1
|
Alvarez-Sierra D, Martínez-Gallo M, Sánchez-Montalvá A, Fernández-Sanmartín M, Colobran R, Espinosa-Pereiro J, Poyatos-Canton E, Zurera-Egea C, Sánchez-Pla A, Violan C, Parra R, Alzayat H, Vivancos A, Morandeira-Rego F, Urban-Vargas B, Martínez-Cáceres E, Hernández-González M, Bas-Minguet J, Katsikis PD, Teniente-Serra A, Pujol-Borrell R. The immune response to SARS-CoV-2 in COVID-19 as a recall response susceptible to immune imprinting: A prospective cohort study. Clin Immunol 2025; 272:110429. [PMID: 39842683 DOI: 10.1016/j.clim.2025.110429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
The antibody response to SARS-CoV-2 does not follow the immunoglobulin isotype pattern of primary responses, conflicting with the current interpretation of COVID-19. METHODS Prospective cohort study of 191 SARS-CoV-2 infection cases and 44 controls from the second wave of COVID-19. The study stratified patients by severity and analyzed the trajectories of SARS-CoV-2 antibodies and multiple immune variables. RESULTS Isotype-specific antibody time course profiles to SARS-CoV-2 revealed a pattern of recall response in 94.2 % of cases. The time course profiles of plasmablasts, B cells, cTfh high-resolution subsets, and cytokines indicated a secondary response. The transcriptomic data showed that this cohort is strictly comparable to contemporary cohorts. CONCLUSIONS In most cases, the immune response to SARS-CoV-2 is a recall response. This constitutes a favorable scenario for most COVID-19 cases to be subjected to immune imprinting by endemic coronavirus, which, in turn, can influence the immune response to SARS-CoV-2.
Collapse
Affiliation(s)
- Daniel Alvarez-Sierra
- Translational Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Campus Vall d'Hebron, Barcelona, Spain.
| | - Mónica Martínez-Gallo
- Translational Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Campus Vall d'Hebron, Barcelona, Spain; Immunology Department, Hospital Universitari Vall d'Hebron, Campus Vall d'Hebron, Barcelona, Spain; Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma Barcelona, Campus Vall d'Hebron and Campus Bellaterra, Barcelona, Spain
| | - Adrián Sánchez-Montalvá
- Infectious Disease Department, Hospital Universitari Vall d'Hebron, Campus Vall d'Hebró, Barcelona, Spain; International Health Program, Institut Català de la Salut, Vall d'Hebron Research Institute (VHIR), Campus Vall d'Hebron, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Campus Vall d'Hebron, Barcelona, Spain
| | - Marco Fernández-Sanmartín
- Flow Cytometry Laboratory, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Roger Colobran
- Translational Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Campus Vall d'Hebron, Barcelona, Spain; Immunology Department, Hospital Universitari Vall d'Hebron, Campus Vall d'Hebron, Barcelona, Spain; Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma Barcelona, Campus Vall d'Hebron and Campus Bellaterra, Barcelona, Spain
| | - Juan Espinosa-Pereiro
- Infectious Disease Department, Hospital Universitari Vall d'Hebron, Campus Vall d'Hebró, Barcelona, Spain; International Health Program, Institut Català de la Salut, Vall d'Hebron Research Institute (VHIR), Campus Vall d'Hebron, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Campus Vall d'Hebron, Barcelona, Spain
| | - Elísabet Poyatos-Canton
- Immunology Division, Bellvitge University Hospital, Hospitalet de Llobregat, Barcelona, Spain
| | - Coral Zurera-Egea
- Immunology and Inflammation Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Alex Sánchez-Pla
- Bioinformatics and Statistics Group, University of Barcelona, Barcelona, Spain
| | - Concepción Violan
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mataró, Barcelona, Spain
| | - Rafael Parra
- Banc de Sang i Teixits, Hospital Universitari Vall Hebron, Barcelona, Spain
| | - Hammad Alzayat
- Flow Cytometry Laboratory, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Ana Vivancos
- Tumor Immunology and Immunotherapy Group, Vall Hebron Institut Oncology (VHIO), Campus Vall d'Hebron, Barcelona, Spain
| | | | - Blanca Urban-Vargas
- Immunology Division, Bellvitge University Hospital, Hospitalet de Llobregat, Barcelona, Spain
| | - Eva Martínez-Cáceres
- Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma Barcelona, Campus Vall d'Hebron and Campus Bellaterra, Barcelona, Spain; Immunology Department, Hospital Universitari Germans Trias I Pujol, Barcelona, Spain; Immunology and Inflammation Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Manuel Hernández-González
- Translational Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Campus Vall d'Hebron, Barcelona, Spain; Immunology Department, Hospital Universitari Vall d'Hebron, Campus Vall d'Hebron, Barcelona, Spain; Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma Barcelona, Campus Vall d'Hebron and Campus Bellaterra, Barcelona, Spain
| | - Jordi Bas-Minguet
- Immunology Division, Bellvitge University Hospital, Hospitalet de Llobregat, Barcelona, Spain
| | - Peter D Katsikis
- Dept. of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Aina Teniente-Serra
- Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma Barcelona, Campus Vall d'Hebron and Campus Bellaterra, Barcelona, Spain; Immunology Department, Hospital Universitari Germans Trias I Pujol, Barcelona, Spain; Immunology and Inflammation Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Ricardo Pujol-Borrell
- Immunology Department, Hospital Universitari Vall d'Hebron, Campus Vall d'Hebron, Barcelona, Spain; Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma Barcelona, Campus Vall d'Hebron and Campus Bellaterra, Barcelona, Spain; Tumor Immunology and Immunotherapy Group, Vall Hebron Institut Oncology (VHIO), Campus Vall d'Hebron, Barcelona, Spain.
| |
Collapse
|
2
|
Druškovič M, Lučovnik M, Mesarič VA, Kavšek G, Vidmar Šimic M, Trojner Bregar A, Avšič Županc T, Ihan A, Premru Sršen T. Immune Response to SARS-CoV-2 in Vaccine-naive Pregnant Women: Assessment of IgG and IgA Antibody Profile at Delivery and 42 Days Postpartum. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1371-1379. [PMID: 39258926 DOI: 10.4049/jimmunol.2400055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024]
Abstract
This prospective cohort study assessed the SARS-CoV-2 IgG and IgA Ab profiles at delivery and 42 d postpartum in unvaccinated SARS-CoV-2-positive pregnant women and determined the association with the timing and the clinical course of the infection. A total of 387 vaccine-naive women with confirmed SARS-CoV-2 infection during pregnancy were included. IgG and IgA Abs were detected in maternal blood at delivery and 42 d postpartum using ELISA kits. The relationships between Ab detection and value and clinical features, including the timing of the infection, were analyzed using univariate and multivariate logistic and linear regression models. The mean gestational age at infection was 31 4/7 wk of pregnancy. Symptoms of SARS-CoV-2 infection were present in 88.1% of women. IgG and IgA Abs were detected in 45.7 and 58.9% at delivery, respectively, increasing to 72.7 and 76.8% at 42 d postpartum. Detection of IgG and IgA Abs in maternal blood at delivery was independently associated with symptomatic infection (adjusted odds ratio [OR] 3.13, 95% confidence interval (CI): 1.47-6.69 and adjusted OR 3.62, 95% CI: 1.8-7.26, respectively), but not with the time from positive swab to delivery or gestational age at positive swab. Detection of Abs at 42 d postpartum was also strongly associated with the detection of Abs at delivery (OR 29.97, 95% CI: 10.11-88.82 for IgG and OR 13.09, 95% CI: 6.37-26.9 for IgA). Vaccine-naive pregnant women exhibit a significant and durable immune response to SARS-CoV-2, which is more pronounced in symptomatic women but independent of gestational age at diagnosis or the diagnosis-to-delivery interval.
Collapse
Affiliation(s)
- Mirjam Druškovič
- Department of Perinatology, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Lučovnik
- Department of Perinatology, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vita Andreja Mesarič
- Department of Perinatology, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Gorazd Kavšek
- Department of Perinatology, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Marijana Vidmar Šimic
- Department of Perinatology, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Andreja Trojner Bregar
- Department of Perinatology, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič Županc
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Cell Immunology, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alojz Ihan
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Cell Immunology, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Premru Sršen
- Department of Perinatology, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Espino AM, Armina-Rodriguez A, Cardona P, Ocasio-Malavé C, Alvarez L, Sariol CA. Anti-SARS-CoV-2 IgM Antibody Levels Measured by an In-House ELISA in a Convalescent Latin Population Persist over Time and Exhibit Neutralizing Capacity to Several Variants of Concern. Diagnostics (Basel) 2024; 14:2209. [PMID: 39410613 PMCID: PMC11475847 DOI: 10.3390/diagnostics14192209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND The coronavirus, SARS-CoV-2, is the causative agent for COVID-19, first registered in Wuhan, China and responsible for more than 6 million deaths worldwide. Currently, RT-PCR is the gold-standard method for diagnosing COVID-19. However, serological tests are needed for screening acute disease diagnosis and screening large populations during the COVID-19 outbreak. OBJECTIVES Herein, we described the development and validation of an in-house enzyme-linked immunosorbent assay (ELISA) for detecting the levels of anti-spike-1-RBD IgM antibody (CovIgM-ELISA) in well-defined serum/plasma panel for screening and identifying subjects infected with SARS-CoV-2 in a Latin population. METHOD In-house CovIgM-ELISA has the format of an indirect ELISA. It was optimized by checkerboard titration using recombinant SARS-CoV-2 spike-S1-RBD protein as an antigen. RESULTS We found that, compared to the RT-PCR as the standard method, the in-house CovIgM-ELISA displayed sensitivities of 96.15% and 93.22% for samples collected up to 30 or 60 days after infection, respectively, as well as 95.59% specificity with 97.3% accuracy. The agreement kappa value (κ) of our CovIgM-ELISA was substantial when compared to RT-PCR (κ = 0.873) and the anti-SARS-CoV-2 IgM ELISA (InBios Int) (κ = 0.684). The IgM levels detected in the population positively correlated with the neutralizing activity against the wild-type, Alpha and Delta variants of concern, but failed to neutralize Omicron. CONCLUSIONS These data indicate that our in-house CovIgM-ELISA is a compatible performing assay for the detection of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ana M. Espino
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (A.A.-R.); (C.O.-M.); (L.A.)
| | - Albersy Armina-Rodriguez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (A.A.-R.); (C.O.-M.); (L.A.)
| | - Paola Cardona
- School of Health Professions, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA;
| | - Carlimar Ocasio-Malavé
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (A.A.-R.); (C.O.-M.); (L.A.)
| | - Laura Alvarez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (A.A.-R.); (C.O.-M.); (L.A.)
| | - Carlos A. Sariol
- Unit of Comparative Medicine, Department of Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA
| |
Collapse
|
4
|
Robotti C, Costantini G, Saggio G, Cesarini V, Calastri A, Maiorano E, Piloni D, Perrone T, Sabatini U, Ferretti VV, Cassaniti I, Baldanti F, Gravina A, Sakib A, Alessi E, Pietrantonio F, Pascucci M, Casali D, Zarezadeh Z, Zoppo VD, Pisani A, Benazzo M. Machine Learning-based Voice Assessment for the Detection of Positive and Recovered COVID-19 Patients. J Voice 2024; 38:796.e1-796.e13. [PMID: 34965907 PMCID: PMC8616736 DOI: 10.1016/j.jvoice.2021.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Many virological tests have been implemented during the Coronavirus Disease 2019 (COVID-19) pandemic for diagnostic purposes, but they appear unsuitable for screening purposes. Furthermore, current screening strategies are not accurate enough to effectively curb the spread of the disease. Therefore, the present study was conducted within a controlled clinical environment to determine eventual detectable variations in the voice of COVID-19 patients, recovered and healthy subjects, and also to determine whether machine learning-based voice assessment (MLVA) can accurately discriminate between them, thus potentially serving as a more effective mass-screening tool. Three different subpopulations were consecutively recruited: positive COVID-19 patients, recovered COVID-19 patients and healthy individuals as controls. Positive patients were recruited within 10 days from nasal swab positivity. Recovery from COVID-19 was established clinically, virologically and radiologically. Healthy individuals reported no COVID-19 symptoms and yielded negative results at serological testing. All study participants provided three trials for multiple vocal tasks (sustained vowel phonation, speech, cough). All recordings were initially divided into three different binary classifications with a feature selection, ranking and cross-validated RBF-SVM pipeline. This brough a mean accuracy of 90.24%, a mean sensitivity of 91.15%, a mean specificity of 89.13% and a mean AUC of 0.94 across all tasks and all comparisons, and outlined the sustained vowel as the most effective vocal task for COVID discrimination. Moreover, a three-way classification was carried out on an external test set comprised of 30 subjects, 10 per class, with a mean accuracy of 80% and an accuracy of 100% for the detection of positive subjects. Within this assessment, recovered individuals proved to be the most difficult class to identify, and all the misclassified subjects were declared positive; this might be related to mid and short-term vocal traces of COVID-19, even after the clinical resolution of the infection. In conclusion, MLVA may accurately discriminate between positive COVID-19 patients, recovered COVID-19 patients and healthy individuals. Further studies should test MLVA among larger populations and asymptomatic positive COVID-19 patients to validate this novel screening technology and test its potential application as a potentially more effective surveillance strategy for COVID-19.
Collapse
Affiliation(s)
- Carlo Robotti
- Department of Otolaryngology - Head and Neck Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Giovanni Costantini
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy.
| | - Giovanni Saggio
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy.
| | - Valerio Cesarini
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Anna Calastri
- Department of Otolaryngology - Head and Neck Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Eugenia Maiorano
- Department of Otolaryngology - Head and Neck Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Davide Piloni
- Pneumology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Tiziano Perrone
- Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Umberto Sabatini
- Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Virginia Valeria Ferretti
- Clinical Epidemiology and Biometry Unit, Fondazione IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Gravina
- Otorhinolaryngology Department, University of Rome Tor Vergata, Rome, Italy
| | - Ahmed Sakib
- Otorhinolaryngology Department, University of Rome Tor Vergata, Rome, Italy
| | - Elena Alessi
- Internal Medicine Unit, Ospedale dei Castelli ASL Roma 6, Ariccia, Italy
| | | | - Matteo Pascucci
- Internal Medicine Unit, Ospedale dei Castelli ASL Roma 6, Ariccia, Italy
| | - Daniele Casali
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Zakarya Zarezadeh
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Vincenzo Del Zoppo
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Marco Benazzo
- Department of Otolaryngology - Head and Neck Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
5
|
Leon-Rojas JE, Veloz T, Teran J, Perez M, Arias-Erazo F, Villacis L, Velez J, Recalde R, Jiménez P, Martin M, Chis Ster I, Cooper P, Romero N. The dynamics and determinants of specific systemic and mucosal antibody responses to SARS-CoV-2 in three adult cohorts in the Ecuadorian Andes: a study protocol. F1000Res 2024; 11:1392. [PMID: 38434000 PMCID: PMC10905138 DOI: 10.12688/f1000research.126577.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction There are limited longitudinal data on the systemic and mucosal antibody responses to SARS-CoV-2 from Latin America, a region severely affected by COVID-19, and where vaccine strategies have been implemented during the evolving pandemic. Objective To evaluate determinants of seroprevalence and changes in levels of anti-SARS-CoV-2 antibodies longitudinally in adults with different levels of exposure to SARS-CoV-2 (defined a priori as low, medium, and high based on presumed occupational risk), in two Andean cities in Ecuador. Methods Longitudinal cohort study of 1,000 adults aged 18 years and older with questionnaire data and sample collection done at 0, 3, 6, and 12 months during the period 2020-2023. Observations collected included WHO-ISARIC questionnaire and peripheral blood and saliva samples for measurement of IgG and IgA antibodies, respectively. Planned analyses are tailored to the longitudinal nature of the outcomes defined by participants' antibody levels and aim at estimating their average trends with time since infection in each of the occupational groups, adjusted for demographics and calendar-time levels of SARS-CoV-2 infection in the general population. The latter reflect the impact of the national control measures such as vaccinations and movement restrictions. Importance Understanding the duration and the dynamics of waning immunity to SARS-CoV-2, in the context of exposures to emerging virus variants and immunization, will inform the implementation of targeted public health strategies in the Latin American region. Ethics and Dissemination This study will observe the bioethical principles of the Declaration of Helsinki. Informed written consent will be obtained. Samples from participants will be stored for up to three years after which they will be destroyed. The study protocol was approved by the Ecuadorian Ministry of Public Health Ethics Committee for COVID-19 Research. Antibody results will be provided to participants and participating institutions and to the national health authorities.
