1
|
Peng W, Fu X, Yu H, Zhang Y, Zhou Q, Cao D. Emergence of Triazole-Resistant Cryptococcus neoformans after Exposure to Environmentally Relevant Concentrations of Difenoconazole in Liquid Medium and Soil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9541-9549. [PMID: 40227020 DOI: 10.1021/acs.jafc.4c12837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The rapid global emergence and spread of resistance to clinical triazoles in Cryptococcus neoformans have been associated with the use of agricultural triazole fungicides. However, there is no direct evidence currently linking the emergence of triazole-resistant C. neoformans (TRCN) strains to the application of triazole fungicides in soil. This study investigated whether triazole resistance in C. neoformans could be induced by difenoconazole, an agricultural triazole fungicide, in liquid medium and soil. Our findings reveal that environmentally relevant concentrations of difenoconazole can drive cross-resistance to clinical triazoles in C. neoformans through the upregulation of ERG11 and efflux pump genes (AFR1, AFR3, and MDR1). Notably, the prevalence of TRCN strains in soil correlates with residual difenoconazole levels, with significantly more TRCN isolates observed at two- and five-fold the recommended dose than at the standard dose. These results provide direct evidence linking agricultural triazole use to the emergence of TRCN and highlight the importance of applying difenoconazole at or below the recommended dosage to mitigate resistance development in soil environments. This study addresses a critical gap in the understanding of the environmental drivers of triazole resistance and underscores the need for responsible fungicide use to prevent the spread of resistant pathogens.
Collapse
Affiliation(s)
- Wenwen Peng
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization (Jiangxi Agricultural University), Nanchang 330045, China
| | - Xiaoxiang Fu
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization (Jiangxi Agricultural University), Nanchang 330045, China
| | - Hantao Yu
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization (Jiangxi Agricultural University), Nanchang 330045, China
| | - Ying Zhang
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qinghong Zhou
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization (Jiangxi Agricultural University), Nanchang 330045, China
| | - Duantao Cao
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization (Jiangxi Agricultural University), Nanchang 330045, China
| |
Collapse
|
2
|
Djenontin E, Lavergne R, Morio F, Dannaoui E. Antifungal Resistance in Non-fumigatus Aspergillus Species. Mycoses 2025; 68:e70051. [PMID: 40219727 PMCID: PMC11992613 DOI: 10.1111/myc.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/13/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025]
Abstract
This review provides an in-depth exploration of antifungal resistance in non-fumigatus Aspergillus species, mainly focusing on acquired resistance. The available data have been compiled and sometimes re-analysed. It highlights the increasing prevalence of resistance in non-fumigatus species belonging to Flavi, Terrei, Nigri, and Nidulantes Aspergillus sections, offering a detailed analysis of resistance detection methods and the global distribution of resistant strains. The review also thoroughly examines the molecular mechanisms behind resistance and raises key unresolved issues, such as the factors contributing to resistance selection and the clinical implications of in vitro resistance. Additionally, it addresses the challenges of treating infections caused by resistant Aspergillus species and cryptic species and discusses current and future strategies relying on combination therapy and newly developed antifungals. The conclusion emphasises the need for further research into resistance mechanisms and alternative treatments to address the rising threat of antifungal resistance in Aspergillus species.
Collapse
Affiliation(s)
- Elie Djenontin
- UR 7380 Dynamyc UPEC, EnvA, ANSESFaculté de Santé de CréteilCréteilFrance
| | - Rose‐Anne Lavergne
- UR 1155 Cibles et Médicaments Des Infections et de L'immunité, IICiMedNantes Université, CHU NantesNantesFrance
| | - Florent Morio
- UR 1155 Cibles et Médicaments Des Infections et de L'immunité, IICiMedNantes Université, CHU NantesNantesFrance
| | - Eric Dannaoui
- UR 7380 Dynamyc UPEC, EnvA, ANSESFaculté de Santé de CréteilCréteilFrance
- Unité de Parasitologie‐Mycologie, Service de MicrobiologieHôpital Necker, AP‐HPParisFrance
- Faculté de MédecineUniversité Paris CitéParisFrance
| |
Collapse
|
3
|
Arendrup MC, Cordonnier C. Refractory versus resistant invasive aspergillosis. J Antimicrob Chemother 2025; 80:i9-i16. [PMID: 40085537 PMCID: PMC11908535 DOI: 10.1093/jac/dkaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
Despite notable progress, the management of invasive aspergillosis (IA) remains challenging and treatment failures are common. The final patient outcome is subject to multiple factors including the host (the severity of the underlying conditions), the fungus (the virulence and susceptibility pattern of the Aspergillus species involved), and the therapy (the timing related to severity of infection and choice of therapy-dose, efficacy, cidal versus static, toxicity and interaction). Consequently, assessment of failure is complex yet crucial in order to ensure appropriate management. Refractoriness in absence of drug resistance may reflect severity of the underlying disease/infection at the time of initiation of therapy prolonging time to response. It may also reflect a suboptimal antifungal drug exposure due to poor compliance, inappropriate dosing or increased drug metabolism, or it may reflect 'pseudo' failure due to worsening of imaging due to recovery of neutrophils. Refractoriness may also be related to inherent drug resistance in various Aspergillus species or acquired resistance in a normally susceptible species. The latter scenario is mostly encountered in A. fumigatus, where azole resistance is increasing and includes azole-naive patients due to resistance related to azole fungicide use in agriculture and horticulture. Although diagnostics and resistance detection have been greatly improved, the time to resistance reporting is often still suboptimal, which calls for close assessment and potentially management changes even before the susceptibility is known. In this article we address the various definitions and approaches to assessment and management of clinical refractoriness/failure in the setting of proven and probable IA.
Collapse
Affiliation(s)
- Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Building 45, room 123, Artillerivej 5, DK-2300 Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Catherine Cordonnier
- Department of Haematology, Henri Mondor Teaching Hospital, Assistance Publique-Hôpitaux de Paris, and Université Paris-Est-Créteil, Créteil, France
| |
Collapse
|
4
|
Chaudhary R, Thakur Z. From detection to action: new diagnostic insights into antifungal resistance. Expert Rev Mol Diagn 2025:1-6. [PMID: 40052616 DOI: 10.1080/14737159.2025.2477027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/05/2025] [Indexed: 03/12/2025]
Affiliation(s)
- Renu Chaudhary
- Structural Biology Lab, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Zoozeal Thakur
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be), University, Ambala, India
| |
Collapse
|
5
|
Hetta HF, Melhem T, Aljohani HM, Salama A, Ahmed R, Elfadil H, Alanazi FE, Ramadan YN, Battah B, Rottura M, Donadu MG. Beyond Conventional Antifungals: Combating Resistance Through Novel Therapeutic Pathways. Pharmaceuticals (Basel) 2025; 18:364. [PMID: 40143141 PMCID: PMC11944814 DOI: 10.3390/ph18030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
The rising burden of fungal infections presents a significant challenge to global healthcare, particularly with increasing antifungal resistance limiting treatment efficacy. Early detection and timely intervention remain critical, yet fungal pathogens employ diverse mechanisms to evade host immunity and develop resistance, undermining existing therapeutic options. Limited antifungal options and rising resistance necessitate novel treatment strategies. This review provides a comprehensive overview of conventional antifungal agents, their mechanisms of action, and emerging resistance pathways. Furthermore, it highlights recently approved and investigational antifungal compounds while evaluating innovative approaches such as nanotechnology, drug repurposing, and immunotherapy. Addressing antifungal resistance requires a multifaceted strategy that integrates novel therapeutics, enhanced diagnostic tools, and future research efforts to develop sustainable and effective treatment solutions.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Tameem Melhem
- Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic;
| | - Hashim M. Aljohani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madina 41477, Saudi Arabia;
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Ayman Salama
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Hassabelrasoul Elfadil
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Fawaz E. Alanazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt;
| | - Basem Battah
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Antioch Syrian Private University, Maaret Saidnaya 22734, Syria;
| | - Michelangelo Rottura
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Matthew Gavino Donadu
- Hospital Pharmacy, Giovanni Paolo II Hospital, ASL Gallura, 07026 Olbia, Italy
- Department of Medicine, Surgery and Pharmacy, Scuola di Specializzazione in Farmacia Ospedaliera, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
6
|
Yoshioka I, Fahal AH, Kaneko S, Cao W, Yaguchi T. Itraconazole resistance in Madurella fahalii linked to a distinct homolog of the gene encoding cytochrome P450 14-α sterol demethylase (CYP51). PLoS Negl Trop Dis 2025; 19:e0012623. [PMID: 40146733 PMCID: PMC11964275 DOI: 10.1371/journal.pntd.0012623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 04/02/2025] [Accepted: 02/17/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Mycetoma is a deep fungal infection caused by several microorganisms, with Madurella mycetomatis being the most common causative agent. Another related species, Madurella fahalii, is also known to cause eumycetoma. However, unlike M. mycetomatis, M. fahalii exhibits resistance to itraconazole, the standard treatment for eumycetoma, and the underlying cause of this resistance remains unknown. Therefore, understanding the mechanism of this resistance is critical for developing more effective therapies. PRINCIPAL FINDINGS Using the high-quality draft genome sequence of Madurella fahalii IFM 68171, we identified two copies of the gene encoding cytochrome P450 14-α sterol demethylase (CYP51), the target enzyme of itraconazole. These include a gene conserved among Madurella species (Mfcyp51A1) and a M. fahalii-specific gene (Mfcyp51A2). Both genes are actively transcribed in M. fahalii and are upregulated in response to itraconazole. Furthermore, heterologous expression in Saccharomyces cerevisiae revealed that transformants carrying the Mfcyp51A2 gene exhibited reduced susceptibility to itraconazole compared to those with Mfcyp51A1. CONCLUSION We demonstrated that itraconazole resistance in M. fahalii may be attributed to the presence of an additional CYP51 gene. This study represents the first report on the physiological characteristics of Madurella species using genetic engineering techniques.
Collapse
Affiliation(s)
- Isato Yoshioka
- Medical Mycology Research Center, Chiba University, Chiba, Chiba, Japan
- Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | | | - Satoshi Kaneko
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Ecoepidemiology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Wei Cao
- Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, Chiba, Chiba, Japan
| |
Collapse
|
7
|
Winkler ML, Rhomberg PR, Fedler KA, Huband MD, Karr M, Kimbrough JH, Castanheira M. Use of voriconazole to predict susceptibility and resistance to isavuconazole for Aspergillus fumigatus using CLSI methods and interpretive criteria. J Clin Microbiol 2025; 63:e0120724. [PMID: 39704519 PMCID: PMC11837495 DOI: 10.1128/jcm.01207-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/16/2024] [Indexed: 12/21/2024] Open
Abstract
Aspergillus fumigatus is a common cause of pulmonary and invasive mold infections among immunocompromised hosts. Mortality in immunocompromised hosts with invasive Aspergillus infections (IAI) has been reported to be as high as 80%. Therefore, appropriate therapy is essential in treating IAI. Both isavuconazole and voriconazole are first-line agents in treatment guidelines for IAI, but isavuconazole has favorable properties, often leading it to be preferred over voriconazole, given the lengthy duration of treatment. It is difficult to perform mold antifungal susceptibility testing, which often requires a reference lab and several weeks to determine results. Therefore, use of surrogate markers can be helpful to infer susceptibility when testing is not possible or delayed. We performed isavuconazole and voriconazole broth microdilution susceptibility testing by the Clinical and Laboratory Standards Institute (CLSI) method on a collection of 976 non-duplicate A. fumigatus isolates from a global surveillance program between 2017 and 2022. We found that voriconazole and isavuconazole have a very high essential agreement within two doubling dilutions at 99.9% and a categorical agreement of 92.7% with no very major errors, one major error (0.11%), and <10% minor errors. Many of the minor errors were in the setting of voriconazole testing at a MIC of 0.5 mg/L (susceptible) but isavuconazole at 2 mg/L (intermediate). Genetic analysis of cyp51 genes confirmed that isavuconazole and voriconazole susceptibility testing identified isolates with cyp51A and cyp51B mutations. Voriconazole can be used to predict the isavuconazole susceptibility testing result when A. fumigatus is tested by CLSI broth microdilution methodology.
