1
|
Joslyn KE, Truver NF, Comi AM. A Review of Sturge-Weber Syndrome Brain Involvement, Cannabidiol Treatment and Molecular Pathways. Molecules 2024; 29:5279. [PMID: 39598668 PMCID: PMC11596899 DOI: 10.3390/molecules29225279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Sturge-Weber syndrome (SWS) is a rare congenital neurocutaneous disorder typically caused by a somatic mosaic mutation in R183Q GNAQ. At-risk children present at birth with a capillary malformation port-wine birthmark. The primary diagnostic characteristic of the disorder includes leptomeningeal enhancement of the brain, which demonstrates abnormal blood vessels and results in impaired venous drainage and impaired local cerebral perfusion. Impaired cerebral blood flow is complicated by seizures resulting in strokes, hemiparesis and visual field deficits, hormonal deficiencies, behavioral impairments, and intellectual disability. Therefore, anti-seizure medication in combination with low-dose aspirin is a common therapeutic treatment strategy. Recently published data indicate that the underlying mutation in endothelial cells results in the hyperactivation of downstream pathways and impairment of the blood-brain barrier. Cannabidiol (CBD) has been used to treat medically refractory seizures in SWS due to its anti-seizure, anti-inflammatory, and neuroprotective properties. Pilot research suggests that CBD improves cognitive impairment, emotional regulation, and quality of life in patients with SWS. Recent preclinical studies also suggest overlapping molecular pathways in SWS and in CBD, suggesting that CBD may be uniquely effective for SWS brain involvement. This review aims to summarize early data on CBD's efficacy for preventing and treating epilepsy and neuro-cognitive impairments in patients with SWS, likely molecular pathways impacted, and provide insights for future translational research to improve clinical treatment for patients with SWS.
Collapse
Affiliation(s)
- Katharine Elizabeth Joslyn
- Department of Neurology and Developmental Medicine, Hugo Moser Kennedy Krieger Research Institute, Baltimore, MD 21205, USA; (K.E.J.); (N.F.T.)
| | - Nicholas Flinn Truver
- Department of Neurology and Developmental Medicine, Hugo Moser Kennedy Krieger Research Institute, Baltimore, MD 21205, USA; (K.E.J.); (N.F.T.)
| | - Anne Marie Comi
- Department of Neurology and Developmental Medicine, Hugo Moser Kennedy Krieger Research Institute, Baltimore, MD 21205, USA; (K.E.J.); (N.F.T.)
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Liu B, Ruz-Maldonado I, Persaud SJ. Global deletion of G protein-coupled receptor 55 impairs glucose homeostasis during obesity by reducing insulin secretion and β-cell turnover. Diabetes Obes Metab 2024; 26:4591-4601. [PMID: 39113250 DOI: 10.1111/dom.15816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 09/19/2024]
Abstract
AIM To investigate the effect of G protein-coupled receptor 55 (GPR55) deletion on glucose homeostasis and islet function following diet-induced obesity. METHODS GPR55-/- and wild-type (WT) mice were fed ad libitum either standard chow (SC) or a high-fat diet (HFD) for 20 weeks. Glucose and insulin tolerance tests were performed at 9/10 and 19/20 weeks of dietary intervention. Insulin secretion in vivo and dynamic insulin secretion following perifusion of isolated islets were also determined, as were islet caspase-3/7 activities and β-cell 5-bromo-20-deoxyuridine (BrdU) incorporation. RESULTS GPR55-/- mice fed a HFD were more susceptible to diet-induced obesity and were more glucose intolerant and insulin resistant than WT mice maintained on a HFD. Islets isolated from HFD-fed GPR55-/- mice showed impaired glucose- and pcacahorbol 12-myristate 13-acetate-stimulated insulin secretion, and they also displayed increased cytokine-induced apoptosis. While there was a 5.6 ± 1.6-fold increase in β-cell BrdU incorporation in the pancreases of WT mice fed a HFD, this compensatory increase in β-cell proliferation in response to the HFD was attenuated in GPR55-/- mice. CONCLUSIONS Under conditions of diet-induced obesity, GPR55-/- mice show impaired glucose handling, which is associated with reduced insulin secretory capacity, increased islet cell apoptosis and insufficient compensatory increases in β-cell proliferation. These observations support that GPR55 plays an important role in positively regulating islet function.
Collapse
Affiliation(s)
- Bo Liu
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Inmaculada Ruz-Maldonado
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Comparative Medicine & Pathology, Vascular Biology and Therapeutics Program (VBT) Program in Integrative Cell Signaling and Neurobiology of Metabolism (ICSNM), Yale University School of Medicine, New Haven, Connecticut, USA
| | - Shanta J Persaud
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
3
|
Barker H, Ferraro MJ. Exploring the versatile roles of the endocannabinoid system and phytocannabinoids in modulating bacterial infections. Infect Immun 2024; 92:e0002024. [PMID: 38775488 PMCID: PMC11237442 DOI: 10.1128/iai.00020-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
The endocannabinoid system (ECS), initially identified for its role in maintaining homeostasis, particularly in regulating brain function, has evolved into a complex orchestrator influencing various physiological processes beyond its original association with the nervous system. Notably, an expanding body of evidence emphasizes the ECS's crucial involvement in regulating immune responses. While the specific role of the ECS in bacterial infections remains under ongoing investigation, compelling indications suggest its active participation in host-pathogen interactions. Incorporating the ECS into the framework of bacterial pathogen infections introduces a layer of complexity to our understanding of its functions. While some studies propose the potential of cannabinoids to modulate bacterial function and immune responses, the outcomes inherently hinge on the specific infection and cannabinoid under consideration. Moreover, the bidirectional relationship between the ECS and the gut microbiota underscores the intricate interplay among diverse physiological processes. The ECS extends its influence far beyond its initial discovery, emerging as a promising therapeutic target across a spectrum of medical conditions, encompassing bacterial infections, dysbiosis, and sepsis. This review comprehensively explores the complex roles of the ECS in the modulation of bacteria, the host's response to bacterial infections, and the dynamics of the microbiome. Special emphasis is placed on the roles of cannabinoid receptor types 1 and 2, whose signaling intricately influences immune cell function in microbe-host interactions.
Collapse
Affiliation(s)
- Hailey Barker
- Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, Florida, USA
| | - Mariola J. Ferraro
- Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Kolbe MR, Hohmann T, Hohmann U, Maronde E, Golbik R, Prell J, Illert J, Strauss C, Dehghani F. Elucidation of GPR55-Associated Signaling behind THC and LPI Reducing Effects on Ki67-Immunoreactive Nuclei in Patient-Derived Glioblastoma Cells. Cells 2023; 12:2646. [PMID: 37998380 PMCID: PMC10670585 DOI: 10.3390/cells12222646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
GPR55 is involved in many physiological and pathological processes. In cancer, GPR55 has been described to show accelerating and decelerating effects in tumor progression resulting from distinct intracellular signaling pathways. GPR55 becomes activated by LPI and various plant-derived, endogenous, and synthetic cannabinoids. Cannabinoids such as THC exerted antitumor effects by inhibiting tumor cell proliferation or inducing apoptosis. Besides its effects through CB1 and CB2 receptors, THC modulates cellular responses among others via GPR55. Previously, we reported a reduction in Ki67-immunoreactive nuclei of human glioblastoma cells after GPR55 activation in general by THC and in particular by LPI. In the present study, we investigated intracellular mechanisms leading to an altered number of Ki67+ nuclei after stimulation of GPR55 by LPI and THC. Pharmacological analyses revealed a strongly involved PLC-IP3 signaling and cell-type-specific differences in Gα-, Gβγ-, RhoA-ROCK, and calcineurin signaling. Furthermore, immunochemical visualization of the calcineurin-dependent transcription factor NFAT revealed an unchanged subcellular localization after THC or LPI treatment. The data underline the cell-type-specific diversity of GPR55-associated signaling pathways in coupling to intracellular G proteins. Furthermore, this diversity might determine the outcome and the individual responsiveness of tumor cells to GPR55 stimulation by cannabin oids.
Collapse
Affiliation(s)
- Marc Richard Kolbe
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.)
| | - Tim Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.)
| | - Urszula Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.)
| | - Erik Maronde
- Department of Anatomy II, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany;
| | - Ralph Golbik
- Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany;
| | - Julian Prell
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (J.P.); (J.I.); (C.S.)
| | - Jörg Illert
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (J.P.); (J.I.); (C.S.)
| | - Christian Strauss
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (J.P.); (J.I.); (C.S.)
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.)
| |
Collapse
|
5
|
Shibata K, Hayasaka T, Sakamoto S, Hashimoto S, Kawamura N, Fujiyoshi M, Kimura T, Shimamura T, Fukai M, Taketomi A. Warm Ischemia Induces Spatiotemporal Changes in Lysophosphatidylinositol That Affect Post-Reperfusion Injury in Normal and Steatotic Rat Livers. J Clin Med 2023; 12:jcm12093163. [PMID: 37176603 PMCID: PMC10179083 DOI: 10.3390/jcm12093163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Warm ischemia-reperfusion injury is a prognostic factor for hepatectomy and liver transplantation. However, its underlying molecular mechanisms are unknown. This study aimed to elucidate these mechanisms and identify the predictive markers of post-reperfusion injury. Rats with normal livers were subjected to 70% hepatic warm ischemia for 15, 30, or 90 min, while those with steatotic livers were subjected to 70% hepatic warm ischemia for only 30 min. The liver and blood were sampled at the end of ischemia and 1, 6, and 24 h after reperfusion. The serum alanine aminotransferase (ALT) activity, Suzuki injury scores, and lipid peroxidation (LPO) products were evaluated. The ALT activity and Suzuki scores increased with ischemic duration and peaked at 1 and 6 h after reperfusion, respectively. Steatotic livers subjected to 30 min ischemia and normal livers subjected to 90 min ischemia showed comparable injury. A similar trend was observed for LPO products. Imaging mass spectrometry of normal livers revealed an increase in lysophosphatidylinositol (LPI (18:0)) and a concomitant decrease in phosphatidylinositol (PI (18:0/20:4)) in Zone 1 (central venous region) with increasing ischemic duration; they returned to their basal values after reperfusion. Similar changes were observed in steatotic livers. Hepatic warm ischemia time-dependent acceleration of PI (18:0/20:4) to LPI (18:0) conversion occurs initially in Zone 1 and is more pronounced in fatty livers. Thus, the LPI (18:0)/PI (18:0/20:4) ratio is a potential predictor of post-reperfusion injury.
Collapse
Affiliation(s)
- Kengo Shibata
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Takahiro Hayasaka
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Sodai Sakamoto
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Satsuki Hashimoto
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Norio Kawamura
- Department of Transplant Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Masato Fujiyoshi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Taichi Kimura
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Tsuyoshi Shimamura
- Division of Organ Transplantation, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Moto Fukai
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
- Department of Transplant Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
6
|
Martínez-Aguilar LM, Ibarra-Sánchez A, Guerrero-Morán DJ, Macías-Silva M, Muñoz-Bello JO, Padilla A, Lizano M, González-Espinosa C. Lysophosphatidylinositol Promotes Chemotaxis and Cytokine Synthesis in Mast Cells with Differential Participation of GPR55 and CB2 Receptors. Int J Mol Sci 2023; 24:ijms24076316. [PMID: 37047288 PMCID: PMC10094727 DOI: 10.3390/ijms24076316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Mast cells (MCs) are the main participants in the control of immune reactions associated with inflammation, allergies, defense against pathogens, and tumor growth. Bioactive lipids are lipophilic compounds able to modulate MC activation. Here, we explored some of the effects of the bioactive lipid lysophosphatidylinositol (LPI) on MCs. Utilizing murine bone marrow-derived mast cells (BMMCs), we found that LPI did not cause degranulation, but slightly increased FcεRI-dependent β-hexosaminidase release. However, LPI induced strong chemotaxis together with changes in LIM kinase (LIMK) and cofilin phosphorylation. LPI also promoted modifications to actin cytoskeleton dynamics that were detected by an increase in cell size and interruptions in the continuity of the cortical actin ring. The chemotaxis and cortical actin ring changes were dependent on GPR55 receptor activation, since the specific agonist O1602 mimicked the effects of LPI and the selective antagonist ML193 prevented them. The LPI and O1602-dependent stimulation of BMMC also led to VEGF, TNF, IL-1α, and IL-1β mRNA accumulation, but, in contrast with chemotaxis-related processes, the effects on cytokine transcription were dependent on GPR55 and cannabinoid (CB) 2 receptors, since they were sensitive to ML193 and to the specific CB2 receptor antagonist AM630. Remarkably, GPR55-dependent BMMC chemotaxis was observed towards conditioned media from distinct mouse and human cancer cells. Our data suggest that LPI induces the chemotaxis of MCs and leads to cytokine production in MC in vitro with the differential participation of GPR55 and CB2 receptors. These effects could play a significant role in the recruitment of MCs to tumors and the production of MC-derived pro-angiogenic factors in the tumor microenvironment.
