1
|
Kosulin K, Brasel TL, Smith J, Torres M, Bitzer A, Dubischar K, Buerger V, Mader R, Weaver SC, Beasley DW, Hochreiter R. Cross-neutralizing activity of the chikungunya vaccine VLA1553 against three prevalent chikungunya lineages. Emerg Microbes Infect 2025; 14:2469653. [PMID: 39998495 PMCID: PMC11894744 DOI: 10.1080/22221751.2025.2469653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/11/2025] [Accepted: 02/16/2025] [Indexed: 02/26/2025]
Abstract
Cross-neutralization is generally a prerequisite for cross-protection of vaccines against diseases caused by heterologous viruses. Using sera obtained from a randomized clinical phase 3 trial in adults, we investigated the cross-neutralization activity of VLA1553, a vaccine recently approved to prevent chikungunya disease. Analysed in a plaque reduction neutralization test, the three major chikungunya virus (CHIKV) lineages, namely the East Central South African, the West African, and the Asian lineage, were inhibited by CHIKV-specific neutralizing antibodies present in the sera from vaccinated humans. This effect was independent of the time elapsed since vaccination. Moreover, the magnitude of the immune response was similar to the antibody levels detected in sera from convalescent chikungunya patients. Thus, VLA1553 has the potential to diminish the burden of chikungunya disease on a global scale.Trial registration: ClinicalTrials.gov identifier: NCT04546724.
Collapse
Affiliation(s)
| | - Trevor L. Brasel
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Institutional Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Jeanon Smith
- Institutional Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, USA
| | - Maricela Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | - Scott C. Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - David W.C. Beasley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Institutional Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | | |
Collapse
|
2
|
de Souza WM, Lecuit M, Weaver SC. Chikungunya virus and other emerging arthritogenic alphaviruses. Nat Rev Microbiol 2025:10.1038/s41579-025-01177-8. [PMID: 40335675 DOI: 10.1038/s41579-025-01177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 05/09/2025]
Abstract
Arthritogenic alphaviruses are arboviruses (arthropod-borne viruses) that are genetically and serologically related positive-strand RNA viruses and cause epidemics on a global scale. They are transmitted by mosquitoes and cause diseases in humans that are mainly characterized by fever and often debilitating, sometimes chronic polyarthralgia. At present, approved treatments or vaccines are not available for most arthritogenic alphaviruses, and recently licensed vaccines against chikungunya virus are awaiting implementation in endemic areas. Most arthritogenic alphaviruses are currently limited to specific geographic areas due to vector distributions and availability of amplifying hosts, but they pose a substantial risk of emergence in other regions. The exception is chikungunya virus, which has emerged repeatedly from Africa, established sustained and efficient transmission in urban areas (including in temperate climates) and has caused major epidemics across the world. In this Review, we highlight recent advances in our understanding of the transmission cycles of arthritogenic alphaviruses, their vectors, epidemiology, transmission dynamics, evolution, pathophysiology and immune responses. We also outline strategies and countermeasures to anticipate and mitigate the impact of arthritogenic alphaviruses on human health.
Collapse
Affiliation(s)
- William M de Souza
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Marc Lecuit
- Institut Pasteur, Université Paris Cité, Inserm U1117, Biology of Infection Unit, Paris, France
- Department of Infectious Diseases and Tropical Medicine, Assistance Publique-Hôpitaux de Paris, Institut Imagine, Necker-Enfants Malades University Hospital, Paris, France
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
3
|
Richardson JS, Anderson DM, Mendy J, Tindale LC, Muhammad S, Loreth T, Tredo SR, Warfield KL, Ramanathan R, Caso JT, Jenkins VA, Ajiboye P, Bedell L. Chikungunya virus virus-like particle vaccine safety and immunogenicity in adolescents and adults in the USA: a phase 3, randomised, double-blind, placebo-controlled trial. Lancet 2025; 405:1343-1352. [PMID: 40158526 DOI: 10.1016/s0140-6736(25)00345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Chikungunya disease is a growing global public health concern. Vimkunya (previously chikungunya virus virus-like particle vaccine, previously PXVX0317) is a single-dose, pre-filled syringe for intramuscular injection. Here, we report safety, tolerability, and immunogenicity data for Vimkunya versus placebo in healthy adolescents and adults aged 12-64 years, and evaluate lot-to-lot consistency. METHODS This pivotal phase 3, randomised, double-blind, placebo-controlled, parallel-group trial was done at 47 clinical trial sites in the USA. Eligible participants were healthy adolescents and adults aged 12-64 years. Participants were divided into three age strata (12-17 years, 18-45 years, and 46-64 years) within each site and randomly assigned (2:2:2:1) to receive one of three consecutively manufactured lots of Vimkunya or placebo (same excipient composition without chikungunya virus virus-like particle or aluminium hydroxide components) on study day 1. Neither participants, nor clinical site personnel, nor the funder knew participants' individual treatment assignments until all participants completed their involvement in the trial and the database was cleaned and locked. Participants attended a screening visit, followed by a day 1 visit that included random assignment, blood sample collection, and administration of a single dose of Vimkunya or placebo by intramuscular injection in the deltoid muscle. The coprimary endpoints were: the difference in chikungunya virus serum neutralising antibody seroreponse rate (vaccine minus placebo) at day 22; chikungunya virus serum neutralising antibody geometric mean titre (GMT) at day 22 for vaccine and placebo; and chikungunya virus serum neutralising GMT ratio at day 22 between all three pairs of vaccine lots (A:B, B:C, and A:C) in adults aged 18-45 years. The trial is registered with ClinicalTrials.gov, NCT05072080 and EudraCT, 2023-001124-42. FINDINGS Between Sept 29, 2021, and Sept 23, 2022, 4215 participants were screened, of whom 3258 were eligible and enrolled (1667 [51·2%] female and 1591 [48·8%] male), and 3254 (99·9%) received either Vimkunya (n=2790) or placebo (n=464). The immunogenicity evaluable population included 2983 participants, of whom 2559 received Vimkunya and 424 received placebo. At day 22, 2503 (97·8%) of 2559 participants in the Vimkunya group had a seroresponse, compared with five (1·2%) of 424 participants in the placebo group for the immunogenicity evaluable population. The seroreponse rate difference was 96·6% (95% CI 95·0-97·5; p<0·0001). In the immunogenicity evaluable population, chikungunya virus serum neutralising antibody GMT at day 22 for the vaccine group was 1618 and for the placebo group was 7·9 (p<0·0001). At day 22, the serum neutralising GMT ratios for the pairs of lots (A:B, B:C, and A:C) were 0·98 (95% CI 0·85-1·14), 0·97 (0·84-1·12), and 0·95 (0·82-1·10), respectively. Vimkunya had a favourable safety profile; most adverse events were self-limiting and grade 1 or 2 in severity. The most common adverse events were injection site pain (656 [23·7%] of 2764 participants in the vaccine group), fatigue (551 [19·9%] of 2764), headache (498 [18·0%] of 2765), and myalgia (486 [17·6%] of 2764). INTERPRETATION Vimkunya induces a rapid and robust immune response. These findings support the potential for this vaccine to protect individuals aged 12-64 years from disease caused by chikungunya virus. FUNDING Emergent BioSolutions and Bavarian Nordic.
Collapse
|
4
|
Hamer MJ, McCarty JM, Pierson BC, Regules JA, Mendy J, Sanborn AD, Gardner CL, Haller JM, Gregory MK, Liggett DL, Glass PJ, Ghosh N, Royalty Tredo S, Warfield KL, Burke CW, Lee C, Saunders D, Bedell L, Richardson JS. Safety and immunogenicity of an adjuvanted chikungunya virus virus-like particle (CHIKV VLP) vaccine in previous recipients of other alphavirus vaccines versus alphavirus vaccine-naive controls: an open-label, parallel-group, age-matched, sex-matched, phase 2 randomised controlled study. THE LANCET. MICROBE 2025; 6:101000. [PMID: 39954701 DOI: 10.1016/j.lanmic.2024.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 02/17/2025]
Abstract
BACKGROUND Immune responses to alphavirus vaccines might be impaired when heterologous alphavirus vaccines are administered sequentially. We aimed to compare immunogenicity and safety of a chikungunya virus virus-like particle (CHIKV VLP) vaccine in previous recipients of heterologous alphavirus vaccines with alphavirus-naive controls in the USA. METHODS In this open-label, parallel-group, age-matched, sex-matched, phase 2 randomised controlled trial, which was conducted at two clinical study sites in the USA, adults (aged 18-65 years) who had previously received an investigational Venezuelan equine encephalitis virus vaccine (previous alphavirus vaccine recipients; n=30) and sex-matched and age-matched alphavirus vaccine-naive controls (n=30) were intramuscularly administered one 40 μg dose of CHIKV VLP vaccine on day 1. Immunogenicity was based on serum neutralising antibodies assessed by an in-vitro luciferase-based anti-CHIKV NT80 neutralisation assay. The primary immunogenicity endpoint, which was assessed in the immunogenicity evaluable population (CHIKV VLP-vaccinated participants who had no important protocol deviations, had not received a prohibited medication, and provided evaluable serum sample results for baseline and on day 22), was to compare the proportion of previous alphavirus vaccine recipients with the proportion of alphavirus vaccine-naive controls who reached seroconversion 21 days after vaccination (ie, study day 22) with a single dose of CHIKV VLP vaccine, based on a four-fold increase of CHIKV neutralising antibodies compared with baseline. The significance of the comparison of the two groups was assessed using Fisher's exact test. The proportion with seroconversion in each group is presented with 95% CIs calculated using the Wilson method. The difference and 95% CIs for this difference was calculated based on Newcombe hybrid score method. An ANOVA model was fit with log10-transformed titre as the dependent variable, and study arm, age, and sex as predictors. Least squares means, difference, and 95% CIs were back-transformed and reported as geometric mean titres (GMTs). This trial is registered with ClinicalTrials.gov, NCT03992872. FINDINGS Between Nov 20, 2019, and Jan 19, 2021, 60 participants (20 [33%] female and 40 [67%] male; 40 (67%) White; median age 47·0 years [IQR 13·5]), 30 previous alphavirus vaccine recipients and 30 alphavirus vaccine-naive controls, were enrolled, vaccinated with CHIKV VLP, and completed the trial. The anti-CHIKV neutralising antibody seroconversion rate at day 22 was 100% (95% CI 88·6-100) in both groups. GMTs peaked in previous alphavirus vaccine recipients and alphavirus vaccine-naive controls at day 22 (2032·5 [95% CI 1413·0-2923·6] and 2299·2 [1598·1-3307·8], respectively) and were similar between the groups on day 22 and all subsequent visits. A higher proportion of previous alphavirus vaccine recipients (93·3% [95% CI 78·7-98·2]) had a four-fold neutralising antibody increase at day 8 than did alphavirus vaccine-naive controls (66·7% [48·8-80·8]; p=0·021). There was no statistically significant difference in the incidence of solicited adverse events between the previous alphavirus vaccine recipients and alphavirus vaccine-naive controls (53·3% vs 40·0%, respectively), although the relatively small sample size of the trial limited the power to detect a significant difference, and there were no reported vaccine-related serious adverse events. INTERPRETATION CHIKV VLP vaccine was well tolerated and similarly immunogenic in both alphavirus vaccine-naive participants and previous recipients of a heterologous alphavirus vaccine. There were no significant differences in adverse events between the groups. The results of this study support the use of CHIKV VLP vaccine in individuals with previous alphavirus vaccine exposure. FUNDING Defense Health Program, Emergent Travel Health, and Bavarian Nordic A/S.
