1
|
Kugimiya A, Kanesada M, Kawamura A, Mukainaka K, Nakano Y. Selective measurement of valine, leucine, and isoleucine using corresponding aminoacyl-tRNA synthetases and application to paper-based analytical devices for colorimetric detection. Anal Chim Acta 2025; 1352:343924. [PMID: 40210280 DOI: 10.1016/j.aca.2025.343924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/15/2025] [Accepted: 03/08/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Branched-chain amino acids (BCAAs) are vital for maintaining muscle performance and their measurement is critical for assessing nutritional status, health, and disease conditions. However, selective analysis of individual BCAAs remains challenging due to the limited selectivity of conventional enzymes. In this study, we explore the enzymatic detection of BCAAs (valine (Val), leucine (Leu), and isoleucine (Ile)) among 20 amino acids using their corresponding aminoacyl-tRNA synthetases (aaRSs) as recognition elements. Based on our findings, a paper-based analytical device (PAD) for Val, Leu, and Ile was developed using filtration paper. RESULTS The calibration curves, and selectivity of each aaRS were assessed using a microplate reader. Trinder's reagent was used as the colorimetric reaction following aaRS reaction. Additionally, Val, Leu, and Ile analysis was conducted on real food samples to evaluate practical applicability. Linear relationships were established for Val (2-75 μM; correlation coefficient: R2 = 0.959), Leu (2-50 μM; R2 = 0.984), and Ile (1-100 μM; R2 = 0.982), with detection limits of 18.5, 7.6, and 8.4 μM, respectively, using the microplate reader. Furthermore, PAD exhibited linear relationships for Val (7-80 μM; R2 = 0.978), Leu (9-80 μM; R2 = 0.956), and Ile (19-80 μM; R2 = 0.961), with detection limits of 2.2, 3.1, and 6.3 μM, respectively. The analysis was completed within 15 min. SIGNIFICANCE Trinder's reagent, a colorimetric reaction reagent, ensures ease of use and safety owing to its neutral pH. Furthermore, it facilitated the development of PAD and analysis of Val, Leu, and Ile. The findings of this study contribute to the advancement of robust biomedical devices precisely for amino acid analysis. High-resolution detection was accomplished using a USB camera and novel RGB value analysis equations.
Collapse
Affiliation(s)
- Akimitsu Kugimiya
- Department of Biomedical Information Sciences, Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozuka-higashi, Asaminami-ku, Hiroshima, 731-3194, Japan.
| | - Makoto Kanesada
- Department of Biomedical Information Sciences, Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozuka-higashi, Asaminami-ku, Hiroshima, 731-3194, Japan
| | - Akari Kawamura
- Department of Biomedical Information Sciences, Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozuka-higashi, Asaminami-ku, Hiroshima, 731-3194, Japan
| | - Karen Mukainaka
- Department of Biomedical Information Sciences, Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozuka-higashi, Asaminami-ku, Hiroshima, 731-3194, Japan
| | - Yasuhisa Nakano
- Department of Biomedical Information Sciences, Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozuka-higashi, Asaminami-ku, Hiroshima, 731-3194, Japan
| |
Collapse
|
2
|
Tuo Y, Peng S, Li Y, Dang J, Feng Z, Ding L, Du S, Liu X, Wang L. Quinoa protein and its hydrolysate improve the fatigue resistance of mice: a potential mechanism to relieve oxidative stress and inflammation and improve energy metabolism. J Nutr Biochem 2025; 139:109863. [PMID: 39952621 DOI: 10.1016/j.jnutbio.2025.109863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/05/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Fatigue is commonly marked by reduced endurance and impaired function, often linked to overexertion and chronic conditions. Quinoa (Chenopodium quinoa Willd.), with its rich amino acids and resilience to harsh conditions, offers a novel strategy for combating fatigue. This study explored the antifatigue effects of quinoa protein (QPro) and its hydrolysate (QPH) in weight-loaded swimming mice. After 4 weeks of oral administration, QPro and QPH significantly prolonged swimming duration, reduced serum fatigue biomarkers (lactic acid, urea nitrogen, lactate dehydrogenase, creatine kinase), and elevated glycogen reserves in the liver and muscle. RT-qPCR analysis indicated that QPH activated hepatic gluconeogenesis via G6Pase and PEPCK signaling and enhanced mitochondrial function through PGC-1α/NRF1/TFAM signaling in muscle. Additionally, QPro and QPH boosted antioxidant defenses by improving antioxidant enzyme activity, reducing malondialdehyde through the Nrf2/HO-1 pathway, and suppressing inflammation by reducing TNF-α and IL-6 levels. Network pharmacology identified 31 key targets involved in energy metabolism and inflammation, providing novel insights into the molecular mechanisms underlying the antifatigue properties of quinoa peptides. These findings highlight the potential of QPro and QPH as natural and bioactive ingredients in functional foods for enhancing endurance and mitigating fatigue.
Collapse
Affiliation(s)
- Yuanrong Tuo
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Siwang Peng
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yiju Li
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jiamin Dang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Zhi Feng
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Long Ding
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China.
| | - Shuangkui Du
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China; Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province, Yangling, Shaanxi, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Liying Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China; Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province, Yangling, Shaanxi, China.
| |
Collapse
|
3
|
Luan C, Wang Y, Li J, Zhou N, Song G, Ni Z, Xu C, Tang C, Fu P, Wang X, Gong L, Zhang E. Branched-Chain Amino Acid Supplementation Enhances Substrate Metabolism, Exercise Efficiency and Reduces Post-Exercise Fatigue in Active Young Males. Nutrients 2025; 17:1290. [PMID: 40219047 PMCID: PMC11990590 DOI: 10.3390/nu17071290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Branched-chain amino acids (BCAAs, isoleucine, leucine, and valine) are commonly applied to promote muscle protein synthesis. However, the effects of BCAAs on exercise-induced substrate metabolism, performance and post-exercise fatigue during endurance exercise remain unclear. Methods: In a double-blind cross-over design, eleven active males completed 1 h of constant load exercise (CLE) at 60% VO2max power followed by a time to exhaustion (TTE) test at 80% VO2max power after supplementation with BCAAs or placebo on consecutive three days. During exercise, indirect calorimetry was used to measure the carbohydrate (CHO) and fat oxidation rate, as well as the cycling efficiency. In addition, rating of perceived exertion (RPE) and visual analogue scale (VAS) scores were obtained at interval times during the whole period. Fingertips and venous blood (n = 8) were collected for the measurement of metabolic responses at different time points during exercise. Results: Compared to the placebo group, the fat oxidation rate was significantly higher after 20 and 30 min of CLE (p < 0.05). The CHO oxidation rates showed a significant increase in the BCAA group during TTE (p < 0.05). Meanwhile, the cycling efficiency during TTE was significantly improved (p < 0.05). Interestingly, VAS significantly decreased post-exercise in the BCAA group (p < 0.05). Additionally, the levels of blood insulin between the two groups were significantly higher in the post-exercise period compared to the pre-exercise periods (p < 0.001), while insulin levels were significantly lower in the post-exercise period with supplemental BCAAs compared to the placebo (p < 0.001). BCAAs also enhanced the levels of blood ammonia in the post-exercise period compared to the fasting and pre-exercise periods (BCAA: p < 0.01; Placebo: p < 0.001). However, in the post-exercise period, blood ammonia levels were significantly lower in the BCAA group than in the placebo group (p < 0.05). Conclusions: This study shows the critical role of BCAAs during exercise in active males and finds that BCAA supplementation enhanced fat oxidation during the CLE, increased carbohydrate oxidation and exercise efficiency during the TTE, and reduced immediate post-exercise fatigue.
Collapse
Affiliation(s)
- Chenglin Luan
- Key Laboratory of Exercise and Physical Fitness of Ministry of Education, Beijing Sport University, Beijing 100084, China;
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China; (Y.W.); (J.L.); (Z.N.)
| | - Yizhang Wang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China; (Y.W.); (J.L.); (Z.N.)
| | - Junxi Li
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China; (Y.W.); (J.L.); (Z.N.)
| | - Nihong Zhou
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (N.Z.); (C.X.); (C.T.)
| | - Guilin Song
- Beijing Competitor Sports Science &Tech. Co., Ltd., Beijing 102299, China;
| | - Zhen Ni
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China; (Y.W.); (J.L.); (Z.N.)
| | - Chunyan Xu
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (N.Z.); (C.X.); (C.T.)
| | - Chunxue Tang
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (N.Z.); (C.X.); (C.T.)
| | - Pengyu Fu
- Department of Physical Education, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Xintang Wang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China; (Y.W.); (J.L.); (Z.N.)
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing 100084, China
| | - Lijing Gong
- Key Laboratory of Exercise and Physical Fitness of Ministry of Education, Beijing Sport University, Beijing 100084, China;
| | - Enming Zhang
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, 20213 Malmö, Sweden;
| |
Collapse
|
4
|
Xu J, Wang Y, Zhang J, Tang J, Zhou Z. The role of branched-chain amino acids in cardio-oncology: A review. Life Sci 2025; 372:123614. [PMID: 40189196 DOI: 10.1016/j.lfs.2025.123614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/18/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
Cancer and cardiovascular diseases (CVDs) are global health challenges. In cancer patients, CVD is the second leading cause of death following disease progression. There are few specialized services for cardio-oncology patients worldwide currently. Branched-chain amino acids (BCAAs) are essential amino acids that promote protein synthesis and energy homeostasis. The disruption of BCAAs metabolism facilitates the development of cancer and CVDs while the benefit of BCAA supplement is full of controversy. In this review, we summarized BCAA-related studies in cardiometabolism, cancer and chemotherapy-induced cardiotoxicity, and provided our perspectives on the roles of BCAAs in cardio-oncology. We find that supplementation of BCAAs presents protective effects in cardiometabolic diseases, while the influence on cancer is intricate and varies across different types of cancers. Large-scale clinical studies are needed to understand the long-term effects of BCAA intake and its impact on different stages of the disease. BCAAs have potential to mitigate chemotherapy-induced cardiotoxicity. Continued research is still essential to understand the precise mechanisms, determine optimal dosage and timing, and assess the effectiveness of BCAA supplement in cardio-oncology, in particular clinical research.
Collapse
Affiliation(s)
- Jiaqi Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Cardiology, The First Hospital of Hebei Medical University, Hebei, China
| | - Jing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong; Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Jingyi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhongyan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong; Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong.
| |
Collapse
|
5
|
Lu DL, Zhang MS, Wang FB, Dai ZJ, Li ZW, Ni JT, Feng WJ, Zhang FG, Dai J, Wang HN, Deng JJ, Luo XC. Nutritional value improvement of soybean meal through solid-state fermentation by proteases-enhanced Streptomyces sp. SCUT-3. Int J Biol Macromol 2025; 298:140035. [PMID: 39828158 DOI: 10.1016/j.ijbiomac.2025.140035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
With the global population expected to reach 10 billion by the 2050s, the demand for protein will surge, intensifying the need for high protein utilization efficiency. This study investigates the use of protease-enhanced Streptomyces sp. SCUT-3-3940 to degrade soybean meal (SBM) via solid-state fermentation (SSF). Optimized conditions resulted in anti-nutritional factors elimination and high soluble protein recovery (41.1 g/100 g), including bioactive oligopeptides (17.3 g/100 g) with antihypertensive and antioxidant properties. The degradation also produced free amino acids rich in essential amino acids, and other nutrient enhancing compounds. The fermented SBM (FSBM) exhibited superior digestibility, making it a valuable protein source. In a 60-day largemouth bass trial, replacing 10 % SBM with FSBM in feed significantly improved feed intake and weight gain. This method offers an efficient, eco-friendly, and cost-effective solution to address global protein shortages.
