1
|
Chen Y, Guo X, Hu L, Yang W, Lin R, Cao G, Xiong M, Chen B. Exploratory analysis of the association between dietary niacin intakes and nonalcoholic fatty liver disease among US adults: 1999-2018 data analysis from the National Health and Nutrition Examination Survey (NHANES). J Clin Biochem Nutr 2025; 76:179-186. [PMID: 40151400 PMCID: PMC11936733 DOI: 10.3164/jcbn.23-63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/10/2023] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Previous researches have revealed the potential association between dietary niacin intakes and several diseases, but studies assessing the association between dietary niacin intakes and nonalcoholic fatty liver disease (NAFLD) is limited and remains unclear. This study was performed to explore the association. METHODS In this study, 10,528 participants (male: 5,257) in the 10 National Health and Nutrition Examination Survey (NHANES) cycles (1999-2018) from the NHANES database were selected for the analyses. We built three logistic regression models to explore the independent association between dietary niacin intakes and NAFLD and to explore whether such association exists. Finally, a restricted cubic spline model was applied to simulate the potential nonlinear association between dietary niacin intakes and the occurrence of NAFLD. RESULTS The result of the fully-adjusted model suggested that ln-transformed dietary niacin intakes were significantly associated with the reduced occurrence of NAFLD. The odd ratio (OR) of the model and its 95% confidence interval (CI) were 0.81 (0.73, 0.90). When taking the lowest quartile as a reference, the level of niacin in the highest quartile was associated with decreased prevalence of NAFLD (OR: 0.76, 95% CI: 0.63, 0.91). The restricted cubic spline plot presented a negative dose-response association between levels of daily niacin consumption and the occurrence of NAFLD (p for nonlinearity = 0.762). CONCLUSION According to the results of this study, dietary niacin intakes may have a negative association with NAFLD, and more well-designed cohort studies are required in the future to confirm the obtained finding.
Collapse
Affiliation(s)
- Yue Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, Anhui 230022, China
- Department of Clinical Medicine, School of the First Clinical Medicine, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, Anhui 230032, China
| | - Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, Anhui 230032, China
| | - Lei Hu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, Anhui 230022, China
- Department of Clinical Medicine, School of the First Clinical Medicine, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, Anhui 230032, China
| | - Wenzhi Yang
- Department of Clinical Medicine, School of the First Clinical Medicine, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, Anhui 230032, China
| | - Ran Lin
- Department of Clinical Medicine, School of the First Clinical Medicine, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, Anhui 230032, China
| | - Guodong Cao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, Anhui 230022, China
| | - Maoming Xiong
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, Anhui 230022, China
| | - Bo Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, Anhui 230022, China
- Department of Surgery, the People’s Hospital of Hanshan County, Intersection of Xianzong Road and Changshan Road, Huanfeng Town, Hanshan County, Ma'anshan, Anhui 238100, China
| |
Collapse
|
2
|
Xu T, Zhang C, Yang Y, Huang L, Liu Q, Li L, Zeng Q, Li Z. Role of Milk Intake in Modulating Serum Lipid Profiles and Gut Metabolites. Metabolites 2024; 14:688. [PMID: 39728469 DOI: 10.3390/metabo14120688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Milk is one of the main sources of nutrition in people's daily diet, but the fat in milk raises health concerns in consumers. Here, we aimed to elucidate the impact of Buffalo milk and Holstein cow milk consumption on blood lipid health through metabolomics analysis. METHODS Golden hamsters were administered Murrah Buffalo milk (BM) or Holstein cow milk (HM), and the body weight and serum lipid indicators were tested and recorded. The hamsters receiving equal amounts of physiological saline were used as the negative control (NC). Serum and fecal samples were collected, and LC-MS was used to identify the metabolites in the samples. RESULTS The results showed that both the BM and HM groups exhibited a significant reduction in body weight compared to that of the NC group from day 9, and the serum TG, TC, and LDL-C levels were significantly lower than those of the NC group. Further analysis identified 564 and 567 metabolites in the serum and fecal samples shared in the BM and HM groups and significantly different from those in the NC group, which were mainly enriched in the pathways related to lipid metabolism, such as fatty acid biosynthesis, arachidonic acid metabolism, and primary bile acid biosynthesis. Correlation analysis further suggested that milk intake can increase the levels of Muramic Acid, Oleoyl Ethanolamide, Seratrodast, Chenodeoxycholic Acid, Docosahexaenoic Acid Ethyl Ester, and Deoxycholic Acid in the serum and gut microbiota, which may affect TG, TC, HDL-C, and LDL-C in the serum, and thereby benefit the body's lipid health. CONCLUSIONS The results further confirmed that milk intake has a beneficial effect on blood lipid health by altering multiple metabolites in the serum and the gut. This study provides novel evidence that milk consumption is beneficial to health and is a reference for guiding people to a healthy diet.