Collapse
Affiliation(s)
- Melinda J Hamer
- Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA; Department of Emergency Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Benjamin C Pierson
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Jason A Regules
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA; Uniformed Services University (USU) F Edward Hebert School of Medicine, Bethesda, MD, USA
| | | | - Aaron D Sanborn
- Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA
| | - Christina L Gardner
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Jeannine M Haller
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Melissa K Gregory
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Dani L Liggett
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Pamela J Glass
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Neha Ghosh
- Emergent BioSolutions, Gaithersburg, MD, USA
| | | | | | - Crystal W Burke
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Christine Lee
- Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA
| | - David Saunders
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA; Uniformed Services University (USU) F Edward Hebert School of Medicine, Bethesda, MD, USA
| | | | | |
Collapse
|
5
|
Caillava AJ, Alfonso V, Tejerina Cibello M, Demaria MA, Coria LM, Cassataro J, Taboga OA, Alvarez DE. A vaccine candidate based on baculovirus displaying chikungunya virus E1-E2 envelope confers protection against challenge in mice. J Virol 2024; 98:e0101724. [PMID: 39440961 PMCID: PMC11575139 DOI: 10.1128/jvi.01017-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Chikungunya fever is a re-emerging mosquito-borne disease caused by the chikungunya virus (CHIKV) and produces acute arthritis that can progress to chronic disease with arthralgia. The first approved live-attenuated chikungunya vaccine has only recently become available for use in humans in the USA, but the access in endemic regions remains unmet. Here, we exploited the baculovirus display technology to develop a vectored vaccine candidate that exposes the CHIKV membrane proteins E1 and E2 on the baculovirus surface. Using recombinant baculovirus as vector vaccines has both productive and regulatory advantages: they are safe for handling and easy to produce in high titers and are non-pathogenic and non-replicative in mammals but have strong adjuvant properties by inducing humoral and cellular immune responses. CHIKV E1 and E2 envelope proteins with their own signal and transmembrane sequences were expressed on the surface of budded baculovirus virions. Immunization of C57BL/6 mice with non-adjuvanted recombinant baculovirus induced IgG antibodies against E2 with a predominant IgG2c subtype, neutralizing antibodies and a specific IFN-γ CD8+ T-cell response. Immunization with a second dose significantly boosted the antibody response, and mice immunized with two doses of the vaccine candidate were completely protected against challenge with CHIKV showing no detectable viremia or signs of disease. Altogether, baculovirus display of CHIKV envelope proteins served as an efficient vaccine platform against CHIKV.IMPORTANCEThe global spread of chikungunya virus (CHIKV) has disproportionately impacted the Americas that experienced a fourfold increase in 2023 in cases and deaths compared with the same period in 2022. The disease is characterized by acute fever and debilitating joint pain that can become chronic. Despite the socioeconomic burden related to the high morbidity rates of CHIKV infection, a vaccine for CHIKV is currently approved only in the USA. Vaccines are the most effective preventive measure against viral diseases, and advances in the development of different vaccine platforms such as nucleic acids and viral vectors have prompted the rapid deployment of vaccines to contain the COVID-19 pandemic. Here, we report the use of baculovirus display as a strategy for the design of a novel vaccine that provides sterilizing immunity in a mouse model of chikungunya disease. Our results encourage further research regarding the potential of baculovirus as platforms for human vaccine design.
Collapse
Affiliation(s)
- Ana J. Caillava
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Victoria Alfonso
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Malena Tejerina Cibello
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Agostina Demaria
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lorena M. Coria
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Argentina
| | - Oscar A. Taboga
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego E. Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Argentina
| |
Collapse
|
6
|
Weber WC, Streblow DN, Coffey LL. Chikungunya Virus Vaccines: A Review of IXCHIQ and PXVX0317 from Pre-Clinical Evaluation to Licensure. BioDrugs 2024; 38:727-742. [PMID: 39292392 PMCID: PMC11530495 DOI: 10.1007/s40259-024-00677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
Chikungunya virus is an emerging mosquito-borne alphavirus that causes febrile illness and arthritic disease. Chikungunya virus is endemic in 110 countries and the World Health Organization estimates that it has caused more than 2 million cases of crippling acute and chronic arthritis globally since it re-emerged in 2005. Chikungunya virus outbreaks have occurred in Africa, Asia, Indian Ocean islands, South Pacific islands, Europe, and the Americas. Until recently, no specific countermeasures to prevent or treat chikungunya disease were available. To address this need, multiple vaccines are in human trials. These vaccines use messenger RNA-lipid nanoparticles, inactivated virus, and viral vector approaches, with a live-attenuated vaccine VLA1553 and a virus-like particle PXVX0317 in phase III testing. In November 2023, the US Food and Drug Administration (FDA) approved the VLA1553 live-attenuated vaccine, which is marketed as IXCHIQ. In June 2024, Health Canada approved IXCHIQ, and in July 2024, IXCHIQ was approved by the European Commission. On August 13, 2024, the US FDA granted priority review for PXVX0317. The European Medicine Agency is considering accelerated assessment review of PXVX0317, with potential for approval by both agencies in 2025. In this review, we summarize published data from pre-clinical and clinical trials for the IXCHIQ and PXVX0317 vaccines. We also discuss unanswered questions including potential impacts of pre-existing chikungunya virus immunity on vaccine safety and immunogenicity, whether long-term immunity can be achieved, safety in children, pregnant, and immunocompromised individuals, and vaccine efficacy in people with previous exposure to other emerging alphaviruses in addition to chikungunya virus.
Collapse
Affiliation(s)
- Whitney C Weber
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Lark L Coffey
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis One Shields Avenue, Davis One Shields Avenue, 5327 VM3A, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
de Souza WM, Ribeiro GS, de Lima ST, de Jesus R, Moreira FR, Whittaker C, Sallum MAM, Carrington CV, Sabino EC, Kitron U, Faria NR, Weaver SC. Chikungunya: a decade of burden in the Americas. LANCET REGIONAL HEALTH. AMERICAS 2024; 30:100673. [PMID: 38283942 PMCID: PMC10820659 DOI: 10.1016/j.lana.2023.100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/24/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024]
Abstract
In the Americas, one decade following its emergence in 2013, chikungunya virus (CHIKV) continues to spread and cause epidemics across the region. To date, 3.7 million suspected and laboratory-confirmed chikungunya cases have been reported in 50 countries or territories in the Americas. Here, we outline the current status and epidemiological aspects of chikungunya in the Americas and discuss prospects for future research and public health strategies to combat CHIKV in the region.
Collapse
Affiliation(s)
- William M. de Souza
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, KY, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Global Virus Network, Baltimore, MD, USA
| | - Guilherme S. Ribeiro
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Shirlene T.S. de Lima
- Laboratório Central de Saúde Pública do Ceará, Fortaleza, Ceará, Brazil
- Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Ronaldo de Jesus
- Coordenação Geral dos Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Filipe R.R. Moreira
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Charles Whittaker
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Maria Anice M. Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Brazil
| | - Christine V.F. Carrington
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Republic of Trinidad and Tobago
| | - Ester C. Sabino
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Nuno R. Faria
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Department of Biology, University of Oxford, Oxford, UK
| | - Scott C. Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Global Virus Network, Baltimore, MD, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
8
|
McCarty JM, Bedell L, Mendy J, Coates EE, Chen GL, Ledgerwood JE, Tredo SR, Warfield KL, Richardson JS. Chikungunya virus virus-like particle vaccine is well tolerated and immunogenic in chikungunya seropositive individuals. Vaccine 2023; 41:6146-6149. [PMID: 37690874 DOI: 10.1016/j.vaccine.2023.08.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
In a phase 2 safety and immunogenicity study of a chikungunya virus virus-like particle (CHIKV VLP) vaccine in an endemic region, of 400 total participants, 78 were found to be focus reduction neutralizing antibody seropositive at vaccination despite being ELISA seronegative at screening, of which 39 received vaccine. This post hoc analysis compared safety and immunogenicity of CHIKV VLP vaccine in seropositive (n = 39) versus seronegative (n = 155) vaccine recipients for 72 weeks post-vaccination. There were no differences in solicited adverse events, except injection site swelling in 10.3% of seropositive versus 0.6% of seronegative recipients (p = 0.006). Baseline seropositive vaccine recipients had stronger post-vaccination luciferase neutralizing antibody responses versus seronegative recipients (peak geometric mean titer of 3594 and 1728, respectively) persisting for 72 weeks, with geometric mean fold increases of 3.1 and 13.2, respectively. In this small study, CHIKV VLP vaccine was well-tolerated and immunogenic in individuals with pre-existing immunity. ClinicalTrials.gov Identifier: NCT02562482.
Collapse
Affiliation(s)
| | - Lisa Bedell
- Emergent BioSolutions Inc, Gaithersburg, MD, USA.
| | - Jason Mendy
- Emergent BioSolutions Inc, Gaithersburg, MD, USA.
| | - Emily E Coates
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Grace L Chen
- Formerly, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Julie E Ledgerwood
- Formerly, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
9
|
Prado NDR, Brilhante-Da-Silva N, Sousa RMO, Morais MSDS, Roberto SA, Luiz MB, Assis LCD, Marinho ACM, Araujo LFLD, Pontes RDS, Stabeli RG, Fernandes CFC, Pereira SDS. Single-domain antibodies applied as antiviral immunotherapeutics. J Virol Methods 2023; 320:114787. [PMID: 37516366 DOI: 10.1016/j.jviromet.2023.114787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Viral infections have been the cause of high mortality rates throughout different periods in history. Over the last two decades, outbreaks caused by zoonotic diseases and transmitted by arboviruses have had a significant impact on human health. The emergence of viral infections in different parts of the world encourages the search for new inputs to fight pathologies of viral origin. Antibodies represent the predominant class of new drugs developed in recent years and approved for the treatment of various human diseases, including cancer, autoimmune and infectious diseases. A promising group of antibodies are single-domain antibodies derived from camelid heavy chain immunoglobulins, or VHHs, are biomolecules with nanometric dimensions and unique pharmaceutical and biophysical properties that can be used in the diagnosis and immunotherapy of viral infections. For viral neutralization to occur, VHHs can act in different stages of the viral cycle, including the actual inhibition of infection, to hindering viral replication or assembly. This review article addresses advances involving the use of VHHs in therapeutic propositions aimed to battle different viruses that affect human health.