Collapse
Affiliation(s)
- De-Lin Lu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Ming-Shu Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Fu-Bao Wang
- Guangdong Jieda Feed Company, Ltd., Guangdong Special Aquatic Functional Feed Engineering Technology Research Center, Foshan 528211, China
| | - Zhen-Jie Dai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Zhi-Wei Li
- GuangZhou XiaoChun Biotechnology Company, Ltd., Room 1001-A056, No. 190 Kaitai Avenue, Huangpu District, Guangzhou 510535, China
| | - Jing-Tao Ni
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Wen-Jing Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Fu-Gen Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Jun Dai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Hai-Ning Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Jun-Jin Deng
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Germplasm Resources Conservation and Utilization, Guangzhou 510640, China.
| | - Xiao-Chun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China.
| |
Collapse
|
6
|
Lee H, Kim Y, Kang S, Kim H, Kim JH, Kim W, Park H, Go GW. A comprehensive review of dietary supplements mission-specific health and performance enhancement in military soldiers. Food Sci Biotechnol 2025; 34:1219-1234. [PMID: 40110410 PMCID: PMC11914467 DOI: 10.1007/s10068-024-01728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 03/22/2025] Open
Abstract
Soldiers undergo intensive physical training, maintain high levels of concentration, and require rapid recovery from various traumas, making them highly specialized individuals. Under high physical and mental stress conditions, soldiers experience health issues related to decreased muscle function, impaired immunity, depression, and cognitive decline. A growing need exists for dietary supplements to mitigate these issues, and the usage patterns of such supplements are continuously increasing. Therefore, as dietary supplement consumption rises within the military, a sophisticated approach to addressing nutritional supplement requirements is essential. We discuss health problems that may arise under stressful conditions in soldiers, suggesting various nutritional supplements that are essential to address these issues. In conclusion, these nutritional supplements can be used as promising interventions for numerous health problems, including enhanced muscle function, improved immunity, mental stress alleviation, and cognitive enhancement. This ultimately suggests a contribution to military personnel health and the strengthening of national defense capabilities.
Collapse
Affiliation(s)
- Haneul Lee
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Younhee Kim
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Sumin Kang
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Hayoon Kim
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Jong-Hee Kim
- Human-Tech Convergence ProgramMajor in Sport ScienceDivision of Sport Industry and Science, Hanyang University, Seoul, 04763 Korea
| | - Wooki Kim
- Department of Food and Nutrition, Yonsei University, Seoul, 03722 Republic of Korea
| | - Hongsuk Park
- Industry-Academic Cooperation Foundation, Kumoh National Institute of Technology, Gumi, 39177 South Korea
| | - Gwang-Woong Go
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| |
Collapse
|
7
|
Akman TC, Yazıcı M, Atila A. Changes of plasma amino acid levels and metabolic pathways in isotretinoin therapy: ınsights into managing acne vulgaris side effects. Arch Dermatol Res 2025; 317:591. [PMID: 40097819 DOI: 10.1007/s00403-025-04106-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Acne vulgaris can be effectively treated with isotretinoin, however, there are several side effects both during and after the treatment. Preventing these side effects is important for continued treatment. This study focused on the relationship between the changes in the levels of plasma amino acids of patients with acne vulgaris after three months of isotretinoin treatment and the side effects. A pre- and post-treatment plasma sample of 35 patients was collected. Samples were analyzed by liquid chromatography-tandem mass spectrometry. After treatment, the plasma levels of 15 amino acids changed statistically. While L-arginine, taurine, L-asparagine, and L-proline levels decreased, L-serine, L-alanine, and L-cystine levels also increased. (p < 0.05) When the amino acid profiles of male and female patients before and after treatment were compared, the plasma levels of L-arginine (p = 0.0017), L-cystine (p = 0.0224) and L-histidine (p = 0.0167) were statistically different. Additionally, the correlation matrix analysis revealed a strong correlation (R > 0.8) between L-leucine, L-isoleucine, L-norvaline, and L-valine. The effect of isotretinoin treatment on eighteen metabolic pathways such as cysteine and methionine metabolism, glycine, serine and threonine metabolism, alanine, aspartate and glutamate metabolism, arginine and proline metabolism is strongly related to the treatment of therapeutic and side effects of isotretinoin. According to the results of the study, the use of L-arginine, L-asparagine, N-acetylcysteine and taurine supplements during isotretinoin treatment may help avoid side effects of skin dryness, blepharitis, nail fragility, and fatigue. As a result, the study provided useful information for enhancing the safety and efficacy of isotretinoin treatment, as well as lowering isotretinoin-related side effects.
Collapse
Affiliation(s)
- Tugrul Cagri Akman
- Department of Analytical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey.
| | - Mustafa Yazıcı
- Department of Dermatology, Faculty of Medicine, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey
| | - Alptug Atila
- Department of Analytical Chemistry, Faculty of Pharmacy, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
8
|
Wang R, Liao Y, Deng Y, Shuang R. Unraveling the Health Benefits and Mechanisms of Time-Restricted Feeding: Beyond Caloric Restriction. Nutr Rev 2025; 83:e1209-e1224. [PMID: 38954563 DOI: 10.1093/nutrit/nuae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Time-restricted feeding (TRF) is a lifestyle intervention that aims to maintain a consistent daily cycle of feeding and fasting to support robust circadian rhythms. Recently, it has gained scientific, medical, and public attention due to its potential to enhance body composition, extend lifespan, and improve overall health, as well as induce autophagy and alleviate symptoms of diseases like cardiovascular diseases, type 2 diabetes, neurodegenerative diseases, cancer, and ischemic injury. However, there is still considerable debate on the primary factors that contribute to the health benefits of TRF. Despite not imposing strict limitations on calorie intake, TRF consistently led to reductions in calorie intake. Therefore, while some studies suggest that the health benefits of TRF are primarily due to caloric restriction (CR), others argue that the key advantages of TRF arise not only from CR but also from factors like the duration of fasting, the timing of the feeding period, and alignment with circadian rhythms. To elucidate the roles and mechanisms of TRF beyond CR, this review incorporates TRF studies that did not use CR, as well as TRF studies with equivalent energy intake to CR, which addresses the previous lack of comprehensive research on TRF without CR and provides a framework for future research directions.
Collapse
Affiliation(s)
- Ruhan Wang
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 43000, China
| | - Yan Deng
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| | - Rong Shuang
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| |
Collapse
|
9
|
Zhang F, Wu Z, Su Q, Sa R, Zhang Y, Zhang X, Hou S, Gui L. Effect of different Lys/Met ratios in a low-protein diet on the meat quality of Tibetan sheep: A transcriptomics- and metabolomics-based analysis. Food Res Int 2025; 204:115893. [PMID: 39986761 DOI: 10.1016/j.foodres.2025.115893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/24/2025]
Abstract
This study integrated the the effects of dietary Lys/Met ratio in a low protein diet on the meat quality in Tibetan sheep. A total of 90 weaned Tibetan sheep, 2 months old with initial weight of 15.37 ± 0.92 kg were randomly divided into 3 treatments, which were supplemented with Lys/Met ratio at 3 (LP-H), 2 (LP-M), and 1 (LP-L) in the basal diet (10 % crude protein), respectively. After slaughter (150 days of age), the growth performances and meat quality of longissimus dorsi muscle were evaluated. The LP-L group showed significantly higher final body weight compared to the LP-M group (P < 0.05). Serum albumin and total protein levels were significantly higher in the LP-L group than in the LP-H group (P < 0.05). Furthermore, meat from the LP-L group had significantly higher protein, calcium, and vitamin E content compared to the LP-M group (P < 0.05). Transcriptomic analysis revealed 3,479 differentially expressed genes enriched in pathways related to muscle growth, energy metabolism, and signaling transduction. Metabolomic analysis identified 771 differential metabolites, significantly enriched in ABC transporters, beta-alanine metabolism, and taste transduction pathways. Integrated analysis highlighted the upregulation of the ABCD4 gene and L-valine metabolite in the LP-L group, contributing to improved phenotypic traits. These findings provide molecular insights into the regulatory mechanisms underlying the effects of dietary Lys/Met ratios on Tibetan sheep meat quality and offer a basis for developing nutritional strategies to enhance premium meat production.
Collapse
Affiliation(s)
- Fengshuo Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, China
| | - Zhenling Wu
- College of Agriculture and Animal Husbandry, Qinghai University, China
| | - Quyangangmao Su
- College of Agriculture and Animal Husbandry, Qinghai University, China
| | - Rengeerli Sa
- College of Agriculture and Animal Husbandry, Qinghai University, China
| | - Yu Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, China
| | - Xianhua Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, China
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University, China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, China.
| |
Collapse
|
10
|
Contò M, Miarelli M, Di Giovanni S, Failla S. Variability of Sialic Acids in Beef Breeds and Nutritional Implications in Red Meat. Molecules 2025; 30:710. [PMID: 39942813 PMCID: PMC11821032 DOI: 10.3390/molecules30030710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
This study examines the variability of sialic acids, specifically N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), in beef from seven cattle breeds (Holstein Friesian, Red Pied, Maremmana, Chianina, Charolais, Limousin, and Piemontese). Neu5Gc, a non-human sialic acid linked to inflammation and disease risk, showed significant breed differences (p < 0.001), with the highest concentration in Holstein Friesian (61.02 µg/g) and the lowest in Piemontese (20.87 µg/g). Neu5Ac, known for its neuroprotective properties, was most abundant in Piemontese (112.99 µg/g, p = 0.032) and lowest in Limousin (81.25 µg/g). The Neu5Ac/Neu5Gc ratio, critical for dietary health, exceeded the threshold of 5:1 only in Piemontese (5.49), identifying it as a breed with a higher ratio. This study highlights the influence of breed, with limited effects of muscle type and aging, on sialic acid content. Significant correlations were observed between Neu5Gc and fatty acid classes (p < 0.05) and between Neu5Ac and polar amino acid groups (p < 0.01). The findings support selective breeding to optimize beef's nutritional profile, enhancing its health benefits for consumers.
Collapse
Affiliation(s)
| | | | | | - Sebastiana Failla
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Research Centre for Animal Production and Aquaculture, Via Salaria, 31, 00016 Monterotondo, Italy; (M.C.); (S.D.G.)
| |
Collapse
|
11
|
Mansoori S, Ho MY, Ng KK, Cheng KK. Branched-chain amino acid metabolism: Pathophysiological mechanism and therapeutic intervention in metabolic diseases. Obes Rev 2025; 26:e13856. [PMID: 39455059 PMCID: PMC11711082 DOI: 10.1111/obr.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
Branched-chain amino acids (BCAAs), including leucine, isoleucine, and valine, are essential for maintaining physiological functions and metabolic homeostasis. However, chronic elevation of BCAAs causes metabolic diseases such as obesity, type 2 diabetes (T2D), and metabolic-associated fatty liver disease (MAFLD). Adipose tissue, skeletal muscle, and the liver are the three major metabolic tissues not only responsible for controlling glucose, lipid, and energy balance but also for maintaining BCAA homeostasis. Under obese and diabetic conditions, different pathogenic factors like pro-inflammatory cytokines, lipotoxicity, and reduction of adiponectin and peroxisome proliferator-activated receptors γ (PPARγ) disrupt BCAA metabolism, leading to excessive accumulation of BCAAs and their downstream metabolites in metabolic tissues and circulation. Mechanistically, BCAAs and/or their downstream metabolites, such as branched-chain ketoacids (BCKAs) and 3-hydroxyisobutyrate (3-HIB), impair insulin signaling, inhibit adipogenesis, induce inflammatory responses, and cause lipotoxicity in the metabolic tissues, resulting in multiple metabolic disorders. In this review, we summarize the latest studies on the metabolic regulation of BCAA homeostasis by the three major metabolic tissues-adipose tissue, skeletal muscle, and liver-and how dysregulated BCAA metabolism affects glucose, lipid, and energy balance in these active metabolic tissues. We also summarize therapeutic approaches to restore normal BCAA metabolism as a treatment for metabolic diseases.