Collapse
Affiliation(s)
- Ting Xu
- Guangxi Zhuang Autonomous Region Buffalo Milk Quality and Safety Control Technology Engineering Research Center, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Chang Zhang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yufeng Yang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Liang Huang
- School of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Ling Li
- Guangxi Zhuang Autonomous Region Buffalo Milk Quality and Safety Control Technology Engineering Research Center, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Qingkun Zeng
- Guangxi Zhuang Autonomous Region Buffalo Milk Quality and Safety Control Technology Engineering Research Center, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Zhipeng Li
- Guangxi Zhuang Autonomous Region Buffalo Milk Quality and Safety Control Technology Engineering Research Center, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Antentas M, Rojo-López MI, Vendrell P, Granado-Casas M, Genua I, Fernandez-Camins B, Rossell J, Niño-Narvión J, Moreira E, Castelblanco E, Ortega E, Vlacho B, Alonso N, Mauricio D, Julve J. Impact of Dietary Niacin on Metabolic Dysfunction-Associated Steatotic Liver Disease in Mediterranean Subjects: A Population-Based Study. Nutrients 2024; 16:4178. [PMID: 39683571 DOI: 10.3390/nu16234178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND The impact of dietary niacin on metabolic dysfunction-associated steatotic liver disease (MASLD) is elusive. This sub-study aimed to investigate the relationship between dietary niacin intake and the presence of MASLD in participants from two Catalonian cohorts. METHODS A total of 222 subjects with MASLD were age- and sex-matched to 222 non-MASLD subjects. Dietary nutrients were analyzed using a validated food frequency questionnaire (FFQ). Dietary niacin and other nutrients were adjusted for total energy intake. MASLD was defined by a Fatty Liver Index (FLI) of >60 and by having at least one component of metabolic syndrome. The association between niacin intake (distributed into tertiles) and the presence of MASLD was assessed using multivariate logistic regression. Potential non-linear relationships were also analyzed through restricted cubic spline regression (RCS). RESULTS Our data revealed that subjects with MASLD had worse metabolic profiles. The dietary intake of niacin did not differ between subjects with and without MASLD. Even after adjusting for different confounding variables, i.e., sociodemographic variables, smoking status, physical activity, and cardiometabolic comorbidities, no significant associations were observed between higher intakes of niacin (tertiles 2 and 3) and the presence of MASLD: odds ratio (95% confidence) second tertile: 0.99 (0.89-1.09); third tertile: 0.98 (0.89-1.10). However, RCS analysis uncovered a significant non-linear dose-response association between dietary niacin intake and odds of MASLD. Specifically, such analysis revealed that MASLD risk was decreased in subjects with niacin intake values of <35 mg/day. CONCLUSIONS Our data showed that dietary niacin intake was associated with lower odds of MASLD in a Mediterranean population; however, our logistic regression analysis failed to reveal significant associations between the intake of niacin and the risk of MASLD. Further research is warranted to establish a causal relationship between dietary niacin interventions and MASLD.
Collapse
Affiliation(s)
- Maria Antentas
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
| | | | - Pau Vendrell
- Grup de Diabetis d'Atenció Primària (DAP-Cat), Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, 08007 Barcelona, Spain
| | - Minerva Granado-Casas
- Grup de Diabetis d'Atenció Primària (DAP-Cat), Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, 08007 Barcelona, Spain
- Department of Nursing and Physiotherapy, University of Lleida, 25198 Lleida, Spain
- Research Group of Health Care (GReCS), IRBLleida, 25198 Lleida, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CI-BERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Idoia Genua
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Berta Fernandez-Camins
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Joana Rossell
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CI-BERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Julia Niño-Narvión
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
| | - Estefanía Moreira
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
| | - Esmeralda Castelblanco
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emilio Ortega
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department of Endocrinology and Nutrition, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Bogdan Vlacho
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Diabetis d'Atenció Primària (DAP-Cat), Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, 08007 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CI-BERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Nuria Alonso
- Department of Endocrinology and Nutrition, Hospital de la Germans Trias i Pujol, 08916 Barcelona, Spain
| | - Didac Mauricio
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Diabetis d'Atenció Primària (DAP-Cat), Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, 08007 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CI-BERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Department of Medicine, University of Vic-Central University of Catalonia, 08500 Vic, Spain
| | - Josep Julve
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CI-BERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Liang X, Shan T, Zheng X, Zhang Z, Fan Y, Zhang H, Zhang L, Liang H. Study on the Regulatory Mechanism of Niacin Combined with B. animalis F1-7 in Alleviating Alcoholic Fatty Liver Disease by Up-Regulating GPR109A. Nutrients 2024; 16:4170. [PMID: 39683563 DOI: 10.3390/nu16234170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND This study aimed to investigate the effects of niacin combined with B. animalis F1-7 on the improvement of alcoholic fatty liver disease (AFLD) in mice and its potential regulatory mechanism. METHODS A total of 75 8-week-old male C57BL/6N mice were acclimated for one week and randomly divided into five groups: control group, alcohol model group (AFLD), niacin intervention group (NA), B. animalis F1-7 intervention group (F1-7), and niacin combined with B. animalis F1-7 intervention group (NF). The experiment lasted for 8 weeks. RESULTS The results showed that all intervention groups could effectively reduce the serum lipid levels and inflammatory response of mice induced by alcohol to varying degrees. The immunofluorescence analysis showed that the GPR109A in the liver and intestine of the NF group was significantly enhanced compared with the other groups. Niacin combined with B. animalis F1-7 better restored the gut microbiota. Meanwhile, each intervention group could increase their levels of SCFAs. Among them, the combination group increased the levels of acetic acid and butyric acid more significantly than the other two groups. The Spearman's correlation analysis of gut microbiota and SCFAs showed that Norank_f_Eubacterium_coprostanoligenes_group, Allobaculum, and Akkermansia were positively correlated with changes in SCFAs, while Coriobacteriaceae_UCG-002, Romboutsia, and Clostridium_sensu_stricro_1 were negatively correlated. CONCLUSIONS Niacin combined with B. animalis F1-7 better regulated the gut microbial balance and increased the SCFAs in mice with alcoholic steatohepatitis. The mechanism was related to the activation of the target GPR109A, which regulates the key proteins involved in lipid synthesis and β-oxidation to improve lipid metabolic disorders.
