1
|
Le NTP, Ngo KX, Nguyen TTN, Tran LT, Nguyen HD. Imaging oligomers of alpha-toxin (Hla) variants using high-speed AFM and neutralizing Hla hemolytic activity with their antisera. Arch Biochem Biophys 2025; 768:110403. [PMID: 40147500 DOI: 10.1016/j.abb.2025.110403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Alpha-toxin (Hla) variants, such as the toxoids HlaH35A, HlaH35L, and HlaH35LH48L, have been shown to lack hemolytic activity and present promising antigen sources for vaccine development against S. aureus. The His35 site is critical in the oligomerization process of Hla during transmembrane pore formation, leading to cell lysis. This study employed high-speed atomic force microscopy (HS-AFM) to image the structures of HlaH35A, HlaH35L, and HlaH35LH48L proteins on POPC/Chol lipid membranes. Single-site His35 mutations (HlaH35A, HlaH35L) could form oligomer structures, whereas the double-site HlaH35LH48L mutation resulted in the monomer state. These HS-AFM findings confirm that the region between His35 and His48 is crucial for protomer-protomer interactions essential for oligomerization and pore formation. Hemolytic activity of wild-type Hla on red blood cells (RBCs) was significantly reduced when mixed with HlaH35A, HlaH35L, or HlaH35LH48L at weight ratios 1:5 (HlaWT:toxoid) or higher. However, these toxoids exhibited weak neutralization activities at lower mixing ratios with HlaWT. The increased anti-Hla antibodies (IgG) in mice treated with these Hla toxoids have emerged as a potential treatment avenue to neutralize the hemolytic activity of the HlaWT toxin on RBCs. Serum analysis from mice injected with HlaH35A, HlaH35L, and HlaH35LH48L toxoids showed that these sera could neutralize the hemolytic activity of the HlaWT toxin. Thus, these Hla variants are promising candidates for developing supportive treatments for S. aureus infections.
Collapse
Affiliation(s)
- Ngan Thi Phuong Le
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam.
| | - Kien Xuan Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Trinh Thi Ngoc Nguyen
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam.
| | - Linh-Thuoc Tran
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam.
| | - Hoang Duc Nguyen
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
2
|
Speziale P, Foster TJ, Arciola CR. The endothelium at the interface between tissues and Staphylococcus aureus in the bloodstream. Clin Microbiol Rev 2025; 38:e0009824. [PMID: 39807893 PMCID: PMC11905367 DOI: 10.1128/cmr.00098-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
SUMMARYStaphylococcus aureus is a major human pathogen. It can cause many types of infections, in particular bacteremia, which frequently leads to infective endocarditis, osteomyelitis, sepsis, and other debilitating diseases. The development of secondary infections is based on the bacterium's ability to associate with endothelial cells lining blood vessels. The success of endothelial colonization and infection by S. aureus relies on its ability to express a wide array of cell wall-anchored and secreted virulence factors. Establishment of endothelial infection by the pathogen is a multistep process involving adhesion, invasion, extravasation, and dissemination of the bacterium into surrounding tissues. The process is dependent on the type of endothelium in different organs (tissues) and pathogenetic potential of the individual strains. In this review, we report an update on the organization of the endothelium in the vessels, the structure and function of the virulence factors of S. aureus, and the several aspects of bacteria-endothelial cell interactions. After these sections, we will discuss recent advances in understanding the specific mechanisms of infections that develop in the heart, bone and joints, lung, and brain. Finally, we describe how neutrophils bind to endothelial cells, migrate to the site of infection to kill bacteria in the tissues, and how staphylococci counteract neutrophils' actions. Knowledge of the molecular details of S. aureus-endothelial cell interactions will promote the development of new therapeutic strategies and tools to combat this formidable pathogen.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | | | - Carla Renata Arciola
- Laboratory of Pathology of Implant Infections, Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Sheykhsaran E, Abbasi A, Memar MY, Ghotaslou R, Baghi HB, Mazraeh FN, Laghousi D, Sadeghi J. The role of Staphylococcus aureus in cystic fibrosis pathogenesis and clinico-microbiological interactions. Diagn Microbiol Infect Dis 2024; 109:116294. [PMID: 38678689 DOI: 10.1016/j.diagmicrobio.2024.116294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/05/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
Cystic fibrosis (CF) is a progressive and inherited disease that affects approximately 70000 individuals all over the world annually. A mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene serves as its defining feature. Bacterial infections have a significant impact on the occurrence and development of CF. In this manuscript, we discuss the role and virulence factors of Staphylococcus aureus as an important human pathogen with the ability to induce respiratory tract infections. Recent studies have reported S. aureus as the first isolated bacteria in CF patients. Methicillin-resistant Staphylococcus aureus (MRSA) pathogens are approximately resistant to all β-lactams. CF patients are colonized by MRSA expressing various virulence factors including toxins, and Staphylococcal Cassette Chromosome mec (SCCmec) types, and have the potential for biofilm formation. Therefore, variations in clinical outcomes will be manifested. SCCmec type II has been reported in CF patients more than in other SCCmec types from different countries. The small-colony variants (SCVs) as specific morphologic subtypes of S. aureus with slow growth and unusual properties can also contribute to persistent and difficult-to-treat infections in CF patients. The pathophysiology of SCVs is complicated and not fully understood. Patients with cystic fibrosis should be aware of the intrinsic risk factors for complex S. aureus infections, including recurring infections, physiological issues, or coinfection with P. aeruginosa.
Collapse
Affiliation(s)
- Elham Sheykhsaran
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Naeimi Mazraeh
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Delara Laghousi
- Social Determinants of Health Research Center, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadeghi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Tuffs SW, Dufresne K, Rishi A, Walton NR, McCormick JK. Novel insights into the immune response to bacterial T cell superantigens. Nat Rev Immunol 2024; 24:417-434. [PMID: 38225276 DOI: 10.1038/s41577-023-00979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Bacterial T cell superantigens (SAgs) are a family of microbial exotoxins that function to activate large numbers of T cells simultaneously. SAgs activate T cells by direct binding and crosslinking of the lateral regions of MHC class II molecules on antigen-presenting cells with T cell receptors (TCRs) on T cells; these interactions alter the normal TCR-peptide-MHC class II architecture to activate T cells in a manner that is independent of the antigen specificity of the TCR. SAgs have well-recognized, central roles in human diseases such as toxic shock syndrome and scarlet fever through their quantitative effects on the T cell response; in addition, numerous other consequences of SAg-driven T cell activation are now being recognized, including direct roles in the pathogenesis of endocarditis, bloodstream infections, skin disease and pharyngitis. In this Review, we summarize the expanding family of bacterial SAgs and how these toxins can engage highly diverse adaptive immune receptors. We highlight recent findings regarding how SAg-driven manipulation of the adaptive immune response may operate in multiple human diseases, as well as contributing to the biology and life cycle of SAg-producing bacterial pathogens.
Collapse
Affiliation(s)
- Stephen W Tuffs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Karine Dufresne
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Aanchal Rishi
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Nicholas R Walton
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - John K McCormick
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
5
|
Schlievert PM. Staphylococcal Enterotoxin B and C Mutants and Vaccine Toxoids. Microbiol Spectr 2023; 11:e0444622. [PMID: 36815779 PMCID: PMC10101070 DOI: 10.1128/spectrum.04446-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/26/2023] [Indexed: 02/24/2023] Open
Abstract
Three mutants individually of both staphylococcal enterotoxins B and C were prepared by site-specific mutagenesis of enterotoxin amino acids that contact host T lymphocyte immune cell receptor sites (N23A, Q210A, and N23A/Q210A); these amino acids are shared between the two enterotoxins, and mutations reduce the interaction with the variable part of the β-chain of the T lymphocyte receptor. The mutant proteins, as expressed in Staphylococcus aureus RN4220, lacked biological toxicity as measured by the loss of (i) stimulation of rabbit splenocyte proliferation, (ii) pyrogenicity, and (iii) the ability to enhance the lethality of endotoxin shock, compared to wild-type enterotoxins. In addition, the mutants were able to vaccinate rabbits against pyrogenicity, the enhancement of endotoxin shock, and lethality in a pneumonia model when animals were challenged with methicillin-resistant S. aureus. Three vaccine injections (one primary and two boosters) protected rabbits for at least 3.5 months postvaccination when challenged with wild-type enterotoxins (last time point tested). These mutant proteins have the potential to function as toxoid vaccines against these two causes of nonmenstrual toxic shock syndrome (TSS). IMPORTANCE Toxic shock syndrome toxin 1 (TSST-1) and staphylococcal enterotoxins B and C cause the majority of cases of staphylococcal toxic shock syndrome. Previously, vaccine toxoids of TSST-1 have been prepared. In this study, vaccine toxoids of enterotoxins B and C were prepared. The toxoids lost biological toxicity but were able to vaccinate rabbits against lethal TSS.
Collapse
Affiliation(s)
- Patrick M. Schlievert
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Schlievert PM, Kilgore SH, Beck LA, Yoshida T, Klingelhutz AJ, Leung DYM. Host Cationic Antimicrobial Molecules Inhibit S. aureus Exotoxin Production. mSphere 2023; 8:e0057622. [PMID: 36598227 PMCID: PMC9942567 DOI: 10.1128/msphere.00576-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/02/2022] [Indexed: 01/05/2023] Open
Abstract
Innate immune molecules, including antimicrobial peptides (for example, defensins) and lysozyme, function to delay or prevent bacterial infections. These molecules are commonly found on mucosal and skin surfaces. Staphylococcus aureus is a common pathogen and causes millions of infections annually. It is well known that innate immune molecules, such as defensins and lysozyme, either poorly inhibit or do not inhibit the growth of S. aureus. Our current studies show that the α-defensin human neutrophil α-defensin-1 (HNP-1) and lysozyme inhibit exotoxin production, both hemolysins and superantigens, which are required for S. aureus infection. HNP-1 inhibited exotoxin production at concentrations as low as 0.001 μg/mL. Lysozyme inhibited exotoxin production at 0.05 to 0.5 μg/mL. Both HNP-1 and lysozyme functioned through at least one two-component system (SrrA/B). The β-defensin human β-defensin 1 (HBD-1) inhibited hemolysin but not superantigen production. The cation chelator S100A8/A9 (calprotectin), compared to EDTA, was tested for the ability to inhibit exotoxin production. EDTA at high concentrations inhibited exotoxin production; these were the same concentrations that interfered with staphylococcal growth. S100A8/A9 at the highest concentration tested (10 μg/mL) had no effect on S. aureus growth but enhanced exotoxin production. Lower concentrations had no effect on growth or exotoxin production. Lysostaphin is regularly used to lyse S. aureus. The lytic concentrations of lysostaphin were the only concentrations that also inhibited growth and exotoxin production. Our studies demonstrate that a major activity of innate defensin peptides and lysozyme is inhibition of staphylococcal exotoxin production but not inhibition of growth. IMPORTANCE Staphylococcus aureus causes large numbers of both relatively benign and serious human infections, which are mediated in large part by the organisms' secreted exotoxins. Since 1921, it has been known that lysozyme and, as shown later in the 1900s, other innate immune peptides, including human neutrophil α-defensin-1 (HNP-1) and human β-defensin 1 (HBD-1), are either not antistaphylococcal or are only weakly inhibitory to growth. Our study confirms those findings but, importantly, shows that at subgrowth inhibitory concentrations, these positively charged innate immune peptides inhibit exotoxin production, including both hemolysins and the superantigen toxic shock syndrome toxin-1. The data show that the principal activity of innate immune peptides in the host is likely to be inhibition of exotoxin production required for staphylococcal mucosal or skin colonization rather than growth inhibition.