Collapse
Affiliation(s)
- Shama Mansoori
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Melody Yuen‐man Ho
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Kelvin Kwun‐wang Ng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Kenneth King‐yip Cheng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
- Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| |
Collapse
|
12
|
Choi N, Park S, Park G, Oh S, Lee SH, Lee J, Kim H, Bang G, Choi J. Drone pupae extract enhances Hanwoo myosatellite cell function for cultivated meat production. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2025; 67:252-272. [PMID: 39974789 PMCID: PMC11833203 DOI: 10.5187/jast.2024.e98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 02/21/2025]
Abstract
In this study, we analyzed effects of drone pupae aqueous extract powder (DEP) on proliferation and differentiation of Hanwoo myosatellite cells (HSC). Results of amino acid, vitamin, and mineral analysis of drone pupae revealed the presence of branched-chain amino acids, Glu, essential amino acids, vitamins B6, C and Mg, K, and so on. Additionally, drone pupae were shown to have an antioxidant ability. HSC were cultured for proliferation by adding 0, 10, 100, 200, and 400 μg/mL DEP to the medium. As a result of MTS analysis, DEP increased the proliferation capacity of HSC, with cell viability being significantly higher after treatment with DEP, especially when DEP was used at 100 μg/mL (p < 0.05). To measure the differentiation ability of HSC, 0 and 100 μg/mL DEP (CON, D100) were added to the medium, and cells were cultured. Myotube formation was confirmed through images using immunofluorescence staining. Fusion index and myotube area in the D100 were higher than those in the CON (p < 0.01). DEP promoted differentiation ability and myotube formation by increasing the expression of MYH2, MYOG, and DES genes and MYH2 and DES proteins in HSC. Additionally, in HSC differentiation culture, proteome expression intensity was higher in D100 than in CON. Proteins upregulated in the D100 group included Myosin, IL18, MYO1D, and so on. In conclusion, characteristics of various components present in DEP could improve the proliferation and differentiation ability of HSC. This suggests that drone pupae can be used as a functional substance to enhance muscle growth.
Collapse
Affiliation(s)
- Nayoung Choi
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Sanghun Park
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Gyutae Park
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Sehyuk Oh
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Sol-Hee Lee
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Junsoo Lee
- Department of Food Science and
Biotechnology, Chungbuk National University, Cheongju 28644,
Korea
| | - Hyoyoung Kim
- Department of Agricultural Biology,
National Institute of Agricultural Science, Rural Development
Administration, Wanju 55365, Korea
| | - Geul Bang
- Research Center for Bioconvergence
Analysis, Korea Basic Science Institute, Cheongju 28119,
Korea
| | - Jungseok Choi
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| |
Collapse
|
13
|
Hwang DJ, Yang HJ. Nutritional Strategies for Enhancing Performance and Training Adaptation in Weightlifters. Int J Mol Sci 2024; 26:240. [PMID: 39796095 PMCID: PMC11720227 DOI: 10.3390/ijms26010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Weightlifting demands explosive power and neuromuscular coordination in brief, repeated intervals. These physiological demands underscore the critical role of nutrition, not only in optimizing performance during competitions but also in supporting athletes' rigorous training adaptations and ensuring effective recovery between sessions. As weightlifters strive to enhance their performance, well-structured nutritional strategies are indispensable. In this comprehensive review, we explored how weightlifters can optimize their performance through targeted nutritional strategies, including carbohydrate intake for glycogen replenishment and proteins for muscle growth and recovery. Additionally, the roles of key supplements, such as creatine, beta-alanine, and branch-chained amino acids in enhancing strength, delaying fatigue, and supporting muscle repair were discussed. A comprehensive literature review was conducted using PubMed, Google Scholar, and Web of Science to gather studies on nutritional strategies for weightlifting performance and training adaptation. The review focused on English-language articles relevant to weightlifters, including studies on powerlifting, while excluding those involving non-human subjects. Weightlifting requires explosive power, and proper nutrition is vital for performance and recovery, emphasizing the role of carbohydrate, protein, and fat intake. Nutrient timing and personalized strategies, informed by genetic and metabolomic analyses, enhance recovery and performance, while supplements like creatine, caffeine, and beta-alanine can significantly improve results when used correctly. Sustainable nutritional strategies are essential for enhancing weightlifter performance, emphasizing a balanced approach over extreme diets or excessive supplements. Further research is needed to refine these strategies based on individual athlete characteristics, ensuring consistent top-level performance throughout competitive seasons.
Collapse
Affiliation(s)
- Dong-Joo Hwang
- Sport Science Institute, Korea National Sport University, Seoul 05541, Republic of Korea;
| | - Hong-Jun Yang
- Institute of Health & Environment, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
14
|
Mann G, Adegoke OAJ. Elevated BCAA catabolism reverses the effect of branched-chain ketoacids on glucose transport in mTORC1-dependent manner in L6 myotubes. J Nutr Sci 2024; 13:e66. [PMID: 39464407 PMCID: PMC11503859 DOI: 10.1017/jns.2024.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 10/29/2024] Open
Abstract
Plasma levels of branched-chain amino acids (BCAA) and their metabolites, branched-chain ketoacids (BCKA), are increased in insulin resistance. We previously showed that ketoisocaproic acid (KIC) suppressed insulin-stimulated glucose transport in L6 myotubes, especially in myotubes depleted of branched-chain ketoacid dehydrogenase (BCKD), the enzyme that decarboxylates BCKA. This suggests that upregulating BCKD activity might improve insulin sensitivity. We hypothesised that increasing BCAA catabolism would upregulate insulin-stimulated glucose transport and attenuate insulin resistance induced by BCKA. L6 myotubes were either depleted of BCKD kinase (BDK), the enzyme that inhibits BCKD activity, or treated with BT2, a BDK inhibitor. Myotubes were then treated with KIC (200 μM), leucine (150 μM), BCKA (200 μM), or BCAA (400 μM) and then treated with or without insulin (100 nM). BDK depletion/inhibition rescued the suppression of insulin-stimulated glucose transport by KIC/BCKA. This was consistent with the attenuation of IRS-1 (Ser612) and S6K1 (Thr389) phosphorylation but there was no effect on Akt (Ser473) phosphorylation. The effect of leucine or BCAA on these measures was not as pronounced and BT2 did not influence the effect. Induction of the mTORC1/IRS-1 (Ser612) axis abolished the attenuating effect of BT2 treatment on glucose transport in cells treated with KIC. Surprisingly, rapamycin co-treatment with BT2 and KIC further reduced glucose transport. Our data suggests that the suppression of insulin-stimulated glucose transport by KIC/BCKA in muscle is mediated by mTORC1/S6K1 signalling. This was attenuated by upregulating BCAA catabolic flux. Thus, interventions targeting BCAA metabolism may provide benefits against insulin resistance and its sequelae.
Collapse
Affiliation(s)
- Gagandeep Mann
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Olasunkanmi A. John Adegoke
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
15
|
Muscella A, Felline M, Marsigliante S. Sex-Based Effects of Branched-Chain Amino Acids on Strength Training Performance and Body Composition. Sports (Basel) 2024; 12:275. [PMID: 39453241 PMCID: PMC11510782 DOI: 10.3390/sports12100275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Branched-chain amino acids (BCAAs) are widely studied for their effects on muscle recovery and performance. AIMS This study examined the effects of BCAA supplementation on anthropometric data, physical performance, delayed onset muscle soreness (DOMS), and fatigue in recreational weightlifters. METHODS The trial involved 100 participants (50 men and 50 women), randomized into BCAA and placebo groups. Subjects in the BCAA group took five daily capsules of 500 mg L-leucine, 250 mg L-isoleucine, and 250 mg L-valine for six months. A two-way ANOVA was used to analyze the main and interaction effects of sex and treatment. RESULTS Notable findings include significant improvements in muscle recovery, as indicated by reduced DOMS, particularly in women who showed a decrement of 18.1 ± 9.4 mm compared to 0.8 ± 1.2 mm in the placebo group of a horizontal 100 mm line. Fatigue perception was also significantly lower in the BCAA group, with women reporting a greater decrease (2.6 ± 1.5 scores) compared to the placebo group (0.6 ± 0.7 scores). Strength gains were prominent, especially in men, with a 10% increase in bench press maximum observed in the BCAA group. The interaction between sex and treatment was significant, suggesting sex-specific responses to BCAA supplementation. CONCLUSIONS These results underscore the effectiveness of BCAA supplementation in enhancing muscle recovery, reducing fatigue, and improving strength. This study also highlights sex-specific responses, with women benefiting more in terms of DOMS and fatigue reduction, while men experienced greater strength gains, suggesting a need for tailored supplementation strategies.
Collapse
Affiliation(s)
- Antonella Muscella
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy (S.M.)
| | | | | |
Collapse
|
16
|
Yang K, Zhong J, Xian D. Causal relationship and mediation effects of immune cells and plasma metabolites in atopic dermatitis: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e39932. [PMID: 39465865 PMCID: PMC11479512 DOI: 10.1097/md.0000000000039932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 10/29/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition with complex etiology involving genetic, environmental, and immunological factors. This study employs Mendelian randomization to explore the causal relationships between immune cell phenotypes and AD, and the mediating effects of plasma metabolites. Using data from European cohorts, we identified 7 immune cell phenotypes significantly associated with AD. Mediation analysis revealed that the alpha-ketobutyrate to 4-methyl-2-oxopentanoate ratio negatively regulates CCR2 on monocytes, while the glycerol to carnitine ratio positively regulates HLA-DR on CD14- CD16- cells. These findings underscore the critical role of metabolic pathways in modulating immune responses and suggest potential dietary and therapeutic interventions for AD management. Further research should consider more diverse populations to validate these findings.
Collapse
Affiliation(s)
- Kaiwen Yang
- School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianqiao Zhong
- School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Dehai Xian
- School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
17
|
Sakai K, Okada M, Yamaguchi S. Umami and saltiness enhancements of vegetable soup by enzyme-produced glutamic acid and branched-chain amino acids. Front Nutr 2024; 11:1436113. [PMID: 39224182 PMCID: PMC11368061 DOI: 10.3389/fnut.2024.1436113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction One major challenge of reducing salt content in food is the risk of the overall taste becoming bland. Enhancing saltiness is an effective strategy for salt reduction, and the development of salt-reduced foods using these saltiness-enhancing flavorants as food additives is underway. However, an increasing number of consumers demand a reduction in additives in clean-label foods. Objective Enzyme processing of food is an attractive strategy for developing clean-label foods because enzymes are not considered additives. We aimed to improve the saltiness and umami intensity of vegetable soups by enzyme treatment while meeting clean-label requirements. We first optimized the enzymatic reaction conditions of a protease and glutaminase blend and then investigated the synergistic effects of this enzyme blend on the taste of vegetable soup. Results Sensory evaluations indicated that the reaction products (e.g., protein hydrolysates or amino acids) could enhance the umami, kokumi, and saltiness intensity of vegetable soup supplemented with 0.5% NaCl. Notably, the saltiness intensity ratio of the enzyme-treated soup with 0.50, 0.45, and 0.40% NaCl were increased by 1.31-, 1.16-, and 0.99-fold, respectively, when this ratio for the control soup with 0.50% NaCl was set to 1.0. This indicates a 20% salt reduction rate can be achieved by enzyme treatment. Moreover, we found that these enhancements were synergically caused by enzyme-produced glutamic acid and branched-chain amino acids. Conclusion Our findings suggest that using enzyme blends of bacterial and fungal proteases and glutaminase is an effective approach to enhancing the saltiness levels of vegetable soups while meeting clean-label requirements.
Collapse
Affiliation(s)
- Kiyota Sakai
- Innovation Center, Amano Enzyme Inc., Kakamigahara, Japan
| | | | | |
Collapse
|
18
|
Li S, Liu S, Wu H, Zhao W, Zhang A, Li P, Liu J, Yi H. Insights into the starch and proteins molecular structure changes of foxtail millet sourdough: Effect of fermentation from grains of cereal to pre-meal. Int J Biol Macromol 2024; 272:132729. [PMID: 38821307 DOI: 10.1016/j.ijbiomac.2024.132729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
This study investigated the effects of foxtail millet sourdough fermentation time (0, 8, 16, and 24 h) on the protein structural properties, thermomechanical, fermentation, dynamic rheological, starch granules crystalline regions molecular mobility, and starch microstructural characteristics. The fermentation led to a significant increase in the concentration of free amino acids from protein hydrolysis. Fourier transform infrared spectroscopy (FTIR) revealed changes in protein secondary structure and the presence of functional groups of different bioactive compounds. The result of thermomechanical properties showed a significant increase in the stability (0.70-0.79 min) and anti-retrogradation ability (2.29-3.14 Nm) of lactic acid bacteria (LAB) sourdough compared to the control dough, showing a wider processing applicability with radar profiler index. In contrast, sourdoughs with lower tan δ values had higher elasticity and strength. Scanning electron microscopy showed that the surface of the starch appeared from smooth to uneven with patchy shapes and cavities, which declined the crystallinity from 34.00 % to 21.57 %, 23.64 %, 25.09 %, and 26.34 % respectively. Fermentation changed the To, Tp, Tc, and ΔH of the starch. The results of the study will have great potential for application in the whole grain sourdough industry.