Collapse
Affiliation(s)
| | | | | | | | - Maura Karr
- Element Iowa City (JMI Laboratories), North Liberty, Iowa, USA
| | | | | |
Collapse
|
8
|
Su Y, Li Y, Yi Q, Xu Y, Sun T, Li Y. Insight into the Mechanisms and Clinical Relevance of Antifungal Heteroresistance. J Fungi (Basel) 2025; 11:143. [PMID: 39997437 PMCID: PMC11856953 DOI: 10.3390/jof11020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Antifungal resistance poses a critical global health threat, particularly in immuno-compromised patients. Beyond the traditional resistance mechanisms rooted in heritable and stable mutations, a distinct phenomenon known as heteroresistance has been identified, wherein a minority of resistant fungal cells coexist within a predominantly susceptible population. Heteroresistance may be induced by pharmacological factors or non-pharmacological agents. The reversible nature of it presents significant clinical challenges, as it can lead to undetected resistance during standard susceptibility testing. As heteroresistance allows fungal pathogens to survive antifungal treatment, this adaptive strategy often leads to treatment failure and recurring infection. Though extensively studied in bacteria, limited research has explored its occurrence in fungi. This review summarizes the current findings on antifungal heteroresistance mechanisms, highlighting the clinical implications of fungal heteroresistance and the pressing need for deeper mechanism insights. We aim to bring together the latest research advances in the field of antifungal heteroresistance, summarizing in detail its known characteristics, inducing factors, molecular mechanisms, and clinical significance, and describing the similarities and differences between heteroresistance, tolerance and persistence. Further research is needed to understand this phenomenon and develop more effective antifungal therapies to combat fungal infections.
Collapse
Affiliation(s)
- Yanyu Su
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (Y.S.); (Y.L.); (Q.Y.); (Y.X.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
- Graduate School, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yi Li
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (Y.S.); (Y.L.); (Q.Y.); (Y.X.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
| | - Qiaolian Yi
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (Y.S.); (Y.L.); (Q.Y.); (Y.X.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
| | - Yingchun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (Y.S.); (Y.L.); (Q.Y.); (Y.X.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
| | - Tianshu Sun
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
- Clinical Biobank, Center for Biomedical Technology, National Science and Technology Key Infrastructure on Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yingxing Li
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
9
|
Novak Babič M, Gunde-Cimerman N. Potable water as a source of intermediate and borderline-resistant Aspergillus and Candida strains. JOURNAL OF WATER AND HEALTH 2025; 23:225-237. [PMID: 40018964 DOI: 10.2166/wh.2025.300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/19/2025] [Indexed: 03/01/2025]
Abstract
The World Health Organization calls to assess possible health risks from emerging fungi originating not only from hospitals but also from the natural environment. Fungal contamination in oligotrophic water systems represents a public health concern due to the potential for the emergence of antifungal-resistant strains. This study focused on the identification of Aspergillus spp. and Candida spp. isolated from different water sources and materials in contact with water. Isolated strains have been tested against nine antifungals to assess the prevalence of resistance in these strains. Only one strain of Aspergillus protuberus was resistant to amphotericin B. On the other hand, all Candida strains were intermediately resistant to anidulafungin and micafungin, 5.8% were borderline resistant to 5-flucytosine and fluconazole, and 3% to voriconazole. Candida parapsilosis sensu stricto isolated from water samples had statistically higher minimal inhibitory concentration (MIC) for anidulafungin than clinical strains and clinical strains had statistically higher MIC for itraconazole. Statistical analysis pointed out habitat to be significant for higher MIC in C. parapsilosis. Our findings show that borderline-resistant strains can be transferred by water; thus, potable water should be considered as a possible source of resistant strains in hospitals and healthcare units.
Collapse
Affiliation(s)
- Monika Novak Babič
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana SI-1000, Slovenia E-mail:
| | - Nina Gunde-Cimerman
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana SI-1000, Slovenia
| |
Collapse
|
10
|
Taverna CG, Córdoba S, Haim MS, Lombardo M, Vivot ME, Arias BA, Vivot W, Szusz W, Abbey D, Poklépovich TJ, Canteros CE. Molecular Epidemiology and Antifungal Susceptibility Profile of Candidozyma Isolates From Argentina. Mycoses 2025; 68:e70025. [PMID: 39846347 DOI: 10.1111/myc.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Epidemiological surveillance of Candidozyma sp. has become important because many species of this new genus have been reported to be responsible for nosocomial outbreaks and to exhibit elevated minimal inhibitory concentrations (MIC) to one or more classes of antifungal drugs. OBJECTIVES To describe the genetic relationships among Argentinian clinical isolates belonging to the Candidozyma genus and to study the molecular mechanisms associated with antifungal resistance. METHODS We performed whole-genome sequencing of 41 isolates. Identification was based on ribosomal DNA sequencing and susceptibility testing was determined according to the EUCAST document. Phylogenetic analysis, non-synonymous mutations in genes associated with antifungal resistance and the presence of copy number variations (CNVs) were investigated. RESULTS We identified 12 Candidozyma haemuli, 11 Candidozyma haemuli var. vulneris, 5 Cz. haemuli/ Cz. haemuli var. vulneris ITS hybrids, 8 Candidozyma duobushaemuli and 5 Candidozyma cf. pseudohaemuli. Phylogenetic analysis, together with clinical data, demonstrated nosocomial transmission events. In addition, Cz. haemuli and Cz. haemuli var. vulneris were not separated in the phylogenetic tree; the Cz. cf. pseudohaemuli isolates clustered distantly from the Cz. pseudohaemuli type strain. Most isolates were resistant to amphotericin B, and two Cz. haemuli isolates showed fluconazole resistance and Y132F mutation in ERG11. We did not find CNV in genes associated with antifungal resistance. CONCLUSIONS These findings highlight the need for epidemiological surveillance of these species and the study of molecular mechanisms associated with antifungal resistance. Furthermore, we propose a taxonomic revision for Cz. haemuli var. vulneris and Cz. pseudohaemuli based on genomic data.
Collapse
Affiliation(s)
- Constanza Giselle Taverna
- Departamento Micología-Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Susana Córdoba
- Departamento Micología-Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Sol Haim
- Unidad Operativa Centro Nacional de Genómica y Bioinformática-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Micaela Lombardo
- Departamento Micología-Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Matías Ezequiel Vivot
- Departamento Micología-Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Bárbara Abigail Arias
- Departamento Micología-Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Walter Vivot
- Departamento Micología-Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Wanda Szusz
- Departamento Micología-Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Darren Abbey
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tomas Javier Poklépovich
- Unidad Operativa Centro Nacional de Genómica y Bioinformática-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Cristina Elena Canteros
- Departamento Micología-Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
11
|
White PL. Progress on nonculture based diagnostic tests for invasive mould infection. Curr Opin Infect Dis 2024; 37:451-463. [PMID: 39270052 DOI: 10.1097/qco.0000000000001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
PURPOSE OF REVIEW This review describes the current status of diagnosing invasive mould disease and Pneumocystis pneumonia using nonconventional diagnostics methods. RECENT FINDINGS There has been significant development in the range of nonculture mycological tests. Lateral flow tests (LFTs) for diagnosing aspergillosis complement galactomannan ELISA testing, and LFTs for other fungal diseases are in development. Rapid and low through-put B-D-Glucan assays increase access to testing and there has been significant progress in the standardization/development of molecular tests. Despite this, no single perfect test exists and combining tests (e.g., antigen and molecular testing) is likely required for the optimal diagnosis of most fungal diseases. SUMMARY Based on established clinical performance few mycological tests can be used alone for optimal diagnosis of fungal disease (FD) and combining tests, including classical approaches is the preferred route for confirming and excluding disease. Next-generation sequencing will likely play an increasing role in how we diagnose disease, but optimization, standardization and validation of the entire molecular process is needed and we must consider how host biomarkers can stratify risk. Given the burden of FD in low- and medium-income countries, improved access to novel but more so existing diagnostic testing is critical along with simplification of testing processes.
Collapse
Affiliation(s)
- P Lewis White
- Public Health Wales Mycology Reference laboratory, University Hospital of Wales, Heath Park, Cardiff, UK
| |
Collapse
|
12
|
Nascimento T, Inácio J, Guerreiro D, Diaz P, Patrício P, Proença L, Toscano C, Barroso H. Susceptibility patterns of Candida species collected from intensive care units in Portugal: a prospective study in 2020-2022. Infect Prev Pract 2024; 6:100403. [PMID: 39886460 PMCID: PMC11780368 DOI: 10.1016/j.infpip.2024.100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/03/2024] [Indexed: 02/01/2025] Open
Abstract
Background For Candida infections antifungal therapy is often empirical and mainly depends on locally antifungal surveillance data, which differs between geographic regions. Aims To monitor the epidemiology and antifungal susceptibility of Candida spp. from combined axillar-groin samples in intensive care unit (ICU) patients on admission (day1, D1), day 5 (D5) and day 8 (D8). Methods From 2020 to 2022, 675 patients from three ICUs were enrolled. Candida isolates were identified by MALDI-TOF MS and PCR. In vitro antifungals susceptibility tests (AFST) were performed for fluconazole, voriconazole, amphotericin B and anidulafungin, by concentration gradient Etest® strip technique. Results Out of 988 swabs, 355 isolates were identified as Candida species from 232 patients, being 89 isolates retrieved from patients that remained colonised at D5 and D8. AFST was conducted for all Candida isolates. The overall rate of resistance to fluconazole was 2.7%, with 3 out of 133 C. albicans, 2 out of 89 C. parapsilosis and 2 out of 24 C. glabrata isolates identified as resistant. Voriconazole susceptibility was observed in 99.2% of the isolates, with only one C. albicans isolate identified as resistant to this triazole. All isolates were susceptible to amphotericin B and 98.5% to anidulafungin. Three Candida spp. exhibited resistance to anidulafungin, C. albicans, C. tropicalis, and C. parapsilosis. Conclusions This study highlights the importance of C. albicans as a frequent coloniser and showed that antifungal resistance remains uncommon among Candida isolates from ICUs in Portugal. The results may contribute to better management within institutions to guide therapeutic decision making.