Collapse
Affiliation(s)
- Patrick M. Schlievert
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Samuel H. Kilgore
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Lisa A. Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Takeshi Yoshida
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Aloysius J. Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | |
Collapse
|
7
|
Cross-Protection against Acute Staphylococcus aureus Lung Infection in Mice by a D-Glutamate Auxotrophic Vaccine Candidate. Vaccines (Basel) 2023; 11:vaccines11020210. [PMID: 36851088 PMCID: PMC9963018 DOI: 10.3390/vaccines11020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Staphylococcus aureus is regarded as a threatening bacterial pathogen causing invasive pneumonia in healthcare settings and in the community. The continuous emergence of multidrug resistant strains is narrowing the treatment options for these infections. The development of an effective S. aureus vaccine is, therefore, a global priority. We have previously developed a vaccine candidate, 132 ΔmurI Δdat, which is auxotrophic for D-glutamate, and protects against sepsis caused by S. aureus. In the present study, we explored the potential of this vaccine candidate to prevent staphylococcal pneumonia, by using an acute lung infection model in BALB/c mice. Intranasal inoculation of the vaccine strain yielded transitory colonization of the lung tissue, stimulated production of relevant serum IgG and secretory IgA antibodies in the lung and distal vaginal mucosa and conferred cross-protection to acute pneumonia caused by clinically important S. aureus strains. Although these findings are promising, additional research is needed to minimize dose-dependent toxicity for safer intranasal immunization with this vaccine candidate.
Collapse
|
8
|
Oral Administration with Recombinant Attenuated Regulated Delayed Lysis Salmonella Vaccines Protecting against Staphylococcus aureus Kidney Abscess Formation. Vaccines (Basel) 2022; 10:vaccines10071073. [PMID: 35891237 PMCID: PMC9324569 DOI: 10.3390/vaccines10071073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Abscess formation is one of the main symptoms of Staphylococcus aureus infection. It is very important to inhibit abscess formation for preventing S. aureus persistent infection. To find a feasible solution, the live oral vaccines delivering S. aureus antigens, rEsxAB and rHlam, were constructed, which were based on the attenuated regulated delayed lysis Salmonella enterica subspecies Serovar Typhimurium strain χ11802, and the inhibiting effect on abscess formation was evaluated in mice kidneys. As the results showed, after oral administration, humoral immunity was induced via the mucosal route as the antigen-specific IgG in the serum and IgA in the intestinal mucus both showed significant increases. Meanwhile, the production of IFN-γ and IL-17 in the kidney tissue suggested that Th1/Th17-biased cellular immunity played a role in varying degrees. After challenged intravenously (i.v.) with S. aureus USA300, the χ11802(pYA3681−esxAB)-vaccinated group showed obvious inhibition in kidney abscess formation among the vaccinated group, as the kidney abscess incidence rate and the staphylococcal load significantly reduced, and the kidney pathological injury was improved significantly. In conclusion, this study provided experimental data and showed great potential for live oral vaccine development with the attenuated regulated delayed lysis Salmonella Typhimurium strains against S. aureus infection.
Collapse
|
9
|
Han X, Ortines R, Mukherjee I, Kanipakala T, Kort T, Sherchand SP, Liao G, Mednikov M, Chenine AL, Aman MJ, Nykiforuk CL, Adhikari RP. Hyperimmune Targeting Staphylococcal Toxins Effectively Protect Against USA 300 MRSA Infection in Mouse Bacteremia and Pneumonia Models. Front Immunol 2022; 13:893921. [PMID: 35655774 PMCID: PMC9152286 DOI: 10.3389/fimmu.2022.893921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus has been acquiring multiple drug resistance and has evolved into superbugs such as Methicillin/Vancomycin-resistant S. aureus (MRSA/VRSA) and, consequently, is a major cause of nosocomial and community infections associated with high morbidity and mortality for which no FDA-approved vaccines or biotherapeutics are available. Previous efforts targeting the surface-associated antigens have failed in clinical testing. Here, we generated hyperimmune products from sera in rabbits against six major S. aureus toxins targeted by an experimental vaccine (IBT-V02) and demonstrated significant efficacy for an anti-virulence passive immunization strategy. Extensive in vitro binding and neutralizing titers were analyzed against six extracellular toxins from individual animal sera. All IBT-V02 immunized animals elicited the maximum immune response upon the first boost dose against all pore-forming vaccine components, while for superantigen (SAgs) components of the vaccine, second and third doses of a boost were needed to reach a plateau in binding and toxin neutralizing titers. Importantly, both anti-staphylococcus hyperimmune products consisting of full-length IgG (IBT-V02-IgG) purified from the pooled sera and de-speciated F(ab')2 (IBT-V02-F(ab')2) retained the binding and neutralizing titers against IBT-V02 target toxins. F(ab')2 also exhibited cross-neutralization titers against three leukotoxins (HlgAB, HlgCB, and LukED) and four SAgs (SEC1, SED, SEK, and SEQ) which were not part of IBT-V02. F(ab')2 also neutralized toxins in bacterial culture supernatant from major clinical strains of S. aureus. In vivo efficacy data generated in bacteremia and pneumonia models using USA300 S. aureus strain demonstrated dose-dependent protection by F(ab')2. These efficacy data confirmed the staphylococcal toxins as viable targets and support the further development effort of hyperimmune products as a potential adjunctive therapy for emergency uses against life-threatening S. aureus infections.
Collapse
Affiliation(s)
- Xiaobing Han
- Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, MB, Canada.,Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Roger Ortines
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | - Ipsita Mukherjee
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | | | - Thomas Kort
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | | | - Grant Liao
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | - Mark Mednikov
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | - Agnes L Chenine
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | - M Javad Aman
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | - Cory L Nykiforuk
- Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, MB, Canada
| | - Rajan P Adhikari
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| |
Collapse
|
10
|
Kinney KJ, Tang SS, Wu XJ, Tran PM, Bharadwaj NS, Gibson-Corley KN, Forsythe AN, Kulhankova K, Gumperz JE, Salgado-Pabón W. SEC is an antiangiogenic virulence factor that promotes Staphylococcus aureus endocarditis independent of superantigen activity. SCIENCE ADVANCES 2022; 8:eabo1072. [PMID: 35544579 PMCID: PMC9094652 DOI: 10.1126/sciadv.abo1072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
The superantigen staphylococcal enterotoxin C (SEC) is critical for Staphylococcus aureus infective endocarditis (SAIE) in rabbits. Superantigenicity, its hallmark function, was proposed to be a major underlying mechanism driving SAIE but was not directly tested. With the use of S. aureus MW2 expressing SEC toxoids, we show that superantigenicity does not sufficiently account for vegetation growth, myocardial inflammation, and acute kidney injury in the rabbit model of native valve SAIE. These results highlight the critical contribution of an alternative function of superantigens to SAIE. In support of this, we provide evidence that SEC exerts antiangiogenic effects by inhibiting branching microvessel formation in an ex vivo rabbit aortic ring model and by inhibiting endothelial cell expression of one of the most potent mediators of angiogenesis, VEGF-A. SEC's ability to interfere with tissue revascularization and remodeling after injury serves as a mechanism to promote SAIE and its life-threatening systemic pathologies.
Collapse
Affiliation(s)
- Kyle J. Kinney
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Sharon S. Tang
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Xiao-Jun Wu
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Phuong M. Tran
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Nikhila S. Bharadwaj
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine N. Gibson-Corley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ana N. Forsythe
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | | | - Jenny E. Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Wilmara Salgado-Pabón
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
11
|
Jahantigh HR, Faezi S, Habibi M, Mahdavi M, Stufano A, Lovreglio P, Ahmadi K. The Candidate Antigens to Achieving an Effective Vaccine against Staphylococcus aureus. Vaccines (Basel) 2022; 10:vaccines10020199. [PMID: 35214658 PMCID: PMC8876328 DOI: 10.3390/vaccines10020199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic pathogen that causes various inflammatory local infections, from those of the skin to postinfectious glomerulonephritis. These infections could result in serious threats, putting the life of the patient in danger. Antibiotic-resistant S. aureus could lead to dramatic increases in human mortality. Antibiotic resistance would explicate the failure of current antibiotic therapies. So, it is obvious that an effective vaccine against S. aureus infections would significantly reduce costs related to care in hospitals. Bacterial vaccines have important impacts on morbidity and mortality caused by several common pathogens, however, a prophylactic vaccine against staphylococci has not yet been produced. During the last decades, the efforts to develop an S. aureus vaccine have faced two major failures in clinical trials. New strategies for vaccine development against S. aureus has supported the use of multiple antigens, the inclusion of adjuvants, and the focus on various virulence mechanisms. We aimed to present a compressive review of different antigens of S. aureus and also to introduce vaccine candidates undergoing clinical trials, from which can help us to choose a suitable and effective candidate for vaccine development against S. aureus.
Collapse
Affiliation(s)
- Hamid Reza Jahantigh
- Animal Health and Zoonosis, Department of Veterinary Medicine, University of Bari, 70010 Bari, Italy;
- Interdisciplinary Department of Medicine, Section of Occupational Medicine, University of Bari, 70010 Bari, Italy;
- Correspondence: (H.R.J.); (K.A.); Tel.: +39-3773827669 (H.R.J.)
| | - Sobhan Faezi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht 41937, Iran;
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran;
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran 1517964311, Iran
- Recombinant Vaccine Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13164, Iran;
| | - Angela Stufano
- Animal Health and Zoonosis, Department of Veterinary Medicine, University of Bari, 70010 Bari, Italy;
- Interdisciplinary Department of Medicine, Section of Occupational Medicine, University of Bari, 70010 Bari, Italy;
| | - Piero Lovreglio
- Interdisciplinary Department of Medicine, Section of Occupational Medicine, University of Bari, 70010 Bari, Italy;
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 79391, Iran
- Correspondence: (H.R.J.); (K.A.); Tel.: +39-3773827669 (H.R.J.)
| |
Collapse
|
12
|
Karauzum H, Venkatasubramaniam A, Adhikari RP, Kort T, Holtsberg FW, Mukherjee I, Mednikov M, Ortines R, Nguyen NTQ, Doan TMN, Diep BA, Lee JC, Aman MJ. IBT-V02: A Multicomponent Toxoid Vaccine Protects Against Primary and Secondary Skin Infections Caused by Staphylococcus aureus. Front Immunol 2021; 12:624310. [PMID: 33777005 PMCID: PMC7987673 DOI: 10.3389/fimmu.2021.624310] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus causes a wide range of diseases from skin infections to life threatening invasive diseases such as bacteremia, endocarditis, pneumonia, surgical site infections, and osteomyelitis. Skin infections such as furuncles, carbuncles, folliculitis, erysipelas, and cellulitis constitute a large majority of infections caused by S. aureus (SA). These infections cause significant morbidity, healthcare costs, and represent a breeding ground for antimicrobial resistance. Furthermore, skin infection with SA is a major risk factor for invasive disease. Here we describe the pre-clinical efficacy of a multicomponent toxoid vaccine (IBT-V02) for prevention of S. aureus acute skin infections and recurrence. IBT-V02 targets six SA toxins including the pore-forming toxins alpha hemolysin (Hla), Panton-Valentine leukocidin (PVL), leukocidin AB (LukAB), and the superantigens toxic shock syndrome toxin-1 and staphylococcal enterotoxins A and B. Immunization of mice and rabbits with IBT-V02 generated antibodies with strong neutralizing activity against toxins included in the vaccine, as well as cross-neutralizing activity against multiple related toxins, and protected against skin infections by several clinically relevant SA strains of USA100, USA300, and USA1000 clones. Efficacy of the vaccine was also shown in non-naïve mice pre-exposed to S. aureus. Furthermore, vaccination with IBT-V02 not only protected mice from a primary infection but also demonstrated lasting efficacy against a secondary infection, while prior challenge with the bacteria alone was unable to protect against recurrence. Serum transfer studies in a primary infection model showed that antibodies are primarily responsible for the protective response.