Collapse
Affiliation(s)
- Shaohui Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China; Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Songyan Liu
- Shijiazhuang Livestock Products and Veterinary Feed Quality Testing Center, Shijiazhuang, Hebei 050041, People's Republic of China
| | - Hanmei Wu
- Shijiazhuang Agricultural Product Quality Testing Center, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Wei Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Aixia Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Pengliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Jingke Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, People's Republic of China.
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China.
| |
Collapse
|
19
|
Chong NF, Van de Wouw AP, Idnurm A. The ilv2 gene, encoding acetolactate synthase for branched chain amino acid biosynthesis, is required for plant pathogenicity by Leptosphaeria maculans. Mol Biol Rep 2024; 51:682. [PMID: 38796647 PMCID: PMC11127833 DOI: 10.1007/s11033-024-09620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Control of blackleg disease of canola caused by the fungus Leptosphaeria maculans relies on strategies such as the inhibition of growth with fungicides. However, other chemicals are used during canola cultivation, including fertilizers and herbicides. There is widespread use of herbicides that target the acetolactate synthase (ALS) enzyme involved in branched chain amino acid synthesis and low levels of these amino acids within leaves of Brassica species. In L. maculans the ilv2 gene encodes ALS and thus ALS-inhibiting herbicides may inadvertently impact the fungus. METHODS AND RESULTS Here, the impact of a commercial herbicide targeting ALS and mutation of the homologous ilv2 gene in L. maculans was explored. Exposure to herbicide had limited impact on growth in vitro but reduced lesion sizes in plant disease experiments. Furthermore, the mutation of the ilv2 gene via CRISPR-Cas9 gene editing rendered the fungus non-pathogenic. CONCLUSION Herbicide applications can influence disease outcome, but likely to a minor extent.
Collapse
Affiliation(s)
- Nicholas F Chong
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Angela P Van de Wouw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Alexander Idnurm
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
20
|
Deng Y, Hu M, Huang S, Fu N. Molecular mechanism and therapeutic significance of essential amino acids in metabolically associated fatty liver disease. J Nutr Biochem 2024; 126:109581. [PMID: 38219809 DOI: 10.1016/j.jnutbio.2024.109581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/01/2024] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), also known as metabolically associated fatty liver disease (MAFLD), is a systemic metabolic disease characterized by lipid accumulation in the liver, lipid toxicity, insulin resistance, intestinal dysbiosis, and inflammation that can progress from simple steatosis to nonalcoholic steatohepatitis (NASH) and even cirrhosis or cancer. It is the most prevalent illness threatening world health. Currently, there are almost no approved drug interventions for MAFLD, mainly dietary changes and exercise to control weight and regulate metabolic disorders. Meanwhile, the metabolic pathway involved in amino acid metabolism also influences the onset and development of MAFLD in the body, and most amino acid metabolism takes place in the liver. Essential amino acids are those amino acids that must be supplemented from outside the diet and that cannot be synthesized in the body or cannot be synthesized at a rate sufficient to meet the body's needs, including leucine, isoleucine, valine (collectively known as branched-chain amino acids), tryptophan, phenylalanine (which are aromatic amino acids), histidine, methionine, threonine and lysine. The metabolic balance of the body is closely linked to these essential amino acids, and essential amino acids are closely linked to the pathophysiological process of MAFLD. In this paper, we will focus on the metabolism of essential amino acids in the body and further explore the therapeutic strategies for MAFLD based on the studies conducted in recent years.
Collapse
Affiliation(s)
- Yuting Deng
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Mengsi Hu
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Shufang Huang
- The Affiliated Nanhua Hospital, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China.
| | - Nian Fu
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China; The Affiliated Nanhua Hospital, Institute of Clinical Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China.
| |
Collapse
|
21
|
Rivera CN, Smith CE, Draper LV, Kee ME, Cook NE, McGovern MR, Watne RM, Wommack AJ, Vaughan RA. The BCKDH kinase inhibitor BT2 promotes BCAA disposal and mitochondrial proton leak in both insulin-sensitive and insulin-resistant C2C12 myotubes. J Cell Biochem 2024; 125:e30520. [PMID: 38226684 DOI: 10.1002/jcb.30520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
Elevated circulating branched-chain amino acids (BCAAs) have been correlated with the severity of insulin resistance, leading to recent investigations that stimulate BCAA metabolism for the potential benefit of metabolic diseases. BT2 (3,6-dichlorobenzo[b]thiophene-2-carboxylic acid), an inhibitor of branched-chain ketoacid dehydrogenase kinase, promotes BCAA metabolism by enhancing BCKDH complex activity. The purpose of this report was to investigate the effects of BT2 on mitochondrial and glycolytic metabolism, insulin sensitivity, and de novo lipogenesis both with and without insulin resistance. C2C12 myotubes were treated with or without low or moderate levels of BT2 with or without insulin resistance. Western blot and quantitative real-time polymerase chain reaction were used to assess protein and gene expression, respectively. Mitochondrial, nuclei, and lipid content were measured using fluorescent staining and microscopy. Cell metabolism was assessed via oxygen consumption and extracellular acidification rate. Liquid chromatography-mass spectrometry was used to quantify BCAA media content. BT2 treatment consistently promoted mitochondrial uncoupling following 24-h treatment, which occurred largely independent of changes in expressional profiles associated with mitochondrial biogenesis, mitochondrial dynamics, BCAA catabolism, insulin sensitivity, or lipogenesis. Acute metabolic studies revealed a significant and dose-dependent effect of BT2 on mitochondrial proton leak, suggesting BT2 functions as a small-molecule uncoupler. Additionally, BT2 treatment consistently and dose-dependently reduced extracellular BCAA levels without altering expression of BCAA catabolic enzymes or pBCKDHa activation. BT2 appears to act as a small-molecule mitochondrial uncoupler that promotes BCAA utilization, though the interplay between these two observations requires further investigation.
Collapse
Affiliation(s)
- Caroline N Rivera
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Carly E Smith
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Lillian V Draper
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Madison E Kee
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Norah E Cook
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Macey R McGovern
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Rachel M Watne
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| | - Andrew J Wommack
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| | - Roger A Vaughan
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| |
Collapse
|
22
|
Tauriainen MM, Csader S, Lankinen M, Lo KK, Chen C, Lahtinen O, El-Nezamy H, Laakso M, Schwab U. PNPLA3 Genotype and Dietary Fat Modify Concentrations of Plasma and Fecal Short Chain Fatty Acids and Plasma Branched-Chain Amino Acids. Nutrients 2024; 16:261. [PMID: 38257154 PMCID: PMC10819939 DOI: 10.3390/nu16020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The GG genotype of the Patatin-like phosphatase domain-containing 3 (PNPLA3), dietary fat, short-chain fatty acids (SCFA) and branched-chain amino acids (BCAA) are linked with non-alcoholic fatty liver disease. We studied the impact of the quality of dietary fat on plasma (p) and fecal (f) SCFA and p-BCAA in men homozygous for the PNPLA3 rs738409 variant (I148M). Eighty-eight randomly assigned men (age 67.8 ± 4.3 years, body mass index 27.1 ± 2.5 kg/m2) participated in a 12-week diet intervention. The recommended diet (RD) group followed the National and Nordic nutrition recommendations for fat intake. The average diet (AD) group followed the average fat intake in Finland. The intervention resulted in a decrease in total p-SCFAs and iso-butyric acid in the RD group (p = 0.041 and p = 0.002). Valeric acid (p-VA) increased in participants with the GG genotype regardless of the diet (RD, 3.6 ± 0.6 to 7.0 ± 0.6 µmol/g, p = 0.005 and AD, 3.8 ± 0.3 to 9.7 ± 8.5 µmol/g, p = 0.015). Also, genotype relation to p-VA was seen statistically significantly in the RD group (CC: 3.7 ± 0.4 to 4.2 ± 1.7 µmol/g and GG: 3.6 ± 0.6 to 7.0 ± 0.6 µmol/g, p = 0.0026 for time and p = 0.004 for time and genotype). P-VA, unlike any other SCFA, correlated positively with plasma gamma-glutamyl transferase (r = 0.240, p = 0.025). Total p-BCAAs concentration changed in the AD group comparing PNPLA3 CC and GG genotypes (CC: 612 ± 184 to 532 ± 149 µmol/g and GG: 587 ± 182 to 590 ± 130 µmol/g, p = 0.015 for time). Valine decreased in the RD group (p = 0.009), and leucine decreased in the AD group (p = 0.043). RD decreased total fecal SCFA, acetic acid (f-AA), and butyric acid (f-BA) in those with CC genotype (p = 0.006, 0.013 and 0.005, respectively). Our results suggest that the PNPLA3 genotype modifies the effect of dietary fat modification for p-VA, total f-SCFA, f-AA and f-BA, and total p-BCAA.
Collapse
Affiliation(s)
- Milla-Maria Tauriainen
- Department of Medicine, Endoscopy Unit, Kuopio University Hospital, 70029 Kuopio, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
| | - Susanne Csader
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
| | - Maria Lankinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
| | - Kwun Kwan Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (K.K.L.); (C.C.)
| | - Congjia Chen
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (K.K.L.); (C.C.)
| | - Olli Lahtinen
- Diagnostic Imaging Centre, Department of Clinical Radiology, Kuopio University Hospital, 70029 Kuopio, Finland;
| | - Hani El-Nezamy
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (K.K.L.); (C.C.)
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland;
- Department of Medicine, Kuopio University Hospital, 70029 Kuopio, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70029 Kuopio, Finland
| |
Collapse
|
23
|
Rivera CN, Kamer MM, Cook NE, McGovern MR, Watne RM, Wommack AJ, Vaughan RA. 5-Aza-2'-deoxycytidine-mediated DNA hypomethylation with and without concurrent insulin resistance suppresses myotube mitochondrial capacity. Cell Biochem Funct 2023; 41:1422-1429. [PMID: 37916846 DOI: 10.1002/cbf.3878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
Type 2 diabetes is characterized by elevated blood glucose and reduced insulin sensitivity in target tissues. Moreover, reduced mitochondrial metabolism and expressional profile of genes governing mitochondrial metabolism (such as peroxisome proliferator-activated receptor gamma coactivator 1-alpha [PGC-1α]) are also reduced during insulin resistance. Epigenetic regulation via DNA methylation of genes including PGC-1α may contribute to diminished mitochondrial capacity, while hypomethylation of PGC-1α (such as that invoked by exercise) has been associated with increased PGC-1α expression and favorable metabolic outcomes. The purpose of the present report is to characterize the effects of DNA hypomethylation on myotube metabolism and expression of several related metabolic targets. C2C12 myotubes were treated with 5-Aza-2'-deoxycytidine (5-Aza) for either 24 or 72 h both with and without hyperinsulinemic-induced insulin resistance. Mitochondrial and glycolytic metabolism were measured via oxygen consumption and extracellular acidification rate, respectively. Metabolic gene and protein expression were assessed via quantitative real time polymerase chain reaction and western blot analysis, respectively. Though expression of PGC-1α and other related targets remained unaltered, insulin resistance and 5-Aza treatment significantly reduced mitochondrial metabolism. Similarly, peak glycolytic metabolism was diminished by 5-Aza-treated cells, while basal glycolytic metabolism was unaltered. 5-Aza also reduced the expression of branched-chain amino acid (BCAA) catabolic components, however BCAA utilization was enhanced during insulin resistance with 5-Aza treatment. Together the present work provides proof-of-concept evidence of the potential role of DNA methylation in the regulation of mitochondrial metabolism and the potential interactions with insulin resistance in a model of skeletal muscle.