Collapse
Affiliation(s)
- Xi Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Tianhu Shan
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xiumei Zheng
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yanping Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
5
|
Roshdy M, Zaky DA, Abbas SS, Abdallah DM. Niacin, an innovative protein kinase-C-dependent endoplasmic reticulum stress reticence in murine Parkinson's disease. Life Sci 2024; 351:122865. [PMID: 38914304 DOI: 10.1016/j.lfs.2024.122865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/08/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
AIMS Niacin (NIA) supplementation showed effectiveness against Parkinson's disease (PD) in clinical trials. The depletion of NAD and endoplasmic reticulum stress response (ERSR) are implicated in the pathogenesis of PD, but the potential role for NAD precursors on ERSR is not yet established. This study was undertaken to decipher NIA molecular mechanisms against PD-accompanied ERSR, especially in relation to PKC. METHODS Alternate-day-low-dose-21 day-subcutaneous exposure to rotenone (ROT) in rats induced PD. Following the 5th ROT injection, rats received daily doses of either NIA alone or preceded by the PKC inhibitor tamoxifen (TAM). Extent of disease progression was assessed by behavioral, striatal biochemical and striatal/nigral histopathological/immunohistochemical analysis. KEY FINDINGS Via activating PKC/LKB1/AMPK stream, NIA post-treatment attenuated the ERSR reflected by the decline in ATF4, ATF6 and XBP1s to downregulate the apoptotic markers, CHOP/GADD153, p-JNK and active caspase-3. Such amendments congregated in motor activity/coordination improvements in open field and rotarod tasks, enhanced grid test latency and reduced overall PD scores, while boosting nigral/striatal tyrosine hydroxylase immunoreactivity and increasing intact neurons (Nissl stain) in both SNpc and striatum that showed less neurodegeneration (H&E stain). To different extents, TAM reverted all the NIA-related actions to prove PKC as a fulcrum in conveying the drug neurotherapeutic potential. SIGNIFICANCE PKC activation is a pioneer mechanism in the drug ERSR inhibitory anti-apoptotic modality to clarify NIA promising clinical and potent preclinical anti-PD efficacy. This kinase can be tagged as a druggable target for future add-on treatments that can assist dopaminergic neuronal aptitude against this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Merna Roshdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Ahmed Orabi District, Cairo 44971, Egypt
| | - Doaa A Zaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Samah S Abbas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Ahmed Orabi District, Cairo 44971, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
6
|
Fu Y, Wang Z, Qin H. Examining the Pathogenesis of MAFLD and the Medicinal Properties of Natural Products from a Metabolic Perspective. Metabolites 2024; 14:218. [PMID: 38668346 PMCID: PMC11052500 DOI: 10.3390/metabo14040218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), characterized primarily by hepatic steatosis, has become the most prevalent liver disease worldwide, affecting approximately two-fifths of the global population. The pathogenesis of MAFLD is extremely complex, and to date, there are no approved therapeutic drugs for clinical use. Considerable evidence indicates that various metabolic disorders play a pivotal role in the progression of MAFLD, including lipids, carbohydrates, amino acids, and micronutrients. In recent years, the medicinal properties of natural products have attracted widespread attention, and numerous studies have reported their efficacy in ameliorating metabolic disorders and subsequently alleviating MAFLD. This review aims to summarize the metabolic-associated pathological mechanisms of MAFLD, as well as the natural products that regulate metabolic pathways to alleviate MAFLD.
Collapse
Affiliation(s)
| | | | - Hong Qin
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410006, China; (Y.F.); (Z.W.)
| |
Collapse
|
7
|
Pan J, Hu Y, Pang N, Yang L. Association between Dietary Niacin Intake and Nonalcoholic Fatty Liver Disease: NHANES 2003-2018. Nutrients 2023; 15:4128. [PMID: 37836412 PMCID: PMC10574350 DOI: 10.3390/nu15194128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Evidence regarding the association between dietary niacin intake and nonalcoholic fatty liver disease (NAFLD) is limited. The objective of this study was to examine the association of dietary niacin intake with NAFLD. Subjects aged 20 years and older who participated in the National Health and Nutrition Examination Survey (NHANES) 2003-2018 were included in this study. Dietary niacin intake was assessed by two 24-h dietary recalls. NAFLD was defined using the United States fatty liver index (US-FLI). Weighted logistic regression models and restricted cubic splines were used to examine the association between dietary niacin and NAFLD. Of the 12,355 participants in this study, 4378 had NAFLD. There is no evident nonlinear relationship between dietary niacin intake and the presence of NAFLD in the restricted cubic spline regression (poverall < 0.001; pnon-linearity = 0.068). The multivariable-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for NAFLD were 0.84 (0.68-1.03), 0.80 (0.65-0.97), and 0.69 (0.55-0.85), respectively, when comparing the second, third, and fourth quartiles of niacin intake levels to the lowest quartile (ptrend = 0.001). Stratified analysis revealed that the effect of niacin intake on NAFLD varied in the group with or without hypertension (pinteraction = 0.033). In conclusion, our results indicate that higher dietary niacin intake may be associated with a lower likelihood of NAFLD.