Collapse
Affiliation(s)
- Teresa Nascimento
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa, Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511, Caparica, Almada, Portugal
| | - João Inácio
- School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Daniela Guerreiro
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511, Caparica, Almada, Portugal
| | - Priscila Diaz
- Hospital Prof. Doutor Fernando da Fonseca, Amadora, Portugal
| | | | - Luís Proença
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511, Caparica, Almada, Portugal
| | - Cristina Toscano
- Centro Hospitalar Lisboa Ocidental Hospital Egas Moniz, Lisboa, Portugal
| | - Helena Barroso
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511, Caparica, Almada, Portugal
| |
Collapse
|
13
|
Wolska A, Drzewiecka-Antonik A, Barboza CA, Struga M, Stefanska J, Rejmak P, Klepka M. Structural and Biological Studies of Bioactive Silver(I) Complexes with Coumarin Acid Derivatives. Molecules 2024; 29:4993. [PMID: 39519634 PMCID: PMC11547378 DOI: 10.3390/molecules29214993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Two new Ag(I) complexes with coumaric carboxylic acid derivatives have been synthesized. Structural studies of these noncrystalline complexes have been performed using a methodology that combines laboratory and synchrotron techniques, supported by density functional theory calculations. The arrangement of ligands around the Ag(I) cation has been refined using infrared, extended X-ray absorption fine structure, and X-ray absorption near edge structure spectroscopies. Different coordination modes of carboxylate ligands are observed for the studied compounds. Carboxylate bridges are characteristic for the Ag(I) complex with 4-oxo-4H-1-benzopyran-2-carboxylic acid (1), while a bidentate chelating motif was found for the complex with 2-oxo-2H-1-benzopyran-3-carboxylic acid (2). Additionally, the carbonyl oxygen atom of the coumarin ring coordinates to the silver cation in complex 2, while it is inactive in complex 1. Antimicrobial evaluation has been performed for both compounds. The complexes show activity against selected bacteria as well as Candida yeast. This activity is slightly lower for bacteria and the same or higher for Candida in relation to the reference substances: ciprofloxacin or fluconazole.
Collapse
Affiliation(s)
- Anna Wolska
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland; (A.D.-A.); (C.A.B.); (M.K.)
| | - Aleksandra Drzewiecka-Antonik
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland; (A.D.-A.); (C.A.B.); (M.K.)
| | - Cristina Aparecida Barboza
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland; (A.D.-A.); (C.A.B.); (M.K.)
| | - Marta Struga
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, PL-02097 Warsaw, Poland;
| | - Joanna Stefanska
- Department of Pharmaceutical Microbiology and Bioanalysis, Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, PL-02097 Warsaw, Poland;
| | - Pawel Rejmak
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland; (A.D.-A.); (C.A.B.); (M.K.)
| | - Marcin Klepka
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland; (A.D.-A.); (C.A.B.); (M.K.)
| |
Collapse
|
14
|
Wolfgruber S, Sedik S, Klingspor L, Tortorano A, Gow NAR, Lagrou K, Gangneux JP, Maertens J, Meis JF, Lass-Flörl C, Arikan-Akdagli S, Cornely OA, Hoenigl M. Insights from Three Pan-European Multicentre Studies on Invasive Candida Infections and Outlook to ECMM Candida IV. Mycopathologia 2024; 189:70. [PMID: 39088098 PMCID: PMC11294264 DOI: 10.1007/s11046-024-00871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024]
Abstract
Invasive candidiasis and candidemia remain a significant public health concern. The European Confederation of Medical Mycology (ECMM) conducted three pan-European multicentre studies from 1997 to 2022 to investigate various aspects of invasive Candida infections. These studies revealed shifting trends in Candida species distribution, with an increase of non-albicans Candida species as causative pathogens, increasing rates of antifungal resistance, and persistently high mortality rates. Despite advancements in antifungal treatment, the persistently high mortality rate and increasing drug resistance, as well as limited drug access in low-income countries, underscore the need for continued research and development in the treatment of Candida infections. This review aims to summarize the findings of the three completed ECMM Candida studies and emphasize the importance of continued research efforts. Additionally, it introduces the upcoming ECMM Candida IV study, which will focus on assessing candidemia caused by non-albicans Candida species, including Candida auris, investigating antifungal resistance and tolerance, and evaluating novel treatment modalities on a global scale.
Collapse
Affiliation(s)
- Stella Wolfgruber
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Translational Medical Mycology Research Unit, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Sarah Sedik
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Translational Medical Mycology Research Unit, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Lena Klingspor
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annamaria Tortorano
- Dipartimento Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Katrien Lagrou
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Louvain, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, UZ Leuven, Leuven, Belgium
| | - Jean-Pierre Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, 35000, Rennes, France
- Laboratory of Mycology, Centre Hospitalier Universitaire de Rennes, Centre National de référence pour les mycoses et antifongiques - LA AspC, ECMM Excellence Center for Medical Mycology, Rennes, France
| | - Johan Maertens
- Department of Haematology and ECMM Excellence Center for Medical Mycology, University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Jacques F Meis
- Department of Medical Microbiology, Excellence Center for Medical Mycology (ECMM), Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology Medical University of Innsbruck, Excellence Center for Medical Mycology (ECMM), Innsbruck, Austria
| | - Sevtap Arikan-Akdagli
- Department of Medical Microbiology, Hacettepe University Medical School, Ankara, Turkey
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
- Translational Medical Mycology Research Unit, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
15
|
Arendrup MC, Guinea J, Meletiadis J. Twenty Years in EUCAST Anti-Fungal Susceptibility Testing: Progress & Remaining Challenges. Mycopathologia 2024; 189:64. [PMID: 38990395 DOI: 10.1007/s11046-024-00861-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/15/2024] [Indexed: 07/12/2024]
Abstract
Since its inception in 2002, the EUCAST Antifungal Susceptibility Testing Subcommittee (AFST) has developed and refined susceptibility testing methods for yeast, moulds and dermatophytes, and established epidemiological cut-off values and breakpoints for antifungals. For yeast, three challenges have been addressed. Interpretation of trailing growth in fluconazole susceptibility testing, which has been proven without impact on efficacy if below the 50% endpoint. Variability in rezafungin MIC testing due to laboratory conditions, which has been solved by the addition of Tween 20 to the growth medium in E.Def 7.4. And third, interpretation of MICs for rare yeast with no breakpoints, where recommendations have been established for MIC-based clinical advice. For moulds, refinements include the validation of spectrophotometer reading for A. fumigatus to facilitate objective MIC determination, and for dermatophytes the establishment of a microdilution method with automated reading and a selective medium to minimise the risk of contaminations. Recent initiatives involve development and validation of agar-based screening assays for detection of potential azole and echinocandin resistance in A. fumigatus and Aspergillus species, respectively, and of terbinafine resistance in Trichophyton species. Moreover, the development of a EUCAST guidance document for molecular resistance testing represents an advancement, particularly for identifying target gene alterations associated with resistance. In summary, EUCAST AFST continues to play a pivotal role in standardizing AFST and facilitating accurate interpretation of susceptibility data for clinical decision-making. Adoption of EUCAST breakpoints for commercial test methods, however, requires thorough validation to ensure concordance with EUCAST reference testing species-specific MIC distributions.
Collapse
Affiliation(s)
- Maiken Cavling Arendrup
- Unit for Mycology, Statens Serum Institut, Building 45/112, Artillerivej 5, 2300, Copenhagen, Denmark.
- Department Clinical Microbiology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark.
| | - Jesus Guinea
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 28007, Madrid, Spain
- Faculty of Health Sciences-HM Hospitals, Universidad Camilo José Cela, Madrid, Spain
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
16
|
Pham D, Sivalingam V, Tang HM, Montgomery JM, Chen SCA, Halliday CL. Molecular Diagnostics for Invasive Fungal Diseases: Current and Future Approaches. J Fungi (Basel) 2024; 10:447. [PMID: 39057332 PMCID: PMC11278267 DOI: 10.3390/jof10070447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Invasive fungal diseases (IFDs) comprise a growing healthcare burden, especially given the expanding population of immunocompromised hosts. Early diagnosis of IFDs is required to optimise therapy with antifungals, especially in the setting of rising rates of antifungal resistance. Molecular techniques including nucleic acid amplification tests and whole genome sequencing have potential to offer utility in overcoming limitations with traditional phenotypic testing. However, standardisation of methodology and interpretations of these assays is an ongoing undertaking. The utility of targeted Aspergillus detection has been well-defined, with progress in investigations into the role of targeted assays for Candida, Pneumocystis, Cryptococcus, the Mucorales and endemic mycoses. Likewise, whilst broad-range polymerase chain reaction assays have been in use for some time, pathology stewardship and optimising diagnostic yield is a continuing exercise. As costs decrease, there is also now increased access and experience with whole genome sequencing, including metagenomic sequencing, which offers unparalleled resolution especially in the investigations of potential outbreaks. However, their role in routine diagnostic use remains uncommon and standardisation of techniques and workflow are required for wider implementation.
Collapse
Affiliation(s)
- David Pham
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| | - Varsha Sivalingam
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| | - Helen M. Tang
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| | - James M. Montgomery
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| |
Collapse
|
17
|
Dladla M, Gyzenhout M, Marias G, Ghosh S. Azole resistance in Aspergillus fumigatus- comprehensive review. Arch Microbiol 2024; 206:305. [PMID: 38878211 DOI: 10.1007/s00203-024-04026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Aspergillus fumigatus is a ubiquitous filamentous fungus commonly found in the environment. It is also an opportunistic human pathogen known to cause a range of respiratory infections, such as invasive aspergillosis, particularly in immunocompromised individuals. Azole antifungal agents are widely used for the treatment and prophylaxis of Aspergillus infections due to their efficacy and tolerability. However, the emergence of azole resistance in A. fumigatus has become a major concern in recent years due to their association with increased treatment failures and mortality rates. The development of azole resistance in A. fumigatus can occur through both acquired and intrinsic mechanisms. Acquired resistance typically arises from mutations in the target enzyme, lanosterol 14-α-demethylase (Cyp51A), reduces the affinity of azole antifungal agents for the enzyme, rendering them less effective, while intrinsic resistance refers to a natural resistance of certain A. fumigatus isolates to azole antifungals due to inherent genetic characteristics. The current review aims to provide a comprehensive overview of azole antifungal resistance in A. fumigatus, discusses underlying resistance mechanisms, including alterations in the target enzyme, Cyp51A, and the involvement of efflux pumps in drug efflux. Impact of azole fungicide uses in the environment and the spread of resistant strains is also explored.