Collapse
Affiliation(s)
- Caroline N Rivera
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Madison M Kamer
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Norah E Cook
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Macey R McGovern
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Rachel M Watne
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| | - Andrew J Wommack
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| | - Roger A Vaughan
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| |
Collapse
|
24
|
Harrington RN. Effects of branched chain amino acids, l-citrulline, and alpha-glycerylphosphorylcholine supplementation on exercise performance in trained cyclists: a randomized crossover trial. J Int Soc Sports Nutr 2023; 20:2214112. [PMID: 37229544 DOI: 10.1080/15502783.2023.2214112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Nutrition plays a key role in training and athletic performance and dietary supplements can make a small, but potentially valuable, contribution to achieving peak athletic performance. This study is the first to investigate the effects of supplementation from the combination of BCAAs, L-citrulline, and A-GPC on exercise performance. METHODS In this randomized, double-blind, crossover study 30 male trained cyclists (age: 43.7 ± 8.5 years) completed a 20 km cycling time trial (TT) test and a high intensity endurance cycling (HIEC) test following a 7-day supplementation period with either a supplement containing 8 g BCAAs, 6 g L-citrulline, and 300 mg A-GPC or a placebo (15 g maltodextrin). For each trial, mean values for time to completion, peak and average power output, OMNI rating of perceived exertion, and visual analogue scale (VAS) responses on perceived exertion were computed for the 20 km TT test. Mean values for time to fatigue and VAS responses on perceived exertion were computed for the HIEC test. Procedures for dietary intake and exercise patterns were implemented to achieve consistency throughout the study period. RESULTS There was a significant increase (p = .003) in peak power in the 20 km TT (354.27 ± 87.88 and 321.67 ± 63.65, for supplement and placebo trials, respectively) and a significant increase (p = .001) in time to fatigue in the HIEC test (0:19:49 ± 0:11:13 min and 0:14:33 ± 0:09:59 min, for supplement and placebo trials, respectively) with the test supplement compared to the placebo. With the test supplement, there was an average increase in TT peak power of 11% and an average increase in time to fatigue of 36.2% in the HIEC test compared to the placebo. There was no significant improvement in time to completion, average power, OMNI rating of perceived exertion, or VAS responses on perceived exertion in the TT test and no significant improvement in VAS measures of perceived exertion in the HIEC test. CONCLUSIONS The combination of BCAAs, L-citrulline, and A-GPC used in this study improves cycling performance and may be useful for individuals seeking to improve athletic performance, particularly in disciplines requiring lower body muscular strength and endurance.
Collapse
Affiliation(s)
- Renee Nicole Harrington
- Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
25
|
Hunt M, Torres M, Bachar-Wikström E, Wikström JD. Multifaceted roles of mitochondria in wound healing and chronic wound pathogenesis. Front Cell Dev Biol 2023; 11:1252318. [PMID: 37771375 PMCID: PMC10523588 DOI: 10.3389/fcell.2023.1252318] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Mitochondria are intracellular organelles that play a critical role in numerous cellular processes including the regulation of metabolism, cellular stress response, and cell fate. Mitochondria themselves are subject to well-orchestrated regulation in order to maintain organelle and cellular homeostasis. Wound healing is a multifactorial process that involves the stringent regulation of several cell types and cellular processes. In the event of dysregulated wound healing, hard-to-heal chronic wounds form and can place a significant burden on healthcare systems. Importantly, treatment options remain limited owing to the multifactorial nature of chronic wound pathogenesis. One area that has received more attention in recent years is the role of mitochondria in wound healing. With regards to this, current literature has demonstrated an important role for mitochondria in several areas of wound healing and chronic wound pathogenesis including metabolism, apoptosis, and redox signalling. Additionally, the influence of mitochondrial dynamics and mitophagy has also been investigated. However, few studies have utilised patient tissue when studying mitochondria in wound healing, instead using various animal models. In this review we dissect the current knowledge of the role of mitochondria in wound healing and discuss how future research can potentially aid in the progression of wound healing research.
Collapse
Affiliation(s)
- Matthew Hunt
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Monica Torres
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Etty Bachar-Wikström
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Jakob D. Wikström
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
26
|
Yan L, Guo L. Exercise-regulated white adipocyte differentitation: An insight into its role and mechanism. J Cell Physiol 2023; 238:1670-1692. [PMID: 37334782 DOI: 10.1002/jcp.31056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023]
Abstract
White adipocytes play a key role in the regulation of fat mass amount and energy balance. An appropriate level of white adipocyte differentiation is important for maintaining metabolic homeostasis. Exercise, an important way to improve metabolic health, can regulate white adipocyte differentiation. In this review, the effect of exercise on the differentiation of white adipocytes is summarized. Exercise could regulate adipocyte differentiation in multiple ways, such as exerkines, metabolites, microRNAs, and so on. The potential mechanism underlying the role of exercise in adipocyte differentiation is also reviewed and discussed. In-depth investigation of the role and mechanism of exercise in white adipocyte differentiation would provide new insights into exercise-mediated improvement of metabolism and facilitate the application of exercise-based strategy against obesity.
Collapse
Affiliation(s)
- Linjing Yan
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai, China
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai, China
| |
Collapse
|
27
|
Rivera CN, Hinkle JS, Watne RM, Macgowan TC, Wommack AJ, Vaughan RA. PPAR β/ δ Agonism with GW501516 Increases Myotube PGC-1 α Content and Reduces BCAA Media Content Independent of Changes in BCAA Catabolic Enzyme Expression. PPAR Res 2023; 2023:4779199. [PMID: 37325367 PMCID: PMC10264138 DOI: 10.1155/2023/4779199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/01/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Background Type 2 diabetes is characterized by reduced insulin sensitivity, elevated blood metabolites, and reduced mitochondrial metabolism with reduced expression of genes governing metabolism such as peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). PGC-1α regulates the expression of branched-chain amino acid (BCAA) metabolism, and thus, increased circulating BCAA in diabetics may be partially explained by reduced PGC-1α expression. PGC-1α functions in-part through interactions with peroxisome proliferator-activated receptor β/δ (PPARβ/δ). The present report examined the effects of the PPARβ/δ agonism on cell metabolism and related gene/protein expression of cultured myotubes, with a primary emphasis on determining the effects of GW on BCAA disposal and catabolic enzyme expression. Methods C2C12 myotubes were treated with GW501516 (GW) for up to 24 hours. Mitochondrial and glycolytic metabolism were measured via oxygen consumption and extracellular acidification rate, respectively. Metabolic gene and protein expression were assessed via quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, respectively. Media BCAA content was assessed via liquid chromatography-mass spectrometry (LC/MS). Results GW significantly increased PGC-1α protein expression, mitochondrial content, and mitochondrial function. GW also significantly reduced BCAA content within culture media following 24-hour treatment; however, expression of BCAA catabolic enzymes/transporter was unchanged. Conclusion These data confirm the ability of GW to increase muscle PGC-1α content and decrease BCAA media content without affecting BCAA catabolic enzymes/transporter. These findings suggest heightened BCAA uptake (and possibly metabolism) may occur without substantial changes in the protein levels of related cell machinery.
Collapse
Affiliation(s)
- Caroline N. Rivera
- Department of Exercise Science, High Point University, High Point, NC, USA
| | - Jason S. Hinkle
- Department of Exercise Science, High Point University, High Point, NC, USA
| | - Rachel M. Watne
- Department of Chemistry, High Point University, High Point, NC, USA
| | | | | | - Roger A. Vaughan
- Department of Exercise Science, High Point University, High Point, NC, USA
| |
Collapse
|
28
|
Zhang X, Xia M, Wu Y, Zhang F. Branched-Chain Amino Acids Metabolism and Their Roles in Retinopathy: From Relevance to Mechanism. Nutrients 2023; 15:2161. [PMID: 37432261 DOI: 10.3390/nu15092161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
Retinopathy is one of the leading causes of irreversible blindness and vision loss worldwide. Imbalanced nutrients play important roles in the pathogenesis and pathophysiology of retinal diseases. Branched-Chain Amino Acids (BCAAs), as essential amino acids, perform a variety of biological functions, including protein synthesis, glucose metabolism, lipid metabolism, inflammation, and oxidative stress in metabolic tissues of diabetes and aging-related diseases. Recently, it has been shown that BCAAs are highly related to neuroprotection, oxidative stress, inflammatory and glutamate toxicity in the retina of retinopathy. Therefore, this review summarizes the alterations of BCAA levels in retinopathy, especially diabetic retinopathy and aging-related macular disease, and the genetics, functions, and mechanisms of BCAAs in the retina as well as other metabolic tissues for reference. All of these efforts aim to provide fundamental knowledge of BCAAs for further discoveries and research on retina health based on the sensing and signaling of essential amino acids.
Collapse
Affiliation(s)
- Xiaonan Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Liaoning Provence Key Laboratory of Genome Engineered Animal Models, National Center of Genetically Engineered Animal Models for International Research, Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116000, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Mengxue Xia
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Yingjie Wu
- Liaoning Provence Key Laboratory of Genome Engineered Animal Models, National Center of Genetically Engineered Animal Models for International Research, Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116000, China
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Fang Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| |
Collapse
|
29
|
Choi J, Kong B, Bowker BC, Zhuang H, Kim WK. Nutritional Strategies to Improve Meat Quality and Composition in the Challenging Conditions of Broiler Production: A Review. Animals (Basel) 2023; 13:ani13081386. [PMID: 37106949 PMCID: PMC10135100 DOI: 10.3390/ani13081386] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Poultry meat is becoming one of the most important animal protein sources for human beings in terms of health benefits, cost, and production efficiency. Effective genetic selection and nutritional programs have dramatically increased meat yield and broiler production efficiency. However, modern practices in broiler production result in unfavorable meat quality and body composition due to a diverse range of challenging conditions, including bacterial and parasitic infection, heat stress, and the consumption of mycotoxin and oxidized oils. Numerous studies have demonstrated that appropriate nutritional interventions have improved the meat quality and body composition of broiler chickens. Modulating nutritional composition [e.g., energy and crude protein (CP) levels] and amino acids (AA) levels has altered the meat quality and body composition of broiler chickens. The supplementation of bioactive compounds, such as vitamins, probiotics, prebiotics, exogenous enzymes, plant polyphenol compounds, and organic acids, has improved meat quality and changed the body composition of broiler chickens.
Collapse
Affiliation(s)
- Janghan Choi
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Byungwhi Kong
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Brian C Bowker
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Hong Zhuang
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
30
|
Jang YJ. The Effects of Protein and Supplements on Sarcopenia in Human Clinical Studies: How Older Adults Should Consume Protein and Supplements. J Microbiol Biotechnol 2023; 33:143-150. [PMID: 36474318 PMCID: PMC9998208 DOI: 10.4014/jmb.2210.10014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 12/12/2022]
Abstract
Sarcopenia is a condition in which muscle mass, strength, and performance decrease with age. It is associated with chronic diseases such as diabetes, cardiovascular disease, and hypertension, and contributes to an increase in mortality. Because managing sarcopenia is critical for maintaining good health and quality of life for the elderly, the condition has sparked concern among many researchers. To counteract sarcopenia, intake of protein is an important factor, while a lack of either protein or vitamin D is a major cause of sarcopenia. In addition, essential amino acids, leucine, β-hydroxy β-methylbutyrate (HMB), creatine, and citrulline are used as supplements for muscle health and are suggested as alternatives for controlling sarcopenia. There are many studies on such proteins and supplements, but it is necessary to actually organize the types, amounts, and methods by which proteins and supplements should be consumed to inhibit sarcopenia. In this study, the efficacy of proteins and supplements for controlling sarcopenia according to human clinical studies is summarized to provide suggestions about how the elderly may consume proteins, amino acids, and other supplements.
Collapse
Affiliation(s)
- Young Jin Jang
- Major of Food Science and Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| |
Collapse
|
31
|
Rivera CN, Watne RM, Brown ZA, Mitchell SA, Wommack AJ, Vaughan RA. Effect of AMPK activation and glucose availability on myotube LAT1 expression and BCAA utilization. Amino Acids 2023; 55:275-286. [PMID: 36547760 DOI: 10.1007/s00726-022-03224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Those with insulin resistance often display increased circulating branched-chain amino acids (BCAA), which has been largely attributable to reduced BCAA catabolic capacity. Metabolic stimuli such as exercise activates AMP-activated kinase (AMPK), which promotes the metabolism of BCAA and induction/activation of BCAA catabolic enzymes. Though much attention has been paid to BCAA catabolic machinery, few studies have assessed the effect of AMPK activation on the predominant BCAA transporter, L-type amino acid transporter 1 (LAT1). This study assessed the effect of AMPK activation on LAT1 expression via common chemical AMPK activators in a cell model of skeletal muscle. C2C12 myotubes were treated with either 1 mM AICAR, 1 mM Metformin, or filter-sterilized water (control) for 24 h with either low- (5 mM) or high-glucose (25 mM) media. LAT1 and pAMPK protein content were measured via western blot. BCAA media content was measured using liquid chromatography-mass spectrometry. AICAR treatment significantly increased pAMPK and reduced LAT1 expression. Collectively, pAMPK and LAT1 displayed a significant inverse relationship independent of glucose levels. During low-glucose experiments, AICAR-treated cells had higher BCAA media content compared to other groups, and an inverse relationship between LAT1 and BCAA media content was observed, however, these effects were not consistently observed during high-glucose conditions. Further investigation with AICAR with and without concurrent LAT1 inhibition (via JPH203) also revealed reduced BCAA utilization in AICAR-treated cells regardless of LAT1 inhibition (which also independently reduced BCAA utilization). pAMPK activation via AICAR (but not Metformin) may reduce LAT1 expression and BCAA uptake in a glucose-dependent manner.