Collapse
Affiliation(s)
- Jose E. Leon-Rojas
- Departamento de Pediatría, Obstetricia y Ginecología y Medicina Preventiva, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
- Red Grups de Recerca d’Amèrica i Àfrica Llatines (GRAAL),, Quito, Ecuador
| | - Tatiana Veloz
- Medical School, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Jair Teran
- Medical School, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Monica Perez
- Medical School, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Fernanda Arias-Erazo
- Medical School, Universidad Internacional del Ecuador, Quito, Ecuador
- Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Lizet Villacis
- Medical School, Universidad Técnica de Ambato, Ambato, Ecuador
| | - Jorge Velez
- Hospital de Especialidades Eugenio Espejo, Quito, Ecuador
| | - Ricardo Recalde
- Red Grups de Recerca d’Amèrica i Àfrica Llatines (GRAAL),, Quito, Ecuador
- Medical School, Universidad Técnica de Ambato, Ambato, Ecuador
| | - Patricia Jiménez
- Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Quito, Ecuador
| | - Miguel Martin
- Departamento de Pediatría, Obstetricia y Ginecología y Medicina Preventiva, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
- Red Grups de Recerca d’Amèrica i Àfrica Llatines (GRAAL),, Quito, Ecuador
- Medical School, Universidad Internacional del Ecuador, Quito, Ecuador
| | | | - Philip Cooper
- Medical School, Universidad Internacional del Ecuador, Quito, Ecuador
- St George's University of London, London, UK
| | - Natalia Romero
- Red Grups de Recerca d’Amèrica i Àfrica Llatines (GRAAL),, Quito, Ecuador
- Medical School, Universidad Internacional del Ecuador, Quito, Ecuador
| |
Collapse
|
6
|
Xu J, Chen J, Wen F, Liu K, Chen Y. Detection methods and dynamic characteristics of specific antibodies in patients with COVID-19: A review of the early literature. Heliyon 2024; 10:e24580. [PMID: 38317938 PMCID: PMC10839880 DOI: 10.1016/j.heliyon.2024.e24580] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a global pandemic. Early and accurate diagnosis and quarantine remain the most effective mitigation strategy. Although reverse transcriptase polymerase chain reaction (RT-qPCR) is the gold standard for COVID-19 diagnosis, recent studies suggest that nucleic acids were undetectable in a significant number of cases with clinical features of COVID-19.Serological assays for SARS-CoV-2 play a role in diagnosis of COVID-19, in understanding viral epidemiology and screening convalescent sera for therapeutic and prophylactic purposes, to better understand the immune response to the virus, and to assess the degree and duration of the response of specific antibodies. In this article, we retrieved PubMed, Embase, China National Knowledge Infrastructure (CNKI) and WEB OF SCI databases for articles and reviews published before December 1, 2022. Using "IgM, IgG,IgA, neutralizing antibody, specific antibody,COVID-19, dynamic characteristics" as keywords, and comprehensively reviewed on their basis.According to the authors' criteria, only articles deemed relevant were included, covering original articles, case series, experimental studies, reviews, and case reports. Articles on performance evaluation, opinion pieces, and technical issues were excluded. From the onset of COVID-19 symptoms, the median time of seroconversion was 11 days for immunoglobulin A (IgA), the median time of peak antibody titer was 23 (16-30 days) for IgA.Immunoglobulin M (IgM) is detected prior to immunoglobulin G (IgG), peaking 2-5 weeks post symptom onset and detectable for a minimum of 8 weeks in the immunocompetent.Neutralizing antibodies were earliest detectable within 6-7 days following disease onset, with levels increasing until days 14-22 before levelling and then decreasing, but titres were lower in clinically mild disease. Different clinical types of patients showed different antibody responses to SARS-CoV-2, with severe COVID-19 patients > non-severe COVID-19 patients > asymptomatic infected persons, but no difference in the early stage of the disease. Usually, IgM and IgA antibodies are detectable earlier than IgG antibodies.IgA antibodys plays an important role in local mucosal immunity.Detection of IgM antibodies tends to indicate recent exposure to SARS-CoV-2, whereas the detection of COVID-19 IgG antibodies indicates virus exposure some time ago. The detection of potent neutralizing antibodies in convalescent plasma is important in the context of development of therapeutics and vaccines.With the emergence of immune escape variants of SARS-CoV-2, humoral immunity is being challenged, and a detailed understanding of Specific antibodies is critical to guide vaccine design strategies and antibody-mediated therapies.
Collapse
Affiliation(s)
- Jianteng Xu
- Department of Clinical Laboratory, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jianguo Chen
- Department of Clinical Laboratory, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fazhi Wen
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210029, China
| | - KangSheng Liu
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210029, China
| | - Yajun Chen
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210029, China
| |
Collapse
|
7
|
Fung CYJ, Scott M, Lerner-Ellis J, Taher J. Applications of SARS-CoV-2 serological testing: impact of test performance, sample matrices, and patient characteristics. Crit Rev Clin Lab Sci 2024; 61:70-88. [PMID: 37800891 DOI: 10.1080/10408363.2023.2254390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023]
Abstract
Laboratory testing has been a key tool in managing the SARS-CoV-2 global pandemic. While rapid antigen and PCR testing has proven useful for diagnosing acute SARS-CoV-2 infections, additional testing methods are required to understand the long-term impact of SARS-CoV-2 infections on immune response. Serological testing, a well-documented laboratory practice, measures the presence of antibodies in a sample to uncover information about host immunity. Although proposed applications of serological testing for clinical use have previously been limited, current research into SARS-CoV-2 has shown growing utility for serological methods in these settings. To name a few, serological testing has been used to identify patients with past infections and long-term active disease and to monitor vaccine efficacy. Test utility and result interpretation, however, are often complicated by factors that include poor test sensitivity early in infection, lack of immune response in some individuals, overlying infection and vaccination responses, lack of standardization of antibody titers/levels between instruments, unknown titers that confer immune protection, and large between-individual biological variation following infection or vaccination. Thus, the three major components of this review will examine (1) factors that affect serological test utility: test performance, testing matrices, seroprevalence concerns and viral variants, (2) patient factors that affect serological response: timing of sampling, age, sex, body mass index, immunosuppression and vaccination, and (3) informative applications of serological testing: identifying past infection, immune surveillance to guide health practices, and examination of protective immunity. SARS-CoV-2 serological testing should be beneficial for clinical care if it is implemented appropriately. However, as with other laboratory developed tests, use of SARS-CoV-2 serology as a testing modality warrants careful consideration of testing limitations and evaluation of its clinical utility.
Collapse
Affiliation(s)
- Chun Yiu Jordan Fung
- Lunenfeld Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Mackenzie Scott
- Lunenfeld Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jordan Lerner-Ellis
- Lunenfeld Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer Taher
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Rezaeian S, Razmjooei F, Pourmokhtari M, Abdoli A, Mofazzal Jahromi MA, Bagheri K. Hematological, inflammatory, and novel biomarkers assessment as an eminent strategy for clinical management of COVID-19. Heliyon 2023; 9:e22896. [PMID: 38076059 PMCID: PMC10703635 DOI: 10.1016/j.heliyon.2023.e22896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/23/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Different biomarkers have been suggested as novel biomarkers of coronavirus disease 2019 (COVID-19) theragnosis. With the aim of having a better clinical management of COVID-19, we decided to determine the relationship between hematological, inflammatory, and novel biomarkers with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) immunoglobulin (Ig)M and IgG antibodies. METHODS Blood samples from 127 confirmed COVID-19 patients aged 11-84 years old were collected and tested for SARS-CoV-2 IgM and IgG antibodies alongside with hematological, inflammatory, and novel biomarkers. The Spearman correlation test was utilized to analyze the correlation between these biomarkers with SARS-CoV-2 IgM and IgG antibodies. RESULTS The SARS-CoV-2 IgM antibody significantly correlated with erythrocyte sedimentation rate (ESR) (r = 0.329, p = 0.000), C-reactive protein (CRP) (r = 0.459, p = 0.000), interleukin (IL)-6 (r = 0.345, p = 0.000), IL-8 (r = 0.263, p = 0.003), neutrophil to lymphocyte ratio (NLR) (r = 0.182, p = 0.040), derived NLR (dNLR) (r = 0.197, p = 0.026), neutrophil to monocyte ratio (NMR) (r = 0.184, p = 0.038), and CRP to lymphocyte ratio (CLR) (r = 0.495, p = 0.000). Also, we find significant correlation between SARS-CoV-2 IgG antibody with hemoglobin (Hb) (r = -0.257, p = 0.004), hematocrit (Hct) (r = -0.227, p = 0.010), mean corpuscular Hb concentration (MCHC) (r = -0.212, p = 0.017), lymphocyte count (r = -0.211, p = 0.017), platelet count (r = 0.179, p = 0.044), ESR (r = 0.461, p = 0.000), CRP (r = 0.344, p = 0.000), IL-6 (r = 0.178, p = 0.046), IL-8 (r = 0.237, p = 0.007), platelet to lymphocyte ratio (PLR) (r = 0.295, p = 0.001), and CLR (r = 0.376, p = 0.000). CONCLUSION Hematological biomarkers (Hb, Hct, MCHC, lymphocyte count, and platelet count), inflammatory biomarkers (ESR, CRP, IL-6, and IL-8), and novel biomarkers (dNLR, NLR, NMR, PLR, and CLR) are valuable indicators for clinical management of COVID-19.
Collapse
Affiliation(s)
- Sanaz Rezaeian
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Fatemeh Razmjooei
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Masoome Pourmokhtari
- Department of Orthopedics, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Amir Abdoli
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Parasitology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mirza Ali Mofazzal Jahromi
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Immunology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Kambiz Bagheri
- Department of Immunology, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
9
|
Müller SA, Paltra S, Rehmann J, Nagel K, Conrad TO. Explicit modeling of antibody levels for infectious disease simulations in the context of SARS-CoV-2. iScience 2023; 26:107554. [PMID: 37654471 PMCID: PMC10466916 DOI: 10.1016/j.isci.2023.107554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/01/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
Measurable levels of immunoglobulin G antibodies develop after infections with and vaccinations against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These antibody levels are dynamic: due to waning, antibody levels will drop over time. During the COVID-19 pandemic, multiple models predicting infection dynamics were used by policymakers to support the planning of public health policies. Explicitly integrating antibody and waning effects into the models is crucial for reliable calculations of individual infection risk. However, only few approaches have been suggested that explicitly treat these effects. This paper presents a methodology that explicitly models antibody levels and the resulting protection against infection for individuals within an agent-based model. The model was developed in response to the complexity of different immunization sequences and types and is based on neutralization titer studies. This approach allows complex population studies with explicit antibody and waning effects. We demonstrate the usefulness of our model in two use cases.
Collapse
Affiliation(s)
- Sebastian A. Müller
- Technische Universität Berlin, FG Verkehrssystemplanung und Verkehrstelematik, 10623 Berlin, Germany
| | - Sydney Paltra
- Technische Universität Berlin, FG Verkehrssystemplanung und Verkehrstelematik, 10623 Berlin, Germany
| | - Jakob Rehmann
- Technische Universität Berlin, FG Verkehrssystemplanung und Verkehrstelematik, 10623 Berlin, Germany
| | - Kai Nagel
- Technische Universität Berlin, FG Verkehrssystemplanung und Verkehrstelematik, 10623 Berlin, Germany
| | | |
Collapse
|
10
|
Dulipsingh L, Schaefer EJ, Wakefield D, Williams K, Halilovic A, Crowell R. Comparing SARS-CoV-2 neutralizing antibody levels in convalescent unvaccinated, convalescent vaccinated, and naive vaccinated subjects. Heliyon 2023; 9:e17410. [PMID: 37366522 PMCID: PMC10276490 DOI: 10.1016/j.heliyon.2023.e17410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/18/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 2019 and spread rapidly. The purpose of this study was to compare neutralizing antibodies (NAbs) following the original booster vaccine in convalescent and naive vaccinated individuals and in a third comparison group consisting of unvaccinated convalescent plasma donors. Methods We assessed NAbs before and 2 months after a booster vaccine in 68 adults who had completed the initial vaccine series for SARS-CoV-2. Of these subjects, 58 had no history of prior infection (naïve vaccinated group) and 10 had been infected with SARS-COV-2 prior to the completing the first vaccine series (convalescent vaccinated group). A third comparison group included unvaccinated convalescent plasma donors (n = 55) from an earlier study with NAbs assessed approximately 2 months after a positive test for SARS-CoV-2. Results Prior to the booster, convalescent vaccinated subjects had higher NAbs compared to naive vaccinated subjects (p = 0.02). Two months following the booster, NAbs increased in both vaccinated groups. The naive vaccinated group increased more than the convalescent vaccinated group (p = 0.02). NAbs in the naive vaccinated group were almost four times higher than NAbs in the 55 unvaccinated subjects, while the convalescent vaccinated group had levels 2.5 times higher p < 0.01. Conclusion NAbs in both vaccinated/boosted groups were significantly higher than in the convalescent unvaccinated group (p < 0.01). Our data indicates that subjects with a single infection with SARS-CoV-2 did not have the same levels of neutralizing antibodies that we observed in subjects who were either in the convalescent vaccinated or the naive vaccinated groups.
Collapse
Affiliation(s)
- Latha Dulipsingh
- Saint Francis Hospital and Medical Center, 114 Woodland St., Hartford, CT, USA 06105
| | - Ernst J Schaefer
- Boston Heart Diagnostics, 200 Crossing Boulevard, Framingham, MA, USA, 01702
| | - Dorothy Wakefield
- Saint Francis Hospital and Medical Center, 114 Woodland St., Hartford, CT, USA 06105
| | - Kendra Williams
- Saint Francis Hospital and Medical Center, 114 Woodland St., Hartford, CT, USA 06105
| | - Adis Halilovic
- Saint Francis Hospital and Medical Center, 114 Woodland St., Hartford, CT, USA 06105
| | - Rebecca Crowell
- Saint Francis Hospital and Medical Center, 114 Woodland St., Hartford, CT, USA 06105
| |
Collapse
|
11
|
Tolan NV, DeSimone MS, Fernandes MD, Lewis JE, Simmons DP, Schur PH, Brigl M, Tanasijevic MJ, Desjardins M, Sherman AC, Baden LR, Snyder M, Melanson SE. Lessons learned: A look back at the performance of nine COVID-19 serologic assays and their proposed utility. Clin Biochem 2023; 117:60-68. [PMID: 36878344 PMCID: PMC9985916 DOI: 10.1016/j.clinbiochem.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Serologic assays for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been proposed to assist with the acute diagnosis of infection, support epidemiological studies, identify convalescent plasma donors, and evaluate vaccine response. METHODS We report an evaluation of nine serologic assays: Abbott (AB) and Epitope (EP) IgG and IgM, EUROIMMUN (EU) IgG and IgA, Roche anti-N (RN TOT) and anti-S (RS TOT) total antibody, and DiaSorin (DS) IgG. We evaluated 291 negative controls (NEG CTRL), 91 PCR positive (PCR POS) patients (179 samples), 126 convalescent plasma donors (CPD), 27 healthy vaccinated donors (VD), and 20 allogeneic hematopoietic stem cell transplant (HSCT) recipients (45 samples). RESULTS We observed good agreement with the method performance claims for specificity (93-100%) in NEG CTRL but only 85% for EU IgA. The sensitivity claims in the first 2 weeks of symptom onset was lower (26-61%) than performance claims based on > 2 weeks since PCR positivity. We observed high sensitivities (94-100%) in CPD except for AB IgM (77%), EP IgM (0%). Significantly higher RS TOT was observed for Moderna vaccine recipients then Pfizer (p-values < 0.0001). A sustained RS TOT response was observed for the five months following vaccination. HSCT recipients demonstrated significantly lower RS TOT than healthy VD (p < 0.0001) at dose 2 and 4 weeks after. CONCLUSIONS Our data suggests against the use of anti-SARS-CoV-2 assays to aid in acute diagnosis. RN TOT and RS TOT can readily identify past-resolved infection and vaccine response in the absence of native infection. We provide an estimate of expected antibody response in healthy VD over the time course of vaccination for which to compare antibody responses in immunosuppressed patients.
