1
|
Eriksson M, Nylén S, Grönvik KO. Passive immunization of mice with IgY anti-H5N1 protects against experimental influenza virus infection and allows development of protective immunity. Vaccine 2024; 42:126133. [PMID: 39019655 DOI: 10.1016/j.vaccine.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Influenza virus contributes substantially to the global human and animal disease burden. To protect individuals against disease, strategies are needed to minimize the time an individual is at risk of developing disease symptoms. Passive immunization using avian IgY antibodies can protect individuals against a variety of pathogens, including influenza virus. Yet the effect of IgY administration on generation of protective immunity is largely unknown. To address the effect of passive immunization on the host immune response development, adult or aged, male and female C57BL/6NCrl mice received chicken IgY anti-H5N1, normal IgY or PBS intranasally four hours before, and 20 hours after intranasal infection with H1N1 influenza A virus (PR8). The mice receiving cross-reactive IgY anti-H5N1 were protected from disease and developed influenza virus-specific memory T cells similar to control-treated mice. When re-challenged with PR8 35 days post primary infection IgY anti-H5N1-treated mice were fully protected. Moreover, when challenged with heterologous H3N2 influenza A virus (X-31) or with PR8 three months post infection the mice were protected against severe disease and death, albeit a slight transient weight loss was noted. The results show that passive immunization with IgY anti-H5N1 is safe and protects mice against disease induced by influenza virus without inhibiting development of protective immunity after virus exposure. This indicate that passive immunization can be used as prophylactic therapy in combination with immunization to prevent disease.
Collapse
Affiliation(s)
- Malin Eriksson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden; Department of Microbiology, Swedish Veterinary Agency, 751 89 Uppsala, Sweden.
| | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden.
| | - Kjell-Olov Grönvik
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden; Uppsala Immunobiology Lab, 752 37 Uppsala, Sweden.
| |
Collapse
|
2
|
Le Sage V, Lowen AC, Lakdawala SS. Block the Spread: Barriers to Transmission of Influenza Viruses. Annu Rev Virol 2023; 10:347-370. [PMID: 37308086 DOI: 10.1146/annurev-virology-111821-115447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Respiratory viruses, such as influenza viruses, cause significant morbidity and mortality worldwide through seasonal epidemics and sporadic pandemics. Influenza viruses transmit through multiple modes including contact (either direct or through a contaminated surface) and inhalation of expelled aerosols. Successful human to human transmission requires an infected donor who expels virus into the environment, a susceptible recipient, and persistence of the expelled virus within the environment. The relative efficiency of each mode can be altered by viral features, environmental parameters, donor and recipient host characteristics, and viral persistence. Interventions to mitigate transmission of influenza viruses can target any of these factors. In this review, we discuss many aspects of influenza virus transmission, including the systems to study it, as well as the impact of natural barriers and various nonpharmaceutical and pharmaceutical interventions.
Collapse
Affiliation(s)
- Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA;
| | - Seema S Lakdawala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA;
| |
Collapse
|
3
|
Sequential Transmission of Influenza Viruses in Ferrets Does Not Enhance Infectivity and Does Not Predict Transmissibility in Humans. mBio 2022; 13:e0254022. [PMID: 36300929 PMCID: PMC9765597 DOI: 10.1128/mbio.02540-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Airborne transmission in ferrets is a key component of pandemic risk assessment. However, some emerging avian influenza viruses transmit between ferrets but do not spread in humans. Therefore, we evaluated sequential rounds of airborne transmission as an approach to enhance the predictive accuracy of the ferret model. We reasoned that infection of ferrets via the respiratory route and onward transmission would more closely model transmission in humans. We hypothesized that pandemic and seasonal viruses would transmit efficiently over two rounds of transmission, while emerging avian viruses would fail to transmit in a second round. The 2009 pandemic H1N1 (pdm09) and seasonal H3N2 viruses were compared to avian-origin H7N9 and H3N8 viruses. Depending on the virus strain, transmission efficiency varied from 50 to 100% during the first round of transmission; the efficiency for each virus did not change during the second round, and viral replication kinetics in both rounds of transmission were similar. Both the H1N1pdm09 and H7N9 viruses acquired specific mutations during sequential transmission, while the H3N2 and H3N8 viruses did not; however, a global analysis of host-adaptive mutations revealed that minimal changes were associated with transmission of H1N1 and H3N2 viruses, while a greater number of changes occurred in the avian H3N8 and H7N9 viruses. Thus, influenza viruses that transmit in ferrets maintain their transmission efficiency through serial rounds of transmission. This answers the question of whether ferrets can propagate viruses through more than one round of airborne transmission and emphasizes that transmission in ferrets is necessary but not sufficient to infer transmissibility in humans. IMPORTANCE Airborne transmission in ferrets is used to gauge the pandemic potential of emerging influenza viruses; however, some emerging influenza viruses that transmit between ferrets do not spread between humans. Therefore, we evaluated sequential rounds of airborne transmission in ferrets as a strategy to enhance the predictive accuracy of the ferret model. Human influenza viruses transmitted efficiently (>83%) over two rounds of airborne transmission, demonstrating that, like humans, ferrets infected by the respiratory route can propagate the infection onward through the air. However, emerging avian influenza viruses with associated host-adaptive mutations also transmitted through sequential transmission. Thus, airborne transmission in ferrets is necessary but not sufficient to infer transmissibility in humans, and sequential transmission did not enhance pandemic risk assessment.
Collapse
|
4
|
Madrid DMDC, Gu W, Artiaga BL, Yang G, Loeb J, Hawkins IK, Castleman WL, Lednicky JA, Richt JA, Driver JP. Comparison of oseltamivir and α-galactosylceramide for reducing disease and transmission in pigs infected with 2009 H1N1 pandemic influenza virus. Front Vet Sci 2022; 9:999507. [PMID: 36337191 PMCID: PMC9635317 DOI: 10.3389/fvets.2022.999507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/30/2022] [Indexed: 11/24/2022] Open
Abstract
Influenza virus infections are a major cause of respiratory disease in humans. Neuraminidase inhibitors (NAIs) are the primary antiviral medication used to treat ongoing influenza infections. However, NAIs are not always effective for controlling virus shedding and lung inflammation. Other concerns are the emergence of NAI-resistant virus strains and the risk of side effects, which are occasionally severe. Consequently, additional anti-influenza therapies to replace or combine with NAIs are desirable. Here, we compared the efficacy of the NAI oseltamivir with the invariant natural killer T (iNKT) cell superagonist, α-galactosylceramide (α-GalCer), which induces innate immune responses that inhibit influenza virus replication in mouse models. We show that oseltamivir reduced lung lesions and lowered virus titers in the upper respiratory tract of pigs infected with A/California/04/2009 (CA04) pandemic H1N1pdm09. It also reduced virus transmission to influenza-naïve contact pigs. In contrast, α-GalCer had no impact on virus replication, lung disease, or virus transmission, even when used in combination with oseltamivir. This is significant as iNKT-cell therapy has been studied as an approach for treating humans with influenza.