Collapse
Affiliation(s)
- Caroline N Rivera
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Rachel M Watne
- Department of Chemistry, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Zoe A Brown
- Department of Chemistry, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Samantha A Mitchell
- Department of Chemistry, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Andrew J Wommack
- Department of Chemistry, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Roger A Vaughan
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA.
| |
Collapse
|
32
|
Tsuchiya Y, Yanagimoto K, Sunagawa N, Ueda H, Tsuji K, Ochi E. Omega-3 fatty acids enhance the beneficial effect of BCAA supplementation on muscle function following eccentric contractions. J Int Soc Sports Nutr 2022; 19:565-579. [PMID: 36105122 PMCID: PMC9467596 DOI: 10.1080/15502783.2022.2117994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Background Methods Results Conclusions
Collapse
Affiliation(s)
- Yosuke Tsuchiya
- Meiji Gakuin University, Center for Liberal Arts, Laboratory of Health and Sports Sciences, Kanagawa, Japan
| | | | | | - Hisashi Ueda
- Teikyo Heisei University, Faculty of Health and Medical Science, Chiba, Japan
| | - Katsunori Tsuji
- Hosei University, Faculty of Bioscience and Applied Chemistry, Tokyo, Japan
| | - Eisuke Ochi
- Hosei University, Faculty of Bioscience and Applied Chemistry, Tokyo, Japan
- Hosei University, Graduate School of Sports and Health Studies, Tokyo, Japan
| |
Collapse
|
33
|
Hou Y, Yoon Y, Oh E, Sung B, Kim Y. Effects of soy protein hydrolysates on antioxidant activity and inhibition of muscle loss. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.6.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peptides show biological activity, and are more easily digested than complex proteins. In the present work, we evaluated the effects of soy hydrolysate on skeletal muscle. Soy protein isolate (SPI) was hydrolysed using 2% Alcalase (SPHA) and Flavourzyme (SPHF) at pH 8 for 3 h at 60°C, and at pH 7 for 3 h at 55°C, respectively. Antioxidant properties (total phenolic content and DPPH activity) and inhibition of muscle loss (myogenin, myosin heavy chain [MyHC], creatine kinase, and myostatin) by the SPI hydrolysates in C2C12 cells were compared with those of SPI. Alcalase produced more hydrolysed soy oligopeptides than Flavourzyme. Enzymatic hydrolysis increased the levels of essential amino acids, particularly in SPHF (2,466.85 mg/L) as compared to SPI (56.08 mg/L). The total phenolic contents of hydrolysates increased from 12.02 mg GAE/g in SPI to 22.87 and 18.67 mg GAE/g in SPHA and SPHF, respectively. The IC50 value of DPPH activity decreased four times after hydrolysis (SPI: 124.38, SPHA: 32.18, and SPHF: 30.21 mg/mL). SPHA and SPHF treatments increased the expression levels of both MyHC1 and MyHC3, as well as creatine kinase activity. A significant increase in MyHC3 expression was observed in SPHF at 10 µg/mL. Soy hydrolysates (SPHA: 93.5% and SPHF: 61%) induced a greater decrease in the expression of myostatin, a muscle reduction marker, than SPI (30.4%). In conclusion, soy hydrolysates may inhibit muscle loss, showing particularly better effects when Alcalase is used for hydrolysis.
Collapse
|
34
|
Rodriguez-Lopez P, Rueda-Robles A, Sánchez-Rodríguez L, Blanca-Herrera RM, Quirantes-Piné RM, Borrás-Linares I, Segura-Carretero A, Lozano-Sánchez J. Analysis and Screening of Commercialized Protein Supplements for Sports Practice. Foods 2022; 11:foods11213500. [PMID: 36360118 PMCID: PMC9658000 DOI: 10.3390/foods11213500] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Recent years have seen a rise in the popularity of the consumption of sports-related supplements. However, the hypothesis is raised that it is necessary to analyze the quality aspects of these supplements in relation to the information provided on the label, to avoid associated risks and obtain the greatest possible benefit from their consumption. Therefore, the aim of this study has been to carry out an analysis or screening of the protein supplements that are currently marketed in Spain. We analyzed the labels of 52 protein sports supplements available both in physical stores and online. The analysis consisted of addressing three relevant aspects considering the labeling: (a) the legislative framework in which the supplements are marketed, (b) the quality of the protein, and (c) the presence of other ingredients according to the specifications of the label. In the legislative context, there do not seem to be any specific regulations to guarantee consumer protection, which can lead to unfair practices and misleading advertising. Most of the supplements analyzed to comply with the requirements of their current regulations. However, claims about their benefits that are not allowed under European legislation have been found in some of them. Regarding composition and according to label information, the supplements have been found to provide a sufficient dose of protein in terms of recommended protein intake per serving. Regarding the presence of other ingredients and according to the information on the label, most of them, except for egg supplements, contain other ingredients. Colostrum was also found in one of the supplements evaluated. The conclusions of the study reveal that, due to a lack of knowledge or misleading advertising practices, supplements are often not used properly. The information provided is essential for both professionals and consumers to avoid the risks associated with consumption, such as unintentional doping, interactions between ingredients that reduce the quality of the supplement, and consumption of supplements inappropriately, among others.
Collapse
Affiliation(s)
- Paloma Rodriguez-Lopez
- Department of Food Science and Nutrition, Campus Universitario s/n, University of Granada, 18071 Granada, Spain
| | - Ascensión Rueda-Robles
- Department of Food Science and Nutrition, Campus Universitario s/n, University of Granada, 18071 Granada, Spain
- Correspondence: (A.R.-R.); or (I.B.-L.); Tel.: +34-958241000 (ext. 20702) (A.R.-R.); +34-958637083 (I.B.-L.)
| | - Leticia Sánchez-Rodríguez
- Department of Food Science and Nutrition, Campus Universitario s/n, University of Granada, 18071 Granada, Spain
| | - Rosa María Blanca-Herrera
- Department of Food Science and Nutrition, Campus Universitario s/n, University of Granada, 18071 Granada, Spain
| | - Rosa María Quirantes-Piné
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Edificio BioRegión, Avenida del Conocimiento 37, 18016 Granada, Spain
| | - Isabel Borrás-Linares
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Edificio BioRegión, Avenida del Conocimiento 37, 18016 Granada, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Correspondence: (A.R.-R.); or (I.B.-L.); Tel.: +34-958241000 (ext. 20702) (A.R.-R.); +34-958637083 (I.B.-L.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, Campus Universitario s/n, University of Granada, 18071 Granada, Spain
| |
Collapse
|
35
|
Luti S, Militello R, Fiaschi T, Magherini F, Gamberi T, Parri M, Marzocchini R, Pratesi S, Soldaini R, Modesti A, Modesti PA. Preliminary results indicate that regular training induces high protection against oxidative stress in basketball players compared to soccer. Sci Rep 2022; 12:18526. [PMID: 36323868 PMCID: PMC9630319 DOI: 10.1038/s41598-022-23351-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
In elite athlete several metabolic changes occur during regular training. These modifications are associated with changes in blood metabolic profile and can lead to adaptive mechanisms aimed at establish a new dynamic equilibrium, which guarantees better performance. The goal of this study was to characterize the plasma metabolic profile and redox homeostasis, in athletes practicing two different team sports such as soccer and basketball in order to identify potential metabolic pathways underlying the differences in training programs. A cohort of 30 male, 20 professional players (10 soccer and 10 basketballs) and 10 sedentary males as control were enrolled in the study. Plasma redox balance, metabolites and adiponectin were determined. The results show low levels of oxidative species (25.5%), with both high antioxidant capacity (17.6%) and adiponectin level (64.4%) in plasma from basketball players, in comparison to soccer players. Metabolic analysis indicates in basketball players a significant high plasma level of amino acids Valine and Ornithine both involved in redox homeostasis and anti-inflammatory metabolism.
Collapse
Affiliation(s)
- Simone Luti
- grid.8404.80000 0004 1757 2304Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Rosamaria Militello
- grid.8404.80000 0004 1757 2304Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Tania Fiaschi
- grid.8404.80000 0004 1757 2304Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Francesca Magherini
- grid.8404.80000 0004 1757 2304Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Tania Gamberi
- grid.8404.80000 0004 1757 2304Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Matteo Parri
- grid.8404.80000 0004 1757 2304Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Riccardo Marzocchini
- grid.8404.80000 0004 1757 2304Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Simone Pratesi
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Riccardo Soldaini
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Alessandra Modesti
- grid.8404.80000 0004 1757 2304Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Pietro A. Modesti
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| |
Collapse
|
36
|
Kumar R, Mishra A, Gautam P, Feroz Z, Vijayaraghavalu S, Likos EM, Shukla GC, Kumar M. Metabolic Pathways, Enzymes, and Metabolites: Opportunities in Cancer Therapy. Cancers (Basel) 2022; 14:5268. [PMID: 36358687 PMCID: PMC9656396 DOI: 10.3390/cancers14215268] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 07/30/2023] Open
Abstract
Metabolic reprogramming enables cancer cells to proliferate and produce tumor biomass under a nutrient-deficient microenvironment and the stress of metabolic waste. A cancer cell adeptly undergoes a variety of adaptations in metabolic pathways and differential expression of metabolic enzyme genes. Metabolic adaptation is mainly determined by the physiological demands of the cancer cell of origin and the host tissue. Numerous metabolic regulators that assist cancer cell proliferation include uncontrolled anabolism/catabolism of glucose metabolism, fatty acids, amino acids metabolism, nucleotide metabolism, tumor suppressor genes, microRNAs, and many regulatory enzymes and genes. Using this paradigm, we review the current understanding of metabolic reprogramming in tumors and discuss the new strategies of cancer metabolomics that can be tapped into for cancer therapeutics.
Collapse
Affiliation(s)
- Rishabh Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Anurag Mishra
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Priyanka Gautam
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Zainab Feroz
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | | | - Eviania M. Likos
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Girish C. Shukla
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Munish Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| |
Collapse
|
37
|
Xu F, Zeng J, Liu X, Lai J, Xu J. Exercise-Induced Muscle Damage and Protein Intake: A Bibliometric and Visual Analysis. Nutrients 2022; 14:nu14204288. [PMID: 36296973 PMCID: PMC9610071 DOI: 10.3390/nu14204288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023] Open
Abstract
Numerous studies have covered exercise-induced muscle damage (EIMD) topics, ranging from nutritional strategies to recovery methods, but few attempts have adequately explored and analyzed large volumes of scientific output. The purpose of this study was to assess the scientific output and research activity regarding EIMD and protein intake by conducting a bibliometric and visual analysis. Relevant publications from 1975-2022 were retrieved from the Web of Science Core Collection database. Quantitative and qualitative variables were collected, including the number of publications and citations, H-indexes, journals of citation reports, co-authorship, co-citation, and the co-occurrence of keywords. There were 351 total publications, with the number of annual publications steadily increasing. The United States has the highest total number of publications (26.21% of total publications, centrality 0.44). Institutional cooperation is mostly geographically limited, with few transnational cooperation links. EIMD and protein intake research is concentrated in high-quality journals in the disciplines of Sport Science, Physiology, Nutrition, and Biochemistry & Molecular Biology. The top ten journals in the number of publications are mostly high-quality printed journals, and the top ten journals in centrality have an average impact factor of 13.845. The findings of the co-citation clusters and major keyword co-occurrence reveal that the most discussed research topics are "exercise mode", "nutritional strategies", "beneficial outcomes", and "proposed mechanisms". Finally, we identified the following research frontiers and research directions: developing a comprehensive understanding of new exercise or training models, nutritional strategies, and recovery techniques to alleviate EIMD symptoms and accelerate recovery; applying the concept of hormesis in EIMD to induce muscle hypertrophy; and investigating the underlying mechanisms of muscle fiber and membrane damage.