Collapse
Affiliation(s)
- Nidiane Dantas Reis Prado
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia, Porto Velho, RO, Brazil
| | - Nairo Brilhante-Da-Silva
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia, Porto Velho, RO, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, RJ, Brazil
| | - Rosa Maria Oliveira Sousa
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia, Porto Velho, RO, Brazil
| | | | - Sibele Andrade Roberto
- Plataforma Bi-institucional de Medicina Translacional, Fundação Oswaldo Cruz-USP, Ribeirão Preto, SP, Brazil
| | - Marcos Barros Luiz
- Instituto Federal de Rondônia Campus Guajará-Mirim, IFRO, Guajará-Mirim, RO, Brazil
| | - Livia Coelho de Assis
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, RJ, Brazil; Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz, Fiocruz unidade Ceará, Eusebio, CE, Brazil
| | - Anna Carolina M Marinho
- Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz, Fiocruz unidade Ceará, Eusebio, CE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Luiz Felipe Lemes de Araujo
- Plataforma Bi-institucional de Medicina Translacional, Fundação Oswaldo Cruz-USP, Ribeirão Preto, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade de São Paulo, USP, Ribeirão Preto, SP, Brazil
| | - Rafael de Souza Pontes
- Plataforma Bi-institucional de Medicina Translacional, Fundação Oswaldo Cruz-USP, Ribeirão Preto, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade de São Paulo, USP, Ribeirão Preto, SP, Brazil
| | - Rodrigo Guerino Stabeli
- Plataforma Bi-institucional de Medicina Translacional, Fundação Oswaldo Cruz-USP, Ribeirão Preto, SP, Brazil
| | - Carla Freire Celedonio Fernandes
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, RJ, Brazil; Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz, Fiocruz unidade Ceará, Eusebio, CE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Soraya Dos Santos Pereira
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia, Porto Velho, RO, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, RJ, Brazil; Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.
| |
Collapse
|
10
|
Kim AS, Diamond MS. A molecular understanding of alphavirus entry and antibody protection. Nat Rev Microbiol 2023; 21:396-407. [PMID: 36474012 PMCID: PMC9734810 DOI: 10.1038/s41579-022-00825-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Alphaviruses are arthropod-transmitted RNA viruses that cause epidemics of human infection and disease on a global scale. These viruses are classified as either arthritogenic or encephalitic based on their genetic relatedness and the clinical syndromes they cause. Although there are currently no approved therapeutics or vaccines against alphaviruses, passive transfer of monoclonal antibodies confers protection in animal models. This Review highlights recent advances in our understanding of the host factors required for alphavirus entry, the mechanisms of action by which protective antibodies inhibit different steps in the alphavirus infection cycle and candidate alphavirus vaccines currently under clinical evaluation that focus on humoral immunity. A comprehensive understanding of alphavirus entry and antibody-mediated protection may inform the development of new classes of countermeasures for these emerging viruses.
Collapse
Affiliation(s)
- Arthur S Kim
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
11
|
Shaw CA, August A, Bart S, Booth PGJ, Knightly C, Brasel T, Weaver SC, Zhou H, Panther L. A phase 1, randomized, placebo-controlled, dose-ranging study to evaluate the safety and immunogenicity of an mRNA-based chikungunya virus vaccine in healthy adults. Vaccine 2023:S0264-410X(23)00488-7. [PMID: 37210308 DOI: 10.1016/j.vaccine.2023.04.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Chikungunya, a mosquito-borne viral disease caused by the chikungunya virus (CHIKV), causes a significant global health burden, and there is currently no approved vaccine to prevent chikungunya disease. In this study, the safety and immunogenicity of a CHIKV mRNA vaccine candidate (mRNA-1388) were evaluated in healthy participants in a CHIKV-nonendemic region. METHODS This phase 1, first-in-human, randomized, placebo-controlled, dose-ranging study enrolled healthy adults (ages 18-49 years) between July 2017 and March 2019 in the United States. Participants were randomly assigned (3:1) to receive 2 intramuscular injections 28 days apart with mRNA-1388 in 3 dose-level groups (25 μg, 50 μg, and 100 μg) or placebo and were followed for up to 1 year. Safety (unsolicited adverse events [AEs]), tolerability (local and systemic reactogenicity; solicited AEs), and immunogenicity (geometric mean titers [GMTs] of CHIKV neutralizing and binding antibodies) of mRNA-1388 versus placebo were evaluated. RESULTS Sixty participants were randomized and received ≥ 1 vaccination; 54 (90 %) completed the study. mRNA-1388 demonstrated favorable safety and reactogenicity profiles at all dose levels. Immunization with mRNA-1388 induced substantial and persistent humoral responses. Dose-dependent increases in neutralizing antibody titers were observed; GMTs (95 % confidence intervals [CIs]) at 28 days after dose 2 were 6.2 (5.1-7.6) for mRNA-1388 25 μg, 53.8 (26.8-108.1) for mRNA-1388 50 μg, 92.8 (43.6-197.6) for mRNA-1388 100 μg, and 5.0 (not estimable) for placebo. Persistent humoral responses were observed up to 1 year after vaccination and remained higher than placebo in the 2 higher mRNA-1388 dose groups. The development of CHIKV-binding antibodies followed a similar trend as that observed with neutralizing antibodies. CONCLUSIONS mRNA-1388, the first mRNA vaccine against CHIKV, was well tolerated and elicited substantial and long-lasting neutralizing antibody responses in healthy adult participants in a nonendemic region. CLINICALTRIALS gov: NCT03325075.
Collapse
Affiliation(s)
| | | | | | | | | | - Trevor Brasel
- University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | |
Collapse
|
12
|
Raju S, Adams LJ, Earnest JT, Warfield K, Vang L, Crowe JE, Fremont DH, Diamond MS. A chikungunya virus-like particle vaccine induces broadly neutralizing and protective antibodies against alphaviruses in humans. Sci Transl Med 2023; 15:eade8273. [PMID: 37196061 PMCID: PMC10562830 DOI: 10.1126/scitranslmed.ade8273] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 04/27/2023] [Indexed: 05/19/2023]
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes epidemics of acute and chronic musculoskeletal disease. Here, we analyzed the human B cell response to a CHIKV-like particle-adjuvanted vaccine (PXVX0317) from samples obtained from a phase 2 clinical trial in humans (NCT03483961). Immunization with PXVX0317 induced high levels of neutralizing antibody in serum against CHIKV and circulating antigen-specific B cells up to 6 months after immunization. Monoclonal antibodies (mAbs) generated from peripheral blood B cells of three PXVX0317-vaccinated individuals on day 57 after immunization potently neutralized CHIKV infection, and a subset of these inhibited multiple related arthritogenic alphaviruses. Epitope mapping and cryo-electron microscopy defined two broadly neutralizing mAbs that uniquely bind to the apex of the B domain of the E2 glycoprotein. These results demonstrate the inhibitory breadth and activity of the human B cell response induced by the PXVX0317 vaccine against CHIKV and potentially other related alphaviruses.
Collapse
Affiliation(s)
- Saravanan Raju
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lucas J. Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James T. Earnest
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Lo Vang
- Emergent BioSolutions, Gaithersburg, MD 20879, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S. Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
13
|
Bartholomeeusen K, Daniel M, LaBeaud DA, Gasque P, Peeling RW, Stephenson KE, Ng LFP, Ariën KK. Chikungunya fever. Nat Rev Dis Primers 2023; 9:17. [PMID: 37024497 PMCID: PMC11126297 DOI: 10.1038/s41572-023-00429-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
Chikungunya virus is widespread throughout the tropics, where it causes recurrent outbreaks of chikungunya fever. In recent years, outbreaks have afflicted populations in East and Central Africa, South America and Southeast Asia. The virus is transmitted by Aedes aegypti and Aedes albopictus mosquitoes. Chikungunya fever is characterized by severe arthralgia and myalgia that can persist for years and have considerable detrimental effects on health, quality of life and economic productivity. The effects of climate change as well as increased globalization of commerce and travel have led to growth of the habitat of Aedes mosquitoes. As a result, increasing numbers of people will be at risk of chikungunya fever in the coming years. In the absence of specific antiviral treatments and with vaccines still in development, surveillance and vector control are essential to suppress re-emergence and epidemics.
Collapse
Affiliation(s)
- Koen Bartholomeeusen
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Matthieu Daniel
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, Saint-Denis, France
- Service de Médecine d'Urgences-SAMU-SMUR, CHU de La Réunion, Saint-Denis, France
| | - Desiree A LaBeaud
- Department of Pediatrics, Division of Infectious Disease, Stanford University School of Medicine, Stanford, CA, USA
| | - Philippe Gasque
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, Saint-Denis, France
- Laboratoire d'Immunologie Clinique et Expérimentale Océan Indien LICE-OI, Université de La Réunion, Saint-Denis, France
| | - Rosanna W Peeling
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Kathryn E Stephenson
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Lisa F P Ng
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
14
|
Abbo SR, Nguyen W, Abma-Henkens MHC, van de Kamer D, Savelkoul NHA, Geertsema C, Le TTT, Tang B, Yan K, Dumenil T, van Oers MM, Suhrbier A, Pijlman GP. Comparative Efficacy of Mayaro Virus-Like Particle Vaccines Produced in Insect or Mammalian Cells. J Virol 2023; 97:e0160122. [PMID: 36883812 PMCID: PMC10062127 DOI: 10.1128/jvi.01601-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/13/2023] [Indexed: 03/09/2023] Open
Abstract
Mayaro virus (MAYV) is a mosquito-transmitted alphavirus that causes often debilitating rheumatic disease in tropical Central and South America. There are currently no licensed vaccines or antiviral drugs available for MAYV disease. Here, we generated Mayaro virus-like particles (VLPs) using the scalable baculovirus-insect cell expression system. High-level secretion of MAYV VLPs in the culture fluid of Sf9 insect cells was achieved, and particles with a diameter of 64 to 70 nm were obtained after purification. We characterize a C57BL/6J adult wild-type mouse model of MAYV infection and disease and used this model to compare the immunogenicity of VLPs from insect cells with that of VLPs produced in mammalian cells. Mice received two intramuscular immunizations with 1 μg of nonadjuvanted MAYV VLPs. Potent neutralizing antibody responses were generated against the vaccine strain, BeH407, with comparable activity seen against a contemporary 2018 isolate from Brazil (BR-18), whereas neutralizing activity against chikungunya virus was marginal. Sequencing of BR-18 illustrated that this virus segregates with genotype D isolates, whereas MAYV BeH407 belongs to genotype L. The mammalian cell-derived VLPs induced higher mean neutralizing antibody titers than those produced in insect cells. Both VLP vaccines completely protected adult wild-type mice against viremia, myositis, tendonitis, and joint inflammation after MAYV challenge. IMPORTANCE Mayaro virus (MAYV) is associated with acute rheumatic disease that can be debilitating and can evolve into months of chronic arthralgia. MAYV is believed to have the potential to emerge as a tropical public health threat, especially if it develops the ability to be efficiently transmitted by urban mosquito vectors, such as Aedes aegypti and/or Aedes albopictus. Here, we describe a scalable virus-like particle vaccine against MAYV that induced neutralizing antibodies against a historical and a contemporary isolate of MAYV and protected mice against infection and disease, providing a potential new intervention for MAYV epidemic preparedness.
Collapse
Affiliation(s)
- Sandra R. Abbo
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Wilson Nguyen
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Denise van de Kamer
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Niek H. A. Savelkoul
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Corinne Geertsema
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Thuy T. T. Le
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Troy Dumenil
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- GVN Center of Excellence, Australian Infectious Disease Research Center, Brisbane, Queensland, Australia
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
15
|
Montalvo Zurbia-Flores G, Reyes-Sandoval A, Kim YC. Chikungunya Virus: Priority Pathogen or Passing Trend? Vaccines (Basel) 2023; 11:568. [PMID: 36992153 PMCID: PMC10058558 DOI: 10.3390/vaccines11030568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Chikungunya virus (CHIKV) is considered a priority pathogen and a major threat to global health. While CHIKV infections may be asymptomatic, symptomatic patients can develop chikungunya fever (CHIKF) characterized by severe arthralgia which often transitions into incapacitating arthritis that could last for years and lead to significant loss in health-related quality of life. Yet, Chikungunya fever (CHIKF) remains a neglected tropical disease due to its complex epidemiology and the misrepresentation of its incidence and disease burden worldwide. Transmitted to humans by infected Aedes mosquitoes, CHIKV has dramatically expanded its geographic distribution to over 100 countries, causing large-scale outbreaks around the world and putting more than half of the population of the world at risk of infection. More than 50 years have passed since the first CHIKV vaccine was reported to be in development. Despite this, there is no licensed vaccine or antiviral treatments against CHIKV to date. In this review, we highlight the clinical relevance of developing chikungunya vaccines by discussing the poor understanding of long-term disease burden in CHIKV endemic countries, the complexity of CHIKV epidemiological surveillance, and emphasising the impact of the global emergence of CHIKV infections. Additionally, our review focuses on the recent progress of chikungunya vaccines in development, providing insight into the most advanced vaccine candidates in the pipeline and the potential implications of their roll-out.