Collapse
Affiliation(s)
- Jie Pan
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (J.P.)
| | - Yuhua Hu
- School of Public Health, Southeast University, Nanjing 210009, China
| | - Nengzhi Pang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (J.P.)
| | - Lili Yang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (J.P.)
| |
Collapse
|
8
|
Lai S, Ma Y, Hao L, Ding Q, Chang K, Zhuge H, Qiu J, Xu T, Dou X, Li S. 1-Methylnicotinamide promotes hepatic steatosis in mice: A potential mechanism in chronic alcohol-induced fatty liver disease. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159286. [PMID: 36690322 DOI: 10.1016/j.bbalip.2023.159286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Alcohol abuse and its related diseases are the major risk factors for human health. Alcohol-related liver disease (ALD) is a leading cause of morbidity and mortality worldwide. Although the mechanism of ALD has been widely investigated, liver metabolites associated with long-term alcohol intake-induced hepatic steatosis have not been well explored. In this study, we aimed to investigate the role and mechanisms of 1-methylnicotinamide (1-MNA), a metabolite during nicotinamide adenine dinucleotide (NAD+) metabolism, in the pathogenesis of ALD. C57BL/6 wild-type mice were subjected to chronic alcohol feeding with or without 1-MNA (50 mg/kg/day). Our data showed that 1-MNA administration significantly enhanced chronic alcohol consumption-induced hepatic steatosis. Mechanistic studies revealed that alcohol-increased hepatic protein levels of sterol regulatory element-binding transcription factor (SREBP-1c), a key enzyme that regulates lipid lipogenesis, were enhanced in mice administered with 1-MNA, regardless of alcohol feeding. Consistently, alcohol-increased mRNA and protein levels of hepatic diacylglycerol o-acyltransferase 2 (DGAT2) and very low-density lipoprotein receptor (VLDLR) were also exacerbated by 1-MNA administration. Alcohol-induced hepatic endoplasmic reticulum (ER) stress was enhanced by 1-MNA administration, which was evidenced by increased protein levels of binding immunoglobulin protein (BIP), phosphorylated- protein kinase r-like ER kinase (PERK), activating transcription factor 4 (ATF4), and C/EBP-homologous protein (CHOP) in the mouse liver. Overall, this study demonstrated that 1-MNA serves as a pathogenic factor in the development of ALD. Targeting liver 1-MNA levels may serve as a promising therapeutic approach for improving hepatic steatosis in ALD.
Collapse
Affiliation(s)
- Shanglei Lai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China; School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Yue Ma
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, PR China
| | - Liuyi Hao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Qinchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Kaixin Chang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Hui Zhuge
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Jiannan Qiu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Tiantian Xu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China; Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
9
|
Yang Y, Kang HJ, Gao R, Wang J, Han GW, DiBerto JF, Wu L, Tong J, Qu L, Wu Y, Pileski R, Li X, Zhang XC, Zhao S, Kenakin T, Wang Q, Stevens RC, Peng W, Roth BL, Rao Z, Liu ZJ. Structural insights into the human niacin receptor HCA2-G i signalling complex. Nat Commun 2023; 14:1692. [PMID: 36973264 PMCID: PMC10043007 DOI: 10.1038/s41467-023-37177-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
The hydroxycarboxylic acid receptor 2 (HCA2) agonist niacin has been used as treatment for dyslipidemia for several decades albeit with skin flushing as a common side-effect in treated individuals. Extensive efforts have been made to identify HCA2 targeting lipid lowering agents with fewer adverse effects, despite little being known about the molecular basis of HCA2 mediated signalling. Here, we report the cryo-electron microscopy structure of the HCA2-Gi signalling complex with the potent agonist MK-6892, along with crystal structures of HCA2 in inactive state. These structures, together with comprehensive pharmacological analysis, reveal the ligand binding mode and activation and signalling mechanisms of HCA2. This study elucidates the structural determinants essential for HCA2 mediated signalling and provides insights into ligand discovery for HCA2 and related receptors.
Collapse
Affiliation(s)
- Yang Yang
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hye Jin Kang
- Department of Pharmacology, and NIMH Psychoactive Drug Screening Program University of North Carolina Chapel Hill Medical School, Chapel Hill, NC, 27514, USA
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Ruogu Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingjing Wang
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Gye Won Han
- Departments of Biological Sciences and Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, and NIMH Psychoactive Drug Screening Program University of North Carolina Chapel Hill Medical School, Chapel Hill, NC, 27514, USA
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Jiahui Tong
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Lu Qu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Ryan Pileski
- Department of Pharmacology, and NIMH Psychoactive Drug Screening Program University of North Carolina Chapel Hill Medical School, Chapel Hill, NC, 27514, USA
- Department of Obstetrics and Gynecology, Duke University, Durham, NC, USA
| | - Xuemei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejun Cai Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Terry Kenakin
- Department of Pharmacology, and NIMH Psychoactive Drug Screening Program University of North Carolina Chapel Hill Medical School, Chapel Hill, NC, 27514, USA
| | - Quan Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | | - Wei Peng
- Innovation Center for Pathogen Research, Guangzhou Laboratory, Guangzhou, 510320, China.
| | - Bryan L Roth
- Department of Pharmacology, and NIMH Psychoactive Drug Screening Program University of North Carolina Chapel Hill Medical School, Chapel Hill, NC, 27514, USA.