Collapse
Affiliation(s)
- Fei Xu
- School of Physical Education, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (F.X.); (J.X.)
| | - Jinshu Zeng
- School of Physical Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Xuan Liu
- Division of Library and Information Services, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiaming Lai
- San Diego Jewish Academy, San Diego, CA 92130, USA
| | - Jing Xu
- School of Physical Education, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (F.X.); (J.X.)
| |
Collapse
|
38
|
Daley-Yates P, Keppler B, Brealey N, Shabbir S, Singh D, Barnes N. Inhaled glucocorticoid-induced metabolome changes in asthma. Eur J Endocrinol 2022; 187:413-427. [PMID: 35900313 PMCID: PMC9346266 DOI: 10.1530/eje-21-0912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The aim of this study was toidentify dose-related systemic effects of inhaled glucocorticoids (GCs) on the global metabolome. DESIGN AND METHODS Metabolomics/lipidomic analysis from plasma was obtained from 54 subjects receiving weekly escalating doses (µg/day) of fluticasone furoate (FF; 25, 100, 200, 400 and 800), fluticasone propionate (FP; 50, 200, 500, 1000 and 2000), budesonide (BUD; 100, 400, 800, 1600 and 3200) or placebo. Samples (pre- and post-dose) were analysed using ultrahigh-performance liquid chromatography-tandem mass spectroscopy and liquid chromatography-mass spectrometry. Ions were matched to library standards for identification and quantification. Statistical analysis involved repeated measures ANOVA, cross-over model, random forest and principal component analysis using log-transformed data. RESULTS Quantifiable metabolites (1971) had few significant changes (% increases/decreases; P < 0.05) vs placebo: FF 1.34 (0.42/0.92), FP 1.95 (0.41/1.54) and BUD 2.05 (0.60/1.45). Therapeutic doses had fewer changes: FF 0.96 (0.36/0.61), FP 1.66 (0.44/1.22) and BUD 1.45 (0.56/0.90). At highest/supratherapeutic doses, changes were qualitatively similar: reduced adrenal steroids, particularly glucuronide metabolites of cortisol and cortisone and pregnenolone metabolite DHEA-S; increased amino acids and glycolytic intermediates; decreased fatty acid β-oxidation and branched-chain amino acids. Notable qualitative differences were lowered dopamine metabolites (BUD) and secondary bile acid profiles (BUD/FF), suggesting CNS and gut microbiome effects. CONCLUSIONS Dose-dependent metabolomic changes occurred with inhaled GCs but were seen predominately at highest/supratherapeutic doses, supporting the safety of low and mid therapeutic doses. At comparable therapeutic doses (FF 100, FP 500 and BUD 800 µg/day), FF had the least effect on the most sensitive markers (adrenal steroids) vs BUD and FP.
Collapse
Affiliation(s)
- Peter Daley-Yates
- Clinical Pharmacology and Experimental Medicine, GSK, Uxbridge, UK
- Correspondence should be addressed to P Daley-Yates;
| | - Brian Keppler
- Discovery and Translational Sciences, Metabolon Inc., Morrisville, North Carolina, USA
| | | | | | - Dave Singh
- Medicines Evaluation Unit, University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | - Neil Barnes
- Global Medical Franchise, GSK, Brentford, UK
- William Harvey Institute, Bart’s and the London School of Medicine and Dentistry, London, UK
| |
Collapse
|
39
|
Wang X, Xu J, Zeng H, Han Z. Enhancement of BCAT2-Mediated Valine Catabolism Stimulates β-Casein Synthesis via the AMPK-mTOR Signaling Axis in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9898-9907. [PMID: 35916279 DOI: 10.1021/acs.jafc.2c03629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Valine, a kind of branched-chain amino acid, plays a regulatory role beyond that of a building block in milk protein synthesis. However, the underlying molecular mechanism through which valine stimulates β-casein synthesis has not been clarified. Therefore, our study aimed to evaluate the effect of valine on β-casein synthesis and shed light into the molecular mechanism using an in vitro model. Results showed that valine supplementation significantly increased β-casein synthesis in bovine mammary epithelial cells (BMECs). Meanwhile, the supplementation of valine resulted in high levels of branched-chain aminotransferase transaminase 2 (BCAT2), TCA-cycle intermediate metabolites, and ATP, AMP-activated protein kinase (AMPK) inhibition, and mammalian target of rapamycin (mTOR) activation. Furthermore, the inhibition of BCAT2 decreased the β-casein synthesis and downregulated the AMPK-mTOR pathway, with similar results observed for AMPK activation. Together, the present data indicate that valine promotes the synthesis of β-casein by affecting the AMPK-mTOR signaling axis and that BCAT2-mediated valine catabolism is the key target.
Collapse
Affiliation(s)
- Xinling Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hanfang Zeng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoyu Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
40
|
Vanweert F, Schrauwen P, Phielix E. Role of branched-chain amino acid metabolism in the pathogenesis of obesity and type 2 diabetes-related metabolic disturbances BCAA metabolism in type 2 diabetes. Nutr Diabetes 2022; 12:35. [PMID: 35931683 PMCID: PMC9356071 DOI: 10.1038/s41387-022-00213-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 12/23/2022] Open
Abstract
Branched-chain amino acid (BCAA) catabolism has been considered to have an emerging role in the pathogenesis of metabolic disturbances in obesity and type 2 diabetes (T2D). Several studies showed elevated plasma BCAA levels in humans with insulin resistance and patients with T2D, although the underlying reason is unknown. Dysfunctional BCAA catabolism could theoretically be an underlying factor. In vitro and animal work collectively show that modulation of the BCAA catabolic pathway alters key metabolic processes affecting glucose homeostasis, although an integrated understanding of tissue-specific BCAA catabolism remains largely unknown, especially in humans. Proof-of-concept studies in rodents -and to a lesser extent in humans – strongly suggest that enhancing BCAA catabolism improves glucose homeostasis in metabolic disorders, such as obesity and T2D. In this review, we discuss several hypothesized mechanistic links between BCAA catabolism and insulin resistance and overview current available tools to modulate BCAA catabolism in vivo. Furthermore, this review considers whether enhancing BCAA catabolism forms a potential future treatment strategy to promote metabolic health in insulin resistance and T2D.
Collapse
Affiliation(s)
- Froukje Vanweert
- Department of Nutrition and Movement Sciences, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
41
|
Go M, Shin E, Jang SY, Nam M, Hwang GS, Lee SY. BCAT1 promotes osteoclast maturation by regulating branched-chain amino acid metabolism. Exp Mol Med 2022; 54:825-833. [PMID: 35760874 PMCID: PMC9256685 DOI: 10.1038/s12276-022-00775-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/15/2022] [Accepted: 03/06/2022] [Indexed: 12/11/2022] Open
Abstract
Branched-chain aminotransferase 1 (BCAT1) transfers the amine group on branched-chain amino acids (BCAAs) to alpha-ketoglutarate. This generates glutamate along with alpha-keto acids that are eventually oxidized to provide the cell with energy. BCAT1 thus plays a critical role in sustaining BCAA concentrations and availability as an energy source. Osteoclasts have high metabolic needs during differentiation. When we assessed the levels of amino acids in bone marrow macrophages (BMMs) that were undergoing receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation, we found that the BCAA levels steadily increase during this process. In vitro analyses then showed that all three BCAAs but especially valine were needed for osteoclast maturation. Moreover, selective inhibition of BCAT1 with gabapentin significantly reduced osteoclast maturation. Expression of enzymatically dead BCAT1 also abrogated osteoclast maturation. Importantly, gabapentin inhibited lipopolysaccharide (LPS)-induced bone loss of calvaria in mice. These findings suggest that BCAT1 could serve as a therapeutic target that dampens osteoclast formation.
Collapse
Affiliation(s)
- Miyeon Go
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eunji Shin
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seo Young Jang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Republic of Korea.,Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Miso Nam
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Republic of Korea. .,Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - Soo Young Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
42
|
Jiménez-Munoz L, Tsochatzis ED, Corredig M. Impact of the Structural Modifications of Potato Protein in the Digestibility Process under Semi-Dynamic Simulated Human Gastrointestinal In Vitro System. Nutrients 2022; 14:nu14122505. [PMID: 35745236 PMCID: PMC9230451 DOI: 10.3390/nu14122505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
The raising consumer demand for plant-derived proteins has led to an increased production of alternative protein ingredients with varying processing histories. In this study, we used a commercially available potato protein ingredient with a nutritionally valuable amino acid profile and high technological functionality to evaluate if the digestibility of a suspension with the same composition is affected by differences in the structure. Four isocaloric (4% protein, w/w) matrices (suspension, gel, foam and heat-set foam) were prepared and their gastrointestinal fate was followed utilizing a semi-dynamic in vitro digestion model. The microstructure was observed by confocal laser scanning microscopy, protein breakdown was tested by electrophoresis and free amino acids after intestinal digestion was estimated using liquid chromatography/triple-quadruple-mass spectrometry (LC-TQMS). The heat-treated samples showed a higher degree of hydrolysis and lower trypsin inhibitory activity than the non-heat-treated samples. An in vitro digestible indispensable amino acid score was calculated based on experimental data, showing a value of 0.9 based on sulfur amino acids/valine as the limiting amino acids. The heated samples also showed a slower gastric emptying rate. The study highlights the effect of the food matrix on the distribution of the peptides created during various stages of gastric emptying.
Collapse
Affiliation(s)
- Luis Jiménez-Munoz
- Department of Food Science, CiFOOD Center for Innovative Foods, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (E.D.T.); (M.C.)
- Correspondence: author:
| | - Emmanouil D. Tsochatzis
- Department of Food Science, CiFOOD Center for Innovative Foods, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (E.D.T.); (M.C.)
- European Food Safety Authority-EFSA, Via Carlo Magno 1A, 43146 Parma, Italy
| | - Milena Corredig
- Department of Food Science, CiFOOD Center for Innovative Foods, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (E.D.T.); (M.C.)
| |
Collapse
|
43
|
Montegiove N, Calzoni E, Cesaretti A, Pellegrino RM, Emiliani C, Pellegrino A, Leonardi L. The Hard Choice about Dry Pet Food: Comparison of Protein and Lipid Nutritional Qualities and Digestibility of Three Different Chicken-Based Formulations. Animals (Basel) 2022; 12:ani12121538. [PMID: 35739874 PMCID: PMC9219525 DOI: 10.3390/ani12121538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary The majority of pet food currently on the market is represented by dry food thanks to its practicality and long shelf life. Dry pet food production consists of several processes that can have different effects on nutrient bioavailability and digestibility. The aim of this study was to analyze the nutritional quality of three different chicken-based formulations, consisting of fresh meats, meat meals, or a mix of these two from a protein, lipid, and in vitro digestibility point of view. The results show that the fresh chicken-meat-based formulation appears to be the preferable choice when proteins, lipids, and in vitro digestibility are taken into account. Moreover, the soluble protein content estimated by the Bradford assay is found to correlate well with the total protein content and in vitro digestibility. Abstract Dry pet food, made of fresh meats and especially meat meals, represents one of the main types of complete food available on the market by virtue of its practicality and long shelf life. The kibble production process includes mixed thermal and mechanical treatments that help to improve the palatability and durability of the final product but may have undesirable effects on nutrient bioavailability and digestibility. An analysis of the protein and lipid content of different dry pet food formulations, together with an in vitro digestibility analysis, can reveal which formulation can provide a more nourishing diet for pets. In this study, a quantitative and qualitative analysis was performed on three different formulations of chicken-based dry pet food, consisting of fresh meats, meat meals, or a mix of these two. The soluble protein concentration was determined by the Bradford assay, while the crude protein content was assessed through the Kjeldahl method. Quadrupole time-of-flight liquid chromatography/mass spectrometry (Q-TOF LC/MS) was used to analyze the amino acid (AA) and lipid compositions. Finally, a gastric and small intestinal digestion simulation was used to determine the in vitro digestibility. The results show that dry pet food consisting only of chicken fresh meats has the highest content of soluble protein; it also contains more Essential AAs, Branched-Chain AAs, and Taurine, as well as a greater quantity of monounsaturated and polyunsaturated fatty acids. In addition, its in vitro digestibility was the highest, exceeding 90% of its dry weight, in agreement with the soluble protein content. These findings thus make the fresh-meat-based formulation a preferable choice as dry pet food.