Collapse
Affiliation(s)
| | - Arturo Reyes-Sandoval
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DG, UK
- Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro s/n, Unidad Adolfo López Mateos, Mexico City 07738, Mexico
| | - Young Chan Kim
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DG, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
16
|
Hakim MS, Aman AT. Understanding the Biology and Immune Pathogenesis of Chikungunya Virus Infection for Diagnostic and Vaccine Development. Viruses 2022; 15:48. [PMID: 36680088 PMCID: PMC9863735 DOI: 10.3390/v15010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Chikungunya virus, the causative agent of chikungunya fever, is generally characterized by the sudden onset of symptoms, including fever, rash, myalgia, and headache. In some patients, acute chikungunya virus infection progresses to severe and chronic arthralgia that persists for years. Chikungunya infection is more commonly identified in tropical and subtropical regions. However, recent expansions and epidemics in the temperate regions have raised concerns about the future public health impact of chikungunya diseases. Several underlying factors have likely contributed to the recent re-emergence of chikungunya infection, including urbanization, human travel, viral adaptation to mosquito vectors, lack of effective control measures, and the spread of mosquito vectors to new regions. However, the true burden of chikungunya disease is most likely to be underestimated, particularly in developing countries, due to the lack of standard diagnostic assays and clinical manifestations overlapping with those of other endemic viral infections in the regions. Additionally, there have been no chikungunya vaccines available to prevent the infection. Thus, it is important to update our understanding of the immunopathogenesis of chikungunya infection, its clinical manifestations, the diagnosis, and the development of chikungunya vaccines.
Collapse
Affiliation(s)
- Mohamad S. Hakim
- Department of Microbiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | | |
Collapse
|
17
|
Tsai SK, Hsu YL, Chiao DJ, Shu PY, Lin HT, Chang SF, Lin HC, Huang SH, Wang CH, Hsiung CC, Lin CC, Wu TY, Kuo SC. Antigenicity and immunogenicity of chikungunya virus-like particles from mosquito cells. Appl Microbiol Biotechnol 2022; 107:219-232. [DOI: 10.1007/s00253-022-12280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/11/2022] [Accepted: 11/04/2022] [Indexed: 11/26/2022]
|
18
|
Schmidt C, Schnierle BS. Chikungunya Vaccine Candidates: Current Landscape and Future Prospects. Drug Des Devel Ther 2022; 16:3663-3673. [PMID: 36277603 PMCID: PMC9580835 DOI: 10.2147/dddt.s366112] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
Chikungunya virus (CHIKV) is an alphavirus that has spread globally in the last twenty years. Although mortality is rather low, infection can result in debilitating arthralgia that can persist for years. Unfortunately, no treatments or preventive vaccines are currently licensed against CHIKV infections. However, a large range of promising preclinical and clinical vaccine candidates have been developed during recent years. This review will give an introduction into the biology of CHIKV and the immune responses that are induced by infection, and will summarize CHIKV vaccine development.
Collapse
Affiliation(s)
- Christin Schmidt
- Paul-Ehrlich-Institut, Department of Virology, Section AIDS and Newly Emerging Pathogens, Langen, Germany
| | - Barbara S Schnierle
- Paul-Ehrlich-Institut, Department of Virology, Section AIDS and Newly Emerging Pathogens, Langen, Germany,Correspondence: Barbara S Schnierle, Paul-Ehrlich-Institut, Department of Virology, Section AIDS and newly emerging pathogens, Paul-Ehrlich-Strasse 51.59, Langen, 63225, Germany, Tel/Fax +49 6103 77 5504, Email
| |
Collapse
|
19
|
Bennett SR, McCarty JM, Ramanathan R, Mendy J, Richardson JS, Smith J, Alexander J, Ledgerwood JE, de Lame PA, Royalty Tredo S, Warfield KL, Bedell L. Safety and immunogenicity of PXVX0317, an aluminium hydroxide-adjuvanted chikungunya virus-like particle vaccine: a randomised, double-blind, parallel-group, phase 2 trial. THE LANCET. INFECTIOUS DISEASES 2022; 22:1343-1355. [PMID: 35709798 DOI: 10.1016/s1473-3099(22)00226-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Chikungunya virus (CHIKV) disease is an ongoing public health threat. We aimed to evaluate the safety and immunogenicity of PXVX0317, an aluminium hydroxide-adjuvanted formulation of a CHIKV virus-like particle (VLP) vaccine. METHODS This randomised, double-blind, parallel-group, phase 2 trial was conducted at three clinical trial centres in the USA. Eligible participants were healthy CHIKV-naïve adults aged 18-45 years. Participants were stratified by site and randomly assigned (1:1:1:1:1:1:1:1) to one of the eight vaccination groups using a block size of 16. Group 1 received two doses of unadjuvanted PXVX0317 28 days apart (2 × 20 μg; standard); all other groups received adjuvanted PXVX0317: groups 2-4 received two doses 28 days apart (2 × 6 μg [group 2], 2 × 10 μg [group 3], or 2 × 20 μg [group 4]; standard); group 4 also received a booster dose 18 months after the first active injection (40 μg; standard plus booster); groups 5-7 received two doses 14 days apart (2 × 6 μg [group 5], 2 × 10 μg [group 6], or 2 × 20 μg [group 7]; accelerated); and group 8 received one dose (1 × 40 μg; single). The primary endpoint was the geometric mean titre of anti-CHIKV neutralising antibody on day 57 (28 days after the last vaccination), assessed in the immunogenicity-evaluable population. Additionally, we assessed safety. This trial is registered at ClinicalTrials.gov, NCT03483961. FINDINGS This trial was conducted from April 18, 2018, to Sept 21, 2020; 468 participants were assessed for eligibility. Of these, 415 participants were randomly assigned to eight groups (n=53 in groups 1, 5, and 6; n=52 in groups 2 and 8; n=51 in groups 3 and 7; and n=50 in group 4) and 373 were evaluable for immunogenicity. On day 57, serum neutralising antibody geometric mean titres were 2057·0 (95% CI 1584·8-2670·0) in group 1, 1116·2 (852·5-1461·4; p=0·0015 vs group 1 used as a reference) in group 2, 1465·3 (1119·1-1918·4; p=0·076) in group 3, 2023·8 (1550·5-2641·7; p=0·93) in group 4, 920·1 (710·9-1190·9; p<0·0001) in group 5, 1206·9 (932·4-1562·2; p=0·0045) in group 6, 1562·8 (1204·1-2028·3; p=0·14) in group 7, and 1712·5 (1330·0-2205·0; p=0·32) in group 8. In group 4, a booster dose increased serum neutralising antibody geometric mean titres from 215·7 (95% CI 160·9-289·1) on day 547 to 10 941·1 (7378·0-16 225·1) on day 575. Durability of the immune response (evaluated in groups 1, 4, and 8) was shown up to 2 years. The most common solicited adverse event was pain at the injection site, reported in 12 (23%) of 53 participants who received the unadjuvanted vaccine (group 1) and 111 (31%) of 356 who received the adjuvanted vaccine. No vaccine-related serious adverse events were reported. INTERPRETATION PXVX0317 was well tolerated and induced a robust and durable serum neutralising antibody immune response against CHIKV up to 2 years. A single 40 μg injection of adjuvanted PXVX0317 is being further investigated in phase 3 clinical trials (NCT05072080 and NCT05349617). FUNDING Emergent BioSolutions.
Collapse
Affiliation(s)
| | | | - Roshan Ramanathan
- Emergent BioSolutions, Gaithersburg, MD, USA; GlaxoSmithKline Pharmaceuticals, Philadelphia, PA, USA
| | - Jason Mendy
- Emergent BioSolutions, Gaithersburg, MD, USA
| | | | - Jonathan Smith
- Emergent BioSolutions, Gaithersburg, MD, USA; VLP Therapeutics, Gaithersburg, MD, USA
| | | | - Julie E Ledgerwood
- Vaccine Research Center, US National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Lisa Bedell
- Emergent BioSolutions, Gaithersburg, MD, USA.
| |
Collapse
|
20
|
Thompson D, Metz SW, Abad C, Beaty S, Warfield K. Immunological implications of diverse production approaches for Chikungunya virus-like particle vaccines. Vaccine 2022; 40:3009-3017. [PMID: 35459557 DOI: 10.1016/j.vaccine.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/04/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022]
Abstract
Chikungunya virus (CHIKV), an arbovirus from the Alphavirus genus, causes sporadic outbreaks and epidemics and can cause acute febrile illness accompanied by severe long-term arthralgias. Over 20 CHIKV vaccine candidates have been developed over the last two decades, utilizing a wide range of vaccine platforms, including virus-like particles (VLP). A CHIKV VLP vaccine candidate is among three candidates in late-stage clinical testing and has potentially promising data in nonclinical and clinical studies exploring safety and vaccine immunogenicity. Despite the consistency of the CHIKV VLP structure, vaccine candidates vary significantly in protein sequence identity, structural protein expression cassettes and their mode of production. Here, we explore the impact of CHIKV VLP coding sequence variation and the chosen expression platform, which affect VLP expression yields, antigenicity and overall vaccine immunogenicity. Additionally, we explore the potential of the CHIKV VLP platform to be modified to elicit protection against other pathogens.
Collapse
Affiliation(s)
- Danielle Thompson
- Emergent BioSolutions Inc., 400 Professional Dr, Gaithersburg, MD 20879, USA
| | - Stefan W Metz
- Emergent BioSolutions Inc., 400 Professional Dr, Gaithersburg, MD 20879, USA
| | - Carmen Abad
- Emergent BioSolutions Inc., 400 Professional Dr, Gaithersburg, MD 20879, USA
| | - Shannon Beaty
- Emergent BioSolutions Inc., 400 Professional Dr, Gaithersburg, MD 20879, USA
| | - Kelly Warfield
- Emergent BioSolutions Inc., 400 Professional Dr, Gaithersburg, MD 20879, USA.
| |
Collapse
|
21
|
Abstract
Prevention of emerging infections in children is a dynamic arena where substantial medical advances have enabled intervention and prevention of infection outbreaks. This article discusses 5 infections causing significant morbidity and mortality across Asia, Latin America, and Africa. Avian influenza and the Middle East respiratory syndrome are highly contagious zoonoses spread through aerosol and droplets, affecting predominantly Asia. Dengue infection and chikungunya are endemic mosquito-borne viruses in tropical regions across Asia, Latin America, and Africa. Ebola is a highly contagious virus spread through human-to-human contact. The latest information in clinical manifestations, infection, prevention control, chemoprophylaxis, vaccination, and public health measures is reviewed.