Collapse
Affiliation(s)
- Lizbeth Magnolia Martínez-Aguilar
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, Mexico City 14330, Mexico; (L.M.M.-A.); (A.I.-S.); (D.J.G.-M.)
| | - Alfredo Ibarra-Sánchez
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, Mexico City 14330, Mexico; (L.M.M.-A.); (A.I.-S.); (D.J.G.-M.)
| | - Daniel José Guerrero-Morán
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, Mexico City 14330, Mexico; (L.M.M.-A.); (A.I.-S.); (D.J.G.-M.)
| | - Marina Macías-Silva
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Jesús Omar Muñoz-Bello
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Av. San Fernando No 22, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.O.M.-B.); (M.L.)
| | - Alejandro Padilla
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universtiaria, Mexico City 04510, Mexico;
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Av. San Fernando No 22, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.O.M.-B.); (M.L.)
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, Mexico City 14330, Mexico; (L.M.M.-A.); (A.I.-S.); (D.J.G.-M.)
- Centro de Investigación sobre Envejecimiento (CIE), Cinvestav, Unidad Sede Sur. Calzada de los Tenorios No. 235 Col. Granjas Coapa, Tlalpan, Mexico City 14400, Mexico
- Correspondence: ; Tel.: +52-5554-832800
| |
Collapse
|
7
|
Anderson LL, Bahceci DA, Hawkins NA, Everett-Morgan D, Banister SD, Kearney JA, Arnold JC. Heterozygous deletion of Gpr55 does not affect a hyperthermia-induced seizure, spontaneous seizures or survival in the Scn1a+/- mouse model of Dravet syndrome. PLoS One 2023; 18:e0280842. [PMID: 36701411 PMCID: PMC9879440 DOI: 10.1371/journal.pone.0280842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
A purified preparation of cannabidiol (CBD), a cannabis constituent, has been approved for the treatment of intractable childhood epilepsies such as Dravet syndrome. Extensive pharmacological characterization of CBD shows activity at numerous molecular targets but its anticonvulsant mechanism(s) of action is yet to be delineated. Many suggest that the anticonvulsant action of CBD is the result of G protein-coupled receptor 55 (GPR55) inhibition. Here we assessed whether Gpr55 contributes to the strain-dependent seizure phenotypes of the Scn1a+/- mouse model of Dravet syndrome. The Scn1a+/- mice on a 129S6/SvEvTac (129) genetic background have no overt phenotype, while those on a [129 x C57BL/6J] F1 background exhibit a severe phenotype that includes hyperthermia-induced seizures, spontaneous seizures and reduced survival. We observed greater Gpr55 transcript expression in the cortex and hippocampus of mice on the seizure-susceptible F1 background compared to those on the seizure-resistant 129 genetic background, suggesting that Gpr55 might be a genetic modifier of Scn1a+/- mice. We examined the effect of heterozygous genetic deletion of Gpr55 and pharmacological inhibition of GPR55 on the seizure phenotypes of F1.Scn1a+/- mice. Heterozygous Gpr55 deletion and inhibition of GPR55 with CID2921524 did not affect the temperature threshold of a thermally-induced seizure in F1.Scn1a+/- mice. Neither was there an effect of heterozygous Gpr55 deletion observed on spontaneous seizure frequency or survival of F1.Scn1a+/- mice. Our results suggest that GPR55 antagonism may not be a suitable anticonvulsant target for Dravet syndrome drug development programs, although future research is needed to provide more definitive conclusions.
Collapse
Affiliation(s)
- Lyndsey L. Anderson
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, Discipline of Pharmacology, Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia
| | - Dilara A. Bahceci
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, Discipline of Pharmacology, Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia
| | - Nicole A. Hawkins
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
| | - Declan Everett-Morgan
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia
| | - Samuel D. Banister
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Jennifer A. Kearney
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States of America
| | - Jonathon C. Arnold
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, Discipline of Pharmacology, Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Lysophosphatidylinositol Induced Morphological Changes and Stress Fiber Formation through the GPR55-RhoA-ROCK Pathway. Int J Mol Sci 2022; 23:ijms231810932. [PMID: 36142844 PMCID: PMC9504244 DOI: 10.3390/ijms231810932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022] Open
Abstract
We previously reported that lysophosphatidylinositol (LPI) functions as an endogenous agonist of GPR55, a novel cannabinoid receptor. However, the physiological roles of LPI-GPR55 have not yet been elucidated in detail. In the present study, we found that LPI induced morphological changes in GPR55-expressing HEK293 cells. LPI induced the cell rounding of GPR55-expressing HEK293 cells but not of empty-vector-transfected cells. LPI also induced the activation of small GTP-binding protein RhoA and increased stress fiber formation in GPR55-expressing HEK293 cells. The inhibition of RhoA and Rho kinase ROCK by the C3 exoenzyme and the ROCK inhibitor reduced LPI-induced cell rounding and stress fiber formation. These results clearly indicated that the LPI-induced morphological changes and the assembly of the cytoskeletons were mediated through the GPR55-RhoA-ROCK pathway.
Collapse
|
9
|
Varadharajan V, Massey WJ, Brown JM. Membrane-bound O-acyltransferase 7 (MBOAT7)-driven phosphatidylinositol remodeling in advanced liver disease. J Lipid Res 2022; 63:100234. [PMID: 35636492 PMCID: PMC9240865 DOI: 10.1016/j.jlr.2022.100234] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 01/21/2023] Open
Abstract
Advanced liver diseases account for approximately 2 million deaths annually worldwide. Roughly, half of liver disease-associated deaths arise from complications of cirrhosis and the other half driven by viral hepatitis and hepatocellular carcinoma. Unfortunately, the development of therapeutic strategies to treat subjects with advanced liver disease has been hampered by a lack of mechanistic understanding of liver disease progression and a lack of human-relevant animal models. An important advance has been made within the past several years, as several genome-wide association studies have discovered that an SNP near the gene encoding membrane-bound O-acyltransferase 7 (MBOAT7) is associated with severe liver diseases. This common MBOAT7 variant (rs641738, C>T), which reduces MBOAT7 expression, confers increased susceptibility to nonalcoholic fatty liver disease, alcohol-associated liver disease, and liver fibrosis in patients chronically infected with viral hepatitis. Recent studies in mice also show that Mboat7 loss of function can promote hepatic steatosis, inflammation, and fibrosis, causally linking this phosphatidylinositol remodeling enzyme to liver health in both rodents and humans. Herein, we review recent insights into the mechanisms by which MBOAT7-driven phosphatidylinositol remodeling influences liver disease progression and discuss how rapid progress in this area could inform drug discovery moving forward.
Collapse
Affiliation(s)
- Venkateshwari Varadharajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - William J Massey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
10
|
Calvillo-Robledo A, Cervantes-Villagrana RD, Morales P, Marichal-Cancino BA. The oncogenic lysophosphatidylinositol (LPI)/GPR55 signaling. Life Sci 2022; 301:120596. [PMID: 35500681 DOI: 10.1016/j.lfs.2022.120596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
GPR55 is a class A orphan G protein-coupled receptor that has drawn important therapeutic attention in the last decade because of its role in pathophysiological processes including vascular functions, metabolic dysfunction, neurodegenerative disorders, or bone turnover among others. Several cannabinoids of phytogenic, endogenous, and synthetic nature have shown to modulate this receptor leading to propose it as a member of the endocannabinoid system. The putative endogenous GPR55 ligand is L-α-lysophosphatidylinositol (LPI) and it has been associated with several processes that control cell survival and tumor progression. The relevance of GPR55 in cancer is currently being extensively studied in vitro and in vivo using diverse cancer models. The LPI/GPR55 axis has been reported to participate in pro-oncogenic processes including cellular proliferation, differentiation, migration, invasion, and metastasis being altered in several cancer cells via G12/13 and Gq signaling. Moreover, GRP55 and its bioactive lipid have been proposed as potential biomarkers for cancer diagnosis. Indeed, GPR55 overexpression or high expression has been shown to correlate with cancer aggressiveness in specific tumors including acute myeloid leukemia, uveal melanoma, low grade glioma and renal cancer. This review aims to analyze and summarize current evidence on the cancerogenic role of the LPI/GPR55 axis providing a critical view of the therapeutic prospects of this promising target.
Collapse
Affiliation(s)
- Argelia Calvillo-Robledo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags., Mexico
| | | | - Paula Morales
- Instituto de Química Médica, CSIC, 28006 Madrid, Spain
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags., Mexico.
| |
Collapse
|
11
|
Phosphorylation and subcellular localization of human phospholipase A1, DDHD1/PA-PLA1. Methods Enzymol 2022; 675:235-273. [DOI: 10.1016/bs.mie.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Iozzo M, Sgrignani G, Comito G, Chiarugi P, Giannoni E. Endocannabinoid System and Tumour Microenvironment: New Intertwined Connections for Anticancer Approaches. Cells 2021; 10:cells10123396. [PMID: 34943903 PMCID: PMC8699381 DOI: 10.3390/cells10123396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
The tumour microenvironment (TME) is now recognised as a hallmark of cancer, since tumour:stroma crosstalk supports the key steps of tumour growth and progression. The dynamic co-evolution of the tumour and stromal compartments may alter the surrounding microenvironment, including the composition in metabolites and signalling mediators. A growing number of evidence reports the involvement of the endocannabinoid system (ECS) in cancer. ECS is composed by a complex network of ligands, receptors, and enzymes, which act in synergy and contribute to several physiological but also pathological processes. Several in vitro and in vivo evidence show that ECS deregulation in cancer cells affects proliferation, migration, invasion, apoptosis, and metastatic potential. Although it is still an evolving research, recent experimental evidence also suggests that ECS can modulate the functional behaviour of several components of the TME, above all the immune cells, endothelial cells and stromal components. However, the role of ECS in the tumour:stroma interplay remains unclear and research in this area is particularly intriguing. This review aims to shed light on the latest relevant findings of the tumour response to ECS modulation, encouraging a more in-depth analysis in this field. Novel discoveries could be promising for novel anti-tumour approaches, targeting the microenvironmental components and the supportive tumour:stroma crosstalk, thereby hindering tumour development.
Collapse
|
13
|
Ayakannu T, Taylor AH, Konje JC. Expression of the putative cannabinoid receptor GPR55 is increased in endometrial carcinoma. Histochem Cell Biol 2021; 156:449-460. [PMID: 34324032 PMCID: PMC8604869 DOI: 10.1007/s00418-021-02018-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 12/24/2022]
Abstract
Although the expression of the putative cannabinoid receptor GPR55 has been shown to be involved in the growth of various tumours and is increased in a number of cancers, its expression has not been examined in patients with endometrial cancer (EC). Quantitative RT-PCR (for mRNA levels) and immunohistochemistry (for protein levels) were used to measure GPR55 expression in patients with Type 1 and Type 2 EC and correlated against cannabinoid receptor (CB1 and CB2) protein levels using non-cancerous endometrium as the control tissue. The data indicated that GPR55 transcript and GPR55 protein levels were significantly (p < 0.002 and p < 0.0001, respectively) higher in EC tissues than in control tissues. The levels of immunoreactive GPR55 protein were correlated with GPR55 transcript levels, but not with the expression of CB1 receptor protein, and were inversely correlated with CB2 protein expression, which was significantly decreased. It can be concluded that GPR55 expression is elevated in women with EC, and thus could provide a potential novel biomarker and therapeutic target for this disease.