Collapse
Affiliation(s)
- Nicole V Tolan
- Brigham and Women's Hospital, Department of Pathology, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| | - Mia S DeSimone
- Brigham and Women's Hospital, Department of Pathology, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Maria D Fernandes
- Brigham and Women's Hospital, Department of Pathology, Boston, MA, United States
| | - Joshua E Lewis
- Brigham and Women's Hospital, Department of Pathology, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Daimon P Simmons
- Brigham and Women's Hospital, Department of Pathology, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Peter H Schur
- Brigham and Women's Hospital, Department of Pathology, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Manfred Brigl
- Brigham and Women's Hospital, Department of Pathology, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Milenko J Tanasijevic
- Brigham and Women's Hospital, Department of Pathology, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Michaël Desjardins
- Harvard Medical School, Boston, MA, United States; Brigham and Women's Hospital, Department of Medicine, Division of Infectious Diseases, Boston, MA, United States
| | - Amy C Sherman
- Harvard Medical School, Boston, MA, United States; Brigham and Women's Hospital, Department of Medicine, Division of Infectious Diseases, Boston, MA, United States
| | - Lindsey R Baden
- Harvard Medical School, Boston, MA, United States; Brigham and Women's Hospital, Department of Medicine, Division of Infectious Diseases, Boston, MA, United States
| | | | - Stacy Ef Melanson
- Brigham and Women's Hospital, Department of Pathology, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Monitoring of SARS-CoV-2 Infection in Ragusa Area: Next Generation Sequencing and Serological Analysis. Int J Mol Sci 2023; 24:ijms24054742. [PMID: 36902172 PMCID: PMC10003428 DOI: 10.3390/ijms24054742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
The coronavirus disease 19 (COVID-19) post pandemic evolution is correlated to the development of new variants. Viral genomic and immune response monitoring are fundamental to the surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Since 1 January to 31 July 2022, we monitored the SARS-CoV-2 variants trend in Ragusa area sequencing n.600 samples by next generation sequencing (NGS) technology: n.300 were healthcare workers (HCWs) of ASP Ragusa. The evaluation of anti-Nucleocapside (N), receptor-binding domain (RBD), the two subunit of S protein (S1 and S2) IgG levels in 300 exposed vs. 300 unexposed HCWs to SARS-CoV-2 was performed. Differences in immune response and clinical symptoms related to the different variants were investigated. The SARS-CoV-2 variants trend in Ragusa area and in Sicily region were comparable. BA.1 and BA.2 were the most representative variants, whereas the diffusion of BA.3 and BA.4 affected some places of the region. Although no correlation was found between variants and clinical manifestations, anti-N and anti-S2 levels were positively correlated with an increase in the symptoms number. SARS-CoV-2 infection induced a statistically significant enhancement in antibody titers compared to that produced by SARS-CoV-2 vaccine administration. In post-pandemic period, the evaluation of anti-N IgG could be used as an early marker to identify asymptomatic subjects.
Collapse
|
13
|
Woolums AR. Serology in Bovine Infectious Disease Diagnosis. Vet Clin North Am Food Anim Pract 2023; 39:141-155. [PMID: 36731994 DOI: 10.1016/j.cvfa.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Serologic diagnosis is used to identify evidence of infection or vaccination by specific agents, or for population surveillance. The enzyme-linked immunosorbent assay and the serum (virus) neutralizing tests are most used for bovine serologic diagnosis. Although infectious agent-specific antibodies may include immunoglobulin M, immunoglobulin G, and immunoglobulin A, the antibody class is rarely specifically identified in diagnostic laboratory testing. When interpreting the results of serology, consider whether the antibodies are due to an agent that causes life-long infection, transient infection with no history of vaccination, or transient infection with a history of vaccination. Paired serology is necessary to confirm recent infection in cattle with a history of vaccination.
Collapse
Affiliation(s)
- Amelia R Woolums
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
14
|
Rhinoplasty in the COVID-19 Era: Practice and Safety Considerations. Plast Reconstr Surg 2022; 150:1259e-1263e. [DOI: 10.1097/prs.0000000000009720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Fox T, Geppert J, Dinnes J, Scandrett K, Bigio J, Sulis G, Hettiarachchi D, Mathangasinghe Y, Weeratunga P, Wickramasinghe D, Bergman H, Buckley BS, Probyn K, Sguassero Y, Davenport C, Cunningham J, Dittrich S, Emperador D, Hooft L, Leeflang MM, McInnes MD, Spijker R, Struyf T, Van den Bruel A, Verbakel JY, Takwoingi Y, Taylor-Phillips S, Deeks JJ. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst Rev 2022; 11:CD013652. [PMID: 36394900 PMCID: PMC9671206 DOI: 10.1002/14651858.cd013652.pub2] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND The diagnostic challenges associated with the COVID-19 pandemic resulted in rapid development of diagnostic test methods for detecting SARS-CoV-2 infection. Serology tests to detect the presence of antibodies to SARS-CoV-2 enable detection of past infection and may detect cases of SARS-CoV-2 infection that were missed by earlier diagnostic tests. Understanding the diagnostic accuracy of serology tests for SARS-CoV-2 infection may enable development of effective diagnostic and management pathways, inform public health management decisions and understanding of SARS-CoV-2 epidemiology. OBJECTIVES To assess the accuracy of antibody tests, firstly, to determine if a person presenting in the community, or in primary or secondary care has current SARS-CoV-2 infection according to time after onset of infection and, secondly, to determine if a person has previously been infected with SARS-CoV-2. Sources of heterogeneity investigated included: timing of test, test method, SARS-CoV-2 antigen used, test brand, and reference standard for non-SARS-CoV-2 cases. SEARCH METHODS The COVID-19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) was searched on 30 September 2020. We included additional publications from the Evidence for Policy and Practice Information and Co-ordinating Centre (EPPI-Centre) 'COVID-19: Living map of the evidence' and the Norwegian Institute of Public Health 'NIPH systematic and living map on COVID-19 evidence'. We did not apply language restrictions. SELECTION CRITERIA We included test accuracy studies of any design that evaluated commercially produced serology tests, targeting IgG, IgM, IgA alone, or in combination. Studies must have provided data for sensitivity, that could be allocated to a predefined time period after onset of symptoms, or after a positive RT-PCR test. Small studies with fewer than 25 SARS-CoV-2 infection cases were excluded. We included any reference standard to define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction tests (RT-PCR), clinical diagnostic criteria, and pre-pandemic samples). DATA COLLECTION AND ANALYSIS We use standard screening procedures with three reviewers. Quality assessment (using the QUADAS-2 tool) and numeric study results were extracted independently by two people. Other study characteristics were extracted by one reviewer and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test and, for meta-analysis, we fitted univariate random-effects logistic regression models for sensitivity by eligible time period and for specificity by reference standard group. Heterogeneity was investigated by including indicator variables in the random-effects logistic regression models. We tabulated results by test manufacturer and summarised results for tests that were evaluated in 200 or more samples and that met a modification of UK Medicines and Healthcare products Regulatory Agency (MHRA) target performance criteria. MAIN RESULTS We included 178 separate studies (described in 177 study reports, with 45 as pre-prints) providing 527 test evaluations. The studies included 64,688 samples including 25,724 from people with confirmed SARS-CoV-2; most compared the accuracy of two or more assays (102/178, 57%). Participants with confirmed SARS-CoV-2 infection were most commonly hospital inpatients (78/178, 44%), and pre-pandemic samples were used by 45% (81/178) to estimate specificity. Over two-thirds of studies recruited participants based on known SARS-CoV-2 infection status (123/178, 69%). All studies were conducted prior to the introduction of SARS-CoV-2 vaccines and present data for naturally acquired antibody responses. Seventy-nine percent (141/178) of studies reported sensitivity by week after symptom onset and 66% (117/178) for convalescent phase infection. Studies evaluated enzyme-linked immunosorbent assays (ELISA) (165/527; 31%), chemiluminescent assays (CLIA) (167/527; 32%) or lateral flow assays (LFA) (188/527; 36%). Risk of bias was high because of participant selection (172, 97%); application and interpretation of the index test (35, 20%); weaknesses in the reference standard (38, 21%); and issues related to participant flow and timing (148, 82%). We judged that there were high concerns about the applicability of the evidence related to participants in 170 (96%) studies, and about the applicability of the reference standard in 162 (91%) studies. Average sensitivities for current SARS-CoV-2 infection increased by week after onset for all target antibodies. Average sensitivity for the combination of either IgG or IgM was 41.1% in week one (95% CI 38.1 to 44.2; 103 evaluations; 3881 samples, 1593 cases), 74.9% in week two (95% CI 72.4 to 77.3; 96 evaluations, 3948 samples, 2904 cases) and 88.0% by week three after onset of symptoms (95% CI 86.3 to 89.5; 103 evaluations, 2929 samples, 2571 cases). Average sensitivity during the convalescent phase of infection (up to a maximum of 100 days since onset of symptoms, where reported) was 89.8% for IgG (95% CI 88.5 to 90.9; 253 evaluations, 16,846 samples, 14,183 cases), 92.9% for IgG or IgM combined (95% CI 91.0 to 94.4; 108 evaluations, 3571 samples, 3206 cases) and 94.3% for total antibodies (95% CI 92.8 to 95.5; 58 evaluations, 7063 samples, 6652 cases). Average sensitivities for IgM alone followed a similar pattern but were of a lower test accuracy in every time slot. Average specificities were consistently high and precise, particularly for pre-pandemic samples which provide the least biased estimates of specificity (ranging from 98.6% for IgM to 99.8% for total antibodies). Subgroup analyses suggested small differences in sensitivity and specificity by test technology however heterogeneity in study results, timing of sample collection, and smaller sample numbers in some groups made comparisons difficult. For IgG, CLIAs were the most sensitive (convalescent-phase infection) and specific (pre-pandemic samples) compared to both ELISAs and LFAs (P < 0.001 for differences across test methods). The antigen(s) used (whether from the Spike-protein or nucleocapsid) appeared to have some effect on average sensitivity in the first weeks after onset but there was no clear evidence of an effect during convalescent-phase infection. Investigations of test performance by brand showed considerable variation in sensitivity between tests, and in results between studies evaluating the same test. For tests that were evaluated in 200 or more samples, the lower bound of the 95% CI for sensitivity was 90% or more for only a small number of tests (IgG, n = 5; IgG or IgM, n = 1; total antibodies, n = 4). More test brands met the MHRA minimum criteria for specificity of 98% or above (IgG, n = 16; IgG or IgM, n = 5; total antibodies, n = 7). Seven assays met the specified criteria for both sensitivity and specificity. In a low-prevalence (2%) setting, where antibody testing is used to diagnose COVID-19 in people with symptoms but who have had a negative PCR test, we would anticipate that 1 (1 to 2) case would be missed and 8 (5 to 15) would be falsely positive in 1000 people undergoing IgG or IgM testing in week three after onset of SARS-CoV-2 infection. In a seroprevalence survey, where prevalence of prior infection is 50%, we would anticipate that 51 (46 to 58) cases would be missed and 6 (5 to 7) would be falsely positive in 1000 people having IgG tests during the convalescent phase (21 to 100 days post-symptom onset or post-positive PCR) of SARS-CoV-2 infection. AUTHORS' CONCLUSIONS Some antibody tests could be a useful diagnostic tool for those in whom molecular- or antigen-based tests have failed to detect the SARS-CoV-2 virus, including in those with ongoing symptoms of acute infection (from week three onwards) or those presenting with post-acute sequelae of COVID-19. However, antibody tests have an increasing likelihood of detecting an immune response to infection as time since onset of infection progresses and have demonstrated adequate performance for detection of prior infection for sero-epidemiological purposes. The applicability of results for detection of vaccination-induced antibodies is uncertain.
Collapse
Affiliation(s)
- Tilly Fox
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Julia Geppert
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jacqueline Dinnes
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Katie Scandrett
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Jacob Bigio
- Research Institute of the McGill University Health Centre, Montreal, Canada
- McGill International TB Centre, Montreal, Canada
| | - Giorgia Sulis
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Dineshani Hettiarachchi
- Department of Anatomy Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Yasith Mathangasinghe
- Department of Anatomy Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Praveen Weeratunga
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | | | | - Brian S Buckley
- Cochrane Response, Cochrane, London, UK
- Department of Surgery, University of the Philippines, Manila, Philippines
| | | | | | - Clare Davenport
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Jane Cunningham
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | | | | | - Lotty Hooft
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht , Netherlands
| | - Mariska Mg Leeflang
- Epidemiology and Data Science, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health, Amsterdam, Netherlands
| | | | - René Spijker
- Medical Library, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health, Amsterdam, Netherlands
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Thomas Struyf
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Ann Van den Bruel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Jan Y Verbakel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Yemisi Takwoingi
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Sian Taylor-Phillips
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Jonathan J Deeks
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| |
Collapse
|
16
|
André S, Azarias da Silva M, Picard M, Alleaume-Buteau A, Kundura L, Cezar R, Soudaramourty C, André SC, Mendes-Frias A, Carvalho A, Capela C, Pedrosa J, Gil Castro A, Loubet P, Sotto A, Muller L, Lefrant JY, Roger C, Claret PG, Duvnjak S, Tran TA, Zghidi-Abouzid O, Nioche P, Silvestre R, Corbeau P, Mammano F, Estaquier J. Low quantity and quality of anti-spike humoral response is linked to CD4 T-cell apoptosis in COVID-19 patients. Cell Death Dis 2022; 13:741. [PMID: 36030261 PMCID: PMC9419645 DOI: 10.1038/s41419-022-05190-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023]
Abstract
In addition to an inflammatory reaction, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-infected patients present lymphopenia, which we recently reported as being related to abnormal programmed cell death. As an efficient humoral response requires CD4 T-cell help, we hypothesized that the propensity of CD4 T cells to die may impact the quantity and quality of the humoral response in acutely infected individuals. In addition to specific immunoglobulins (Ig)A, IgM, and IgG against SARS-CoV-2 nucleocapsid (N), membrane (M), and spike (S1) proteins, we assessed the quality of IgG response by measuring the avidity index. Because the S protein represents the main target for neutralization and antibody-dependent cellular cytotoxicity responses, we also analyzed anti-S-specific IgG using S-transfected cells (S-Flow). Our results demonstrated that most COVID-19 patients have a predominant IgA anti-N humoral response during the early phase of infection. This specific humoral response preceded the anti-S1 in time and magnitude. The avidity index of anti-S1 IgG was low in acutely infected individuals compared to convalescent patients. We showed that the percentage of apoptotic CD4 T cells is inversely correlated with the levels of specific IgG antibodies. These lower levels were also correlated positively with plasma levels of CXCL10, a marker of disease severity, and soluble Fas ligand that contributes to T-cell death. Finally, we found lower S-Flow responses in patients with higher CD4 T-cell apoptosis. Altogether, these results demonstrate that individuals with high levels of CD4 T-cell apoptosis and CXCL10 have a poor ability to build an efficient anti-S response. Consequently, preventing CD4 T-cell death might be a strategy for improving humoral response during the acute phase, thereby reducing COVID-19 pathogenicity.