Collapse
Affiliation(s)
- Thanyawee Puthanakit
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, 9th Floor, Sor Kor Building, Rama 4 Road, Patumwan, Bangkok 10330, Thailand.
| | | | - Watsamon Jantarabenjakul
- Center of Excellence for Pediatric Infectious Diseases, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
22
|
A single dose of ChAdOx1 Chik vaccine induces neutralizing antibodies against four chikungunya virus lineages in a phase 1 clinical trial. Nat Commun 2021; 12:4636. [PMID: 34330906 PMCID: PMC8324904 DOI: 10.1038/s41467-021-24906-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Chikungunya virus (CHIKV) is a reemerging mosquito-borne virus that causes swift outbreaks. Major concerns are the persistent and disabling polyarthralgia in infected individuals. Here we present the results from a first-in-human trial of the candidate simian adenovirus vectored vaccine ChAdOx1 Chik, expressing the CHIKV full-length structural polyprotein (Capsid, E3, E2, 6k and E1). 24 adult healthy volunteers aged 18-50 years, were recruited in a dose escalation, open-label, nonrandomized and uncontrolled phase 1 trial (registry NCT03590392). Participants received a single intramuscular injection of ChAdOx1 Chik at one of the three preestablished dosages and were followed-up for 6 months. The primary objective was to assess safety and tolerability of ChAdOx1 Chik. The secondary objective was to assess the humoral and cellular immunogenicity. ChAdOx1 Chik was safe at all doses tested with no serious adverse reactions reported. The vast majority of solicited adverse events were mild or moderate, and self-limiting in nature. A single dose induced IgG and T-cell responses against the CHIKV structural antigens. Broadly neutralizing antibodies against the four CHIKV lineages were found in all participants and as early as 2 weeks after vaccination. In summary, ChAdOx1 Chik showed excellent safety, tolerability and 100% PRNT50 seroconversion after a single dose.
Collapse
|
23
|
Umthong S, Lynch B, Timilsina U, Waxman B, Ivey EB, Stavrou S. Elucidating the Antiviral Mechanism of Different MARCH Factors. mBio 2021; 12:e03264-20. [PMID: 33653895 PMCID: PMC8092282 DOI: 10.1128/mbio.03264-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
The membrane-associated RING-CH (MARCH) proteins belong to a family of E3 ubiquitin ligases, whose main function is to remove transmembrane proteins from the plasma membrane. Recent work has shown that the human MARCH1, 2, and 8 are antiretroviral factors that target the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins by reducing their incorporation in the budding virions. Nevertheless, the dearth of information regarding the antiviral mechanism of this family of proteins necessitates further examination. In this study, using both the human MARCH proteins and their mouse homologues, we provide a comprehensive analysis of the antiretroviral mechanism of this family of proteins. Moreover, we show that human MARCH proteins restrict to various degrees the envelope glycoproteins of a diverse number of viruses. This report sheds light on the important antiviral function of MARCH proteins and their significance in cell intrinsic immunity.IMPORTANCE This study examines the mechanism utilized by different MARCH proteins to restrict retrovirus infection. MARCH proteins block the incorporation of envelope glycoproteins to the budding virions. In this report, by comparing the human and mouse MARCH genes and using murine leukemia virus (MLV) and HIV-1, we identify differences in the mechanism of restriction among MARCH proteins. Furthermore, we perform a comprehensive analysis on a number of envelope glycoproteins and show that MARCH proteins have broad antiviral functions.
Collapse
Affiliation(s)
- Supawadee Umthong
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Brian Lynch
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Uddhav Timilsina
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Brandon Waxman
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Emily B Ivey
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Spyridon Stavrou
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
24
|
Prophylactic strategies to control chikungunya virus infection. Virus Genes 2021; 57:133-150. [PMID: 33590406 PMCID: PMC7883954 DOI: 10.1007/s11262-020-01820-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/11/2020] [Indexed: 11/18/2022]
Abstract
Chikungunya virus (CHIKV) is a (re)emerging arbovirus and the causative agent of chikungunya fever. In recent years, CHIKV was responsible for a series of outbreaks, some of which had serious economic and public health impacts in the affected regions. So far, no CHIKV-specific antiviral therapy or vaccine has been approved. This review gives a brief summary on CHIKV epidemiology, spread, infection and diagnosis. It furthermore deals with the strategies against emerging diseases, drug development and the possibilities of testing antivirals against CHIKV in vitro and in vivo. With our review, we hope to provide the latest information on CHIKV, disease manifestation, as well as on the current state of CHIKV vaccine development and post-exposure therapy.
Collapse
|
25
|
Mirza AZ, Shamshad H, Osra FA, Habeebullah TM, Morad M. An overview of viruses discovered over the last decades and drug development for the current pandemic. Eur J Pharmacol 2021; 890:173746. [PMID: 33221318 PMCID: PMC8711773 DOI: 10.1016/j.ejphar.2020.173746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 01/06/2023]
Abstract
Since the discovery of the yellow fever virus in 1901, thus far, two hundred nineteen viral species are recognized as human pathogens. Each year, the number of viruses causing infections in humans increases, triggering epidemics and pandemics, such as the current COVID-19 pandemic. Pointing to bats as the natural host, in 2019, a genome highly identical to a bat coronavirus (COVID-19) spread all over the world, and the World Health Organization (WHO) officially confirmed it as a pandemic. The virus mainly spreads through the respiratory tract, uses angiotensin-converting enzyme 2 (ACE2) as a receptor, and is characterized by symptoms of fever, cough, and fatigue. Antivirals and vaccines have provided improvements in some cases, but the discovery of a new and diverse variety of viruses with outbreaks has posed a challenge in timely treatments for medical scientists. Currently, few specific antiviral strategies are being used, and many of the effective antiviral drugs and reported active molecules are under vital exploration. In this review, with the details of viral diseases, we summarize the current attempts in drug development, epidemiology, and the latest treatments and scientific advancements to combat the COVID-19 epidemic. Moreover, we discuss ways to reduce epidemics and pandemics in the near future.
Collapse
Affiliation(s)
- Agha Zeeshan Mirza
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Hina Shamshad
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, University of Karachi, Karachi, 75270, Pakistan
| | | | - Turki M Habeebullah
- Department of Environment and Health Research, Custodian of Two Holy Mosques Institute for Hajj and Umrah Research, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - Moataz Morad
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
26
|
Chikungunya Virus Strains from Each Genetic Clade Bind Sulfated Glycosaminoglycans as Attachment Factors. J Virol 2020; 94:JVI.01500-20. [PMID: 32999033 PMCID: PMC7925169 DOI: 10.1128/jvi.01500-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
Alphavirus infections are a global health threat, contributing to outbreaks of disease in many parts of the world. Recent epidemics caused by CHIKV, an arthritogenic alphavirus, resulted in more than 8.5 million cases as the virus has spread into new geographic regions, including the Western Hemisphere. CHIKV causes disease in the majority of people infected, leading to severe and debilitating arthritis. Despite the severity of CHIKV disease, there are no licensed therapeutics. Since attachment factors and receptors are determinants of viral tropism and pathogenesis, understanding these virus-host interactions can enhance our knowledge of CHIKV infection. We analyzed over 670 glycans and identified GAGs as the main glycan bound by CHIKV. We defined specific GAG components required for CHIKV binding and assessed strain-specific differences in GAG binding capacity. These studies provide insight about cell surface molecules that CHIKV binds, which could facilitate the development of antiviral therapeutics targeting the CHIKV attachment step. Chikungunya virus (CHIKV) is an arthritogenic alphavirus that causes debilitating musculoskeletal disease. CHIKV displays broad cell, tissue, and species tropism, which may correlate with the attachment factors and entry receptors used by the virus. Cell surface glycosaminoglycans (GAGs) have been identified as CHIKV attachment factors. However, the specific types of GAGs and potentially other glycans to which CHIKV binds and whether there are strain-specific differences in GAG binding are not fully understood. To identify the types of glycans bound by CHIKV, we conducted glycan microarray analyses and discovered that CHIKV preferentially binds GAGs. Microarray results also indicate that sulfate groups on GAGs are essential for CHIKV binding and that CHIKV binds most strongly to longer GAG chains of heparin and heparan sulfate. To determine whether GAG binding capacity varies among CHIKV strains, a representative strain from each genetic clade was tested. While all strains directly bound to heparin and chondroitin sulfate in enzyme-linked immunosorbent assays (ELISAs) and depended on heparan sulfate for efficient cell binding and infection, we observed some variation by strain. Enzymatic removal of cell surface GAGs and genetic ablation that diminishes GAG expression reduced CHIKV binding and infectivity of all strains. Collectively, these data demonstrate that GAGs are the preferred glycan bound by CHIKV, enhance our understanding of the specific GAG moieties required for CHIKV binding, define strain differences in GAG engagement, and provide further evidence for a critical function of GAGs in CHIKV cell attachment and infection. IMPORTANCE Alphavirus infections are a global health threat, contributing to outbreaks of disease in many parts of the world. Recent epidemics caused by CHIKV, an arthritogenic alphavirus, resulted in more than 8.5 million cases as the virus has spread into new geographic regions, including the Western Hemisphere. CHIKV causes disease in the majority of people infected, leading to severe and debilitating arthritis. Despite the severity of CHIKV disease, there are no licensed therapeutics. Since attachment factors and receptors are determinants of viral tropism and pathogenesis, understanding these virus-host interactions can enhance our knowledge of CHIKV infection. We analyzed over 670 glycans and identified GAGs as the main glycan bound by CHIKV. We defined specific GAG components required for CHIKV binding and assessed strain-specific differences in GAG binding capacity. These studies provide insight about cell surface molecules that CHIKV binds, which could facilitate the development of antiviral therapeutics targeting the CHIKV attachment step.
Collapse
|
27
|
Prow NA, Liu L, McCarthy MK, Walters K, Kalkeri R, Geiger J, Koide F, Cooper TH, Eldi P, Nakayama E, Diener KR, Howley PM, Hayball JD, Morrison TE, Suhrbier A. The vaccinia virus based Sementis Copenhagen Vector vaccine against Zika and chikungunya is immunogenic in non-human primates. NPJ Vaccines 2020; 5:44. [PMID: 32550013 PMCID: PMC7265471 DOI: 10.1038/s41541-020-0191-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/24/2020] [Indexed: 01/09/2023] Open
Abstract
The Sementis Copenhagen Vector (SCV) is a new vaccinia virus-derived, multiplication-defective, vaccine technology assessed herein in non-human primates. Indian rhesus macaques (Macaca mulatta) were vaccinated with a multi-pathogen recombinant SCV vaccine encoding the structural polyproteins of both Zika virus (ZIKV) and chikungunya virus (CHIKV). After one vaccination, neutralising antibody responses to ZIKV and four strains of CHIKV, representative of distinct viral genotypes, were generated. A second vaccination resulted in significant boosting of neutralising antibody responses to ZIKV and CHIKV. Following challenge with ZIKV, SCV-ZIKA/CHIK-vaccinated animals showed significant reductions in viremias compared with animals that had received a control SCV vaccine. Two SCV vaccinations also generated neutralising and IgG ELISA antibody responses to vaccinia virus. These results demonstrate effective induction of immunity in non-human primates by a recombinant SCV vaccine and illustrates the utility of SCV as a multi-disease vaccine platform capable of delivering multiple large immunogens.
