1
|
Feng A, Zhao H, Qiu C, Luo D, Wu H, Meng X, Li L, Zou H. Gut microbiota metabolites impact immunologic responses to antiretroviral therapy in HIV-infected men who have sex with men. Infect Dis Poverty 2025; 14:21. [PMID: 40098016 PMCID: PMC11917012 DOI: 10.1186/s40249-025-01291-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND The association between gut microbial metabolites and immunologic non-response among people living with HIV (PLHIV) receiving antiretroviral therapy (ART) has not been well established. We aimed to characterize gut microbial metabolites among HIV-infected men who have sex with men (MSM) with different immunologic responses. METHODS We recruited HIV-infected MSM from Guangzhou Eighth People's Hospital and HIV-uninfected MSM (healthy controls, HC) from a local MSM community-based organization in Guangzhou between June and October 2021. HIV-infected MSM were grouped into good immunological responders (GIR) (CD4 + T cell count ≥ 350 cells/μl) and poor immunological responders (PIR) (CD4 + T cell count < 350 cells/μl) after 24 months of ART treatment. Online questionnaires and stool samples were collected. Microbial metabolites in stool were obtained through ultra-performance liquid chromatography coupled to a tandem mass spectrometry (UPLC-MS/MS) system. Differential metabolites were identified and analyzed using the Kruskal-Wallis test, followed by pairwise comparisons with the Wilcoxon rank-sum test. The least absolute selection and shrinkage operator was used to select potential metabolites biomarkers. RESULTS A total of 51 HC, 56 GIR, and 42 PIR were included. No statistically significant differences were observed in the median time since HIV diagnosis and ART duration between GIR and PIR. Among the 174 quantified metabolites, 81 significantly differed among HC, GIR, and PIR (P < 0.05). Among differential metabolites, indole-3-propionic acid significantly decreased from HC (11.39 nmol/g) and GIR (8.16 nmol/g) to PIR (6.50 nmol/g). The pathway analysis showed that tryptophan metabolism differed significantly between GIR and PIR (P < 0.05). Four potential metabolites biomarkers (dimethylglycine, cinnamic acid, 3-hydroxyisovaleric acid, and propionic acid) that distinguish GIR and PIR were identified, and the corresponding area under the curve based on potential biomarkers was 0.773 (95% CI: 0.675-0.871). CONCLUSIONS This study identified significant differences in gut microbial metabolites among HIV-infected MSM with different immunologic responses. These results indicate the potential of gut microbial metabolites as novel disease progression markers and therapeutic targets.
Collapse
Affiliation(s)
- Anping Feng
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Heping Zhao
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, No 8 Huaying Road, Guangzhou, 510060, Guangdong, China
| | - Chunting Qiu
- Department of Infectious Diseases, Tianjin Second People's Hospital, Tianjin, 300192, China
| | - Dan Luo
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Hao Wu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Xiaojun Meng
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi, 214023, Jiangsu, China.
| | - Linghua Li
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, No 8 Huaying Road, Guangzhou, 510060, Guangdong, China.
| | - Huachun Zou
- School of Public Health, Fudan University, Room 435, Bld #8, 130 Dongan Road, Xuhui District, Shanghai, 200032, China.
- School of Public Health, Southwest Medical University, Luzhou, China.
- Kirby Institute, University of New South Wales, Sydney, Australia.
| |
Collapse
|
2
|
Johnson MJ, Lazarus SK, Bennett AE, Tovar-Salazar A, Robertson CE, Kofonow JM, Li S, McCollister B, Nunes MC, Madhi SA, Frank DN, Weinberg A. Gut microbiota and other factors associated with increased T cell regulation in HIV-exposed uninfected infants. Front Immunol 2025; 16:1533003. [PMID: 40098966 PMCID: PMC11911520 DOI: 10.3389/fimmu.2025.1533003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Infants exposed to HIV and uninfected (HEUs) are at higher risk of infectious morbidity than HIV-unexposed uninfected infants (HUUs). Multiple immune defects of unknown origin were observed in HEUs. We hypothesized that HEUs have more regulatory and inhibitory checkpoint-expressing T cells (Treg, Tici) than HUUs, which may dampen their immune defenses against pathogens. Method We used flow cytometry to measure 25 Treg/Tici subsets in HEUs and HUUs at birth, 6, 28, and 62 weeks of life. We used maternal and infant gut microbiome data reported in a previous study to establish correlations with the Treg/Tici. Results At birth, 3 Treg subsets, including the prototypic CD4+FOXP3+ and CD4+FOXP3+CD25+, had higher frequencies in 123 HEUs than in 117 HUUs, and 3 subsets had higher frequencies in HUUs. At 28 and 62 weeks of age, 5 Treg/Tici subsets had higher proportions in HEUs than HUUs. The frequencies of the Treg/Tici subsets that diverged between HEUs and HUUs at birth correlated with differential relative abundances of bacterial taxa in the maternal gut microbiome. The Treg/Tici subsets with significantly different frequencies at subsequent visits correlated with the concurrent composition of the infant gut microbiome. In vitro, treatment of HUU peripheral blood mononuclear cells (PBMC) with bacterial taxa most abundant in HEUs expanded Treg/Tici subsets with higher frequencies in HEUs than HUUs, recapitulating the in vivo correlations. Conversely, in vitro treatment of HEU PBMC did not increase Treg/Tici frequencies. Other factors that correlated with increased Treg/Tici frequencies were low maternal CD4+ T cells in HEUs at birth and male sex in the HUUs at 28 weeks of life. Discussion This study shows that maternal and infant gut dysbiosis are central to the increase in Treg/Tici in HEUs and may be targeted by mitigating interventions.
Collapse
Affiliation(s)
- Michael J. Johnson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sarah K. Lazarus
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ashlynn E. Bennett
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Adriana Tovar-Salazar
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Charles E. Robertson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jennifer M. Kofonow
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Shaobing Li
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Bruce McCollister
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Marta C. Nunes
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit and Department of Science and Technology/National Research Foundation South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir A. Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit and Department of Science and Technology/National Research Foundation South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel N. Frank
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Adriana Weinberg
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Tolomeo M, Cascio A. The Complex Dysregulations of CD4 T Cell Subtypes in HIV Infection. Int J Mol Sci 2024; 25:7512. [PMID: 39062756 PMCID: PMC11276885 DOI: 10.3390/ijms25147512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection remains an important global public health problem. About 40 million people are infected with HIV, and this infection caused about 630,000 deaths in 2022. The hallmark of HIV infection is the depletion of CD4+ T helper lymphocytes (Th cells). There are at least seven different Th subtypes, and not all are the main targets of HIV. Moreover, the effect of the virus in a specific subtype can be completely different from that of the others. Although the most compromised Th subtype in HIV infection is Th17, HIV can induce important dysregulations in other subtypes, such as follicular Th (Tfh) cells and regulatory Th cells (Treg cells or Tregs). Several studies have shown that HIV can induce an increase in the immunosuppressive activity of Tregs without causing a significant reduction in their numbers, at least in the early phase of infection. The increased activity of this Th subtype seems to play an important role in determining the immunodeficiency status of HIV-infected patients, and Tregs may represent a new target for innovative anti-HIV therapies, including the so-called "Kick and Kill" therapeutic method whose goal is the complete elimination of the virus and the healing of HIV infection. In this review, we report the most important findings on the effects of HIV on different CD4+ T cell subtypes, the molecular mechanisms by which the virus impairs the functions of these cells, and the implications for new anti-HIV therapeutic strategies.
Collapse
Affiliation(s)
- Manlio Tolomeo
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Department of Infectious Diseases, A.O.U.P. Palermo, 90127 Palermo, Italy
| | - Antonio Cascio
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Department of Infectious Diseases, A.O.U.P. Palermo, 90127 Palermo, Italy
| |
Collapse
|
4
|
Bouzari B, Chugaeva UY, Karampoor S, Mirzaei R. Immunometabolites in viral infections: Action mechanism and function. J Med Virol 2024; 96:e29807. [PMID: 39037069 DOI: 10.1002/jmv.29807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/10/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
The interplay between viral pathogens and host metabolism plays a pivotal role in determining the outcome of viral infections. Upon viral detection, the metabolic landscape of the host cell undergoes significant changes, shifting from oxidative respiration via the tricarboxylic acid (TCA) cycle to increased aerobic glycolysis. This metabolic shift is accompanied by elevated nutrient accessibility, which is vital for cell function, development, and proliferation. Furthermore, depositing metabolites derived from fatty acids, TCA intermediates, and amino acid catabolism accelerates the immunometabolic transition, facilitating pro-inflammatory and antimicrobial responses. Immunometabolites refer to small molecules involved in cellular metabolism regulating the immune response. These molecules include nutrients, such as glucose and amino acids, along with metabolic intermediates and signaling molecules adenosine, lactate, itaconate, succinate, kynurenine, and prostaglandins. Emerging evidence suggests that immunometabolites released by immune cells establish a complex interaction network within local niches, orchestrating and fine-tuning immune responses during viral diseases. However, our current understanding of the immense capacity of metabolites to convey essential cell signals from one cell to another or within cellular compartments remains incomplete. Unraveling these complexities would be crucial for harnessing the potential of immunometabolites in therapeutic interventions. In this review, we discuss specific immunometabolites and their mechanisms of action in viral infections, emphasizing recent findings and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Uliana Y Chugaeva
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Frias MA, Pagano S, Bararpour N, Sidibé J, Kamau F, Fétaud-Lapierre V, Hudson P, Thomas A, Lecour S, Strijdom H, Vuilleumier N. People living with HIV display increased anti-apolipoprotein A1 auto-antibodies, inflammation, and kynurenine metabolites: a case-control study. Front Cardiovasc Med 2024; 11:1343361. [PMID: 38414919 PMCID: PMC10896987 DOI: 10.3389/fcvm.2024.1343361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
Objective This study aimed to study the relationship between auto-antibodies against apolipoprotein A1 (anti-apoA1 IgG), human immunodeficiency virus (HIV) infection, anti-retroviral therapy (ART), and the tryptophan pathways in HIV-related cardiovascular disease. Design This case-control study conducted in South Africa consisted of control volunteers (n = 50), people living with HIV (PLWH) on ART (n = 50), and untreated PLWH (n = 44). Cardiovascular risk scores were determined, vascular measures were performed, and an extensive biochemical characterisation (routine, metabolomic, and inflammatory systemic profiles) was performed. Methods Anti-apoA1 IgG levels were assessed by an in-house ELISA. Inflammatory biomarkers were measured with the Meso Scale Discovery® platform, and kynurenine pathway metabolites were assessed using targeted metabolomic profiling conducted by liquid chromatography-multiple reaction monitoring/mass spectrometry (LC-MRM/MS). Results Cardiovascular risk scores and vascular measures exhibited similarities across the three groups, while important differences were observed in systemic inflammatory and tryptophan pathways. Anti-apoA1 IgG seropositivity rates were 15%, 40%, and 70% in control volunteers, PLWH ART-treated, and PLWH ART-naïve, respectively. Circulating anti-apoA1 IgG levels were significantly negatively associated with CD4+ cell counts and positively associated with viremia and pro-inflammatory biomarkers (IFNγ, TNFα, MIPα, ICAM-1, VCAM-1). While circulating anti-apoA1 IgG levels were associated with increased levels of kynurenine in both control volunteers and PLWH, the kynurenine/tryptophan ratio was significantly increased in PLWH ART-treated. Conclusion HIV infection increases the humoral response against apoA1, which is associated with established HIV severity criteria and kynurenine pathway activation.
Collapse
Affiliation(s)
- Miguel A. Frias
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sabrina Pagano
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nasim Bararpour
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Genetics, Stanford University, Stanford, CA, United States
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, United States
| | - Jonathan Sidibé
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Festus Kamau
- Centre for Cardiometabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Vanessa Fétaud-Lapierre
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Peter Hudson
- Cape Heart Institute, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Aurélien Thomas
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
| | - Sandrine Lecour
- Cape Heart Institute, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Hans Strijdom
- Centre for Cardiometabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Johnson M, Lazarus SK, Bennett AE, Tovar-Salazar A, Robertson CE, Kofonow JM, Li S, McCollister B, Nunes MC, Madhi SA, Frank DN, Weinberg A. Gut Microbiota and Other Factors Associated With Increased Regulatory T Cells in Hiv-exposed Uninfected Infants. RESEARCH SQUARE 2024:rs.3.rs-3909424. [PMID: 38352510 PMCID: PMC10862973 DOI: 10.21203/rs.3.rs-3909424/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
HIV-exposed uninfected infants (HEU) have higher infectious morbidity than HIV-unexposed infants (HUU). HEU have multiple immune defects of unknown origin. We hypothesized that HEU have higher regulatory T cells (Treg) than HUU, which may dampen their immune defenses against pathogens. We compared 25 Treg subsets between HEU and HUU and sought the factors that may affect Treg frequencies. At birth, 3 Treg subsets, including CD4 + FOXP3 + and CD4 + FOXP3 + CD25+, had higher frequencies in 123 HEU than 117 HUU and 3 subsets were higher in HUU. At 28 and 62 weeks of life, 5 Treg subsets were higher in HEU, and none were higher in HUU. The frequencies of the discrepant Treg subsets correlated at birth with differential abundances of bacterial taxas in maternal gut microbiome and at subsequent visits in infant gut microbiomes. In vitro, bacterial taxa most abundant in HEU expanded Treg subsets with higher frequencies in HEU, recapitulating the in vivo observations. Other factors that correlated with increased Treg were low maternal CD4 + T cells in HEU at birth and male sex in HUU at 28 weeks. We conclude that maternal and infant gut dysbiosis are central to the Treg increase in HEU and may be targeted by mitigating interventions.
Collapse
|
7
|
Yang J, Cai R, Xun J, Zhang R, Liu L, Shen Y, Qi T, Wang Z, Song W, Tang Y, Sun J, Xu S, Zhao B, Lu H, Chen J. Elevated indoleamine 2,3-dioxygenase activity is associated with endothelial dysfunction in people living with HIV and ROS production in human aortic endothelial cells in vitro. Drug Discov Ther 2023; 17:312-319. [PMID: 37880104 DOI: 10.5582/ddt.2023.01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The precise role of indoleamine 2,3-dioxygenase (IDO) in cardiovascular diseases (CVD) among people living with HIV (PLWH) is still under debate, despite recognized links. This study aimed to investigate the impact of elevated IDO activity on endothelial dysfunction in PLWH. A total of 38 PLWH, who had not previously received anti-retroviral therapy (ART), were enrolled in the study. These participants were monitored for 36 months following the initiation of ART. Measurements including plasma levels of IDO activity, markers of endothelial dysfunction, inflammatory factors, and lipids. In vitro, human aortic endothelial cells (HAEC) were exposed to interferon-γ, an IDO inhibitor, a kynurenine 3-hydroxylase (KMO) inhibitor, as well as different concentrations of kynurenine. Pre-ART, PLWH demonstrated notably elevated plasma concentrations of soluble intercellular adhesion molecule 1 (sICAM-1), soluble vascular cell adhesion molecule 1(sVCAM-1), and IDO activity in comparison to healthy controls. Post-ART, both IDO activity and sICAM-1 levels experienced a significant decrease, with IDO activity reaching levels comparable to those observed in healthy controls. Furthermore, a positive correlation was observed between IDO activity and sICAM-1 (p = 0.0002), as well as sVCAM-1 (p < 0.0001) before ART. In vitro, the augmentation of kynurenine concentration in the medium and the induction of IDO expression in HAEC resulted in increased production of reactive oxygen species (ROS), with minimal impact on endothelial dysfunction. From these findings, it can be concluded that long-term ART has the potential to restore the heightened IDO activity observed in PLWH. The overexpression of IDO primarily influences the expression of ROS in HAEC.