Collapse
Affiliation(s)
- Sonia André
- grid.508487.60000 0004 7885 7602Université Paris Cité, INSERM U1124, F-75006 Paris, France
| | - Marne Azarias da Silva
- grid.508487.60000 0004 7885 7602Université Paris Cité, INSERM U1124, F-75006 Paris, France
| | - Morgane Picard
- grid.508487.60000 0004 7885 7602Université Paris Cité, INSERM U1124, F-75006 Paris, France
| | - Aurélie Alleaume-Buteau
- grid.508487.60000 0004 7885 7602Université Paris Cité, INSERM U1124, F-75006 Paris, France ,grid.508487.60000 0004 7885 7602Structural and Molecular Analysis Platform, BioMedTech Facilities INSERM US36-CNRS UMS2009, Université Paris Cité, Paris, France
| | - Lucy Kundura
- grid.411165.60000 0004 0593 8241Laboratoire d’Immunologie, CHU de Nîmes, Nîmes, France
| | - Renaud Cezar
- grid.411165.60000 0004 0593 8241Laboratoire d’Immunologie, CHU de Nîmes, Nîmes, France
| | | | - Santa Cruz André
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal ,Department of Internal Medicine, Hospital of Braga, Braga, Portugal ,grid.512329.eClinical Academic Center-Braga, Braga, Portugal
| | - Ana Mendes-Frias
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal ,grid.512329.eClinical Academic Center-Braga, Braga, Portugal
| | - Alexandre Carvalho
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal ,Department of Internal Medicine, Hospital of Braga, Braga, Portugal ,grid.512329.eClinical Academic Center-Braga, Braga, Portugal
| | - Carlos Capela
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal ,Department of Internal Medicine, Hospital of Braga, Braga, Portugal ,grid.512329.eClinical Academic Center-Braga, Braga, Portugal
| | - Jorge Pedrosa
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António Gil Castro
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Paul Loubet
- grid.411165.60000 0004 0593 8241Service des Maladies Infectieuses et Tropicales, CHU de Nîmes, Nîmes, France
| | - Albert Sotto
- grid.411165.60000 0004 0593 8241Service des Maladies Infectieuses et Tropicales, CHU de Nîmes, Nîmes, France
| | - Laurent Muller
- grid.411165.60000 0004 0593 8241Service de Réanimation Chirugicale, CHU de Nîmes, Nîmes, France
| | - Jean-Yves Lefrant
- grid.411165.60000 0004 0593 8241Service de Réanimation Chirugicale, CHU de Nîmes, Nîmes, France
| | - Claire Roger
- grid.411165.60000 0004 0593 8241Service de Réanimation Chirugicale, CHU de Nîmes, Nîmes, France
| | - Pierre-Géraud Claret
- grid.411165.60000 0004 0593 8241Urgences Médico-Chirugicales Hospitalisation, CHU de Nîmes, Nîmes, France
| | - Sandra Duvnjak
- grid.411165.60000 0004 0593 8241Service de Gérontologie et Prévention du Vieillissement, CHU de Nîmes, Nîmes, France
| | - Tu-Anh Tran
- grid.411165.60000 0004 0593 8241Service de Pédiatrie, CHU de Nîmes, Nîmes, France
| | | | - Pierre Nioche
- grid.508487.60000 0004 7885 7602Université Paris Cité, INSERM U1124, F-75006 Paris, France ,grid.508487.60000 0004 7885 7602Structural and Molecular Analysis Platform, BioMedTech Facilities INSERM US36-CNRS UMS2009, Université Paris Cité, Paris, France
| | - Ricardo Silvestre
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pierre Corbeau
- grid.411165.60000 0004 0593 8241Laboratoire d’Immunologie, CHU de Nîmes, Nîmes, France ,grid.121334.60000 0001 2097 0141Institut de Génétique Humaine UMR9002 CNRS-Université de Montpellier, Montpellier, France
| | - Fabrizio Mammano
- grid.508487.60000 0004 7885 7602Université Paris Cité, INSERM U1124, F-75006 Paris, France ,INSERM U1259 MAVIVH, Université de Tours, Tours, France
| | - Jérôme Estaquier
- grid.508487.60000 0004 7885 7602Université Paris Cité, INSERM U1124, F-75006 Paris, France ,CHU de Québec—Université Laval Research Center, Québec City, QC Canada
| |
Collapse
|
17
|
Sugiyama A, Okada F, Abe K, Imada H, Ouoba S, E B, Hussain MRA, Ohisa M, Ko K, Nagashima S, Akita T, Yamazaki S, Yokozaki M, Kishita E, Tanaka J. A longitudinal study of anti-SARS-CoV-2 antibody seroprevalence in a random sample of the general population in Hiroshima in 2020. Environ Health Prev Med 2022; 27:30. [PMID: 35793938 PMCID: PMC9283912 DOI: 10.1265/ehpm.22-00016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND This longitudinal study aimed to determine chronological changes in the seroprevalence of prior SARS-CoV-2 infection, including asymptomatic infections in Hiroshima Prefecture, Japan. METHODS A stratified random sample of 7,500 residents from five cities of Hiroshima Prefecture was selected to participate in a three-round survey from late 2020 to early 2021, before the introduction of the COVID-19 vaccine. The seroprevalence of anti-SARS-CoV-2 antibodies was calculated if at least two of four commercially available immunoassays were positive. Then, the ratio between seroprevalence and the prevalence of confirmed COVID-19 cases in Hiroshima was calculated and compared to the results from other prefectures where the Ministry of Health, Labour and Welfare conducted a survey by using the same reagents at almost the same period. RESULTS The numbers of participants in the first, second, and third rounds of the survey were 3025, 2396, and 2351, respectively and their anti-SARS-CoV-2 antibodies seroprevalences were 0.03% (95% confidence interval: 0.00-0.10%), 0.08% (0.00-0.20%), and 0.30% (0.08-0.52%), respectively. The ratio between the seroprevalence and the prevalence of confirmed COVID-19 cases in Hiroshima was 1.2, which was smaller than that in similar studies in other prefectures. CONCLUSIONS The seroprevalence of anti-SARS-CoV-2 antibodies in Hiroshima increased tenfold in a half year. The difference between seroprevalence and the prevalence of confirmed COVID-19 cases in Hiroshima was smaller than that in other prefectures, suggesting that asymptomatic patients were more actively detected in Hiroshima.
Collapse
Affiliation(s)
- Aya Sugiyama
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Fumie Okada
- Hiroshima Prefecture Health and Welfare Bureau
| | - Kanon Abe
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Hirohito Imada
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Serge Ouoba
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University.,Unité de Recherche Clinique de Nanoro (URCN), Institut de Recherche en Science de la Santé (IRSS)
| | - Bunthen E
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University.,Payment Certification Agency, Ministry of Health
| | - Md Razeen Ashraf Hussain
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Masayuki Ohisa
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Ko Ko
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Shintaro Nagashima
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Shinichi Yamazaki
- Division of Clinical Laboratory Medicine, Hiroshima University Hospital
| | - Michiya Yokozaki
- Division of Clinical Laboratory Medicine, Hiroshima University Hospital
| | | | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
18
|
Madanat L, Sager M, O’Connor D, Thapa B, Aggarwal N, Ghimire B, Lauter C, Maine GN, Sims M, Halalau A. Prognostic Value of SARS-CoV-2 Anti-RBD IgG Antibody Quantitation on Clinical Outcomes in Hospitalized COVID-19 Patients. Int J Gen Med 2022; 15:5693-5700. [PMID: 35755860 PMCID: PMC9215841 DOI: 10.2147/ijgm.s370080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
Background Antibody levels against SARS-CoV-2 can be used as an indicator of recent or past vaccination or infection. However, the prognostic value of antibodies targeting the receptor binding protein (anti-RBD) in hospitalized patients is not widely reported. Purpose Determine prognostic impact of SARS-CoV-2 antibody quantification at the time of admission on clinical outcomes in hospitalized COVID-19 patients. Methods We conducted a pilot observational study on patients hospitalized with SARS-CoV-2 infection to determine the prognostic impact of antibody quantitation within the first two days of admission. Anti-nucleocapsid IgG (anti-N) and Anti-RBD levels were measured. Anti-RBD level of 500 AU/mL was used as a cutoff to stratify patients. Spearman's rank Coefficient (rs) was used to demonstrate association. Results Of the 26 patients included, those who were vaccinated more frequently tested positive for Anti-RBD (100% vs 46.2%, P = 0.005) with higher median titer level (623 vs 0, P = 0.011) compared to unvaccinated patients. Anti-N positivity was more frequently seen in unvaccinated patients (53.9% vs 7.7%, P = 0.03). Anti-RBD levels >500 were associated with lower overall hospital length of stay (LOS)(5 vs 10 days, P = 0.046). The analysis employing a Spearman Rank coefficient demonstrated a strong negative correlation between anti-S titer and LOS (rs=-.515, p = 0.007) and a moderate negative correlation with oxygen needs (rs =-.401, p = 0.042). Conclusion Anti-RBD IgG levels were associated with lower LOS and oxygen needs during hospitalization. Further studies are needed to determine if levels on admission can be used as a prognostic indicator.
Collapse
Affiliation(s)
- Luai Madanat
- Internal Medicine, William Beaumont Hospital, Royal Oak, MI, USA
| | - Melinda Sager
- Internal Medicine, William Beaumont Hospital, Royal Oak, MI, USA
| | - Daniel O’Connor
- Internal Medicine, William Beaumont Hospital, Royal Oak, MI, USA
| | - Bijaya Thapa
- Internal Medicine, William Beaumont Hospital, Royal Oak, MI, USA
| | - Nishant Aggarwal
- Internal Medicine, William Beaumont Hospital, Royal Oak, MI, USA
| | - Bipin Ghimire
- Internal Medicine, William Beaumont Hospital, Royal Oak, MI, USA
| | - Carl Lauter
- Internal Medicine, William Beaumont Hospital, Royal Oak, MI, USA
- Infectious Diseases, William Beaumont Hospital, Royal Oak, MI, USA
- Allergy and Immunology, William Beaumont Hospital, Royal Oak, MI, USA
- Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Gabriel N Maine
- Pathology and Laboratory Medicine, William Beaumont Hospital, Royal Oak, MI, USA
- Pathology, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Matthew Sims
- Internal Medicine, William Beaumont Hospital, Royal Oak, MI, USA
- Infectious Diseases, William Beaumont Hospital, Royal Oak, MI, USA
- Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Alexandra Halalau
- Internal Medicine, William Beaumont Hospital, Royal Oak, MI, USA
- Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| |
Collapse
|
19
|
Guleken Z, Tuyji Tok Y, Jakubczyk P, Paja W, Pancerz K, Shpotyuk Y, Cebulski J, Depciuch J. Development of novel spectroscopic and machine learning methods for the measurement of periodic changes in COVID-19 antibody level. MEASUREMENT : JOURNAL OF THE INTERNATIONAL MEASUREMENT CONFEDERATION 2022; 196:111258. [PMID: 35493849 PMCID: PMC9040476 DOI: 10.1016/j.measurement.2022.111258] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 05/07/2023]
Abstract
In this research, blood samples of 47 patients infected by COVID were analyzed. The samples were taken on the 1st, 3rd and 6th month after the detection of COVID infection. Total antibody levels were measured against the SARS-CoV-2 N antigen and surrogate virus neutralization by serological methods. To differentiate COVID patients with different antibody levels, Fourier Transform InfraRed (FTIR) and Raman spectroscopy methods were used. The spectroscopy data were analyzed by multivariate analysis, machine learning and neural network methods. It was shown, that analysis of serum using the above-mentioned spectroscopy methods allows to differentiate antibody levels between 1 and 6 months via spectral biomarkers of amides II and I. Moreover, multivariate analysis showed, that using Raman spectroscopy in the range between 1317 cm-1 and 1432 cm-1, 2840 cm-1 and 2956 cm-1 it is possible to distinguish patients after 1, 3, and 6 months from COVID with a sensitivity close to 100%.
Collapse
Affiliation(s)
- Zozan Guleken
- Uskudar University, Faculty of Medicine, Department of Physiology, Turkey
| | - Yeşim Tuyji Tok
- Department of Medical Microbiology, Cerrahpaşa Medical Faculty, İstanbul University-Cerrahpaşa, Turkey
| | | | - Wiesław Paja
- Institute of Computer Science, University of Rzeszow, Poland
| | - Krzysztof Pancerz
- Institute of Philosophy, John Paul II Catholic University of Lublin, Poland
| | | | | | - Joanna Depciuch
- Institute of Nuclear Physics Polish Academy of Science, 31-342 Krakow, Poland
| |
Collapse
|
20
|
Traoré A, Guindo MA, Konaté D, Traoré B, Diakité SA, Kanté S, Dembélé A, Cissé A, Incandela NC, Kodio M, Coulibaly YI, Faye O, Kajava AV, Pratesi F, Migliorini P, Papini AM, Pacini L, Rovero P, Errante F, Diakité M, Arevalo-Herrera M, Herrera S, Corradin G, Balam S. Seroreactivity of the Severe Acute Respiratory Syndrome Coronavirus 2 Recombinant S Protein, Receptor-Binding Domain, and Its Receptor-Binding Motif in COVID-19 Patients and Their Cross-Reactivity With Pre-COVID-19 Samples From Malaria-Endemic Areas. Front Immunol 2022; 13:856033. [PMID: 35585976 PMCID: PMC9109707 DOI: 10.3389/fimmu.2022.856033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/28/2022] [Indexed: 12/23/2022] Open
Abstract
Despite the global interest and the unprecedented number of scientific studies triggered by the COVID-19 pandemic, few data are available from developing and low-income countries. In these regions, communities live under the threat of various transmissible diseases aside from COVID-19, including malaria. This study aims to determine the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroreactivity of antibodies from COVID-19 and pre-COVID-19 samples of individuals in Mali (West Africa). Blood samples from COVID-19 patients (n = 266) at Bamako Dermatology Hospital (HDB) and pre-COVID-19 donors (n = 283) from a previous malaria survey conducted in Dangassa village were tested by ELISA to assess IgG antibodies specific to the full-length spike (S) protein, the receptor-binding domain (RBD), and the receptor-binding motif (RBM436-507). Study participants were categorized by age, gender, treatment duration for COVID-19, and comorbidities. In addition, the cross-seroreactivity of samples from pre-COVID-19, malaria-positive patients against the three antigens was assessed. Recognition of the SARS-CoV-2 proteins by sera from COVID-19 patients was 80.5% for S, 71.1% for RBD, and 31.9% for RBM (p < 0.001). While antibody responses to S and RBD tended to be age-dependent, responses to RBM were not. Responses were not gender-dependent for any of the antigens. Higher antibody levels to S, RBD, and RBM at hospital entry were associated with shorter treatment durations, particularly for RBD (p < 0.01). In contrast, higher body weights negatively influenced the anti-S antibody response, and asthma and diabetes weakened the anti-RBM antibody responses. Although lower, a significant cross-reactive antibody response to S (21.9%), RBD (6.7%), and RBM (8.8%) was detected in the pre-COVID-19 and malaria samples. Cross-reactive antibody responses to RBM were mostly associated (p < 0.01) with the absence of current Plasmodium falciparum infection, warranting further study.
Collapse
Affiliation(s)
- Abdouramane Traoré
- Immunogenetic Laboratory and Parasitology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Merepen A. Guindo
- Immunogenetic Laboratory and Parasitology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Drissa Konaté
- Immunogenetic Laboratory and Parasitology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Bourama Traoré
- Department of Ministry of Health and Social Development, Hopital de Dermatologie de Bamako (HDB), Bamako, Mali
| | - Seidina A. Diakité
- Immunogenetic Laboratory and Parasitology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Salimata Kanté
- Immunogenetic Laboratory and Parasitology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Assitan Dembélé
- Immunogenetic Laboratory and Parasitology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Abdourhamane Cissé
- Immunogenetic Laboratory and Parasitology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Nathan C. Incandela
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, United States
| | - Mamoudou Kodio
- Department of Ministry of Health and Social Development, Hopital de Dermatologie de Bamako (HDB), Bamako, Mali
| | - Yaya I. Coulibaly
- Department of Ministry of Health and Social Development, Hopital de Dermatologie de Bamako (HDB), Bamako, Mali
| | - Ousmane Faye
- Department of Ministry of Health and Social Development, Hopital de Dermatologie de Bamako (HDB), Bamako, Mali
| | - Andrey V. Kajava
- Montpellier Cell Biology Research Center (CRBM), University of Montpellier, CNRS, Montpellier, France
| | - Federico Pratesi
- Immuno-Allergology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Migliorini
- Immuno-Allergology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
| | - Lorenzo Pacini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Florence, Italy
| | - Fosca Errante
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Florence, Italy
| | - Mahamadou Diakité
- Immunogenetic Laboratory and Parasitology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Myriam Arevalo-Herrera
- Department of Immunology, Malaria Vaccine and Drug Development Center, Cali, Colombia
- Department of Immunology, Caucaseco Scientific Research Center, Cali, Colombia
| | - Socrates Herrera
- Department of Immunology, Malaria Vaccine and Drug Development Center, Cali, Colombia
- Department of Immunology, Caucaseco Scientific Research Center, Cali, Colombia
| | | | - Saidou Balam
- Immunogenetic Laboratory and Parasitology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
21
|
Rapid electrochemical detection of COVID-19 genomic sequence with dual-function graphene nanocolloids based biosensor. FLATCHEM 2022; 32. [PMCID: PMC8771053 DOI: 10.1016/j.flatc.2022.100336] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Discovered in December 2019, the Severe Acute Respiratory Syndrome Coronavirus 2 (aka SARS-CoV-2 or 2019-nCoV) has attracted worldwide attention and concerns due to its high transmissibility and the severe health consequences experienced upon its infection, particularly by elderly people. Over 329 million people have been infected till date and over 5.5 million people could not survive the respiratory illness known as COVID-19 syndrome. Rapid and low-cost detection methods are of utmost importance to monitor the diffusion of the virus and to aid in the global fight against the pandemic. We propose here the use of graphene oxide nanocolloids (GONC) as an electroactive nanocarbon material that can act simultaneously as a transducing platform as well as the electroactive label for the detection of 2019-nCoV genomic sequences. The ability of GONC to provide an intrinsic electrochemical signal arising from the reduction of the electrochemically reducible oxygen functionalities present on its surface, allows GONC to be used as a simple and sensitive biosensing platform. Different intrinsic electroactivity of the material was obtained at each step of the genosensing process, starting from the immobilization of a short-stranded DNA probe and followed by the incubation with different concentrations of the target 2019-nCoV DNA strand. Monitoring such variations enabled the quantification of the target analyte over a wide dynamic range between 10−10 and 10−5 M. All in all, this proof-of-concept system serves as a stepping stone for the development of a rapid, sensitive and selective analytical tool for the detection of 2019-nCoV as well as other similar viral vectors. The use of cost-effective electrochemical detection methods coupled with the vast availability and suitability of carbon-based nanomaterials make this sensing system a valid candidate for low-cost and point-of-care analysis.
Collapse
|
22
|
Cruz VB, Júnior LFFF, Kobal CR, da Silva NA. Does sensitization by SARS-CoV-2 immune complexes trigger DRESS syndrome? Braz J Infect Dis 2022; 26:102337. [PMID: 35276095 PMCID: PMC8882399 DOI: 10.1016/j.bjid.2022.102337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/18/2022] [Accepted: 02/16/2022] [Indexed: 12/17/2022] Open
Abstract
The diagnosis of coronavirus disease (COVID-19) has been a great challenge since the infection affects not only the respiratory system, but also different organs, given the intense inflammatory and autoimmune reaction triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein we present a case of a 36-year-old male patient, with some comorbidities and previous use of carbamazepine, who developed a severe condition triggered by COVID-19, including extensive exfoliative erythroderma and severe impairment of liver function, which lasted approximately 80 days.