Collapse
Affiliation(s)
| | | | | | - Tom Kort
- Integrated BioTherapeutics, Rockville, MD, United States
| | | | | | - Mark Mednikov
- Integrated BioTherapeutics, Rockville, MD, United States
| | - Roger Ortines
- Integrated BioTherapeutics, Rockville, MD, United States
| | - Nhu T. Q. Nguyen
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Thien M. N. Doan
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Binh An Diep
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jean C. Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - M. Javad Aman
- Integrated BioTherapeutics, Rockville, MD, United States
| |
Collapse
|
13
|
Venkatasubramaniam A, Liao G, Cho E, Adhikari RP, Kort T, Holtsberg FW, Elsass KE, Kobs DJ, Rudge TL, Kauffman KD, Lora NE, Barber DL, Aman MJ, Karauzum H. Safety and Immunogenicity of a 4-Component Toxoid-Based Staphylococcus aureus Vaccine in Rhesus Macaques. Front Immunol 2021; 12:621754. [PMID: 33717122 PMCID: PMC7947289 DOI: 10.3389/fimmu.2021.621754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is a leading cause of significant morbidity and mortality and an enormous economic burden to public health worldwide. Infections caused by methicillin-resistant S. aureus (MRSA) pose a major threat as MRSA strains are becoming increasingly prevalent and multi-drug resistant. To this date, vaccines targeting surface-bound antigens demonstrated promising results in preclinical testing but have failed in clinical trials. S. aureus pathogenesis is in large part driven by immune destructive and immune modulating toxins and thus represent promising vaccine targets. Hence, the objective of this study was to evaluate the safety and immunogenicity of a staphylococcal 4-component vaccine targeting secreted bi-component pore-forming toxins (BCPFTs) and superantigens (SAgs) in non-human primates (NHPs). The 4-component vaccine proved to be safe, even when repeated vaccinations were given at a dose that is 5 to 10- fold higher than the proposed human dose. Vaccinated rhesus macaques did not exhibit clinical signs, weight loss, or changes in hematology or serum chemistry parameters related to the administration of the vaccine. No acute, vaccine-related elevation of serum cytokine levels was observed after vaccine administration, confirming the toxoid components lacked superantigenicity. Immunized animals demonstrated high level of toxin-specific total and neutralizing antibodies toward target antigens of the 4-component vaccine as well as cross-neutralizing activity toward staphylococcal BCPFTs and SAgs that are not direct targets of the vaccine. Cross-neutralization was also observed toward the heterologous streptococcal pyogenic exotoxin B. Ex vivo stimulation of PBMCs with individual vaccine components demonstrated an overall increase in several T cell cytokines measured in supernatants. Immunophenotyping of CD4 T cells ex vivo showed an increase in Ag-specific polyfunctional CD4 T cells in response to antigen stimulation. Taken together, we demonstrate that the 4-component vaccine is well-tolerated and immunogenic in NHPs generating both humoral and cellular immune responses. Targeting secreted toxin antigens could be the next-generation vaccine approach for staphylococcal vaccines if also proven to provide efficacy in humans.
Collapse
Affiliation(s)
| | - Grant Liao
- Integrated BioTherapeutics, Rockville, MD, United States
| | - Eunice Cho
- Integrated BioTherapeutics, Rockville, MD, United States
| | | | - Tom Kort
- Integrated BioTherapeutics, Rockville, MD, United States
| | | | | | - Dean J. Kobs
- Batelle - West Jefferson, West Jefferson, OH, United States
| | | | - Keith D. Kauffman
- Laboratory of Parasitic Diseases, T Lymphocyte Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Nickiana E. Lora
- Laboratory of Parasitic Diseases, T Lymphocyte Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Daniel L. Barber
- Laboratory of Parasitic Diseases, T Lymphocyte Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - M. Javad Aman
- Integrated BioTherapeutics, Rockville, MD, United States
| | | |
Collapse
|
14
|
Allergy-A New Role for T Cell Superantigens of Staphylococcus aureus? Toxins (Basel) 2020; 12:toxins12030176. [PMID: 32178378 PMCID: PMC7150838 DOI: 10.3390/toxins12030176] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus superantigens (SAgs) are among the most potent T cell mitogens known. They stimulate large fractions of T cells by cross-linking their T cell receptor with major histocompatibility complex class-II molecules on antigen presenting cells, resulting in T cell proliferation and massive cytokine release. To date, 26 different SAgs have been described in the species S. aureus; they comprise the toxic shock syndrome toxin (TSST-1), as well as 25 staphylococcal enterotoxins (SEs) or enterotoxin-like proteins (SEls). SAgs can cause staphylococcal food poisoning and toxic shock syndrome and contribute to the clinical symptoms of staphylococcal infection. In addition, there is growing evidence that SAgs are involved in allergic diseases. This review provides an overview on recent epidemiological data on the involvement of S. aureus SAgs and anti-SAg-IgE in allergy, demonstrating that being sensitized to SEs—in contrast to inhalant allergens—is associated with a severe disease course in patients with chronic airway inflammation. The mechanisms by which SAgs trigger or amplify allergic immune responses, however, are not yet fully understood. Here, we discuss known and hypothetical pathways by which SAgs can drive an atopic disease.
Collapse
|
15
|
Staphylococcus aureus Pneumonia: Preceding Influenza Infection Paves the Way for Low-Virulent Strains. Toxins (Basel) 2019; 11:toxins11120734. [PMID: 31861176 PMCID: PMC6950557 DOI: 10.3390/toxins11120734] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/05/2019] [Accepted: 12/14/2019] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus is a facultative pathogenic bacterium that colonizes the nasopharyngeal area of healthy individuals, but can also induce severe infection, such as pneumonia. Pneumonia caused by mono- or superinfected S.aureus leads to high mortality rates. To establish an infection, S. aureus disposes of a wide variety of virulence factors, which can vary between clinical isolates. Our study aimed to characterize pneumonia isolates for their virulent capacity. For this, we analyzed isolates from colonization, pneumonia due to S. aureus, and pneumonia due to S. aureus/influenza virus co-infection. A total of 70 strains were analyzed for their virulence genes and the host–pathogen interaction was analyzed through functional assays in cell culture systems. Strains from pneumonia due to S. aureus mono-infection showed enhanced invasion and cytotoxicity against professional phagocytes than colonizing and co-infecting strains. This corresponded to the high presence of cytotoxic components in pneumonia strains. By contrast, strains obtained from co-infection did not exhibit these virulence characteristics and resembled strains from colonization, although they caused the highest mortality rate in patients. Taken together, our results underline the requirement of invasion and toxins to cause pneumonia due to S. aureus mono-infection, whereas in co-infection even low-virulent strains can severely aggravate pneumonia.
Collapse
|
16
|
Fischer AJ, Kilgore SH, Singh SB, Allen PD, Hansen AR, Limoli DH, Schlievert PM. High Prevalence of Staphylococcus aureus Enterotoxin Gene Cluster Superantigens in Cystic Fibrosis Clinical Isolates. Genes (Basel) 2019; 10:E1036. [PMID: 31842331 PMCID: PMC6947208 DOI: 10.3390/genes10121036] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is a highly prevalent respiratory pathogen in cystic fibrosis (CF). It is unclear how this organism establishes chronic infections in CF airways. We hypothesized that S. aureus isolates from patients with CF would share common virulence properties that enable chronic infection. METHODS 77 S. aureus isolates were obtained from 45 de-identified patients with CF at the University of Iowa. We assessed isolates phenotypically and used genotyping assays to determine the presence or absence of 18 superantigens (SAgs). RESULTS We observed phenotypic diversity among S. aureus isolates from patients with CF. Genotypic analysis for SAgs revealed 79.8% of CF clinical isolates carried all six members of the enterotoxin gene cluster (EGC). MRSA and MSSA isolates had similar prevalence of SAgs. We additionally observed that EGC SAgs were prevalent in S. aureus isolated from two geographically distinct CF centers. CONCLUSIONS S. aureus SAgs belonging to the EGC are highly prevalent in CF clinical isolates. The greater prevalence in these SAgs in CF airway specimens compared to skin isolates suggests that these toxins confer selective advantage in the CF airway.
Collapse
Affiliation(s)
- Anthony J. Fischer
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (S.B.S.); (P.D.A.); (A.R.H.)
| | - Samuel H. Kilgore
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.K.); (D.H.L.); (P.M.S.)
| | - Sachinkumar B. Singh
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (S.B.S.); (P.D.A.); (A.R.H.)
| | - Patrick D. Allen
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (S.B.S.); (P.D.A.); (A.R.H.)
| | - Alexis R. Hansen
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (S.B.S.); (P.D.A.); (A.R.H.)
| | - Dominique H. Limoli
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.K.); (D.H.L.); (P.M.S.)
| | - Patrick M. Schlievert
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.K.); (D.H.L.); (P.M.S.)
| |
Collapse
|
17
|
Host-Targeted Therapeutics against Multidrug Resistant Intracellular Staphylococcus aureus. Antibiotics (Basel) 2019; 8:antibiotics8040241. [PMID: 31795127 PMCID: PMC6963206 DOI: 10.3390/antibiotics8040241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is a facultative intracellular pathogen that invades and replicates within many types of human cells. S. aureus has shown to rapidly overcome traditional antibiotherapy by developing multidrug resistance. Furthermore, intracellular S. aureus is protected from the last-resort antibiotics—vancomycin, daptomycin, and linezolid—as they are unable to achieve plasma concentrations sufficient for intracellular killing. Therefore, there is an urgent need to develop novel anti-infective therapies against S. aureus infections. Here, we review the current state of the field and highlight the exploitation of host-directed approaches as a promising strategy going forward.
Collapse
|
18
|
Computational design of a chimeric epitope-based vaccine to protect against Staphylococcus aureus infections. Mol Cell Probes 2019; 46:101414. [DOI: 10.1016/j.mcp.2019.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/31/2019] [Accepted: 06/18/2019] [Indexed: 12/31/2022]
|
19
|
Liu S, Zhang S, Duan Y, Niu Y, Gu H, Zhao Z, Zhang S, Yang Y, Wang X, Gao Y, Yang P. Transcutaneous immunization of recombinant Staphylococcal enterotoxin B protein using a dissolving microneedle provides potent protection against lethal enterotoxin challenge. Vaccine 2019; 37:3810-3819. [PMID: 31147275 DOI: 10.1016/j.vaccine.2019.05.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/25/2022]
Abstract
Staphylococcal enterotoxin B (SEB) produced by the Staphylococcus aureus bacteriumis most commonly associated with food poisoning and is known to also cause toxic shock syndrome. Currently, no approved vaccine or specific drug is available to treat SEB intoxication. In this study, we fabricated dissolving microneedles (MNs) loaded with recombinant SEB (rSEB) protein, and evaluated its characteristics, including dissolution profile, protein particle size, insertion depth, antigen retention time in vivo, and skin irritation. Our results showed that rSEB protein-loaded dissolving MNs made of chondroitin sulfate (2%) and trehalose (0.8%) could easily penetrate into the mouse skin within 5 min. The rSEB particle size was unchanged before and after MN fabrication. The skin penetration depth of the MNs was 260 µm. Moreover, the MNs also significantly extended the antigen retention time in vivo. rSEB protein-loaded dissolving MNs also triggered slight erythema at the beginning of administration, but this erythema disappeared within a few hours. More importantly, we investigated the immunogenicity and protective efficacy of rSEB protein-loaded dissolving MNs. Challenge studies in mice revealed that mice in full-dose MN group had a high level of SEB specific antibody response thatprovided100% protection against a lethal SEB toxin challenge. However, there was only 60% protection observed in mice that were in the half-dose MN (dose sparing) group. We also determined the pathological alterations in the tissues of the immunized mice. Taken together, these dissolving MNs may present a promising transcutaneous immunization strategy for treating SEB intoxication.