Collapse
Affiliation(s)
- Mthokozisi Dladla
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Marieka Gyzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Gert Marias
- Department of Plant Sciences, Division of Plant Pathology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Birkat Al Mawz, Oman.
| |
Collapse
|
18
|
Hoenigl M, Arastehfar A, Arendrup MC, Brüggemann R, Carvalho A, Chiller T, Chen S, Egger M, Feys S, Gangneux JP, Gold JAW, Groll AH, Heylen J, Jenks JD, Krause R, Lagrou K, Lamoth F, Prattes J, Sedik S, Wauters J, Wiederhold NP, Thompson GR. Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease. Clin Microbiol Rev 2024; 37:e0007423. [PMID: 38602408 PMCID: PMC11237431 DOI: 10.1128/cmr.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
SUMMARYFungal infections are on the rise, driven by a growing population at risk and climate change. Currently available antifungals include only five classes, and their utility and efficacy in antifungal treatment are limited by one or more of innate or acquired resistance in some fungi, poor penetration into "sequestered" sites, and agent-specific side effect which require frequent patient reassessment and monitoring. Agents with novel mechanisms, favorable pharmacokinetic (PK) profiles including good oral bioavailability, and fungicidal mechanism(s) are urgently needed. Here, we provide a comprehensive review of novel antifungal agents, with both improved known mechanisms of actions and new antifungal classes, currently in clinical development for treating invasive yeast, mold (filamentous fungi), Pneumocystis jirovecii infections, and dimorphic fungi (endemic mycoses). We further focus on inhaled antifungals and the role of immunotherapy in tackling fungal infections, and the specific PK/pharmacodynamic profiles, tissue distributions as well as drug-drug interactions of novel antifungals. Finally, we review antifungal resistance mechanisms, the role of use of antifungal pesticides in agriculture as drivers of drug resistance, and detail detection methods for antifungal resistance.
Collapse
Affiliation(s)
- Martin Hoenigl
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Amir Arastehfar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Roger Brüggemann
- Department of Pharmacy and Radboudumc Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise in Mycology, Nijmegen, The Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tom Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW South Wales Health Pathology, Westmead Hospital, Westmead, Australia
- The University of Sydney, Sydney, Australia
| | - Matthias Egger
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Simon Feys
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Pierre Gangneux
- Centre National de Référence des Mycoses et Antifongiques LA-AspC Aspergilloses chroniques, European Excellence Center for Medical Mycology (ECMM EC), Centre hospitalier Universitaire de Rennes, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Jeremy A. W. Gold
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andreas H. Groll
- Department of Pediatric Hematology/Oncology and Infectious Disease Research Program, Center for Bone Marrow Transplantation, University Children’s Hospital, Muenster, Germany
| | - Jannes Heylen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jeffrey D. Jenks
- Department of Public Health, Durham County, Durham, North Carolina, USA
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - Robert Krause
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Frédéric Lamoth
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Medicine, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Juergen Prattes
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Sarah Sedik
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Nathan P. Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - George R. Thompson
- Department of Internal Medicine, Division of Infectious Diseases University of California-Davis Medical Center, Sacramento, California, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, California, USA
| |
Collapse
|
19
|
Hill RC, Caplan AS, Elewski B, Gold JAW, Lockhart SR, Smith DJ, Lipner SR. Expert Panel Review of Skin and Hair Dermatophytoses in an Era of Antifungal Resistance. Am J Clin Dermatol 2024; 25:359-389. [PMID: 38494575 PMCID: PMC11201321 DOI: 10.1007/s40257-024-00848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 03/19/2024]
Abstract
Dermatophytoses are fungal infections of the skin, hair, and nails that affect approximately 25% of the global population. Occlusive clothing, living in a hot humid environment, poor hygiene, proximity to animals, and crowded living conditions are important risk factors. Dermatophyte infections are named for the anatomic area they infect, and include tinea corporis, cruris, capitis, barbae, faciei, pedis, and manuum. Tinea incognito describes steroid-modified tinea. In some patients, especially those who are immunosuppressed or who have a history of corticosteroid use, dermatophyte infections may spread to involve extensive skin areas, and, in rare cases, may extend to the dermis and hair follicle. Over the past decade, dermatophytoses cases not responding to standard of care therapy have been increasingly reported. These cases are especially prevalent in the Indian subcontinent, and Trichophyton indotineae has been identified as the causative species, generating concern regarding resistance to available antifungal therapies. Antifungal-resistant dermatophyte infections have been recently recognized in the United States. Antifungal resistance is now a global health concern. When feasible, mycological confirmation before starting treatment is considered best practice. To curb antifungal-resistant infections, it is necessary for physicians to maintain a high index of suspicion for resistant dermatophyte infections coupled with antifungal stewardship efforts. Furthermore, by forging partnerships with federal agencies, state and local public health agencies, professional societies, and academic institutions, dermatologists can lead efforts to prevent the spread of antifungal-resistant dermatophytes.
Collapse
Affiliation(s)
| | - Avrom S Caplan
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Boni Elewski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeremy A W Gold
- Centers for Disease Control and Prevention, Mycotic Diseases Branch, Atlanta, GA, USA
| | - Shawn R Lockhart
- Centers for Disease Control and Prevention, Mycotic Diseases Branch, Atlanta, GA, USA
| | - Dallas J Smith
- Centers for Disease Control and Prevention, Mycotic Diseases Branch, Atlanta, GA, USA
| | - Shari R Lipner
- Department of Dermatology, Weill Cornell Medicine, 1305 York Avenue, New York, NY, 10021, USA.
| |
Collapse
|
20
|
Pfaller MA, Carvalhaes CG, Rhomberg PR, Desphande LM, Castanheira M. Trends in the activity of mold-active azole agents against Aspergillus fumigatus clinical isolates with and without cyp51 alterations from Europe and North America (2017-2021). J Clin Microbiol 2024; 62:e0114123. [PMID: 38193696 PMCID: PMC10865804 DOI: 10.1128/jcm.01141-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024] Open
Abstract
Azole resistance in Aspergillus fumigatus (AFM) is increasing and often associated with cyp51 alterations. We evaluated the activity of isavuconazole and other mold-active azoles against 731 AFM isolates causing invasive aspergillosis collected in Europe (EU; n = 449) and North America (NA; n = 282). Isolates were submitted to CLSI susceptibility testing and epidemiological cutoff value (ECV) criteria. A posaconazole ECV of 0.5 mg/L was used as no CLSI ECV was determined. Azole non-wild-type (NWT) isolates were submitted for cyp51 sequencing by whole genome sequencing. Overall, isavuconazole activity (92.7%/94.0% WT in EU/NA) was comparable to other azoles (WT rate range, 90.9%-96.4%/91.8%-98.6%, respectively), regardless of the region. A total of 79 (10.8%) azole NWT isolates were detected, and similar rates of these isolates were noted in EU (10.7%) and NA (11.0%). Although most AFM were WT to azoles, increasing azole NWT rates were observed in NA (from 6.0% in 2017 to 29.3% in 2021). Azole NWT rates varied from 4.9% (2019) to 20.6% (2018) in EU without an observed trend. cyp51 alterations occurred in 56.3%/54.8% of azole NWT from EU/NA, respectively. The cyp51A TR34/L98H alteration was observed only in EU isolates (72.0% of EU isolates), while cyp51A I242V occurred only in NA isolates (58.3%). Isavuconazole remained active (MIC, ≤1 mg/L) against 18.5/47.1% of azole NWT AFM exhibiting cyp51 alterations in EU/NA, along with voriconazole (29.6/82.4%; MIC, ≤1 mg/L) and posaconazole (48.1/88.2%; MIC, ≤0.5 mg/L). Fourteen different cyp51 alterations were detected in 44 of 79 NWT isolates. The in vitro activity of the azoles varied in AFM that displayed cyp51 alterations. IMPORTANCE A few microbiology laboratories perform antifungal susceptibility testing locally for systemically active antifungal agents. The identification of emerging azole-resistant Aspergillus fumigatus is worrisome. As such, there is a critical role for antifungal surveillance in tracking emerging resistance among both common and uncommon opportunistic fungi. Differences in the regional prevalence and antifungal resistance of these fungi render local epidemiological knowledge essential for the care of patients with a suspected invasive fungal infection.
Collapse
Affiliation(s)
- M. A. Pfaller
- JMI Laboratories, North Liberty, Iowa, USA
- University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
21
|
Pfaller M, Huband M, Bien PA, Carvalhaes CG, Klauer A, Castanheira M. In vitro activity of manogepix and comparators against infrequently encountered yeast and mold isolates from the SENTRY Surveillance Program (2017-2022). Antimicrob Agents Chemother 2024; 68:e0113223. [PMID: 38205999 PMCID: PMC10848754 DOI: 10.1128/aac.01132-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/21/2023] [Indexed: 01/12/2024] Open
Abstract
Manogepix is a potent new antifungal agent targeting the fungal Gwt1 enzyme. Manogepix has previously demonstrated potent in vitro activity against clinical isolates of both Candida (except Candida krusei) and Aspergillus species. This study determined the in vitro activity of manogepix and comparators against a large collection of infrequently encountered yeast and molds. Manogepix demonstrated potent in vitro activity against infrequently encountered yeasts exhibiting elevated MIC values to other drug classes, including Candida spp. (MIC50/90, 0.008/0.12 mg/L), Saprochaete clavata (Magnusiomyces clavatus) (MIC50/90, 0.03/0.06 mg/L), Magnusiomyces capitatus (MICrange, 0.016-0.06 mg/L), Rhodotorula minuta (MIC, 0.016 mg/L), and Rhodotorula mucilaginosa (MIC50/90, 0.03/0.12 mg/L). Similarly, manogepix was active against infrequently encountered mold isolates and strains exhibiting elevated MIC/MEC values to echinocandins, azoles, and amphotericin B, including Coprinopsis cinerea (MEC, 0.004 mg/L), Fusarium spp. (MEC50/90, 0.016/0.06 mg/L), Fusarium (Gibberella) fujikuroi species complex (MEC50/90, 0.016/0.03 mg/L), Lomentospora prolificans (MEC50/90, 0.03/0.06 mg/L), Microascus cirrosus (MEC, 0.008 mg/L), Paecilomyces spp. (MEC50/90, ≤0.008/0.016 mg/L), Pleurostomophora richardsiae (MEC, 0.06 mg/L), Sarocladium kiliense (MEC range, 0.016-0.12 mg/L), and Scedosporium spp. (MEC50/90, 0.03/0.06 mg/L). Manogepix demonstrated potent activity against a majority of the infrequently encountered yeast and mold isolates tested including strains with elevated MIC/MEC values to other drug classes. Additional clinical development of manogepix (fosmanogepix) in difficult-to-treat, resistant fungal infections is warranted.