| | - Zihe Rao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
10
|
Paolini E, Longo M, Meroni M, Tria G, Cespiati A, Lombardi R, Badiali S, Maggioni M, Fracanzani AL, Dongiovanni P. The I148M PNPLA3 variant mitigates niacin beneficial effects: How the genetic screening in non-alcoholic fatty liver disease patients gains value. Front Nutr 2023; 10:1101341. [PMID: 36937355 PMCID: PMC10018489 DOI: 10.3389/fnut.2023.1101341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Background The PNPLA3 p.I148M impact on fat accumulation can be modulated by nutrients. Niacin (Vitamin B3) reduced triglycerides synthesis in in vitro and in vivo NAFLD models. Objectives In this study, we aimed to investigate the niacin-I148M polymorphism crosstalk in NAFLD patients and examine niacin's beneficial effect in reducing fat by exploiting hepatoma cells with different PNPLA3 genotype. Design We enrolled 172 (Discovery cohort) and 358 (Validation cohort) patients with non-invasive and histological diagnosis of NAFLD, respectively. Dietary niacin was collected from food diary, while its serum levels were quantified by ELISA. Hepatic expression of genes related to NAD metabolism was evaluated by RNAseq in bariatric NAFLD patients (n = 183; Transcriptomic cohort). Hep3B (148I/I) and HepG2 (148M/M) cells were silenced (siHep3B) or overexpressed (HepG2I148+ ) for PNPLA3, respectively. Results In the Discovery cohort, dietary niacin was significantly reduced in patients with steatosis ≥ 2 and in I148M carriers. Serum niacin was lower in subjects carrying the G at risk allele and negatively correlated with obesity. The latter result was confirmed in the Validation cohort. At multivariate analysis, the I148M polymorphism was independently associated with serum niacin, supporting that it may be directly involved in the modulation of its availability. siHep3B cells showed an impaired NAD biosynthesis comparable to HepG2 cells which led to lower niacin efficacy in clearing fat, supporting a required functional protein to guarantee its effectiveness. Conversely, the restoration of PNPLA3 Wt protein in HepG2I148+ cells recovered the NAD pathway and improved niacin efficacy. Finally, niacin inhibited de novo lipogenesis through the ERK1/2/AMPK/SIRT1 pathway, with the consequent SREBP1-driven PNPLA3 reduction only in Hep3B and HepG2I148M+ cells. Conclusions We demonstrated a niacin-PNPLA3 I148M interaction in NAFLD patients which possibly pave the way to vitamin B3 supplementation in those with a predisposing genetic background.
Collapse
Affiliation(s)
- Erika Paolini
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giada Tria
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Annalisa Cespiati
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milan, Italy
| | - Rosa Lombardi
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milan, Italy
| | - Sara Badiali
- Department of Surgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Maggioni
- Department of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Ludovica Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milan, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- *Correspondence: Paola Dongiovanni,
| |
Collapse
|
11
|
Shen X, Li G, Wang L, Yu H, Zhou L, Deng H, Wang N, Lai C, Zhou W, Gao Y. Quantification of Acipimox in Plasma and Tissues by LC-MS/MS: Application to Pharmacokinetic Comparison between Normoxia and Hypoxia. Molecules 2022; 27:6413. [PMID: 36234950 PMCID: PMC9573116 DOI: 10.3390/molecules27196413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
This study aimed to evaluate the pharmacokinetics of acipimox in rats under simulated high altitude hypoxia conditions. A sensitive and reliable LC-MS/MS method has been established for the quantitation of acipimox in rat plasma and tissue homogenate and validated according to the guidelines of the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA). Western blotting and enzyme linked immunosorbent assay (ELISA) were used to investigate the expression of lipid metabolism-related proteins and free fatty acid (FFA) levels, respectively. Cell viability was detected using a Cell Counting kit-8 assay (CCK-8). The method was then successfully applied in a pharmacokinetic comparison between normoxic and hypoxic rats. The results indicated that there were significant differences in the main pharmacokinetics parameters of acipimox between normoxic and hypoxic rats. HCAR2 expression in the hypoxia group was upregulated compared to that in the normoxia group and the levels of FFA decreased more in the hypoxia group. Under the hypoxia condition, the proliferation of HK2 cells was inhibited with increasing concentrations of acipimox. The results provide important and valuable information for the safety and efficacy of acipimox, which indicated that the dosage of acipimox might be adjusted appropriately during clinical medication in hypoxia.
Collapse
Affiliation(s)
- Xin Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Gaofu Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Libin Wang
- School of Medicine, Shaanxi Energy Institute, Xianyang 712000, China
| | - Huijin Yu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huifang Deng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ningning Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chengcai Lai
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
12
|
Du W, Wang L. The Crosstalk Between Liver Sinusoidal Endothelial Cells and Hepatic Microenvironment in NASH Related Liver Fibrosis. Front Immunol 2022; 13:936196. [PMID: 35837401 PMCID: PMC9274003 DOI: 10.3389/fimmu.2022.936196] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic liver injury can be caused by many factors, including virus infection, alcohol intake, cholestasis and abnormal fat accumulation. Nonalcoholic steatohepatitis (NASH) has become the main cause of liver fibrosis worldwide. Recently, more and more evidences show that hepatic microenvironment is involved in the pathophysiological process of liver fibrosis induced by NASH. Hepatic microenvironment consists of various types of cells and intercellular crosstalk among different cells in the liver sinusoids. Liver sinusoidal endothelial cells (LSECs), as the gatekeeper of liver microenvironment, play an irreplaceable role in the homeostasis and alterations of liver microenvironment. Many recent studies have reported that during the progression of NASH to liver fibrosis, LSECs are involved in various stages mediated by a series of mechanisms. Therefore, here we review the key role of crosstalk between LSECs and hepatic microenvironment in the progression of NASH to liver fibrosis (steatosis, inflammation, and fibrosis), as well as promising therapeutic strategies targeting LSECs.