Collapse
Affiliation(s)
- Siqi Liu
- Beijing 302 Hospital/5th Medical Center of Chinese PLA General of Hospital, Beijing 100039, China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot 010110, China
| | - Suohui Zhang
- Key Laboratory of Photo Chemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing China
| | - Yueqiang Duan
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yan Niu
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot 010110, China
| | - Hongjing Gu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zhongpeng Zhao
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Shaogeng Zhang
- Beijing 302 Hospital/5th Medical Center of Chinese PLA General of Hospital, Beijing 100039, China
| | - Ying Yang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot 010110, China
| | - Xiliang Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Yunhua Gao
- Key Laboratory of Photo Chemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing China.
| | - Penghui Yang
- Beijing 302 Hospital/5th Medical Center of Chinese PLA General of Hospital, Beijing 100039, China; State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| |
Collapse
|
20
|
Nowicka D, Grywalska E. Staphylococcus aureus and Host Immunity in Recurrent Furunculosis. Dermatology 2019; 235:295-305. [DOI: 10.1159/000499184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/28/2019] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus is one of the severest and most persistent bacterial pathogens. The most frequent S. aureus infections include impetigo, folliculitis, furuncles, furunculosis, abscesses, hidradenitis suppurativa, and mastitis. S. aureus produces a great variety of cellular and extracellular factors responsible for its invasiveness and ability to cause pathological lesions. Their expression depends on the growth phase, environmental factors, and location of the infection. Susceptibility to staphylococcal infections is rooted in multiple mechanisms of host immune responses and reactions to bacterial colonization. Immunological and inflammatory processes of chronic furunculosis are based on the pathogenicity of S. aureus as well as innate and acquired immunity. In-depth knowledge about them may help to discover the whole pathomechanism of the disease and to develop effective therapeutic options. In this review, we focus on the S. aureus-host immune interactions in the pathogenesis of recurrent furunculosis according to the most recent experimental and clinical findings.
Collapse
|
21
|
Preventing lung pathology and mortality in rabbit Staphylococcus aureus pneumonia models with cytotoxin-neutralizing monoclonal IgGs penetrating the epithelial lining fluid. Sci Rep 2019; 9:5339. [PMID: 30926865 PMCID: PMC6441091 DOI: 10.1038/s41598-019-41826-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 03/19/2019] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus pneumonia is associated with high mortality irrespective of antibiotic susceptibility. Both MRSA and MSSA strains produce powerful cytotoxins: alpha-hemolysin(Hla) and up to five leukocidins - LukSF-PV, HlgAB, HlgCB, LukED and LukGH (LukAB) - to evade host innate defense mechanisms. Neutralizing cytotoxins has been shown to provide survival benefit in rabbit S. aureus pneumonia models. We studied the mechanisms of protection of ASN100, a combination of two human monoclonal antibodies (mAbs), ASN-1 and ASN-2, that together neutralize Hla and the five leukocidins, in rabbit MRSA and MSSA pneumonia models. Upon prophylactic passive immunization, ASN100 displayed dose-dependent increase in survival and was fully protective against all S. aureus strains tested at 5 or 20 mg/kg doses. Macroscopic and microscopic lung pathology, edema rate, and bacterial burden were evaluated 12 hours post infection and reduced by ASN100. Pharmacokinetic analysis of ASN100 in bronchoalveolar-lavage fluid from uninfected animals detected efficient penetration to lung epithelial lining fluid reaching peak levels between 24 and 48 hours post dosing that were comparable to the mAb concentration measured in serum. These data confirm that the ASN100 mAbs neutralize the powerful cytotoxins of S. aureus in the lung and prevent damage to the mucosal barrier and innate immune cells.
Collapse
|
22
|
TBA 225, a fusion toxoid vaccine for protection and broad neutralization of staphylococcal superantigens. Sci Rep 2019; 9:3279. [PMID: 30824769 PMCID: PMC6397225 DOI: 10.1038/s41598-019-39890-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/04/2018] [Indexed: 02/01/2023] Open
Abstract
Superantigens (SAgs) play a major role in the pathogenesis of Staphylococcus aureus and are associated with several diseases, including food poisoning, bacterial arthritis, and toxic shock syndrome. Monoclonal antibodies to these SAgs, primarily TSST-1, SEB and SEA have been shown to provide protection in animal studies and to reduce clinical severity in bacteremic patients. Here we quantify the pre-existing antibodies against SAgs in many human plasma and IVIG samples and demonstrate that in a major portion of the population these antibody titers are suboptimal and IVIG therapy only incrementally elevates the anti-SAg titers. Our in vitro neutralization studies show that a combination of antibodies against SEA, SEB,and TSST-1 can provide broad neutralization of staphylococcal SAgs. We report a single fusion protein (TBA225) consisting of the toxoid versions of TSST-1, SEB and SEA and demonstrate its immunogenicity and protective efficacy in a mouse model of toxic shock. Antibodies raised against this fusion vaccine provide broad neutralization of purified SAgs and culture supernatants of multiple clinically relevant S. aureus strains. Our data strongly supports the use of this fusion protein as a component of an anti-virulence based multivalent toxoid vaccine against S. aureus disease.
Collapse
|
23
|
Venkatasubramaniam A, Kanipakala T, Ganjbaksh N, Mehr R, Mukherjee I, Krishnan S, Bae T, Aman MJ, Adhikari RP. A Critical Role for HlgA in Staphylococcus aureus Pathogenesis Revealed by A Switch in the SaeRS Two-Component Regulatory System. Toxins (Basel) 2018; 10:E377. [PMID: 30231498 PMCID: PMC6162840 DOI: 10.3390/toxins10090377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022] Open
Abstract
Cytolytic pore-forming toxins including alpha hemolysin (Hla) and bicomponent leukotoxins play an important role in the pathogenesis of Staphylococcus aureus. These toxins kill the polymorphonuclear phagocytes (PMNs), disrupt epithelial and endothelial barriers, and lyse erythrocytes to provide iron for bacterial growth. The expression of these toxins is regulated by the two-component sensing systems Sae and Agr. Here, we report that a point mutation (L18P) in SaeS, the histidine kinase sensor of the Sae system, renders the S. aureus Newman hemolytic activity fully independent of Hla and drastically increases the PMN lytic activity. Furthermore, this Hla-independent activity, unlike Hla itself, can lyse human erythrocytes. The Hla-independent activity towards human erythrocytes was also evident in USA300, however, under strict agr control. Gene knockout studies revealed that this Hla-independent Sae-regulated activity was entirely dependent on gamma hemolysin A subunit (HlgA). In contrast, hemolytic activity of Newman towards human erythrocytes from HlgAB resistant donors was completely dependent on agr. The culture supernatant from Newman S. aureus could be neutralized by antisera against two vaccine candidates based on LukS and LukF subunits of Panton-Valentine leukocidin but not by an anti-Hla neutralizing antibody. These findings display the complex involvement of Sae and Agr systems in regulating the virulence of S. aureus and have important implications for vaccine and immunotherapeutics development for S. aureus disease in humans.
Collapse
Affiliation(s)
| | | | | | - Rana Mehr
- Integrated Biotherapeutics Inc., Rockville, MD 20850, USA.
| | | | | | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN 46408, USA.
| | - M Javad Aman
- Integrated Biotherapeutics Inc., Rockville, MD 20850, USA.
| | | |
Collapse
|
24
|
Borgogna TR, Hisey B, Heitmann E, Obar JJ, Meissner N, Voyich JM. Secondary Bacterial Pneumonia by Staphylococcus aureus Following Influenza A Infection Is SaeR/S Dependent. J Infect Dis 2018; 218:809-813. [PMID: 29668950 PMCID: PMC6057542 DOI: 10.1093/infdis/jiy210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/11/2018] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus is a predominant cause of fatal pneumonia following influenza A virus (IAV) infection. Herein we investigate the influence of antecedent IAV infection on S. aureus virulence gene expression. Using a murine model, comparing the USA300 and USA300ΔsaeR/S strains, we demonstrate that S. aureus pathogenesis following IAV infection is SaeR/S dependent. Furthermore, we show that IAV modulates the lung environment to rapidly up-regulate S. aureus virulence factors containing the SaeR-binding domain. Data demonstrate that the pathogen response to IAV infection impacts host outcome and provides evidence that the ability of S. aureus to sense and respond to the lung environment determines severity of pneumonia.
Collapse
Affiliation(s)
- Timothy R Borgogna
- Department of Microbiology and Immunology, Montana State University, Bozeman
| | - Bennett Hisey
- Department of Microbiology and Immunology, Montana State University, Bozeman
| | - Emily Heitmann
- Department of Microbiology and Immunology, Montana State University, Bozeman
| | - Joshua J Obar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Nicole Meissner
- Department of Microbiology and Immunology, Montana State University, Bozeman
| | - Jovanka M Voyich
- Department of Microbiology and Immunology, Montana State University, Bozeman
| |
Collapse
|
25
|
Xu C, Zhang BZ, Lin Q, Deng J, Yu B, Arya S, Yuen KY, Huang JD. Live attenuated Salmonella typhimurium vaccines delivering SaEsxA and SaEsxB via type III secretion system confer protection against Staphylococcus aureus infection. BMC Infect Dis 2018; 18:195. [PMID: 29699491 PMCID: PMC5921394 DOI: 10.1186/s12879-018-3104-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 04/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) causes a wide range of infectious diseases in human and animals. The emergence of antibiotic-resistant strains demands novel strategies for prophylactic vaccine development. In this study, live attenuated S. enterica subsp. enterica serotype Typhimurium (S. Typhimurium) vaccine against S. aureus infection was developed, in which Salmonella Pathogenesis Island-1 Type 3 Secretion System (SPI-1 T3SS) was employed to deliver SaEsxA and SaEsxB, two of ESAT-6-like (Early Secreted Antigenic Target-6) virulence factors of S. aureus. METHODS Antigens SaEsxA and SaEsxB were fused with the N-terminal secretion and translocation domain of SPI-1 effector SipA. And cytosolic delivery of Staphylococcal antigens into macrophages was examined by western blot. BALB/c mice were orally immunized with S. Typhimurium-SaEsxA and S. Typhimurium-SaEsxB vaccines. Antigen-specific humoral and Th1/Th17 immune responses were examined by ELISA and ELISPOT assays 7-9 days after the 2nd booster. For ELISPOT assays, the statistical significance was determined by Student's t test. The vaccine efficacy was evaluated by lethal challenge with two S. aureus clinical isolates Newman strain and USA 300 strain. Statistical significance was determined by Log rank (Mantel-Cox) analysis. And a P value of < 0.05 was considered statistically significant. RESULTS Oral administration of S. Typhimurium-SaEsxA and S. Typhimurium-SaEsxB vaccines induced antigen-specific humoral and Th1/Th17 immune responses, which increased the survival rate for vaccinated mice when challenged with S. aureus strains. CONCLUSIONS The newly developed S. Typhimurium-based vaccines delivering SaEsxA and SaEsxB by SPI-1 T3SS could confer protection against S. aureus infection. This study provides evidence that translocation of foreign antigens via Salmonella SPI-1 T3SS into the cytosol of antigen presenting cells (APCs) could induce potent immune responses against pathogens.