Collapse
Affiliation(s)
- Michael Pfaller
- JMI Laboratories, North Liberty, lowa, USA
- University of Iowa, Iowa City, lowa, USA
| | | | - Paul A. Bien
- PAB Pharma Consulting LLC, San Diego, California, USA
| | | | | | | |
Collapse
|
22
|
Evans TJ, Lawal A, Kosmidis C, Denning DW. Chronic Pulmonary Aspergillosis: Clinical Presentation and Management. Semin Respir Crit Care Med 2024; 45:88-101. [PMID: 38154471 DOI: 10.1055/s-0043-1776914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Chronic pulmonary aspergillosis (CPA) refers to a number of clinical syndromes resulting from the presence and local proliferation of Aspergillus organisms in the lungs of patients with chronic lung disease. CPA is more common than was realized two decades ago. Recognition remains poor, despite recent studies from many countries highlighting the high prevalence in at-risk populations. In low- and middle-income countries, CPA may be misdiagnosed and treated as tuberculosis (TB). In addition, CPA may develop following successful TB treatment. The coronavirus disease pandemic has resulted in significant disruption to provision of TB care, likely leading to more extensive lung damage, which could increase the risk for CPA.Although CPA refers to various syndromes, the classic presentation is that of chronic cavitary pulmonary aspergillosis, which manifests as one or more progressive cavities with or without a fungal ball, accompanied by systemic and respiratory symptoms for at least 3 months. Diagnosis relies on Aspergillus immunoglobulin G in serum, as sputum culture lacks sensitivity. Differential diagnosis includes mycobacterial infection, bacterial lung abscess or necrotizing pneumonia, lung cancer, and endemic fungi.The aim of antifungal treatment in CPA is to improve symptoms and quality of life, and to halt progression, and possibly reverse radiological changes. Current recommendations suggest treatment for 6 months, although in practice many patients remain on long-term treatment. Improvement may manifest as weight gain and improvement of symptoms such as productive cough, hemoptysis, and fatigue. Surgical management should be considered in cases of diagnostic uncertainty, in significant hemoptysis, and when there is concern for lack of response to therapy. Itraconazole and voriconazole are the first-line azoles, with more experience now accumulating with posaconazole and isavuconazole. Side effects are frequent and careful monitoring including therapeutic drug monitoring is essential. Intravenous antifungals such as echinocandins and amphotericin B are used in cases of azole intolerance or resistance, which often develop on treatment. Relapse is seen after completion of antifungal therapy in around 20% of cases, mostly in bilateral, high-burden disease.Several research priorities have been identified, including characterization of immune defects and genetic variants linked to CPA, pathogenetic mechanisms of Aspergillus adaptation in the lung environment, the contribution of non-fumigatus Aspergillus species, and the role of new antifungal agents, immunotherapy, and combination therapy.
Collapse
Affiliation(s)
- Terry J Evans
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao PDR
| | - AbdulAzeez Lawal
- National Aspergillosis Centre, Wythenshawe Hospital, Manchester University Foundation Trust, Manchester, United Kingdom
| | - Chris Kosmidis
- National Aspergillosis Centre, Wythenshawe Hospital, Manchester University Foundation Trust, Manchester, United Kingdom
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - David W Denning
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
23
|
Melhem MSC, Leite Júnior DP, Takahashi JPF, Macioni MB, de Oliveira L, de Araújo LS, Fava WS, Bonfietti LX, Paniago AMM, Venturini J, Espinel-Ingroff A. Antifungal Resistance in Cryptococcal Infections. Pathogens 2024; 13:128. [PMID: 38392866 PMCID: PMC10891860 DOI: 10.3390/pathogens13020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Antifungal therapy, especially with the azoles, could promote the incidence of less susceptible isolates of Cryptococcus neoformans and C. gattii species complexes (SC), mostly in developing countries. Given that these species affect mostly the immunocompromised host, the infections are severe and difficult to treat. This review encompasses the following topics: 1. infecting species and their virulence, 2. treatment, 3. antifungal susceptibility methods and available categorical endpoints, 4. genetic mechanisms of resistance, 5. clinical resistance, 6. fluconazole minimal inhibitory concentrations (MICs), clinical outcome, 7. environmental influences, and 8. the relevance of host factors, including pharmacokinetic/pharmacodynamic (PK/PD) parameters, in predicting the clinical outcome to therapy. As of now, epidemiologic cutoff endpoints (ECVs/ECOFFs) are the most reliable antifungal resistance detectors for these species, as only one clinical breakpoint (amphotericin B and C. neoformans VNI) is available.
Collapse
Affiliation(s)
- Marcia S. C. Melhem
- Graduate Program in Sciences, Secretary of Health, São Paulo 01246-002, SP, Brazil; (D.P.L.J.); (M.B.M.)
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
- Graduate Program in Tropical Diseases, State University of São Paulo, Botucatu 18618-687, SP, Brazil
| | - Diniz Pereira Leite Júnior
- Graduate Program in Sciences, Secretary of Health, São Paulo 01246-002, SP, Brazil; (D.P.L.J.); (M.B.M.)
| | - Juliana P. F. Takahashi
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
- Pathology Division, Adolfo Lutz Institute, São Paulo 01246-002, SP, Brazil
| | - Milena Bronze Macioni
- Graduate Program in Sciences, Secretary of Health, São Paulo 01246-002, SP, Brazil; (D.P.L.J.); (M.B.M.)
| | | | - Lisandra Siufi de Araújo
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
- Central Public Health Laboratory-LACEN, Mycology Unit, Adolfo Lutz Institut, São Paulo 01246-002, SP, Brazil;
| | - Wellington S. Fava
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
| | - Lucas X. Bonfietti
- Central Public Health Laboratory-LACEN, Mycology Unit, Adolfo Lutz Institut, São Paulo 01246-002, SP, Brazil;
| | - Anamaria M. M. Paniago
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
| | - James Venturini
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
| | - Ana Espinel-Ingroff
- Central Public Health Laboratory-LACEN, Campo Grande 79074-460, MS, Brazil;
- VCU Medical Center, Richmond, VA 23284, USA
| |
Collapse
|
24
|
Siopi M, Efstathiou I, Arendrup MC, Meletiadis J. Development of an agar-based screening method for terbinafine, itraconazole, and amorolfine susceptibility testing of Trichophyton spp. J Clin Microbiol 2024; 62:e0130823. [PMID: 38117081 PMCID: PMC10793311 DOI: 10.1128/jcm.01308-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Resistance in dermatophytes is an emerging global public health issue. We, therefore, developed an agar-based method for screening Trichophyton spp. susceptibility to terbinafine (TRB), itraconazole (ITC), and amorolfine (AMF) and validated it using molecularly characterized isolates. Α total of 40 Trichophyton spp. isolates, 28 TRB wild type (WT) (13 T. rubrum, 10 T. mentagrophytes, 5 T. interdigitale) and 12 TRB non-WT (7 T. rubrum, 5 T. indotineae) with different alterations in the squalene epoxidase (SQLE) gene, were used. The optimal test conditions (inoculum and drug concentrations, incubation time, and temperature) and stability over time were evaluated. The method was then applied for 86 WT Trichophyton spp. clinical isolates (68 T. rubrum, 7 T. interdigitale, 6 T. tonsurans, 5 T. mentagrophytes) and 4 non-WT T. indotineae. Optimal growth of drug-free controls was observed using an inoculum of 20 µL 0.5 McFarland after 5-7 days of incubation at 30°C. The optimal concentrations that prevented the growth of WT isolates were 0.016 mg/L of TRB, 1 mg/L of ITC, and 0.25 mg/L of AMF, whereas 0.125 mg/L of TRB was used for the detection of Trichophyton strong SQLE mutants (MIC ≥0.25 mg/L). The agar plates were stable up to 4 months. Inter-observer and inter-experimental agreement were 100%, and the method successfully detected TRB non-WT Trichophyton spp. strains showing 100% agreement with the reference EUCAST methodology. An agar-based method was developed for screening Trichophyton spp. in order to detect TRB non-WT weak and strong mutant isolates facilitating their detection in non-expert routine diagnostic laboratories.
Collapse
Affiliation(s)
- Maria Siopi
- Clinical Microbiology Laboratory, "Attikon" University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Efstathiou
- Clinical Microbiology Laboratory, "Attikon" University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maiken C. Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, "Attikon" University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
25
|
Gupta AK, Elewski B, Joseph WS, Lipner SR, Daniel CR, Tosti A, Guenin E, Ghannoum M. Treatment of onychomycosis in an era of antifungal resistance: Role for antifungal stewardship and topical antifungal agents. Mycoses 2024; 67:e13683. [PMID: 38214375 DOI: 10.1111/myc.13683] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/02/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
A growing body of literature has marked the emergence and spread of antifungal resistance among species of Trichophyton, the most prevalent cause of toenail and fingernail onychomycosis in the United States and Europe. We review published data on rates of oral antifungal resistance among Trichophyton species; causes of antifungal resistance and methods to counteract it; and in vitro data on the role of topical antifungals in the treatment of onychomycosis. Antifungal resistance among species of Trichophyton against terbinafine and itraconazole-the two most common oral treatments for onychomycosis and other superficial fungal infections caused by dermatophytes-has been detected around the globe. Fungal adaptations, patient characteristics (e.g., immunocompromised status; drug-drug interactions), and empirical diagnostic and treatment patterns may contribute to reduced antifungal efficacy and the development of antifungal resistance. Antifungal stewardship efforts aim to ensure proper antifungal use to limit antifungal resistance and improve clinical outcomes. In the treatment of onychomycosis, critical aspects of antifungal stewardship include proper identification of the fungal infection prior to initiation of treatment and improvements in physician and patient education. Topical ciclopirox, efinaconazole and tavaborole, delivered either alone or in combination with oral antifungals, have demonstrated efficacy in vitro against susceptible and/or resistant isolates of Trichophyton species, with low potential for development of antifungal resistance. Additional real-world long-term data are needed to monitor global rates of antifungal resistance and assess the efficacy of oral and topical antifungals, alone or in combination, in counteracting antifungal resistance in the treatment of onychomycosis.
Collapse
Affiliation(s)
- Aditya K Gupta
- Mediprobe Research Inc., London, Ontario, Canada
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Boni Elewski
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Warren S Joseph
- Arizona College of Podiatric Medicine, Midwestern University, Glendale, Arizona, USA
| | | | - C Ralph Daniel
- University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | - Eric Guenin
- Ortho Dermatologics (a division of Bausch Health US, LLC), Bridgewater, New Jersey, USA
| | - Mahmoud Ghannoum
- Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
26
|
Govrins M, Lass-Flörl C. Candida parapsilosis complex in the clinical setting. Nat Rev Microbiol 2024; 22:46-59. [PMID: 37674021 DOI: 10.1038/s41579-023-00961-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
Representatives of the Candida parapsilosis complex are important yeast species causing human infections, including candidaemia as one of the leading diseases. This complex comprises C. parapsilosis, Candida orthopsilosis and Candida metapsilosis, and causes a wide range of clinical presentations from colonization to superficial and disseminated infections with a high prevalence in preterm-born infants and the potential to cause outbreaks in hospital settings. Compared with other Candida species, the C. parapsilosis complex shows high minimal inhibitory concentrations for echinocandin drugs due to a naturally occurring FKS1 polymorphism. The emergence of clonal outbreaks of strains with resistance to commonly used antifungals, such as fluconazole, is causing concern. In this Review, we present the latest medical data covering epidemiology, diagnosis, resistance and current treatment approaches for the C. parapsilosis complex. We describe its main clinical manifestations in adults and children and highlight new treatment options. We compare the three sister species, examining key elements of microbiology and clinical characteristics, including the population at risk, disease manifestation and colonization status. Finally, we provide a comprehensive resource for clinicians and researchers focusing on Candida species infections and the C. parapsilosis complex, aiming to bridge the emerging translational knowledge and future therapeutic challenges associated with this human pathogen.