Collapse
Affiliation(s)
- Junyang Yang
- Department of Infectious and Immune Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Rentian Cai
- Department of Infectious Disease, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingna Xun
- Department of Infectious and Immune Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Renfang Zhang
- Department of Infectious and Immune Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Li Liu
- Department of Infectious and Immune Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yinzhong Shen
- Department of Infectious and Immune Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tangkai Qi
- Department of Infectious and Immune Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhenyan Wang
- Department of Infectious and Immune Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wei Song
- Department of Infectious and Immune Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yang Tang
- Department of Infectious and Immune Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianjun Sun
- Department of Infectious and Immune Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuibao Xu
- Department of Infectious and Immune Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bihe Zhao
- Department of Infectious and Immune Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongzhou Lu
- Department of Infectious Diseases and Nursing Research Institution, National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Jun Chen
- Department of Infectious and Immune Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Jiang R, Song Z, Liu L, Mei X, Sun J, Qi T, Wang Z, Song W, Tang Y, Yang J, Xu S, Zhao B, Shen Y, Zhang R, Chen J. Survival and prognostic factors of progressive multifocal leukoencephalopathy in people living with HIV in modern ART era. Front Cell Infect Microbiol 2023; 13:1208155. [PMID: 38029233 PMCID: PMC10663249 DOI: 10.3389/fcimb.2023.1208155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background The incidence of progressive multifocal leukoencephalopathy (PML) in people living with HIV (PLWH) is 2%-4%. Currently, there is no effective therapeutic strategy for the treatment of PML in PLWH, resulting in a mortality of up to 50%. This study aimed to identify risk factors of death and prognostic markers in people living with HIV with PML. Methods A retrospective cohort study of AIDS-related PML individuals was conducted from January 1, 2015, to October 1, 2022, in Shanghai, China. PLWH who were diagnosed with PML for the first time were included. Kaplan-Meier curve and Cox regression were used to analyze the survival and its predictors. Levels of inflammatory markers and immune checkpoint inhibitors in blood and cerebrospinal fluid (CSF) were measured in the prestored samples using bead-based multiplex assay Indolamine 2,3-dioxygenase was determined using ELISA. Results Twenty of 71 subjects had initiated antiretroviral therapy (ART) before PML onset and no patients discontinued ART during this period. In total, 34 patients (47.9%) had opportunistic infections (OIs), the median CD4+ T cell count was 73.0 (33.0-149.0) cells/μL. The estimated probability of survival at six months was 78% (95% confidential intervals [CIs]:0.63-0.85). OIs, low CD4+ T cell count were associated with lower estimated six-month survival (hazard ratio 8.01, 95% CIs: 1.80-35.00, P=0.006 and 5.01, 95% CIs:1.57-16.03, p=0.007). Indolamine 2,3-dioxygenase activity in CSF of non-survivors group were higher than survivors group (p<0.05). Conclusions The survival rate of AIDS-related PML in the modern ART era was higher than the survival rate a decade ago. Low CD4+T cell count, OIs, were all associated with death of individuals with AIDS-related PML. The role of IDO in AIDS-related PML warrant further investigation.
Collapse
Affiliation(s)
- Rui Jiang
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zichen Song
- Scientifc Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Li Liu
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xue Mei
- Department of Liver Intensive Care Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianjun Sun
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tangkai Qi
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhenyan Wang
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wei Song
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yang Tang
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Junyang Yang
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuibao Xu
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bihe Zhao
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yinzhong Shen
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Renfang Zhang
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Chen
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Sultana S, Elengickal A, Bensreti H, de Chantemèle EB, McGee-Lawrence ME, Hamrick MW. The kynurenine pathway in HIV, frailty and inflammaging. Front Immunol 2023; 14:1244622. [PMID: 37744363 PMCID: PMC10514395 DOI: 10.3389/fimmu.2023.1244622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Kynurenine (Kyn) is a circulating tryptophan (Trp) catabolite generated by enzymes including IDO1 that are induced by inflammatory cytokines such as interferon-gamma. Kyn levels in circulation increase with age and Kyn is implicated in several age-related disorders including neurodegeneration, osteoporosis, and sarcopenia. Importantly, Kyn increases with progressive disease in HIV patients, and antiretroviral therapy does not normalize IDO1 activity in these subjects. Kyn is now recognized as an endogenous agonist of the aryl hydrocarbon receptor, and AhR activation itself has been found to induce muscle atrophy, increase the activity of bone-resorbing osteoclasts, decrease matrix formation by osteoblasts, and lead to senescence of bone marrow stem cells. Several IDO1 and AhR inhibitors are now in clinical trials as potential cancer therapies. We propose that some of these drugs may be repurposed to improve musculoskeletal health in older adults living with HIV.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark W. Hamrick
- Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
10
|
Swaminathan S, Scorza T, Yero A, Farnos O, Burke Schinkel SC, Angel JB, Jenabian MA. Impact of in vitro HIV infection on human thymic regulatory T cell differentiation. Front Microbiol 2023; 14:1217801. [PMID: 37547675 PMCID: PMC10400333 DOI: 10.3389/fmicb.2023.1217801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Background The differentiation and function of immunosuppressive regulatory T cells (Tregs) is dictated by the master transcription factor FoxP3. During HIV infection, there is an increase in Treg frequencies in the peripheral blood and lymphoid tissues. This accentuates immune dysfunction and disease progression. Expression of FoxP3 by thymic Tregs (tTregs) is partially controlled by TGF-β. This cytokine also contributes to Treg development in the peripheral blood and lymphoid tissues. Although TGF-β mediates lymphoid tissue fibrosis and peripheral Treg differentiation in HIV-infected individuals, its role in the induction and maintenance of Tregs within the thymus during HIV infection remains unclear. Methods Thymocytes were isolated from fresh human thymic tissues obtained from pediatric patients undergoing cardiac surgery. Infection by both R5- and X4-tropic HIV-1 strains and TGF-β treatment of human thymocytes was performed in an in vitro co-culture model with OP9-DL1 cells expressing Notch ligand delta-like 1 without T cell receptor (TCR) activation. Results Despite high expression of CCR5 and CXCR4 by tTregs, FoxP3 + CD3highCD8- thymocytes were much less prone to in vitro infection with R5- and X4-tropic HIV strains compared to FoxP3-CD3highCD8- thymocytes. As expected, CD3highCD4+ thymocytes, when treated with TGF-β1, upregulated CD127 and this treatment resulted in increased FoxP3 expression and Treg differentiation, but did not affect the rate of HIV infection. FoxP3 expression and Treg frequencies remained unchanged following in vitro HIV infection alone or in combination with TGF-β1. Conclusion FoxP3 expression and tTreg differentiation is not affected by in vitro HIV infection alone or the combination of in vitro HIV infection and TGF-β treatment.
Collapse
Affiliation(s)
- Sharada Swaminathan
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Tatiana Scorza
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Alexis Yero
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Omar Farnos
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | | | - Jonathan B. Angel
- Division of Infectious Diseases, Ottawa Hospital-General Campus, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| |
Collapse
|
11
|
Carmona-Pérez L, Dagenais-Lussier X, Mai LT, Stögerer T, Swaminathan S, Isnard S, Rice MR, Barnes BJ, Routy JP, van Grevenynghe J, Stäger S. The TLR7/IRF-5 axis sensitizes memory CD4+ T cells to Fas-mediated apoptosis during HIV-1 infection. JCI Insight 2023; 8:e167329. [PMID: 37227774 PMCID: PMC10371351 DOI: 10.1172/jci.insight.167329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/23/2023] [Indexed: 05/27/2023] Open
Abstract
HIV-1 infection is characterized by inflammation and a progressive decline in CD4+ T cell count. Despite treatment with antiretroviral therapy (ART), the majority of people living with HIV (PLWH) maintain residual levels of inflammation, a low degree of immune activation, and higher sensitivity to cell death in their memory CD4+ T cell compartment. To date, the mechanisms responsible for this high sensitivity remain elusive. We have identified the transcription factor IRF-5 to be involved in impairing the maintenance of murine CD4+ T cells during chronic infection. Here, we investigate whether IRF-5 also contributes to memory CD4+ T cell loss during HIV-1 infection. We show that TLR7 and IRF-5 were upregulated in memory CD4+ T cells from PLWH, when compared with naturally protected elite controllers and HIVfree participants. TLR7 was upstream of IRF-5, promoting Caspase 8 expression in CD4+ T cells from ART HIV-1+ but not from HIVfree donors. Interestingly, the TLR7/IRF-5 axis acted synergistically with the Fas/FasL pathway, suggesting that TLR7 and IRF-5 expression in ART HIV-1+ memory CD4+ T cells represents an imprint that predisposes cells to Fas-mediated apoptosis. This predisposition could be blocked using IRF-5 inhibitory peptides, suggesting IRF-5 blockade as a possible therapy to prevent memory CD4+ T cell loss in PLWH.
Collapse
Affiliation(s)
- Liseth Carmona-Pérez
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Xavier Dagenais-Lussier
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Linh T. Mai
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Tanja Stögerer
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Sharada Swaminathan
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Stéphane Isnard
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Matthew R. Rice
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Betsy J. Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Julien van Grevenynghe
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Simona Stäger
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| |
Collapse
|
12
|
Mboumba Bouassa RS, Comeau E, Alexandrova Y, Pagliuzza A, Yero A, Samarani S, Needham J, Singer J, Lee T, Bobeuf F, Vertzagias C, Sebastiani G, Margolese S, Mandarino E, Klein MB, Lebouché B, Routy JP, Chomont N, Costiniuk CT, Jenabian MA. Effects of Oral Cannabinoids on Systemic Inflammation and Viral Reservoir Markers in People with HIV on Antiretroviral Therapy: Results of the CTN PT028 Pilot Clinical Trial. Cells 2023; 12:1811. [PMID: 37508476 PMCID: PMC10378564 DOI: 10.3390/cells12141811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Chronic HIV infection is characterized by persistent inflammation despite antiretroviral therapy (ART). Cannabinoids may help reduce systemic inflammation in people with HIV (PWH). To assess the effects of oral cannabinoids during HIV, ten PWH on ART were randomized (n = 5/group) to increasing doses of oral Δ9-tetrahydrocannabinol (THC): cannabidiol (CBD) combination (2.5:2.5-15:15 mg/day) capsules or CBD-only (200-800 mg/day) capsules for 12 weeks. Blood specimens were collected prospectively 7-21 days prior to treatment initiation and at weeks 0 to 14. Plasma cytokine levels were determined via Luminex and ELISA. Immune cell subsets were characterized by flow cytometry. HIV DNA/RNA were measured in circulating CD4 T-cells and sperm by ultra-sensitive qPCR. Results from both arms were combined for statistical analysis. Plasma levels of IFN-γ, IL-1β, sTNFRII, and REG-3α were significantly reduced at the end of treatment (p ˂ 0.05). A significant decrease in frequencies of PD1+ memory CD4 T-cells, CD73+ regulatory CD4 T-cells, and M-DC8+ intermediate monocytes was also observed (p ˂ 0.05), along with a transient decrease in CD28-CD57+ senescent CD4 and CD8 T-cells. Ki-67+ CD4 T-cells, CCR2+ non-classical monocytes, and myeloid dendritic cells increased over time (p ˂ 0.05). There were no significant changes in other inflammatory markers or HIV DNA/RNA levels. These findings can guide future large clinical trials investigating cannabinoid anti-inflammatory properties.
Collapse
Affiliation(s)
- Ralph-Sydney Mboumba Bouassa
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC H2X 3Y7, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Eve Comeau
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC H2X 3Y7, Canada
| | - Yulia Alexandrova
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC H2X 3Y7, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Amélie Pagliuzza
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Alexis Yero
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC H2X 3Y7, Canada
| | - Suzanne Samarani
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Judy Needham
- CIHR Canadian HIV Trials Network, Vancouver, BC V6Z 1Y6, Canada
- Centre for Health Evaluation and Outcome Sciences, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Joel Singer
- CIHR Canadian HIV Trials Network, Vancouver, BC V6Z 1Y6, Canada
- Centre for Health Evaluation and Outcome Sciences, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Terry Lee
- CIHR Canadian HIV Trials Network, Vancouver, BC V6Z 1Y6, Canada
- Centre for Health Evaluation and Outcome Sciences, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Florian Bobeuf
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Claude Vertzagias
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Giada Sebastiani
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Shari Margolese
- CIHR Canadian HIV Trials Network, Vancouver, BC V6Z 1Y6, Canada
| | | | - Marina B Klein
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Bertrand Lebouché
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Family Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Centre for Outcomes Research & Evaluation, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Cecilia T Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC H2X 3Y7, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
13
|
Chatterjee D, Zhang Y, Ngassaki-Yoka CD, Dutilleul A, Khalfi S, Hernalsteens O, Wiche Salinas TR, Dias J, Chen H, Smail Y, Goulet JP, Bell B, Routy JP, Van Lint C, Ancuta P. Identification of aryl hydrocarbon receptor as a barrier to HIV-1 infection and outgrowth in CD4 + T cells. Cell Rep 2023; 42:112634. [PMID: 37310858 PMCID: PMC10592455 DOI: 10.1016/j.celrep.2023.112634] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) regulates Th17-polarized CD4+ T cell functions, but its role in HIV-1 replication/outgrowth remains unknown. Genetic (CRISPR-Cas9) and pharmacological inhibition reveal AhR as a barrier to HIV-1 replication in T cell receptor (TCR)-activated CD4+ T cells in vitro. In single-round vesicular stomatitis virus (VSV)-G-pseudotyped HIV-1 infection, AhR blockade increases the efficacy of early/late reverse transcription and subsequently facilitated integration/translation. Moreover, AhR blockade boosts viral outgrowth in CD4+ T cells of people living with HIV-1 (PLWH) receiving antiretroviral therapy (ART). Finally, RNA sequencing reveals genes/pathways downregulated by AhR blockade in CD4+ T cells of ART-treated PLWH, including HIV-1 interactors and gut-homing molecules with AhR-responsive elements in their promoters. Among them, HIC1, a repressor of Tat-mediated HIV-1 transcription and a tissue-residency master regulator, is identified by chromatin immunoprecipitation as a direct AhR target. Thus, AhR governs a T cell transcriptional program controlling viral replication/outgrowth and tissue residency/recirculation, supporting the use of AhR inhibitors in "shock and kill" HIV-1 remission/cure strategies.