Collapse
Affiliation(s)
- Chen Xu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Bao-Zhong Zhang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Qiubin Lin
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Jian Deng
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Bin Yu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Smriti Arya
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong, SAR, China
| | - Jian-Dong Huang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China. .,HKU-Shenzhen Institute of Research and Innovation, Shenzhen, China. .,Shenzhen Institute of Advanced Technologies, Shenzhen, China.
| |
Collapse
|
26
|
Yang LY, Zhou H, Yang Y, Tong YN, Peng LS, Zhu BH, Diao WB, Zeng H, Sun HW, Zou QM. Protective effects of a nanoemulsion adjuvant vaccine (2C-Staph/NE) administered intranasally against invasive Staphylococcus aureus pneumonia. RSC Adv 2018; 8:9996-10008. [PMID: 35540845 PMCID: PMC9078739 DOI: 10.1039/c7ra13630g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 02/13/2018] [Indexed: 12/03/2022] Open
Abstract
No licensed Staphylococcus aureus (S. aureus) vaccine is currently available. To develop an effective S. aureus vaccine, we selected the recombinant proteins staphylococcal enterotoxin B (rSEB) and manganese transport protein C (rMntC) as vaccine candidates and formulated a 2C-Staph vaccine. Based on the optimised formation of nanoemulsion (NE) technology, we constructed a novel NE adjuvant vaccine, 2C-Staph/NE. The 2C-Staph/NE particles showed a suitable diameter (24.9 ± 0.14 nm), a good protein structure of integrity and specificity, and high thermodynamic stability. 2C-Staph formulated with an NE adjuvant induced higher survival rates than a 2C-Staph/MF59 vaccine in sepsis and pneumonia models. Moreover, intramuscular vaccination with 2C-Staph/NE yielded protection efficacy in a sepsis model, and the intranasal vaccination route induced a potent protective effect in a pneumonia model. Intranasal vaccination with 2C-Staph/NE induced a strong mucosal response with high levels of IgA and IL-17A in bronchoalveolar lavage fluid (BALF), and the IgG levels in the BALF were comparable to those induced by the intramuscular vaccination route. Furthermore, the serum and BALF induced by intranasal administration showed potent opsonophagocytic activity against S. aureus. And, the IL-17A played a protective role in the pneumonia model demonstrated by a cytokine neutralization test. Taken together, our results showed that intranasal administration of 2C-Staph formulated with an NE adjuvant yielded ideal protection in a murine S. aureus pneumonia model.
Collapse
Affiliation(s)
- Liu-Yang Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Heng Zhou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Yun Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Ya-Nan Tong
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Liu-Sheng Peng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Bao-Hang Zhu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Wei-Bo Diao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Hong-Wu Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Quan-Ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| |
Collapse
|
27
|
The Superantigen Toxic Shock Syndrome Toxin 1 Alters Human Aortic Endothelial Cell Function. Infect Immun 2018; 86:IAI.00848-17. [PMID: 29229737 PMCID: PMC5820935 DOI: 10.1128/iai.00848-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/06/2017] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus infective endocarditis (IE) is a fast-progressing and tissue-destructive infection of the cardiac endothelium. The superantigens (SAgs) toxic shock syndrome toxin 1 (TSST-1), staphylococcal enterotoxin C (SEC), and the toxins encoded by the enterotoxin gene cluster (egc) play a novel and essential role in the etiology of S. aureus IE. Recent studies indicate that SAgs act at the infection site to cause tissue pathology and promote vegetation growth. The underlying mechanism of SAg involvement has not been clearly defined. In SAg-mediated responses, immune cell priming is considered a primary triggering event leading to endothelial cell activation and altered function. Utilizing immortalized human aortic endothelial cells (iHAECs), we demonstrated that TSST-1 directly activates iHAECs, as documented by upregulation of vascular and intercellular adhesion molecules (VCAM-1 and ICAM-1). TSST-1-mediated activation results in increased monolayer permeability and defects in vascular reendothelialization. Yet stimulation of iHAECs with TSST-1 fails to induce interleukin-8 (IL-8) and IL-6 production. Furthermore, simultaneous stimulation of iHAECs with TSST-1 and lipopolysaccharide (LPS) inhibits LPS-mediated IL-8 and IL-6 secretion, even after pretreatment with either of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and IL-1β. IL-8 suppression is not mediated by TSST-1 binding to its canonical receptor major histocompatibility complex class II (MHC-II), supporting current evidence for a nonhematopoietic interacting site on SAgs. Together, the data suggest that TSST-1 differentially regulates cell-bound and secreted markers of endothelial cell activation that may result in dysregulated innate immune responses during S. aureus IE. Endothelial changes resulting from the action of SAgs can therefore directly contribute to the aggressive nature of S. aureus IE and development of life-threatening complications.
Collapse
|
28
|
Draft Genome Sequence of USA100 Methicillin-Resistant Staphylococcus aureus Strain 209. GENOME ANNOUNCEMENTS 2018; 6:6/1/e01399-17. [PMID: 29301880 PMCID: PMC5754489 DOI: 10.1128/genomea.01399-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
USA100 strains are significant contributors to the overall burden of health care-associated methicillin-resistant Staphylococcus aureus (MRSA) infections. Strain 209 is a representative MRSA isolate that serves as a model organism for agr type II studies and USA100 virulence assessments. We present a draft genome sequence of this strain.
Collapse
|
29
|
Karau MJ, Tilahun ME, Krogman A, Osborne BA, Goldsby RA, David CS, Mandrekar JN, Patel R, Rajagopalan G. Passive therapy with humanized anti-staphylococcal enterotoxin B antibodies attenuates systemic inflammatory response and protects from lethal pneumonia caused by staphylococcal enterotoxin B-producing Staphylococcus aureus. Virulence 2017; 8:1148-1159. [PMID: 27925510 PMCID: PMC5711449 DOI: 10.1080/21505594.2016.1267894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 02/08/2023] Open
Abstract
Drugs such as linezolid that inhibit bacterial protein synthesis may be beneficial in treating infections caused by toxigenic Staphylococcus aureus. As protein synthesis inhibitors have no effect on preformed toxins, neutralization of pathogenic exotoxins with anti-toxin antibodies may be beneficial in conjunction with antibacterial therapy. Herein, we evaluated the efficacy of human-mouse chimeric high-affinity neutralizing anti-staphylococcal enterotoxin B (SEB) antibodies in the treatment of experimental pneumonia caused by SEB-producing S. aureus. Since HLA class II transgenic mice mount a stronger systemic immune response following challenge with SEB and are more susceptible to SEB-induced lethal toxic shock than conventional mice strains, HLA-DR3 transgenic mice were used. Lethal pneumonia caused by SEB-producing S. aureus in HLA-DR3 transgenic mice was characterized by robust T cell activation and elevated systemic levels of several pro-inflammatory cytokines and chemokines. Prophylactic administration of a single dose of linezolid 30 min prior to the onset of infection attenuated the systemic inflammatory response and protected from mortality whereas linezolid administered 60 min after the onset of infection failed to confer significant protection. Human-mouse chimeric high-affinity neutralizing anti-SEB antibodies alone, but not polyclonal human IgG, mitigated this response and protected from death when administered immediately after initiation of infection. Further, anti-SEB antibodies as well as intact polyclonal human IgG, but not its Fab or Fc fragments, protected from lethal pneumonia when followed with linezolid therapy 60 min later. In conclusion, neutralization of superantigens with high-affinity antibodies may have beneficial effects in pneumonia.
Collapse
Affiliation(s)
- Melissa J. Karau
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mulualem E. Tilahun
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Department of Biology, Amherst College, Amherst, MA, USA
| | - Ashton Krogman
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Barbara A. Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | | | - Chella S. David
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jayawant N. Mandrekar
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Govindarajan Rajagopalan
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
30
|
A global Staphylococcus aureus proteome resource applied to the in vivo characterization of host-pathogen interactions. Sci Rep 2017; 7:9718. [PMID: 28887440 PMCID: PMC5591248 DOI: 10.1038/s41598-017-10059-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/24/2017] [Indexed: 12/16/2022] Open
Abstract
Data-independent acquisition mass spectrometry promises higher performance in terms of quantification and reproducibility compared to data-dependent acquisition mass spectrometry methods. To enable high-accuracy quantification of Staphylococcus aureus proteins, we have developed a global ion library for data-independent acquisition approaches employing high-resolution time of flight or Orbitrap instruments for this human pathogen. We applied this ion library resource to investigate the time-resolved adaptation of S. aureus to the intracellular niche in human bronchial epithelial cells and in a murine pneumonia model. In epithelial cells, abundance changes for more than 400 S. aureus proteins were quantified, revealing, e.g., the precise temporal regulation of the SigB-dependent stress response and differential regulation of translation, fermentation, and amino acid biosynthesis. Using an in vivo murine pneumonia model, our data-independent acquisition quantification analysis revealed for the first time the in vivo proteome adaptation of S. aureus. From approximately 2.15 × 105 S. aureus cells, 578 proteins were identified. Increased abundance of proteins required for oxidative stress response, amino acid biosynthesis, and fermentation together with decreased abundance of ribosomal proteins and nucleotide reductase NrdEF was observed in post-infection samples compared to the pre-infection state.
Collapse
|
31
|
Jamrozy D, Coll F, Mather AE, Harris SR, Harrison EM, MacGowan A, Karas A, Elston T, Estée Török M, Parkhill J, Peacock SJ. Evolution of mobile genetic element composition in an epidemic methicillin-resistant Staphylococcus aureus: temporal changes correlated with frequent loss and gain events. BMC Genomics 2017; 18:684. [PMID: 28870171 PMCID: PMC5584012 DOI: 10.1186/s12864-017-4065-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/15/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Horizontal transfer of mobile genetic elements (MGEs) that carry virulence and antimicrobial resistance genes mediates the evolution of methicillin-resistant Staphylococcus aureus, and the emergence of new MRSA clones. Most MRSA lineages show an association with specific MGEs and the evolution of MGE composition following clonal expansion has not been widely studied. RESULTS We investigated the genomes of 1193 S. aureus bloodstream isolates, 1169 of which were MRSA, collected in the UK and the Republic of Ireland between 2001 and 2010. The majority of isolates belonged to clonal complex (CC)22 (n = 923), which contained diverse MGEs including elements that were found in other MRSA lineages. Several MGEs showed variable distribution across the CC22 phylogeny, including two antimicrobial resistance plasmids (pWBG751-like and SAP078A-like, carrying erythromycin and heavy metal resistance genes, respectively), a pathogenicity island carrying the enterotoxin C gene and two phage types Sa1int and Sa6int. Multiple gains and losses of these five MGEs were identified in the CC22 phylogeny using ancestral state reconstruction. Analysis of the temporal distribution of the five MGEs between 2001 and 2010 revealed an unexpected reduction in prevalence of the two plasmids and the pathogenicity island, and an increase in the two phage types. This occurred across the lineage and was not correlated with changes in the relative prevalence of CC22, or of any sub-lineages within in. CONCLUSIONS Ancestral state reconstruction coupled with temporal trend analysis demonstrated that epidemic MRSA CC22 has an evolving MGE composition, and indicates that this important MRSA lineage has continued to adapt to changing selective pressure since its emergence.