Collapse
Affiliation(s)
- Miriam Govrins
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
27
|
Aonofriesei F. Increased Absorption and Inhibitory Activity against Candida spp. of Imidazole Derivatives in Synergistic Association with a Surface Active Agent. Microorganisms 2023; 12:51. [PMID: 38257878 PMCID: PMC10819671 DOI: 10.3390/microorganisms12010051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
This paper's purpose was to evaluate the interaction between three imidazole derivatives, (2-methyl-1H-imidazol-1-yl)methanol (SAM3), 1,1'-methanediylbis(1H-benzimidazole (AM5) and (1H-benzo[d]imidazol-1-yl)methanol 1-hydroxymethylbenzimidazole (SAM5) on the one hand, and sodium dodecyl sulphate (SDS) on the other, as antifungal combinations against Candida spp. Inhibitory activity was assessed using the agar diffusion method and Minimal Inhibitory Concentration (MIC) and showed moderate inhibitory activity of single imidazole derivatives against Candida spp. The mean value of MIC ranged from 200 µg/mL (SAM3) to 312.5 µg/mL (SAM3), while for SDS the MIC was around 1000 µg/mL. When used in combination with SDS, the imidazole derivatives demonstrated an improvement in their antifungal activity. Their MIC decreased over five times for AM5 and over seven times for SAM3 and SAM5, respectively, and ranged from 26.56 µg/mL (SAM3) to 53.90 µg/mL (AM5). Most combinations displayed an additive effect while a clear synergistic effect was recorded in only a few cases. Thus, the FIC Index (FICI) with values between 0.311 and 0.375 showed a synergistic effect against Candida spp. when SDS was associated with SAM3 (three strains), SAM5 (two strains) and AM5 (one strain). The association of imidazole derivatives with SDS led to the increased release of cellular material as well as the intracellular influx of crystal violet (CV), which indicated an alteration of the membrane permeability of Candida spp. cells. This favored the synergistic effect via increasing the intracellular influx of imidazoles.
Collapse
Affiliation(s)
- Florin Aonofriesei
- Department of Natural Sciences, Faculty of Natural and Agricultural Sciences, "Ovidius" University of Constanța, 1 University Street, 900470 Constanța, Romania
| |
Collapse
|
28
|
Wu M, Xu X, Hu R, Chen Q, Chen L, Yuan Y, Li J, Zhou L, Feng S, Wang L, Chen S, Gu M. A Membrane-Targeted Photosensitizer Prevents Drug Resistance and Induces Immune Response in Treating Candidiasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207736. [PMID: 37875397 PMCID: PMC10724446 DOI: 10.1002/advs.202207736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Candida albicans (C. albicans), a ubiquitous polymorphic fungus in humans, causes different types of candidiasis, including oral candidiasis (OC) and vulvovaginal candidiasis (VVC), which are physically and mentally concerning and financially costly. Thus, developing alternative antifungals that prevent drug resistance and induce immunity to eliminate Candida biofilms is crucial. Herein, a novel membrane-targeted aggregation-induced emission (AIE) photosensitizer (PS), TBTCP-QY, is developed for highly efficient photodynamic therapy (PDT) of candidiasis. TBTCP-QY has a high molar absorption coefficient and an excellent ability to generate 1 O2 and •OH, entering the interior of biofilms due to its high permeability. Furthermore, TBTCP-QY can efficiently inhibit biofilm formation by suppressing the expression of genes related to the adhesion (ALS3, EAP1, and HWP1), invasion (SAP1 and SAP2), and drug resistance (MDR1) of C. albicans, which is also advantageous for eliminating potential fungal resistance to treat clinical infectious diseases. TBTCP-QY-mediated PDT efficiently targets OC and VVC in vivo in a mouse model, induces immune response, relieves inflammation, and accelerates the healing of mucosal defects to combat infections caused by clinically isolated fluconazole-resistant strains. Moreover, TBTCP-QY demonstrates excellent biocompatibility, suggesting its potential applications in the clinical treatment of OC and VVC.
Collapse
Affiliation(s)
- Ming‐Yu Wu
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural DrugsSchool of Life Science and EngineeringSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Xiaoyu Xu
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Rui Hu
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Department of Respiratory DiseasesThe Research and Application Center of Precision MedicineThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhou450014China
| | - Qingrong Chen
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Luojia Chen
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Yuncong Yuan
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Jie Li
- Department of Medical Intensive Care UnitMaternal and Child Health Hospital of Hubei ProvinceTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430070China
| | - Li Zhou
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural DrugsSchool of Life Science and EngineeringSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Lianrong Wang
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Department of Respiratory DiseasesThe Research and Application Center of Precision MedicineThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhou450014China
| | - Shi Chen
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Meijia Gu
- Department of GastroenterologyMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical SciencesZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Department of Respiratory DiseasesThe Research and Application Center of Precision MedicineThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhou450014China
| |
Collapse
|
29
|
Simmons BC, Rhodes J, Rogers TR, Verweij PE, Abdolrasouli A, Schelenz S, Hemmings SJ, Talento AF, Griffin A, Mansfield M, Sheehan D, Bosch T, Fisher MC. Genomic Epidemiology Identifies Azole Resistance Due to TR 34/L98H in European Aspergillus fumigatus Causing COVID-19-Associated Pulmonary Aspergillosis. J Fungi (Basel) 2023; 9:1104. [PMID: 37998909 PMCID: PMC10672581 DOI: 10.3390/jof9111104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Aspergillus fumigatus has been found to coinfect patients with severe SARS-CoV-2 virus infection, leading to COVID-19-associated pulmonary aspergillosis (CAPA). The CAPA all-cause mortality rate is approximately 50% and may be complicated by azole resistance. Genomic epidemiology can help shed light on the genetics of A. fumigatus causing CAPA, including the prevalence of resistance-associated alleles. We present a population genomic analysis of 21 CAPA isolates from four European countries with these isolates compared against 240 non-CAPA A. fumigatus isolates from a wider population. Bioinformatic analysis and antifungal susceptibility testing were performed to quantify resistance and identify possible genetically encoded azole-resistant mechanisms. The phylogenetic analysis of the 21 CAPA isolates showed that they were representative of the wider A. fumigatus population with no obvious clustering. The prevalence of phenotypic azole resistance in CAPA was 14.3% (n = 3/21); all three CAPA isolates contained a known resistance-associated cyp51A polymorphism. The relatively high prevalence of azole resistance alleles that we document poses a probable threat to treatment success rates, warranting the enhanced surveillance of A. fumigatus genotypes in these patients. Furthermore, potential changes to antifungal first-line treatment guidelines may be needed to improve patient outcomes when CAPA is suspected.
Collapse
Affiliation(s)
- Benjamin C. Simmons
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London W2 1PG, UK; (J.R.); (S.J.H.); (M.C.F.)
- UK Health Security Agency, London EP14 4PU, UK
| | - Johanna Rhodes
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London W2 1PG, UK; (J.R.); (S.J.H.); (M.C.F.)
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands;
| | - Thomas R. Rogers
- Department of Clinical Microbiology, St. James’ Hospital Campus, Trinity College Dublin, D08 NHY1 Dublin, Ireland; (T.R.R.); (A.F.T.); (M.M.); (D.S.)
| | - Paul E. Verweij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands;
- Radboudumc-CWZ Center of Expertise for Mycology, Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
- Center for Infectious Disease Research, Diagnostics and Laboratory Surveillance, National for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands;
| | - Alireza Abdolrasouli
- Department of Infectious Diseases, Imperial College London, London W2 1NY, UK;
- Department of Infectious Diseases, King’s College Hospital, London SE5 9RS, UK
| | - Silke Schelenz
- Infection Sciences, King’s College Hospital, London SE5 9RS, UK;
- School of Immunology & Microbial Sciences, King’s College London, London WC2R 2LS, UK
| | - Samuel J. Hemmings
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London W2 1PG, UK; (J.R.); (S.J.H.); (M.C.F.)
| | - Alida Fe Talento
- Department of Clinical Microbiology, St. James’ Hospital Campus, Trinity College Dublin, D08 NHY1 Dublin, Ireland; (T.R.R.); (A.F.T.); (M.M.); (D.S.)
- Department of Microbiology, Our Lady of Lourdes Hospital, A92 VW28 Drogheda, Ireland
- Department of Microbiology, Royal College of Surgeons, D02 YN77 Dublin, Ireland
| | - Auveen Griffin
- Department of Microbiology, St. James’ Hospital, D08 NHY1 Dublin, Ireland;
| | - Mary Mansfield
- Department of Clinical Microbiology, St. James’ Hospital Campus, Trinity College Dublin, D08 NHY1 Dublin, Ireland; (T.R.R.); (A.F.T.); (M.M.); (D.S.)
| | - David Sheehan
- Department of Clinical Microbiology, St. James’ Hospital Campus, Trinity College Dublin, D08 NHY1 Dublin, Ireland; (T.R.R.); (A.F.T.); (M.M.); (D.S.)
| | - Thijs Bosch
- Center for Infectious Disease Research, Diagnostics and Laboratory Surveillance, National for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands;
| | - Matthew C. Fisher
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London W2 1PG, UK; (J.R.); (S.J.H.); (M.C.F.)
| |
Collapse
|
30
|
Stover KR, Hawkins BK, Keck JM, Barber KE, Cretella DA. Antifungal resistance, combinations and pipeline: oh my! Drugs Context 2023; 12:2023-7-1. [PMID: 38021410 PMCID: PMC10653594 DOI: 10.7573/dic.2023-7-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023] Open
Abstract
Invasive fungal infections are a strong contributor to healthcare costs, morbidity and mortality, especially amongst hospitalized patients. Historically, Candida was responsible for approximately 15% of all nosocomial bloodstream infections. In the past 10 years, the epidemiology of Candida species has altered, with increasing prevalence of resistant species. With rising fungal resistance, especially in Candida spp., the demand for novel antifungal therapies has exponentially increased over the last decade. Newer antifungal agents have become an attractive option for patients needing long-term therapy for infections or those requiring antifungal prophylaxis. Despite advances in coverage of non-Candida pathogens with newer agents, clinical scenarios involving multidrug-resistant fungal pathogens continue to arise in practice. Combination antifungal therapy can lead to a host of side-effects, some of which can be drug limiting. Additional antifungal therapies with enhanced fungal spectrum of activity and decreased rates of adverse effects are warranted. Fosmanogepix, ibrexafungerp, olorofim and rezafungin may help fill some of these gaps in the antifungal armamentarium. This article is part of the Challenges and strategies in the management of invasive fungal infections Special Issue: https://www.drugsincontext.com/special_issues/challenges-and-strategies-in-the-management-of-invasive-fungal-infections.