Collapse
Affiliation(s)
- Debashree Chatterjee
- Centre de recherche du Centre hospitalier de l'université de Montréal, Montréal, QC H2X 0A9, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Yuwei Zhang
- Centre de recherche du Centre hospitalier de l'université de Montréal, Montréal, QC H2X 0A9, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Christ-Dominique Ngassaki-Yoka
- Centre de recherche du Centre hospitalier de l'université de Montréal, Montréal, QC H2X 0A9, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Antoine Dutilleul
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Soumia Khalfi
- Centre de recherche du Centre hospitalier de l'université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Olivier Hernalsteens
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Tomas Raul Wiche Salinas
- Centre de recherche du Centre hospitalier de l'université de Montréal, Montréal, QC H2X 0A9, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jonathan Dias
- Centre de recherche du Centre hospitalier de l'université de Montréal, Montréal, QC H2X 0A9, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Huicheng Chen
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Yasmine Smail
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | - Brendan Bell
- Département de Microbiologie et Infectiologie, Faculté de Médecine et des Sciences de la Santé and Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H3H 2R9, Canada; Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC H3H 2R9, Canada
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium.
| | - Petronela Ancuta
- Centre de recherche du Centre hospitalier de l'université de Montréal, Montréal, QC H2X 0A9, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada; Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest & The Research Institute of the University of Bucharest, 050095 Bucharest, Romania.
| |
Collapse
|
14
|
Guo YT, Guo XY, Fan LN, Wang ZR, Qu MM, Zhang C, Fan X, Song JW, Yang BP, Zhang JY, Xu R, Jiao YM, Ma P, Chen YK, Wang FS. The Imbalance Between Intestinal Th17 and Treg Cells Is Associated with an Incomplete Immune Reconstitution During Long-Term Antiretroviral Therapy in Patients with HIV. Viral Immunol 2023; 36:331-342. [PMID: 37184871 DOI: 10.1089/vim.2023.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Studies assessing the gut mucosal immune balance in HIV-infected patients using intestinal samples are scarce. In this study, we used intestinal mucosal specimens from the ileocecal region of seven immunological nonresponders (INRs), nine immunological responders (IRs), and six HIV-negative controls. We investigated T helper 17 (Th17) and T regulatory (Treg) cell counts and their ratio, zonula occludens-1 (ZO-1), intestinal fatty acid-binding protein (I-FABP), tumor necrosis factor-α, CD4+ T cell counts, HIV DNA, and cell-associated HIV RNA. The results showed that INRs had lower Th17 and higher Treg cell counts than IR, resulting in a significant difference in the Th17/Treg ratio between IRs and INRs. In addition, INRs had lower ZO-1 and higher I-FABP levels than IRs. The Th17/Treg ratio was positively associated with ZO-1 and negatively associated with I-FABP levels. There was a positive correlation between Th17/Treg ratio and CD4+ T cell counts and a negative correlation between the Th17/Treg ratio and HIV DNA in the intestine. Our study suggests that the imbalance of Th17/Treg in the intestine is a characteristic of incomplete immune reconstitution to antiretroviral therapy and is associated with intestinal damage.
Collapse
Affiliation(s)
- Yun-Tian Guo
- Department of Internal Medicine, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiao-Yan Guo
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Li-Na Fan
- Department of Infectious Diseases, Tianjin Second People's Hospital, Tianjin, China
| | - Ze-Rui Wang
- Department of Gastroenterology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Meng-Meng Qu
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Bao-Peng Yang
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruonan Xu
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Mei Jiao
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ping Ma
- Department of Infectious Diseases, Tianjin Second People's Hospital, Tianjin, China
| | - Yao-Kai Chen
- Department of Infectious Disease, Chongqing Public Health Medical Center, Chongqing, China
| | - Fu-Sheng Wang
- Department of Internal Medicine, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| |
Collapse
|
15
|
Ray S, Sil S, Kannan M, Periyasamy P, Buch S. Role of the gut-brain axis in HIV and drug abuse-mediated neuroinflammation. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11092. [PMID: 38389809 PMCID: PMC10880759 DOI: 10.3389/adar.2023.11092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/23/2023] [Indexed: 02/24/2024]
Abstract
Drug abuse and related disorders are a global public health crisis affecting millions, but to date, limited treatment options are available. Abused drugs include but are not limited to opioids, cocaine, nicotine, methamphetamine, and alcohol. Drug abuse and human immunodeficiency virus-1/acquired immune deficiency syndrome (HIV-1/AIDS) are inextricably linked. Extensive research has been done to understand the effect of prolonged drug use on neuronal signaling networks and gut microbiota. Recently, there has been rising interest in exploring the interactions between the central nervous system and the gut microbiome. This review summarizes the existing research that points toward the potential role of the gut microbiome in the pathogenesis of HIV-1-linked drug abuse and subsequent neuroinflammation and neurodegenerative disorders. Preclinical data about gut dysbiosis as a consequence of drug abuse in the context of HIV-1 has been discussed in detail, along with its implications in various neurodegenerative disorders. Understanding this interplay will help elucidate the etiology and progression of drug abuse-induced neurodegenerative disorders. This will consequently be beneficial in developing possible interventions and therapeutic options for these drug abuse-related disorders.
Collapse
Affiliation(s)
- Sudipta Ray
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
16
|
MacCann R, Landay AL, Mallon PWG. HIV and comorbidities - the importance of gut inflammation and the kynurenine pathway. Curr Opin HIV AIDS 2023; 18:102-110. [PMID: 36722199 PMCID: PMC7614535 DOI: 10.1097/coh.0000000000000782] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW The purpose of this article is to review alterations in microbiota composition, diversity, and functional features in the context of chronic inflammation and comorbidities associated with HIV infection. RECENT FINDINGS The gut microbiome is an important mediator of host immunity, and disruption of gut homeostasis can contribute to both systemic inflammation and immune activation. Ageing and HIV share features of intestinal damage, microbial translocation and alterations in bacterial composition that contribute to a proinflammatory state and development of age-related comorbidities. One such inflammatory pathway reviewed is the nicotinamide adenine dinucleotide (NAD+) producing kynurenine pathway (KP). Kynurenine metabolites regulate many biological processes including host-microbiome communication, immunity and oxidative stress and the KP in turn is influenced by the microbiome environment. Age-associated decline in NAD+ is implicated as a driving factor in many age-associated diseases, including those seen in people with HIV (PWH). Recent studies have shown that KP can influence metabolic changes in PWH, including increased abdominal adiposity and cardiovascular disease. Furthermore, KP activity increases with age in the general population, but it is elevated in PWH at all ages compared to age-matched controls. Host or microbiome-mediated targeting of this pathway has merits to increase healthy longevity and has potential therapeutic applications in PWH. SUMMARY As a growing proportion of PWH age, many face increased risks of developing age-related comorbidities. Chronic inflammation, a pillar of geroscience, the science of ageing and of age-related disease, is influenced by the gut microbiome and its metabolites. Combined, these contribute to a systemic inflammatory signature. Advances in geroscience-based approaches and therapeutics offer a novel paradigm for addressing age-related diseases and chronic inflammation in HIV infection. Whether targeted inhibition of KP activity alleviates pathological conditions or promotes successful ageing in PWH remains to be determined.
Collapse
Affiliation(s)
- Rachel MacCann
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin
- St Vincents University Hospital, Elm Park, Dublin 4, Ireland
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Patrick W G Mallon
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin
- St Vincents University Hospital, Elm Park, Dublin 4, Ireland
| |
Collapse
|
17
|
Yero A, Bouassa RSM, Ancuta P, Estaquier J, Jenabian MA. Immuno-metabolic control of the balance between Th17-polarized and regulatory T-cells during HIV infection. Cytokine Growth Factor Rev 2023; 69:1-13. [PMID: 36681548 DOI: 10.1016/j.cytogfr.2023.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Th17-polarized CD4+ effector T-cells together with their immunosuppressive regulatory T-cell (Treg) counterparts, with transcriptional profiles governed by the lineage transcription factors RORγt/RORC2 and FOXP3, respectively, are important gatekeepers at mucosal interfaces. Alterations in the Th17/Treg ratios, due to the rapid depletion of Th17 cells and increased Treg frequencies, are a hallmark of both HIV and SIV infections and a marker of disease progression. The shift in Th17/Treg balance, in favor of increased Treg frequencies, contributes to gut mucosal permeability, immune dysfunction, and microbial translocation, subsequently leading to chronic immune activation/inflammation and disease progression. Of particular interest, Th17 cells and Tregs share developmental routes, with changes in the Th17 versus Treg fate decision influencing the pro-inflammatory versus anti-inflammatory responses. The differentiation and function of Th17 cells and Tregs rely on independent yet complementary metabolic pathways. Several pathways have been described in the literature to be involved in Th17 versus Treg polarization, including 1) the activity of ectonucleotidases CD39/CD73; 2) the increase in TGF-β1 production; 3) a hypoxic environment, and subsequent upregulation in hypoxia-inducible factor-1α (HIF-1α); 4) the increased mTOR activity and glycolysis induction; 5) the lipid metabolism, including fatty acid synthesis, fatty acids oxidation, cholesterol synthesis, and lipid storage, which are regulated by the AMPK, mevalonate and PPARγ pathways; and 6) the tryptophan catabolism. These metabolic pathways are understudied in the context of HIV-1 infection. The purpose of this review is to summarize the current knowledge on metabolic pathways that are dysregulated during HIV-1 infection and their impact on Th17/Treg balance.
Collapse
Affiliation(s)
- Alexis Yero
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Ralph-Sydney Mboumba Bouassa
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Petronela Ancuta
- Centre de recherche du centre hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jerome Estaquier
- Centre hospitalier universitaire (CHU) de Québec Research Center, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montréal, QC, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
18
|
Ouyang J, Yan J, Zhou X, Isnard S, Harypursat V, Cui H, Routy JP, Chen Y. Relevance of biomarkers indicating gut damage and microbial translocation in people living with HIV. Front Immunol 2023; 14:1173956. [PMID: 37153621 PMCID: PMC10160480 DOI: 10.3389/fimmu.2023.1173956] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
The intestinal barrier has the daunting task of allowing nutrient absorption while limiting the entry of microbial products into the systemic circulation. HIV infection disrupts the intestinal barrier and increases intestinal permeability, leading to microbial product translocation. Convergent evidence has shown that gut damage and an enhanced level of microbial translocation contribute to the enhanced immune activation, the risk of non-AIDS comorbidity, and mortality in people living with HIV (PLWH). Gut biopsy procedures are invasive, and are not appropriate or feasible in large populations, even though they are the gold standard for intestinal barrier investigation. Thus, validated biomarkers that measure the degree of intestinal barrier damage and microbial translocation are needed in PLWH. Hematological biomarkers represent an objective indication of specific medical conditions and/or their severity, and should be able to be measured accurately and reproducibly via easily available and standardized blood tests. Several plasma biomarkers of intestinal damage, i.e., intestinal fatty acid-binding protein (I-FABP), zonulin, and regenerating islet-derived protein-3α (REG3α), and biomarkers of microbial translocation, such as lipopolysaccharide (LPS) and (1,3)-β-D-Glucan (BDG) have been used as markers of risk for developing non-AIDS comorbidities in cross sectional analyses and clinical trials, including those aiming at repair of gut damage. In this review, we critically discuss the value of different biomarkers for the estimation of gut permeability levels, paving the way towards developing validated diagnostic and therapeutic strategies to repair gut epithelial damage and to improve overall disease outcomes in PLWH.
Collapse
Affiliation(s)
- Jing Ouyang
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jiangyu Yan
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Xin Zhou
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- Canadian HIV Trials Network, Canadian Institutes for Health Research, Vancouver, BC, Canada
| | - Vijay Harypursat
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
- *Correspondence: Jean-Pierre Routy, ; Yaokai Chen,
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- *Correspondence: Jean-Pierre Routy, ; Yaokai Chen,
| |
Collapse
|
19
|
Vaccination with an HIV T-cell immunogen induces alterations in the mouse gut microbiota. NPJ Biofilms Microbiomes 2022; 8:104. [PMID: 36585401 PMCID: PMC9801356 DOI: 10.1038/s41522-022-00368-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
The gut microbiota is emerging as a crucial factor modulating vaccine responses; however, few studies have investigated if vaccines, in turn, can alter the microbiota and to what extent such changes may improve vaccine efficacy. To understand the effect of T-cell vaccination on the gut microbiome, we administered an HIV-1 T-cell immunogen (HTI arm) or PBS (control, Mock arm) to C57Bl/6 mice following a heterologous prime-boost scheme. The longitudinal dynamics of the mice gut microbiota was characterized by 16 S ribosomal RNA sequencing in fecal samples collected from cages, as well as from three gut sections (cecum, small and large intestine). Serum and spleen cells were obtained at the last time point of the study to assess immune correlates using IFNγ ELISPOT and cytokine Luminex® assays. Compared with Mock, HTI-vaccinated mice were enriched in Clostridiales genera (Eubacterium xylanophilum group, Roseburia and Ruminococcus) known as primary contributors of anti-inflammatory metabolites, such as short-chain fatty acids. Such shift was observed after the first HTI dose and remained throughout the study follow-up (18 weeks). However, the enriched Clostridiales genera were different between feces and gut sections. The abundance of bacteria enriched in vaccinated animals positively correlated with HTI-specific T-cell responses and a set of pro-inflammatory cytokines, such as IL-6. This longitudinal analysis indicates that, in mice, T-cell vaccination may promote an increase in gut bacteria known to produce anti-inflammatory molecules, which in turn correlate with proinflammatory cytokines, suggesting an adaptation of the gut microbial milieu to T-cell-induced systemic inflammation.