Collapse
Affiliation(s)
- Nicolò Montegiove
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (E.C.); (A.C.); (R.M.P.); (C.E.)
- Correspondence:
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (E.C.); (A.C.); (R.M.P.); (C.E.)
| | - Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (E.C.); (A.C.); (R.M.P.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (E.C.); (A.C.); (R.M.P.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (E.C.); (A.C.); (R.M.P.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | | | - Leonardo Leonardi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| |
Collapse
|
44
|
Feng Z, Wei Y, Xu Y, Zhang R, Li M, Qin H, Gu R, Cai M. The anti-fatigue activity of corn peptides and their effect on gut bacteria. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3456-3466. [PMID: 34839540 DOI: 10.1002/jsfa.11693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/11/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Corn peptides (CPs) are rich in branched-chain amino acids such as leucine and have a variety of biological activities such as antioxidant and improved lipid distribution. In this article, we prepared CPs by enzymatic digestion of corn proteins and evaluated their anti-fatigue activity. RESULTS We evaluated the anti-fatigue effect of CPs through an exhaustive swimming experiment. The results showed that CPs were able to significantly reduce the rate of body weight gain and prolong the duration of exhaustive swimming. Besides, CPs reduced blood urea nitrogen (BUN) levels after exercise, while they significantly increased muscle glycogen and liver glycogen stores. They reduced muscle cell damage from exercise. In addition, CPs were effective in increasing AMPK, PGC-1α and PI3K protein expression levels and promoting Akt phosphorylation. Correlation analysis showed that CPs increased the abundance of probiotics such as Lactobacillus and Akkermansia in the gut microflora. CONCLUSION CPs, which enhanced exercise performance in mice and could modulate gut microbial composition, had significant anti-fatigue activity. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhiyuan Feng
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Fermentation Industries Co. Ltd, Beijing, China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area, Tianjin, China
| | - Ying Wei
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Fermentation Industries Co. Ltd, Beijing, China
| | - Yaguang Xu
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Fermentation Industries Co. Ltd, Beijing, China
| | - Ruixue Zhang
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Fermentation Industries Co. Ltd, Beijing, China
| | - Mingliang Li
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Fermentation Industries Co. Ltd, Beijing, China
| | - Huimin Qin
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area, Tianjin, China
| | - Ruizeng Gu
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Fermentation Industries Co. Ltd, Beijing, China
| | - Muyi Cai
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Fermentation Industries Co. Ltd, Beijing, China
| |
Collapse
|
45
|
Trautman ME, Richardson NE, Lamming DW. Protein restriction and branched-chain amino acid restriction promote geroprotective shifts in metabolism. Aging Cell 2022; 21:e13626. [PMID: 35526271 PMCID: PMC9197406 DOI: 10.1111/acel.13626] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 01/20/2023] Open
Abstract
The proportion of humans suffering from age‐related diseases is increasing around the world, and creative solutions are needed to promote healthy longevity. Recent work has clearly shown that a calorie is not just a calorie—and that low protein diets are associated with reduced mortality in humans and promote metabolic health and extended lifespan in rodents. Many of the benefits of protein restriction on metabolism and aging are the result of decreased consumption of the three branched‐chain amino acids (BCAAs), leucine, isoleucine, and valine. Here, we discuss the emerging evidence that BCAAs are critical modulators of healthy metabolism and longevity in rodents and humans, as well as the physiological and molecular mechanisms that may drive the benefits of BCAA restriction. Our results illustrate that protein quality—the specific composition of dietary protein—may be a previously unappreciated driver of metabolic dysfunction and that reducing dietary BCAAs may be a promising new approach to delay and prevent diseases of aging.
Collapse
Affiliation(s)
- Michaela E. Trautman
- Department of Medicine University of Wisconsin‐Madison Madison Wisconsin USA
- William S. Middleton Memorial Veterans Hospital Madison Wisconsin USA
- Interdepartmental Graduate Program in Nutritional Sciences University of Wisconsin‐Madison Madison Wisconsin USA
| | - Nicole E. Richardson
- Department of Medicine University of Wisconsin‐Madison Madison Wisconsin USA
- William S. Middleton Memorial Veterans Hospital Madison Wisconsin USA
- Endocrinology and Reproductive Physiology Graduate Training Program University of Wisconsin‐Madison Madison Wisconsin USA
| | - Dudley W. Lamming
- Department of Medicine University of Wisconsin‐Madison Madison Wisconsin USA
- William S. Middleton Memorial Veterans Hospital Madison Wisconsin USA
- Endocrinology and Reproductive Physiology Graduate Training Program University of Wisconsin‐Madison Madison Wisconsin USA
| |
Collapse
|
46
|
Exercise Enhances Branched-Chain Amino Acid Catabolism and Decreases Cardiac Vulnerability to Myocardial Ischemic Injury. Cells 2022; 11:cells11101706. [PMID: 35626742 PMCID: PMC9139679 DOI: 10.3390/cells11101706] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Long-term exercise-induced metabolic adaptations occupy a central position in exercise-afforded cardiac benefits. Emerging evidence suggests that branched-chain amino acid (BCAA) catabolic defect contributes to cardiac dysfunction in multiple cardiometabolic diseases. However, the role of BCAA catabolism in exercise-afforded cardiac benefits remains unknown. Here, we show that exercise improves BCAA catabolism and thus reduce cardiac vulnerability to myocardial ischemic injury. Exercise increased circulating BCAA levels in both humans (male adolescent athletes) and mice (following an 8-week swimming intervention). It increased the expression of mitochondrial localized 2C-type serine-threonine protein phosphatase (PP2Cm), a key enzyme in regulating BCAA catabolism, and decreased BCAA accumulation in mouse hearts, indicating an increase in BCAA catabolism. Pharmacological promotion of BCAA catabolism protected the mouse heart against myocardial infarction (MI) induced by permanent ligation of the left descending coronary artery. Although cardiac-specific PP2Cm knockout showed no significant effects on cardiac structural and functional adaptations to exercise, it blunted the cardioprotective effects of exercise against MI. Mechanistically, exercise alleviated BCAA accumulation and subsequently inactivated the mammalian target of rapamycin in MI hearts. These results showed that exercise elevated BCAA catabolism and protected the heart against myocardial ischemic injury, reinforcing the role of exercise in the promotion of cardiac health.
Collapse
|
47
|
Pashaei S, Yarani R, Mohammadi P, Emami Aleagha MS. The potential roles of amino acids and their major derivatives in the management of multiple sclerosis. Amino Acids 2022; 54:841-858. [PMID: 35471671 DOI: 10.1007/s00726-022-03162-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/05/2022] [Indexed: 11/29/2022]
Abstract
Recently, we reviewed the important role of carbohydrates and lipids metabolism in different clinical aspects of multiple sclerosis (MS) disease. In the current paper, we aimed to review the contribution of amino acids and their major derivatives to different clinical outcomes of the disease, including etiology, pathogenesis, diagnosis, prognosis, and treatment. In this line, Thr (threonine), Phe (phenylalanine), Glu (glutamate), Trp (tryptophan), and Sero (serotonin) are the main examples of biomolecules that have been suggested for MS therapy. It has been concluded that different amino acids and their derivatives might be considered prominent tools for the clinical management of MS disease.
Collapse
Affiliation(s)
- Somayeh Pashaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Sorkhe-Ligeh Street, Kermanshah, Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen, Copenhagen, Denmark.,Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Sajad Emami Aleagha
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Sorkhe-Ligeh Street, Kermanshah, Iran.
| |
Collapse
|
48
|
Amino Acid-Related Metabolic Signature in Obese Children and Adolescents. Nutrients 2022; 14:nu14071454. [PMID: 35406066 PMCID: PMC9003189 DOI: 10.3390/nu14071454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
The growing interest in metabolomics has spread to the search for suitable predictive biomarkers for complications related to the emerging issue of pediatric obesity and its related cardiovascular risk and metabolic alteration. Indeed, several studies have investigated the association between metabolic disorders and amino acids, in particular branched-chain amino acids (BCAAs). We have performed a revision of the literature to assess the role of BCAAs in children and adolescents' metabolism, focusing on the molecular pathways involved. We searched on Pubmed/Medline, including articles published until February 2022. The results have shown that plasmatic levels of BCAAs are impaired already in obese children and adolescents. The relationship between BCAAs, obesity and the related metabolic disorders is explained on one side by the activation of the mTORC1 complex-that may promote insulin resistance-and on the other, by the accumulation of toxic metabolites, which may lead to mitochondrial dysfunction, stress kinase activation and damage of pancreatic cells. These compounds may help in the precocious identification of many complications of pediatric obesity. However, further studies are still needed to better assess if BCAAs may be used to screen these conditions and if any other metabolomic compound may be useful to achieve this goal.
Collapse
|
49
|
Wu YHS, Lin YL, Wang SY, Lin D, Chen JW, Chen YC. Effects of washing step and salt-addition levels on textural and quality properties in the chicken-surimi products. Poult Sci 2022; 101:101885. [PMID: 35567981 PMCID: PMC9112010 DOI: 10.1016/j.psj.2022.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022] Open
Abstract
The massive wastewater from surimi manufacture and salt addition is controversial. In our previous study, a chicken-surimi (CS) product can be successfully developed from the spent-hen breast via 3 times of washing steps and 2.5% salt addition in the recipe. Due to the characteristics of broiler breast (higher protein contents in muscle), this study was to optimize the washing step for CS batter recovered from broiler breast and the salt-addition level in the CS-product recipe. The step of washing once with 0.1% salt solution showed no (P > 0.05) differences in the texture profile and color parameters (expect a* value) in CS batters compared to initial washing steps (a 3-step washing procedure). The CS batter obtained by this washing step had higher amino-acid contents than boiler breast and large Grade A egg and even fit adults’ daily essential amino-acid requirement. Besides, the lower (P < 0.05) water loss of cooked CS products during the storage (4°C) was shown beyond 2.0% salt addition in CS products. For efficient/ecofriendly extraction and sodium-content reduction, the washing once with a 0.1% salt solution and 2% salt addition in the recipe is recommended in the CS batter recovered from broiler breast and its products, respectively.
Collapse
Affiliation(s)
- Yi-Hsieng Samuel Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Ling Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Sheng-Yao Wang
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Danqing Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Jr-Wei Chen
- Poultry Industry Section, Department of Animal Industry, Council of Agriculture, Executive Yuan, Taipei 100, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
50
|
Kim S, Kim K, Park J, Jun W. Curcuma longa L. Water Extract Enhances Endurance Exercise Capacity by Promoting Intramuscular Mitochondrial Biogenesis in Mice. J Med Food 2022; 25:138-145. [PMID: 35148192 DOI: 10.1089/jmf.2021.k.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated the effect of Curcuma longa L. extract on endurance exercise capacity (EEC). EEC is the ability to exercise continuously and recover quickly, even when tired. C. longa contains antioxidants that contribute beneficial effects on the body. We separated groups of nonexercise (CON), exercise control (Ex-CON), branched-chain amino acid (BCAA) intake, and C. longa water extract (CLW) intake (Ex-CLW). EEC increased on the 28th day of BCAA and CLW intake. Both treatment groups exhibited decreased lactate levels with increased levels of nonesterified fatty acids and muscular glycogen compared with the Ex-CON group. Also, the Ex-CLW group possessed higher intramuscular antioxidant enzyme activities (catalase, superoxide dismutase, and glutathione peroxidase) than the Ex-CON group. The expression of PGC-1α, NRF, and Tfam, which are factors related to mitochondrial biogenesis, increased in the Ex-CLW group. Results suggest that CLW intake elevated EEC by increasing intramuscular mitochondrial biogenesis through suppressing the accumulation of fatigue substances and increasing fat consumption, and antioxidant enzyme activity.
Collapse
Affiliation(s)
- Shintae Kim
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea
| | - Kyungmi Kim
- Department of Biofood Analysis, Korea Bio Polytechnic, Ganggyung, Korea
| | - Jeongjin Park
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea.,Research Institute for Human Ecology, Chonnam National University, Gwangju, Korea
| | - Woojin Jun
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea.,Research Institute for Human Ecology, Chonnam National University, Gwangju, Korea
| |
Collapse
|