Collapse
Affiliation(s)
- Kayla R Stover
- Department of Pharmacy Practice, University of Mississippi School of Pharmacy, Jackson, MS, USA
| | - Brandon K Hawkins
- Department of Clinical Pharmacy and Translational Science, The University of Tennessee Health Science Center, Knoxville, TN, USA
| | - J Myles Keck
- Department of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Katie E Barber
- Department of Pharmacy Practice, University of Mississippi School of Pharmacy, Jackson, MS, USA
| | - David A Cretella
- Division of Infectious Diseases, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
31
|
Arendrup MC, Arikan-Akdagli S, Jørgensen KM, Barac A, Steinmann J, Toscano C, Arsenijevic VA, Sartor A, Lass-Flörl C, Hamprecht A, Matos T, Rogers BRS, Quiles I, Buil J, Özenci V, Krause R, Bassetti M, Loughlin L, Denis B, Grancini A, White PL, Lagrou K, Willinger B, Rautemaa-Richardson R, Hamal P, Ener B, Unalan-Altintop T, Evren E, Hilmioglu-Polat S, Oz Y, Ozyurt OK, Aydin F, Růžička F, Meijer EFJ, Gangneux JP, Lockhart DEA, Khanna N, Logan C, Scharmann U, Desoubeaux G, Roilides E, Talento AF, van Dijk K, Koehler P, Salmanton-García J, Cornely OA, Hoenigl M. European candidaemia is characterised by notable differential epidemiology and susceptibility pattern: Results from the ECMM Candida III study. J Infect 2023; 87:428-437. [PMID: 37549695 DOI: 10.1016/j.jinf.2023.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
The objectives of this study were to assess Candida spp. distribution and antifungal resistance of candidaemia across Europe. Isolates were collected as part of the third ECMM Candida European multicentre observational study, conducted from 01 to 07-07-2018 to 31-03-2022. Each centre (maximum number/country determined by population size) included ∼10 consecutive cases. Isolates were referred to central laboratories and identified by morphology and MALDI-TOF, supplemented by ITS-sequencing when needed. EUCAST MICs were determined for five antifungals. fks sequencing was performed for echinocandin resistant isolates. The 399 isolates from 41 centres in 17 countries included C. albicans (47.1%), C. glabrata (22.3%), C. parapsilosis (15.0%), C. tropicalis (6.3%), C. dubliniensis and C. krusei (2.3% each) and other species (4.8%). Austria had the highest C. albicans proportion (77%), Czech Republic, France and UK the highest C. glabrata proportions (25-33%) while Italy and Turkey had the highest C. parapsilosis proportions (24-26%). All isolates were amphotericin B susceptible. Fluconazole resistance was found in 4% C. tropicalis, 12% C. glabrata (from six countries across Europe), 17% C. parapsilosis (from Greece, Italy, and Turkey) and 20% other Candida spp. Four isolates were anidulafungin and micafungin resistant/non-wild-type and five resistant to micafungin only. Three/3 and 2/5 of these were sequenced and harboured fks-alterations including a novel L657W in C. parapsilosis. The epidemiology varied among centres and countries. Acquired echinocandin resistance was rare but included differential susceptibility to anidulafungin and micafungin, and resistant C. parapsilosis. Fluconazole and voriconazole cross-resistance was common in C. glabrata and C. parapsilosis but with different geographical prevalence.
Collapse
Affiliation(s)
- Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark; Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Sevtap Arikan-Akdagli
- Department of Medical Microbiology, Hacettepe University Medical School, Ankara, Turkey
| | | | - Aleksandra Barac
- Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Belgrade, Serbia
| | - Jörg Steinmann
- Institute for Clincal Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Klinikum Nürnberg, Nuremberg, Germany
| | - Cristina Toscano
- Microbiology Laboratory, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| | - Valentina Arsic Arsenijevic
- Faculty of Medicine University of Belgrade, Institute of Microbiology and Immunology, Medical Mycology Reference Laboratory (MMRL), Belgrade, Serbia
| | - Assunta Sartor
- SC Microbiology, Department of Laboratory Medicine, Friuli Centrale University Health Authority, Udin, Italy
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Axel Hamprecht
- University of Cologne, University Hospital Cologne, Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany; University of Oldenburg, Institute for Medical Microbiology and Virology, Oldenburg, Germany
| | - Tadeja Matos
- Institute of Microbiology and Immunology, Medical Faculty, University of Ljubljana, Slovenia
| | - Benedict R S Rogers
- Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Inmaculada Quiles
- Department of Microbiology, La Paz University Hospital, Madrid, Spain
| | - Jochem Buil
- Canisius Wilhelmina Hospital (CWZ), Medical Microbiology and Infectious Diseases, Nijmegen, the Netherlands; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands; Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, the Netherlands
| | - Volkan Özenci
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Sweden; Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Robert Krause
- Biotech Med, Graz, Austria; Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Matteo Bassetti
- Infectious Diseases Unit, IRCCS San Martino Polyclinic Hospital, Genoa, Italy; Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Laura Loughlin
- Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Blandine Denis
- Department of Infectious Diseases, Hôpital Saint-Louis, Fernand Widal, Lariboisière, AP-HP, Paris, France
| | - Anna Grancini
- U.O.S Microbiology - Analysis Laboratory, IRCCS Foundation, Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - P Lewis White
- Public Health Wales Microbiology Cardiff and Cardiff University School of Medicine, United Kingdom
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Laboratory Medicine and National Reference Center for Mycosis University Hospitals Leuven, Leuven, Belgium
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Riina Rautemaa-Richardson
- Mycology Reference Centre Manchester and Department of Infectious Diseases, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Petr Hamal
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Beyza Ener
- Department of Medical Microbiology, Bursa Uludağ University Medical School, Bursa, Turkey
| | - Tugce Unalan-Altintop
- Department of Medical Microbiology, Hacettepe University Medical School, Ankara, Turkey
| | - Ebru Evren
- Department of Medical Microbiology, Ankara University Medical School, Ankara, Turkey
| | | | - Yasemin Oz
- Department of Medical Microbiology, Eskisehir Osmangazi University Medical School, Eskisehir, Turkey
| | - Ozlem Koyuncu Ozyurt
- Department of Medical Microbiology, Akdeniz University Medical School, Antalya, Turkey
| | - Faruk Aydin
- KTÜ Tıp Fakültesi Tıbbi Mikrobiyoloji AbD, Trabzon, Turkey
| | - Filip Růžička
- Masaryk University, Faculty of Medicine and St. Anne's Faculty Hospital, Department of Microbiology, Brno, Czech Republic
| | - Eelco F J Meijer
- Canisius Wilhelmina Hospital (CWZ), Medical Microbiology and Infectious Diseases, Nijmegen, the Netherlands; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands; Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, the Netherlands
| | - Jean Pierre Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000 Rennes, France
| | - Deborah E A Lockhart
- Department of Medical Microbiology, Aberdeen Royal Infirmary, Foresterhill, Aberdeen AB25 2ZN, United Kingdom; Institute of Medical Sciences, School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Nina Khanna
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland
| | - Clare Logan
- Clinical Infection Unit, St Georges University NHS Hospital Foundation Trust, Blackshaw Road, London, United Kingdom; Institute of Infection & Immunity, St Georges University London, Cranmer Terrace, London, United Kingdom
| | - Ulrike Scharmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Guillaume Desoubeaux
- Department of Parasitology-Mycology-Tropical medicine, CHRU Tours, Tours, France
| | - Emmanuel Roilides
- Hippokration General Hospital, Infectious Diseases Department, Medical School, Aristotle University of Thessaloniki, Greece
| | | | - Karin van Dijk
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Philipp Koehler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Institute of Translational Research, Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Jon Salmanton-García
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Institute of Translational Research, Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Institute of Translational Research, Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Martin Hoenigl
- Biotech Med, Graz, Austria; Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
| |
Collapse
|
32
|
Hassoun N, Kassem II, Hamze M, El Tom J, Papon N, Osman M. Antifungal Use and Resistance in a Lower-Middle-Income Country: The Case of Lebanon. Antibiotics (Basel) 2023; 12:1413. [PMID: 37760710 PMCID: PMC10525119 DOI: 10.3390/antibiotics12091413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance is a serious threat, particularly in low- and middle-income countries (LMICs). Antifungal resistance is often underestimated in both healthcare and non-clinical settings. In LMICs, it is believed that the inappropriate use of antifungals, limited surveillance systems, and low diagnostic capacities are significant drivers of resistance. Like other LMICs, Lebanon lacks antifungal use and resistance surveillance programs, and the impact of antifungal resistance in the country remains unclear, especially during the unfolding economic crisis that has severely affected medical care and access to safe food and water. Interestingly, the widespread use of antifungals in medicine and agriculture has raised concerns about the development of antifungal resistance in Lebanon. In this light, we aimed to survey available antifungal drugs in the country and evaluate susceptibility patterns of prevalent fungal species to guide empiric treatments and develop antifungal stewardship programs in Lebanon. We noted that the economic crisis resulted in significant increases in antifungal drug prices. Additionally, a comprehensive literature search across PubMed, ScienceDirect, and Google Scholar databases identified 15 studies on fungal infections and antifungal resistance conducted from 1998 to 2023 in Lebanon. While data on antifungal resistance are limited, 87% of available studies in Lebanon focused on candidiasis, while the remaining 13% were on aspergillosis. Overall, we observed a marked antimicrobial resistance among Candida and Aspergillus species. Additionally, incidences of Candida auris infections have increased in Lebanese hospitals during the COVID-19 pandemic, with a uniform resistance to fluconazole and amphotericin-B. Taken together, a One Health approach, reliable diagnostics, and prudent antifungal use are required to control the spread of resistant fungal pathogens in healthcare and agricultural settings.
Collapse
Affiliation(s)
- Nesrine Hassoun
- Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon;
| | - Issmat I. Kassem
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA;
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon;
| | - Jad El Tom
- School of Pharmacy, Lebanese American University, Byblos 1401, Lebanon;
| | - Nicolas Papon
- University of Angers, University of Brest, IRF, SFR ICAT, F-49000 Angers, France;
| | - Marwan Osman
- Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
33
|
Jenks JD, White PL, Kidd SE, Goshia T, Fraley SI, Hoenigl M, Thompson GR. An update on current and novel molecular diagnostics for the diagnosis of invasive fungal infections. Expert Rev Mol Diagn 2023; 23:1135-1152. [PMID: 37801397 PMCID: PMC10842420 DOI: 10.1080/14737159.2023.2267977] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Invasive fungal infections cause millions of infections annually, but diagnosis remains challenging. There is an increased need for low-cost, easy to use, highly sensitive and specific molecular assays that can differentiate between colonized and pathogenic organisms from different clinical specimens. AREAS COVERED We reviewed the literature evaluating the current state of molecular diagnostics for invasive fungal infections, focusing on current and novel molecular tests such as polymerase chain reaction (PCR), digital PCR, high-resolution melt (HRM), and metagenomics/next generation sequencing (mNGS). EXPERT OPINION PCR is highly sensitive and specific, although performance can be impacted by prior/concurrent antifungal use. PCR assays can identify mutations associated with antifungal resistance, non-Aspergillus mold infections, and infections from endemic fungi. HRM is a rapid and highly sensitive diagnostic modality that can identify a wide range of fungal pathogens, including down to the species level, but multiplex assays are limited and HRM is currently unavailable in most healthcare settings, although universal HRM is working to overcome this limitation. mNGS offers a promising approach for rapid and hypothesis-free diagnosis of a wide range of fungal pathogens, although some drawbacks include limited access, variable performance across platforms, the expertise and costs associated with this method, and long turnaround times in real-world settings.