Collapse
|
20
|
Blázquez-Bondia C, Parera M, Català-Moll F, Casadellà M, Elizalde-Torrent A, Aguiló M, Espadaler-Mazo J, Santos JR, Paredes R, Noguera-Julian M. Probiotic effects on immunity and microbiome in HIV-1 discordant patients. Front Immunol 2022; 13:1066036. [PMID: 36569851 PMCID: PMC9774487 DOI: 10.3389/fimmu.2022.1066036] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Background Some HIV-1 infected patients are unable to completely recover normal CD4+ T-cell (CD4+) counts after achieving HIV-1 suppression with combined Antiretroviral Therapy (cART), hence being classified as immuno-discordant. The human microbiome plays a crucial role in maintaining immune homeostasis and is a potential target towards immune reconstitution. Setting RECOVER (NCT03542786) was a double-blind placebo-controlled clinical trial designed to evaluate if the novel probiotic i3.1 (AB-Biotics, Sant Cugat del Vallès, Spain) was able to improve immune reconstitution in HIV-1 infected immuno-discordant patients with stable cART and CD4+ counts <500 cells/mm3. The mixture consisted of two strains of L. plantarum and one of P. acidilactici, given with or without a fiber-based prebiotic. Methods 71 patients were randomized 1:2:2 to Placebo, Probiotic or probiotic + prebiotic (Synbiotic), and were followed over 6 months + 3-month washout period, in which changes on systemic immune status and gut microbiome were evaluated. Primary endpoints were safety and tolerability of the investigational product. Secondary endpoints were changes on CD4+ and CD8+ T-cell (CD8+) counts, inflammation markers and faecal microbiome structure, defined by alpha diversity (Gene Richness), beta diversity (Bray-Curtis) and functional profile. Comparisons across/within groups were performed using standard/paired Wilcoxon test, respectively. Results Adverse event (AE) incidence was similar among groups (53%, 33%, and 55% in the Placebo, Probiotic and Synbiotic groups, respectively, the most common being grade 1 digestive AEs: flatulence, bloating and diarrhoea. Two grade 3 AEs were reported, all in the Synbiotic group: abdominal distension (possibly related) and malignant lung neoplasm (unrelated), and 1 grade 4 AE in the Placebo: hepatocarcinoma (unrelated). Synbiotic exposure was associated with a higher increase in CD4+/CD8+ T-cell (CD4/CD8) ratio at 6 months vs baseline (median=0.76(IQR=0.51) vs 0.72(0. 45), median change= 0.04(IQR=0.19), p = 0.03). At month 9, the Synbiotic group had a significant increase in CD4/CD8 ratio (0.827(0.55) vs 0.825(0.53), median change = 0.04(IQR=0.15), p= 0.02) relative to baseline, and higher CD4+ counts (447 (157) vs. 342(73) counts/ml, p = 0.03), and lower sCD14 values (2.16(0.67) vs 3.18(0.8), p = 0.008) than Placebo. No effect in immune parameters was observed in the Probiotic arm. None of the two interventions modified microbial gene richness (alpha diversity). However, intervention as categorical variable was associated with slight but significant effect on Bray-Curtis distance variance (Adonis R2 = 0.02, p = 0.005). Additionally, at month 6, Synbiotic intervention was associated with lower pathway abundances vs Placebo of Assimilatory Sulphate Reduction (8.79·10-6 (1.25·10-5) vs. 1.61·10-5 (2.77·10-5), p = 0.03) and biosynthesis of methionine (2.3·10-5 (3.17·10-5) vs. 4·10-5 (5.66·10-5), p = 0.03) and cysteine (1.83·10-5 (2.56·10-5) vs. 3.3·10-5 (4.62·10-5), p = 0.03). At month 6, probiotic detection in faeces was associated with significant decreases in C Reactive Protein (CRP) vs baseline (11.1(22) vs. 19.2(66), median change= -2.7 (13.2) ug/ml, p = 0.04) and lower IL-6 values (0.58(1.13) vs. 1.17(1.59) ug/ml, p = 0.02) when compared with samples with no detectable probiotic. No detection of the probiotic was associated with higher CD4/CD8 ratio at month 6 vs baseline (0.718(0.57) vs. 0.58(0.4), median change = 0.4(0.2), p = 0.02). After washout, probiotic non-detection was also associated with a significant increase in CD4+ counts (457(153) vs. 416(142), median change = 45(75), counts/ml, p = 0.005) and CD4/CD8 ratio (0.67(0.5) vs 0.59(0.49), median change = 0.04 (0.18), p = 0.02). Conclusion A synbiotic intervention with L. plantarum and P. acidilactici was safe and led to small increases in CD4/CD8 ratio and minor reductions in sCD14 of uncertain clinical significance. A probiotic with the same composition was also safe but did not achieve any impact on immune parameters or faecal microbiome composition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - José Ramon Santos
- Infectious Diseases Department and Fundació Lluita contra les Infeccions, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
| | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Badalona, Spain,Infectious Diseases Department and Fundació Lluita contra les Infeccions, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain,Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic – Central University of Catalonia (UVic – UCC), Vic, Barcelona, Spain,Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain,Infectious Disease Networking Biomedical Research Center, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
| | - Marc Noguera-Julian
- IrsiCaixa AIDS Research Institute, Badalona, Spain,Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic – Central University of Catalonia (UVic – UCC), Vic, Barcelona, Spain,Infectious Disease Networking Biomedical Research Center, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III Health Institute, Madrid, Spain,*Correspondence: Marc Noguera-Julian,
| |
Collapse
|
21
|
Ma Q, Ma W, Song TZ, Wu Z, Liu Z, Hu Z, Han JB, Xu L, Zeng B, Wang B, Sun Y, Yu DD, Wu Q, Yao YG, Zheng YT, Wang X. Single-nucleus transcriptomic profiling of multiple organs in a rhesus macaque model of SARS-CoV-2 infection. Zool Res 2022; 43:1041-1062. [PMID: 36349357 PMCID: PMC9700497 DOI: 10.24272/j.issn.2095-8137.2022.443] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/09/2022] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes diverse clinical manifestations and tissue injuries in multiple organs. However, cellular and molecular understanding of SARS-CoV-2 infection-associated pathology and immune defense features in different organs remains incomplete. Here, we profiled approximately 77 000 single-nucleus transcriptomes of the lung, liver, kidney, and cerebral cortex in rhesus macaques ( Macaca mulatta) infected with SARS-CoV-2 and healthy controls. Integrated analysis of the multi-organ dataset suggested that the liver harbored the strongest global transcriptional alterations. We observed prominent impairment in lung epithelial cells, especially in AT2 and ciliated cells, and evident signs of fibrosis in fibroblasts. These lung injury characteristics are similar to those reported in patients with coronavirus disease 2019 (COVID-19). Furthermore, we found suppressed MHC class I/II molecular activity in the lung, inflammatory response in the liver, and activation of the kynurenine pathway, which induced the development of an immunosuppressive microenvironment. Analysis of the kidney dataset highlighted tropism of tubule cells to SARS-CoV-2, and we found membranous nephropathy (an autoimmune disease) caused by podocyte dysregulation. In addition, we identified the pathological states of astrocytes and oligodendrocytes in the cerebral cortex, providing molecular insights into COVID-19-related neurological implications. Overall, our multi-organ single-nucleus transcriptomic survey of SARS-CoV-2-infected rhesus macaques broadens our understanding of disease features and antiviral immune defects caused by SARS-CoV-2 infection, which may facilitate the development of therapeutic interventions for COVID-19.
Collapse
Affiliation(s)
- Qiang Ma
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenji Ma
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tian-Zhang Song
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Zhaobo Wu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zeyuan Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenxiang Hu
- LivzonBio, Inc., Zhuhai, Guangdong 519045, China
| | - Jian-Bao Han
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Ling Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Bo Zeng
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bosong Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Yinuo Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dan-Dan Yu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China. E-mail:
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China. E-mail:
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China. E-mail:
| |
Collapse
|
22
|
Vadaq N, Zhang Y, Meeder E, Van de Wijer L, Gasem MH, Joosten LAB, Netea MG, de Mast Q, Matzaraki V, Schellekens A, Fu J, van der Ven AJAM. Microbiome-Related Indole and Serotonin Metabolites are Linked to Inflammation and Psychiatric Symptoms in People Living with HIV. Int J Tryptophan Res 2022; 15:11786469221126888. [PMID: 36187510 PMCID: PMC9520182 DOI: 10.1177/11786469221126888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
Background People living with HIV (PLHIV) exhibit dysregulation of tryptophan metabolism. Altered gut microbiome composition in PLHIV might be involved. Mechanistic consequences within the 3 major tryptophan metabolism pathways (serotonin, kynurenine, and indoles), and functional consequences for platelet, immune and behavioral functions are unknown. We investigated plasma tryptophan metabolites, gut microbiome composition, and their association with platelet function, inflammation, and psychiatric symptoms. Methods This study included 211 PLHIV on long-term antiretroviral treatment (ART). Plasma tryptophan pathway metabolites were measured using time-of-flight mass spectrometry. Bacterial composition was profiled using metagenomic sequencing. Platelet reactivity and serotonin levels were quantified by flowcytometry and ELISA, respectively. Circulating inflammatory markers were determined using ELISA. Symptoms of depression and impulsivity were measured by DASS-42 and BIS-11 self-report questionnaires, respectively. Results Plasma serotonin and indole metabolites were associated with gut bacterial composition. Notably, species enriched in PLHIV were associated with 3-methyldioxyindole. Platelet serotonin concentrations were elevated in PLHIV, without effects on platelet reactivity. Plasma serotonin and indole metabolites were positively associated with plasma IL-10 and TNF-α concentrations. Finally, higher tryptophan, serotonin, and indole metabolites were associated with lower depression and anxiety, whereas higher kynurenine metabolites were associated with increased impulsivity. Conclusion Our results suggest that gut bacterial composition and dysbiosis in PLHIV on ART contribute to tryptophan metabolism, which may have clinical consequences for immune function and behavior.
Collapse
Affiliation(s)
- Nadira Vadaq
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands
- Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine, Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Yue Zhang
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elise Meeder
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Lisa Van de Wijer
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Muhammad Hussein Gasem
- Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine, Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
- Department of Internal Medicine, Faculty of Medicine Diponegoro University-Dr. Kariadi Hospital, Semarang, Indonesia
| | - Leo AB Joosten
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Quirijn de Mast
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arnt Schellekens
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - André JAM van der Ven
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Yero A, Shi T, Routy JP, Tremblay C, Durand M, Costiniuk CT, Jenabian MA. FoxP3+ CD8 T-cells in acute HIV infection and following early antiretroviral therapy initiation. Front Immunol 2022; 13:962912. [PMID: 35967314 PMCID: PMC9372390 DOI: 10.3389/fimmu.2022.962912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/29/2022] [Indexed: 12/21/2022] Open
Abstract
ObjectivesBesides CD4 regulatory T-cells (Tregs), immunosuppressor FoxP3+ CD8 T-cells are emerging as an important subset of Tregs, which contribute to immune dysfunction and disease progression in HIV infection. However, FoxP3+ CD8 T-cell dynamics in acute HIV infection and following early antiretroviral therapy (ART) initiation remain understudied.MethodsSubsets of FoxP3+ CD8 T-cells were characterized both prospectively and cross-sectionally in PBMCs from untreated acute (n=26) and chronic (n=10) HIV-infected individuals, early ART-treated in acute infection (n=10, median of ART initiation: 5.5 months post-infection), ART-treated in chronic infection (n=10), elite controllers (n=18), and HIV-uninfected controls (n=21).ResultsAcute and chronic infection were associated with increased total, effector memory, and terminally differentiated FoxP3+ CD8 T-cells, while early ART normalized only the frequencies of total FoxP3+ CD8 T-cells. We observed an increase in FoxP3+ CD8 T-cell immune activation (HLADR+/CD38+), senescence (CD57+/CD28-), and PD-1 expression during acute and chronic infection, which were not normalized by early ART. FoxP3+ CD8 T-cells in untreated participants expressed higher levels of immunosuppressive LAP(TGF-β1) and CD39 than uninfected controls, whereas early ART did not affect their expression. The expression of gut-homing markers CCR9 and Integrin-β7 by total FoxP3+ CD8 T-cells and CD39+ and LAP(TGF-β1)+ FoxP3+ CD8 T-cells increased in untreated individuals and remained higher than in uninfected controls despite early ART. Elite controllers share most of the FoxP3+ CD8 T-cell characteristics in uninfected individuals.ConclusionsAlthough early ART normalized total FoxP3+ CD8 T-cells frequencies, it did not affect the persistent elevation of the gut-homing potential of CD39+ and LAP(TGF-β1)+ FoxP3+ CD8 T-cell, which may contribute to immune dysfunction.
Collapse
Affiliation(s)
- Alexis Yero
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Tao Shi
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Jean-Pierre Routy
- Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, Department of Medicine, Glen Site, McGill University Health Centre, Montreal, QC, Canada
| | - Cécile Tremblay
- Centre hospitalier de l'Université de Montréal (CHUM) Research Centre, Montreal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Madeleine Durand
- Centre hospitalier de l'Université de Montréal (CHUM) Research Centre, Montreal, QC, Canada
| | - Cecilia T. Costiniuk
- Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, Department of Medicine, Glen Site, McGill University Health Centre, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- *Correspondence: Mohammad-Ali Jenabian,
| |
Collapse
|
24
|
Plasma d-amino acids are associated with markers of immune activation and organ dysfunction in people with HIV. AIDS 2022; 36:911-921. [PMID: 35212669 DOI: 10.1097/qad.0000000000003207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND d-Amino acids (d-AAs) have been associated with age-associated conditions in the general population but their relevance in people with HIV (PWH), who experience accentuated/accelerated aging has not been studied. We compared d-AA levels in HIV-infected and uninfected controls and explored their association with markers of immune activation, gut permeability and organ dysfunction. DESIGN Case-control analysis. METHOD Plasma samples from 60 antiretroviral therapy-treated HIV-infected individuals and 59 uninfected controls were analysed. A three-dimensional HPLC system was used to measure d-and l-asparagine, serine, alanine and proline and presented as %d-AA. Additionally, cell-associated and soluble markers of immune activation and senescence were characterized. Kidney and liver functions were expressed as estimated glomerular filtration rate and fibrosis-4 scores, respectively. Mann-Whitney and Spearman rank correlation coefficients were used for statistical analysis. RESULTS d-Asparagine, d-serine, d-alanine and d-proline were detectable in all plasma samples and correlated with age in HIV-infected and uninfected but not different between groups. Kynurenine/tryptophan ratio was positively correlated with all %d-AAs in PWH and with %d-serine and %d-proline in controls. %d-AAs were not consistently correlated with markers of gut permeability in both groups. All %d-AAs were also correlated with kidney function in both groups whereas age-associated accumulation of %d-asparagine, %d-serine and %d-proline were correlated with liver function and the VACS score in controls. CONCLUSION Plasma d-AAs are associated with chronological age and correlated with markers of immune activation and organ decline, though variably, in PWH and controls. Their role in the biology of aging warrants further investigation.
Collapse
|
25
|
Fert A, Raymond Marchand L, Wiche Salinas TR, Ancuta P. Targeting Th17 cells in HIV-1 remission/cure interventions. Trends Immunol 2022; 43:580-594. [PMID: 35659433 DOI: 10.1016/j.it.2022.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
Since the discovery of HIV-1, progress has been made in deciphering the viral replication cycle and mechanisms of host-pathogen interactions that has facilitated the implementation of effective antiretroviral therapies (ARTs). Major barriers to HIV-1 remission/cure include the persistence of viral reservoirs (VRs) in long-lived CD4+ T cells, residual viral transcription, and lack of mucosal immunity restoration during ART, which together fuel systemic inflammation. Recently, T helper (Th)17-polarized cells were identified as major contributors to the pool of transcriptionally/translationally competent VRs. In this review, we discuss the functional features of Th17 cells that were elucidated by fundamental immunology studies in the context of autoimmunity. We also highlight recent discoveries supporting the possibility of extrapolating this knowledge toward the identification of new putative Th17-targeted HIV-1 remission/cure strategies.
Collapse
Affiliation(s)
- Augustine Fert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Laurence Raymond Marchand
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Tomas Raul Wiche Salinas
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Petronela Ancuta
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada; Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania; The Research Institute of the University of Bucharest, Bucharest, Romania.
| |
Collapse
|
26
|
Tariq M, Gallien S, Surenaud M, Wiedemann A, Jean-Louis F, Lacabaratz C, Lopez Zaragoza JL, Zeitoun JD, Ysmail-Dalhouk S, Lelièvre JD, Lévy Y, Hüe S. Profound Defect of Amphiregulin Secretion by Regulatory T Cells in the Gut of HIV-Treated Patients. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2300-2308. [PMID: 35500933 DOI: 10.4049/jimmunol.2100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The persistence of a leaky gut in HIV-treated patients leads to chronic inflammation with increased rates of cardiovascular, liver, kidney, and neurological diseases. Tissue regulatory T (tTreg) cells are involved in the maintenance of intestinal homeostasis and wound repair through the IL-33 pathway. In this study, we investigated whether the persistence of gut mucosal injury during HIV infection might be explained in part by a flaw in the mechanisms involved in tissue repair. We observed an increased level of IL-33 in the gut of HIV-infected patients, which is associated with an increased level of fibrosis and a low peripheral reconstitution of CD4+ T cells. Our results showed that intestinal Treg cells from HIV-infected patients were enriched in tTreg cells prone to support tissue repair. However, we observed a functional defect in tTreg cells caused by the lack of amphiregulin secretion, which could contribute to the maintenance of intestinal damage. Our data suggest a mechanism by which the lack of amphiregulin secretion by tTreg may contribute to the lack of repair of the epithelial barrier.