Collapse
Affiliation(s)
- Dorota Jamrozy
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Francesc Coll
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT UK
| | - Alison E. Mather
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES UK
| | - Simon R. Harris
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Ewan M. Harrison
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ UK
| | - Alasdair MacGowan
- British Society for Antimicrobial Chemotherapy, B1 3NJ, Birmingham, UK
| | - Andreas Karas
- Public Health England, Clinical Microbiology and Public Health Laboratory, Cambridge, CB21 5XA UK
| | - Tony Elston
- Colchester Hospital University NHS Foundation Trust, Colchester, CO4 5JL UK
| | - M. Estée Török
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ UK
- Public Health England, Clinical Microbiology and Public Health Laboratory, Cambridge, CB21 5XA UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ UK
| | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Sharon J. Peacock
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ UK
| |
Collapse
|
32
|
Temporal and Racial Differences Associated with Atopic Dermatitis Staphylococcusaureus and Encoded Virulence Factors. mSphere 2016; 1:mSphere00295-16. [PMID: 27981233 PMCID: PMC5143412 DOI: 10.1128/msphere.00295-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/18/2016] [Indexed: 11/25/2022] Open
Abstract
Monitoring pathogen emergence provides insight into how pathogens adapt in the human population. Secreted virulence factors, important contributors to infections, may differ in a manner dependent on the strain and host. Temporal changes of Staphylococcus aureus toxigenic potential, for example, in encoding toxic shock syndrome toxin 1 (TSST-1), contributed to an epidemic of TSS with significant health impact. This study monitored changes in atopic dermatitis (AD) S. aureus isolates and demonstrated both temporal and host infection differences according to host race based on secreted superantigen potential. The current temporal increase in enterotoxin gene cluster superantigen prevalence and lack of the gene encoding TSST-1 in AAs predict differences in infection types and presentations. Atopic dermatitis (AD) is an inflammatory skin condition strongly associated with Staphylococcus aureus colonization and infection. S. aureus strains shift in populations in ~10-year intervals depending on virulence factors. Shifts in S. aureus virulence factors may in part explain the racial differences observed in the levels of prevalence and severity of AD. AD S. aureus isolates collected from 2011 to 2014 (103 isolates) and in 2008 (100 isolates) were examined for the prevalence of genes encoding superantigens (SAgs). The strains from 2011 to 2014 were obtained from AD patients as a part of the National Institute of Allergy and Infectious Diseases (NIAID) Atopic Dermatitis Research Network (ADRN). The prevalence of SAg genes was investigated temporally and racially. The enterotoxin gene cluster (EGC) was more prevalent in the 2011–2014 AD isolates than in the 2008 AD isolates. The prevalences of virulence factor genes were similar in European American (EA) and Mexican American (MA) patients but differed in 6 of 22 SAg genes between EA and African American (AA) or MA and AA isolates; notably, AA isolates lacked tstH, the gene encoding toxic shock syndrome toxin 1 (TSST-1). The presence of tstH and sel-p (enterotoxin-like P) was associated with decreased clinical severity and increased blood eosinophils, respectively. The EGC is becoming more prevalent, consistent with the previously observed 10 years of cycling of S. aureus strains. Race-specific S. aureus selection may account for differences in virulence factor profiles. The lack of TSST-1-positive (TSST-1+) AD S. aureus in AA is consistent with the lack of AAs acquiring TSST-1-associated menstrual toxic shock syndrome (TSS). IMPORTANCE Monitoring pathogen emergence provides insight into how pathogens adapt in the human population. Secreted virulence factors, important contributors to infections, may differ in a manner dependent on the strain and host. Temporal changes of Staphylococcus aureus toxigenic potential, for example, in encoding toxic shock syndrome toxin 1 (TSST-1), contributed to an epidemic of TSS with significant health impact. This study monitored changes in atopic dermatitis (AD) S. aureus isolates and demonstrated both temporal and host infection differences according to host race based on secreted superantigen potential. The current temporal increase in enterotoxin gene cluster superantigen prevalence and lack of the gene encoding TSST-1 in AAs predict differences in infection types and presentations.
Collapse
|
33
|
Affiliation(s)
- M Javad Aman
- a Research & Development , Integrated BioTherapeutics, Inc. , Rockville , MD , USA
| |
Collapse
|
34
|
Enterotoxin Gene Cluster-Encoded SEI and SElN from Staphylococcus aureus Isolates are Crucial for the Induction of Human Blood Cell Proliferation and Pathogenicity in Rabbits. Toxins (Basel) 2016; 8:toxins8110314. [PMID: 27801832 PMCID: PMC5127111 DOI: 10.3390/toxins8110314] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 11/17/2022] Open
Abstract
Among the toxin family of bacterial superantigens, the six members of the enterotoxin gene cluster (egc) seem to have unusual characteristics. They are present in the majority of Staphylococcus aureus strains, but their role in disease remains uncertain. We assessed secretion levels, immunogenicity, and toxicity of native and recombinant egc proteins. After having developed enzyme-linked immunosorbent assays, we found different quantities of egc proteins secreted by bacterial isolates. Supernatants induced proliferation of human peripheral blood mononuclear cells. However, purified recombinant egc proteins were shown to have differing superantigenicity potentials. Immunization with identical amounts of all members of egc, and the prominent toxic agent SEB, resulted in neutralizing antisera. Two egc proteins, SEI and SElN, were found to play a predominant role within the cluster. Both displayed the highest potential to activate blood cells, and were essential to be neutralized in supernatants. The application of a supernatant of a strain bearing only egc was sufficient for a lethal outcome in a rabbit model. Again, neutralization of SEI and SElN led to the survival of all tested animals. Finally, nanogram amounts of purified rSEI and rSElN led to lethality in vivo, pointing out the importance of both as virulence determinants among egc superantigens.
Collapse
|
35
|
Stentzel S, Gläser R, Bröker BM. Elucidating the anti-Staphylococcus aureusantibody response by immunoproteomics. Proteomics Clin Appl 2016; 10:1011-1019. [DOI: 10.1002/prca.201600050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/20/2016] [Accepted: 08/08/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Sebastian Stentzel
- Department of Immunology; University Medicine Greifswald; Greifswald Germany
| | - Regine Gläser
- Department of Dermatology; University Hospital Schleswig-Holstein; Kiel Germany
| | - Barbara M. Bröker
- Department of Immunology; University Medicine Greifswald; Greifswald Germany
| |
Collapse
|
36
|
Chen JB, James LK, Davies AM, Wu YCB, Rimmer J, Lund VJ, Chen JH, McDonnell JM, Chan YC, Hutchins GH, Chang TW, Sutton BJ, Kariyawasam HH, Gould HJ. Antibodies and superantibodies in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2016; 139:1195-1204.e11. [PMID: 27658758 PMCID: PMC5380656 DOI: 10.1016/j.jaci.2016.06.066] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 05/07/2016] [Accepted: 06/13/2016] [Indexed: 01/19/2023]
Abstract
Background Chronic rhinosinusitis with nasal polyps is associated with local immunoglobulin hyperproduction and the presence of IgE antibodies against Staphylococcus aureus enterotoxins (SAEs). Aspirin-exacerbated respiratory disease is a severe form of chronic rhinosinusitis with nasal polyps in which nearly all patients express anti-SAEs. Objectives We aimed to understand antibodies reactive to SAEs and determine whether they recognize SAEs through their complementarity-determining regions (CDRs) or framework regions. Methods Labeled staphylococcal enterotoxin (SE) A, SED, and SEE were used to isolate single SAE-specific B cells from the nasal polyps of 3 patients with aspirin-exacerbated respiratory disease by using fluorescence-activated cell sorting. Recombinant antibodies with “matched” heavy and light chains were cloned as IgG1, and those of high affinity for specific SAEs, assayed by means of ELISA and surface plasmon resonance, were recloned as IgE and antigen-binding fragments. IgE activities were tested in basophil degranulation assays. Results Thirty-seven SAE-specific, IgG- or IgA-expressing B cells were isolated and yielded 6 anti-SAE clones, 2 each for SEA, SED, and SEE. Competition binding assays revealed that the anti-SEE antibodies recognize nonoverlapping epitopes in SEE. Unexpectedly, each anti-SEE mediated SEE-induced basophil degranulation, and IgG1 or antigen-binding fragments of each anti-SEE enhanced degranulation by the other anti-SEE. Conclusions SEEs can activate basophils by simultaneously binding as antigens in the conventional manner to CDRs and as superantigens to framework regions of anti-SEE IgE in anti-SEE IgE-FcεRI complexes. Anti-SEE IgG1s can enhance the activity of anti-SEE IgEs as conventional antibodies through CDRs or simultaneously as conventional antibodies and as “superantibodies” through CDRs and framework regions to SEEs in SEE–anti-SEE IgE-FcεRI complexes.
Collapse
Affiliation(s)
- Jiun-Bo Chen
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Louisa K James
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, Guy's Campus, London, United Kingdom
| | - Anna M Davies
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, Guy's Campus, London, United Kingdom
| | - Yu-Chang Bryan Wu
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, Guy's Campus, London, United Kingdom
| | - Joanne Rimmer
- Allergy and Rhinology, Royal National Throat Nose Ear Hospital, London, United Kingdom
| | - Valerie J Lund
- Allergy and Rhinology, Royal National Throat Nose Ear Hospital, London, United Kingdom
| | - Jou-Han Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - James M McDonnell
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, Guy's Campus, London, United Kingdom
| | - Yih-Chih Chan
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, Guy's Campus, London, United Kingdom
| | - George H Hutchins
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Tse Wen Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Brian J Sutton
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, Guy's Campus, London, United Kingdom
| | - Harsha H Kariyawasam
- Allergy and Rhinology, Royal National Throat Nose Ear Hospital, London, United Kingdom
| | - Hannah J Gould
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, Guy's Campus, London, United Kingdom.
| |
Collapse
|
37
|
Stach CS, Vu BG, Merriman JA, Herrera A, Cahill MP, Schlievert PM, Salgado-Pabón W. Novel Tissue Level Effects of the Staphylococcus aureus Enterotoxin Gene Cluster Are Essential for Infective Endocarditis. PLoS One 2016; 11:e0154762. [PMID: 27124393 PMCID: PMC4849672 DOI: 10.1371/journal.pone.0154762] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 04/18/2016] [Indexed: 01/01/2023] Open
Abstract
Background Superantigens are indispensable virulence factors for Staphylococcus aureus in disease causation. Superantigens stimulate massive immune cell activation, leading to toxic shock syndrome (TSS) and contributing to other illnesses. However, superantigens differ in their capacities to induce body-wide effects. For many, their production, at least as tested in vitro, is not high enough to reach the circulation, or the proteins are not efficient in crossing epithelial and endothelial barriers, thus remaining within tissues or localized on mucosal surfaces where they exert only local effects. In this study, we address the role of TSS toxin-1 (TSST-1) and most importantly the enterotoxin gene cluster (egc) in infective endocarditis and sepsis, gaining insights into the body-wide versus local effects of superantigens. Methods We examined S. aureus TSST-1 gene (tstH) and egc deletion strains in the rabbit model of infective endocarditis and sepsis. Importantly, we also assessed the ability of commercial human intravenous immunoglobulin (IVIG) plus vancomycin to alter the course of infective endocarditis and sepsis. Results TSST-1 contributed to infective endocarditis vegetations and lethal sepsis, while superantigens of the egc, a cluster with uncharacterized functions in S. aureus infections, promoted vegetation formation in infective endocarditis. IVIG plus vancomycin prevented lethality and stroke development in infective endocarditis and sepsis. Conclusions Our studies support the local tissue effects of egc superantigens for establishment and progression of infective endocarditis providing evidence for their role in life-threatening illnesses. In contrast, TSST-1 contributes to both infective endocarditis and lethal sepsis. IVIG may be a useful adjunct therapy for infective endocarditis and sepsis.
Collapse
Affiliation(s)
- Christopher S. Stach
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, United States of America
| | - Bao G. Vu
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, United States of America
| | - Joseph A. Merriman
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, United States of America
| | - Alfa Herrera
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, United States of America
| | - Michael P. Cahill
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, United States of America
| | - Patrick M. Schlievert
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, United States of America
- * E-mail:
| | - Wilmara Salgado-Pabón
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, United States of America
| |
Collapse
|
38
|
Dennis ML, Pitcher NP, Lee MD, DeBono AJ, Wang ZC, Harjani JR, Rahmani R, Cleary B, Peat TS, Baell JB, Swarbrick JD. Structural Basis for the Selective Binding of Inhibitors to 6-Hydroxymethyl-7,8-dihydropterin Pyrophosphokinase from Staphylococcus aureus and Escherichia coli. J Med Chem 2016; 59:5248-63. [PMID: 27094768 DOI: 10.1021/acs.jmedchem.6b00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) is a member of the folate biosynthesis pathway found in prokaryotes and lower eukaryotes that catalyzes the pyrophosphoryl transfer from the ATP cofactor to a 6-hydroxymethyl-7,8-dihydropterin substrate. We report the chemical synthesis of a series of S-functionalized 8-mercaptoguanine (8MG) analogues as substrate site inhibitors of HPPK and quantify binding against the E. coli and S. aureus enzymes (EcHPPK and SaHPPK). The results demonstrate that analogues incorporating acetophenone-based substituents have comparable affinities for both enzymes. Preferential binding of benzyl-substituted 8MG derivatives to SaHPPK was reconciled when a cryptic pocket unique to SaHPPK was revealed by X-ray crystallography. Differential chemical shift perturbation analysis confirmed this to be a common mode of binding for this series to SaHPPK. One compound (41) displayed binding affinities of 120 nM and 1.76 μM for SaHPPK and EcHPPK, respectively, and represents a lead for the development of more potent and selective inhibitors of SaHPPK.