Collapse
Affiliation(s)
| | - Weihong Gu
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Bianca L. Artiaga
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Guan Yang
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Julia Loeb
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Ian K. Hawkins
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, Gainesville, FL, United States
| | - William L. Castleman
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, Gainesville, FL, United States
| | - John A. Lednicky
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Jürgen A. Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - John P. Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
5
|
Induction of Interferon-Stimulated Genes Correlates with Reduced Growth of Influenza A Virus in Lungs after RIG-I Agonist Treatment of Ferrets. J Virol 2022; 96:e0055922. [PMID: 35916513 PMCID: PMC9400473 DOI: 10.1128/jvi.00559-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Intracellular RIG-I receptors represent key innate sensors of RNA virus infection, and RIG-I activation results in the induction of hundreds of host effector genes, including interferon-stimulated genes (ISGs). Synthetic RNA agonists targeting RIG-I have shown promise as antivirals against a broad spectrum of viruses, including influenza A virus (IAV), in both in vitro and mouse models of infection. Herein, we demonstrate that treatment of a ferret airway epithelial (FRL) cell line with a RIG-I agonist rapidly and potently induced expression of a broad range of ISGs and resulted in potent inhibition of growth of different IAV strains. In ferrets, a single intravenous injection of RIG-I agonist was associated with upregulated ISG expression in peripheral blood mononuclear cells and lung tissue, but not in nasal tissues. In a ferret model of viral contact transmission, a single treatment of recipient animals 24 h prior to cohousing with IAV-infected donors did not reduce virus transmission and shedding but did result in reduced lung virus titers 6 days after treatment. A single treatment of the IAV-infected donor animals also resulted in reduced virus titers in the lungs 2 days later. Thus, a single intravenous treatment with RIG-I agonist prior to infection or to ferrets with an established IAV infection can reduce virus growth in the lungs. These findings support further development of RIG-I agonists as effective antiviral treatments to limit the impact of IAV infections, particularly in reducing virus replication in the lower airways. IMPORTANCE RIG-I agonists have shown potential as broad-spectrum antivirals in vitro and in mouse models of infection. However, their antiviral potential has not been reported in outbred animals such as ferrets, which are widely regarded as the gold standard small animal model for human IAV infections. Herein, we demonstrate that RIG-I agonist treatment of a ferret airway cell line resulted in ISG induction and inhibition of a broad range of human influenza viruses. A single intravenous treatment of ferrets also resulted in systemic induction of ISGs, including in lung tissue, and when delivered to animals prior to IAV exposure or to animals with established IAV infection treatment resulted in reduced virus replication in the lungs. These data demonstrate the effectiveness of single RIG-I treatment against IAV in the ferret model and highlight the importance of future studies to optimize treatment regimens and delivery routes to maximize their ability to ameliorate IAV infections.
Collapse
|
6
|
Effect of Baloxavir and Oseltamivir in Combination on Infection with Influenza Viruses with PA/I38T or PA/E23K Substitutions in the Ferret Model. mBio 2022; 13:e0105622. [PMID: 35938724 PMCID: PMC9426601 DOI: 10.1128/mbio.01056-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Amino acid substitutions I38T and E23K in the influenza polymerase acidic (PA) protein lead to reduced susceptibility to the influenza antiviral drug baloxavir. The in vivo effectiveness of baloxavir and oseltamivir for treatment of these viruses is currently unknown. Using patient-derived influenza isolates, combination therapy was equally effective as monotherapy in reducing viral titers in the upper respiratory tract of ferrets infected with A(H1N1pdm09)-PA/E23K or A(H3N2)-PA/I38T. When treated with baloxavir plus oseltamivir, infection with a mixture of PA/I38T or PA/E23K and corresponding wild-type virus was characterized by a lower selection of viruses with reduced baloxavir susceptibility over the course of infection compared to baloxavir monotherapy. De novo emergence of the oseltamivir resistance mutation NA/H275Y occurred in ferrets treated with oseltamivir alone but not in ferrets treated with baloxavir plus oseltamivir. Our data suggest that combination therapy with influenza drugs with different mechanisms of action decreased the selection pressure for viruses with reduced drug susceptibility.
Collapse
|
7
|
Hayden FG, Asher J, Cowling BJ, Hurt AC, Ikematsu H, Kuhlbusch K, Lemenuel-Diot A, Du Z, Meyers LA, Piedra PA, Takazono T, Yen HL, Monto AS. Reducing influenza virus transmission: the value of antiviral treatment. Clin Infect Dis 2021; 74:532-540. [PMID: 34245250 PMCID: PMC8834654 DOI: 10.1093/cid/ciab625] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 11/16/2022] Open
Abstract
Prompt antiviral treatment has the potential to reduce influenza virus transmission to close contacts, but rigorous data on the magnitude of treatment effects on transmission are limited. Animal model data indicate that rapid reductions in viral replication after antiviral treatment reduce the risk of transmission. Observational and clinical trial data with oseltamivir and other neuraminidase inhibitors indicate that prompt treatment of household index patients seems to reduce the risk of illness in contacts, although the magnitude of the reported effects has varied widely across studies. In addition, the potential risk of transmitting drug-resistant variants exists with all approved classes of influenza antivirals. A controlled trial examining baloxavir treatment efficacy to reduce transmission, including the risk of transmitting virus with reduced baloxavir susceptibility, is currently in progress. If reduced transmission risk is confirmed, modeling studies indicate that early treatment could have major epidemiologic benefits in seasonal and pandemic influenza.