Collapse
Affiliation(s)
- Mubashira Tariq
- INSERM U955, Team 16, Créteil, France
- Vaccine Research Institute, Université Paris Est Créteil, Faculté de Médecine, Créteil, France
| | - Sébastien Gallien
- INSERM U955, Team 16, Créteil, France
- Vaccine Research Institute, Université Paris Est Créteil, Faculté de Médecine, Créteil, France
- Service de Maladies Infectieuses et Immunologie Clinique, Groupe Hospitalier Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
- Université Paris Est Créteil, Faculté de Médecine, Créteil, France
| | - Mathieu Surenaud
- INSERM U955, Team 16, Créteil, France
- Vaccine Research Institute, Université Paris Est Créteil, Faculté de Médecine, Créteil, France
| | - Aurélie Wiedemann
- INSERM U955, Team 16, Créteil, France
- Vaccine Research Institute, Université Paris Est Créteil, Faculté de Médecine, Créteil, France
| | - Francette Jean-Louis
- INSERM U955, Team 16, Créteil, France
- Vaccine Research Institute, Université Paris Est Créteil, Faculté de Médecine, Créteil, France
| | - Christine Lacabaratz
- INSERM U955, Team 16, Créteil, France
- Vaccine Research Institute, Université Paris Est Créteil, Faculté de Médecine, Créteil, France
| | - José Luis Lopez Zaragoza
- Service de Maladies Infectieuses et Immunologie Clinique, Groupe Hospitalier Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | | | - Saliha Ysmail-Dalhouk
- Service de Maladies Infectieuses et Immunologie Clinique, Groupe Hospitalier Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Jean-Daniel Lelièvre
- INSERM U955, Team 16, Créteil, France
- Vaccine Research Institute, Université Paris Est Créteil, Faculté de Médecine, Créteil, France
- Service de Maladies Infectieuses et Immunologie Clinique, Groupe Hospitalier Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
- Université Paris Est Créteil, Faculté de Médecine, Créteil, France
| | - Yves Lévy
- INSERM U955, Team 16, Créteil, France
- Vaccine Research Institute, Université Paris Est Créteil, Faculté de Médecine, Créteil, France
- Service de Maladies Infectieuses et Immunologie Clinique, Groupe Hospitalier Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
- Université Paris Est Créteil, Faculté de Médecine, Créteil, France
| | - Sophie Hüe
- INSERM U955, Team 16, Créteil, France;
- Vaccine Research Institute, Université Paris Est Créteil, Faculté de Médecine, Créteil, France
- Université Paris Est Créteil, Faculté de Médecine, Créteil, France
- Service d'Immunologie Biologique, Groupe Hospitalier Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| |
Collapse
|
27
|
Zhao J, Chen J, Wang C, Liu Y, Li M, Li Y, Li R, Han Z, Wang J, Chen L, Shu Y, Cheng G, Sun C. Kynurenine-3-monooxygenase (KMO) broadly inhibits viral infections via triggering NMDAR/Ca2+ influx and CaMKII/ IRF3-mediated IFN-β production. PLoS Pathog 2022; 18:e1010366. [PMID: 35235615 PMCID: PMC8920235 DOI: 10.1371/journal.ppat.1010366] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/14/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
Tryptophan (Trp) metabolism through the kynurenine pathway (KP) is well known to play a critical function in cancer, autoimmune and neurodegenerative diseases. However, its role in host-pathogen interactions has not been characterized yet. Herein, we identified that kynurenine-3-monooxygenase (KMO), a key rate-limiting enzyme in the KP, and quinolinic acid (QUIN), a key enzymatic product of KMO enzyme, exerted a novel antiviral function against a broad range of viruses. Mechanistically, QUIN induced the production of type I interferon (IFN-I) via activating the N-methyl-d-aspartate receptor (NMDAR) and Ca2+ influx to activate Calcium/calmodulin-dependent protein kinase II (CaMKII)/interferon regulatory factor 3 (IRF3). Importantly, QUIN treatment effectively inhibited viral infections and alleviated disease progression in mice. Furthermore, kmo-/- mice were vulnerable to pathogenic viral challenge with severe clinical symptoms. Collectively, our results demonstrated that KMO and its enzymatic product QUIN were potential therapeutics against emerging pathogenic viruses. The outbreaks of emerging infectious diseases have become a severe challenge worldwide, and therefore it is a public health priority to explore novel broad-spectrum antiviral agents with various mechanisms. This study reported that kynurenine-3-monooxygenase (KMO), a key rate-limiting enzyme during tryptophan metabolism, showed promise as a novel broad-spectrum antiviral factor against emerging pathogenic viruses. We further found that quinolinic acid (QUIN), an enzymatic product of KMO, could also act as a novel broad-spectrum antiviral agent. We then systematically studied the underlying mechanisms and broadly antiviral function of KMO and QUIN in vitro and in vivo. Our data highlight the importance of exploring novel antiviral targets from the key enzymes and their metabolites in tryptophan metabolism.
Collapse
Affiliation(s)
- Jin Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Jiaoshan Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Congcong Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Yajie Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Minchao Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Yanjun Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Ruiting Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Zirong Han
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Junjian Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
- * E-mail: (GC); (CS)
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
- * E-mail: (GC); (CS)
| |
Collapse
|
28
|
Renault C, Veyrenche N, Mennechet F, Bedin AS, Routy JP, Van de Perre P, Reynes J, Tuaillon E. Th17 CD4+ T-Cell as a Preferential Target for HIV Reservoirs. Front Immunol 2022; 13:822576. [PMID: 35197986 PMCID: PMC8858966 DOI: 10.3389/fimmu.2022.822576] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022] Open
Abstract
Among CD4+ T-cells, T helper 17 (Th17) cells play a sentinel role in the defense against bacterial/fungal pathogens at mucosal barriers. However, Th17 cells are also highly susceptible to HIV-1 infection and are rapidly depleted from gut mucosal sites, causing an imbalance of the Th17/Treg ratio and impairing cytokines production. Consequently, damage to the gut mucosal barrier leads to an enhanced microbial translocation and systemic inflammation, a hallmark of HIV-1 disease progression. Th17 cells’ expression of mucosal homing receptors (CCR6 and α4β7), as well as HIV receptors and co-receptors (CD4, α4β7, CCR5, and CXCR4), contributes to susceptibility to HIV infection. The up-regulation of numerous intracellular factors facilitating HIV production, alongside the downregulation of factors inhibiting HIV, helps to explain the frequency of HIV DNA within Th17 cells. Th17 cells harbor long-lived viral reservoirs in people living with HIV (PLWH) receiving antiretroviral therapy (ART). Moreover, cell longevity and the proliferation of a fraction of Th17 CD4 T cells allow HIV reservoirs to be maintained in ART patients.
Collapse
Affiliation(s)
- Constance Renault
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
| | - Nicolas Veyrenche
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
- Virology Laboratory, CHU de Montpellier, Montpellier, France
| | - Franck Mennechet
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
| | - Anne-Sophie Bedin
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Research Institute and Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
- Virology Laboratory, CHU de Montpellier, Montpellier, France
| | - Jacques Reynes
- Virology Laboratory, CHU de Montpellier, Montpellier, France
- IRD UMI 233, INSERM U1175, University of Montpellier, Montpellier, France
- Infectious Diseases Department, CHU de Montpellier, Montpellier, France
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
- Virology Laboratory, CHU de Montpellier, Montpellier, France
- *Correspondence: Edouard Tuaillon,
| |
Collapse
|
29
|
McDew-White M, Lee E, Alvarez X, Sestak K, Ling BJ, Byrareddy SN, Okeoma CM, Mohan M. Cannabinoid control of gingival immune activation in chronically SIV-infected rhesus macaques involves modulation of the indoleamine-2,3-dioxygenase-1 pathway and salivary microbiome. EBioMedicine 2022; 75:103769. [PMID: 34954656 PMCID: PMC8715300 DOI: 10.1016/j.ebiom.2021.103769] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND HIV/SIV-associated periodontal disease (gingivitis/periodontitis) (PD) represents a major comorbidity affecting people living with HIV (PLWH) on combination anti-retroviral therapy (cART). PD is characterized by chronic inflammation and dysbiosis. Nevertheless, the molecular mechanisms and use of feasible therapeutic strategies to reduce/reverse inflammation and dysbiosis remain understudied and unaddressed. METHODS Employing a systems biology approach, we report molecular, metabolome and microbiome changes underlying PD and its modulation by phytocannabinoids [delta-9-tetrahydrocannabinol (Δ9-THC)] in uninfected and SIV-infected rhesus macaques (RMs) untreated (VEH-untreated/SIV) or treated with vehicle (VEH/SIV) or Δ9-THC (THC/SIV). FINDINGS VEH- untreated/SIV but not THC/SIV RMs showed significant enrichment of genes linked to anti-viral defense, interferon-β, NFκB, RIG-1, and JAK-STAT signaling. We focused on the anti-microbial DUOX1 and immune activation marker IDO1 that were reciprocally regulated in the gingiva of VEH-untreated/SIV RMs. Both proteins localized to the gingival epithelium and CD163+ macrophages, and showed differential expression in the gingiva of THC/SIV and VEH/SIV RMs. Additionally, inflammation-associated miR-21, miR-142-3p, miR-223, and miR-125a-5p showed significantly higher expression in the gingiva of VEH/SIV RMs. In human primary gingival epithelial cells, miR-125a-5p post-transcriptionally downregulated DUOX1 and THC inhibited IDO1 protein expression through a cannabinoid receptor-2 mediated mechanism. Interestingly, THC/SIV RMs showed relatively reduced plasma levels of kynurenine, kynurenate, and the neurotoxic quinolinate compared to VEH/SIV RMs at 5 months post SIV infection (MPI). Most importantly, THC blocked HIV/SIV-induced depletion of Firmicutes and Bacteroidetes, and reduced Gammaproteobacteria abundance in saliva. Reduced IDO1 protein expression was associated with significantly (p<0.05) higher abundance of Prevotella, Lactobacillus (L. salivarius, L. buchneri, L. fermentum, L. paracasei, L. rhamnosus, L. johnsonii) and Bifidobacteria and reduced abundance of the pathogenic Porphyromonas cangingivalis and Porphyromonas macacae at 5MPI. INTERPRETATION The data provides deeper insights into the molecular mechanisms underlying HIV/SIV-induced PD and more importantly, the anti-inflammatory and anti-dysbiotic properties of THC in the oral cavity. Overall, these translational findings suggest that phytocannabinoids may help reduce gingival/systemic inflammation, salivary dysbiosis and potentially metabolic disease/syndrome in PLWH on cART and those with no access to cART or do not suppress the virus under cART. FUNDING Research reported in this publication was supported by the National Institutes of Health Award Numbers R01DA052845 (MM and SNB), R01DA050169 (MM and CO), R01DA042524 and R56DE026930 (MM), and P51OD011104 and P51OD011133. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
Collapse
Affiliation(s)
- Marina McDew-White
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 8715 West Military Road, San Antonio, TX 78227, United States
| | - Eunhee Lee
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 8715 West Military Road, San Antonio, TX 78227, United States
| | - Xavier Alvarez
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 8715 West Military Road, San Antonio, TX 78227, United States
| | - Karol Sestak
- PreCliniTria, LLC., Mandeville, LA 70471, United States; Tulane National Primate Research Center, Covington LA 70433, United States
| | - Binhua J Ling
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 8715 West Military Road, San Antonio, TX 78227, United States
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Chioma M Okeoma
- Department of Pharmacology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, United States
| | - Mahesh Mohan
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 8715 West Military Road, San Antonio, TX 78227, United States.
| |
Collapse
|
30
|
Faia C, Plaisance-Bonstaff K, Vittori C, Wyczechowska D, Lassak A, Meyaski-Schluter M, Reiss K, Peruzzi F. Attenuated Negative Feedback in Monocyte-Derived Macrophages From Persons Living With HIV: A Role for IKAROS. Front Immunol 2021; 12:785905. [PMID: 34917094 PMCID: PMC8668949 DOI: 10.3389/fimmu.2021.785905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022] Open
Abstract
Persons living with HIV (PLWH) are at higher risk of developing secondary illnesses than their uninfected counterparts, suggestive of a dysfunctional immune system in these individuals. Upon exposure to pathogens, monocytes undergo epigenetic remodeling that results in either a trained or a tolerant phenotype, characterized by hyper-responsiveness or hypo-responsiveness to secondary stimuli, respectively. We utilized CD14+ monocytes from virally suppressed PLWH and healthy controls for in vitro analysis following polarization of these cells toward a pro-inflammatory monocyte-derived macrophage (MDM) phenotype. We found that in PLWH-derived MDMs, pro-inflammatory signals (TNFA, IL6, IL1B, miR-155-5p, and IDO1) dominate over negative feedback signals (NCOR2, GSN, MSC, BIN1, and miR-146a-5p), favoring an abnormally trained phenotype. The mechanism of this reduction in negative feedback involves the attenuated expression of IKZF1, a transcription factor required for de novo synthesis of RELA during LPS-induced inflammatory responses. Furthermore, restoring IKZF1 expression in PLWH-MDMs partially reinstated expression of negative regulators of inflammation and lowered the expression of pro-inflammatory cytokines. Overall, this mechanism may provide a link between dysfunctional immune responses and susceptibility to co-morbidities in PLWH with low or undetectable viral load.
Collapse
Affiliation(s)
- Celeste Faia
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Karlie Plaisance-Bonstaff
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Cecilia Vittori
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Dorota Wyczechowska
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Adam Lassak
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Mary Meyaski-Schluter
- Clinical and Translational Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Krzysztof Reiss
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Francesca Peruzzi
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Medicine and Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
31
|
Coker MO, Cairo C, Garzino-Demo A. HIV-Associated Interactions Between Oral Microbiota and Mucosal Immune Cells: Knowledge Gaps and Future Directions. Front Immunol 2021; 12:676669. [PMID: 34616391 PMCID: PMC8488204 DOI: 10.3389/fimmu.2021.676669] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/06/2021] [Indexed: 02/02/2023] Open
Abstract
Even with sustained use of antiretroviral therapy (ART), HIV-infected individuals have an increased risk of systemic comorbid conditions and oral pathologies, including opportunistic infections, oral mucosal inflammation, and gingival and periodontal diseases. The immune-mediated mechanisms that drive this increased risk, in the context of sustained viral suppression, are unclear. HIV infection, even when controlled, alters microbial communities contributing to a chronic low-grade inflammatory state that underlies these non-HIV co-morbidities. The higher prevalence of dental caries, and mucosal and periodontal inflammation reported in HIV-infected individuals on ART is often associated with differentially abundant oral microbial communities, possibly leading to a heightened susceptibility to inflammation. This mini-review highlights current gaps in knowledge regarding the microbe-mediated oral mucosal immunity with HIV infection while discussing opportunities for future research investigations and implementation of novel approaches to elucidate these gaps. Interventions targeting both inflammation and microbial diversity are needed to mitigate oral inflammation-related comorbidities, particularly in HIV-infected individuals. More broadly, additional research is needed to bolster general models of microbiome-mediated chronic immune activation and aid the development of precise microbiota-targeted interventions to reverse or mitigate adverse outcomes.
