ehrhardt C, Medina E, Warnking K, Tuchscherr L, Heitmann V, Ludwig S, Peters G, Löffler B. Combined action of influenza virus and Staphylococcus aureus panton-valentine leukocidin provokes severe lung epithelium damage. J Infect Dis 2012; 206:1138-48. [PMID: 22837490 PMCID: PMC3433859 DOI: 10.1093/infdis/jis468] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus necrotizing pneumonia is a life-threatening disease that is frequently preceded by influenza infection. The S. aureus toxin Panton–Valentine leukocidin (PVL) is most likely causative for necrotizing diseases, but the precise pathogenic mechanisms of PVL and a possible contribution of influenza virus remain to be elucidated. In this study, we present a model that explains how influenza virus and PVL act together to cause necrotizing pneumonia: an influenza infection activates the lung epithelium to produce chemoattractants for neutrophils. Upon superinfection with PVL-expressing S. aureus, the recruited neutrophils are rapidly killed by PVL, resulting in uncontrolled release of neutrophil proteases that damage the airway epithelium. The host counteracts this pathogen strategy by generating PVL-neutralizing antibodies and by neutralizing the released proteases via protease inhibitors present in the serum. These findings explain why necrotizing infections mainly develop in serum-free spaces (eg, pulmonary alveoli) and open options for new therapeutic approaches.
Collapse
Affiliation(s)
- Silke Niemann
- Institute of Medical Microbiology, University Hospital of Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ducatez MF, Ilyushina NA, Fabrizio TP, Rehg JE, Bovin NV, Webster RG, Webby RJ. Both influenza hemagglutinin and polymerase acidic genes are important for delayed pandemic 2009 H1N1 virus clearance in the ferret model. Virology 2012; 432:389-93. [PMID: 22809692 DOI: 10.1016/j.virol.2012.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/04/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
Abstract
We previously showed that a pandemic virus, A/Tennessee/560/09(H1N1), had the potential to adapt to human bronchial epithelial cells by the acquisition of hemagglutinin (HA) K154Q and polymerase acidic (PA) protein L295P mutations that conferred a more virulent phenotype. To better elucidate the role of each mutations, we generated recombinant viruses carrying single mutations or both mutations concurrently. The replication of all mutant viruses was significantly higher than that of the wild-type A/Tennessee/560/09 virus in human cells. The HA K154Q mutation reduced the receptor binding affinity of A/Tennessee/560/09 virus to 6-Su-6'SLN and biantennary 6'SLN receptors. In ferrets, H1N1 virus with HA K154Q and PA L295P mutations exhibited significantly higher titers in the upper respiratory tract compared to all other viruses 6 days post-infection. Our results suggest that both single mutations HA K154Q and PA L295P are necessary for delayed virus clearance of A/Tennessee/560/09(H1N1) influenza virus in a ferret animal model.
Collapse
Affiliation(s)
- Mariette F Ducatez
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | | | | | | | | | | | | |
Collapse
|