Collapse
Affiliation(s)
- Wei Du
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Luo C, Yang C, Wang X, Chen Y, Liu X, Deng H. Nicotinamide reprograms adipose cellular metabolism and increases mitochondrial biogenesis to ameliorate obesity. J Nutr Biochem 2022; 107:109056. [DOI: 10.1016/j.jnutbio.2022.109056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/22/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022]
|
14
|
Moutinho M, Puntambekar SS, Tsai AP, Coronel I, Lin PB, Casali BT, Martinez P, Oblak AL, Lasagna-Reeves CA, Lamb BT, Landreth GE. The niacin receptor HCAR2 modulates microglial response and limits disease progression in a mouse model of Alzheimer's disease. Sci Transl Med 2022; 14:eabl7634. [PMID: 35320002 PMCID: PMC10161396 DOI: 10.1126/scitranslmed.abl7634] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Increased dietary intake of niacin has been correlated with reduced risk of Alzheimer's disease (AD). Niacin serves as a high-affinity ligand for the receptor HCAR2 (GPR109A). In the brain, HCAR2 is expressed selectively by microglia and is robustly induced by amyloid pathology in AD. The genetic inactivation of Hcar2 in 5xFAD mice, a model of AD, results in impairment of the microglial response to amyloid deposition, including deficits in gene expression, proliferation, envelopment of amyloid plaques, and uptake of amyloid-β (Aβ), ultimately leading to exacerbation of amyloid burden, neuronal loss, and cognitive deficits. In contrast, activation of HCAR2 with an FDA-approved formulation of niacin (Niaspan) in 5xFAD mice leads to reduced plaque burden and neuronal dystrophy, attenuation of neuronal loss, and rescue of working memory deficits. These data provide direct evidence that HCAR2 is required for an efficient and neuroprotective response of microglia to amyloid pathology. Administration of Niaspan potentiates the HCAR2-mediated microglial protective response and consequently attenuates amyloid-induced pathology, suggesting that its use may be a promising therapeutic approach to AD that specifically targets the neuroimmune response.
Collapse
Affiliation(s)
- Miguel Moutinho
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shweta S Puntambekar
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andy P Tsai
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Israel Coronel
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Peter B Lin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brad T Casali
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Pablo Martinez
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Adrian L Oblak
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Cristian A Lasagna-Reeves
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gary E Landreth
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
15
|
Wang H, Zhu S, Wu X, Liu Y, Ge J, Wang Q, Gu L. NAMPT reduction-induced NAD + insufficiency contributes to the compromised oocyte quality from obese mice. Aging Cell 2021; 20:e13496. [PMID: 34662475 PMCID: PMC8590097 DOI: 10.1111/acel.13496] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/14/2021] [Accepted: 09/12/2021] [Indexed: 12/27/2022] Open
Abstract
Maternal obesity is associated with multiple adverse reproductive outcomes, whereas the underlying molecular mechanisms are still not fully understood. Here, we found the reduced nicotinamide phosphoribosyl transferase (NAMPT) expression and lowered nicotinamide adenine dinucleotide (NAD+) content in oocytes from obese mice. Next, by performing morpholino knockdown assay and pharmacological inhibition, we revealed that NAMPT deficiency not only severely disrupts maturational progression and meiotic apparatus, but also induces the metabolic dysfunction in oocytes. Furthermore, overexpression analysis demonstrated that NAMPT insufficiency induced NAD+ loss contributes to the compromised developmental potential of oocytes and early embryos from obese mice. Importantly, in vitro supplement and in vivo administration of nicotinic acid (NA) was able to ameliorate the obesity‐associated meiotic defects and oxidative stress in oocytes. Our results indicate a role of NAMPT in modulating oocyte meiosis and metabolism, and uncover the beneficial effects of NA treatment on oocyte quality from obese mice.
Collapse
Affiliation(s)
- Hengjie Wang
- College of Animal Science & Technology Nanjing Agricultural University Nanjing China
| | - Shuai Zhu
- State Key Laboratory of Reproductive Medicine Suzhou Municipal Hospital Nanjing Medical University Nanjing China
| | - Xinghan Wu
- Department of Medical Genetics Maternal and Child Health Hospital of Hunan Province Changsha China
| | - Yuan Liu
- College of Animal Science & Technology Nanjing Agricultural University Nanjing China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine Suzhou Municipal Hospital Nanjing Medical University Nanjing China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine Suzhou Municipal Hospital Nanjing Medical University Nanjing China
| | - Ling Gu
- College of Animal Science & Technology Nanjing Agricultural University Nanjing China
| |
Collapse
|
16
|
Kumar S, Duan Q, Wu R, Harris EN, Su Q. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis. Adv Drug Deliv Rev 2021; 176:113869. [PMID: 34280515 PMCID: PMC11792083 DOI: 10.1016/j.addr.2021.113869] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disease that encompasses a spectrum of pathological conditions, ranging from simple steatosis (NAFL), nonalcoholic steatohepatitis (NASH), fibrosis/cirrhosis which can further progress to hepatocellular carcinoma and liver failure. The progression of NAFL to NASH and liver fibrosis is closely associated with a series of liver injury resulting from lipotoxicity, oxidative stress, redox imbalance (excessive nitric oxide), ER stress, inflammation and apoptosis that occur sequentially in different liver cells which ultimately leads to the activation of liver regeneration and fibrogenesis, augmenting collagen and extracellular matrix deposition and promoting liver fibrosis and cirrhosis. Type 2 diabetes is a significant risk factor in NAFLD development by accelerating liver damage. Here, we overview recent findings from human study and animal models on the pathophysiological communication among hepatocytes (HCs), Kupffer cells (KCs), hepatic stellate cells (HSCs) and liver sinusoidal endothelial cells (LSECs) during the disease development. The mechanisms of crucial signaling pathways, including Toll-like receptor, TGFβ and hedgehog mediated hepatic injury are also discussed. We further highlight the potentials of precisely targeting hepatic individual cell-type using nanotechnology as therapeutic strategy for the treatment of NASH and liver fibrosis.