Collapse
Affiliation(s)
- Modupe O Coker
- Department of Oral Biology, School of Dental Medicine at Rutgers, Newark, NJ, United States.,Department of Epidemiology, School of Public Health at Rutgers, Newark, NJ, United States
| | - Cristiana Cairo
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Alfredo Garzino-Demo
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
32
|
Yero A, Shi T, Farnos O, Routy JP, Tremblay C, Durand M, Tsoukas C, Costiniuk CT, Jenabian MA. Dynamics and epigenetic signature of regulatory T-cells following antiretroviral therapy initiation in acute HIV infection. EBioMedicine 2021; 71:103570. [PMID: 34500304 PMCID: PMC8429924 DOI: 10.1016/j.ebiom.2021.103570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND HIV infection promotes the expansion of immunosuppressive regulatory T-cells (Tregs), contributing to immune dysfunction, tissue fibrosis and disease progression. Early antiretroviral treatment (ART) upon HIV infection improves CD4 count and decreases immune activation. However, Treg dynamics and their epigenetic regulation following early ART initiation remain understudied. METHODS Treg subsets were characterized by flow cytometry in 103 individuals, including untreated HIV-infected participants in acute and chronic phases, ART-treated in early infection, elite controllers (ECs), immunological controllers (ICs), and HIV-uninfected controls. The methylation status of six regulatory regions of the foxp3 gene was assessed using MiSeq technology. FINDINGS Total Treg frequency increased overtime during HIV infection, which was normalized in early ART recipients. Tregs in untreated individuals expressed higher levels of activation and immunosuppressive markers (CD39, and LAP(TGF-β1)), which remained unchanged following early ART. Expression of gut migration markers (CCR9, Integrin-β7) by Tregs was elevated during untreated HIV infection, while they declined with the duration of ART but not upon early ART initiation. Notably, gut-homing Tregs expressing LAP(TGF-β1) and CD39 remained higher despite early treatment. Additionally, the increase in LAP(TGF-β1)+ Tregs overtime were consistent with higher demethylation of conserved non-coding sequence (CNS)-1 in the foxp3 gene. Remarkably, LAP(TGF-β1)-expressing Tregs in ECs were significantly higher than in uninfected subjects, while the markers of Treg activation and gut migration were not different. INTERPRETATION Early ART initiation was unable to control the levels of immunosuppressive Treg subsets and their gut migration potential, which could ultimately contribute to gut tissue fibrosis and HIV disease progression. FUNDING This study was funded by the Canadian Institutes of Health Research (CIHR, grant MOP 142294) and in part by the AIDS and Infectious Diseases Network of the Réseau SIDA et maladies infectieuses du Fonds de recherche du Québec-Santé (FRQ-S).
Collapse
Affiliation(s)
- Alexis Yero
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Tao Shi
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Omar Farnos
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Jean-Pierre Routy
- Research Institute of McGill University Health Centre, Montreal, QC, Canada; Chronic Viral Illness Service, Division of Infectious Disease, Department of Medicine, Glen Site, McGill University Health Centre, Montreal, QC, Canada
| | - Cécile Tremblay
- CHUM Research Centre, Montreal, QC, Canada; Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | | | - Christos Tsoukas
- Research Institute of McGill University Health Centre, Montreal, QC, Canada; Division of Clinical Immunology and Allergy, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Cecilia T Costiniuk
- Research Institute of McGill University Health Centre, Montreal, QC, Canada; Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada; Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada; Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
33
|
Wang X, Mehra S, Kaushal D, Veazey RS, Xu H. Abnormal Tryptophan Metabolism in HIV and Mycobacterium tuberculosis Infection. Front Microbiol 2021; 12:666227. [PMID: 34262540 PMCID: PMC8273495 DOI: 10.3389/fmicb.2021.666227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Host metabolism has recently gained more attention for its roles in physiological functions and pathologic conditions. Of these, metabolic tryptophan disorders generate a pattern of abnormal metabolites that are implicated in various diseases. Here, we briefly highlight the recent advances regarding abnormal tryptophan metabolism in HIV and Mycobacterium tuberculosis infection and discuss its potential impact on immune regulation, disease progression, and neurological disorders. Finally, we also discuss the potential for metabolic tryptophan interventions toward these infectious diseases.
Collapse
Affiliation(s)
- Xiaolei Wang
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States
| | - Smriti Mehra
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ronald S. Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States
| | - Huanbin Xu
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States
| |
Collapse
|
34
|
Tounta V, Liu Y, Cheyne A, Larrouy-Maumus G. Metabolomics in infectious diseases and drug discovery. Mol Omics 2021; 17:376-393. [PMID: 34125125 PMCID: PMC8202295 DOI: 10.1039/d1mo00017a] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
Metabolomics has emerged as an invaluable tool that can be used along with genomics, transcriptomics and proteomics to understand host-pathogen interactions at small-molecule levels. Metabolomics has been used to study a variety of infectious diseases and applications. The most common application of metabolomics is for prognostic and diagnostic purposes, specifically the screening of disease-specific biomarkers by either NMR-based or mass spectrometry-based metabolomics. In addition, metabolomics is of great significance for the discovery of druggable metabolic enzymes and/or metabolic regulators through the use of state-of-the-art flux analysis, for example, via the elucidation of metabolic mechanisms. This review discusses the application of metabolomics technologies to biomarker screening, the discovery of drug targets in infectious diseases such as viral, bacterial and parasite infections and immunometabolomics, highlights the challenges associated with accessing metabolite compartmentalization and discusses the available tools for determining local metabolite concentrations.
Collapse
Affiliation(s)
- Vivian Tounta
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondonUK
| | - Yi Liu
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondonUK
| | - Ashleigh Cheyne
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondonUK
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondonUK
| |
Collapse
|
35
|
Guo H, Gao J, Qian Y, Wang H, Liu J, Peng Q, Zhou Y, Wang K. miR-125b-5p inhibits cell proliferation by targeting ASCT2 and regulating the PI3K/AKT/mTOR pathway in an LPS-induced intestinal mucosa cell injury model. Exp Ther Med 2021; 22:838. [PMID: 34149884 PMCID: PMC8210225 DOI: 10.3892/etm.2021.10270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Intestinal barrier injury is an important cause of death in patients with acquired immune deficiency syndrome (AIDS). Therefore, it is of great significance to identify a therapeutic target for intestinal barrier injury to delay the progression of AIDS. microRNA (miRNA/miR)-125b-5p has an extensive role in cancer and controlling intestinal epithelial barrier function, but its role in human immunodeficiency virus-related intestinal mucosal damage remains unknown. The present study was designed to explore the effects of miR-125b-5p on lipopolysaccharide (LPS)-induced intestinal mucosal injury and the underlying mechanism. The expression of miR-125b-5p and ASCT2 mRNA was detected in colon biopsy samples of 10 patients with AIDS and 10 control healthy subjects. Human intestinal embryonic mucosa cells (CCC-HIE-2) were used to establish an LPS-induced intestinal mucosa cell injury model in vitro. Cell proliferation and apoptosis were determined by MTT assays and flow cytometry, respectively. miR-125b-5p levels and ASCT2 mRNA and protein expression levels in the LPS-induced intestinal mucosa cell injury model were detected by reverse transcription-quantitative PCR (RT-qPCR) and western blotting. The interaction between miR-125b-5p and ASCT2 was analyzed using a dual luciferase reporter assay. The results demonstrated that miR-125b-5p levels were increased and ASCT2 mRNA expression levels were decreased in colon samples from patients with AIDS and in LPS-induced intestinal mucosa cells. In the LPS-induced intestinal mucosa cell injury model, transfection with miR-125b-5p mimic inhibited cell proliferation and promoted cell apoptosis, while transfection with a miR-125b-5p inhibitor increased cell proliferation and attenuated cell apoptosis. Furthermore, miR-125b-5p mimic transfection resulted in a decrease of ASCT2 mRNA and protein expression, whereas the inhibitor increased ASCT2 mRNA and protein expression. Dual luciferase reporter assays suggested that ASCT2 was a direct target of miR-125b-5p, and its restoration weakened the effect of miR-125b-5p on LPS-induced intestinal mucosa cell injury. Transfection with the miR-125b-5p mimic also exhibited a suppressive effect on the PI3K/AKT/mTOR pathway in the LPS-induced intestinal mucosal cell injury model. Overall, the present study indicated that miR-125b-5p accelerated LPS-induced intestinal mucosa cell injury by targeting ASCT2 and upregulating the PI3K/AKT/mTOR pathway. The current findings may provide novel targets for the treatment of intestinal barrier injury in patients with AIDS.
Collapse
Affiliation(s)
- Huiming Guo
- Department of Gynaecology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.,NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jianyuan Gao
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuan Qian
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Huawei Wang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiang Liu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Qingyan Peng
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China.,The Scientific Research Laboratory Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yong Zhou
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China.,The Scientific Research Laboratory Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Kunhua Wang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
36
|
Dagenais-Lussier X, Loucif H, Beji C, Telittchenko R, Routy JP, van Grevenynghe J. Latest developments in tryptophan metabolism: Understanding its role in B cell immunity. Cytokine Growth Factor Rev 2021; 59:111-117. [DOI: 10.1016/j.cytogfr.2021.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
|
37
|
Fernandez-Botran R, Plankey MW, Ware D, Bordon J. Changes in liver steatosis in HIV-positive women are associated with the BMI, but not with biomarkers. Cytokine 2021; 144:155573. [PMID: 33994069 DOI: 10.1016/j.cyto.2021.155573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/24/2023]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is higher in HIV-infected patients compared to the general population. While metabolic risk factors such as obesity, insulin resistance and the metabolic syndrome have been identified as key risk factors in all individuals, there is limited information regarding the mechanisms that contribute to the higher prevalence among individuals living with HIV, particularly among women and ethnic minorities. The aim of this study was to determine the association, over two time points, of a panel of biomarkers with liver steatosis in a cohort of HIV-seropositive women and age-matched negative controls and to investigate whether the association differed by HIV status. To this effect, plasma samples obtained from 105 HIV-positive and -negative participants enrolled in the Women's Interagency HIV study (WIHS) Washington DC site were assayed for biomarkers associated with inflammation, adipose tissue function, fibrinolysis, gut permeability and hepatocyte apoptosis/necrosis. Their association with liver steatosis, measured using Controlled-Attenuation Parameter (CAP) scores determined by transient elastography, were then analyzed. HIV positivity was associated with lower median IL-17A and higher IL-22 and sCD14 values. There were no statistically significant associations between HIV status, biomarkers or covariates with CAP measurement over two time points. However, IL-1β levels were associated with higher CAP scores at the second visit. Across all statistical models, an increase in BMI was associated with an increase in CAP measurements. No statistically significant associations were found between viral load history, CD4 + T-cell count, biomarkers and covariates, including ART use, on CAP measurements. These results confirm that BMI is a key risk factor for liver steatosis independent of HIV status. The potential contributions to NAFLD of differences in IL-1β, Th17-family cytokines and gut permeability between HIV-positive vs. negative individuals require further study.
Collapse
Affiliation(s)
- Rafael Fernandez-Botran
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, United States.
| | - Michael W Plankey
- Division of Infectious Diseases, Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Deanna Ware
- Division of Infectious Diseases, Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - José Bordon
- George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| |
Collapse
|
38
|
Baer SL, Colombo RE, Johnson MH, Wakade S, Pacholczyk G, Newman-Whitlow C, Thompson SA, Saag MS, Martin JN, Floris-Moore M, Huang L, Mellor AL. Indoleamine 2,3 dioxygenase, age, and immune activation in people living with HIV. J Investig Med 2021; 69:1238-1244. [PMID: 33875612 DOI: 10.1136/jim-2021-001794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 11/03/2022]
Abstract
Immune activation complicates HIV despite antiretroviral therapy (ART). Indoleamine 2,3 dioxygenase (IDO) catabolizes tryptophan (T) to kynurenine (K), regulating immune activity, and IDO activity increases with age. This study examines the relationship of IDO activity, bacterial translocation, and aging in people living with HIV (PLWH) on ART. Samples and data from PLWH on ART from the Centers for AIDS Research Network of Integrated Clinical Systems and from matched HIV-uninfected patients (controls) from the Multicenter AIDS Cohort Study and the Women's Interagency HIV Study were analyzed. The ratio of K to T (K:T) and neopterin were indicators of inflammation; 16S ribosomal DNA (16S rDNA) and lipopolysaccharide (LPS) were markers of bacterial translocation. Samples and data from 205 PLWH and 99 controls were analyzed. PLWH had higher K:T values across all ages, with a significant relationship between age and K:T for both groups. CD4 count or CD4 nadir had no association with K:T. There was no positive association between level of 16S rDNA or LPS detection and K:T. K:T and neopterin were associated. PLWH had elevated IDO activity, at younger ages, despite ART. This study suggests K:T ratio increases with age in both groups and is elevated in PLWH at all ages compared with age-matched controls.
Collapse
Affiliation(s)
- Stephanie L Baer
- Infection Control, Charlie Norwood VA Medical Center, Augusta, Georgia, USA .,Department of Medicine, Augusta University, Augusta, Georgia, USA
| | - Rhonda E Colombo
- Department of Medicine, Augusta University, Augusta, Georgia, USA.,Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
| | - Maribeth H Johnson
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, Georgia, USA
| | - Sushama Wakade
- Department of Medicine, Augusta University, Augusta, Georgia, USA
| | | | | | | | - Michael S Saag
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffrey N Martin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Michelle Floris-Moore
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lei Huang
- Institute of Cellular Medicine, Faculty of Medical Science, Newcastle University, Newcastle upon Tyne, UK.,Immunotherapy Discovery Institute, Augusta University, Augusta, Georgia, USA
| | - Andrew L Mellor
- Institute of Cellular Medicine, Faculty of Medical Science, Newcastle University, Newcastle upon Tyne, UK.,Immunotherapy Discovery Institute, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
39
|
Wilson NL, Peterson SN, Ellis RJ. Cannabis and the Gut-Brain Axis Communication in HIV Infection. Cannabis Cannabinoid Res 2021; 6:92-104. [PMID: 33912676 PMCID: PMC8064951 DOI: 10.1089/can.2020.0037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
People living with HIV infection (PWH) disclose that cannabis is an effective strategy for alleviating symptoms associated with HIV disease. However, some medical providers feel ill-informed to engage in evidence-based conversations. HIV leads to alterations in the gut microbiome, gut-brain axis signaling, and chronic inflammation. The endocannabinoid system regulates homeostasis of multiple organ systems. When deficient, dysregulation of the gut-brain axis can result in chronic inflammation and neuroinflammation. Cannabis along with the naturally occurring endocannabinoids has antioxidant and anti-inflammatory properties that can support healing and restoration as an adjunctive therapy. The purpose of this literature review is to report the physiologic mechanisms that occur in the pathology of HIV and discuss potential benefits of cannabinoids in supporting health and reducing the negative effects of comorbidities in PWH.