Collapse
Affiliation(s)
- Virgínia Barbeitos Cruz
- Health Sciences Program, School of Medicine, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | | | - Christiane Reis Kobal
- Department of Infectious Diseases, Hospital of Tropical Diseases of Goiás, Goiânia, GO, Brazil
| | - Nilzio Antonio da Silva
- Health Sciences Program, School of Medicine, Universidade Federal de Goiás, Goiânia, GO, Brazil
| |
Collapse
|
23
|
Kelliher MT, Levy JJ, Nerenz RD, Poore B, Johnston AA, Rogers AR, Stella MEO, Snow SE, Cervinski MA, Hubbard JA. Comparison of Symptoms and Antibody Response Following Administration of Moderna or Pfizer SARS-CoV-2 Vaccines. Arch Pathol Lab Med 2022; 146:677-685. [PMID: 35188563 DOI: 10.5858/arpa.2021-0607-sa] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/06/2022]
Abstract
CONTEXT. – Moderna (mRNA-1272) and Pfizer (BNT162b2) SARS-CoV-2 vaccines demonstrate favorable safety and efficacy profiles, but direct comparison data is lacking. OBJECTIVE. – To determine the vaccines' side effect profiles and expected antibody responses. This data may help personalize vaccine selection and identify individuals with a suboptimal vaccine response. DESIGN. – One hundred forty-nine healthy, largely seronegative adults were assigned Moderna (n=79) or Pfizer (n=70). Following the second dose, participants completed a survey documenting their side effects. Serum was collected 0-4 days prior to dose 2, 14±4 days, 30±4 days, 90±10 days, and 180±20 days after dose 2. Convalescent serum specimens were collected 32-54 days from donors after a polymerase chain reaction (PCR)-confirmed SARS-CoV-2 infection (n=20). Anti-spike antibodies were measured using the Roche Diagnostics Elecys anti-SARS-CoV-2 S assay on a Roche cobas e801 instrument. RESULTS. – Participants receiving the Moderna vaccine experienced side effects with greater frequency and severity. Both vaccines elicited a robust antibody response but median signal was higher in Moderna recipients. Symptom severity decreased with age. Antibody response in Pfizer recipients negatively correlated with age. Antibody response decreased after 6 months (84% reduction in Moderna, 79% Pfizer), but values remained greater than for convalescent donors. Antibody response did not correlate with gender or symptom severity. CONCLUSIONS. – Moderna may be preferred in individuals in need of greater immune stimulation (e.g. older individuals) while Pfizer may be preferred in those concerned about vaccine reactions. Anti-spike antibody signal varies by vaccine, so specific reference intervals will be needed to identify individuals with a suboptimal response.
Collapse
Affiliation(s)
- Michael T Kelliher
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Health System, Lebanon, NH.,Department of Pathology of Laboratory Medicine, The Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Joshua J Levy
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Health System, Lebanon, NH.,Department of Pathology of Laboratory Medicine, The Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Robert D Nerenz
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Health System, Lebanon, NH.,Department of Pathology of Laboratory Medicine, The Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Bradley Poore
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Health System, Lebanon, NH.,Department of Pathology of Laboratory Medicine, The Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Abigail A Johnston
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Health System, Lebanon, NH.,Department of Pathology of Laboratory Medicine, The Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Amanda R Rogers
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Health System, Lebanon, NH.,Department of Pathology of Laboratory Medicine, The Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Mary E O Stella
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Health System, Lebanon, NH.,Department of Pathology of Laboratory Medicine, The Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Sarah E Snow
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Health System, Lebanon, NH.,Department of Pathology of Laboratory Medicine, The Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Mark A Cervinski
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Health System, Lebanon, NH.,Department of Pathology of Laboratory Medicine, The Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Jacqueline A Hubbard
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Health System, Lebanon, NH.,Department of Pathology of Laboratory Medicine, The Geisel School of Medicine at Dartmouth, Hanover, NH
| |
Collapse
|
24
|
A SYSTEMATIC REVIEW AND META-ANALYSIS OF THE ACCURACY OF SARS-COV-2 IGM AND IGG TESTS IN INDIVIDUALS WITH COVID-19. J Clin Virol 2022; 148:105121. [PMID: 35245882 PMCID: PMC8863416 DOI: 10.1016/j.jcv.2022.105121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/22/2022] [Accepted: 02/21/2022] [Indexed: 01/21/2023]
Abstract
Introduction Objective Methods Results Conclusion
Collapse
|
25
|
Guarino C, Larson E, Babasyan S, Rollins A, Joshi LR, Laverack M, Parrilla L, Plocharczyk E, Diel DG, Wagner B. Development of a quantitative COVID-19 multiplex assay and its use for serological surveillance in a low SARS-CoV-2 incidence community. PLoS One 2022; 17:e0262868. [PMID: 35061843 PMCID: PMC8782306 DOI: 10.1371/journal.pone.0262868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
A serological COVID-19 Multiplex Assay was developed and validated using serum samples from convalescent patients and those collected prior to the 2020 pandemic. After initial testing of multiple potential antigens, the SARS-CoV-2 nucleocapsid protein (NP) and receptor-binding domain (RBD) of the spike protein were selected for the human COVID-19 Multiplex Assay. A comparison of synthesized and mammalian expressed RBD proteins revealed clear advantages of mammalian expression. Antibodies directed against NP strongly correlated with SARS-CoV-2 virus neutralization assay titers (rsp = 0.726), while anti-RBD correlation was moderate (rsp = 0.436). Pan-Ig, IgG, IgA, and IgM against NP and RBD antigens were evaluated on the validation sample sets. Detection of NP and RBD specific IgG and IgA had outstanding performance (AUC > 0.90) for distinguishing patients from controls, but the dynamic range of the IgG assay was substantially greater. The COVID-19 Multiplex Assay was utilized to identify seroprevalence to SARS-CoV-2 in people living in a low-incidence community in Ithaca, NY. Samples were taken from a cohort of healthy volunteers (n = 332) in early June 2020. Only two volunteers had a positive result on a COVID-19 PCR test performed prior to serum sampling. Serological testing revealed an exposure rate of at least 1.2% (NP) or as high as 5.7% (RBD), higher than the measured incidence rate of 0.16% in the county at that time. This highly sensitive and quantitative assay can be used for monitoring community exposure rates and duration of immune response following both infection and vaccination.
Collapse
Affiliation(s)
- Cassandra Guarino
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Elisabeth Larson
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Alicia Rollins
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Lok R. Joshi
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Melissa Laverack
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Lara Parrilla
- Cayuga Medical Center, Ithaca, NY, United States of America
| | | | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
26
|
Emeribe AU, Abdullahi IN, Shuwa HA, Uzairue L, Musa S, Anka AU, Adekola HA, Bello ZM, Rogo LD, Aliyu D, Haruna S, Usman Y, Muhammad HY, Gwarzo AM, Nwofe JO, Chiwar HM, Okwume CC, Animasaun OS, Fasogbon SA, Olayemi L, Ogar C, Emeribe CH, Ghamba PE, Awoniyi LO, Musa BOP. Humoral immunological kinetics of severe acute respiratory syndrome coronavirus 2 infection and diagnostic performance of serological assays for coronavirus disease 2019: an analysis of global reports. Int Health 2022; 14:18-52. [PMID: 33620427 PMCID: PMC7928871 DOI: 10.1093/inthealth/ihab005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/23/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
As the coronavirus disease 2019 (COVID-19) pandemic continues to rise and second waves are reported in some countries, serological test kits and strips are being considered to scale up an adequate laboratory response. This study provides an update on the kinetics of humoral immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and performance characteristics of serological protocols (lateral flow assay [LFA], chemiluminescence immunoassay [CLIA] and ELISA) used for evaluations of recent and past SARS-CoV-2 infection. A thorough and comprehensive review of suitable and eligible full-text articles was performed on PubMed, Scopus, Web of Science, Wordometer and medRxiv from 10 January to 16 July 2020. These articles were searched using the Medical Subject Headings terms 'COVID-19', 'Serological assay', 'Laboratory Diagnosis', 'Performance characteristics', 'POCT', 'LFA', 'CLIA', 'ELISA' and 'SARS-CoV-2'. Data from original research articles on SARS-CoV-2 antibody detection ≥second day postinfection were included in this study. In total, there were 7938 published articles on humoral immune response and laboratory diagnosis of COVID-19. Of these, 74 were included in this study. The detection, peak and decline period of blood anti-SARS-CoV-2 IgM, IgG and total antibodies for point-of-care testing (POCT), ELISA and CLIA vary widely. The most promising of these assays for POCT detected anti-SARS-CoV-2 at day 3 postinfection and peaked on the 15th day; ELISA products detected anti-SARS-CoV-2 IgM and IgG at days 2 and 6 then peaked on the eighth day; and the most promising CLIA product detected anti-SARS-CoV-2 at day 1 and peaked on the 30th day. The most promising LFA, ELISA and CLIA that had the best performance characteristics were those targeting total SARS-CoV-2 antibodies followed by those targeting anti-SARS-CoV-2 IgG then IgM. Essentially, the CLIA-based SARS-CoV-2 tests had the best performance characteristics, followed by ELISA then POCT. Given the varied performance characteristics of all the serological assays, there is a need to continuously improve their detection thresholds, as well as to monitor and re-evaluate their performances to assure their significance and applicability for COVID-19 clinical and epidemiological purposes.
Collapse
Affiliation(s)
- Anthony Uchenna Emeribe
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, University of Calabar, P.M.B 1115, Calabar, Cross River State, Nigeria
| | - Idris Nasir Abdullahi
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Halima Ali Shuwa
- University Health Services, College of Health and Medical Sciences, Federal University, Dutse, Nigeria
| | - Leonard Uzairue
- Department of Microbiology, Federal University of Agriculture Abeokuta, Nigeria
| | - Sanusi Musa
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Abubakar Umar Anka
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | | | - Zakariyya Muhammad Bello
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Lawal Dahiru Rogo
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University, Kano Nigeria
| | - Dorcas Aliyu
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, University of Calabar, P.M.B 1115, Calabar, Cross River State, Nigeria
| | - Shamsuddeen Haruna
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Yahaya Usman
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Habiba Yahaya Muhammad
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University, Kano Nigeria
| | | | | | - Hassan Musa Chiwar
- Department of Medical Laboratory Science, University of Maiduguri Maiduguri, Nigeria
| | - Chukwudi Crescent Okwume
- Department of Medical Laboratory Services, University of Nigeria Teaching Hospital, Enugu, Nigeria
| | - Olawale Sunday Animasaun
- Nigeria Field Epidemiology and Laboratory Training Programme, African Field Epidemiology Network, Abuja, Nigeria
| | - Samuel Ayobami Fasogbon
- Public Health In-vitro Diagnostic Control Laboratory, Medical Laboratory Science Council of Nigeria, Lagos, Nigeria
| | - Lawal Olayemi
- School of Medicine, Faculty of Health Sciences, National University of Samoa, Apia, Samoa
| | - Christopher Ogar
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, University of Calabar, P.M.B 1115, Calabar, Cross River State, Nigeria
| | - Chinenye Helen Emeribe
- Department of Family Medicine, University of Calabar Teaching Hospital, PMB 1278 Calabar, Cross River, Nigeria
| | - Peter Elisha Ghamba
- WHO National Polio Reference Laboratory, University of Maiduguri Teaching Hospital, Maiduguri, Nigeria
| | - Luqman O Awoniyi
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, 20014 Turku, Finland
| | - Bolanle O P Musa
- Immunology Unit, Department of Medicine, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
27
|
Deshpande PS, Abraham IE, Pitamberwale A, Dhote RH. Review of Clinical Performance of Serology Based Commercial Diagnostic Assays for Detection of Severe Acute Respiratory Syndrome Coronavirus 2 Antibodies. Viral Immunol 2022; 35:82-111. [PMID: 35007431 DOI: 10.1089/vim.2020.0313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, which caused the coronavirus disease 2019 (COVID-19) pandemic as declared by the World Health Organization, has created havoc worldwide. The highly transmissible infection can be contained only by accurate diagnosis, quarantining, and exercising social distancing. Therefore, quick and massive deployment of SARS-CoV-2 testing plays a crucial role in the identification and isolation of infected patients. Reverse transcription-polymerase chain reaction is the gold standard for COVID-19 detection; however, it needs expertise, facilities, and time. Hence, for the ease of population-wide screening, serology-based diagnostic assays were introduced. These can help determine the prevalence of infection, understand the epidemiology of the disease, and assist in suitable public health interventions while being user-friendly and less time consuming. Although serological testing kits in markets soared, their sensitivity and specificity were questioned in reports from different parts of the world. In this article, we have reviewed 40 Food and Drug Administration (FDA) and CE-approved clinically evaluated serological kits (8 enzyme-linked immunosorbent assay [ELISA] kits, 10 chemiluminescent immunoassay [CLIA] kits, and 22 lateral flow immunoassay [LFIA] kits) for their sensitivity and specificity and discussed the apparent reasons behind their performance. We observed appreciable sensitivity in the kits detecting total antibodies compared to the kits targeting single isotype antibodies. Tests that determined antibodies against nucleocapsid protein were found to be more sensitive and those detecting antibodies against spike protein were found to have greater specificity. This study was conducted to help the decision-making while acquiring antibody kits and concurrently to be mindful of their shortcomings.
Collapse
Affiliation(s)
- Poonam S Deshpande
- Biochemistry Division, Department of Chemistry, Fergusson College, Pune, India
| | - Irene E Abraham
- Biochemistry Division, Department of Chemistry, Fergusson College, Pune, India
| | - Anjali Pitamberwale
- Biochemistry Division, Department of Chemistry, Fergusson College, Pune, India
| | - Radhika H Dhote
- Biochemistry Division, Department of Chemistry, Fergusson College, Pune, India
| |
Collapse
|
28
|
Bi C, Ramos-Mandujano G, Li M. NIRVANA for Simultaneous Detection and Mutation Surveillance of SARS-CoV-2 and Co-infections of Multiple Respiratory Viruses. Methods Mol Biol 2022; 2511:79-88. [PMID: 35838953 DOI: 10.1007/978-1-0716-2395-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Detection and mutation surveillance of SARS-CoV-2 are crucial for combating the COVID-19 pandemic. Here we describe a lab-based method for multiplex isothermal amplification-based sequencing and real-time analysis of multiple viral genomes. It can simultaneously detect SARS-CoV-2, influenza A, human adenovirus, and human coronavirus and monitor mutations for up to 96 samples in real time. The method proved to be rapid and sensitive (limit of detection: 29 viral RNA copies/μL of extracted nucleic acid) in detecting SARS-CoV-2 in clinical samples. We expect it to offer a promising solution for rapid field-deployable detection and mutational surveillance of pandemic viruses.
Collapse
Affiliation(s)
- Chongwei Bi
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Shanghai ZhiYu Bio-technology Co., LTD, Shanghai, China
| | - Gerardo Ramos-Mandujano
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mo Li
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
29
|
Ge C, Feng J, Zhang J, Hu K, Wang D, Zha L, Hu X, Li R. Aptamer/antibody sandwich method for digital detection of SARS-CoV2 nucleocapsid protein. Talanta 2022; 236:122847. [PMID: 34635237 PMCID: PMC8421254 DOI: 10.1016/j.talanta.2021.122847] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022]
Abstract
Nucleocapsid protein (N protein) is the most abundant protein in SARS-CoV2 and is highly conserved, and there are no homologous proteins in the human body, making it an ideal biomarker for the early diagnosis of SARS-CoV2. However, early detection of clinical specimens for SARS-CoV2 remains a challenge due to false-negative results with viral RNA and host antibodies based testing. In this manuscript, a microfluidic chip with femtoliter-sized wells was fabricated for the sensitive digital detection of N protein. Briefly, β-galactosidase (β-Gal)-linked antibody/N protein/aptamer immunocomplexes were formed on magnetic beads (MBs). Afterwards, the MBs and β-Gal substrate fluorescein-di-β-d-galactopyranoside (FDG) were injected into the chip together. Each well of the chip would only hold one MB as confined by the diameter of the wells. The MBs in the wells were sealed by fluorocarbon oil, which confines the fluorescent (FL) product generated from the reaction between β-Gal and FDG in the individual femtoliter-sized well and creates a locally high concentration of the FL product. The FL images of the wells were acquired using a conventional inverted FL microscope. The number of FL wells with MBs (FL wells number) and the number of wells with MBs (MBs wells number) were counted, respectively. The percentage of FL wells was calculated by dividing (FL wells number) by (MBs wells number). The higher the percentage of FL wells, the higher the N protein concentration. The detection limit of this digital method for N protein was 33.28 pg/mL, which was 300 times lower than traditional double-antibody sandwich based enzyme-linked immunosorbent assay (ELISA).