Collapse
Affiliation(s)
- Thangesweran Ayakannu
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.,Department of Obstetrics and Gynaecology, Gynaecology Oncology Centre, Liverpool Women's Hospital, Liverpool Women's NHS Foundation Trust, Liverpool, UK.,Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, UK
| | - Anthony H Taylor
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, UK. .,Department of Molecular and Cell Biology, University of Leicester, George Davies Centre for Medicine, University Road, Leicester, LE2 7RH, Leicestershire, UK.
| | - Justin C Konje
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, UK.,Department of Health Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
14
|
Kurano M, Kobayashi T, Sakai E, Tsukamoto K, Yatomi Y. Lysophosphatidylinositol, especially albumin-bound form, induces inflammatory cytokines in macrophages. FASEB J 2021; 35:e21673. [PMID: 34042213 DOI: 10.1096/fj.202100245r] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
Lysophosphatidylinositol (LPI) is a glycero-lysophospholipid and a natural agonist against GPR55. The roles of the LPI/GPR55 axis in the pathogenesis of inflammation have been controversial. In the present study, we attempted to elucidate the roles of the LPI/GPR55 axis in inflammation, especially the secretion of inflammatory cytokines, IL-6 and TNF-α from macrophages. We treated RAW264.7 cells and mouse peritoneal macrophages (MPMs) with LPI and observed that LPI induced the secretion of IL-6 and TNF-α from these cells, as well as the phosphorylation of p38. These responses were inhibited by treatment with CID16020046 (CID), an antagonist against GPR55, or SB202190, an inhibitor of p38 cascade or knockdown of GPR55 with siRNA. Treatment with CID or ML-193, another antagonist against GPR55, attenuated the elevation of inflammatory cytokines in the plasma or tissue of db/db mice and in a septic mouse model induced using lipopolysaccharide, suggesting contributions to the improvement of insulin resistance and protection against organ injuries by treatment with CID or ML-193, respectively. In human subjects, although the serum LPI levels were not different, the levels of LPI in the lipoprotein fractions were lower and the levels in the lipoprotein-depleted fractions were higher in subjects with diabetes. LPI bound to albumin induced the secretion of IL-6 and TNF-α from RAW264.7 cells to a greater degree than LPI bound to LDL or HDL. These results suggest that LPI, especially the albumin-bound form, induced inflammatory cytokines depending on the GPR55/p38 pathway, which might contribute to the pathogenesis of obesity-induced inflammation and acute inflammation.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Tamaki Kobayashi
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Eri Sakai
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Kazuhisa Tsukamoto
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
15
|
Matsumoto N, Nemoto-Sasaki Y, Oka S, Arai S, Wada I, Yamashita A. Phosphorylation of human phospholipase A1 DDHD1 at newly identified phosphosites affects its subcellular localization. J Biol Chem 2021; 297:100851. [PMID: 34089703 PMCID: PMC8234217 DOI: 10.1016/j.jbc.2021.100851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Phospholipase A1 (PLA1) hydrolyzes the fatty acids of glycerophospholipids, which are structural components of the cellular membrane. Genetic mutations in DDHD1, an intracellular PLA1, result in hereditary spastic paraplegia (HSP) in humans. However, the regulation of DDHD1 activity has not yet been elucidated in detail. In the present study, we examined the phosphorylation of DDHD1 and identified the responsible protein kinases. We performed MALDI-TOF MS/MS analysis and Phos-tag SDS-PAGE in alanine-substitution mutants in HEK293 cells and revealed multiple phosphorylation sites in human DDHD1, primarily Ser8, Ser11, Ser723, and Ser727. The treatment of cells with a protein phosphatase inhibitor induced the hyperphosphorylation of DDHD1, suggesting that multisite phosphorylation occurred not only at these major, but also at minor sites. Site-specific kinase-substrate prediction algorithms and in vitro kinase analyses indicated that cyclin-dependent kinase CDK1/cyclin A2 phosphorylated Ser8, Ser11, and Ser727 in DDHD1 with a preference for Ser11 and that CDK5/p35 also phosphorylated Ser11 and Ser727 with a preference for Ser11. In addition, casein kinase CK2α1 was found to phosphorylate Ser104, although this was not a major phosphorylation site in cultivated HEK293 cells. The evaluation of the effects of phosphorylation revealed that the phosphorylation mimic mutants S11/727E exhibit only 20% reduction in PLA1 activity. However, the phosphorylation mimics were mainly localized to focal adhesions, whereas the phosphorylation-resistant mutants S11/727A were not. This suggested that phosphorylation alters the subcellular localization of DDHD1 without greatly affecting its PLA1 activity.
Collapse
Affiliation(s)
- Naoki Matsumoto
- Faculty of Pharma-Science, Teikyo University, Itabashi-Ku, Tokyo, Japan
| | | | - Saori Oka
- Faculty of Pharma-Science, Teikyo University, Itabashi-Ku, Tokyo, Japan
| | - Seisuke Arai
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Ikuo Wada
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Atsushi Yamashita
- Faculty of Pharma-Science, Teikyo University, Itabashi-Ku, Tokyo, Japan.
| |
Collapse
|
16
|
Kotańska M, Mika K, Szafarz M, Kubacka M, Müller CE, Sapa J, Kieć-Kononowicz K. Effects of GPR18 Ligands on Body Weight and Metabolic Parameters in a Female Rat Model of Excessive Eating. Pharmaceuticals (Basel) 2021; 14:ph14030270. [PMID: 33809564 PMCID: PMC8002110 DOI: 10.3390/ph14030270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 12/29/2022] Open
Abstract
GPR18 has been proposed to play a role in the progression of metabolic disease and obesity. Therefore, the aim of this study was to determine the effects of selective GRP18 ligands (the antagonists PSB-CB5 and PSB-CB27 and the agonist PSB-KK1415) on body mass and the development of metabolic disorders commonly accompanying obesity. Experiments were carried out on female Wistar rats. In order to determine the anorectic activity of the investigated ligands, their effect on food and water intake in a model of excessive eating was assessed. Lipid profile, glucose and insulin levels as well as alanine aminotransferase, aspartate aminotransferase, and γ-glutamyl transpeptidase activity in plasma were also evaluated. Potential side effects were examined in rat models of pica behavior and conditioned taste aversion. Animals treated with different ligands gained significantly less weight than rats from the obese control group. Effects of GPR18 antagonists on food intake and body weight were specific and unrelated to visceral illness, stress or changes in spontaneous activity. However, the GPR18 agonist is likely to affect body weight by inducing gastrointestinal disorders such as nausea. The presented preliminary data support the idea that the search for selective GPR18 antagonists for the treatment of obesity might be promising.
Collapse
Affiliation(s)
- Magdalena Kotańska
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University, Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (K.M.); (M.K.); (J.S.)
- Correspondence: ; Tel./Fax: +48-12-6205530
| | - Kamil Mika
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University, Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (K.M.); (M.K.); (J.S.)
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Krakow, Poland;
| | - Monika Kubacka
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University, Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (K.M.); (M.K.); (J.S.)
| | - Christa E. Müller
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, PharmaCenter Bonn, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany;
| | - Jacek Sapa
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University, Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (K.M.); (M.K.); (J.S.)
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, 9 Medyczna Street, 30-688 Kraków, Poland;
| |
Collapse
|
17
|
Effects of a Novel GPR55 Antagonist on the Arachidonic Acid Cascade in LPS-Activated Primary Microglial Cells. Int J Mol Sci 2021; 22:ijms22052503. [PMID: 33801492 PMCID: PMC7958845 DOI: 10.3390/ijms22052503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
Neuroinflammation is a crucial process to maintain homeostasis in the central nervous system (CNS). However, chronic neuroinflammation is detrimental, and it is described in the pathogenesis of CNS disorders, including Alzheimer’s disease (AD) and depression. This process is characterized by the activation of immune cells, mainly microglia. The role of the orphan G-protein-coupled receptor 55 (GPR55) in inflammation has been reported in different models. However, its role in neuroinflammation in respect to the arachidonic acid (AA) cascade in activated microglia is still lacking of comprehension. Therefore, we synthesized a novel GPR55 antagonist (KIT 10, 0.1–25 µM) and tested its effects on the AA cascade in lipopolysaccharide (LPS, 10 ng / mL)-treated primary rat microglia using Western blot and EIAs. We show here that KIT 10 potently prevented the release of prostaglandin E2 (PGE2), reduced microsomal PGE2 synthase (mPGES-1) and cyclooxygenase-2 (COX-2) synthesis, and inhibited the phosphorylation of Ikappa B-alpha (IκB-α), a crucial upstream step of the inflammation-related nuclear factor-kappaB (NF-κB) signaling pathway. However, no effects were observed on COX-1 and -2 activities and mitogen-activated kinases (MAPK). In summary, the novel GPR55 receptor antagonist KIT 10 reduces neuroinflammatory parameters in microglia by inhibiting the COX-2/PGE2 pathway. Further experiments are necessary to better elucidate its effects and mechanisms. Nevertheless, the modulation of inflammation by GPR55 might be a new therapeutic option to treat CNS disorders with a neuroinflammatory background such as AD or depression.
Collapse
|
18
|
Choi SH, Lee R, Nam SM, Kim DG, Cho IH, Kim HC, Cho Y, Rhim H, Nah SY. Ginseng gintonin, aging societies, and geriatric brain diseases. Integr Med Res 2021; 10:100450. [PMID: 32817818 PMCID: PMC7426447 DOI: 10.1016/j.imr.2020.100450] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A dramatic increase in aging populations and low birth rates rapidly drive aging societies and increase aging-associated neurodegenerative diseases. However, functional food or medicinal formulations to prevent geriatric brain disorders are not readily available. Panax ginseng is a candidate, since ginseng has long-been consumed as a rejuvenating agent. However, the underlying molecular mechanisms and the components of ginseng that are responsible for brain rejuvenation and human longevity are unknown. Accumulating evidence shows that gintonin is a candidate for the anti-aging ingredient of ginseng, especially in brain senescence. METHODS Gintonin, a glycolipoprotein complex, contains three lipid-derived G protein-coupled receptor ligands: lysophosphatidic acids (LPAs), lysophosphatidylinositols (LPIs), and linoleic acid (LA). LPA, LPI, and LA act on six LPA receptor subtypes, GPR55, and GPR40, respectively. These G protein-coupled receptors are distributed within the nervous and non-nervous systems of the human body. RESULTS Gintonin-enriched fraction (GEF) exhibits anti-brain senescence and effects against disorders such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD). Oral administration of gintonin in animal models of d-galactose-induced brain aging, AD, HD, and PD restored cognitive and motor functions. The underlying molecular mechanisms of gintonin-mediated anti-brain aging and anti-neurodegenerative diseases include neurogenesis, autophagy stimulation, anti-apoptosis, anti-oxidative stress, and anti-inflammatory activities. This review describes the characteristics of gintonin and GEF, and how gintonin exerts its effects on brain aging and brain associated-neurodegenerative diseases. CONCLUSION Finally, we describe how GEF can be applied to improve the quality of life of senior citizens in aging societies.
Collapse
Affiliation(s)
- Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sung Min Nam
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Do-Geun Kim
- Neurovascular Biology Laboratory, Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Yoonjeong Cho
- Center for Neuroscience Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Cao H, Su S, Yang Q, Le Y, Chen L, Hu M, Guo X, Zheng J, Li X, Yu Y. Metabolic profiling reveals interleukin-17A monoclonal antibody treatment ameliorate lipids metabolism with the potentiality to reduce cardiovascular risk in psoriasis patients. Lipids Health Dis 2021; 20:16. [PMID: 33602246 PMCID: PMC7890626 DOI: 10.1186/s12944-021-01441-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
Background Psoriasis is a common chronic inflammatory skin disease associated with overproduction of interleukin-17A (IL-17A). IL-17A monoclonal antibodies (mAbs) have shown clinical efficacy in psoriasis patients. Although a series of different overlapping mechanisms have been found to establish a link between psoriasis and cardiovascular diseases, the underlying mechanisms of the two types of diseases and the potential efficacy of IL-17A mAbs in amelioration of cardiovascular comorbidities remain unclear. Methods Serum samples from two study cohorts including 117 individuals were analyzed using a high-throughput UHPLC-MS platform. Non-targeted metabolic profiling analysis was first conducted with samples from 28 healthy individuals and from 28 psoriasis patients before and after 12-weeks of ixekizumab treatment in study cohort 1. Study cohort 2 was additionally recruited to validate the correlations of the identified metabolites with cardiovascular diseases. Results A total of 43 differential metabolites, including lysophospholipids, free fatty acids, acylcarnitines and dicarboxylic acids, were accurately identified in study cohort 1, and the analysis showed that lipid metabolism was impaired in psoriasis patients. Compared with healthy individuals, psoriasis patients had higher levels of lysophosphatidylcholines, lysophosphatidylinositols, lysophosphatidic acids and free fatty acids, but lower levels of acylcarnitines and dicarboxylic acids. The identified dicarboxylic acid levels were inversely correlated with psoriasis area and severity index (PASI) scores (P < 0.05). The results for study cohort 2 were largely consistent with the results for study cohort 1. Moreover, the levels of all identified lysophosphatidylcholines were higher in psoriasis patients with coronary heart diseases than in psoriasis without coronary heart disease. Notably, most of these lipidic changes were ameliorated by ixekizumab treatment. Conclusion The results of this non-targeted metabolomic analysis indicate that treatment with IL-17A mAbs can not only ameliorate psoriasis lesions but also restore dysregulated lipid metabolism to normal levels in psoriasis patients. Considering that dysregulated lipid metabolism has been regarded as the critical factor in cardiovascular diseases, the recovery of lipid metabolites in psoriasis patients indicates that IL-17A mAbs might have the potential protective effects against cardiovascular comorbidities. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01441-9.