Collapse
Affiliation(s)
- Santosh Kumar
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Qihua Duan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Rongxue Wu
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, USA
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | - Qiaozhu Su
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom.
| |
Collapse
|
17
|
Dall M, Hassing AS, Treebak JT. NAD + and NAFLD - caution, causality and careful optimism. J Physiol 2021; 600:1135-1154. [PMID: 33932956 DOI: 10.1113/jp280908] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing worldwide, and new treatments are sorely needed. Nicotinamide adenine dinucleotide (NAD+ ) has been proposed as a potential target to prevent and reverse NAFLD. NAD+ is an important redox factor for energy metabolism and is used as a substrate by a range of enzymes, including sirtuins (SIRT), which regulates histone acetylation, transcription factor activity and mitochondrial function. NAD+ is also a precursor for reduced nicotinamide adenine dinucleotide phosphate (NADPH), which is an important component of the antioxidant defense system. NAD+ precursors such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN) are available as over-the-counter dietary supplements, and oral supplementation with these precursors increases hepatic NAD+ levels and prevents hepatic lipid accumulation in pre-clinical models of NAFLD. NAD+ precursors have also been found to improve hepatic mitochondrial function and decrease oxidative stress in pre-clinical NAFLD models. NAD+ repletion also prevents NAFLD progression to non-alcoholic steatohepatitis (NASH), as NAD+ precursor supplementation is associated with decreased hepatic stellate cell activation, and decreased fibrosis. However, initial clinical trials have only shown modest effects when NAD+ precursors were administrated to people with obesity. We review the available pre-clinical investigations of NAD+ supplementation for targeting NAFLD, and discuss how data from the first clinical trials can be reconciled with observations from preclinical research.
Collapse
Affiliation(s)
- Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna S Hassing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Hintikka J, Lensu S, Mäkinen E, Karvinen S, Honkanen M, Lindén J, Garrels T, Pekkala S, Lahti L. Xylo-Oligosaccharides in Prevention of Hepatic Steatosis and Adipose Tissue Inflammation: Associating Taxonomic and Metabolomic Patterns in Fecal Microbiomes with Biclustering. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4049. [PMID: 33921370 PMCID: PMC8068902 DOI: 10.3390/ijerph18084049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 12/15/2022]
Abstract
We have shown that prebiotic xylo-oligosaccharides (XOS) increased beneficial gut microbiota (GM) and prevented high fat diet-induced hepatic steatosis, but the mechanisms associated with these effects are not clear. We studied whether XOS affects adipose tissue inflammation and insulin signaling, and whether the GM and fecal metabolome explain associated patterns. XOS was supplemented or not with high (HFD) or low (LFD) fat diet for 12 weeks in male Wistar rats (n = 10/group). Previously analyzed GM and fecal metabolites were biclustered to reduce data dimensionality and identify interpretable groups of co-occurring genera and metabolites. Based on our findings, biclustering provides a useful algorithmic method for capturing such joint signatures. On the HFD, XOS-supplemented rats showed lower number of adipose tissue crown-like structures, increased phosphorylation of AKT in liver and adipose tissue as well as lower expression of hepatic miRNAs. XOS-supplemented rats had more fecal glycine and less hypoxanthine, isovalerate, branched chain amino acids and aromatic amino acids. Several bacterial genera were associated with the metabolic signatures. In conclusion, the beneficial effects of XOS on hepatic steatosis involved decreased adipose tissue inflammation and likely improved insulin signaling, which were further associated with fecal metabolites and GM.
Collapse
Affiliation(s)
- Jukka Hintikka
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland; (S.L.); (E.M.); (S.K.); (M.H.); (S.P.)
| | - Sanna Lensu
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland; (S.L.); (E.M.); (S.K.); (M.H.); (S.P.)
- Department of Psychology, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Elina Mäkinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland; (S.L.); (E.M.); (S.K.); (M.H.); (S.P.)
| | - Sira Karvinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland; (S.L.); (E.M.); (S.K.); (M.H.); (S.P.)
| | - Marjaana Honkanen
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland; (S.L.); (E.M.); (S.K.); (M.H.); (S.P.)
| | - Jere Lindén
- Veterinary Pathology and Parasitology and Finnish Centre for Laboratory Animal Pathology/HiLIFE, University of Helsinki, FIN-00014 Helsinki, Finland;
| | - Tim Garrels
- Department of Computing, University of Turku, FI-20014 Turku, Finland; (T.G.); (L.L.)
| | - Satu Pekkala
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland; (S.L.); (E.M.); (S.K.); (M.H.); (S.P.)