Collapse
Affiliation(s)
- Chenchen Ge
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, PR China
| | - Juan Feng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, PR China
| | - Jiaming Zhang
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, PR China
| | - Kai Hu
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, PR China
| | - Dou Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong, 518055, PR China.
| | - Ling Zha
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, PR China
| | - Xuejuan Hu
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, PR China.
| | - Rongsong Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, PR China.
| |
Collapse
|
30
|
Veenhuis RT, Zeiss CJ. Animal Models of COVID-19 II. Comparative Immunology. ILAR J 2021; 62:17-34. [PMID: 33914873 PMCID: PMC8135340 DOI: 10.1093/ilar/ilab010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/03/2020] [Accepted: 12/20/2020] [Indexed: 12/22/2022] Open
Abstract
Developing strong animal models is essential for furthering our understanding of how the immune system functions in response to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. The alarming speed at which SARS-CoV-2 has spread, and the high mortality rate of severe Coronavirus Disease 2019 (COVID-19), has required both basic science and clinical research to move at an unprecedented pace. Models previously developed to study the immune response against SARS-CoV have been rapidly deployed to now study SARS-CoV-2. To date, both small and large animal models are remarkably consistent when infected with SARS-CoV-2; however, certain models have proven more useful when answering specific immunological questions than others. Small animal models, such as Syrian hamsters, ferrets, and mice carrying the hACE2 transgene, appear to reliably recapitulate the initial cytokine surge seen in COVID-19 as well as show significant innate and adaptive cell infiltration in to the lung early in infection. Additionally, these models develop strong antibody responses to the virus, are protected from reinfection, and genetically modified versions exist that can be used to ask specific immunological questions. Large animal models such as rhesus and cynomologus macaques and African green monkeys are critical to understanding how the immune system responds to SARS-CoV-2 infection because they are considered to be the most similar to humans. These models are considered the gold standard for assessing vaccine efficacy and protection, and recapitulate the initial cytokine surge, immune cell infiltration into the lung, certain aspects of thrombosis, and the antibody and T-cell response to the virus. In this review, we discuss both small and large animal model studies previously used in SARS-CoV-2 research that may be useful in elucidating the immunological contributions to hallmark syndromes observed with COVID-19.
Collapse
Affiliation(s)
- Rebecca T Veenhuis
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Caroline J Zeiss
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
31
|
Makoah NA, Tipih T, Litabe MM, Brink M, Sempa JB, Goedhals D, Burt FJ. A systematic review and meta-analysis of the sensitivity of antibody tests for the laboratory confirmation of COVID-19. Future Virol 2021; 17:10.2217/fvl-2021-0211. [PMID: 34950219 PMCID: PMC8686841 DOI: 10.2217/fvl-2021-0211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
Aim: The aim of this study was to investigate the utility of serological tests for the diagnosis of COVID-19 during the first week of symptom onset in patients confirmed with the real-time RT-PCR. Materials & methods: A systematic review and meta-analysis of 58 publications were performed using data obtained from Academic Search Ultimate, Africa-wide, Scopus, Web of Science and MEDLINE. Results: We found that the highest pooled sensitivities were obtained with ELISA IgM-IgG and chemiluminescence immunoassay IgM tests. Conclusion: Serological tests have low sensitivity within the first week of symptom onset and cannot replace nucleic acid amplification tests. However, serological assays can be used to support nucleic acid amplification tests.
Collapse
Affiliation(s)
- Nigel A Makoah
- Division of Virology, Faculty of Health Sciences, University of The Free State, Bloemfontein, 9301, South Africa
| | - Thomas Tipih
- Division of Virology, Faculty of Health Sciences, University of The Free State, Bloemfontein, 9301, South Africa
| | - Matefo M Litabe
- Division of Virology, Faculty of Health Sciences, University of The Free State, Bloemfontein, 9301, South Africa
| | - Mareza Brink
- Free State Department of Health, Bloemfontein, 9301, South Africa
| | - Joseph B Sempa
- Department of Biostatistics, Faculty of Health Sciences, University of The Free State, Bloemfontein, 9301, South Africa
- DST-NRF Centre of Excellence in Epidemiological Modelling & Analysis (SACEMA), Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Dominique Goedhals
- Division of Virology, Faculty of Health Sciences, University of The Free State, Bloemfontein, 9301, South Africa
- Division of Virology, National Health Laboratory Service, Bloemfontein, 9301, South Africa
| | - Felicity J Burt
- Division of Virology, Faculty of Health Sciences, University of The Free State, Bloemfontein, 9301, South Africa
- Division of Virology, National Health Laboratory Service, Bloemfontein, 9301, South Africa
| |
Collapse
|
32
|
Wei J, Matthews PC, Stoesser N, Maddox T, Lorenzi L, Studley R, Bell JI, Newton JN, Farrar J, Diamond I, Rourke E, Howarth A, Marsden BD, Hoosdally S, Jones EY, Stuart DI, Crook DW, Peto TEA, Pouwels KB, Walker AS, Eyre DW. Anti-spike antibody response to natural SARS-CoV-2 infection in the general population. Nat Commun 2021; 12:6250. [PMID: 34716320 PMCID: PMC8556331 DOI: 10.1038/s41467-021-26479-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/06/2021] [Indexed: 01/08/2023] Open
Abstract
Understanding the trajectory, duration, and determinants of antibody responses after SARS-CoV-2 infection can inform subsequent protection and risk of reinfection, however large-scale representative studies are limited. Here we estimated antibody response after SARS-CoV-2 infection in the general population using representative data from 7,256 United Kingdom COVID-19 infection survey participants who had positive swab SARS-CoV-2 PCR tests from 26-April-2020 to 14-June-2021. A latent class model classified 24% of participants as 'non-responders' not developing anti-spike antibodies, who were older, had higher SARS-CoV-2 cycle threshold values during infection (i.e. lower viral burden), and less frequently reported any symptoms. Among those who seroconverted, using Bayesian linear mixed models, the estimated anti-spike IgG peak level was 7.3-fold higher than the level previously associated with 50% protection against reinfection, with higher peak levels in older participants and those of non-white ethnicity. The estimated anti-spike IgG half-life was 184 days, being longer in females and those of white ethnicity. We estimated antibody levels associated with protection against reinfection likely last 1.5-2 years on average, with levels associated with protection from severe infection present for several years. These estimates could inform planning for vaccination booster strategies.
Collapse
Affiliation(s)
- Jia Wei
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Philippa C Matthews
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
- The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, Oxford, UK
- The National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | | | | | | | - John I Bell
- Office of the Regius Professor of Medicine, University of Oxford, Oxford, UK
| | - John N Newton
- Health Improvement Directorate, Public Health England, London, UK
| | | | | | | | - Alison Howarth
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- The National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Brian D Marsden
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sarah Hoosdally
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - E Yvonne Jones
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - David I Stuart
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Derrick W Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
- The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, Oxford, UK
- The National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Tim E A Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
- The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, Oxford, UK
- The National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Koen B Pouwels
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, Oxford, UK
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, Oxford, UK
- MRC Clinical Trials Unit at UCL, UCL, London, UK
| | - David W Eyre
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK.
- The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, Oxford, UK.
- The National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
33
|
Melgoza-González EA, Hinojosa-Trujillo D, Reséndiz-Sandoval M, Mata-Haro V, Hernández-Valenzuela S, García-Vega M, Bravo-Parra M, Arvizu-Flores AA, Valenzuela O, Velázquez E, Soto-Gaxiola A, Gómez-Meza MB, Pérez-Jacobo F, Villela L, Hernández J. Analysis of IgG, IgA and IgM antibodies against SARS-CoV-2 spike protein S1 in convalescent and vaccinated patients with the Pfizer-BioNTech and CanSinoBio vaccines. Transbound Emerg Dis 2021; 69:e734-e745. [PMID: 34655457 PMCID: PMC8662108 DOI: 10.1111/tbed.14344] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022]
Abstract
The SARS‐CoV‐2 virus was detected for the first time in December 2019 in Wuhan, China. Currently, this virus has spread around the world, and new variants have emerged. This new pandemic virus provoked the rapid development of diagnostic tools, therapies and vaccines to control this new disease called COVID‐19. Antibody detection by ELISA has been broadly used to recognize the number of persons infected with this virus or to evaluate the response of vaccinated individuals. As the pandemic spread, new questions arose, such as the prevalence of antibodies after natural infection and the response induced by the different vaccines. In Mexico, as in other countries, mRNA and viral‐vectored vaccines have been widely used among the population. In this work, we developed an indirect ELISA test to evaluate S1 antibodies in convalescent and vaccinated individuals. By using this test, we showed that IgG antibodies against the S1 protein of SARS‐CoV‐2 were detected up to 42 weeks after the onset of the symptoms, in contrast to IgA and IgM, which decreased 14 weeks after the onset of symptoms. The evaluation of the antibody response in individuals vaccinated with Pfizer‐BioNTech and CanSinoBio vaccines showed no differences 2 weeks after vaccination. However, after completing the two doses of Pfizer‐BioNTech and the one dose of CanSinoBio, a significantly higher response of IgG antibodies was observed in persons vaccinated with Pfizer‐BioNTech than in those vaccinated with CanSinoBio. In conclusion, these results confirm that after natural infection with SARS‐CoV‐2, it is possible to detect antibodies for up to 10 months. Additionally, our results showed that one dose of the CanSinoBio vaccine induces a lower response of IgG antibodies than that induced by the complete scheme of the Pfizer‐BioNTech vaccine.
Collapse
Affiliation(s)
- Edgar A Melgoza-González
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| | - Diana Hinojosa-Trujillo
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| | - Mónica Reséndiz-Sandoval
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| | - Verónica Mata-Haro
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| | - Sofía Hernández-Valenzuela
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| | - Melissa García-Vega
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| | - Marlene Bravo-Parra
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| | - Aldo A Arvizu-Flores
- Departamento de Ciencias Químico Biológicas, División de Ciencias de la Salud, Universidad de Sonora, Hermosillo, Mexico
| | - Olivia Valenzuela
- Departamento de Ciencias Químico Biológicas, División de Ciencias de la Salud, Universidad de Sonora, Hermosillo, Mexico
| | - Edgar Velázquez
- Centro Estatal de la Transfusión Sanguínea, Secretaria de Salud del Estado de Sonora, Hermosillo, Mexico
| | - Alan Soto-Gaxiola
- Hospital General del Estado de Sonora "Dr. Ernesto Ramos Bours", Secretaria de Salud del Estado de Sonora, Hermosillo, Mexico
| | - Martha B Gómez-Meza
- Departamento de Hematología y Banco de Sangre, Ciudad de México, Hospital Central Norte Pemex, Mexico
| | | | - Luis Villela
- Universidad del Valle de México, Campus Hermosillo, Hermosillo, Mexico.,Hospital Fernando Ocaranza, ISSSTE-Hermosillo, Hermosillo, Sonora, Mexico
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| |
Collapse
|
34
|
Martinez-Cuazitl A, Vazquez-Zapien GJ, Sanchez-Brito M, Limon-Pacheco JH, Guerrero-Ruiz M, Garibay-Gonzalez F, Delgado-Macuil RJ, de Jesus MGG, Corona-Perezgrovas MA, Pereyra-Talamantes A, Mata-Miranda MM. ATR-FTIR spectrum analysis of saliva samples from COVID-19 positive patients. Sci Rep 2021; 11:19980. [PMID: 34620977 PMCID: PMC8497525 DOI: 10.1038/s41598-021-99529-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) is the latest biological hazard for the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Even though numerous diagnostic tests for SARS-CoV-2 have been proposed, new diagnosis strategies are being developed, looking for less expensive methods to be used as screening. This study aimed to establish salivary vibrational modes analyzed by attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy to detect COVID-19 biological fingerprints that allow the discrimination between COVID-19 and healthy patients. Clinical dates, laboratories, and saliva samples of COVID-19 patients (N = 255) and healthy persons (N = 1209) were obtained and analyzed through ATR-FTIR spectroscopy. Then, a multivariate linear regression model (MLRM) was developed. The COVID-19 patients showed low SaO2, cough, dyspnea, headache, and fever principally. C-reactive protein, lactate dehydrogenase, fibrinogen, D-dimer, and ferritin were the most important altered laboratory blood tests, which were increased. In addition, changes in amide I and immunoglobulin regions were evidenced in the FTIR spectra analysis, and the MLRM showed clear discrimination between both groups. Specific salivary vibrational modes employing ATR-FTIR spectroscopy were established; moreover, the COVID-19 biological fingerprint in saliva was characterized, allowing the COVID-19 detection using an MLRM, which could be helpful for the development of new diagnostic devices.
Collapse
Affiliation(s)
- Adriana Martinez-Cuazitl
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, 11200, Mexico City, Mexico
| | - Gustavo J Vazquez-Zapien
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, 11200, Mexico City, Mexico
| | | | - Jorge H Limon-Pacheco
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, 11200, Mexico City, Mexico
| | - Melissa Guerrero-Ruiz
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, 11200, Mexico City, Mexico
| | - Francisco Garibay-Gonzalez
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, 11200, Mexico City, Mexico
| | | | | | | | | | - Monica M Mata-Miranda
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, 11200, Mexico City, Mexico.
| |
Collapse
|
35
|
Kızıloglu I, Sener A, Siliv N. Comparison of rapid antibody test and thorax computed tomography results in patients who underwent RT-PCR with the pre-diagnosis of COVID-19. Int J Clin Pract 2021; 75:e14524. [PMID: 34120388 PMCID: PMC8420246 DOI: 10.1111/ijcp.14524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/10/2021] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION In this study, it is planned to compare the real-time reverse transcription-polymerase chain reaction (RT-PCR) test, which is the gold standard in the diagnosis of COVID-19, with thorax computed tomography (CT) and rapid antibody test results. METHODS Patients who were admitted to the emergency service of İzmir Çiğli Training and Research Hospital between 01.04.2020 and 31.05.2020 and who were suspected of having COVID-19 infection were included in the study. The medical records of the patients were retrospectively analysed through the hospital data processing database. Age, gender, hospitalisation, status of home quarantine, real-time RT-PCR, thorax CT and rapid antibody test results of the patients were examined. The relationship between RT-PCR, thorax CT and rapid antibody test results was compared statistically. RESULTS A total of 181 patients, 115 (63.5%) male and 66 (36.5%) female, with an average age of 56.4 ± 18.06 years were included in the study. The nasopharyngeal swab PCR result obtained at the first admission of the patients to the emergency department was positive in 71 (39.2%) patients. Rapid antibody tests performed at hospital admission were positive in 57 (31.5%) patients. Thorax CT was performed in 173 (95.6%) patients who applied to the emergency department, and 112 (64.7%) of them had findings that could be compatible with COVID-19. According to the thorax CT findings in patients, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for detecting COVID-19 infection were, respectively, 76.1%, 43.1%, 48.2% and 72.1% (ĸ: 0.176, P < .001). According to the rapid antibody test results, sensitivity, specificity, PPV and NPV for detecting COVID-19 infection were 57.5%, 85.5%, 71.9% and 75.8%, respectively (ĸ: 0.448, P < .001). In our study, the mortality rate for COVID-19 was found to be 2.8%. CONCLUSION Rapid antibody test and thorax CT examinations were found to have low diagnostic value in patients who admitted to the emergency department of our hospital and whose first RT-PCR SARS-CoV-2 test was positive. Studies involving larger patient groups are needed for their use alone in diagnosis and screening.
Collapse
Affiliation(s)
- Ilker Kızıloglu
- Department of Emergency MedicineIzmir Dr. Suat Seren Chest Diseases and Surgeries Training and Research HospitalIzmirTurkey
| | - Aslı Sener
- Department of Emergency MedicineBakırcay UniversityIzmır Training and Research HospitalIzmirTurkey
| | - Neslihan Siliv
- Department of Emergency MedicineBakırcay UniversityIzmır Training and Research HospitalIzmirTurkey
| |
Collapse
|
36
|
Afzal A, Iqbal N, Feroz S, Ali A, Ehsan MA, Khan SA, Rehman A. Rapid antibody diagnostics for SARS-CoV-2 adaptive immune response. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4019-4037. [PMID: 34555136 DOI: 10.1039/d1ay00888a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The emergence of a pandemic scale respiratory illness (COVID-19: coronavirus disease 2019) and the lack of the world's readiness to prevent its spread resulted in an unprecedented rise of biomedical diagnostic industries, as they took lead to provide efficient diagnostic solutions for COVID-19. However, these circumstances also led to numerous emergency use authorizations without appropriate evaluation that compromised standards, which could result in a larger than usual number of false-positive or false-negative results, leading to unwanted ambiguity in already confusing realities of the pandemic-hit closures of the world economy. This review is aimed at comparing the claimed or reported clinical sensitivity and clinical specificity of commercially available rapid antibody diagnostics with independently evaluated clinical performance results of the tests. Thereby, we not only present the types of modern antibody diagnostics and their working principles but summarize their experimental evaluations and observed clinical efficiencies to highlight the research, development, and commercialization issues with future challenges. Still, it must be emphasized that the serological or antibody tests do not serve the purpose of early diagnosis but are more suitable for epidemiology and screening populaces with an active immune response, recognizing convalescent plasma donors, and determining vaccine efficacy.