Collapse
Affiliation(s)
- Frederick G Hayden
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, USA
| | | | - Benjamin J Cowling
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | | | | | | | - Zhanwei Du
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lauren Ancel Meyers
- Department of Integrative Biology and Statistics & Data Sciences, University of Texas, Austin, Texas, USA
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, USA
| | - Takahiro Takazono
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hui-Ling Yen
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Arnold S Monto
- University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Kim YI, Kim D, Yu KM, Seo HD, Lee SA, Casel MAB, Jang SG, Kim S, Jung W, Lai CJ, Choi YK, Jung JU. Development of Spike Receptor-Binding Domain Nanoparticles as a Vaccine Candidate against SARS-CoV-2 Infection in Ferrets. mBio 2021; 12:e00230-21. [PMID: 33653891 PMCID: PMC8092224 DOI: 10.1128/mbio.00230-21] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/31/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a causative agent of the CoV disease 2019 (COVID-19) pandemic, enters host cells via the interaction of its receptor-binding domain (RBD) of the spike protein with host angiotensin-converting enzyme 2 (ACE2). Therefore, the RBD is a promising vaccine target to induce protective immunity against SARS-CoV-2 infection. In this study, we report the development of an RBD protein-based vaccine candidate against SARS-CoV-2 using self-assembling Helicobacter pylori-bullfrog ferritin nanoparticles as an antigen delivery system. RBD-ferritin protein purified from mammalian cells efficiently assembled into 24-mer nanoparticles. Sixteen- to 20-month-old ferrets were vaccinated with RBD-ferritin nanoparticles (RBD nanoparticles) by intramuscular or intranasal inoculation. All vaccinated ferrets with RBD nanoparticles produced potent neutralizing antibodies against SARS-CoV-2. Strikingly, vaccinated ferrets demonstrated efficient protection from SARS-CoV-2 challenge, showing no fever, body weight loss, or clinical symptoms. Furthermore, vaccinated ferrets showed rapid clearance of infectious virus in nasal washes and lungs as well as of viral RNA in respiratory organs. This study demonstrates that spike RBD-nanoparticles are an effective protein vaccine candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Young-Il Kim
- College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Dokyun Kim
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kwang-Min Yu
- College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Hogyu David Seo
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shin-Ae Lee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mark Anthony B Casel
- College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Seung-Gyu Jang
- College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Stephanie Kim
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - WooRam Jung
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Chih-Jen Lai
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Young Ki Choi
- College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Jae U Jung
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Kim YI, Kim D, Yu KM, Seo HD, Lee SA, Casel MAB, Jang SG, Kim S, Jung W, Lai CJ, Choi YK, Jung JU. Development of spike receptor-binding domain nanoparticle as a vaccine candidate against SARS-CoV-2 infection in ferrets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.28.428743. [PMID: 33532767 PMCID: PMC7852231 DOI: 10.1101/2021.01.28.428743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a causative agent of COVID-19 pandemic, enters host cells via the interaction of its Receptor-Binding Domain (RBD) of Spike protein with host Angiotensin-Converting Enzyme 2 (ACE2). Therefore, RBD is a promising vaccine target to induce protective immunity against SARS-CoV-2 infection. In this study, we report the development of RBD protein-based vaccine candidate against SARS-CoV-2 using self-assembling H. pylori -bullfrog ferritin nanoparticles as an antigen delivery. RBD-ferritin protein purified from mammalian cells efficiently assembled into 24-mer nanoparticles. 16-20 months-old ferrets were vaccinated with RBD-ferritin nanoparticles (RBD-nanoparticles) by intramuscular or intranasal inoculation. All vaccinated ferrets with RBD-nanoparticles produced potent neutralizing antibodies against SARS-CoV-2. Strikingly, vaccinated ferrets demonstrated efficient protection from SARS-CoV-2 challenge, showing no fever, body weight loss and clinical symptoms. Furthermore, vaccinated ferrets showed rapid clearance of infectious viruses in nasal washes and lungs as well as viral RNA in respiratory organs. This study demonstrates the Spike RBD-nanoparticle as an effective protein vaccine candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Young-Il Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Dokyun Kim
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kwang-Min Yu
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Hogyu David Seo
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shin-Ae Lee
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mark Anthony B. Casel
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Seung-Gyu Jang
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Stephanie Kim
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - WooRam Jung
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Chih-Jen Lai
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Young Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Jae U. Jung
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
10
|
Kitano M, Matsuzaki T, Oka R, Baba K, Noda T, Yoshida Y, Sato K, Kiyota K, Mizutare T, Yoshida R, Sato A, Kamimori H, Shishido T, Naito A. The antiviral effects of baloxavir marboxil against influenza A virus infection in ferrets. Influenza Other Respir Viruses 2020; 14:710-719. [PMID: 32533654 PMCID: PMC7578299 DOI: 10.1111/irv.12760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/17/2022] Open
Abstract
Background Baloxavir marboxil (BXM), the oral prodrug of baloxavir acid (BXA), greatly reduces virus titers as well as influenza symptoms of uncomplicated influenza in patients. Objectives To investigate the pharmacokinetic profiles of BXA and its efficacy against influenza A virus infection in ferrets. Methods Ferrets were dosed orally with BXM (10 and 30 mg/kg twice daily for 1 day), oseltamivir phosphate (OSP) (5 mg/kg twice daily for 2 days) or vehicle to measure the antiviral effects of BXM and OSP. The pharmacokinetic parameters of BXA was determined after single oral dosing of BXM. Results The maximum plasma concentrations of BXA were observed at 1.50 and 2.00 hours with the two BXM doses, which then declined with an elimination half‐life of 6.91 and 4.44 hours, respectively. BXM at both doses remained detectable in the plasma in ferrets, which may be due to higher stability in liver microsomes. BXM (10 and 30 mg/kg twice daily) treatment at Day 1 post‐infection (p.i.) reduced virus titers by ≥3 log10 of the 50% tissue culture infective doses by Day 2, which was significantly different compared with vehicle or OSP. Body temperature drops over time were significantly greater with BXM than with vehicle or OSP. Significant reduction in virus titers was also demonstrated when BXM was administrated after symptom onset at Day 2 p.i. compared with vehicle and OSP, although body temperature changes largely overlapped between Day 2 and Day 4. Conclusions The results highlight the rapid antiviral action of BXM with post‐exposure prophylaxis or therapeutic dosing in ferrets and offer support for further research on prevention of influenza virus infection and transmission.
Collapse
Affiliation(s)
| | | | - Ryoko Oka
- Shionogi & Co., Ltd., Toyonaka, Japan
| | - Kaoru Baba
- Shionogi TechnoAdvance Research, Co., Ltd., Toyonaka, Japan
| | - Takahiro Noda
- Shionogi TechnoAdvance Research, Co., Ltd., Toyonaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Farrukee R, Tai CMK, Oh DY, Anderson DE, Gunalan V, Hibberd M, Lau GYF, Barr IG, von Messling V, Maurer-Stroh S, Hurt AC. Utilising animal models to evaluate oseltamivir efficacy against influenza A and B viruses with reduced in vitro susceptibility. PLoS Pathog 2020; 16:e1008592. [PMID: 32555740 PMCID: PMC7326275 DOI: 10.1371/journal.ppat.1008592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/30/2020] [Accepted: 05/02/2020] [Indexed: 11/19/2022] Open
Abstract
The neuraminidase (NA) inhibitor (NAI) oseltamivir (OST) is the most widely used influenza antiviral drug. Several NA amino acid substitutions are reported to reduce viral susceptibility to OST in in vitro assays. However, whether there is a correlation between the level of reduction in susceptibility in vitro and the efficacy of OST against these viruses in vivo is not well understood. In this study, a ferret model was utilised to evaluate OST efficacy against circulating influenza A and B viruses with a range of in vitro generated 50% inhibitory concentrations (IC50) values for OST. OST efficacy against an A(H1N1)pdm09 and an A(H1N1)pdm09 virus with the H275Y substitution in neuraminidase was also tested in the macaque model. The results from this study showed that OST had a significant impact on virological parameters compared to placebo treatment of ferrets infected with wild-type influenza A viruses with normal IC50 values (~1 nM). However, this efficacy was lower against wild-type influenza B and other viruses with higher IC50 values. Differing pathogenicity of the viruses made evaluation of clinical parameters difficult, although some effect of OST in reducing clinical signs was observed with influenza A(H1N1) and A(H1N1)pdm09 (H275Y) viruses. Viral titres in macaques were too low to draw conclusive results. Analysis of the ferret data revealed a correlation between IC50 and OST efficacy in reducing viral shedding but highlighted that the current WHO guidelines/criteria for defining normal, reduced or highly reduced inhibition in influenza B viruses based on in vitro data are not well aligned with the low in vivo OST efficacy observed for both wild-type influenza B viruses and those with reduced OST susceptibility.