Collapse
Affiliation(s)
- Jeffrey D. Jenks
- Durham County Department of Public Health, Durham, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - P. Lewis White
- Public Health Wales Microbiology Cardiff, UHW, Cardiff, United Kingdom and Centre for trials research/Division of Infection/Immunity, Cardiff University, Cardiff, UK
| | - Sarah E. Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, South Australia, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Tyler Goshia
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Stephanie I. Fraley
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - George R. Thompson
- University of California Davis Center for Valley Fever, Sacramento, California, United States of America
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, California, United States of America
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
34
|
Pelin IM, Silion M, Popescu I, Rîmbu CM, Fundueanu G, Constantin M. Pullulan/Poly(vinyl alcohol) Hydrogels Loaded with Calendula officinalis Extract: Design and In Vitro Evaluation for Wound Healing Applications. Pharmaceutics 2023; 15:1674. [PMID: 37376122 PMCID: PMC10301438 DOI: 10.3390/pharmaceutics15061674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The therapeutic efficiency of plant extracts has been limited by their poor pharmaceutical availability. Hydrogels have promising potential to be applied as wound dressings due to their high capacity to absorb exudates and their enhanced performance in loading and releasing plant extracts. In this work, pullulan/poly (vinyl alcohol) (P/PVA) hydrogels were first prepared using an eco-friendly method based on both a covalent and physical cross-linking approach. Then, the hydrogels were loaded with the hydroalcoholic extract of Calendula officinalis by a simple post-loading immersion method. Different loading capacities were investigated in terms of the physico-chemical properties, chemical composition, mechanical properties, and water absorption. The hydrogels exhibited high loading efficiency due to the hydrogen bonding interactions between polymer and extract. The water retention capacity as well as the mechanical properties decreased with the increase in the extract amount in hydrogel. However, higher amounts of extract in the hydrogel improved the bioadhesiveness. The release of extract from hydrogels was controlled by the Fickian diffusion mechanism. Extract-loaded hydrogels expressed high antioxidant activity, reaching 70% DPPH radical scavenging after 15 min immersion in buffer solution at pH 5.5. Additionally, loaded hydrogels showed a high antibacterial activity against Gram-positive and Gram-negative bacteria and were non-cytotoxic against HDFa cells.
Collapse
Affiliation(s)
- Irina Mihaela Pelin
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.M.P.); (M.S.); (I.P.); (G.F.)
| | - Mihaela Silion
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.M.P.); (M.S.); (I.P.); (G.F.)
| | - Irina Popescu
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.M.P.); (M.S.); (I.P.); (G.F.)
| | - Cristina Mihaela Rîmbu
- Faculty of Veterinary Medicine “Ion Ionescu de la Brad”, University of Life Science, 8 Mihail Sadoveanu Alley, 707027 Iasi, Romania;
| | - Gheorghe Fundueanu
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.M.P.); (M.S.); (I.P.); (G.F.)
| | - Marieta Constantin
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.M.P.); (M.S.); (I.P.); (G.F.)
| |
Collapse
|
35
|
Pfaller MA, Carvalhaes CG, Deshpande LM, Rhomberg PR, Castanheira M. In Vitro Activity of Isavuconazole and Other Mould-Active Azoles against Aspergillus fumigatus with and without CYP51 Alterations. J Fungi (Basel) 2023; 9:608. [PMID: 37367544 DOI: 10.3390/jof9060608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 06/28/2023] Open
Abstract
Azole resistance in Aspergillus fumigatus (AFM) is mainly associated with mutations in CYP51A and its promoter region or its homologue CYP51B. We evaluated the in vitro activity of isavuconazole, itraconazole, posaconazole, and voriconazole against 660 AFM collected during 2017-2020. Isolates were tested via CLSI broth microdilution. CLSI epidemiological cutoff values were applied. Non-wildtype (NWT) isolates to azoles were screened for alterations in the CYP51 sequences using whole genome sequencing. Azoles had similar activities against 660 AFM isolates. Overall, AFM displayed WT MIC values to isavuconazole (92.7%), itraconazole (92.9%), posaconazole (97.3%), and voriconazole (96.7%). Only 66 isolates (10.0%) were NWT to 1 or more of the azoles, and 32 harbored one or more alterations in the CYP51 sequences. Of these, 29/32 (90.1%) were NWT to itraconazole, 25/32 (78.1%) were NWT to isavuconazole, 17/32 (53.1%) were NWT to voriconazole, and 11/32 (34.4%) were NWT to posaconazole. The most frequent alteration was CYP51A TR34/L98H, carried by 14 isolates. Four isolates carried the alteration I242V in CYP51A, and G448S; A9T, or G138C was carried by one isolate each. Multiple alterations in CYP51A were detected in five isolates. Alterations in CYP51B were noted in seven isolates. Among 34 NWT isolates without -CYP51 alterations, WT rates to isavuconazole, itraconazole, voriconazole, and posaconazole were 32.4%, 47.1%, 85.3%, and 82.4%, respectively. Ten different CYP51 alterations were detected in 32/66 NWT isolates. Alterations in AFM CYP51 sequences can have variable effects on the in vitro activity of the azoles that are best delineated by testing all triazoles.
Collapse
Affiliation(s)
- Michael A Pfaller
- Department of Pathology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
- JMI Laboratories, 345 Beaver Kreek Centre, Suite A, North Liberty, IA 52317, USA
| | - Cecilia G Carvalhaes
- JMI Laboratories, 345 Beaver Kreek Centre, Suite A, North Liberty, IA 52317, USA
| | | | - Paul R Rhomberg
- JMI Laboratories, 345 Beaver Kreek Centre, Suite A, North Liberty, IA 52317, USA
| | - Mariana Castanheira
- JMI Laboratories, 345 Beaver Kreek Centre, Suite A, North Liberty, IA 52317, USA
| |
Collapse
|
36
|
Espinel-Ingroff A, Cantón E. Methods for Antifungal Susceptibility Testing of the Cryptococcus neoformans/ C. gattii Complex: Strengths and Limitations. J Fungi (Basel) 2023; 9:jof9050542. [PMID: 37233253 DOI: 10.3390/jof9050542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
When method-dependent categorical endpoints are available, namely either BPs or ECVs, MICs could aid in selecting the best treatment agent(s). BPs can categorize an isolate as either susceptible or resistant while the ECVs/ECOFFs can distinguish the wild type (WT, no known resistance mechanisms) from the Non-WT (NWT, harboring resistant mechanisms). Our literature review focused on the Cryptococcus species complex (SC) and the available methods and categorization endpoints. We also covered the incidence of these infections as well as the numerous Cryptococcus neoformans SC and C. gattii SC genotypes. The most important agents to treat cryptococcal infections are fluconazole (widely used), amphotericin B, and flucytosine. We provide data from the collaborative study that defined CLSI fluconazole ECVs for the most common cryptococcal species or genotypes and modes. EUCAST ECVs/ECOFFs are not yet available for fluconazole. We have summarized the incidence of cryptococccal infections (2000-2015) where fluconazole MICs were obtained by reference and commercial antifungal susceptibility tests. This occurrence is documented all over the world and those fluconazole MICs are mostly categorized by available CLSI ECVs/BPs as "resistant" instead of non-susceptible strains, including those by the commercial methods. As expected, the agreement between the CLSI and commercial methods is variable because SYO and Etest data could yield low/variable agreement (<90%) versus the CLSI method. Therefore, since BPs/ECVs are species and method dependent, why not gather sufficient MICs by commercial methods and define the required ECVs for these species?
Collapse
Affiliation(s)
| | - Emilia Cantón
- Severe Infection Research Group, Health Research Institute Hospital La Fe, 46026 Valencia, Spain
| |
Collapse
|
37
|
Otto WR, Arendrup MC, Fisher BT. A Practical Guide to Antifungal Susceptibility Testing. J Pediatric Infect Dis Soc 2023; 12:214-221. [PMID: 36882026 PMCID: PMC10305799 DOI: 10.1093/jpids/piad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
We review antifungal susceptibility testing and the development of clinical breakpoints, and detail an approach to using antifungal susceptibility results when breakpoints have not been defined. This information may prove helpful when selecting therapy for invasive fungal infections in children.
Collapse
Affiliation(s)
- William R Otto
- Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Infectious Diseases, Cincinnati Children’s Hospital and Medical Center, Cincinnati, Ohio, USA
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Brian T Fisher
- Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
38
|
Syntheses, crystal structure, luminescent properties and Hirshfeld surface of a set of triazole-based salts. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
39
|
ERG11 Analysis among Clinical Isolates of Trichosporon asahii with Different Azole Susceptibility Profiles. Antimicrob Agents Chemother 2022; 66:e0110122. [PMID: 36374073 PMCID: PMC9765002 DOI: 10.1128/aac.01101-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We analyzed a cohort of Trichosporon asahii strains with different MICs of fluconazole and voriconazole and evaluated the presence of ERG11 mutations. ERG11 mutation conferring an amino acid change was found and its resistance potential was evaluated by cloning into Saccharomyces cerevisiae susceptible host strain. Transformants were not resistant to either fluconazole nor voriconazole. Our results suggest that ERG11 variants exist among T. asahii isolates, but are not responsible for resistance phenotypes.
Collapse
|
40
|
Cai H, Zhang H, Guo DH, Wang Y, Gu J. Genomic Data Mining Reveals Abundant Uncharacterized Transporters in Coccidioides immitis and Coccidioides posadasii. J Fungi (Basel) 2022; 8:jof8101064. [PMID: 36294626 PMCID: PMC9604845 DOI: 10.3390/jof8101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Coccidioides immitis and Coccidioides posadasii are causative agents of coccidioidomycosis, commonly known as Valley Fever. The increasing Valley Fever cases in the past decades, the expansion of endemic regions, and the rising azole drug-resistant strains have underscored an urgent need for a better understanding of Coccidioides biology and new antifungal strategies. Transporters play essential roles in pathogen survival, growth, infection, and adaptation, and are considered as potential drug targets. However, the composition and roles of transport machinery in Coccidioides remain largely unknown. In this study, genomic data mining revealed an abundant, uncharacterized repertoire of transporters in Coccidioides genomes. The catalog included 1288 and 1235 transporter homologs in C. immitis and C. posadasii, respectively. They were further annotated to class, subclass, family, subfamily and range of substrates based on the Transport Classification (TC) system. They may play diverse roles in nutrient uptake, metabolite secretion, ion homeostasis, drug efflux, or signaling. This study represents an initial effort for a systems-level characterization of the transport machinery in these understudied fungal pathogens.
Collapse
Affiliation(s)
- Hong Cai
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Daniel H. Guo
- Strake Jesuit College Preparatory, Houston, TX 77036, USA
| | - Yufeng Wang
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
- Correspondence: (Y.W.); (J.G.)
| | - Jianying Gu
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York, NY 10314, USA
- Correspondence: (Y.W.); (J.G.)
| |
Collapse
|