Collapse
Affiliation(s)
- Natalie A Prow
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029 Australia.,Australian Infectious Disease Research Centre, Brisbane, QLD 4029 and 4072 Australia.,Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5000 Australia
| | - Liang Liu
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5000 Australia
| | - Mary K McCarthy
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Kevin Walters
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD 21701 USA
| | - Raj Kalkeri
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD 21701 USA
| | - Jillian Geiger
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD 21701 USA
| | - Fusataka Koide
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD 21701 USA
| | - Tamara H Cooper
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5000 Australia
| | - Preethi Eldi
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5000 Australia
| | - Eri Nakayama
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029 Australia.,Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640 Japan
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5000 Australia.,Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
| | | | - John D Hayball
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5000 Australia
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029 Australia.,Australian Infectious Disease Research Centre, Brisbane, QLD 4029 and 4072 Australia
| |
Collapse
|
28
|
Affiliation(s)
| | - Mark J Mulligan
- NYU Grossman School of Medicine, NYU Langone Vaccine Center, New York, New York
| |
Collapse
|
29
|
Chen GL, Coates EE, Plummer SH, Carter CA, Berkowitz N, Conan-Cibotti M, Cox JH, Beck A, O’Callahan M, Andrews C, Gordon IJ, Larkin B, Lampley R, Kaltovich F, Gall J, Carlton K, Mendy J, Haney D, May J, Bray A, Bailer RT, Dowd KA, Brockett B, Gordon D, Koup RA, Schwartz R, Mascola JR, Graham BS, Pierson TC, Donastorg Y, Rosario N, Pape JW, Hoen B, Cabié A, Diaz C, Ledgerwood JE. Effect of a Chikungunya Virus-Like Particle Vaccine on Safety and Tolerability Outcomes: A Randomized Clinical Trial. JAMA 2020; 323:1369-1377. [PMID: 32286643 PMCID: PMC7156994 DOI: 10.1001/jama.2020.2477] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne Alphavirus prevalent worldwide. There are currently no licensed vaccines or therapies. OBJECTIVE To evaluate the safety and tolerability of an investigational CHIKV virus-like particle (VLP) vaccine in endemic regions. DESIGN, SETTING, AND PARTICIPANTS This was a randomized, placebo-controlled, double-blind, phase 2 clinical trial to assess the vaccine VRC-CHKVLP059-00-VP (CHIKV VLP). The trial was conducted at 6 outpatient clinical research sites located in Haiti, Dominican Republic, Martinique, Guadeloupe, and Puerto Rico. A total of 400 healthy adults aged 18 through 60 years were enrolled after meeting eligibility criteria. The first study enrollment occurred on November 18, 2015; the final study visit, March 6, 2018. INTERVENTIONS Participants were randomized 1:1 to receive 2 intramuscular injections 28 days apart (20 µg, n = 201) or placebo (n = 199) and were followed up for 72 weeks. MAIN OUTCOMES AND MEASURES The primary outcome was the safety (laboratory parameters, adverse events, and CHIKV infection) and tolerability (local and systemic reactogenicity) of the vaccine, and the secondary outcome was immune response by neutralization assay 4 weeks after second vaccination. RESULTS Of the 400 randomized participants (mean age, 35 years; 199 [50%] women), 393 (98%) completed the primary safety analysis. All injections were well tolerated. Of the 16 serious adverse events unrelated to the study drugs, 4 (25%) occurred among 4 patients in the vaccine group and 12 (75%) occurred among 11 patients in the placebo group. Of the 16 mild to moderate unsolicited adverse events that were potentially related to the drug, 12 (75%) occurred among 8 patients in the vaccine group and 4 (25%) occurred among 3 patients in the placebo group. All potentially related adverse events resolved without clinical sequelae. At baseline, there was no significant difference between the effective concentration (EC50)-which is the dilution of sera that inhibits 50% infection in viral neutralization assay-geometric mean titers (GMTs) of neutralizing antibodies of the vaccine group (46; 95% CI, 34-63) and the placebo group (43; 95% CI, 32-57). Eight weeks following the first administration, the EC50 GMT in the vaccine group was 2005 (95% CI, 1680-2392) vs 43 (95% CI, 32-58; P < .001) in the placebo group. Durability of the immune response was demonstrated through 72 weeks after vaccination. CONCLUSIONS AND RELEVANCE Among healthy adults in a chikungunya endemic population, a virus-like particle vaccine compared with placebo demonstrated safety and tolerability. Phase 3 trials are needed to assess clinical efficacy. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02562482.
Collapse
Affiliation(s)
- Grace L. Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Emily E. Coates
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sarah H. Plummer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Cristina A. Carter
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Nina Berkowitz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Michelle Conan-Cibotti
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Josephine H. Cox
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Allison Beck
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Mark O’Callahan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Charla Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Ingelise J. Gordon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Brenda Larkin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Rebecca Lampley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Florence Kaltovich
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jason Gall
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kevin Carlton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jason Mendy
- Emergent BioSolutions, San Diego, California
| | - Doug Haney
- Emergent BioSolutions, San Diego, California
| | | | - Amy Bray
- The Emmes Company, Rockville, Maryland
| | - Robert T. Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kimberly A. Dowd
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Brittanie Brockett
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - David Gordon
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Richard Schwartz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Theodore C. Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Yeycy Donastorg
- Instituto Dermatologico y Cirugia de Piel (IDCP), Dominican Republic
| | | | - Jean William Pape
- The Haitian Group for the Study of Kaposi’s Sarcoma and Opportunistic Infections (Centres GHESKIO), Haiti
| | - Bruno Hoen
- INSERM Centre d’Investigation Clinique (CIC) 1424, Centre Hospitalier Universitaire (CHU) de la Guadeloupe, France
| | - André Cabié
- INSERM Centre d’Investigation Clinique (CIC) 1424, Centre Hospitalier Universitaire (CHU) de Martinique, France
| | - Clemente Diaz
- PR Clinical and Translational Research Consortium (PRCTRC), Puerto Rico
- University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Julie E. Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
30
|
Schrauf S, Tschismarov R, Tauber E, Ramsauer K. Current Efforts in the Development of Vaccines for the Prevention of Zika and Chikungunya Virus Infections. Front Immunol 2020; 11:592. [PMID: 32373111 PMCID: PMC7179680 DOI: 10.3389/fimmu.2020.00592] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/13/2020] [Indexed: 01/07/2023] Open
Abstract
Arboviruses represent major challenges to public health, particularly in tropical, and subtropical regions, and a substantial risk to other parts of the world as respective vectors extend their habitats. In recent years, two viruses transmitted by Aedes mosquitoes, Chikungunya and Zika virus, have gathered increased interest. After decades of regionally constrained outbreaks, both viruses have recently caused explosive outbreaks on an unprecedented scale, causing immense suffering and massive economic burdens in affected regions. Chikungunya virus causes an acute febrile illness that often transitions into a chronic manifestation characterized by debilitating arthralgia and/or arthritis in a substantial subset of infected individuals. Zika infection frequently presents as a mild influenza-like illness, often subclinical, but can cause severe complications such as congenital malformations in pregnancy and neurological disorders, including Guillain-Barré syndrome. With no specific treatments or vaccines available, vector control remains the most effective measure to manage spread of these diseases. Given that both viruses cause antibody responses that confer long-term, possibly lifelong protection and that such responses are cross-protective against the various circulating genetic lineages, the development of Zika and Chikungunya vaccines represents a promising route for disease control. In this review we provide a brief overview on Zika and Chikungunya viruses, the etiology and epidemiology of the illnesses they cause and the host immune response against them, before summarizing past and current efforts to develop vaccines to alleviate the burden caused by these emerging diseases. The development of the urgently needed vaccines is hampered by several factors including the unpredictable epidemiology, feasibility of rapid clinical trial implementation during outbreaks and regulatory pathways. We will give an overview of the current developments.
Collapse
|
31
|
Fox JM, Roy V, Gunn BM, Huang L, Edeling MA, Mack M, Fremont DH, Doranz BJ, Johnson S, Alter G, Diamond MS. Optimal therapeutic activity of monoclonal antibodies against chikungunya virus requires Fc-FcγR interaction on monocytes. Sci Immunol 2020; 4:4/32/eaav5062. [PMID: 30796092 DOI: 10.1126/sciimmunol.aav5062] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/11/2019] [Indexed: 01/15/2023]
Abstract
Chikungunya virus (CHIKV) is an emerging mosquito-borne virus that has caused explosive outbreaks worldwide. Although neutralizing monoclonal antibodies (mAbs) against CHIKV inhibit infection in animals, the contribution of Fc effector functions to protection remains unknown. Here, we evaluated the activity of therapeutic mAbs that had or lacked the ability to engage complement and Fcγ receptors (FcγR). When administered as post-exposure therapy in mice, the Fc effector functions of mAbs promoted virus clearance from infected cells and reduced joint swelling-results that were corroborated in antibody-treated transgenic animals lacking activating FcγR. The control of CHIKV infection by antibody-FcγR engagement was associated with an accelerated influx of monocytes. A series of immune cell depletions revealed that therapeutic mAbs required monocytes for efficient clearance of CHIKV infection. Overall, our study suggests that in mice, FcγR expression on monocytes is required for optimal therapeutic activity of antibodies against CHIKV and likely other related viruses.
Collapse
Affiliation(s)
- Julie M Fox
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Bronwyn M Gunn
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | | | - Melissa A Edeling
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Matthias Mack
- Regensburg University Medical Center, Regensburg 93042, Germany
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA.,Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Michael S Diamond
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA. .,Department of Pathology & Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA.,Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
32
|
Affiliation(s)
- Ann M Powers
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA.
| |
Collapse
|
33
|
Quiroz JA, Malonis RJ, Thackray LB, Cohen CA, Pallesen J, Jangra RK, Brown RS, Hofmann D, Holtsberg FW, Shulenin S, Nyakatura EK, Durnell LA, Rayannavar V, Daily JP, Ward AB, Aman MJ, Dye JM, Chandran K, Diamond MS, Kielian M, Lai JR. Human monoclonal antibodies against chikungunya virus target multiple distinct epitopes in the E1 and E2 glycoproteins. PLoS Pathog 2019; 15:e1008061. [PMID: 31697791 PMCID: PMC6837291 DOI: 10.1371/journal.ppat.1008061] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/01/2019] [Indexed: 01/31/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes persistent arthritis in a subset of human patients. We report the isolation and functional characterization of monoclonal antibodies (mAbs) from two patients infected with CHIKV in the Dominican Republic. Single B cell sorting yielded a panel of 46 human mAbs of diverse germline lineages that targeted epitopes within the E1 or E2 glycoproteins. MAbs that recognized either E1 or E2 proteins exhibited neutralizing activity. Viral escape mutations localized the binding epitopes for two E1 mAbs to sites within domain I or the linker between domains I and III; and for two E2 mAbs between the β-connector region and the B-domain. Two of the E2-specific mAbs conferred protection in vivo in a stringent lethal challenge mouse model of CHIKV infection, whereas the E1 mAbs did not. These results provide insight into human antibody response to CHIKV and identify candidate mAbs for therapeutic intervention.
Collapse
Affiliation(s)
- Jose A. Quiroz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ryan J. Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Larissa B. Thackray
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, United States of America
| | - Courtney A. Cohen
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Jesper Pallesen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Rebecca S. Brown
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Daniel Hofmann
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | | | - Sergey Shulenin
- Integrated Biotherapeutics Inc., Rockville, Maryland, United States of America
| | - Elisabeth K. Nyakatura
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Lorellin A. Durnell
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, United States of America
| | - Vinayak Rayannavar
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Johanna P. Daily
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - M. Javad Aman
- Integrated Biotherapeutics Inc., Rockville, Maryland, United States of America
| | - John M. Dye
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Michael S. Diamond
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology & Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, United States of America
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
34
|
Rheumatic manifestations of chikungunya: emerging concepts and interventions. Nat Rev Rheumatol 2019; 15:597-611. [DOI: 10.1038/s41584-019-0276-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 12/15/2022]
|
35
|
Anfasa F, Lim SM, Fekken S, Wever R, Osterhaus ADME, Martina BEE. Characterization of antibody response in patients with acute and chronic chikungunya virus disease. J Clin Virol 2019; 117:68-72. [PMID: 31229935 DOI: 10.1016/j.jcv.2019.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/29/2019] [Accepted: 06/08/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chikungunya virus (CHIKV) is a re-emerging arbovirus capable of causing chronic arthralgia, which can last for months to years. Although neutralizing antibodies have been shown to be important for viral clearance, is it not clear whether the quantitative and qualitative nature of antibodies play a role in progression to chronic disease. OBJECTIVES To characterize and compare the antibody responses in acute and chronic patients in a prospective observational CHIKV study in Curaçao during the 2014-2015 outbreak. STUDY DESIGN We performed virus neutralization tests and ELISA on plasma samples collected from a prospective observational chikungunya study in Curaçao to compare the complement-dependent and -independent neutralization capacity, as well as the antibody avidity index of acute and chronic patients. RESULTS We found that there was no significant difference in the virus neutralization titers between patients with acute and chronic chikungunya infection. Furthermore, we found that complement increased the neutralization capacity when large amounts of virus was used. Moreover, we found that patients with acute chikungunya disease had a significantly higher antibody avidity index compared to those with chronic disease. CONCLUSIONS This study suggests that virus neutralization titers in late convalescent sera do not play a role in chronic chikungunya. However, the median antibody avidity was lower in these patients and may therefore suggest a role for antibody avidity in the development of chronic disease.