Collapse
Affiliation(s)
- Matthew L Dennis
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia.,CSIRO Biosciences Program , Parkville, Victoria 3052, Australia
| | - Noel P Pitcher
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Michael D Lee
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Aaron J DeBono
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Zhong-Chang Wang
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University , Nanjing 210093, People's Republic of China
| | - Jitendra R Harjani
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Raphaël Rahmani
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Ben Cleary
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Thomas S Peat
- CSIRO Biosciences Program , Parkville, Victoria 3052, Australia
| | - Jonathan B Baell
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - James D Swarbrick
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| |
Collapse
|
39
|
Omics Approaches for the Study of Adaptive Immunity to Staphylococcus aureus and the Selection of Vaccine Candidates. Proteomes 2016; 4:proteomes4010011. [PMID: 28248221 PMCID: PMC5217363 DOI: 10.3390/proteomes4010011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/05/2016] [Accepted: 03/01/2016] [Indexed: 01/20/2023] Open
Abstract
Staphylococcus aureus is a dangerous pathogen both in hospitals and in the community. Due to the crisis of antibiotic resistance, there is an urgent need for new strategies to combat S. aureus infections, such as vaccination. Increasing our knowledge about the mechanisms of protection will be key for the successful prevention or treatment of S. aureus invasion. Omics technologies generate a comprehensive picture of the physiological and pathophysiological processes within cells, tissues, organs, organisms and even populations. This review provides an overview of the contribution of genomics, transcriptomics, proteomics, metabolomics and immunoproteomics to the current understanding of S. aureus‑host interaction, with a focus on the adaptive immune response to the microorganism. While antibody responses during colonization and infection have been analyzed in detail using immunoproteomics, the full potential of omics technologies has not been tapped yet in terms of T-cells. Omics technologies promise to speed up vaccine development by enabling reverse vaccinology approaches. In consequence, omics technologies are powerful tools for deepening our understanding of the “superbug” S. aureus and for improving its control.
Collapse
|
40
|
Roetzer A, Haller G, Beyerly J, Geier CB, Wolf HM, Gruener CS, Model N, Eibl MM. Genotypic and phenotypic analysis of clinical isolates of Staphylococcus aureus revealed production patterns and hemolytic potentials unlinked to gene profiles and source. BMC Microbiol 2016; 16:13. [PMID: 26830934 PMCID: PMC4736648 DOI: 10.1186/s12866-016-0630-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nosocomial infections caused by the bacterial pathogen Staphylococcus aureus can lead to serious complications due to the varying presence of secreted toxins. Comparative studies of genomic information and production rates are needed to assess the pathogenic potential of isolated strains. Genotypic and phenotypic profiling of clinical and colonising isolates of S. aureus was used to characterise the release of exotoxins. Blood isolates were compared with colonisation strains to determine similarities and differences of single strains and clusters. RESULTS Fifty-one fresh isolates obtained from colonised individuals (n = 29) and S. aureus bacteremia (SAB) patients (n = 22) were investigated. The prevalence of genes encoding for three cytolysins (alpha/beta/gamma toxin) and twenty-four superantigens (SEA-SElX) was determined. Isolates exhibited eighteen distinct combinations of superantigens. Sequence analysis identified mutated open reading frames in hla in 13.7% of all strains, in selw (92.2%) and in selx (15.7%). All corrupted genes were associated with specific clonal complexes. Functional assessment of alpha toxin activity by a rabbit erythrocyte lysis assay revealed that supernatants lacking alpha toxin still displayed hemolysis. This was due to the presence of gamma toxin, as proven by inhibition experiments using antisera raised against the respective recombinant proteins. Alpha toxin, SEC, and TSST1 production was quantified by enzyme-linked immunosorbent assays on supernatants of all hla, sec, and tst positive isolates. Blood isolates and colonising strains showed comparable amounts of secreted proteins within a wide range. Agr types I to IV were identified, but did not allow a prediction of high or low production rates. In contrast, alpha toxin production rates between distinct clonal complexes clearly differed. Spa typing was performed and revealed thirty-two unique spa gene patterns and eight small clusters comprising nineteen isolates. Recognised spa-typing clusters displayed highly similar production rates. CONCLUSION Production rates of the three most prevalent exotoxins varied within both groups of blood isolates and colonising strains. By comparing genotypes and secretion, we found that identical complex gene patterns did not allow predictions of toxin production and function. However, identification of spa typing clusters was suitable to predict similar quantities of released exotoxins.
Collapse
Affiliation(s)
- Andreas Roetzer
- Biomedizinische ForschungsgmbH, Lazarettgasse 19/2, Vienna, A-1090, Austria.
| | - Guenter Haller
- Biomedizinische ForschungsgmbH, Lazarettgasse 19/2, Vienna, A-1090, Austria.
| | - John Beyerly
- Biomedizinische ForschungsgmbH, Lazarettgasse 19/2, Vienna, A-1090, Austria.
| | - Christoph B Geier
- Immunology Outpatient Clinic, Schwarzspanierstraße 15, Vienna, A-1090, Austria.
| | - Hermann M Wolf
- Immunology Outpatient Clinic, Schwarzspanierstraße 15, Vienna, A-1090, Austria.
| | - Corina S Gruener
- Biomedizinische ForschungsgmbH, Lazarettgasse 19/2, Vienna, A-1090, Austria.
| | - Nina Model
- Biomedizinische ForschungsgmbH, Lazarettgasse 19/2, Vienna, A-1090, Austria.
| | - Martha M Eibl
- Biomedizinische ForschungsgmbH, Lazarettgasse 19/2, Vienna, A-1090, Austria. .,Immunology Outpatient Clinic, Schwarzspanierstraße 15, Vienna, A-1090, Austria.
| |
Collapse
|
41
|
Abstract
Superantigens secreted by Staphylococcus aureus and Streptococcus pyogenes interact with the T-cell receptor and major histocompatibility class II molecules on antigen-presenting cells to elicit a massive cytokine release and activation of T cells in higher numbers than that seen with ordinary antigens. Because of this unique ability, superantigens have been implicated as etiological agents for many different types of diseases, including toxic shock syndrome, infective endocarditis, pneumonia, and inflammatory skin diseases. This review covers the main animal models that have been developed in order to identify the roles of superantigens in human disease.
Collapse
Affiliation(s)
- Amanda J Brosnahan
- Department of Science, Concordia University - Saint Paul, 1282 Concordia Ave., S-115, St. Paul, MN, 55104, USA.
| |
Collapse
|
42
|
Karauzum H, Datta SK. Adaptive Immunity Against Staphylococcus aureus. Curr Top Microbiol Immunol 2016; 409:419-439. [PMID: 26919865 DOI: 10.1007/82_2016_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A complex interplay between host and bacterial factors allows Staphylococcus aureus to occupy its niche as a human commensal and a major human pathogen. The role of neutrophils as a critical component of the innate immune response against S. aureus, particularly for control of systemic infection, has been established in both animal models and in humans with acquired and congenital neutrophil dysfunction. The role of the adaptive immune system is less clear. Although deficiencies in adaptive immunity do not result in the marked susceptibility to S. aureus infection that neutrophil dysfunction imparts, emerging evidence suggests both T cell- and B cell-mediated adaptive immunity can influence host susceptibility and control of S. aureus. The contribution of adaptive immunity depends on the context and site of infection and can be either beneficial or detrimental to the host. Furthermore, S. aureus has evolved mechanisms to manipulate adaptive immune responses to its advantage. In this chapter, we will review the evidence for the role of adaptive immunity during S. aureus infections. Further elucidation of this role will be important to understand how it influences susceptibility to infection and to appropriately design vaccines that elicit adaptive immune responses to protect against subsequent infections.
Collapse
Affiliation(s)
- Hatice Karauzum
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Sandip K Datta
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
43
|
Identification, Purification, and Characterization of Staphylococcal Superantigens. Methods Mol Biol 2015. [PMID: 26676034 DOI: 10.1007/978-1-4939-3344-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Purifying natively produced staphylococcal superantigens is an important process in the study of these proteins, as many common methods of protein purification are affected by staphylococcal protein A contamination. Here, we describe a proven approach for identifying superantigens in vitro as well as for purifying novel superantigens both in His-tagged and native forms using modern genetic tools coupled with thin-layer isoelectric focusing.
Collapse
|
44
|
Vuong C, Yeh AJ, Cheung GYC, Otto M. Investigational drugs to treat methicillin-resistant Staphylococcus aureus. Expert Opin Investig Drugs 2015; 25:73-93. [PMID: 26536498 DOI: 10.1517/13543784.2016.1109077] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Staphylococcus aureus remains one of the leading causes of morbidity and mortality worldwide. This is to a large extent due to antibiotic-resistant strains, in particular methicillin-resistant S. aureus (MRSA). While the toll of invasive MRSA infections appears to decrease in U.S. hospitals, the rate of community-associated MRSA infections remains constant and there is a surge of MRSA in many other countries, a situation that calls for continuing if not increased efforts to find novel strategies to combat MRSA infections. AREAS COVERED This review provides an overview of current investigational drugs and therapeutic antibodies against S. aureus in early clinical development (up to phase II clinical development). It includes a short description of the mechanism of action and a presentation of microbiological and clinical data. EXPERT OPINION Increased recent antibiotic development efforts and results from pathogenesis research have led to several new antibiotics and therapies, such as anti-virulence drugs, as well as a more informed selection of targets for vaccination efforts against MRSA. This developing portfolio of novel anti-staphylococcal drugs will hopefully provide us with additional and more efficient ways to combat MRSA infections in the near future and prevent us from running out of treatment options, even if new resistances arise.
Collapse
Affiliation(s)
- Cuong Vuong
- a Principal Scientist/Laboratory Head, Bacteriology , AiCuris GmbH & Co. KG, Friedrich-Ebert-Str. 475/Geb. 302, 42117 Wuppertal , Germany
| | - Anthony J Yeh
- b Post-baccalaureate IRTA, Laboratory of Bacteriology , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bldg. 33, 1W10, 9000 Rockville Pike, Bethesda , MD 20892 , USA
| | - Gordon Y C Cheung
- c Staff Scientist, National Institute of Allergy and Infectious Diseases , National Institutes of Health, Laboratory of Bacteriology , Bldg. 33, 1W10, 9000 Rockville Pike, Bethesda , MD 20892 , USA
| | - Michael Otto
- d Senior Investigator, National Institute of Allergy and Infectious Diseases , National Institutes of Health, Laboratory of Bacteriology , Bldg. 33, 1W10, 9000 Rockville Pike, Bethesda , MD 20892 , USA
| |
Collapse
|
45
|
Merriman JA, Klingelhutz AJ, Diekema DJ, Leung DYM, Schlievert PM. Novel Staphylococcus aureus Secreted Protein Alters Keratinocyte Proliferation and Elicits a Proinflammatory Response In Vitro and In Vivo. Biochemistry 2015; 54:4855-62. [PMID: 26177220 DOI: 10.1021/acs.biochem.5b00523] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcus aureus is a leading cause of surgical site infections that results in increased hospital stays due to the development of chronic wounds. Little is known about factors involved in S. aureus' ability to prevent wounds from healing. We discovered a novel secreted protein produced by a surgical site isolate of S. aureus that prevents keratinocyte proliferation. The protein has a molecular weight of 15.7 kDa and an isoelectric point of 8.9. The cloned and purified protein has cytotoxic and proinflammatory properties, as shown in vitro and in vivo. Potent biological effects on keratinocytes and rabbit skin suggest that this protein may play an important role in preventing re-epithelialization. Its lack of homology to known exotoxins suggests that this protein is novel, and this observation is likely to open a new field of research in S. aureus exotoxins. Due to its cytotoxic activities, we call this new protein ε-cytotoxin.