Collapse
Affiliation(s)
- Han Cao
- School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China
| | - Shengmin Su
- School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China
| | - Qi Yang
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, People's Republic of China
| | - Yunchen Le
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, People's Republic of China
| | - Lihong Chen
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, People's Republic of China
| | - Mengyan Hu
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, People's Republic of China
| | - Xiaoyu Guo
- School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China
| | - Jie Zheng
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, People's Republic of China
| | - Xia Li
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, People's Republic of China.
| | - Yunqiu Yu
- School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
20
|
Fondevila MF, Fernandez U, Gonzalez-Rellan MJ, Da Silva Lima N, Buque X, Gonzalez-Rodriguez A, Alonso C, Iruarrizaga-Lejarreta M, Delgado TC, Varela-Rey M, Senra A, Garcia-Outeiral V, Novoa E, Iglesias C, Porteiro B, Beiroa D, Folgueira C, Tojo M, Torres JL, Hernández-Cosido L, Blanco Ó, Arab JP, Barrera F, Guallar D, Fidalgo M, López M, Dieguez C, Marcos M, Martinez-Chantar ML, Arrese M, Garcia-Monzon C, Mato JM, Aspichueta P, Nogueiras R. The L-α-Lysophosphatidylinositol/G Protein-Coupled Receptor 55 System Induces the Development of Nonalcoholic Steatosis and Steatohepatitis. Hepatology 2021; 73:606-624. [PMID: 32329085 PMCID: PMC7894478 DOI: 10.1002/hep.31290] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/24/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS G protein-coupled receptor (GPR) 55 is a putative cannabinoid receptor, and l-α-lysophosphatidylinositol (LPI) is its only known endogenous ligand. Although GPR55 has been linked to energy homeostasis in different organs, its specific role in lipid metabolism in the liver and its contribution to the pathophysiology of nonalcoholic fatty liver disease (NAFLD) remains unknown. APPROACH AND RESULTS We measured (1) GPR55 expression in the liver of patients with NAFLD compared with individuals without obesity and without liver disease, as well as animal models with steatosis and nonalcoholic steatohepatitis (NASH), and (2) the effects of LPI and genetic disruption of GPR55 in mice, human hepatocytes, and human hepatic stellate cells. Notably, we found that circulating LPI and liver expression of GPR55 were up-regulated in patients with NASH. LPI induced adenosine monophosphate-activated protein kinase activation of acetyl-coenzyme A carboxylase (ACC) and increased lipid content in human hepatocytes and in the liver of treated mice by inducing de novo lipogenesis and decreasing β-oxidation. The inhibition of GPR55 and ACCα blocked the effects of LPI, and the in vivo knockdown of GPR55 was sufficient to improve liver damage in mice fed a high-fat diet and in mice fed a methionine-choline-deficient diet. Finally, LPI promoted the initiation of hepatic stellate cell activation by stimulating GPR55 and activation of ACC. CONCLUSIONS The LPI/GPR55 system plays a role in the development of NAFLD and NASH by activating ACC.
Collapse
Affiliation(s)
- Marcos F Fondevila
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain.,Centro de Fisiopatología de la Obesidad y NutriciónCentro de Investigación Biomédica en RedSantiago de CompostelaSpain
| | - Uxia Fernandez
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain
| | - Maria J Gonzalez-Rellan
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain
| | - Natalia Da Silva Lima
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain
| | - Xabier Buque
- Department of PhysiologyUniversity of the Basque Country UPV/EHULeioaSpain.,Biocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Agueda Gonzalez-Rodriguez
- Liver Research UnitSanta Cristina University HospitalInstituto de Investigación Sanitaria PrincesaMadridSpain
| | | | | | - Teresa C Delgado
- Liver Disease LaboratoryCenter for Cooperative Research in BiosciencesBasque Research and Technology Alliance-Centro de Enfermedades Hepáticas y DigestivasCentro de Investigación Biomédica en RedDerioSpain
| | - Marta Varela-Rey
- Liver Disease LaboratoryCenter for Cooperative Research in BiosciencesBasque Research and Technology Alliance-Centro de Enfermedades Hepáticas y DigestivasCentro de Investigación Biomédica en RedDerioSpain
| | - Ana Senra
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain
| | - Vera Garcia-Outeiral
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain
| | - Eva Novoa
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain
| | - Cristina Iglesias
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain
| | - Begoña Porteiro
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain.,Centro de Fisiopatología de la Obesidad y NutriciónCentro de Investigación Biomédica en RedSantiago de CompostelaSpain
| | - Daniel Beiroa
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain.,Centro de Fisiopatología de la Obesidad y NutriciónCentro de Investigación Biomédica en RedSantiago de CompostelaSpain
| | - Cintia Folgueira
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain
| | - Marta Tojo
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain
| | - Jorge L Torres
- Department of Internal MedicineUniversity Hospital of Salamanca-Institute of Biomedical Research of SalamancaUniversity of SalamancaSalamancaSpain
| | - Lourdes Hernández-Cosido
- Department of General and Gastrointestinal SurgeryUniversity Hospital of Salamanca-Institute of Biomedical Research of SalamancaUniversity of SalamancaSalamancaSpain
| | - Óscar Blanco
- Department of PathologyUniversity Hospital of Salamanca-Institute of Biomedical Research of SalamancaUniversity of SalamancaSalamancaSpain
| | - Juan Pablo Arab
- Departament of GastroenterologyEscuela de MedicinaPontificia Universidad Católica de Chile, Santiago, ChileChile and Centro de Envejecimiento y Regeneración (CARE) Facultad de Ciencias Biológicaspontificia Universidad Católica de ChileSantiagoChile
| | - Francisco Barrera
- Departament of GastroenterologyEscuela de MedicinaPontificia Universidad Católica de Chile, Santiago, ChileChile and Centro de Envejecimiento y Regeneración (CARE) Facultad de Ciencias Biológicaspontificia Universidad Católica de ChileSantiagoChile
| | - Diana Guallar
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain
| | - Miguel Fidalgo
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain
| | - Miguel López
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain.,Centro de Fisiopatología de la Obesidad y NutriciónCentro de Investigación Biomédica en RedSantiago de CompostelaSpain
| | - Carlos Dieguez
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain.,Centro de Fisiopatología de la Obesidad y NutriciónCentro de Investigación Biomédica en RedSantiago de CompostelaSpain
| | - Miguel Marcos
- Department of Internal MedicineUniversity Hospital of Salamanca-Institute of Biomedical Research of SalamancaUniversity of SalamancaSalamancaSpain
| | - Maria L Martinez-Chantar
- Liver Disease LaboratoryCenter for Cooperative Research in BiosciencesBasque Research and Technology Alliance-Centro de Enfermedades Hepáticas y DigestivasCentro de Investigación Biomédica en RedDerioSpain
| | - Marco Arrese
- Departament of GastroenterologyEscuela de MedicinaPontificia Universidad Católica de Chile, Santiago, ChileChile and Centro de Envejecimiento y Regeneración (CARE) Facultad de Ciencias Biológicaspontificia Universidad Católica de ChileSantiagoChile
| | - Carmelo Garcia-Monzon
- Liver Research UnitSanta Cristina University HospitalInstituto de Investigación Sanitaria PrincesaMadridSpain
| | - Jose M Mato
- Liver Disease LaboratoryCenter for Cooperative Research in BiosciencesBasque Research and Technology Alliance-Centro de Enfermedades Hepáticas y DigestivasCentro de Investigación Biomédica en RedDerioSpain.,Liver Metabolism LaboratoryCenter for Cooperative Research in Biosciences, Basque Research and Technology Alliance-Centro de Enfermedades Hepáticas y DigestivasCentro de Investigación Biomédica en RedDerioSpain
| | - Patricia Aspichueta
- Department of PhysiologyUniversity of the Basque Country UPV/EHULeioaSpain.,Biocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Ruben Nogueiras
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain.,Centro de Fisiopatología de la Obesidad y NutriciónCentro de Investigación Biomédica en RedSantiago de CompostelaSpain.,Galician Agency of Innovation (GAIN)Xunta de GaliciaSantiago de CompostelaSpain
| |
Collapse
|
21
|
Emerging Roles of Cannabinoids and Synthetic Cannabinoids in Clinical Experimental Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1264:47-65. [PMID: 33332003 DOI: 10.1007/978-3-030-57369-0_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, an increasing number of investigations has demonstrated the therapeutic potential of molecules targeting the endocannabinoid system. Cannabinoids of endogenous, phytogenic, and synthetic nature have been assessed in a wide variety of disease models ranging from neurological to metabolic disorders. Even though very few compounds of this type have already reached the market, numerous preclinical and clinical studies suggest that cannabinoids are suitable drugs for the clinical management of diverse pathologies.In this chapter, we will provide an overview of the endocannabinoid system under certain physiopathological conditions, with a focus on neurological, oncologic, and metabolic disorders. Cannabinoids evaluated as potential therapeutic agents in experimental models with an emphasis in the most successful chemical entities and their perspectives towards the clinic will be discussed.
Collapse
|
22
|
Abe J, Guy AT, Ding F, Greimel P, Hirabayashi Y, Kamiguchi H, Ito Y. Systematic synthesis of novel phosphoglycolipid analogues as potential agonists of GPR55. Org Biomol Chem 2020; 18:8467-8473. [PMID: 33063071 DOI: 10.1039/d0ob01756f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhodopsin-like G protein-coupled receptor (GPCR) GPR55 is attracting attention as a pharmaceutical target, because of its relationship with various physiological and pathological events. Although GPR55 was initially deorphanized as a cannabinoid receptor, lysophosphatidylinositol (LPI) is now widely perceived to be an endogenous ligand of GPR55. Recently, lysophosphatidyl-β-d-glucoside (LPGlc) has been found to act on GPR55 to repel dorsal root ganglion (DRG) neurons. In this study, we designed and synthesized various LPGlc analogues having the squaryldiamide group as potential agonists of GPR55. By the axon turning assay, several analogues exhibited similar activities to that of LPGlc. These results will provide valuable information for understanding the mode of action of LPGlc and its analogues and for the discovery of potent and selective antagonists or agonists of GPR55.
Collapse
Affiliation(s)
- Junpei Abe
- Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Adam T Guy
- RIKEN Center for Brain Research, Wako, Saitama, 351-0198, Japan
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), SunYat-sen University, Guangzhou 510275, China
| | - Peter Greimel
- RIKEN Center for Brain Research, Wako, Saitama, 351-0198, Japan
| | | | | | - Yukishige Ito
- Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan and RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
23
|
Martínez-Pinilla E, Rico AJ, Rivas-Santisteban R, Lillo J, Roda E, Navarro G, Lanciego JL, Franco R. Expression of GPR55 and either cannabinoid CB 1 or CB 2 heteroreceptor complexes in the caudate, putamen, and accumbens nuclei of control, parkinsonian, and dyskinetic non-human primates. Brain Struct Funct 2020; 225:2153-2164. [PMID: 32691218 DOI: 10.1007/s00429-020-02116-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Endocannabinoids are neuromodulators acting on specific cannabinoid CB1 and CB2 G-protein-coupled receptors (GPCRs), representing potential therapeutic targets for neurodegenerative diseases. Cannabinoids also regulate the activity of GPR55, a recently "deorphanized" GPCR that directly interacts with CB1 and with CB2 receptors. Our hypothesis is that these heteromers may be taken as potential targets for Parkinson's disease (PD). This work aims at assessing the expression of heteromers made of GPR55 and CB1/CB2 receptors in the striatum of control and parkinsonian macaques (with and without levodopa-induced dyskinesia). For this purpose, double blind in situ proximity ligation assays, enabling the detection of GPCR heteromers in tissue samples, were performed in striatal sections of control, MPTP-treated and MPTP-treated animals rendered dyskinetic by chronic treatment with levodopa. Image analysis and statistical assessment were performed using dedicated software. We have previously demonstrated the formation of heteromers between GPR55 and CB1 receptor (CB1-GPR55_Hets), which is highly expressed in the central nervous system (CNS), but also with the CB2 receptor (CB2-GPR55_Hets). Compared to the baseline expression of CB1-GPR55_Hets in control animals, our results showed increased expression levels in basal ganglia input nuclei of MPTP-treated animals. These observed increases in CB1-GPR55_Hets returned back to baseline levels upon chronic treatment with levodopa in dyskinetic animals. Obtained data regarding CB2-GPR55_Hets were quite similar, with somehow equivalent amounts in control and dyskinetic animals, and with increased expression levels in MPTP animals. Taken together, the detected increased expression of GPR55-endocannabinoid heteromers appoints these GPCR complexes as potential non-dopaminergic targets for PD therapy.
Collapse
Affiliation(s)
- Eva Martínez-Pinilla
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Julián Clavería s/n, 33006, Asturias, Spain.
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Asturias, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain.
| | - Alberto J Rico
- Neurosciences Division, Centre for Applied Medical Research, CIMA, University of Navarra, Avenida Pío XII, 55, 31008, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Rafael Rivas-Santisteban
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, School of Chemistry, Universitat de Barcelona, Diagonal 643, 08028, Barcelona, Spain
| | - Jaume Lillo
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, School of Chemistry, Universitat de Barcelona, Diagonal 643, 08028, Barcelona, Spain
| | - Elvira Roda
- Neurosciences Division, Centre for Applied Medical Research, CIMA, University of Navarra, Avenida Pío XII, 55, 31008, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Gemma Navarro
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - José Luis Lanciego
- Neurosciences Division, Centre for Applied Medical Research, CIMA, University of Navarra, Avenida Pío XII, 55, 31008, Pamplona, Spain.