Collapse
Affiliation(s)
- Fatih Anfasa
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Stephanie M Lim
- Artemis One Health Research Institute, Utrecht, the Netherlands
| | - Susan Fekken
- Artemis One Health Research Institute, Utrecht, the Netherlands
| | - Robert Wever
- Medical Laboratory Services, Dutch Caribbean, Curaçao
| | - Albert D M E Osterhaus
- Artemis One Health Research Institute, Utrecht, the Netherlands; Center for Infection Medicine and Zoonoses Research (RIZ), University of Veterinary Medicine, Hannover, Germany
| | - Byron E E Martina
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands; Artemis One Health Research Institute, Utrecht, the Netherlands.
| |
Collapse
|
36
|
Levi LI, Vignuzzi M. Arthritogenic Alphaviruses: A Worldwide Emerging Threat? Microorganisms 2019; 7:microorganisms7050133. [PMID: 31091828 PMCID: PMC6560413 DOI: 10.3390/microorganisms7050133] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022] Open
Abstract
Arthritogenic alphaviruses are responsible for a dengue-like syndrome associated with severe debilitating polyarthralgia that can persist for months or years and impact life quality. Chikungunya virus is the most well-known member of this family since it was responsible for two worldwide epidemics with millions of cases in the last 15 years. However, other arthritogenic alphaviruses that are as of yet restrained to specific territories are the cause of neglected tropical diseases: O'nyong'nyong virus in Sub-Saharan Africa, Mayaro virus in Latin America, and Ross River virus in Australia and the Pacific island countries and territories. This review evaluates their emerging potential in light of the current knowledge for each of them and in comparison to chikungunya virus.
Collapse
Affiliation(s)
- Laura I Levi
- Populations Virales et Pathogenèse, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France.
- Ecole doctorale BioSPC, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Marco Vignuzzi
- Populations Virales et Pathogenèse, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France.
| |
Collapse
|
37
|
Plotkin SA. Chikungunya Virus: A Back-Breaking Problem. J Pediatric Infect Dis Soc 2019; 8:95-96. [PMID: 30840767 DOI: 10.1093/jpids/piz012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Stanley A Plotkin
- Emeritus Professor of Pediatrics, University of Pennsylvania, Vaxconsult, Doylestown, Pennsylvania
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW To review the emergence, clinical features, pathogenesis, and treatment of acute chikungunya (CHIK) fever and chronic CHIK arthritis. RECENT FINDINGS Since 2004, CHIK, an arboviral infection, has spread throughout the world, infecting millions of people. The illness occurs in two phases: an acute viremic infection followed by chronic arthritis. In less developed countries, there are limited resources and effective treatment. For acutely ill CHIK fever patients, management is symptomatic. The treatment of chronic CHIK arthritis should be determined by an understanding of pathogenesis. Is chronic CHIK arthritis a persistent viral infection or a postinfectious inflammatory process? Multiple proinflammatory cytokines, chemokines, and growth factors have been identified in chronic CHIK arthritis. Attempts to isolate CHIK virus from synovial fluid have been unsuccessful. Given pathogenetic similarities (as well as differences) compared with rheumatoid arthritis and the painful, disabling nature of the arthritis, it is not surprising that disease-modifying antirheumatic drugs such as methotrexate have begun to be used. SUMMARY CHIK infection has emerged with major arthritic epidemics for which evidence-based therapy is limited. But there is an opportunity to improve the treatment of chronic CHIK arthritis and, from this disease, to gain understanding of the pathogenesis and treatment of inflammatory arthritis more generally.
Collapse
|
39
|
Reyes-Sandoval A. 51 years in of Chikungunya clinical vaccine development: A historical perspective. Hum Vaccin Immunother 2019; 15:2351-2358. [PMID: 30735447 DOI: 10.1080/21645515.2019.1574149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Chikungunya fever (CHIKF) is a mosquito-borne disease caused by Chikungunya virus (CHIKV). This virus is considered a priority pathogen to the UK government, the US National Institute of Allergy and Infectious Diseases (NIAID) and the US military personnel, due to the potential of CHIKV to cause major outbreaks. Nearly all CHIKV infections are symptomatic, often incapacitating and patients experience severe joint pain and inflammation that can last for more than one year with 0.4-0.5% fatality rates. Mother-to-child transmission has also been described. Despite this re-emerging disease has been documented in more than 100 countries in Europe, Oceania, Africa, Asia, the Caribbean, South and North America, no licensed vaccine is yet available to prevent CHIKF. Nevertheless, various developments have entered phase I and II trials and are now viable options to fight this incapacitating disease. This review focuses on the development of CHIKV vaccines that have reached the stage of clinical trials since the late 1960s up until 2018.
Collapse
Affiliation(s)
- Arturo Reyes-Sandoval
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford. The Henry Wellcome Building for Molecular Physiology , Oxford , UK
| |
Collapse
|
40
|
Abstract
Chikungunya is a clinically and economically important arbovirus that has spread globally in the twenty-first century. While uncommonly fatal, infection with the virus can lead to incapacitating arthralgia that can persist for months to years. The adverse impacts of viral spread are most severe in developing low- and middle-income countries in which medical infrastructure is insufficient and manual labor is an economic driver. Unfortunately, no prophylactic or therapeutic treatments are approved for human use to combat the virus. Historically, vaccination has proven to be the most efficient and successful strategy for protecting populations and eradicating infectious disease. A large and diverse range of promising vaccination approaches for use against Chikungunya has emerged in recent years and been shown to safely elicit protective immune responses in animal models and humans. Importantly, many of these are based on technologies that have been clinically approved for use against other pathogens. Furthermore, clinical trials are currently ongoing for a subset of these. The purpose of this review is to provide a description of the relevant immunobiology of Chikungunya infection, to present immune-stimulating technologies that have been successfully employed to protect against infection, and discuss priorities and challenges regarding the future development of a vaccine for clinical use.
Collapse
|
41
|
Selection and characterization of protective anti-chikungunya virus single domain antibodies. Mol Immunol 2018; 105:190-197. [PMID: 30550981 DOI: 10.1016/j.molimm.2018.11.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/21/2018] [Accepted: 11/30/2018] [Indexed: 01/30/2023]
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes an arthralgia febrile illness that has affected millions of people on three continents. Previously, neutralizing monoclonal antibodies that have prophylactic and therapeutic activity were found to remove virus in joint tissues, thereby reducing the severity of symptoms in mice and non-human primates. In this study, we sought to develop thermostable small recombinant antibodies against CHIKV for future diagnostic, prophylactic and therapeutic applications. To develop these single domain antibodies (sdAb) a CHIKV immune library was constructed by displaying the consortium of variable heavy domains (VHH) amplified from peripheral white blood cells isolated from llamas immunized with CHIKV virus-like particles (VLPs). Five anti-CHIKV sdAb isolated using bio-panning were evaluated for their affinity and thermal stability. Their ability to detect CHIKV VLPs was demonstrated in both MagPlex- and ELISA- based assays. Finally, the ability of two sdAb, CC3 and CA6, to inhibit CHIKV infection were tested using a plaque reduction and neutralization test (PRNT), yielding PRNT50 values of 0.6 and 45.6 nM, respectively.
Collapse
|
42
|
Milligan GN, Schnierle BS, McAuley AJ, Beasley DWC. Defining a correlate of protection for chikungunya virus vaccines. Vaccine 2018; 37:7427-7436. [PMID: 30448337 DOI: 10.1016/j.vaccine.2018.10.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022]
Abstract
Chikungunya virus infection causes a debilitating febrile illness that in many affected individuals is associated with long-term sequelae that can persist for months or years. Over the past decade a large number of candidate vaccines have been developed, several of which have now entered clinical trials. The rapid and sporadic nature of chikungunya outbreaks poses challenges for planning of large clinical efficacy trials suggesting that licensure of chikungunya vaccines may utilize non-traditional approval pathways based on identification of immunological endpoint(s) predictive of clinical benefit. This report reviews the current status of nonclinical and clinical testing and potential challenges for defining a suitable surrogate or correlate of protection.
Collapse
Affiliation(s)
- Gregg N Milligan
- WHO Collaborating Center for Vaccine Research, Evaluation and Training on Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Barbara S Schnierle
- WHO Collaborating Center for Standardization and Evaluation of Vaccines, Paul Ehrlich Institut, Langen, Germany; Section AIDS, New and Emerging Pathogens, Virology Division, Paul Ehrlich Institut, Langen, Germany
| | - Alexander J McAuley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - David W C Beasley
- WHO Collaborating Center for Vaccine Research, Evaluation and Training on Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
43
|
Moizéis RNC, Fernandes TAADM, Guedes PMDM, Pereira HWB, Lanza DCF, de Azevedo JWV, Galvão JMDA, Fernandes JV. Chikungunya fever: a threat to global public health. Pathog Glob Health 2018; 112:182-194. [PMID: 29806537 PMCID: PMC6147074 DOI: 10.1080/20477724.2018.1478777] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chikungunya fever is an emerging arbovirus infection, representing a serious public health problem. Its etiological agent is the Chikungunya virus (CHIKV). Transmission of this virus is mainly vector by mosquitoes of the genus Aedes, although transmission by blood transfusions and vertical transmission has also been reported. The disease presents high morbidity caused mainly by the arthralgia and arthritis generated. Cardiovascular and neurological manifestations have also been reported. The severity of the infection seems to be directly associated with the action of the virus, but also with the decompensation of preexisting comorbidities. Currently, there are no therapeutic products neither vaccines licensed to the infection CHIKV control, although several vaccine candidates are being evaluated and human polyvalent immunoglobulins anti-CHIKV had been tested. Antibodies can protect against the infection, but in sub-neutralizing concentrations can augment virus infection and exacerbate disease severity. So, the prevention still depends on the use of personal protection measures and vector control, which are only minimally effective.
Collapse
Affiliation(s)
- Raíza Nara Cunha Moizéis
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | - Paulo Marcos da Matta Guedes
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | | | | | - Josélio Maria de Araújo Galvão
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - José Veríssimo Fernandes
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
44
|
Zaid A, Gérardin P, Taylor A, Mostafavi H, Malvy D, Mahalingam S. Chikungunya Arthritis: Implications of Acute and Chronic Inflammation Mechanisms on Disease Management. Arthritis Rheumatol 2018; 70:484-495. [PMID: 29287308 DOI: 10.1002/art.40403] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/18/2017] [Indexed: 12/14/2022]
Abstract
In the past decade, arboviruses-arthropod-borne viruses-have been the focus of public health institutions worldwide following a spate of devastating outbreaks. Chikungunya virus, an arbovirus that belongs to the alphavirus genus, is a reemerging arthritogenic virus that has caused explosive outbreaks since 2006, notably on Réunion Island, and more recently in the Caribbean, South America, India, and Southeast Asia. The severity of arthritic disease caused by chikungunya virus has prompted public health authorities in affected countries to develop specific guidelines to tackle this pathogen. Chikungunya virus disease manifests first as an acute stage of severe joint inflammation and febrile illness, which later progresses to a chronic stage, during which patients may experience debilitating and persisting articular pain for extended periods. This review aims to provide a broad perspective on current knowledge of chikungunya virus pathogenesis by identifying key clinical and experimental studies that have contributed to our understanding of chikungunya virus to date. In addition, the review explores the practical aspects of treatment and management of both acute and chronic chikungunya virus based on clinical experience during chikungunya virus outbreaks. Finally, recent findings on potential therapeutic solutions-from antiviral agents to immunomodulators-are reviewed to provide both viral immunologists and clinical rheumatologists with a balanced perspective on the nature of a reemerging arboviral disease of significant public health concern, and insight into future therapeutic approaches to better address the treatment and management of chikungunya virus.