Collapse
Affiliation(s)
- Natalie L. Wilson
- Department of Community Health Systems, School of Nursing, University of California, San Francisco, San Francisco, California, USA
| | - Scott N. Peterson
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ronald J. Ellis
- Departments of Neurosciences and Psychiatry, University of California, San Diego, San Diego, California, USA
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW To evaluate the current scientific basis for administering probiotics to people living with HIV (PLHIV) to alleviate chronic inflammation and subsequently improve their prognosis. RECENT FINDINGS The gut microbiome is a potential contributing factor to low-grade inflammation in HIV infection, and there is a scientific rationale for attempting to attenuate inflammation by administering probiotics. Sixteen reports from clinical studies in antiretroviral therapy (ART)-treated PLHIV assessing inflammation after probiotic intervention have been identified; half of them randomized control trials (RCT). Some of the studies report improvement in some parameters of inflammation, but results are inconsistent. No studies report improvement of CD4 counts. None of the RCTs report improvements in any markers of inflammation when analyzed according to protocol. SUMMARY Current scientific evidence does not support the use of probiotics to alleviate inflammation in HIV infection. The potential effect of probiotic intervention in ART-treated PLHIV with high risk for inflammation remains to be investigated.
Collapse
|
41
|
Madzime M, Rossouw TM, Theron AJ, Anderson R, Steel HC. Interactions of HIV and Antiretroviral Therapy With Neutrophils and Platelets. Front Immunol 2021; 12:634386. [PMID: 33777022 PMCID: PMC7994251 DOI: 10.3389/fimmu.2021.634386] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils are important components of the innate immune system that mediate pathogen defense by multiple processes including phagocytosis, release of proteolytic enzymes, production of reactive oxygen species, and neutrophil extracellular trap formation. Abnormalities of neutrophil count and function have been described in the setting of HIV infection, with the majority of antiretroviral agents (ARVs), excluding zidovudine, having been reported to correct neutropenia. Questions still remain, however, about their impact on neutrophil function, particularly the possibility of persistent neutrophil activation, which could predispose people living with HIV to chronic inflammatory disorders, even in the presence of virally-suppressive treatment. In this context, the effects of protease inhibitors and integrase strand transfer inhibitors, in particular, on neutrophil function remain poorly understood and deserve further study. Besides mediating hemostatic functions, platelets are increasingly recognized as critical role players in the immune response against infection. In the setting of HIV, these cells have been found to harbor the virus, even in the presence of antiretroviral therapy (ART) potentially promoting viral dissemination. While HIV-infected individuals often present with thrombocytopenia, they have also been reported to have increased platelet activation, as measured by an upregulation of expression of CD62P (P-selectin), CD40 ligand, glycoprotein IV, and RANTES. Despite ART-mediated viral suppression, HIV-infected individuals reportedly have sustained platelet activation and dysfunction. This, in turn, contributes to persistent immune activation and an inflammatory vascular environment, seemingly involving neutrophil-platelet-endothelium interactions that increase the risk for development of comorbidities such as cardiovascular disease (CVD) that has become the leading cause of morbidity and mortality in HIV-infected individuals on treatment, clearly underscoring the importance of unraveling the possible etiologic roles of ARVs. In this context, abacavir and ritonavir-boosted lopinavir and darunavir have all been linked to an increased risk of CVD. This narrative review is therefore focused primarily on the role of neutrophils and platelets in HIV transmission and disease, as well as on the effect of HIV and the most common ARVs on the numbers and functions of these cells, including neutrophil-platelet-endothelial interactions.
Collapse
Affiliation(s)
- Morris Madzime
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Theresa M Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Annette J Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Helen C Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
42
|
Isaguliants M, Bayurova E, Avdoshina D, Kondrashova A, Chiodi F, Palefsky JM. Oncogenic Effects of HIV-1 Proteins, Mechanisms Behind. Cancers (Basel) 2021; 13:305. [PMID: 33467638 PMCID: PMC7830613 DOI: 10.3390/cancers13020305] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
People living with human immunodeficiency virus (HIV-1) are at increased risk of developing cancer, such as Kaposi sarcoma (KS), non-Hodgkin lymphoma (NHL), cervical cancer, and other cancers associated with chronic viral infections. Traditionally, this is linked to HIV-1-induced immune suppression with depletion of CD4+ T-helper cells, exhaustion of lymphopoiesis and lymphocyte dysfunction. However, the long-term successful implementation of antiretroviral therapy (ART) with an early start did not preclude the oncological complications, implying that HIV-1 and its antigens are directly involved in carcinogenesis and may exert their effects on the background of restored immune system even when present at extremely low levels. Experimental data indicate that HIV-1 virions and single viral antigens can enter a wide variety of cells, including epithelial. This review is focused on the effects of five viral proteins: envelope protein gp120, accessory protein negative factor Nef, matrix protein p17, transactivator of transcription Tat and reverse transcriptase RT. Gp120, Nef, p17, Tat, and RT cause oxidative stress, can be released from HIV-1-infected cells and are oncogenic. All five are in a position to affect "innocent" bystander cells, specifically, to cause the propagation of (pre)existing malignant and malignant transformation of normal epithelial cells, giving grounds to the direct carcinogenic effects of HIV-1.
Collapse
Affiliation(s)
- Maria Isaguliants
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
| | - Ekaterina Bayurova
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Darya Avdoshina
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Alla Kondrashova
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Joel M. Palefsky
- Department of Medicine, University of California, San Francisco, CA 94117, USA;
| |
Collapse
|
43
|
Lebouché B, Yero A, Shi T, Farnos O, Singer J, Kema I, Costiniuk CT, Thomas R, Brouillette MJ, Engler K, Routy JP, Jenabian MA. Impact of extended-release niacin on immune activation in HIV-infected immunological non-responders on effective antiretroviral therapy. HIV Res Clin Pract 2021; 21:182-190. [PMID: 33403940 DOI: 10.1080/25787489.2020.1866846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Background: Tryptophan (Trp) catabolism into immunosuppressive kynurenine (Kyn) is involved in immune dysregulation during HIV infection. Niacin (vitamin B3) could control the excess of tryptophan depletion and represents a potential strategy to improve immune functions and CD4 count recovery in immunological non-responder HIV-infected individuals on antiretroviral therapy (ART). METHODS Methods: In the CTN PT006 phase 2 pilot randomized trial, 20 adults on ART with CD4 ≤ 350 cells/µl, despite an undetectable viral load (VL) for at least 3 months, received 2000 mg of extended-release (ER)-niacin orally once daily for 24 weeks. Side effects, VL, CD4/CD8 counts, lipid profile, T-cell activation and senescence, Tregs and Th17 cell frequencies, Kyn/Trp ratio, and levels of IL-6, IP-10, sST2, I-FABP, and LBP were assessed following ER-niacin treatment. RESULTS Results: Thirteen participants completed the study. Treatment was interrupted in 4 patients due to loss of follow-up or personal reasons and 3 patients were discontinued due to comorbidity risks. All participants maintained a VL < 40 copies/ml, while ER-niacin did not affect CD4 and CD8 cell counts. Plasma levels of triglycerides, total, and LDL cholesterol significantly decreased, following ER-niacin treatment. ER-niacin also diminished Kyn plasma levels and slightly decreased CD4 T-cell activation. However, no improvement in CD8 subsets, Kyn/Trp ratio, Th17/Treg balance, and plasma inflammatory markers was observed. CONCLUSIONS Conclusions: Although ER-niacin combined with ART was well-tolerated among immune non-responders and decreased plasma lipids, it did not improve systemic inflammation, Kyn/Trp ratio, and CD4 cell recovery. Overall, ER-niacin was not effective to overcome chronic inflammation in PLWH.
Collapse
Affiliation(s)
- Bertrand Lebouché
- Chronic Viral Illness Service, Division of Infectious Disease, Department of Medicine, Glen Site, McGill University Health Centre, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Department of Family Medicine, McGill University, Montreal, QC, Canada.,Center for Outcome Research Evaluation, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Alexis Yero
- Department of Biological Sciences and CERMO-FC Research Centre, University of Quebec at Montreal (UQAM), Montreal, QC, Canada
| | - Tao Shi
- Department of Biological Sciences and CERMO-FC Research Centre, University of Quebec at Montreal (UQAM), Montreal, QC, Canada
| | - Omar Farnos
- Department of Biological Sciences and CERMO-FC Research Centre, University of Quebec at Montreal (UQAM), Montreal, QC, Canada
| | - Joel Singer
- CIHR Canadian HIV Trials Network, Vancouver, BC, Canada
| | - Ido Kema
- Department of Laboratory Medicine, University of Groningen, Groningen, The Netherlands
| | - Cecilia T Costiniuk
- Chronic Viral Illness Service, Division of Infectious Disease, Department of Medicine, Glen Site, McGill University Health Centre, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | | | - Marie-Josée Brouillette
- Chronic Viral Illness Service, Division of Infectious Disease, Department of Medicine, Glen Site, McGill University Health Centre, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Center for Outcome Research Evaluation, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Kim Engler
- Center for Outcome Research Evaluation, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service, Division of Infectious Disease, Department of Medicine, Glen Site, McGill University Health Centre, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, University of Quebec at Montreal (UQAM), Montreal, QC, Canada.,Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
44
|
Mehraj V, Ramendra R, Isnard S, Dupuy FP, Ponte R, Chen J, Kema I, Jenabian MA, Costinuik CT, Lebouché B, Thomas R, Coté P, Leblanc R, Baril JG, Durand M, Chartrand-Lefebvre C, Tremblay C, Ancuta P, Bernard NF, Sheppard DC, Routy JP. Circulating (1→3)-β-D-glucan Is Associated With Immune Activation During Human Immunodeficiency Virus Infection. Clin Infect Dis 2021; 70:232-241. [PMID: 30877304 DOI: 10.1093/cid/ciz212] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/11/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Microbial translocation from the gut to systemic circulation contributes to immune activation during human immunodeficiency virus (HIV) infection and is usually assessed by measuring plasma levels of bacterial lipopolysaccharide (LPS). Fungal colonization in the gut increases during HIV-infection and people living with HIV (PLWH) have increased plasma levels of fungal polysaccharide (1→3)-β-D-Glucan (βDG). We assessed the contribution of circulating DG to systemic immune activation in PLWH. METHODS Cross-sectional and longitudinal assessments of plasma βDG levels were conducted along with markers of HIV disease progression, epithelial gut damage, bacterial translocation, proinflammatory cytokines, and βDG-specific receptor expression on monocytes and natural killer (NK) cells. RESULTS Plasma βDG levels were elevated during early and chronic HIV infection and persisted despite long-term antiretroviral therapy (ART). βDG increased over 24 months without ART but remained unchanged after 24 months of treatment. βDG correlated negatively with CD4 T-cell count and positively with time to ART initiation, viral load, intestinal fatty acid-binding protein, LPS, and soluble LPS receptor soluble CD14 (sCD14). Elevated βDG correlated positively with indoleamine-2,3-dioxygenase-1 enzyme activity, regulatory T-cell frequency, activated CD38+Human Leukocyte Antigen - DR isotype (HLA-DR)+ CD4 and CD8 T cells and negatively with Dectin-1 and NKp30 expression on monocytes and NK cells, respectively. CONCLUSIONS PLWH have elevated plasma βDG in correlation with markers of disease progression, gut damage, bacterial translocation, and inflammation. Early ART initiation prevents further βDG increase. This fungal antigen contributes to immune activation and represents a potential therapeutic target to prevent non-acquired immunodeficiency syndrome events.
Collapse
Affiliation(s)
- Vikram Mehraj
- Chronic Viral Illness Service, Research Institute, McGill University Health Centre.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal
| | - Rayoun Ramendra
- Chronic Viral Illness Service, Research Institute, McGill University Health Centre.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre.,Department of Microbiology and Immunology, McGill University, Quebec, Canada
| | - Stéphane Isnard
- Chronic Viral Illness Service, Research Institute, McGill University Health Centre.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre
| | - Franck P Dupuy
- Chronic Viral Illness Service, Research Institute, McGill University Health Centre.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre
| | - Rosalie Ponte
- Chronic Viral Illness Service, Research Institute, McGill University Health Centre.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre
| | - Jun Chen
- Chronic Viral Illness Service, Research Institute, McGill University Health Centre.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre
| | - Ido Kema
- Department of Laboratory Medicine, University Medical Center, University of Groningen, The Netherlands
| | | | - Cecilia T Costinuik
- Chronic Viral Illness Service, Research Institute, McGill University Health Centre.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre
| | - Bertrand Lebouché
- Chronic Viral Illness Service, Research Institute, McGill University Health Centre.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre.,Department of Family Medicine, McGill University
| | - Réjean Thomas
- Clinique Médicale l'Actuel, de Médecine, Université de Montréal
| | - Pierre Coté
- Clinique Médicale Quartier Latin, de Médecine, Université de Montréal
| | - Roger Leblanc
- Clinique Médicale Opus, de Médecine, Université de Montréal
| | - Jean-Guy Baril
- Clinique Médicale Quartier Latin, de Médecine, Université de Montréal
| | - Madeleine Durand
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal
| | | | - Cécile Tremblay
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal
| | - Petronela Ancuta
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal.,Division of Hematology, McGill University Health Centre, Quebec, Canada
| | - Nicole F Bernard
- Chronic Viral Illness Service, Research Institute, McGill University Health Centre.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre
| | - Donald C Sheppard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre.,Department of Microbiology and Immunology, McGill University, Quebec, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service, Research Institute, McGill University Health Centre.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre.,Division of Hematology, McGill University Health Centre, Quebec, Canada
| | | |
Collapse
|
45
|
Okhai H, Vivancos-Gallego MJ, Hill T, Sabin CA. CD4+:CD8+ T Cell Ratio Normalization and the Development of AIDS Events in People with HIV Starting Antiretroviral Therapy. AIDS Res Hum Retroviruses 2020; 36:808-816. [PMID: 32664736 PMCID: PMC7549010 DOI: 10.1089/aid.2020.0106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We identify factors associated with the normalization of the CD4+:CD8+ T cell ratio among UK Collaborative HIV Cohort study participants, and describe the association of the CD4+ and CD8+ T cell counts and the CD4+:CD8+ T cell ratio, with the risk of new AIDS events among individuals who achieve a suppressed viral load. Participants initiating combination antiretroviral therapy (cART) after 2006 with a CD4+:CD8+ T cell ratio <1, and viral suppression within 6 months were included. Cox proportional hazard models were used to examine associations with ratio normalization (ratio ≥1). Poisson regression models were used to investigate factors associated with the development of AIDS after viral load suppression. A total of 13,178 participants [median age: 37 (interquartile range: 31–44)] were followed for 75,336 person-years. Of the 4,042 (32.9%) who experienced ratio normalization, individuals with a high CD4+ T cell count [>500 vs. ≤200 cells/mm3, adjusted hazard ratio (95% confidence interval): 7.93 (6.97–9.01)], low CD8+ T cell count [>1,150 vs. ≤500 cells/mm3: 0.18 (0.16–0.21)], and low CD4+:CD8+ T cell ratio [>0.8 vs. <0.2: 12.36 (10.41–14.68)] at cART initiation were more likely to experience ratio normalization. Four hundred and nineteen people developed a new AIDS event. Most recent CD4+ T cell count [>500 vs. ≤200 cells/mm3: adjusted rate ratio 0.24 (0.16–0.34)] and CD4+:CD8+ T cell ratio [>0.8 vs. <0.2: 0.33 (0.21–0.52)] were independently associated with a new AIDS event. One third of study participants experienced ratio normalization after starting cART. CD4+ T cell count and CD4+:CD8+ T cell ratio are both individually associated with ratio normalization and the development of new AIDS events after cART.