Collapse
Affiliation(s)
- Rubaiyea Farrukee
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Celeste Ming-Kay Tai
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ding Yuan Oh
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- School of Health and Life Sciences, Federation University, Churchill, Victoria, Australia
| | | | - Vithiagaran Gunalan
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Martin Hibberd
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Gary Yuk-Fai Lau
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Ian G. Barr
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- School of Health and Life Sciences, Federation University, Churchill, Victoria, Australia
| | - Veronika von Messling
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Veterinary Medicine Division, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
- National Public Health Laboratories, National Centre for Infectious Diseases, Ministry of Health, Singapore
- Department of Biological Sciences, National University Singapore, Singapore
| | - Aeron C. Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Abdul-Aziz MH, Alffenaar JWC, Bassetti M, Bracht H, Dimopoulos G, Marriott D, Neely MN, Paiva JA, Pea F, Sjovall F, Timsit JF, Udy AA, Wicha SG, Zeitlinger M, De Waele JJ, Roberts JA. Antimicrobial therapeutic drug monitoring in critically ill adult patients: a Position Paper .. Intensive Care Med 2020; 46:1127-1153. [PMID: 32383061 PMCID: PMC7223855 DOI: 10.1007/s00134-020-06050-1] [Citation(s) in RCA: 621] [Impact Index Per Article: 124.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
Abstract
Purpose This Position Paper aims to review and discuss the available data on therapeutic drug monitoring (TDM) of antibacterials, antifungals and antivirals in critically ill adult patients in the intensive care unit (ICU). This Position Paper also provides a practical guide on how TDM can be applied in routine clinical practice to improve therapeutic outcomes in critically ill adult patients.
Methods Literature review and analysis were performed by Panel Members nominated by the endorsing organisations, European Society of Intensive Care Medicine (ESICM), Pharmacokinetic/Pharmacodynamic and Critically Ill Patient Study Groups of European Society of Clinical Microbiology and Infectious Diseases (ESCMID), International Association for Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT) and International Society of Antimicrobial Chemotherapy (ISAC). Panel members made recommendations for whether TDM should be applied clinically for different antimicrobials/classes. Results TDM-guided dosing has been shown to be clinically beneficial for aminoglycosides, voriconazole and ribavirin. For most common antibiotics and antifungals in the ICU, a clear therapeutic range has been established, and for these agents, routine TDM in critically ill patients appears meritorious. For the antivirals, research is needed to identify therapeutic targets and determine whether antiviral TDM is indeed meritorious in this patient population. The Panel Members recommend routine TDM to be performed for aminoglycosides, beta-lactam antibiotics, linezolid, teicoplanin, vancomycin and voriconazole in critically ill patients. Conclusion Although TDM should be the standard of care for most antimicrobials in every ICU, important barriers need to be addressed before routine TDM can be widely employed worldwide. Electronic supplementary material The online version of this article (10.1007/s00134-020-06050-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohd H Abdul-Aziz
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Jan-Willem C Alffenaar
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Westmead Hospital, Westmead, NSW, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Matteo Bassetti
- Infectious Diseases Clinic, Department of Health Sciences, University of Genoa, Genoa and Hospital Policlinico San Martino - IRCCS, Genoa, Italy
| | - Hendrik Bracht
- Department of Anaesthesiology, University Ulm, Ulm, Germany
| | - George Dimopoulos
- Department of Critical Care, University Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Deborah Marriott
- Department of Microbiology and Infectious Diseases, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Michael N Neely
- Department of Paediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Jose-Artur Paiva
- Department of Medicine, Faculty of Medicine of Porto, Porto, Portugal.,Department of Emergency and Intensive Care Medicine, Centro Hospitalar Universitario de São João, Porto, Portugal
| | - Federico Pea
- Institute of Clinical Pharmacology, SM Misericordia University Hospital, ASUFC, Udine, Italy
| | - Fredrik Sjovall
- Department of Perioperative Medicine, Skåne University Hospital, Malmö, Sweden
| | - Jean F Timsit
- Department of Intensive Care Medicine and Infectious Diseases, Bichat-Claude Bernard University Hospital, AP-HP, Paris, France.,Infection, Antimicrobials, Modelling, Evolution (IAME), Paris Diderot University, Paris, France
| | - Andrew A Udy
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.,Department of Intensive Care and Hyperbaric Medicine, The Alfred, Melbourne, VIC, Australia
| | - Sebastian G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jan J De Waele
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia. .,Department of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia. .,Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia. .,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France.