Collapse
Affiliation(s)
- Ali Zaid
- Griffith University, Gold Coast, Queensland, Australia
| | - Patrick Gérardin
- INSERM CIC1410, Centre Hospitalier Universitaire de la Réunion, Saint Pierre, Réunion, France, and CNRS 9192, INSERM U1187, Université de la Réunion, Sainte Clotilde, Réunion, France
| | - Adam Taylor
- Griffith University, Gold Coast, Queensland, Australia
| | | | - Denis Malvy
- Department of Tropical Medicine and Clinical International Health, University Hospital Center and INSERM 1219, University of Bordeaux, Bordeaux, France
| | | |
Collapse
|
45
|
Chikungunya Virus Strains Show Lineage-Specific Variations in Virulence and Cross-Protective Ability in Murine and Nonhuman Primate Models. mBio 2018; 9:mBio.02449-17. [PMID: 29511072 PMCID: PMC5844994 DOI: 10.1128/mbio.02449-17] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Chikungunya virus (CHIKV) is a reemerging arbovirus capable of causing explosive outbreaks of febrile illness, polyarthritis, and polyarthralgia, inflicting severe morbidity on affected populations. CHIKV can be genetically classified into 3 major lineages: West African (WA); East, Central, and South African (ECSA); Indian Ocean (IOL); and Asian. Additionally, the Indian Ocean (IOL) sublineage emerged within the ECSA clade and the Asian/American sublineage emerged within the Asian clade. While differences in epidemiological and pathological characteristics among outbreaks involving different CHIKV lineages and sublineages have been suggested, few targeted investigations comparing lineage virulence levels have been reported. We compared the virulence levels of CHIKV isolates representing all major lineages and sublineages in the type I interferon receptor-knockout A129 mouse model and found lineage-specific differences in virulence. We also evaluated the cross-protective efficacy of the IOL-derived, live-attenuated vaccine strain CHIKV/IRESv1 against the Asian/American CHIKV isolate YO123223 in both murine and nonhuman primate models, as well as the WA strain SH2830 in a murine model. The CHIKV/IRES vaccine provided protection both in mice and in nonhuman primate cohorts against Caribbean strain challenge and protected mice against WA challenge. Taken together, our data suggest that Asian/American CHIKV strains are less virulent than those in the Asian, ECSA, and WA lineages and that despite differences in virulence, IOL-based vaccine strains offer robust cross-protection against strains from other lineages. Further research is needed to elucidate the genetic basis for variation in CHIKV virulence in the A129 mouse model and to corroborate this variation with human pathogenicity. Chikungunya virus (CHIKV) is a reemerging human pathogen capable of causing debilitating and disfiguring polyarthritis, which can last for months to years after initial fever has resolved. There are four major genetic lineages of CHIKV, as well as two recently emerged sublineages, none of which have been evaluated for differences in virulence. Moreover, the ability of chikungunya vaccines to cross-protect against heterologous CHIKV lineages has not been explored. Therefore, we sought to compare the virulence levels among CHIKV lineages, as well as to evaluate the cross-protective efficacy of the CHIKV/IRESv1 vaccine candidate, in two different models of CHIKV infection. Our results suggest that, although significant differences in virulence were observed among CHIKV lineages, the CHIKV/IRESv1 vaccine elicits cross-lineage protective immunity. These findings provide valuable information for predicting the severity of CHIKV-associated morbidity in future outbreaks, as well as vaccine development considerations.
Collapse
|
46
|
Abstract
Beginning in 2004, chikungunya virus (CHIKV) went from an endemic pathogen limited to Africa and Asia that caused periodic outbreaks to a global pathogen. Given that outbreaks caused by CHIKV have continued and expanded, serious consideration must be given to identifying potential options for vaccines and therapeutics. Currently, there are no licensed products in this realm, and control relies completely on the use of personal protective measures and integrated vector control, which are only minimally effective. Therefore, it is prudent to urgently examine further possibilities for control. Vaccines have been shown to be highly effective against vector-borne diseases. However, as CHIKV is known to rapidly spread and generate high attack rates, therapeutics would also be highly valuable. Several candidates are currently being developed; this review describes the multiple options under consideration for future development and assesses their relative advantages and disadvantages.
Collapse
|
47
|
Abstract
Chikungunya virus (CHIKV) is an arbovirus transmitted by Aedes mosquitos in tropical and subtropical regions across the
world. After decades of sporadic outbreaks, it re-emerged in Africa, Asia, India
Ocean and America suddenly, causing major regional epidemics recently and becoming a
notable global health problem. Infection by CHIKV results in a spectrum of clinical
diseases including an acute self-limiting febrile illness in most individuals, a
chronic phase of recurrent join pain in a proportion of patients, and long-term
arthralgia for months to years for the unfortunate few. No specific anti-viral drugs
or licensed vaccines for CHIKV are available so far. A better understanding of
virus-host interactions is essential for the development of therapeutics and
vaccines. To this end, we reviewed the existing knowledge on CHIKV’s epidemiology,
clinical presentation, molecular virology, diagnostic approaches, host immune
response, vaccine development, and available animal models. Such a comprehensive
overview, we believe, will shed lights on the promises and challenges in CHIKV
vaccine development.
Collapse
|
48
|
Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF. Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin Immunol 2017; 34:123-132. [PMID: 28887001 DOI: 10.1016/j.smim.2017.08.014] [Citation(s) in RCA: 374] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 01/03/2023]
Abstract
Virus-like particles (VLPs) have made giant strides in the field of vaccinology over the last three decades. VLPs constitute versatile tools in vaccine development due to their favourable immunological characteristics such as their size, repetitive surface geometry, ability to induce both innate and adaptive immune responses as well as being safe templates with favourable economics. Several VLP-based vaccines are commercially available including vaccines against Human Papilloma Virus (HPV) such as Cervarix®, Gardasil® & Gardasil9® and Hepatitis B Virus (HBV) including the 3rd generation Sci-B-Vac™. In addition, the first licensed malaria-VLP-based vaccine Mosquirix™ has been recently approved by the European regulators. Several other VLP-based vaccines are currently undergoing preclinical and clinical development. This review summarizes some of the major findings and recent advances in VLP-based vaccine development and technologies and outlines general principles that may be harnessed for induction of targeted immune responses.
Collapse
Affiliation(s)
- Mona O Mohsen
- Jenner Institute, University of Oxford, Roosevelt Dr, Oxford OX3 7BN, UK; Qatar Foundation, Doha, State of Qatar
| | - Lisha Zha
- Inselspital, Universitatsklinik RIA, Immunologie, Sahlihaus 1, 3010 Bern, Switzerland
| | | | - Martin F Bachmann
- Jenner Institute, University of Oxford, Roosevelt Dr, Oxford OX3 7BN, UK; Inselspital, Universitatsklinik RIA, Immunologie, Sahlihaus 1, 3010 Bern, Switzerland.
| |
Collapse
|
49
|
Cirimotich CM, Vela EM, Garver J, Barnewall RE, Miller BD, Meister GT, Rogers JV. Chikungunya virus infection in Cynomolgus macaques following Intradermal and aerosol exposure. Virol J 2017; 14:135. [PMID: 28728590 PMCID: PMC5520379 DOI: 10.1186/s12985-017-0804-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/14/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) is transmitted via mosquito bite and potentially by aerosol, causing chikungunya fever and arthritic disease in humans. There are currently no licensed vaccines or antiviral therapeutics to protect against CHIKV infection in humans. Animal models recapitulating human disease, especially for transmission by aerosol, are needed for licensure of such medical countermeasures. METHODS Cynomolgus macaques (CMs) were challenged by intradermal (ID) inoculation or exposure to an aerosol containing CHIKV Ross strain at different target infectious doses (103-107 plaque forming units (PFU)). The clinical and virologic courses of disease were monitored up to 14 days post-exposure. RESULTS ID infection of CMs led to overt clinical disease, detectable viremia, and increased blood markers of liver damage. Animals challenged by aerosol exhibited viremia and increased liver damage biomarkers with minimal observed clinical disease. All animals survived CHIKV challenge. CONCLUSIONS We have described CHIKV infection in CMs following ID inoculation and, for the first time, infection by aerosol. Based on limited reported cases in the published literature, the aerosol model recapitulates the virologic findings of human infection via this route. The results of this study provide additional evidence for the potential use of CMs as a model for evaluating medical countermeasures against CHIKV.
Collapse
Affiliation(s)
| | - Eric M Vela
- Battelle, West Jefferson, OH, 43162, USA.,Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | | | | | | | | | | |
Collapse
|
50
|
Chikungunya Virus Overcomes Polyamine Depletion by Mutation of nsP1 and the Opal Stop Codon To Confer Enhanced Replication and Fitness. J Virol 2017; 91:JVI.00344-17. [PMID: 28539441 PMCID: PMC5512238 DOI: 10.1128/jvi.00344-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/10/2017] [Indexed: 11/23/2022] Open
Abstract
Polyamines, which are small positively charge molecules present in all cells, play important roles in the replication of DNA and RNA viruses. Chikungunya virus (CHIKV) relies on polyamines for translation of the viral genome upon viral entry, and pharmacological depletion of polyamines limits viral replication. However, the potential development of antiviral resistance necessitates a better understanding of how polyamines function and can be targeted via compounds that alter polyamine levels. We have isolated CHIKV that is resistant to polyamine depletion and contains two mutations in the nonstructural protein 1 (nsP1)-coding region in combination with a mutation to the opal stop codon preceding nsP4. These mutations, in addition to promoting viral replication in polyamine-depleted cells, confer enhanced viral replication in vitro and in vivo. The nsP1 mutations enhance membrane binding and methyltransferase activities, while the stop codon mutation allows increased downstream translation. These mutations, when combined, enhance viral fitness, but individual mutants are attenuated in mosquitoes. Together, our results suggest that CHIKV can evolve resistance to polyamine depletion and that pharmaceuticals targeting the polyamine biosynthetic pathway may be best used in combination with other established antivirals to mitigate the development of resistance. IMPORTANCE Chikungunya virus is a mosquito-borne virus that has infected millions worldwide. Its expansion into the Americas and rapid adaptation to new mosquito hosts present a serious threat to human health, which we can combat with the development of antiviral therapies as well as understanding how these viruses will mutate when exposed to antiviral therapies. Targeting polyamines, small positively charged molecules in the cell, may be a potential strategy against RNA viruses, including chikungunya virus. Here, we have described a virus that is resistant to polyamine depletion and has increased fitness in cells and in full organisms. Mutations in viral genome capping machinery, membrane binding activity, and a stop codon arise, and their altered activities enhance replication in the absence of polyamines. These results highlight strategies by which chikungunya virus can overcome polyamine depletion and emphasize continued research on developing improved antiviral therapies.
Collapse
|