Collapse
Affiliation(s)
| | | | | | - Donald Y M Leung
- §University of Colorado, Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | | |
Collapse
|
46
|
Sashidhara KV, Rao KB, Kushwaha P, Modukuri RK, Singh P, Soni I, Shukla PK, Chopra S, Pasupuleti M. Novel Chalcone-Thiazole Hybrids as Potent Inhibitors of Drug Resistant Staphylococcus aureus. ACS Med Chem Lett 2015; 6:809-13. [PMID: 26191371 PMCID: PMC4499817 DOI: 10.1021/acsmedchemlett.5b00169] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/29/2015] [Indexed: 11/29/2022] Open
Abstract
A series of novel hybrids possessing chalcone and thiazole moieties were synthesized and evaluated for their antibacterial activities. In general this class of hybrids exhibited potency against Staphylococcus aureus, and in particular, compound 27 exhibited potent inhibitory activity with respect to other synthesized hybrids. Furthermore, the hemolytic and toxicity data demonstrated that the compound 27 was nonhemolytic and nontoxic to mammalian cells. The in vivo studies utilizing a S. aureus septicemia model demonstrated that compound 27 was as potent as vancomycin. The results of antibacterial activities underscore the potential of this scaffold that can be utilized for developing a new class of novel antibiotics.
Collapse
Affiliation(s)
- Koneni V. Sashidhara
- Medicinal & Process Chemistry Division and Division of Microbiology, CSIR−Central Drug Research Institute (CSIR-CDRI), Sector 10, Jankipuram extension,
Sitapur Road, Lucknow-226031, Uttar Pradesh, India
| | - K. Bhaskara Rao
- Medicinal & Process Chemistry Division and Division of Microbiology, CSIR−Central Drug Research Institute (CSIR-CDRI), Sector 10, Jankipuram extension,
Sitapur Road, Lucknow-226031, Uttar Pradesh, India
| | - Pragati Kushwaha
- Medicinal & Process Chemistry Division and Division of Microbiology, CSIR−Central Drug Research Institute (CSIR-CDRI), Sector 10, Jankipuram extension,
Sitapur Road, Lucknow-226031, Uttar Pradesh, India
| | - Ram K. Modukuri
- Medicinal & Process Chemistry Division and Division of Microbiology, CSIR−Central Drug Research Institute (CSIR-CDRI), Sector 10, Jankipuram extension,
Sitapur Road, Lucknow-226031, Uttar Pradesh, India
| | - Pratiksha Singh
- Medicinal & Process Chemistry Division and Division of Microbiology, CSIR−Central Drug Research Institute (CSIR-CDRI), Sector 10, Jankipuram extension,
Sitapur Road, Lucknow-226031, Uttar Pradesh, India
| | - Isha Soni
- Medicinal & Process Chemistry Division and Division of Microbiology, CSIR−Central Drug Research Institute (CSIR-CDRI), Sector 10, Jankipuram extension,
Sitapur Road, Lucknow-226031, Uttar Pradesh, India
| | - P. K. Shukla
- Medicinal & Process Chemistry Division and Division of Microbiology, CSIR−Central Drug Research Institute (CSIR-CDRI), Sector 10, Jankipuram extension,
Sitapur Road, Lucknow-226031, Uttar Pradesh, India
| | - Sidharth Chopra
- Medicinal & Process Chemistry Division and Division of Microbiology, CSIR−Central Drug Research Institute (CSIR-CDRI), Sector 10, Jankipuram extension,
Sitapur Road, Lucknow-226031, Uttar Pradesh, India
| | - Mukesh Pasupuleti
- Medicinal & Process Chemistry Division and Division of Microbiology, CSIR−Central Drug Research Institute (CSIR-CDRI), Sector 10, Jankipuram extension,
Sitapur Road, Lucknow-226031, Uttar Pradesh, India
| |
Collapse
|
47
|
Hittinger M, Juntke J, Kletting S, Schneider-Daum N, de Souza Carvalho C, Lehr CM. Preclinical safety and efficacy models for pulmonary drug delivery of antimicrobials with focus on in vitro models. Adv Drug Deliv Rev 2015; 85:44-56. [PMID: 25453270 DOI: 10.1016/j.addr.2014.10.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 12/11/2022]
Abstract
New pharmaceutical formulations must be proven as safe and effective before entering clinical trials. Also in the context of pulmonary drug delivery, preclinical models allow testing of novel antimicrobials, reducing risks and costs during their development. Such models allow reducing the complexity of the human lung, but still need to reflect relevant (patho-) physiological features. This review focuses on preclinical pulmonary models, mainly in vitro models, to assess drug safety and efficacy of antimicrobials. Furthermore, approaches to investigate common infectious diseases of the respiratory tract, are emphasized. Pneumonia, tuberculosis and infections occurring due to cystic fibrosis are in focus of this review. We conclude that especially in vitro models offer the chance of an efficient and detailed analysis of new antimicrobials, but also draw attention to the advantages and limitations of such currently available models and critically discuss the necessary steps for their future development.
Collapse
|
48
|
Kloppot P, Selle M, Kohler C, Stentzel S, Fuchs S, Liebscher V, Müller E, Kale D, Ohlsen K, Bröker BM, Zipfel PF, Kahl BC, Ehricht R, Hecker M, Engelmann S. Microarray-based identification of human antibodies against Staphylococcus aureus antigens. Proteomics Clin Appl 2015; 9:1003-11. [PMID: 25676254 DOI: 10.1002/prca.201400123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 01/06/2015] [Accepted: 02/05/2015] [Indexed: 02/03/2023]
Abstract
PURPOSE The mortality rate of patients with Staphylococcus aureus infections is alarming and urgently demands new strategies to attenuate the course of these infections or to detect them at earlier stages. EXPERIMENTAL DESIGN To study the adaptive immune response to S. aureus antigens in healthy human volunteers, a protein microarray containing 44 S. aureus proteins was developed using the ArrayStrip platform technology. RESULTS Testing plasma samples from 15 S. aureus carriers and 15 noncarriers 21 immunogenic S. aureus antigens have been identified. Seven antigens were recognized by antibodies present in at least 60% of the samples, representing the core S. aureus immunome of healthy individuals. S. aureus-specific serum immunoglobulin G (IgG) levels were significantly lower in noncarriers than in carriers specifically anti-IsaA, anti-SACOL0479, and anti-SACOL0480 IgGs were found at lower frequencies and quantities. Twenty-two antigens present on the microarray were encoded by all S. aureus carrier isolates. Nevertheless, the immune system of the carriers was responsive to only eight of them and with different intensities. CONCLUSION AND CLINICAL RELEVANCE The established protein microarray allows a broad profiling of the S. aureus-specific antibody response and can be used to identify S. aureus antigens that might serve as vaccines or diagnostic markers.
Collapse
Affiliation(s)
- Peggy Kloppot
- Institut für Mikrobiologie, Universität Greifswald, Greifswald, Germany
| | - Martina Selle
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | - Christian Kohler
- Institut für Mikrobiologie, Universität Greifswald, Greifswald, Germany
| | - Sebastian Stentzel
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Stephan Fuchs
- Institut für Mikrobiologie, Universität Greifswald, Greifswald, Germany
| | - Volkmar Liebscher
- Institut für Mathematik und Informatik, Universität Greifswald, Greifswald, Germany
| | | | - Devika Kale
- Institut für Medizinische Mikrobiologie, Universitätsklinikum Münster, Münster, Germany
| | - Knut Ohlsen
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | - Barbara M Bröker
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Peter F Zipfel
- Infektionsbiologie, Hans-Knöll-Institut Jena, Münster, Germany.,Friedrich Schiller Universität, Jena, Germany
| | - Barbara C Kahl
- Institut für Medizinische Mikrobiologie, Universitätsklinikum Münster, Münster, Germany
| | | | - Michael Hecker
- Institut für Mikrobiologie, Universität Greifswald, Greifswald, Germany
| | - Susanne Engelmann
- Institut für Mikrobiologie, Universität Greifswald, Greifswald, Germany.,Institut für Mikrobiologie, TU Braunschweig, Braunschweig, Germany.,Mikrobielle Proteomik, Helmholtzzentrum für Infektionsforschung, Braunschweig, Germany
| |
Collapse
|
49
|
Staphylococcal toxic shock syndrome: superantigen-mediated enhancement of endotoxin shock and adaptive immune suppression. Immunol Res 2015; 59:182-7. [PMID: 24816557 DOI: 10.1007/s12026-014-8538-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Infectious diseases caused by Staphylococcus aureus present a significant clinical and public health problem. S. aureus causes some of the most severe hospital-associated and community-acquired illnesses. Specifically, it is the leading cause of infective endocarditis and osteomyelitis, and the second leading cause of sepsis in the USA. While pathogenesis of S. aureus infections is at the center of current research, many questions remain about the mechanisms underlying staphylococcal toxic shock syndrome (TSS) and associated adaptive immune suppression. Both conditions are mediated by staphylococcal superantigens (SAgs)-secreted staphylococcal toxins that are major S. aureus virulence factors. Toxic shock syndrome toxin-1 (TSST-1) is the SAg responsible for almost all menstrual TSS cases in the USA. TSST-1, staphylococcal enterotoxin B and C are also responsible for most cases of non-menstrual TSS. While SAgs mediate all of the hallmark features of TSS, such as fever, rash, hypotension, and multi-organ dysfunction, they are also capable of enhancing the toxic effects of endogenous endotoxin. This interaction appears to be critical in mediating the severity of TSS and related mortality. In addition, interaction between SAgs and the host immune system has been recognized to result in a unique form of adaptive immune suppression, contributing to poor outcomes of S. aureus infections. Utilizing rabbit models of S. aureus infective endocarditis, pneumonia and sepsis, and molecular genetics techniques, we aim to elucidate the mechanisms of SAg and endotoxin synergism in the pathogenesis of TSS, and examine the cellular and molecular mechanisms underlying SAg-mediated immune dysfunction.
Collapse
|
50
|
Chronic superantigen exposure induces systemic inflammation, elevated bloodstream endotoxin, and abnormal glucose tolerance in rabbits: possible role in diabetes. mBio 2015; 6:e02554. [PMID: 25714716 PMCID: PMC4358007 DOI: 10.1128/mbio.02554-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Excessive weight and obesity are associated with the development of diabetes mellitus type 2 (DMII) in humans. They also pose high risks of Staphylococcus aureus colonization and overt infections. S. aureus causes a wide range of severe illnesses in both healthy and immunocompromised individuals. Among S. aureus virulence factors, superantigens are essential for pathogenicity. In this study, we show that rabbits that are chronically exposed to S. aureus superantigen toxic shock syndrome toxin-1 (TSST-1) experience impaired glucose tolerance, systemic inflammation, and elevated endotoxin levels in the bloodstream, all of which are common findings in DMII. Additionally, such DMII-associated findings are also seen through effects of TSST-1 on isolated adipocytes. Collectively, our findings suggest that chronic exposure to S. aureus superantigens facilitates the development of DMII, which may lead to therapeutic targeting of S. aureus and its superantigens. Obesity has a strong correlation with type 2 diabetes, in which fatty tissue, containing adipocytes, contributes to the development of the illness through altered metabolism and chronic inflammation. The human microbiome changes in persons with obesity and type 2 diabetes, including increases in Staphylococcus aureus colonization and overt infections. While the microbiome is essential for human wellness, there is little understanding of the role of microbes in obesity or the development of diabetes. Here, we demonstrate that the S. aureus superantigen toxic shock syndrome toxin-1 (TSST-1), an essential exotoxin in pathogenesis, induces inflammation, lipolysis, and insulin resistance in adipocytes both in vitro and in vivo. Chronic stimulation of rabbits with TSST-1 results in impaired systemic glucose tolerance, the hallmark finding in type 2 diabetes in humans, suggesting a role of S. aureus and its superantigens in the progression to type 2 diabetes.
Collapse
|