| | | | | | | | | |
Collapse
|
13
|
Lee LYY, Zhou J, Frise R, Goldhill DH, Koszalka P, Mifsud EJ, Baba K, Noda T, Ando Y, Sato K, Yuki AI, Shishido T, Uehara T, Wildum S, Zwanziger E, Collinson N, Kuhlbusch K, Clinch B, Hurt AC, Barclay WS. Baloxavir treatment of ferrets infected with influenza A(H1N1)pdm09 virus reduces onward transmission. PLoS Pathog 2020; 16:e1008395. [PMID: 32294137 PMCID: PMC7159184 DOI: 10.1371/journal.ppat.1008395] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza viruses cause seasonal outbreaks and pose a continuous pandemic threat. Although vaccines are available for influenza control, their efficacy varies each season and a vaccine for a novel pandemic virus manufactured using current technology will not be available fast enough to mitigate the effect of the first pandemic wave. Antivirals can be effective against many different influenza viruses but have not thus far been used extensively for outbreak control. Baloxavir, a recently licensed antiviral drug that targets the influenza virus endonuclease, has been shown to reduce virus shedding more effectively than oseltamivir, a widely used neuraminidase inhibitor drug. Thus it is possible that treatment with baloxavir might also interrupt onward virus transmission. To test this, we utilized the ferret model, which is the most commonly used animal model to study influenza virus transmission. We established a subcutaneous baloxavir administration method in ferrets which achieved similar pharmacokinetics to the approved human oral dose. Transmission studies were then conducted in two different locations with different experimental setups to compare the onward transmission of A(H1N1)pdm09 virus from infected ferrets treated with baloxavir, oseltamivir or placebo to naïve sentinel ferrets exposed either indirectly in adjacent cages or directly by co-housing. We found that baloxavir treatment reduced infectious viral shedding in the upper respiratory tract of ferrets compared to placebo, and reduced the frequency of transmission amongst sentinels in both experimental setups, even when treatment was delayed until 2 days post-infection. In contrast, oseltamivir treatment did not substantially affect viral shedding or transmission compared to placebo. We did not detect the emergence of baloxavir-resistant variants in treated animals or in untreated sentinels. Our results support the concept that antivirals which decrease viral shedding could also reduce influenza transmission in the community.
Collapse
Affiliation(s)
- Leo Yi Yang Lee
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jie Zhou
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Rebecca Frise
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Daniel H. Goldhill
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Paulina Koszalka
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Biomedicine Discovery Institute & Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Edin J. Mifsud
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | - Kaoru Baba
- Shionogi TechnoAdvance Research, Co., Ltd., Osaka, Japan
| | - Takahiro Noda
- Shionogi TechnoAdvance Research, Co., Ltd., Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | - Aeron C. Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Australia
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Wendy S. Barclay
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
14
|
Toots M, Yoon JJ, Hart M, Natchus MG, Painter GR, Plemper RK. Quantitative efficacy paradigms of the influenza clinical drug candidate EIDD-2801 in the ferret model. Transl Res 2020; 218:16-28. [PMID: 31945316 PMCID: PMC7568909 DOI: 10.1016/j.trsl.2019.12.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
Abstract
Seasonal influenza viruses cause major morbidity and mortality worldwide, threatening in particular older adults and the immunocompromised. Two classes of influenza therapeutics dominate current disease management, but both are compromised by pre-existing or rapidly emerging viral resistance. We have recently reported a novel ribonucleoside analog clinical candidate, EIDD-2801, that combines potent antiviral efficacy in ferrets and human airway epithelium cultures with a high barrier against viral escape. In this study, we established fundamental EIDD-2801 efficacy paradigms against pandemic and seasonal influenza A virus (IAV) strains in ferrets that can be used to inform exposure targets and treatment regimens. Based on reduction of shed virus titers, alleviation of clinical signs, and lowered virus burden in upper and lower respiratory tract tissues, lowest efficacious oral dose concentrations of EIDD-2801, given twice daily, were 2.3 and 7 mg/kg of body weight against seasonal and pandemic IAVs, respectively. The latest opportunity for initiation of efficacious treatment was 36 hours after infection of ferrets. Administered in 12-hour intervals, three 7 mg/kg doses of EIDD-2801 were sufficient for maximal therapeutic benefit against a pandemic IAV and significantly shortened the time to resolution of clinical signs. Ferrets infected with pandemic IAV and treated following the minimally efficacious EIDD-2801 regimen demonstrated significantly less shed virus and inflammatory cellular infiltrates in nasal lavages, but mounted a robust humoral antiviral response after recovery that was indistinguishable from that of vehicle-treated animals. These results provide an experimental basis in a human disease-relevant influenza animal model for clinical testing of EIDD-2801.
Collapse
Affiliation(s)
- Mart Toots
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Jeong-Joong Yoon
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Michael Hart
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Michael G Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia
| | - George R Painter
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia; Department of Pharmacology, Emory University, Atlanta, Georgia
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
15
|
Honce R, Schultz-Cherry S. Influenza in obese travellers: increased risk and complications, decreased vaccine effectiveness. J Travel Med 2019; 26:taz020. [PMID: 30924873 PMCID: PMC6509472 DOI: 10.1093/jtm/taz020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Obesity is a worldwide epidemic and was empirically shown to increase the risk of developing severe influenza virus infection. As international travel becomes more common and obesity is now prevalent even in low- and middle-income countries, travellers may have an increased risk of contracting influenza virus especially during peak influenza season. METHODS An analysis of the literature, centred on publications from 2014-19, was performed, with an emphasis on human epidemiological data, human studies ex vivo and studies in mouse models of obesity. Our search efforts focused on influenza disease severity, pathogenesis, evolutionary dynamics and measures of infection control in the obese and overweight host. RESULTS Obesity is associated with an increased risk of infection, as well as a greater chance for hospitalization and severe complications. Studies in mouse models of obesity have uncovered that obese hosts suffer increased viral spread, delayed viral clearance and heightened damage to the respiratory epithelium. Innate and adaptive immune responses are delayed, thus increasing morbidity and mortality. Further, infection control measures, including vaccination and antivirals, prove less effective in obese hosts. Finally, the obese microenvironment allows for increased duration and amount of viral shedding and potentially increases the chance for emergence of virulent minor variants in the viral population. Together, obese hosts are at high risk of influenza infection, as well as severe sequelae following infection. CONCLUSION Obese travellers should be aware of influenza activity in the regions visited, as well as take protective measures prior to travel. Vaccination is highly recommended for all travellers, but especially highly susceptible obese travellers.
Collapse
Affiliation(s)
- Rebekah Honce
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
16
|
Belser JA, Barclay W, Barr I, Fouchier RAM, Matsuyama R, Nishiura H, Peiris M, Russell CJ, Subbarao K, Zhu H, Yen HL. Ferrets as Models for Influenza Virus Transmission Studies and Pandemic Risk Assessments. Emerg Infect Dis 2019; 24:965-971. [PMID: 29774862 PMCID: PMC6004870 DOI: 10.3201/eid2406.172114] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The ferret transmission model is extensively used to assess the pandemic potential of emerging influenza viruses, yet experimental conditions and reported results vary among laboratories. Such variation can be a critical consideration when contextualizing results from independent risk-assessment studies of novel and emerging influenza viruses. To streamline interpretation of data generated in different laboratories, we provide a consensus on experimental parameters that define risk-assessment experiments of influenza virus transmissibility, including disclosure of variables known or suspected to contribute to experimental variability in this model, and advocate adoption of more standardized practices. We also discuss current limitations of the ferret transmission model and highlight continued refinements and advances to this model ongoing in laboratories. Understanding, disclosing, and standardizing the critical parameters of ferret transmission studies will improve the comparability and reproducibility of pandemic influenza risk assessment and increase the statistical power and, perhaps, accuracy of this model.