Collapse
Affiliation(s)
- Hajra Okhai
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation, Institute for Global Health, University College London, London United Kingdom
| | - María Jesús Vivancos-Gallego
- Department of Infectious Diseases, University Hospital Ramon y Cajal and Ramon y Cajal Health Research Institute (IRYCIS), Madrid, Spain
| | - Teresa Hill
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation, Institute for Global Health, University College London, London United Kingdom
| | - Caroline A. Sabin
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation, Institute for Global Health, University College London, London United Kingdom
| |
Collapse
|
46
|
Kant S, Zhang N, Barbé A, Routy JP, Tremblay C, Thomas R, Szabo J, Côté P, Trottier B, LeBlanc R, Rouleau D, Harris M, Dupuy FP, Bernard NF. Polyfunctional Fc Dependent Activity of Antibodies to Native Trimeric Envelope in HIV Elite Controllers. Front Immunol 2020; 11:583820. [PMID: 33101312 PMCID: PMC7555699 DOI: 10.3389/fimmu.2020.583820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022] Open
Abstract
Antibody dependent (AD) functions such as AD cellular cytotoxicity (ADCC) were associated with lower viral load (VL) in untreated HIV progressors and protection from HIV infection in the modestly protective RV144 HIV vaccine trial. Target cells used to measure ADCC, AD complement deposition (ADCD), and AD cellular trogocytosis (ADCT) have been either HIV envelope (Env) gp120-coated CEM.NKr.CCR5 cells or HIV infected cell cultures. In HIV infected cell cultures, uninfected bystander cells take up gp120 shed from infected cells. Both gp120-coated and gp120+ bystander cells expose CD4 induced (CD4i) epitopes, which are normally hidden in native trimeric Env expressed by genuinely HIV infected cells since Nef and Vpu downmodulate cell surface CD4. Antibody dependent assays using either of these target cells probe for CD4i Abs that are abundant in HIV+ plasma but that do not recognize HIV-infected cells. Here, we examined ADCC, ADCD, and ADCT functions using a target cell line, sorted HIV-infected cell line cells, whose HIV infection frequency nears 100% and that expresses HIV Env in a native trimeric closed conformation. Using sorted HIV-infected cells (siCEM) as targets, we probed the binding and AD functions of anti-gp120/Env Abs in plasma from HIV-infected untreated progressor (UTP, n = 18) and treated (TP, n = 24) subjects, compared to that in Elite controllers (EC, n = 37) and Viral Controllers (VC, n = 16), which are rare subsets of HIV-infected individuals who maintain undetectable or low VL, respectively, without treatment. Gp120-coated beads were used to measure AD cellular phagocytosis. Equivalent concentrations of input IgG in plasma from UTPs, ECs, and VCs supported higher levels of all AD functions tested than plasma from TPs. When AD activities were normalized to the concentration of anti-gp120/Env-specific Abs, between-group differences largely disappeared. This finding suggests that the anti-gp120/Env Abs concentrations and not their potency determined AD functional levels in these assays. Elite controllers did differ from the other groups by having AD functions that were highly polyfunctional and highly correlated with each other. PCR measurement of HIV reservoir size showed that ADCC activity was higher in ECs and VCs with a reservoir size below the limit of detection compared to those having a measurable HIV reservoir size.
Collapse
Affiliation(s)
- Sanket Kant
- Research Institute of the McGill University Health Centre Montreal, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Ningyu Zhang
- Research Institute of the McGill University Health Centre Montreal, Montreal, QC, Canada.,Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Alexandre Barbé
- Research Institute of the McGill University Health Centre Montreal, Montreal, QC, Canada.,Faculté de Médecine de l'Université de Lille Henri Warembourg, Lille, France.,Ophthalmology Department, Lille University Hospital, Lille, France
| | - Jean-Pierre Routy
- Research Institute of the McGill University Health Centre Montreal, Montreal, QC, Canada.,Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Hematology, McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Cécile Tremblay
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.,Départment de Microbiologie Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | | | - Jason Szabo
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Clinique Médicale l'Actuel, Montreal, QC, Canada
| | - Pierre Côté
- Clinique de Médecine Urbaine du Quartier Latin, Montreal, QC, Canada
| | - Benoit Trottier
- Clinique de Médecine Urbaine du Quartier Latin, Montreal, QC, Canada
| | | | - Danielle Rouleau
- Départment de Microbiologie Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Marianne Harris
- British Columbia Center for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Franck P Dupuy
- Research Institute of the McGill University Health Centre Montreal, Montreal, QC, Canada.,Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Nicole F Bernard
- Research Institute of the McGill University Health Centre Montreal, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Division of Clinical Immunology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
47
|
Ouyang J, Isnard S, Lin J, Fombuena B, Peng X, Nair Parvathy S, Chen Y, Silverman MS, Routy JP. Treating From the Inside Out: Relevance of Fecal Microbiota Transplantation to Counteract Gut Damage in GVHD and HIV Infection. Front Med (Lausanne) 2020; 7:421. [PMID: 32850913 PMCID: PMC7423874 DOI: 10.3389/fmed.2020.00421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) tract is a complex and well-balanced milieu of anatomic and immunological barriers. The epithelial surface of the GI tract is colonized by trillions of microorganisms, known as the gut microbiota, which is considered an “organ” with distinctive endocrine and immunoregulatory functions. Dysregulation of the gut microbiota composition, termed dysbiosis, has been associated with epithelial damage and translocation of microbial products into the circulating blood. Dysbiosis, increased gut permeability and chronic inflammation play a major role on the clinical outcome of inflammatory bowel diseases, graft-vs.-host disease (GVHD) and HIV infection. In this review, we focus on GVHD and HIV infection, conditions sharing gut immune damage leading to dysbiosis. The degree of dysbiosis and level of epithelial gut damage predict poor clinical outcome in both conditions. Emerging interventions are therefore warranted to promote gut microbiota homeostasis and improve intestinal barrier function. Interventions such as anti-inflammatory medications, and probiotics have toxicity and/or limited transitory effects, justifying innovative approaches. Fecal microbiota transplantation (FMT) is one such approach where fecal microorganisms are transferred from healthy donors into the GI tract of the recipient to restore microbiota composition in patients with Clostridium difficile-induced colitis or inflammatory bowel diseases. Preliminary findings point toward a beneficial effect of FMT to improve GVHD and HIV-related outcomes through the engraftment of beneficial donor bacteria, notably those producing anti-inflammatory metabolites. Herein, we critically review the potential for FMT in alleviating dysbiosis and gut damage in patients with GVHD or HIV-infection. Understanding the underlying mechanism by which FMT restores gut function will pave the way toward novel scalable and targeted interventions.
Collapse
Affiliation(s)
- Jing Ouyang
- Infectious Diseases and Immunity in Global Health Program, McGill University Health Centre, Research Institute, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Chongqing Public Health Medical Center, Chongqing, China
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, McGill University Health Centre, Research Institute, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - John Lin
- Infectious Diseases and Immunity in Global Health Program, McGill University Health Centre, Research Institute, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Brandon Fombuena
- Infectious Diseases and Immunity in Global Health Program, McGill University Health Centre, Research Institute, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Xiaorong Peng
- Infectious Diseases and Immunity in Global Health Program, McGill University Health Centre, Research Institute, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | | | - Yaokai Chen
- Chongqing Public Health Medical Center, Chongqing, China
| | | | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, McGill University Health Centre, Research Institute, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
48
|
Modulation of Phenylalanine and Tyrosine Metabolism in HIV-1 Infected Patients with Neurocognitive Impairment: Results from a Clinical Trial. Metabolites 2020; 10:metabo10070274. [PMID: 32635406 PMCID: PMC7408387 DOI: 10.3390/metabo10070274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022] Open
Abstract
To investigate the effects of oral bacteriotherapy on intestinal phenylalanine and tyrosine metabolism, in this longitudinal, double-arm trial, 15 virally suppressed HIV+ individuals underwent blood and fecal sample collection at baseline and after 6 months of oral bacteriotherapy. A baseline fecal sample was collected from 15 healthy individuals and served as control group for the baseline levels of fecal phenylalanine and tyrosine. CD4 and CD8 immune activation (CD38+) was evaluated by flow cytometry. Amino acid evaluation on fecal samples was conducted by Proton Nuclear Magnetic Resonance. Results showed that HIV+ participants displayed higher baseline phenylalanine/tyrosine ratio values than healthy volunteers. A significand reduction in phenylalanine/tyrosine ratio and peripheral CD4+ CD38+ activation was observed at the end of oral bacteriotherapy. In conclusion, probiotics beneficially affect the immune activation of HIV+ individuals. Therefore, the restoration of intestinal amino acid metabolism could represent the mechanisms through which probiotics exert these desirable effects.
Collapse
|
49
|
Chen J, Xun J, Yang J, Ji Y, Liu L, Qi T, Wang Z, Zhang R, Shen Y, Ponte R, Mehraj V, Routy JP, Lu H. Plasma Indoleamine 2,3-Dioxygenase Activity Is Associated With the Size of the Human Immunodeficiency Virus Reservoir in Patients Receiving Antiretroviral Therapy. Clin Infect Dis 2020; 68:1274-1281. [PMID: 30107503 PMCID: PMC6451994 DOI: 10.1093/cid/ciy676] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/08/2018] [Indexed: 12/11/2022] Open
Abstract
Background Indoleamine 2,3-dioxygenase (IDO) is an immunoregulatory enzyme that metabolizes tryptophan to immunosuppressive kynurenines. We investigated whether IDO activity is associated with the size of HIV reservoir. Methods Total human immunodeficiency virus (HIV) DNA in peripheral blood mononuclear cells (PBMCs) from 127 HIV-infected patients receiving antiretroviral therapy (ART) was quantified. Tryptophan and kynurenine concentrations, as well as microbial translocation markers, were measured in plasma samples. T-cell activation and exhaustion in PBMCs were assessed by flow cytometry. Results Elevated IDO activity prior to ART correlated with on-ART HIV DNA (r = 0.35, P = .004), but was not associated with pre-ART HIV DNA. A median duration of 15 months of ART significantly decreased IDO activity; however, these levels were still higher than those observed in HIV-uninfected controls. Among treated participants, IDO activity positively correlated with their concurrent HIV DNA (r = 0.36, P < .0001). Multivariate model showed an independent association of pre-ART CD4/CD8 ratio (adjusted odds ratio [aOR], 0.75 per 0.1 increase [95% confidence interval {CI}, .62–.91]) and on-ART IDO activity (aOR, 1.09 per nM/μM increase [95% CI, 1.04–1.14]) with higher levels of HIV DNA on-ART. A lack of association of the microbial translocation markers was observed with the size of HIV reservoir. HIV DNA positively correlated with the proportions of activated CD4 T and CD8 T cells and exhausted CD4 T cells. Conclusions We observed a positive correlation between IDO activity and total HIV DNA in blood, highlighting the important role of immunometabolic aberrations in HIV persistence.
Collapse
Affiliation(s)
- Jun Chen
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, China.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada.,Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jingna Xun
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, China
| | - Junyang Yang
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, China
| | - Yongjia Ji
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, China
| | - Li Liu
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, China
| | - Tangkai Qi
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, China
| | - Zhenyan Wang
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, China
| | - Renfang Zhang
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, China
| | - Yinzhong Shen
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, China
| | - Rosalie Ponte
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada.,Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Vikram Mehraj
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada.,Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada.,Research Institute, McGill University Health Centre, Montreal, Quebec, Canada.,Division of Hematology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Hongzhou Lu
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, China.,Department of Internal Medicine, Shanghai Medical College, Fudan University.,Department of Infectious Diseases, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
50
|
Ouyang J, Isnard S, Lin J, Fombuena B, Chatterjee D, Wiche Salinas TR, Planas D, Cattin A, Fert A, Moreira Gabriel E, Raymond Marchand L, Zhang Y, Finkelman M, Chen Y, Kaufmann DE, Cermakian N, Ancuta P, Routy JP. Daily variations of gut microbial translocation markers in ART-treated HIV-infected people. AIDS Res Ther 2020; 17:15. [PMID: 32398104 PMCID: PMC7216536 DOI: 10.1186/s12981-020-00273-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background Increased intestinal barrier permeability and subsequent gut microbial translocation are significant contributors to inflammatory non-AIDS comorbidities in people living with HIV (PLWH). Evidence in animal models have shown that markers of intestinal permeability and microbial translocation vary over the course of the day and are affected by food intake and circadian rhythms. However, daily variations of these markers are not characterized yet in PLWH. Herein, we assessed the variation of these markers over 24 h in PLWH receiving antiretroviral therapy (ART) in a well-controlled environment. Methods As in Canada, PLWH are predominantly men and the majority of them are now over 50 years old, we selected 11 men over 50 receiving ART with undetectable viremia for more than 3 years in this pilot study. Blood samples were collected every 4 h over 24 h before snacks/meals from 8:00 in the morning to 8:00 the next day. All participants consumed similar meals at set times, and had a comparable amount of sleep, physical exercise and light exposure. Plasma levels of bacterial lipopolysaccharide (LPS) and fungal (1→3)-β-D-Glucan (BDG) translocation markers, along with markers of intestinal damage fatty acid binding protein (I-FABP) and regenerating islet-derived protein-3α (REG3α) were assessed by ELISA or the fungitell assay. Results Participants had a median age of 57 years old (range 50 to 63). Plasma levels of BDG and REG3α did not vary significantly over the course of the study. In contrast, a significant increase of LPS was detected between 12:00 and 16:00 (Z-score: − 1.15 ± 0.18 vs 0.16 ± 0.15, p = 0.02), and between 12:00 and 24:00 (− 1.15 ± 0.18 vs 0.89 ± 0.26, p < 0.001). The plasma levels of I-FABP at 16:00 (− 0.92 ± 0.09) were also significantly lower, compared to 8:00 the first day (0.48 ± 0.26, p = 0.002), 4:00 (0.73 ± 0.27, p < 0.001) or 8:00 on secondary day (0.88 ± 0.27, p < 0.001). Conclusions Conversely to the fungal translocation marker BDG and the gut damage marker REG3α, time of blood collection matters for the proper evaluation for LPS and I-FABP as markers for the risk of inflammatory non-AIDS co-morbidities. These insights are instrumental for orienting clinical investigations in PLWH.
Collapse
|