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Rafael Franco
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, School of Chemistry, Universitat de Barcelona, Diagonal 643, 08028, Barcelona, Spain.
| |
Collapse
|
24
|
Thompson KJ, Tobin AB. Crosstalk between the M 1 muscarinic acetylcholine receptor and the endocannabinoid system: A relevance for Alzheimer's disease? Cell Signal 2020; 70:109545. [PMID: 31978506 PMCID: PMC7184673 DOI: 10.1016/j.cellsig.2020.109545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder which accounts for 60-70% of the 50 million worldwide cases of dementia and is characterised by cognitive impairments, many of which have long been associated with dysfunction of the cholinergic system. Although the M1 muscarinic acetylcholine receptor (mAChR) is considered a promising drug target for AD, ligands targeting this receptor have so far been unsuccessful in clinical trials. As modulatory receptors to cholinergic transmission, the endocannabinoid system may be a promising drug target to allow fine tuning of the cholinergic system. Furthermore, disease-related changes have been found in the endocannabinoid system during AD progression and indeed targeting the endocannabinoid system at specific disease stages alleviates cognitive symptoms in numerous mouse models of AD. Here we review the role of the endocannabinoid system in AD, and its crosstalk with mAChRs as a potential drug target for cholinergic dysfunction.
Collapse
Affiliation(s)
- Karen J Thompson
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
25
|
Cho YJ, Choi SH, Lee R, Hwang H, Rhim H, Cho IH, Kim HC, Lee JI, Hwang SH, Nah SY. Ginseng Gintonin Contains Ligands for GPR40 and GPR55. Molecules 2020; 25:molecules25051102. [PMID: 32121640 PMCID: PMC7179172 DOI: 10.3390/molecules25051102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Gintonin, a novel ginseng-derived glycolipoprotein complex, has an exogenous ligand for lysophosphatidic acid (LPA) receptors. However, recent lipid analysis of gintonin has shown that gintonin also contains other bioactive lipids besides LPAs, including linoleic acid and lysophosphatidylinositol (LPI). Linoleic acid, a free fatty acid, and LPI are known as ligands for the G-protein coupled receptors (GPCR), GPR40, and GPR55, respectively. We, herein, investigated whether gintonin could serve as a ligand for GPR40 and GPR55, using the insulin-secreting beta cell-derived cell line INS-1 and the human prostate cancer cell line PC-3, respectively. Gintonin dose-dependently enhanced insulin secretion from INS-1 cells. Gintonin-stimulated insulin secretion was partially inhibited by a GPR40 receptor antagonist but not an LPA1/3 receptor antagonist and was down-regulated by small interfering RNA (siRNA) against GPR40. Gintonin dose-dependently induced [Ca2+]i transients and Ca2+-dependent cell migration in PC-3 cells. Gintonin actions in PC-3 cells were attenuated by pretreatment with a GPR55 antagonist and an LPA1/3 receptor antagonist or by down-regulating GPR55 with siRNA. Taken together, these results demonstrated that gintonin-mediated insulin secretion by INS-1 cells and PC-3 cell migration were regulated by the respective activation of GPR40 and GPR55 receptors. These findings indicated that gintonin could function as a ligand for both receptors. Finally, we demonstrated that gintonin contained two more GPCR ligands, in addition to that for LPA receptors. Gintonin, with its multiple GPCR ligands, might provide the molecular basis for the multiple pharmacological actions of ginseng.
Collapse
Affiliation(s)
- Yeon-Jin Cho
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (Y.-J.C.); (S.-H.C.); (R.L.)
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (Y.-J.C.); (S.-H.C.); (R.L.)
| | - Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (Y.-J.C.); (S.-H.C.); (R.L.)
| | - Hongik Hwang
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea; (H.H.); (H.R.)
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea; (H.H.); (H.R.)
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology program, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea;
| | - Jeong-Ik Lee
- Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea;
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju 26339, Korea
- Correspondence: (S.-H.H.); (S.-Y.N.); Tel.: +82-33-738-7922 (S.-H.H.); +82-2-450-4154 (S.-Y.N.)
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (Y.-J.C.); (S.-H.C.); (R.L.)
- Correspondence: (S.-H.H.); (S.-Y.N.); Tel.: +82-33-738-7922 (S.-H.H.); +82-2-450-4154 (S.-Y.N.)
| |
Collapse
|
26
|
Robertson‐Gray OJ, Walsh SK, Ryberg E, Jönsson‐Rylander A, Lipina C, Wainwright CL. l-α-Lysophosphatidylinositol (LPI) aggravates myocardial ischemia/reperfusion injury via a GPR55/ROCK-dependent pathway. Pharmacol Res Perspect 2019; 7:e00487. [PMID: 31149342 PMCID: PMC6533556 DOI: 10.1002/prp2.487] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 12/15/2022] Open
Abstract
The phospholipid l-α-lysophosphatidylinositol (LPI), an endogenous ligand for GPR55, is elevated in patients with acute coronary syndrome, and a GPR55 antagonist cannabidiol (CBD) reduces experimental ischemia/reperfusion (I/R) injury. While LPI activates multiple signaling pathways, little is known about which ones are important in cardiomyocytes. In this study we explored whether activation of the Rho kinase/ROCK/p38 MAPK pathway is responsible for LPI-induced extension of I/R injury. Using a high-throughput screening method (dynamic mass redistribution; DMR), mouse- and human-induced pluripotent stem cell (iPSC) cardiomyocytes exposed to LPI were shown to exhibit a rapid, sustained, and concentration-dependent (1 nmol L-1-30 μmol L-1) cellular response. Y-27632 (ROCK inhibitor; 10 & 50 μmol L-1) and CBD (1 μmol L-1) both abolished the DMR response to LPI (10 μmol L-1). In murine iPSC cardiomyocytes, LPI-induced ROCK and p38 MAPK phosphorylation, both of which were prevented by Y-27632 and CBD, but did not induce JNK activation or cleavage of caspase-3. In hearts isolated from wild type (WT) mice subjected to 30 minutes global I/R, LPI (10 μmol L-1) administered via the coronary circulation increased infarct size when applied prior to ischemia onset, but not when given at the time of reperfusion. The exacerbation of tissue injury by LPI was not seen in hearts from GPR55-/- mice or in the presence of Y-27632, confirming that injury is mediated via the GPR55/ROCK/p38 MAPK pathway. These findings suggest that raised levels of LPI in the vicinity of a developing infarct may worsen the outcome of AMI.
Collapse
Affiliation(s)
- Olivia J. Robertson‐Gray
- Cardiometabolic Health ResearchSchool of Pharmacy & Life SciencesRobert Gordon UniversityAberdeenScotlandUK
- Present address:
Institute of Cardiovascular & Medical SciencesCollege of MedicalVeterinary and Life SciencesUniversity of GlasgowGlasgowScotlandUK
| | - Sarah K. Walsh
- Cardiometabolic Health ResearchSchool of Pharmacy & Life SciencesRobert Gordon UniversityAberdeenScotlandUK
| | - Erik Ryberg
- Cardiovascular& Metabolic Disease IMEDAstraZeneca R&DMölndalSweden
| | | | - Christopher Lipina
- Division of Cell Signalling & ImmunologySchool of Life SciencesUniversity of DundeeDundeeScotlandUK
| | - Cherry L. Wainwright
- Cardiometabolic Health ResearchSchool of Pharmacy & Life SciencesRobert Gordon UniversityAberdeenScotlandUK
| |
Collapse
|
27
|
Kitamura C, Sonoda H, Nozawa H, Kano K, Emoto S, Murono K, Kaneko M, Hiyoshi M, Sasaki K, Nishikawa T, Shuno Y, Tanaka T, Hata K, Kawai K, Aoki J, Ishihara S. The component changes of lysophospholipid mediators in colorectal cancer. Tumour Biol 2019; 41:1010428319848616. [PMID: 31106679 DOI: 10.1177/1010428319848616] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although lysophospholipids are known to play an important role in the development and progression of several kinds of cancers, their role in human colorectal cancer is as yet unclear. In this study, we aim to investigate lysophospholipid levels in colorectal cancer tissues to identify lysophospholipids, the levels of which change specifically in colorectal cancers. We used liquid chromatography-tandem mass spectrometry to measure lysophospholipid levels in cancerous and normal tissues from 11 surgical specimens of sigmoid colon cancers, since recent advances in this field have improved detection sensitivities for lysophospholipids. Our results indicate that, in colon cancer tissues, levels of lysophosphatidylinositol and lysophosphatidylserine were significantly higher ( p = 0.025 and p = 0.01, respectively), whereas levels of lysophosphatidic acid were significantly lower ( p = 0.0019) than in normal tissues. Although levels of lysophosphatidylglycerol were higher in colon cancer tissues than in normal tissues, this difference was not found to be significant ( p = 0.11). Fatty acid analysis further showed that 18:0 lysophosphatidylinositol and 18:0 lysophosphatidylserine were the predominant species of lysophospholipids in colon cancer tissues. These components may be potentially involved in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Chieko Kitamura
- 1 Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Sonoda
- 1 Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Nozawa
- 1 Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Kuniyuki Kano
- 2 Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shigenobu Emoto
- 1 Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Koji Murono
- 1 Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Manabu Kaneko
- 1 Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Masaya Hiyoshi
- 1 Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Kazuhito Sasaki
- 1 Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nishikawa
- 1 Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Yasutaka Shuno
- 1 Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Tanaka
- 1 Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Keisuke Hata
- 1 Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Kazushige Kawai
- 1 Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- 2 Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Soichiro Ishihara
- 1 Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Rahman S, Archana A, Dutta D, Kumar V, Kim J, Jan AT, Minakshi R. The onus of cannabinoids in interrupting the molecular odyssey of breast cancer: A critical perspective on UPR ER and beyond. Saudi Pharm J 2019; 27:437-445. [PMID: 30976189 PMCID: PMC6438785 DOI: 10.1016/j.jsps.2019.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/05/2019] [Indexed: 12/31/2022] Open
Abstract
Cannabinoids, commonly used for medicinal and recreational purposes, consist of various complex hydrophobic molecules obtained from Cannabis sativa L. Acting as an inhibitory molecule; they have been investigated for their antineoplastic effect in various breast tumor models. Lately, it was found that cannabinoid treatment not only stimulates autophagy-mediated apoptotic death of tumor cells through unfolded protein response (UPRER) activated downstream effectors, but also imposes cell cycle arrest. The exploitation of UPRER tumors as such is believed to be a major molecular event and is therefore employed in understanding the development and progression of breast tumor. Simultaneously, the data on clinical trials following administration of cannabinoid is currently being explored to find its role not only in palliation but also in the treatment of breast cancer. The present study summarizes new achievements in understanding the extent of therapeutic progress and highlights recent developments in cannabinoid biology towards achieving a better cure of breast cancer through the exploitation of different cannabinoids.
Collapse
Affiliation(s)
- Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, South Korea
| | - Ayyagari Archana
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, Delhi 110036, India
| | - Durgashree Dutta
- Department of Biochemistry, Jan Nayak Chaudhary Devilal Dental College, Sirsa, Haryana, India
| | - Vijay Kumar
- Department of Zoology, R.N. College, B.R. Ambedkar Bihar University, Muzaffarpur, Bihar, India
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, South Korea
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Rinki Minakshi
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, Delhi 110036, India
| |
Collapse
|
29
|
Guerrero-Alba R, Barragán-Iglesias P, González-Hernández A, Valdez-Moráles EE, Granados-Soto V, Condés-Lara M, Rodríguez MG, Marichal-Cancino BA. Some Prospective Alternatives for Treating Pain: The Endocannabinoid System and Its Putative Receptors GPR18 and GPR55. Front Pharmacol 2019; 9:1496. [PMID: 30670965 PMCID: PMC6331465 DOI: 10.3389/fphar.2018.01496] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Marijuana extracts (cannabinoids) have been used for several millennia for pain treatment. Regarding the site of action, cannabinoids are highly promiscuous molecules, but only two cannabinoid receptors (CB1 and CB2) have been deeply studied and classified. Thus, therapeutic actions, side effects and pharmacological targets for cannabinoids have been explained based on the pharmacology of cannabinoid CB1/CB2 receptors. However, the accumulation of confusing and sometimes contradictory results suggests the existence of other cannabinoid receptors. Different orphan proteins (e.g., GPR18, GPR55, GPR119, etc.) have been proposed as putative cannabinoid receptors. According to their expression, GPR18 and GPR55 could be involved in sensory transmission and pain integration. Methods: This article reviews select relevant information about the potential role of GPR18 and GPR55 in the pathophysiology of pain. Results: This work summarized novel data supporting that, besides cannabinoid CB1 and CB2 receptors, GPR18 and GPR55 may be useful for pain treatment. Conclusion: There is evidence to support an antinociceptive role for GPR18 and GPR55.