Collapse
|
17
|
Abstract
INTRODUCTION Influenza continues to be a major public health concern. Antivirals play an important role in limiting the burden of disease and preventing infection and/or transmission. The developments of such agents are heavily dependent on pre-clinical evaluation where animal models are used to answer questions that cannot be easily addressed in human clinical trials. There are numerous animal models available to study the potential benefits of influenza antivirals but each animal model has its own pros and cons. Areas covered: In this review, the authors describe the advantages and disadvantages of using mice, ferrets, guinea pigs, cotton rats, golden hamsters and non-human primates to evaluate influenza therapeutics. Expert opinion: Animals used for evaluating influenza therapeutics differ in their susceptibility to influenza virus infection, their ability to display clinical signs of illness following viral infection and in their practical requirements such as housing. Therefore, defining the scientific question being asked and the data output required will assist in selecting the most appropriate animal model.
Collapse
Affiliation(s)
- Edin J Mifsud
- a WHO Collaborating Centre for Reference and Research on Influenza , VIDRL, Peter Doherty Institute for Infection and Immunity , Melbourne , Australia
| | - Celeste Mk Tai
- a WHO Collaborating Centre for Reference and Research on Influenza , VIDRL, Peter Doherty Institute for Infection and Immunity , Melbourne , Australia
| | - Aeron C Hurt
- a WHO Collaborating Centre for Reference and Research on Influenza , VIDRL, Peter Doherty Institute for Infection and Immunity , Melbourne , Australia.,b Department of Microbiology and Immunology , University of Melbourne , Melbourne , Victoria , Australia
| |
Collapse
|
18
|
Goeijenbier M, van Genderen P, Ward BJ, Wilder-Smith A, Steffen R, Osterhaus ADME. Travellers and influenza: risks and prevention. J Travel Med 2017; 24:taw078. [PMID: 28077609 PMCID: PMC5505480 DOI: 10.1093/jtm/taw078] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND Influenza viruses are among the major causes of serious human respiratory tract infection worldwide. In line with the high disease burden attributable to influenza, these viruses play an important, but often neglected, role in travel medicine. Guidelines and recommendations regarding prevention and management of influenza in travellers are scarce. Of special interest for travel medicine are risk populations and also circumstances that facilitate influenza virus transmission and spread, like travel by airplane or cruise ship and mass gatherings. METHODS We conducted a PUBMED/MEDLINE search for a combination of the MeSH terms Influenza virus, travel, mass gathering, large scale events and cruise ship. In addition we gathered guidelines and recommendations from selected countries and regarding influenza prevention and management in travellers. By reviewing these search results in the light of published knowledge in the fields of influenza prevention and management, we present best practice advice for the prevention and management of influenza in travel medicine. RESULTS Seasonal influenza is among the most prevalent infectious diseases in travellers. Known host-associated risk factors include extremes of age and being immune-compromised, while the most relevant environmental factors are associated with holiday cruises and mass gatherings. CONCLUSIONS Pre-travel advice should address influenza and its prevention for travellers, whenever appropriate on the basis of the epidemiological situation concerned. Preventative measures should be strongly recommended for travellers at high-risk for developing complications. In addition, seasonal influenza vaccination should be considered for any traveller wishing to reduce the risk of incapacitation, particularly cruise ship crew and passengers, as well as those participating in mass gatherings. Besides advice concerning preventive measures and vaccination, advice on the use of antivirals may be considered for some travellers.
Collapse
Affiliation(s)
- M Goeijenbier
- Institute for Tropical Diseases, Havenziekenhuis, Rotterdam, The Netherlands
| | - P van Genderen
- Institute for Tropical Diseases, Havenziekenhuis, Rotterdam, The Netherlands
| | - B J Ward
- Research institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - A Wilder-Smith
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Institute of Public Health, University of Heidelberg, Germany
| | - R Steffen
- Epidemiology, Biostatistics and Prevention Institute, WHO Collaborating Centre for Travelers Health, University of Zurich Travel Health Centre, Zurich, Switzerland
| | - A D M E Osterhaus
- ARTEMIS One Health Research Institute Utrecht, The Netherlands
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
19
|
Herbreteau CH, Denizot M, Lowther S, Riddell S, Frazer L, Haining J, Arkinstall R, Payne J, Harper J, Johnson D, Pasquier A, Middleton D, Saluzzo JF. Efficacy of a specific polyclonal equine F(ab')2 against avian influenza (H5N1) in ferrets: synergy with oseltamivir. Immunotherapy 2016; 8:1021-32. [DOI: 10.2217/imt-2016-0062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aim: Current therapies against avian influenza (H5N1) provide limited clinical benefit. FBF-001 is a highly purified equine polyclonal immunoglobulin fragment against H5N1. Methods: Using a ferret model of severe acute H5N1 infection, we assessed FBF-001 when administered on the same day or 1 day after viral challenge, in comparison with oseltamivir therapy. Results: Untreated animals died 2–3 days after challenge. FBF-001 prevented most severe illness and reduced nasal viral load, with best efficacy when administered on the day of viral challenge. Oseltamivir and FBF-001 had synergistic impact on survival. Conclusion: FBF-001 prevented severe consequences of lethal H5N1 challenge in ferrets by controlling viral replication, an effect synergistic to oseltamivir. FBF-001 has recently been granted EMA orphan drug status.
Collapse
Affiliation(s)
| | - Mélanie Denizot
- Fab'entech, 24, rue Jean Baldassini - Bâtiment B, 69007 Lyon, France
| | - Suzanne Lowther
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Sarah Riddell
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Leah Frazer
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Jessica Haining
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Rachel Arkinstall
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Jean Payne
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Jenni Harper
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Dayna Johnson
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Anaïs Pasquier
- Fab'entech, 24, rue Jean Baldassini - Bâtiment B, 69007 Lyon, France
| | - Deborah Middleton
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | | |
Collapse
|
20
|
Meliopoulos VA, Karlsson EA, Schultz-Cherry S. What can imaging tell us about influenza virus transmission and protection? Future Virol 2016. [DOI: 10.2217/fvl-2016-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence of zoonotic influenza infections is a constant threat to public health. One of the major determinants of pandemic potential is the ability to transmit from animal to human and/or human to human via respiratory droplets. Understanding viral tropism and spread is crucial for predicting which viruses represent the most threatening to human health. Recently, a replication-competent influenza reporter virus was described that permitted in vivo imaging and visualization of infection in ferrets for the first time. This review will focus on the applications of luminescent reporter viruses toward understanding transmission of influenza viruses and development of therapeutic interventions.