Collapse
Affiliation(s)
- Adeel Afzal
- Department of Chemistry, College of Science, University of Hafr Al Batin, PO Box 1803, Hafr Al Batin, 39524, Saudi Arabia
| | - Naseer Iqbal
- Department of Chemistry, College of Science, University of Hafr Al Batin, PO Box 1803, Hafr Al Batin, 39524, Saudi Arabia
| | - Saima Feroz
- Department of Biosciences, College of Science, University of Hafr Al Batin, PO Box 1803, Hafr Al Batin, 39524, Saudi Arabia
| | - Asghar Ali
- Department of Chemistry, College of Science, University of Hafr Al Batin, PO Box 1803, Hafr Al Batin, 39524, Saudi Arabia
| | - Muhammad Ali Ehsan
- Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Safyan Akram Khan
- Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Abdul Rehman
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
37
|
Guo Y, Li T, Xia X, Su B, Li H, Feng Y, Han J, Wang X, Jia L, Bao Z, Li J, Liu Y, Li L. Different Profiles of Antibodies and Cytokines Were Found Between Severe and Moderate COVID-19 Patients. Front Immunol 2021; 12:723585. [PMID: 34489974 PMCID: PMC8417126 DOI: 10.3389/fimmu.2021.723585] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/03/2021] [Indexed: 01/08/2023] Open
Abstract
Objectives Our objective was to determine the antibody and cytokine profiles in different COVID-19 patients. Methods COVID-19 patients with different clinical classifications were enrolled in this study. The level of IgG antibodies, IgA, IgM, IgE, and IgG subclasses targeting N and S proteins were tested using ELISA. Neutralizing antibody titers were determined by using a toxin neutralization assay (TNA) with live SARS-CoV-2. The concentrations of 8 cytokines, including IL-2, IL-4, IL-6, IL-10, CCL2, CXCL10, IFN-γ, and TNF-α, were measured using the Protein Sample Ella-Simple ELISA system. The differences in antibodies and cytokines between severe and moderate patients were compared by t-tests or Mann-Whitney tests. Results A total of 79 COVID-19 patients, including 49 moderate patients and 30 severe patients, were enrolled. Compared with those in moderate patients, neutralizing antibody and IgG-S antibody titers in severe patients were significantly higher. The concentration of IgG-N antibody was significantly higher than that of IgG-S antibody in COVID-19 patients. There was a significant difference in the distribution of IgG subclass antibodies between moderate patients and severe patients. The positive ratio of anti-S protein IgG3 is significantly more than anti-N protein IgG3, while the anti-S protein IgG4 positive rate is significantly less than the anti-N protein IgG4 positive rate. IL-2 was lower in COVID-19 patients than in healthy individuals, while IL-4, IL-6, CCL2, IFN-γ, and TNF-α were higher in COVID-19 patients than in healthy individuals. IL-6 was significantly higher in severe patients than in moderate patients. The antibody level of anti-S protein was positively correlated with the titer of neutralizing antibody, but there was no relationship between cytokines and neutralizing antibody. Conclusions Our findings show the severe COVID-19 patients’ antibody levels were stronger than those of moderate patients, and a cytokine storm is associated with COVID-19 severity. There was a difference in immunoglobulin type between anti-S protein antibodies and anti-N protein antibodies in COVID-19 patients. And clarified the value of the profile in critical prevention.
Collapse
Affiliation(s)
- Yaolin Guo
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tianyi Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xinyi Xia
- Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Bin Su
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hanping Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yingmei Feng
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jingwan Han
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolin Wang
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei Jia
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zuoyi Bao
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingyun Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yongjian Liu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lin Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
38
|
Suhandynata RT, Bevins NJ, Tran JT, Huang D, Hoffman MA, Lund K, Kelner MJ, McLawhon RW, Gonias SL, Nemazee D, Fitzgerald RL. SARS-CoV-2 Serology Status Detected by Commercialized Platforms Distinguishes Previous Infection and Vaccination Adaptive Immune Responses. J Appl Lab Med 2021; 6:1109-1122. [PMID: 34170314 PMCID: PMC8409063 DOI: 10.1093/jalm/jfab080] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected over 110 million individuals and led to 2.5 million deaths worldwide. As more individuals are vaccinated, the clinical performance and utility of SARS-CoV-2 serology platforms needs to be evaluated. METHODS The ability of 4 commercial SARS-CoV-2 serology platforms to detect previous infection or vaccination were evaluated using a cohort of 53 patients who were SARS-CoV-2 PCR positive, 89 SARS-CoV-2-vaccinated healthcare workers (Pfizer or Moderna), and 127 patients who were SARS-CoV-2 negative. Serology results were compared to a cell-based SARS-CoV-2 pseudovirus (PSV) neutralizing antibodies assay. RESULTS The Roche S-(spike) antibody and Diazyme neutralizing antibodies (NAbs) assays detected adaptive immune response in 100.0% and 90.1% of vaccinated individuals who received 2 doses of vaccine (initial and booster), respectively. The Roche N-(nucleocapsid) antibody assay and Diazyme IgG assay did not detect adaptive immune response in vaccinated individuals. The Diazyme NAbs assay correlated with the PSV SARS-CoV-2 median infective dose (ID50) neutralization titers (R2 = 0.70), while correlation of the Roche S-antibody assay was weaker (R2 = 0.39). Median PSV SARS-CoV-2 ID50 titers more than doubled in vaccinated individuals who received 2 doses of the Moderna vaccine (ID50, 597) compared to individuals who received a single dose (ID50, 284). CONCLUSIONS The Roche S-antibody and Diazyme NAbs assays robustly detected adaptive immune responses in SARS-CoV-2 vaccinated individuals and SARS-CoV-2 infected individuals. The Diazyme NAbs assay strongly correlates with the PSV SARS-CoV-2 NAbs in vaccinated individuals. Understanding the reactivity of commercially available serology platforms is important when distinguishing vaccination response versus natural infection.
Collapse
Affiliation(s)
| | | | - Jenny T Tran
- Department of Immunology and Microbiology, The Scripps Research Institution, San Diego, CA
| | - Deli Huang
- Department of Immunology and Microbiology, The Scripps Research Institution, San Diego, CA
| | | | - Kyle Lund
- Department of Pathology, UC San Diego Health, San Diego, CA
| | | | | | | | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institution, San Diego, CA
| | | |
Collapse
|
39
|
Cruz-Arenas E, Cabrera-Ruiz E, Laguna-Barcenas S, Colin-Castro CA, Chavez T, Franco-Cendejas R, Ibarra C, Perez-Orive J. Serological prevalence of SARS-CoV-2 infection and associated factors in healthcare workers in a "non-COVID" hospital in Mexico City. PLoS One 2021; 16:e0255916. [PMID: 34383842 PMCID: PMC8360585 DOI: 10.1371/journal.pone.0255916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/26/2021] [Indexed: 11/18/2022] Open
Abstract
Background Mexico is one of the countries with the highest number of deaths from the COVID-19 pandemic. In spite of this high mortality, in Mexico the number of confirmed cases and diagnostic tests per million population are lower than for other comparable countries, which leads to uncertainty about the actual extent of the pandemic. In Mexico City, healthcare workers represent an important fraction of individuals with SARS-CoV-2 infection. We performed a cross-sectional study whose objective was to estimate the frequency of antibodies to SARS-CoV-2 and identify associated factors in healthcare workers at a large hospital in Mexico City. Methods We conducted a serological survey in a non-COVID national referral teaching hospital. The study population included all the personnel that works, in any capacity, in the hospital. From this population we selected a representative sample of 300 individuals. Blood samples were collected and questionnaires were applied between August 10th and September 9th, 2020. Results ELISA results indicate a serological prevalence of SARS-CoV-2 infection of 13.0%. Working in the janitorial and security groups, having an educational level below a university degree, and living with a larger number of people, were all identified as sociodemographic factors that increase the probability of having SARS-CoV-2 infection. Conclusions Less favored socioeconomic groups face significantly higher prospects of experiencing SARS-CoV-2 infection and in institutions such as ours, providing janitorial and security workgroups with additional testing and counseling could help to limit the spread of contagion. The rate from the official number of confirmed cases in Mexico City is substantially smaller than the seropositive rate identified in this work.
Collapse
Affiliation(s)
- Esteban Cruz-Arenas
- Epidemiological Vigilance Unit, Instituto Nacional de Rehabilitacion “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Elizabeth Cabrera-Ruiz
- Instituto Nacional de Rehabilitacion “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Sara Laguna-Barcenas
- Instituto Nacional de Rehabilitacion “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Claudia A. Colin-Castro
- Infectious Diseases Division, Instituto Nacional de Rehabilitacion “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Tatiana Chavez
- Epidemiological Vigilance Unit, Instituto Nacional de Rehabilitacion “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Rafael Franco-Cendejas
- Infectious Diseases Division, Instituto Nacional de Rehabilitacion “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Clemente Ibarra
- Instituto Nacional de Rehabilitacion “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Javier Perez-Orive
- Instituto Nacional de Rehabilitacion “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
- * E-mail:
| |
Collapse
|
40
|
Lumley SF, Wei J, O'Donnell D, Stoesser NE, Matthews PC, Howarth A, Hatch SB, Marsden BD, Cox S, James T, Peck LJ, Ritter TG, de Toledo Z, Cornall RJ, Jones EY, Stuart DI, Screaton G, Ebner D, Hoosdally S, Crook DW, Conlon CP, Pouwels KB, Walker AS, Peto TEA, Walker TM, Jeffery K, Eyre DW. The Duration, Dynamics, and Determinants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Antibody Responses in Individual Healthcare Workers. Clin Infect Dis 2021; 73:e699-e709. [PMID: 33400782 DOI: 10.1101/2020.11.02.20224824] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G (IgG) antibody measurements can be used to estimate the proportion of a population exposed or infected and may be informative about the risk of future infection. Previous estimates of the duration of antibody responses vary. METHODS We present 6 months of data from a longitudinal seroprevalence study of 3276 UK healthcare workers (HCWs). Serial measurements of SARS-CoV-2 anti-nucleocapsid and anti-spike IgG were obtained. Interval censored survival analysis was used to investigate the duration of detectable responses. Additionally, Bayesian mixed linear models were used to investigate anti-nucleocapsid waning. RESULTS Anti-spike IgG levels remained stably detected after a positive result, for example, in 94% (95% credibility interval [CrI] 91-96%) of HCWs at 180 days. Anti-nucleocapsid IgG levels rose to a peak at 24 (95% CrI 19-31) days post first polymerase chain reaction (PCR)-positive test, before beginning to fall. Considering 452 anti-nucleocapsid seropositive HCWs over a median of 121 days from their maximum positive IgG titer, the mean estimated antibody half-life was 85 (95% CrI 81-90) days. Higher maximum observed anti-nucleocapsid titers were associated with longer estimated antibody half-lives. Increasing age, Asian ethnicity, and prior self-reported symptoms were independently associated with higher maximum anti-nucleocapsid levels and increasing age and a positive PCR test undertaken for symptoms with longer anti-nucleocapsid half-lives. CONCLUSIONS SARS-CoV-2 anti-nucleocapsid antibodies wane within months and fall faster in younger adults and those without symptoms. However, anti-spike IgG remains stably detected. Ongoing longitudinal studies are required to track the long-term duration of antibody levels and their association with immunity to SARS-CoV-2 reinfection.
Collapse
Affiliation(s)
- Sheila F Lumley
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jia Wei
- Big Data Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Denise O'Donnell
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicole E Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, United Kingdom
| | - Philippa C Matthews
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, United Kingdom
| | - Alison Howarth
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephanie B Hatch
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Brian D Marsden
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Kennedy Institute of Rheumatology Research, University of Oxford, United Kingdom
| | - Stuart Cox
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Tim James
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Liam J Peck
- Medical School, University of Oxford, Oxford, United Kingdom
| | - Thomas G Ritter
- Medical School, University of Oxford, Oxford, United Kingdom
| | - Zoe de Toledo
- Medical School, University of Oxford, Oxford, United Kingdom
| | - Richard J Cornall
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - E Yvonne Jones
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - David I Stuart
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gavin Screaton
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Daniel Ebner
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah Hoosdally
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, United Kingdom
| | - Derrick W Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, United Kingdom
| | | | - Koen B Pouwels
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, United Kingdom
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, United Kingdom
| | - Tim E A Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, United Kingdom
| | - Timothy M Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - David W Eyre
- Big Data Institute, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, United Kingdom
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
41
|
Lumley SF, Wei J, O’Donnell D, Stoesser NE, Matthews PC, Howarth A, Hatch SB, Marsden BD, Cox S, James T, Peck LJ, Ritter TG, de Toledo Z, Cornall RJ, Jones EY, Stuart DI, Screaton G, Ebner D, Hoosdally S, Crook DW, Conlon CP, Pouwels KB, Walker AS, Peto TEA, Walker TM, Jeffery K, Eyre DW. The Duration, Dynamics, and Determinants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Antibody Responses in Individual Healthcare Workers. Clin Infect Dis 2021; 73:e699-e709. [PMID: 33400782 PMCID: PMC7929225 DOI: 10.1093/cid/ciab004] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G (IgG) antibody measurements can be used to estimate the proportion of a population exposed or infected and may be informative about the risk of future infection. Previous estimates of the duration of antibody responses vary. METHODS We present 6 months of data from a longitudinal seroprevalence study of 3276 UK healthcare workers (HCWs). Serial measurements of SARS-CoV-2 anti-nucleocapsid and anti-spike IgG were obtained. Interval censored survival analysis was used to investigate the duration of detectable responses. Additionally, Bayesian mixed linear models were used to investigate anti-nucleocapsid waning. RESULTS Anti-spike IgG levels remained stably detected after a positive result, for example, in 94% (95% credibility interval [CrI] 91-96%) of HCWs at 180 days. Anti-nucleocapsid IgG levels rose to a peak at 24 (95% CrI 19-31) days post first polymerase chain reaction (PCR)-positive test, before beginning to fall. Considering 452 anti-nucleocapsid seropositive HCWs over a median of 121 days from their maximum positive IgG titer, the mean estimated antibody half-life was 85 (95% CrI 81-90) days. Higher maximum observed anti-nucleocapsid titers were associated with longer estimated antibody half-lives. Increasing age, Asian ethnicity, and prior self-reported symptoms were independently associated with higher maximum anti-nucleocapsid levels and increasing age and a positive PCR test undertaken for symptoms with longer anti-nucleocapsid half-lives. CONCLUSIONS SARS-CoV-2 anti-nucleocapsid antibodies wane within months and fall faster in younger adults and those without symptoms. However, anti-spike IgG remains stably detected. Ongoing longitudinal studies are required to track the long-term duration of antibody levels and their association with immunity to SARS-CoV-2 reinfection.
Collapse
Affiliation(s)
- Sheila F Lumley
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jia Wei
- Big Data Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Denise O’Donnell
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicole E Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, United Kingdom
| | - Philippa C Matthews
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, United Kingdom
| | - Alison Howarth
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephanie B Hatch
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Brian D Marsden
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Kennedy Institute of Rheumatology Research, University of Oxford, United Kingdom
| | - Stuart Cox
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Tim James
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Liam J Peck
- Medical School, University of Oxford, Oxford, United Kingdom
| | - Thomas G Ritter
- Medical School, University of Oxford, Oxford, United Kingdom
| | - Zoe de Toledo
- Medical School, University of Oxford, Oxford, United Kingdom
| | - Richard J Cornall
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - E Yvonne Jones
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - David I Stuart
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gavin Screaton
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Daniel Ebner
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah Hoosdally
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, United Kingdom
| | - Derrick W Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, United Kingdom
| | | | - Koen B Pouwels
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, United Kingdom
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, United Kingdom
| | - Tim E A Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, United Kingdom
| | - Timothy M Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - David W Eyre
- Big Data Institute, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, United Kingdom
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
McMurry J, Fink E. A Persistent Positive Antibody Test in a Patient with No History of COVID-19 Infection. Lab Med 2021; 53:e1-e3. [PMID: 34184052 PMCID: PMC8344416 DOI: 10.1093/labmed/lmab038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Antibody testing for SARS-CoV-2 has been established as a tool with broad utility in the surveillance and control of the COVID-19 pandemic. However, because of limited knowledge about the duration of humoral immunity to COVID-19 and the existence of unique individual immune responses, the potential role of antibody testing in the diagnosis of current and past infections of COVID-19 remains ambiguous. Herein, we describe a unique case of an asymptomatic patient showing a persistent positive total antibody test for SARS-CoV-2 while testing negative for SARS-CoV-2 RNA and IgG-specific antibodies. This case study shows how a combination of tests can be employed to identify a false positive and draw conclusions about a patient's COVID-19 status. It also highlights the complexity of using antibody testing for the diagnosis of COVID-19.