Collapse
Affiliation(s)
- Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Paulino Barragán-Iglesias
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | - Abimael González-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico
| | - Eduardo E Valdez-Moráles
- Cátedras CONACYT, Departamento de Cirugía, Centro de Ciencias Biomédicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Mexico City, Mexico
| | - Miguel Condés-Lara
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico
| | - Martín G Rodríguez
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
30
|
Cannabis sativa L. and Nonpsychoactive Cannabinoids: Their Chemistry and Role against Oxidative Stress, Inflammation, and Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1691428. [PMID: 30627539 PMCID: PMC6304621 DOI: 10.1155/2018/1691428] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/14/2018] [Accepted: 11/22/2018] [Indexed: 01/17/2023]
Abstract
In the last decades, a lot of attention has been paid to the compounds present in medicinal Cannabis sativa L., such as Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), and their effects on inflammation and cancer-related pain. The National Cancer Institute (NCI) currently recognizes medicinal C. sativa as an effective treatment for providing relief in a number of symptoms associated with cancer, including pain, loss of appetite, nausea and vomiting, and anxiety. Several studies have described CBD as a multitarget molecule, acting as an adaptogen, and as a modulator, in different ways, depending on the type and location of disequilibrium both in the brain and in the body, mainly interacting with specific receptor proteins CB1 and CB2. CBD is present in both medicinal and fibre-type C. sativa plants, but, unlike Δ9-THC, it is completely nonpsychoactive. Fibre-type C. sativa (hemp) differs from medicinal C. sativa, since it contains only few levels of Δ9-THC and high levels of CBD and related nonpsychoactive compounds. In recent years, a number of preclinical researches have been focused on the role of CBD as an anticancer molecule, suggesting CBD (and CBD-like molecules present in the hemp extract) as a possible candidate for future clinical trials. CBD has been found to possess antioxidant activity in many studies, thus suggesting a possible role in the prevention of both neurodegenerative and cardiovascular diseases. In animal models, CBD has been shown to inhibit the progression of several cancer types. Moreover, it has been found that coadministration of CBD and Δ9-THC, followed by radiation therapy, causes an increase of autophagy and apoptosis in cancer cells. In addition, CBD is able to inhibit cell proliferation and to increase apoptosis in different types of cancer models. These activities seem to involve also alternative pathways, such as the interactions with TRPV and GRP55 receptor complexes. Moreover, the finding that the acidic precursor of CBD (cannabidiolic acid, CBDA) is able to inhibit the migration of breast cancer cells and to downregulate the proto-oncogene c-fos and the cyclooxygenase-2 (COX-2) highlights the possibility that CBDA might act on a common pathway of inflammation and cancer mechanisms, which might be responsible for its anticancer activity. In the light of all these findings, in this review we explore the effects and the molecular mechanisms of CBD on inflammation and cancer processes, highlighting also the role of minor cannabinoids and noncannabinoids constituents of Δ9-THC deprived hemp.
Collapse
|
31
|
Alhouayek M, Masquelier J, Muccioli GG. Lysophosphatidylinositols, from Cell Membrane Constituents to GPR55 Ligands. Trends Pharmacol Sci 2018; 39:586-604. [PMID: 29588059 DOI: 10.1016/j.tips.2018.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/20/2018] [Accepted: 02/28/2018] [Indexed: 12/25/2022]
Abstract
Lysophosphatidylinositols (LPIs) are membrane constituents that alter the properties of said membranes. However, recent data showing that the once orphan receptor, GPR55, can act as a receptor for LPIs has sparked a renewed interest in LPIs as bioactive lipids. As evidence supporting the importance of LPIs and/or GPR55 is continuously accumulating and because LPI levels are altered in a number of pathologies such as obesity and cancer, the coming years should bring new, exciting discoveries to this field. In this review, we discuss the recent work on LPIs and on their molecular target, the GPR55 receptor. First, we summarize the metabolism of LPIs before outlining the cellular pathways activated by GPR55. Then, we review the actions of LPIs and GPR55 that could have potential pharmacological or therapeutic applications in several pathophysiological settings, such as cancer, obesity, pain, and inflammation.
Collapse
Affiliation(s)
- Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Bruxelles, Belgium; These authors contributed equally to this work
| | - Julien Masquelier
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Bruxelles, Belgium; These authors contributed equally to this work
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Bruxelles, Belgium.
| |
Collapse
|
32
|
Zhou XL, Guo X, Song YP, Zhu CY, Zou W. The LPI/GPR55 axis enhances human breast cancer cell migration via HBXIP and p-MLC signaling. Acta Pharmacol Sin 2018; 39:459-471. [PMID: 29188802 PMCID: PMC5843836 DOI: 10.1038/aps.2017.157] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/09/2017] [Indexed: 01/06/2023]
Abstract
The G protein-coupled receptor 55 (GPR55) is expressed in multiple tissues, and has been implicated in cancer pathogenesis, but little is known about its role in the migratory behavior of cancer cells, particularly breast cancer cells. In this study we first showed that GPR55 expression levels in 38 metastatic lymph nodes of breast cancer patients were profoundly elevated, and were positively associated in human breast cancer cells with their migratory ability. Moreover, the plasma levels of GPR55 endogenous agonist L-a-lysophosphatidylinositol (LPI) were significantly increased in breast cancer patients compared with healthy individuals. In human breast cancer LM-MCF-7 and MDA-MB-231 cells, treatment with LPI (2.5 μmol/L) significantly increased filopodia formation and resulted in cell migration, which could be blocked either by the GPR55 antagonist CID16020046 or by siRNA-mediated GPR55 knockdown. Furthermore, dual-luciferase report gene assays showed that GPR55 upregulated HBXIP at the promoter; GPR55 expression levels were positively correlated with HBXIP expression levels in breast cancer tissues and 8 breast cancer cell lines. We also showed that the LPI/GPR55 axis promoted the migration of breast cancer cells via two mutually exclusive pathways - the HBXIP/p-ERK1/2/Capn4 and MLCK/MLC signaling pathways. In xenograft nude mouse model, loss of GPR55 mainly affected breast cancer cell metastasis and the formation of metastatic foci. Thus, GPR55 is involved in the migratory behavior of human breast cancer cells and could serve as a pharmacological target for preventing metastasis.
Collapse
Affiliation(s)
- Xiao-lei Zhou
- Public R&D Center of Bio-Manufacture, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xin Guo
- Department of Molecular and Cellular Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Yu-pin Song
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang 050035, China
| | - Chong-yue Zhu
- Public R&D Center of Bio-Manufacture, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Wei Zou
- Public R&D Center of Bio-Manufacture, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
33
|
Bandu R, Mok HJ, Kim KP. Phospholipids as cancer biomarkers: Mass spectrometry-based analysis. MASS SPECTROMETRY REVIEWS 2018; 37:107-138. [PMID: 27276657 DOI: 10.1002/mas.21510] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/19/2016] [Indexed: 05/02/2023]
Abstract
Lipids, particularly phospholipids (PLs), are key components of cellular membrane. PLs play important and diverse roles in cells such as chemical-energy storage, cellular signaling, cell membranes, and cell-cell interactions in tissues. All these cellular processes are pertinent to cells that undergo transformation, cancer progression, and metastasis. Thus, there is a strong possibility that some classes of PLs are expected to present in cancer cells and tissues in cellular physiology. The mass spectrometric soft-ionization techniques, electrospray ionization (ESI), and matrix-assisted laser desorption/ionization (MALDI) are well-established in the proteomics field, have been used for lipidomic analysis in cancer research. This review focused on the applications of mass spectrometry (MS) mainly on ESI-MS and MALDI-MS in the structural characterization, molecular composition and key roles of various PLs present in cancer cells, tissues, blood, and urine, and on their importance for cancer-related problems as well as challenges for development of novel PL-based biomarkers. The profiling of PLs helps to rationalize their functions in biological systems, and will also provide diagnostic information to elucidate mechanisms behind the control of cancer, diabetes, and neurodegenerative diseases. The investigation of cellular PLs with MS methods suggests new insights on various cancer diseases and clinical applications in the drug discovery and development of biomarkers for various PL-related different cancer diseases. PL profiling in tissues, cells and body fluids also reflect the general condition of the whole organism and can indicate the existence of cancer and other diseases. PL profiling with MS opens new prospects to assess alterations of PLs in cancer, screening specific biomarkers and provide a basis for the development of novel therapeutic strategies. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:107-138, 2018.
Collapse
Affiliation(s)
- Raju Bandu
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yong-in City, 446-701, Korea
| | - Hyuck Jun Mok
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yong-in City, 446-701, Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yong-in City, 446-701, Korea
| |
Collapse
|
34
|
Mangini M, Iaccino E, Mosca MG, Mimmi S, D'Angelo R, Quinto I, Scala G, Mariggiò S. Peptide-guided targeting of GPR55 for anti-cancer therapy. Oncotarget 2018; 8:5179-5195. [PMID: 28029647 PMCID: PMC5354900 DOI: 10.18632/oncotarget.14121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022] Open
Abstract
Expression of the lysophosphatidylinositol receptor GPR55 correlates with invasive potential of metastatic cells and bone metastasis formation of different types of tumors. These findings suggest a role for GPR55 signaling in cancer progression, including in lymphoproliferative diseases. Here, we screened a M13-phage-displayed random library using the bait of HEK293 cells that heterologously expressed full-length HA-GPR55. We selected a set of phagotopes that carried 7-mer insert peptides flanked by a pair of cysteine residues, which resulted in cyclized peptides. Sequencing of selected phagotopes dictated the primary structure for the synthetic FITC-labeled peptide P1, which was analyzed for binding specificity to immunoprecipitated HA-GPR55, and to endogenously expressed GPR55, using cells interfered or not for GPR55, as well as for co-localization imaging with HA-GPR55 at the membrane level. The peptide P1 stimulated GPR55 endocytosis and inhibited GPR55-dependent proliferation of EHEB and DeFew cells, two human B-lymphoblastoid cell lines. Our data support the potential therapeutic application of peptide ligands of GPR55 for targeting and inhibiting growth of neoplastic cells, which overexpress GPR55 and are dependent on GPR55 signaling for their proliferation.
Collapse
Affiliation(s)
- Maria Mangini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | | | - Selena Mimmi
- Department of Experimental and Clinical Medicine, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Rosa D'Angelo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Giuseppe Scala
- Department of Experimental and Clinical Medicine, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Stefania Mariggiò
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| |
Collapse
|
35
|
Andradas C, Blasco-Benito S, Castillo-Lluva S, Dillenburg-Pilla P, Diez-Alarcia R, Juanes-García A, García-Taboada E, Hernando-Llorente R, Soriano J, Hamann S, Wenners A, Alkatout I, Klapper W, Rocken C, Bauer M, Arnold N, Quintanilla M, Megías D, Vicente-Manzanares M, Urigüen L, Gutkind JS, Guzmán M, Pérez-Gómez E, Sánchez C. Activation of the orphan receptor GPR55 by lysophosphatidylinositol promotes metastasis in triple-negative breast cancer. Oncotarget 2018; 7:47565-47575. [PMID: 27340777 PMCID: PMC5216961 DOI: 10.18632/oncotarget.10206] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/04/2016] [Indexed: 01/11/2023] Open
Abstract
The orphan G protein-coupled receptor GPR55 has been directly or indirectly related to basic alterations that drive malignant growth: uncontrolled cancer cell proliferation, sustained angiogenesis, and cancer cell adhesion and migration. However, little is known about the involvement of this receptor in metastasis. Here, we show that elevated GPR55 expression in human tumors is associated with the aggressive basal/triple-negative breast cancer population, higher probability to develop metastases, and therefore poor patient prognosis. Activation of GPR55 by its proposed endogenous ligand lysophosphatidylinositol confers pro-invasive features on breast cancer cells both in vitro and in vivo. Specifically, this effect is elicited by coupling to Gq/11 heterotrimeric proteins and the subsequent activation, through ERK, of the transcription factor ETV4/PEA3. Together, these data show that GPR55 promotes breast cancer metastasis, and supports the notion that this orphan receptor may constitute a new therapeutic target and potential biomarker in the highly aggressive triple-negative subtype.
Collapse
Affiliation(s)
- Clara Andradas
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Sandra Blasco-Benito
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Sonia Castillo-Lluva
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Madrid, Spain
| | - Patricia Dillenburg-Pilla
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of The Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Alba Juanes-García
- Instituto de Investigación Sanitaria Hospital Universitario de la Princesa and Universidad Autónoma de Madrid, School of Medicine, Madrid, Spain
| | - Elena García-Taboada
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Madrid, Spain
| | - Rodrigo Hernando-Llorente
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Madrid, Spain
| | - Joaquim Soriano
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sigrid Hamann
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Antonia Wenners
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ibrahim Alkatout
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Wolfram Klapper
- Institute of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christoph Rocken
- Institute of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Maret Bauer
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Norbert Arnold
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Miguel Quintanilla
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Diego Megías
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Miguel Vicente-Manzanares
- Instituto de Investigación Sanitaria Hospital Universitario de la Princesa and Universidad Autónoma de Madrid, School of Medicine, Madrid, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of The Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - J Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,Department of Pharmacology, University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - Manuel Guzmán
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Eduardo Pérez-Gómez
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Cristina Sánchez
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
36
|
Shi QX, Yang LK, Shi WL, Wang L, Zhou SM, Guan SY, Zhao MG, Yang Q. The novel cannabinoid receptor GPR55 mediates anxiolytic-like effects in the medial orbital cortex of mice with acute stress. Mol Brain 2017; 10:38. [PMID: 28800762 PMCID: PMC5553743 DOI: 10.1186/s13041-017-0318-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/30/2017] [Indexed: 01/30/2023] Open
Abstract
The G protein-coupled receptor 55 (GPR55) is a novel cannabinoid receptor, whose exact role in anxiety remains unknown. The present study was conducted to explore the possible mechanisms by which GPR55 regulates anxiety and to evaluate the effectiveness of O-1602 in the treatment of anxiety-like symptoms. Mice were exposed to two types of acute stressors: restraint and forced swimming. Anxiety behavior was evaluated using the elevated plus maze and the open field test. We found that O-1602 alleviated anxiety-like behavior in acutely stressed mice. We used lentiviral shRNA to selective ly knockdown GPR55 in the medial orbital cortex and found that knockdown of GPR55 abolished the anxiolytic effect of O-1602. We also used Y-27632, a specific inhibitor of ROCK, and U73122, an inhibitor of PLC, and found that both inhibitors attenuated the effectiveness of O-1602. Western blot analysis revealed that O-1602 downregulated the expression of GluA1 and GluN2A in mice. Taken together, these results suggest that GPR55 plays an important role in anxiety and O-1602 may have therapeutic potential in treating anxiety-like symptoms.