Collapse
Affiliation(s)
- Victoria A Meliopoulos
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Erik A Karlsson
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
21
|
Complexities in Ferret Influenza Virus Pathogenesis and Transmission Models. Microbiol Mol Biol Rev 2016; 80:733-44. [PMID: 27412880 DOI: 10.1128/mmbr.00022-16] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ferrets are widely employed to study the pathogenicity, transmissibility, and tropism of influenza viruses. However, inherent variations in inoculation methods, sampling schemes, and experimental designs are often overlooked when contextualizing or aggregating data between laboratories, leading to potential confusion or misinterpretation of results. Here, we provide a comprehensive overview of parameters to consider when planning an experiment using ferrets, collecting data from the experiment, and placing results in context with previously performed studies. This review offers information that is of particular importance for researchers in the field who rely on ferret data but do not perform the experiments themselves. Furthermore, this review highlights the breadth of experimental designs and techniques currently available to study influenza viruses in this model, underscoring the wide heterogeneity of protocols currently used for ferret studies while demonstrating the wealth of information which can benefit risk assessments of emerging influenza viruses.
Collapse
|
22
|
Oh DY, Hurt AC. Using the Ferret as an Animal Model for Investigating Influenza Antiviral Effectiveness. Front Microbiol 2016; 7:80. [PMID: 26870031 PMCID: PMC4740393 DOI: 10.3389/fmicb.2016.00080] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/18/2016] [Indexed: 01/12/2023] Open
Abstract
The concern of the emergence of a pandemic influenza virus has sparked an increased effort toward the development and testing of novel influenza antivirals. Central to this is the animal model of influenza infection, which has played an important role in understanding treatment effectiveness and the effect of antivirals on host immune responses. Among the different animal models of influenza, ferrets can be considered the most suitable for antiviral studies as they display most of the human-like symptoms following influenza infections, they can be infected with human influenza virus without prior viral adaptation and have the ability to transmit influenza virus efficiently between one another. However, an accurate assessment of the effectiveness of an antiviral treatment in ferrets is dependent on three major experimental considerations encompassing firstly, the volume and titer of virus, and the route of viral inoculation. Secondly, the route and dose of drug administration, and lastly, the different methods used to assess clinical symptoms, viral shedding kinetics and host immune responses in the ferrets. A good understanding of these areas is necessary to achieve data that can accurately inform the human use of influenza antivirals. In this review, we discuss the current progress and the challenges faced in these three major areas when using the ferret model to measure influenza antiviral effectiveness.
Collapse
Affiliation(s)
- Ding Y Oh
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, MelbourneVIC, Australia; School of Applied and Biomedical Sciences, Federation University Australia, GippslandVIC, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, MelbourneVIC, Australia; Melbourne School of Population and Global Health, University of Melbourne, ParkvilleVIC, Australia
| |
Collapse
|
23
|
Buhnerkempe MG, Gostic K, Park M, Ahsan P, Belser JA, Lloyd-Smith JO. Mapping influenza transmission in the ferret model to transmission in humans. eLife 2015; 4. [PMID: 26329460 PMCID: PMC4586390 DOI: 10.7554/elife.07969] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/02/2015] [Indexed: 12/27/2022] Open
Abstract
The controversy surrounding 'gain-of-function' experiments on high-consequence avian influenza viruses has highlighted the role of ferret transmission experiments in studying the transmission potential of novel influenza strains. However, the mapping between influenza transmission in ferrets and in humans is unsubstantiated. We address this gap by compiling and analyzing 240 estimates of influenza transmission in ferrets and humans. We demonstrate that estimates of ferret secondary attack rate (SAR) explain 66% of the variation in human SAR estimates at the subtype level. Further analysis shows that ferret transmission experiments have potential to identify influenza viruses of concern for epidemic spread in humans, though small sample sizes and biological uncertainties prevent definitive classification of human transmissibility. Thus, ferret transmission experiments provide valid predictions of pandemic potential of novel influenza strains, though results should continue to be corroborated by targeted virological and epidemiological research. DOI:http://dx.doi.org/10.7554/eLife.07969.001 Every year, thousands of people develop influenza (flu). After being infected by the influenza virus, the immune systems of most people adapt to fight off the virus if it is encountered again. However, there are many different strains of influenza, and new strains constantly evolve. Therefore, although someone may have developed resistance to one previously encountered strain, they can still become ill if another strain infects them. Different strains of the influenza virus have different abilities to spread between people and make them ill. One way that scientists assess whether a particular strain of influenza is a threat to people is by studying ferrets, which develop many of the same flu symptoms as humans. However, questions have been raised over how accurately ferret studies reflect whether a particular virus strain will spread between humans. Controversy has also arisen over experiments in which ferrets are infected with genetically engineered strains of influenza that mimic how a strain that has evolved in birds could adapt to cause a pandemic in humans. In 2014, the United States government suggested that such research should be temporarily stopped until more is known about the risks and usefulness of these studies. Now, Buhnerkempe, Gostic et al. have compared the results of 240 ferret and human studies that aimed to assess how easily strains of influenza spread. Specifically, the studies looked at how often a healthy ferret or human became ill when exposed to an animal or human infected with a particular strain of influenza. The results of the ferret transmission studies matched well with transmission patterns observed in human studies. Ferret studies that assessed how the influenza virus is transmitted through the air via sneezes and coughs were particularly good at predicting how the virus spreads in humans. But Buhnerkempe, Gostic et al. caution that ferret studies are not always accurate, partly because they involve small numbers of animals, which can skew the results. There also needs to be more effort to standardize the procedures and measurements used in ferret studies. Still, the analysis suggests that overall, ferret studies are a useful tool for making an initial prediction of which influenza strains may cause a pandemic in humans, which can then be verified using other methods. DOI:http://dx.doi.org/10.7554/eLife.07969.002
Collapse
Affiliation(s)
- Michael G Buhnerkempe
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
| | - Katelyn Gostic
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
| | - Miran Park
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
| | - Prianna Ahsan
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
| | - Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, United States
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
24
|
Evaluation of a dry powder delivery system for laninamivir in a ferret model of influenza infection. Antiviral Res 2015; 120:66-71. [DOI: 10.1016/j.antiviral.2015.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/13/2015] [Accepted: 05/20/2015] [Indexed: 02/04/2023]
|
25
|
Belser JA, Maines TR, Creager HM, Katz JM, Tumpey TM. Oseltamivir inhibits influenza virus replication and transmission following ocular-only aerosol inoculation of ferrets. Virology 2015; 484:305-312. [PMID: 26142497 DOI: 10.1016/j.virol.2015.06.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/10/2015] [Accepted: 06/16/2015] [Indexed: 01/11/2023]
Abstract