Collapse
|
43
|
Retrospective of International Serological Studies on the Formation and Dynamics of the Humoral Immune Response to SARS-CoV-2: from 2020 to 2021. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.2.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Last year the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has started. The new coronavirus is highly contagious and causes severe complications. The mechanisms of humoral immunity and kinetics of SARS-CoV-2 specific antibodies in a population are not well understood. Therefore, we aimed to summarize and analyze numerous global and Russian serological studies for understanding dynamics of the SARSCoV-2 humoral immune response and getting an accurate picture of the seroprevalence to SARS-CoV-2 in the world population. The PubMed and e-library databases were searched from February 2020 to March 2021 using terms “SARSCoV-2”, “antibodies”, “humoral immunity”. At the beginning of the pandemic first studies were cross-sectional by design and were responsible for determination of the seropositivity and for understanding the fundamental humoral immunity parameters of SARS-CoV-2. Since then, longitudinal seroepidemiological studies have been studying antibody kinetics. Seroconversion time for IgM, IgG antibodies varies, but most researchers report the seroconversion of IgM from the 1st to 14th days after the onset of clinical manifestations, and the seroconversion for IgG is around the 14th day with a concentration peak by the 21st day. Regarding seroprevalence we may say about low herd immunity at the COVID-19 pandemic. Thus, global seroprevalence is about 10 %, and more than 20 % for regions with high incidence and among healthcare workers. Seroprevalence studies have to be continued for more accurate monitoring of long-term humoral immunity to SARS-CoV-2, because the majority of the world’s population is still susceptible to SARS-CoV-2 infection.
Collapse
|
44
|
Epidemiological study using IgM and IgG antibody titers against SARS-CoV-2 in The University of Tokyo, Japan (UT-CATS). J Infect Chemother 2021; 27:1342-1349. [PMID: 34158239 PMCID: PMC8196331 DOI: 10.1016/j.jiac.2021.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/11/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022]
Abstract
Introduction The worldwide pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to date. Given that some of the patients with coronavirus disease 2019 (COVID-19) are asymptomatic, antibody tests are useful to determine whether there is a previous infection with SARS-CoV-2. In this study, we measured IgM and IgG antibody titers against SARS-CoV-2 in the serum of asymptomatic healthy subjects in The University of Tokyo, Japan. Methods From June 2020, we recruited participants, who were students, staff, and faculty members of The University of Tokyo in the project named The University of Tokyo COVID-19 Antibody Titer Survey (UT-CATS). Following blood sample collection, participants were required to answer an online questionnaire about their social and health information. We measured IgG and IgM titers against SARS-CoV-2 using iFlash-SARS-CoV-2 IgM and IgG detection kit which applies a chemiluminescent immunoassay (CLIA) for the qualitative detection. Results There were 6609 volunteers in this study. After setting the cutoff value at 10 AU/mL, 32 (0.48%) were positive for IgG and 16 (0.24%) for IgM. Of six participants with a history of COVID-19, five were positive for IgG, whereas all were negative for IgM. The median titer of IgG was 0.40 AU/mL and 0.39 AU/mL for IgM. Both IgG and IgM titers were affected by gender, age, smoking status, and comorbidities. Conclusions Positive rates of IgG and IgM titers were relatively low in our university. Serum levels of these antibodies were affected by several factors, which might affect the clinical course of COVID-19.
Collapse
|
45
|
Schaefer EJ, Dulipsingh L, Comite F, Jimison J, Grajower MM, Lebowitz NE, Lang M, Geller AS, Diffenderfer MR, He L, Breton G, Dansinger ML, Saida B, Yuan C. Corona Virus Disease-19 serology, inflammatory markers, hospitalizations, case finding, and aging. PLoS One 2021; 16:e0252818. [PMID: 34111164 PMCID: PMC8191995 DOI: 10.1371/journal.pone.0252818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/21/2021] [Indexed: 12/28/2022] Open
Abstract
Most deaths from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection occur in older subjects. We assessed the utility of serum inflammatory markers interleukin-6 (IL-6), C reactive protein (CRP), and ferritin (Roche, Indianapolis, IN), and SARS-CoV-2 immunoglobulin G (IgG), immunoglobulin M (IgM), and neutralizing antibodies (Diazyme, Poway, CA). In controls, non-hospitalized subjects, and hospitalized subjects assessed for SARS-CoV-2 RNA (n = 278), median IgG levels in arbitrary units (AU)/mL were 0.05 in negative subjects, 14.83 in positive outpatients, and 30.61 in positive hospitalized patients (P<0.0001). Neutralizing antibody levels correlated significantly with IgG (r = 0.875; P<0.0001). Having combined values of IL-6 ≥10 pg/mL and CRP ≥10 mg/L occurred in 97.7% of inpatients versus 1.8% of outpatients (odds ratio 3,861, C statistic 0.976, P = 1.00 x 10-12). Antibody or ferritin levels did not add significantly to predicting hospitalization. Antibody testing in family members and contacts of SARS-CoV-2 RNA positive cases (n = 759) was invaluable for case finding. Persistent IgM levels were associated with chronic COVID-19 symptoms. In 81,624 screened subjects, IgG levels were positive (≥1.0 AU/mL) in 5.21%, while IgM levels were positive in 2.96% of subjects. In positive subjects median IgG levels in AU/mL were 3.14 if <30 years of age, 4.38 if 30-44 years of age, 7.89 if 45-54 years of age, 9.52 if 55-64 years of age, and 10.64 if ≥65 years of age (P = 2.96 x 10-38). Our data indicate that: 1) combined IL-6 ≥10 pg/mL and CRP ≥10 mg/L identify SARS-CoV-2 positive subjects requiring hospitalization; 2) IgG levels were significantly correlated with neutralizing antibody levels with a wide range of responses; 3) IgG levels have significant utility for case finding in exposed subjects; 4) persistently elevated IgM levels are associated with chronic symptoms; and 5) IgG levels are significantly higher in positive older subjects than their younger counterparts.
Collapse
Affiliation(s)
- Ernst J. Schaefer
- Laboratory Division, Boston Heart Diagnostics/Eurofins Scientific Network, Framingham, Massachusetts, United States of America
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Latha Dulipsingh
- Division of Diabetes and Endocrinology, Saint Francis Hospital and Medical Center, Trinity Health of New England, Hartford, Connecticut, United States of America
- Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, United States of America
| | - Florence Comite
- Clinical Care, Comite Center for Precision Medicine and Health, New York, New York, United States of America
- Department of Internal Medicine, Endocrinology/Metabolism/Diabetes, Lenox Hill Hospital/Northwell, New York, New York, United States of America
| | - Jessica Jimison
- Clinical Care, Atkinson Family Practice, Amherst, Massachusetts, United States of America
| | - Martin M. Grajower
- Department of Medicine (Endocrinology), Albert Einstein College of Medicine, The Bronx, New York, United States of America
| | - Nathan E. Lebowitz
- Clinical Care, Advanced Cardiology Institute, Fort Lee, New Jersey, United States of America
| | - Maxine Lang
- Laboratory Division, Boston Heart Diagnostics/Eurofins Scientific Network, Framingham, Massachusetts, United States of America
| | - Andrew S. Geller
- Laboratory Division, Boston Heart Diagnostics/Eurofins Scientific Network, Framingham, Massachusetts, United States of America
| | - Margaret R. Diffenderfer
- Laboratory Division, Boston Heart Diagnostics/Eurofins Scientific Network, Framingham, Massachusetts, United States of America
| | - Lihong He
- Laboratory Division, Boston Heart Diagnostics/Eurofins Scientific Network, Framingham, Massachusetts, United States of America
| | - Gary Breton
- Clinical Affairs Division, Boston Heart Diagnostics/Eurofins Scientific Network, Framingham, Massachusetts, United States of America
| | - Michael L. Dansinger
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Clinical Affairs Division, Boston Heart Diagnostics/Eurofins Scientific Network, Framingham, Massachusetts, United States of America
| | - Ben Saida
- Research Division, Diazyme Laboratories, Inc., Poway, California, United States of America
| | - Chong Yuan
- Research Division, Diazyme Laboratories, Inc., Poway, California, United States of America
| |
Collapse
|
46
|
Sahin Tutak A, Söylemez F, Konuk HB, Çakmak E, Karakaya B, Doğan A, Sayiner HS, Aksöz S, Alev M. A patient presenting with ARDS after COVID-19 vaccination: A COVID-19 case report. J Infect Public Health 2021; 14:1395-1397. [PMID: 34175235 PMCID: PMC8170910 DOI: 10.1016/j.jiph.2021.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 11/27/2022] Open
Abstract
COVID-19 is a disease caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The introduction of vaccines against COVID-19 caused great enthusiasm around the world as immunization might end the pandemic. However, it was previously stated that COVID-19 cases would rarely continue to occur despite immunization. Fourteen days after the second dose of the vaccine, a 66-year-old male patient with a negative COVID-19 PCR test result and high levels of IgG and low levels of IgM-A against SARS-CoV-2 was admitted to our intensive care unit (ICU) due to the clinical picture of Acute Respiratory Distress Syndrome (ARDS). We aimed to stress the need for continuing preventive measures in vaccinated individuals, too, by presenting the clinical findings of the patient, who was considered to have developed ARDS due to COVID-19, as high levels of IgG and IgM-A against SARS-CoV-2 were detected on day 8 during ICU admission.
Collapse
Affiliation(s)
- Ayse Sahin Tutak
- Department of Internal Medicine, Adıyaman University School of Medicine, Adıyaman, Turkey.
| | - Fatih Söylemez
- Department of Internal Medicine, Adıyaman University of Training Hospital, Adıyaman, Turkey
| | - Hazal B Konuk
- Department of Internal Medicine, Adıyaman University of Training Hospital, Adıyaman, Turkey
| | - Erkan Çakmak
- Department of Internal Medicine, Adıyaman University of Training Hospital, Adıyaman, Turkey
| | - Bülent Karakaya
- Department of Internal Medicine, Adıyaman University of Training Hospital, Adıyaman, Turkey
| | - Ali Doğan
- Department of Internal Medicine, Adıyaman University of Training Hospital, Adıyaman, Turkey
| | - Hakan S Sayiner
- Department of Infectious Disease, Adıyaman University School of Medicine, Adıyaman, Turkey
| | - Selçuk Aksöz
- Department of Infectious Disease, Adıyaman University School of Medicine, Adıyaman, Turkey
| | - Mehtap Alev
- Department of Infectious Disease, Adıyaman University School of Medicine, Adıyaman, Turkey
| |
Collapse
|
47
|
Elsner RA, Shlomchik MJ. Germinal Center and Extrafollicular B Cell Responses in Vaccination, Immunity, and Autoimmunity. Immunity 2021; 53:1136-1150. [PMID: 33326765 DOI: 10.1016/j.immuni.2020.11.006] [Citation(s) in RCA: 303] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Activated B cells participate in either extrafollicular (EF) or germinal center (GC) responses. Canonical responses are composed of a short wave of plasmablasts (PBs) arising from EF sites, followed by GC producing somatically mutated memory B cells (MBC) and long-lived plasma cells. However, somatic hypermutation (SHM) and affinity maturation can take place at both sites, and a substantial fraction of MBC are produced prior to GC formation. Infection responses range from GC responses that persist for months to persistent EF responses with dominant suppression of GCs. Here, we review the current understanding of the functional output of EF and GC responses and the molecular switches promoting them. We discuss the signals that regulate the magnitude and duration of these responses, and outline gaps in knowledge and important areas of inquiry. Understanding such molecular switches will be critical for vaccine development, interpretation of vaccine efficacy and the treatment for autoimmune diseases.
Collapse
Affiliation(s)
- Rebecca A Elsner
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA.
| |
Collapse
|
48
|
Omidifar N, Bagheri Lankarani K, Moghadami M, Shokripour M, Chashmpoosh M, Mousavi SM, Hashemi SA, Gholami A. Different Laboratory Diagnosis Methods of COVID-19: A Systematic Review. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2021; 16. [DOI: 10.5812/archcid.110667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
: The virus causing COVID-19 disease is known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The disease spread rapidly and was transmitted like a contagious disease throughout China, and then it gradually spread in other parts of the world. Accordingly, the rapid and accurate detection of the SARS-CoV-2 virus plays an essential role in selecting timely treatments, saving lives, and preventing the spread of the disease. This study summarizes the methods used to identify coronavirus nucleic acid. The effectiveness of coronavirus nucleic acid detection kits by different samples and the performance of other diagnostic techniques are also addressed in this study. We searched Embase, Google Scholar, MEDLINE, Web of Science, Scopus, and PubMed databases as well as the references of all relevant articles in English published during 2019 - 2020 using keywords related to COVID-19, detection kits, and respiratory failure and proceedings from relevant conferences and congresses. The authors collected the relevant reports, and each of the authors independently reviewed the data published in different studies. The results of previous studies indicated that the diagnosis methods of the COVID-19 disease are the RT-PCR method, ELISA kits, quick tests, white blood cell count, C-reactive protein (CRP) levels, other laboratory factors and antigenic detection methods. Given the sensitivity and specificity of these methods at different periods using different samples, the disease interpretation can be performed accurately. The findings showed that proper laboratory equipment and appropriate laboratory kits are necessary for the rapid and precise identification of COVID-19.
Collapse
|
49
|
Bichara CDA, da Silva Graça Amoras E, Vaz GL, da Silva Torres MK, Queiroz MAF, do Amaral IPC, Vallinoto IMVC, Bichara CNC, Vallinoto ACR. Dynamics of anti-SARS-CoV-2 IgG antibodies post-COVID-19 in a Brazilian Amazon population. BMC Infect Dis 2021; 21:443. [PMID: 33992073 PMCID: PMC8122196 DOI: 10.1186/s12879-021-06156-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In this study, the prevalence and persistence of anti-SARS-CoV-2 (severe acute respiratory syndrome-coronavirus) IgG was evaluated in volunteers 90 days after COVID-19 (coronavirus disease 2019) diagnosis by correlating response dynamics with clinical conditions, epidemiological characteristics, and disease severity. METHODS The study recruited 200 volunteers aged 18 years or older of both sexes diagnosed with COVID-19. Of the 200 volunteers initially selected, the 135 individuals who underwent serological testing for anti-SARS-CoV-2 antibodies on the first visit to the laboratory, were invited to return, after 90 days, and provide a new blood sample for a second assessment of the presence of anti-SARS-CoV-2 IgG antibody. Disease severity and longevity of symptoms were evaluated for each individual and associated with the serological profile. RESULTS Among the 135 individuals who underwent a previous serological test for anti-SARS-CoV-2 antibody, 125 showed reactivity to IgG (92.6%). Of the 125 individuals with detectable IgG in the first test, 87 (69.6%) showed persistence of this antibody after 90 days and 38 (30.4%) lost IgG reactivity in the second evaluation. The frequency of all reported symptoms was higher in individuals who maintained IgG persistence after 90 days of symptoms. Symptom manifestations lasted ≥21 days in the group with a persistent IgG response (39.6%) and ≤ 7 days in the group with a nonpersistent IgG response (50.0%). The length of hospital stay and supplemental oxygen use were higher in individuals with a persistent IgG response. CONCLUSIONS The results of the present study show a high frequency of loss of anti-SARS-CoV-2 IgG antibodies within 3 months after COVID-19 diagnosis in the Brazilian Amazon.
Collapse
Affiliation(s)
- Carlos David Araújo Bichara
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará Brazil
- Amaral Costa Diagnostic Medicine, Belém, Pará Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará Brazil
| | | | | | - Maria Karoliny da Silva Torres
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará Brazil
| | - Maria Alice Freitas Queiroz
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará Brazil
| | | | | | | | - Antonio Carlos Rosário Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará Brazil
| |
Collapse
|
50
|
El-Nakeep S. To vaccinate or not to vaccinate; that is the question! (New insights on COVID-19 Vaccination). Curr Mol Med 2021; 22:567-571. [PMID: 33982651 DOI: 10.2174/1566524021666210512012315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 11/22/2022]
Abstract
AIM This is a mini-review of the literature; to discuss the obstacles and benefits of vaccination in the era of current pandemic, either the COVID-19 vaccines, which are on their way to be released or the influenza vaccines. There is much debate concerning their effectiveness on ameliorating the severity of the COVID-19 pandemic. METHODOLOGY Searching the literature till November 2020 in the PubMed database. RESULTS Pathophysiology behind the COVID-19 vaccination obstacles is discussed in detail with future hopes. Influenza vaccination during the debate of the pandemic is also discussed with the most recent guidelines. CONCLUSIONS During the COVID-19 pandemic, influenza vaccination is mandatory for all individuals provided no contraindications. Three SARS-CoV-2 vaccines are being released , while FDA approval for monoclonal antibodies for the treatment of at-risk outpatients to lower hospitalization rates is ongoing.
Collapse
|