Collapse
Affiliation(s)
- Qi-xin Shi
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Liu-kun Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Wen-long Shi
- Department of Pharmacy, The 155th Central Hospital of PLA, Kaifeng, China
| | - Lu Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Shi-meng Zhou
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Shao-yu Guan
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Ming-gao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Qi Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
37
|
AL SULEIMANI YM, HILEY CR. Characterization of Calcium Signals Provoked by Lysophosphatidylinositol in Human Microvascular Endothelial Cells. Physiol Res 2016; 65:53-62. [DOI: 10.33549/physiolres.932962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The lipid molecule, lysophosphatidylinositol (LPI), is hypothesised to form part of a novel lipid signalling system that involves the G protein-coupled receptor GPR55 and distinct intracellular signalling cascades in endothelial cells. This work aimed to study the possible mechanisms involved in LPI-evoked cytosolic Ca2+ mobilization in human brain microvascular endothelial cells. Changes in intracellular Ca2+ concentrations were measured using cell population Ca2+ assay. LPI evoked biphasic elevation of intracellular calcium concentration, a rapid phase and a sustained phase. The rapid phase was attenuated by the inhibitor of PLC (U 73122), inhibitor of IP3 receptors, 2-APB and the depletor of endoplasmic reticulum Ca2+ store, thapsigargin. The sustained phase, on the other hand, was enhanced by U 73122 and abolished by the RhoA kinase inhibitor, Y-27632. In conclusion, the Ca2+ signal evoked by LPI is characterised by a rapid phase of Ca2+ release from the endoplasmic reticulum, and requires activation of the PLC-IP3 signalling pathway. The sustained phase mainly depends on RhoA kinase activation. LPI acts as novel lipid signalling molecule in endothelial cells, and elevation of cytosolic Ca2+ triggered by it may present an important intracellular message required in gene expression and controlling of vascular tone.
Collapse
Affiliation(s)
- Y. M. AL SULEIMANI
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Sultanate of Oman
| | | |
Collapse
|
38
|
Falasca M, Ferro R. Role of the lysophosphatidylinositol/GPR55 axis in cancer. Adv Biol Regul 2016; 60:88-93. [PMID: 26588872 DOI: 10.1016/j.jbior.2015.10.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Lysophosphatidylinositol (LPI) is a well-known bioactive lipid that is able to activate signalling cascades relevant to cell proliferation, migration, survival and tumourigenesis. It is well-established that the G protein-coupled receptor 55 (GPR55) is the specific receptor for LPI. Several investigations have demonstrated that the signalling pathways activated by LPI through its receptor GPR55 play a pivotal role in different cancer type. This review focuses on the role of the LPI/GPR55 axis, in particular with regards to its pharmacological potential therapeutic exploitation.
Collapse
Affiliation(s)
- Marco Falasca
- Metabolic Signalling Group, School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, Western Australia 6102, Australia; Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, 4 Newark Street, London E1 2AT, UK.
| | - Riccardo Ferro
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, 4 Newark Street, London E1 2AT, UK
| |
Collapse
|
39
|
Cui X, Liu Y, Wang B, Xian G, Liu X, Tian X, Qin C. Knockdown of GPR137 by RNAi inhibits pancreatic cancer cell growth and induces apoptosis. Biotechnol Appl Biochem 2015; 62:861-7. [PMID: 25471990 DOI: 10.1002/bab.1326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 11/20/2014] [Indexed: 12/13/2022]
Abstract
G-protein-coupled receptors (GPCRs), the largest family of cell-surface molecules involved in a number of biological and pathological processes, have recently emerged as key players in carcinogenesis and cancer progression. Orphan G protein-coupled receptors (oGPCRs) are a group of proteins lacking endogenous ligands. GPR137, one of the novel oGPCR genes, was discovered by homology screening. However, the biological role of GPR137 in cancers has not yet been discussed and is of great therapeutic interest. In this study, we knocked down GPR137 via a lentivirus system in two human pancreatic cancer cell lines BXPC-3 and PANC-1. Knockdown of GPR137 strongly inhibited cell proliferation and colony formation. Flow cytometry showed that cell cycle was arrested in the sub-G1 phase and apoptotic cells were significantly increased after GPR137 knockdown. Western blotting confirmed that GPR137 silencing induced apoptosis due to cleavage of PARP (poly ADP-ribose polymerase) and upregulation of caspase 3. Furthermore, lentivirus-mediated overexpression of GPR137 promoted the proliferation of PANC-1 cells, suggesting GPR137 as a potential oncogene in pancreatic cancer cells. Taken together, our results prove the importance of GPR137 as a crucial regulator in controlling cancer cell growth and apoptosis.
Collapse
Affiliation(s)
- Xianping Cui
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, People's Republic of China
| | - Yanguo Liu
- Department of Oncology, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Bo Wang
- Department of immunology, Shandong University School of Medicine, Jinan, People's Republic of China
| | - Guozhe Xian
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, People's Republic of China
| | - Xin Liu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, People's Republic of China
| | - Xingsong Tian
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, People's Republic of China
| | - Chengkun Qin
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
40
|
Hofmann NA, Yang J, Trauger SA, Nakayama H, Huang L, Strunk D, Moses MA, Klagsbrun M, Bischoff J, Graier WF. The GPR 55 agonist, L-α-lysophosphatidylinositol, mediates ovarian carcinoma cell-induced angiogenesis. Br J Pharmacol 2015; 172:4107-18. [PMID: 25989290 PMCID: PMC4543616 DOI: 10.1111/bph.13196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/10/2015] [Accepted: 05/11/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Highly vascularized ovarian carcinoma secretes the putative endocannabinoid and GPR55 agonist, L-α-lysophosphatidylinositol (LPI), into the circulation. We aimed to assess the involvement of this agonist and its receptor in ovarian cancer angiogenesis. EXPERIMENTAL APPROACH Secretion of LPI by three ovarian cancer cell lines (OVCAR-3, OVCAR-5 and COV-362) was tested by mass spectrometry. Involvement of cancer cell-derived LPI on angiogenesis was tested in the in vivo chicken chorioallantoic membrane (CAM) assay along with the assessment of the effect of LPI on proliferation, network formation, and migration of neonatal and adult human endothelial colony-forming cells (ECFCs). Engagement of GPR55 was verified by using its pharmacological inhibitor CID16020046 and diminution of GPR55 expression by four different target-specific siRNAs. To study underlying signal transduction, Western blot analysis was performed. KEY RESULTS Ovarian carcinoma cell-derived LPI stimulated angiogenesis in the CAM assay. Applied LPI stimulated proliferation, network formation, and migration of neonatal ECFCs in vitro and angiogenesis in the in vivo CAM. The pharmacological GPR55 inhibitor CID16020046 inhibited LPI-stimulated ECFC proliferation, network formation and migration in vitro as well as ovarian carcinoma cell- and LPI-induced angiogenesis in vivo. Four target-specific siRNAs against GPR55 prevented these effects of LPI on angiogenesis. These pro-angiogenic effects of LPI were transduced by GPR55-dependent phosphorylation of ERK1/2 and p38 kinase. CONCLUSIONS AND IMPLICATIONS We conclude that inhibiting the pro-angiogenic LPI/GPR55 pathway appears a promising target against angiogenesis in ovarian carcinoma.
Collapse
Affiliation(s)
- Nicole A Hofmann
- Institute for Molecular Biology and Biochemistry, Medical University GrazGraz, Austria
- Vascular Biology Program, Boston Children's HospitalBoston, MA, USA
- Department of Surgery, Harvard Medical SchoolBoston, MA, USA
| | - Jiang Yang
- Vascular Biology Program, Boston Children's HospitalBoston, MA, USA
- Department of Surgery, Harvard Medical SchoolBoston, MA, USA
| | - Sunia A Trauger
- FAS Small Molecule Mass Spectrometry Facility, Harvard UniversityBoston, MA, USA
| | - Hironao Nakayama
- Vascular Biology Program, Boston Children's HospitalBoston, MA, USA
- Department of Surgery, Harvard Medical SchoolBoston, MA, USA
| | - Lan Huang
- Vascular Biology Program, Boston Children's HospitalBoston, MA, USA
- Department of Surgery, Harvard Medical SchoolBoston, MA, USA
| | - Dirk Strunk
- Experimental and Clinical Cell Therapy Institute, Paracelsus Medical UniversitySalzburg, Austria
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's HospitalBoston, MA, USA
- Department of Surgery, Harvard Medical SchoolBoston, MA, USA
| | - Michael Klagsbrun
- Vascular Biology Program, Boston Children's HospitalBoston, MA, USA
- Department of Surgery, Harvard Medical SchoolBoston, MA, USA
| | - Joyce Bischoff
- Department of Surgery, Harvard Medical SchoolBoston, MA, USA
- Department of Pathology, Harvard Medical SchoolBoston, MA, USA
| | - Wolfgang F Graier
- Institute for Molecular Biology and Biochemistry, Medical University GrazGraz, Austria
| |
Collapse
|
41
|
Lysophosphatidylinositol: a novel link between ABC transporters and G-protein-coupled receptors. Biochem Soc Trans 2015; 42:1372-7. [PMID: 25233417 DOI: 10.1042/bst20140151] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lysophosphatidylinositol (LPI) is a well-known bioactive lipid that is able to activate signalling cascades relevant to cell proliferation, migration, survival and tumorigenesis. Our previous work suggested that LPI is involved in cancer progression since it can be released in the medium of Ras-transformed fibroblasts and can function as an autocrine modulator of cell growth. Different research groups have established that LPI is the specific and functional ligand for G-protein-coupled receptor 55 (GPR55) and that this GPR55-LPI axis is able to activate signalling cascades that are relevant for different cell functions. Work in our laboratory has recently unravelled an autocrine loop, by which LPI synthesized by cytosolic phospholipase A₂ (cPLA₂) is pumped out of the cell by ATP-binding cassette (ABC) transporter C1 (ABCC1)/multidrug resistance protein 1 (MRP1), initiating a signalling cascade downstream of GPR55. Our current work suggests that blockade of this pathway may represent a novel strategy to inhibit cancer cell proliferation.
Collapse
|
42
|
AlSuleimani YM, Hiley CR. The GPR55 agonist lysophosphatidylinositol relaxes rat mesenteric resistance artery and induces Ca(2+) release in rat mesenteric artery endothelial cells. Br J Pharmacol 2015; 172:3043-57. [PMID: 25652040 DOI: 10.1111/bph.13107] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 01/11/2015] [Accepted: 02/02/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Lysophosphatidylinositol (LPI), a lipid signalling molecule, activates GPR55 and elevates intracellular Ca(2+). Here, we examine the actions of LPI in the rat resistance mesenteric artery and Ca(2+) responses in endothelial cells isolated from the artery. EXPERIMENTAL APPROACH Vascular responses were studied using wire myographs. Single-cell fluorescence imaging was performed using a MetaFluor system. Hypotensive effects of LPI were assessed using a Biopac system. KEY RESULTS In isolated arteries, LPI-induced vasorelaxation was concentration- and endothelium-dependent and inhibited by CID 16020046, a GPR55 antagonist. The CB1 receptor antagonist AM 251 had no effect, whereas rimonabant and O-1918 significantly potentiated LPI responses. Vasorelaxation was reduced by charybdotoxin and iberiotoxin, alone or combined. LPI decreased systemic arterial pressure. GPR55 is expressed in rat mesenteric artery. LPI caused biphasic elevations of endothelial cell intracellular Ca(2+). Pretreatment with thapsigargin or 2-aminoethoxydiphenyl borate abolished both phases. The PLC inhibitor U73122 attenuated the initial phase and enhanced the second phase, whereas the Rho-associated kinase inhibitor Y-27632 abolished the late phase but not the early phase. CONCLUSIONS AND IMPLICATIONS LPI is an endothelium-dependent vasodilator in the rat small mesenteric artery and a hypotensive agent. The vascular response involves activation of Ca(2+)-sensitive K(+) channels and is not mediated by CB1 receptors, but unexpectedly enhanced by antagonists of the 'endothelial anandamide' receptor. In endothelial cells, LPI utilizes PLC-IP3 and perhaps ROCK-RhoA pathways to elevate intracellular Ca(2+). Overall, these findings support an endothelial site of action for LPI and suggest a possible role for GPR55 in vasculature.