Ocular exposure to influenza virus represents an alternate route of virus entry capable of establishing a respiratory infection in mammals, but the effectiveness of currently available antiviral treatments to limit virus replication within ocular tissue or inhibit virus spread from ocular sites to the respiratory tract is poorly understood. Using an inoculation method that delivers an aerosol inoculum exclusively to the ocular surface, we demonstrate that oral oseltamivir administration following ocular-only aerosol inoculation with multiple avian and human influenza viruses protected ferrets from a fatal and systemic infection, reduced clinical signs and symptoms of illness, and decreased virus transmissibility to susceptible contacts when a respiratory infection was initiated. The presence of oseltamivir further inhibited influenza virus replication in primary human corneal epithelial cells. These findings provide critical experimental evidence supporting the use of neuraminidase inhibitors during outbreaks of influenza virus resulting in ocular disease or following ocular exposure.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Hannah M Creager
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; Microbiology and Molecular Genetics Graduate Program, Emory University, Atlanta, GA, USA
| | - Jacqueline M Katz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| |
Collapse
|
26
|
Bird NL, Olson MR, Hurt AC, Oshansky CM, Oh DY, Reading PC, Chua BY, Sun Y, Tang L, Handel A, Jackson DC, Turner SJ, Thomas PG, Kedzierska K. Oseltamivir Prophylaxis Reduces Inflammation and Facilitates Establishment of Cross-Strain Protective T Cell Memory to Influenza Viruses. PLoS One 2015; 10:e0129768. [PMID: 26086392 PMCID: PMC4473273 DOI: 10.1371/journal.pone.0129768] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/24/2015] [Indexed: 02/06/2023] Open
Abstract
CD8(+) T cells directed against conserved viral regions elicit broad immunity against distinct influenza viruses, promote rapid virus elimination and enhanced host recovery. The influenza neuraminidase inhibitor, oseltamivir, is prescribed for therapy and prophylaxis, although it remains unclear how the drug impacts disease severity and establishment of effector and memory CD8(+) T cell immunity. We dissected the effects of oseltamivir on viral replication, inflammation, acute CD8(+) T cell responses and the establishment of immunological CD8(+) T cell memory. In mice, ferrets and humans, the effect of osteltamivir on viral titre was relatively modest. However, prophylactic oseltamivir treatment in mice markedly reduced morbidity, innate responses, inflammation and, ultimately, the magnitude of effector CD8(+) T cell responses. Importantly, functional memory CD8(+) T cells established during the drug-reduced effector phase were capable of mounting robust recall responses. Moreover, influenza-specific memory CD4(+) T cells could be also recalled after the secondary challenge, while the antibody levels were unaffected. This provides evidence that long-term memory T cells can be generated during an oseltamivir-interrupted infection. The anti-inflammatory effect of oseltamivir was verified in H1N1-infected patients. Thus, in the case of an unpredicted influenza pandemic, while prophylactic oseltamivir treatment can reduce disease severity, the capacity to generate memory CD8(+) T cells specific for the newly emerged virus is uncompromised. This could prove especially important for any new influenza pandemic which often occurs in separate waves.
Collapse
Affiliation(s)
- Nicola L. Bird
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
| | - Matthew R. Olson
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
| | - Aeron C. Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christine M. Oshansky
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN 38105, United States of America
| | - Ding Yuan Oh
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
- Federation University, School of Applied Sciences and Biomedical Sciences, Gippsland Victoria 3842, Australia
| | - Patrick C. Reading
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
| | - Brendon Y. Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
| | - Yilun Sun
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, TN 38105, United States of America
| | - Li Tang
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, TN 38105, United States of America
| | - Andreas Handel
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA 30602, United States of America
| | - David C. Jackson
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
| | - Stephen J. Turner
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
| | - Paul G. Thomas
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN 38105, United States of America
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
| |
Collapse
|
27
|
Oh DY, Barr IG, Hurt AC. A novel video tracking method to evaluate the effect of influenza infection and antiviral treatment on ferret activity. PLoS One 2015; 10:e0118780. [PMID: 25738900 PMCID: PMC4349809 DOI: 10.1371/journal.pone.0118780] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/21/2015] [Indexed: 11/21/2022] Open
Abstract
Ferrets are the preferred animal model to assess influenza virus infection, virulence and transmission as they display similar clinical symptoms and pathogenesis to those of humans. Measures of disease severity in the ferret include weight loss, temperature rise, sneezing, viral shedding and reduced activity. To date, the only available method for activity measurement has been the assignment of an arbitrary score by a ‘blind’ observer based on pre-defined responsiveness scale. This manual scoring method is subjective and can be prone to bias. In this study, we described a novel video-tracking methodology for determining activity changes in a ferret model of influenza infection. This method eliminates the various limitations of manual scoring, which include the need for a sole ‘blind’ observer and the requirement to recognise the ‘normal’ activity of ferrets in order to assign relative activity scores. In ferrets infected with an A(H1N1)pdm09 virus, video-tracking was more sensitive than manual scoring in detecting ferret activity changes. Using this video-tracking method, oseltamivir treatment was found to ameliorate the effect of influenza infection on activity in ferret. Oseltamivir treatment of animals was associated with an improvement in clinical symptoms, including reduced inflammatory responses in the upper respiratory tract, lower body weight loss and a smaller rise in body temperature, despite there being no significant reduction in viral shedding. In summary, this novel video-tracking is an easy-to-use, objective and sensitive methodology for measuring ferret activity.
Collapse
Affiliation(s)
- Ding Yuan Oh
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
- School of Applied and Biomedical Sciences, Federation University, Churchill, Victoria, 3842, Australia
- * E-mail:
| | - Ian G. Barr
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
- School of Applied and Biomedical Sciences, Federation University, Churchill, Victoria, 3842, Australia
| | - Aeron C. Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
28
|
Hurt AC, Hui DS, Hay A, Hayden FG. Overview of the 3rd isirv-Antiviral Group Conference--advances in clinical management. Influenza Other Respir Viruses 2015; 9:20-31. [PMID: 25399715 PMCID: PMC4280814 DOI: 10.1111/irv.12293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2014] [Indexed: 12/30/2022] Open
Abstract
This review highlights the main points which emerged from the presentations and discussions at the 3rd isirv-Antiviral Group Conference - advances in clinical management. The conference covered emerging and potentially pandemic influenza viruses and discussed novel/pre-licensure therapeutics and currently approved antivirals and vaccines for the control of influenza. Current data on approved and novel treatments for non-influenza respiratory viruses such as MERS-CoV, respiratory syncytial virus (RSV) and rhinoviruses and the challenges of treating immunocompromised patients with respiratory infections was highlighted.
Collapse
Affiliation(s)
- Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL at the Peter Doherty Institute for Infection and Immunity, Parkville, Vic., Australia; Melbourne School of Population and Global Health, University of Melbourne, Parkville, Vic., Australia
| | | | | | | |
Collapse
|