Collapse
Affiliation(s)
- Y M AlSuleimani
- Department of Pharmacology, University of Cambridge, Cambridge, UK.,Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Alkoudh, Sultanate of Oman
| | - C R Hiley
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
43
|
Shore DM, Reggio PH. The therapeutic potential of orphan GPCRs, GPR35 and GPR55. Front Pharmacol 2015; 6:69. [PMID: 25926795 PMCID: PMC4397721 DOI: 10.3389/fphar.2015.00069] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/15/2015] [Indexed: 12/19/2022] Open
Abstract
The G protein-coupled receptor (GPCR) superfamily of integral proteins is the largest family of signal transducers, comprised of ∼1000 members. Considering their prevalence and functional importance, it’s not surprising that ∼60% of drugs target GPCRs. Regardless, there exists a subset of the GPCR superfamily that is largely uncharacterized and poorly understood; specifically, more than 140 GPCRs have unknown endogenous ligands—the so-called orphan GPCRs. Orphan GPCRs offer tremendous promise, as they may provide novel therapeutic targets that may be more selective than currently known receptors, resulting in the potential reduction in side effects. In addition, they may provide access to signal transduction pathways currently unknown, allowing for new strategies in drug design. Regardless, orphan GPCRs are an important area of inquiry, as they represent a large gap in our understanding of signal transduction at the cellular level. Here, we focus on the therapeutic potential of two recently deorphanized GPCRs: GPR35/CXCR8 and GPR55. First, GPR35/CXCR8 has been observed in numerous tissues/organ systems, including the gastrointestinal tract, liver, immune system, central nervous system, and cardiovascular system. Not surprisingly, GPR35/CXCR8 has been implicated in numerous pathologies involving these tissues/systems. While several endogenous ligands have been identified, GPR35/CXCR8 has recently been observed to bind the chemokine CXCL17. Second, GPR55 has been observed to be expressed in the central nervous system, adrenal glands, gastrointestinal tract, lung, liver, uterus, bladder, kidney, and bone, as well as, other tissues/organ systems. Likewise, it is not surprising that GPR55 has been implicated in pathologies involving these tissues/systems. GPR55 was initially deorphanized as a cannabinoid receptor and this receptor does bind many cannabinoid compounds. However, the GPR55 endogenous ligand has been found to be a non-cannabinoid, lysophophatidylinositol (LPI) and subsequent high throughput assays have identified other GPR55 ligands that are not cannabinoids and do not bind to either the cannabinoid CB1 and CB2 receptors. Here, we review reports that suggest that GPR35/CXCR8 and GPR55 may be promising therapeutic targets, with diverse physiological roles.
Collapse
Affiliation(s)
- Derek M Shore
- Center for Drug Discovery, Department of Chemistry and Biochemistry, University of North Carolina Greensboro Greensboro, NC, USA
| | - Patricia H Reggio
- Center for Drug Discovery, Department of Chemistry and Biochemistry, University of North Carolina Greensboro Greensboro, NC, USA
| |
Collapse
|
44
|
Rahimi A, Faizi M, Talebi F, Noorbakhsh F, Kahrizi F, Naderi N. Interaction between the protective effects of cannabidiol and palmitoylethanolamide in experimental model of multiple sclerosis in C57BL/6 mice. Neuroscience 2015; 290:279-87. [PMID: 25637488 DOI: 10.1016/j.neuroscience.2015.01.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 01/01/2015] [Accepted: 01/10/2015] [Indexed: 01/10/2023]
Abstract
Cannabinoids (CBs) have recently been approved to exert broad anti-inflammatory activities in experimental models of multiple sclerosis (MS). It has been demonstrated that these compounds could also have effects on neurodegeneration, demyelination, and autoimmune processes occurring in the pathology of MS. However, the clinical use of CBs is limited by their psychoactive effects. Among cannabinoid compounds, cannabidiol (CBD) and palmitoylethanolamide (PEA) have no psychotropic activities. We induced experimental autoimmune encephalomyelitis (EAE), a model of MS, by injecting myelin oligodendrocyte glycoprotein (MOG) to C57BL/6 mice. We assessed the effects of CBD, PEA, and co-administration of CBD and PEA on neurobehavioral scores, immune cell infiltration, demyelination, axonal injury, and the expression of inflammatory cytokines by using histochemistry methods and real-time RT-PCR. Treatment with either CBD (5mg/kg) or PEA (5mg/kg) during disease onset reduced the severity of the neurobehavioral scores of EAE. This effect of CBD and PEA was accompanied by diminished inflammation, demyelination, axonal damage and inflammatory cytokine expression while concurrent administration of CBD (5mg/kg) and PEA (5mg/kg) was not as effective as treatment with either drug per se. These results suggest that, CBD and PEA, non-psychoactive CBs, attenuate neurobehavioral deficits, histological damage, and inflammatory cytokine expression in MOG-immunized animals. However, there is an antagonistic interaction between CBD and PEA in protection against MOG-induced disease.
Collapse
Affiliation(s)
- A Rahimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Talebi
- Khatam-Al-Anbia Hospital, Shefa Neuroscience Research Center, Tehran, Iran
| | - F Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - F Kahrizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - N Naderi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Liu B, Song S, Jones PM, Persaud SJ. GPR55: from orphan to metabolic regulator? Pharmacol Ther 2015; 145:35-42. [PMID: 24972076 DOI: 10.1016/j.pharmthera.2014.06.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 06/18/2014] [Indexed: 12/26/2022]
Abstract
GPR55 belongs to the class A family of G-protein coupled receptor (GPCRs) and its activity is regulated by a range of synthetic and endogenous cannabinoids, and by lipid-derived ligands. Cannabinoids are known to be important in controlling appetite and metabolic balance, and it is now emerging that GPR55 may have a role to play in energy homeostasis through the regulation of food intake, fuel storage in adipocytes, gut motility and insulin secretion. This review summarises our current knowledge of expression and function of GPR55 in tissues involved in metabolic regulation, the signalling cascades through which GPR55 is reported to act to exert its effects, and it comments on the difficulties in reaching firm conclusions when using GPR55 ligands of poor specificity. Understanding the role of GPR55 in energy homeostasis may provide a novel target for therapeutic intervention in obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Bo Liu
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London, London SE1 1UL, UK
| | - Shuang Song
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London, London SE1 1UL, UK
| | - Peter M Jones
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London, London SE1 1UL, UK
| | - Shanta J Persaud
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London, London SE1 1UL, UK.
| |
Collapse
|
46
|
Cannabinoids: new promising agents in the treatment of neurological diseases. Molecules 2014; 19:18781-816. [PMID: 25407719 PMCID: PMC6271458 DOI: 10.3390/molecules191118781] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 01/19/2023] Open
Abstract
Nowadays, Cannabis sativa is considered the most extensively used narcotic. Nevertheless, this fame obscures its traditional employ in native medicine of South Africa, South America, Turkey, Egypt and in many regions of Asia as a therapeutic drug. In fact, the use of compounds containing Cannabis and their introduction in clinical practice is still controversial and strongly limited by unavoidable psychotropic effects. So, overcoming these adverse effects represents the main open question on the utilization of cannabinoids as new drugs for treatment of several pathologies. To date, therapeutic use of cannabinoid extracts is prescribed in patients with glaucoma, in the control of chemotherapy-related vomiting and nausea, for appetite stimulation in patients with anorexia-cachexia syndrome by HIV, and for the treatment of multiple sclerosis symptoms. Recently, researcher efforts are aimed to employ the therapeutic potentials of Cannabis sativa in the modulation of cannabinoid receptor activity within the central nervous system, particularly for the treatment of neurodegenerative diseases, as well as psychiatric and non-psychiatric disorders. This review evaluates the most recent available data on cannabinoids utilization in experimental and clinical studies, and highlights their beneficial effects in the prevention of the main neurological diseases and for the clinical treatment of symptoms with them correlated.
Collapse
|
47
|
Martínez-Pinilla E, Reyes-Resina I, Oñatibia-Astibia A, Zamarbide M, Ricobaraza A, Navarro G, Moreno E, Dopeso-Reyes I, Sierra S, Rico A, Roda E, Lanciego J, Franco R. CB1 and GPR55 receptors are co-expressed and form heteromers in rat and monkey striatum. Exp Neurol 2014; 261:44-52. [DOI: 10.1016/j.expneurol.2014.06.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
|
48
|
Balenga NA, Martínez-Pinilla E, Kargl J, Schröder R, Peinhaupt M, Platzer W, Bálint Z, Zamarbide M, Dopeso-Reyes IG, Ricobaraza A, Pérez-Ortiz JM, Kostenis E, Waldhoer M, Heinemann A, Franco R. Heteromerization of GPR55 and cannabinoid CB2 receptors modulates signalling. Br J Pharmacol 2014; 171:5387-406. [PMID: 25048571 DOI: 10.1111/bph.12850] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 07/01/2014] [Accepted: 07/14/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Heteromerization of GPCRs is key to the integration of extracellular signals and the subsequent cell response via several mechanisms including heteromer-selective ligand binding, trafficking and/or downstream signalling. As the lysophosphatidylinositol GPCR 55 (GPR55) has been shown to affect the function of the cannabinoid receptor subtype 2 (CB2 receptor) in human neutrophils, we investigated the possible heteromerization of CB2 receptors with GPR55. EXPERIMENTAL APPROACH The direct interaction of human GPR55 and CB2 receptors heterologously expressed in HEK293 cells was assessed by co-immunoprecipitation and bioluminescence resonance energy transfer assays. The effect of cross-talk on signalling was investigated at downstream levels by label-free real-time methods (Epic dynamic mass redistribution and CellKey impedance assays), ERK1/2-MAPK activation and gene reporter assays. KEY RESULTS GPR55 and CB2 receptors co-localized on the surface of HEK293 cells, co-precipitated in membrane extracts and formed heteromers in living HEK293 cells. Whereas heteromerization led to a reduction in GPR55-mediated activation of transcription factors (nuclear factor of activated T-cells, NF-κB and cAMP response element), ERK1/2-MAPK activation was potentiated in the presence of CB2 receptors. CB2 receptor-mediated signalling was also affected by co-expression with GPR55. Label-free assays confirmed cross-talk between the two receptors. CONCLUSIONS AND IMPLICATIONS Heteromers, unique signalling units, form in HEK293 cells expressing GPR55 and CB2 receptors. The signalling by agonists of either receptor was governed (i) by the presence or absence of the partner receptors (with the consequent formation of heteromers) and (ii) by the activation state of the partner receptor.
Collapse
Affiliation(s)
- N A Balenga
- Institute for Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Prog Lipid Res 2014; 53:18-81. [DOI: 10.1016/j.plipres.2013.10.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/20/2013] [Accepted: 10/01/2013] [Indexed: 12/21/2022]
|
50
|
Simcocks AC, O'Keefe L, Jenkin KA, Mathai ML, Hryciw DH, McAinch AJ. A potential role for GPR55 in the regulation of energy homeostasis. Drug Discov Today 2013; 19:1145-51. [PMID: 24370891 DOI: 10.1016/j.drudis.2013.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/31/2013] [Accepted: 12/11/2013] [Indexed: 02/06/2023]
Abstract
G protein-coupled receptor 55 (GPR55) is a putative cannabinoid receptor that is expressed in several tissues involved in regulating energy homeostasis, including the hypothalamus, gastrointestinal tract, pancreas, liver, white adipose and skeletal muscle. GPR55 has been shown to have a role in cancer and gastrointestinal inflammation, as well as in obesity and type 2 diabetes mellitus (T2DM). Despite this, the (patho)physiological role of GPR55 in cell dysfunction is still poorly understood, largely because of the limited identification of downstream signalling targets. Nonetheless, research has suggested that GPR55 modulation would be a useful pharmacological target in metabolically active tissues to improve treatment of diseases such as obesity and T2DM. Further research is essential to gain a better understanding of the role that this receptor might have in these and other pathophysiological conditions.
Collapse
Affiliation(s)
- Anna C Simcocks
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, Melbourne 8001, VIC, Australia
| | - Lannie O'Keefe
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, Melbourne 8001, VIC, Australia
| | - Kayte A Jenkin
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, Melbourne 8001, VIC, Australia
| | - Michael L Mathai
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, Melbourne 8001, VIC, Australia; The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Deanne H Hryciw
- Department of Physiology, The University of Melbourne, Melbourne 3010, VIC, Australia
| | - Andrew J McAinch
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, Melbourne 8001, VIC, Australia.
| |
Collapse
|