- Department of Clinical Microbiology, Turku University Hospital, FI-20521 Turku, Finland
| | - Leo Lahti
- Department of Computing, University of Turku, FI-20014 Turku, Finland; (T.G.); (L.L.)
| |
Collapse
|
19
|
Cimmino F, Catapano A, Trinchese G, Cavaliere G, Culurciello R, Fogliano C, Penna E, Lucci V, Crispino M, Avallone B, Pizzo E, Mollica MP. Dietary Micronutrient Management to Treat Mitochondrial Dysfunction in Diet-Induced Obese Mice. Int J Mol Sci 2021; 22:2862. [PMID: 33799812 PMCID: PMC8000238 DOI: 10.3390/ijms22062862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 02/04/2023] Open
Abstract
Obesity and associated metabolic disturbances, which have been increasing worldwide in recent years, are the consequences of unhealthy diets and physical inactivity and are the main factors underlying non-communicable diseases (NCD). These diseases are now responsible for about three out of five deaths worldwide, and it has been shown that they depend on mitochondrial dysfunction, systemic inflammation and oxidative stress. It was also demonstrated that several nutritional components modulating these processes are able to influence metabolic homeostasis and, consequently, to prevent or delay the onset of NCD. An interesting combination of nutraceutical substances, named DMG-gold, has been shown to promote metabolic and physical wellness. The aim of this research was to investigate the metabolic, inflammatory and oxidative pathways modulated by DMG-gold in an animal model with diet-induced obesity. Our data indicate that DMG-gold decreases the metabolic efficiency and inflammatory state and acts as an antioxidant and detoxifying agent, modulating mitochondrial functions. Therefore, DMG-gold is a promising candidate in the prevention/treatment of NCD.
Collapse
Affiliation(s)
- Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Gina Cavaliere
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Rosanna Culurciello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Eduardo Penna
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Valeria Lucci
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
- IEOS, Institute of Experimental Endocrinology and Oncology “G. Salvatore”—National Research Council, 80131 Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| |
Collapse
|
20
|
Li Z, McCafferty KJ, Judd RL. Role of HCA 2 in Regulating Intestinal Homeostasis and Suppressing Colon Carcinogenesis. Front Immunol 2021; 12:606384. [PMID: 33708203 PMCID: PMC7940178 DOI: 10.3389/fimmu.2021.606384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/05/2021] [Indexed: 12/23/2022] Open
Abstract
Hydroxycarboxylic acid receptor 2 (HCA2) is vital for sensing intermediates of metabolism, including β-hydroxybutyrate and butyrate. It also regulates profound anti-inflammatory effects in various tissues, indicating that HCA2 may serve as an essential therapeutic target for mediating inflammation-associated diseases. Butyrate and niacin, endogenous and exogenous ligands of HCA2, have been reported to play an essential role in maintaining intestinal homeostasis. HCA2, predominantly expressed in diverse immune cells, is also present in intestinal epithelial cells (IECs), where it regulates the intricate communication network between diet, microbiota, and immune cells. This review summarizes the physiological role of HCA2 in intestinal homeostasis and its pathological role in intestinal inflammation and cancer.
Collapse
Affiliation(s)
- Zhuoyue Li
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Kayleen J McCafferty
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Robert L Judd
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
21
|
Wang J, Cao Y, Fu S, Li W, Ge Y, Cheng J, Liu J. Niacin inhibits the synthesis of milk fat in BMECs through the GPR109A-mediated downstream signalling pathway. Life Sci 2020; 260:118415. [PMID: 32918974 DOI: 10.1016/j.lfs.2020.118415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
AIMS Previous studies have shown the effect of niacin on dairy cow production, but no study on the role of niacin in milk fat synthesis has been performed. Therefore, the purpose of this study was to examine the effect of niacin on milk fat synthesis and its specific mechanism in BMECs. MAIN METHODS In this study, 0.5 mM niacin, a GPR109A-inhibiting plasmid, and an AMPK inhibitor were added to BMECs. Milk fat was measured by a triglyceride kit and BODIPY staining. The protein expression of GPR109A, FASN, SREBP1, AMPK, ACC, mTOR and S6K was measured by Western blotting. The gene expression of GPR109A, FASN, and SREBP1 was analysed by RT-PCR. KEY FINDINGS Our results showed that 0.5 mM niacin could significantly reduce milk fat synthesis in BMECs and activate the AMPK/ACC signalling pathway by stimulating GPR109A, reducing the protein expression of p-mTOR and p-S6K, and reducing the expression of SREBP1 and FASN in BMECs. SIGNIFICANCE The present study clarified the effect of niacin on milk fat synthesis. The results show that niacin inhibits the synthesis of milk fat in BMECs through the downstream signalling pathway mediated by GPR109A. The function of niacin has been expanded, and knowledge of the new mechanism and signalling pathway will help improve the biosynthesis of milk fat.
Collapse
Affiliation(s)
- Jiaxin Wang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yu Cao
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wen Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yusong Ge
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ji Cheng
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
22
|
Mirtazapine Reduces Adipocyte Hypertrophy and Increases Glucose Transporter Expression in Obese Mice. Animals (Basel) 2020; 10:ani10081423. [PMID: 32824002 PMCID: PMC7459487 DOI: 10.3390/ani10081423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 01/19/2023] Open
Abstract
Simple Summary Mirtazapine, a tetracyclic antidepressant, acts through noradrenergic and specific serotonergic systems. Consequently, it was recently applied in major depressive disorder treatment. Moreover, because mirtazapine may have effective glucose control function, its mechanism of action warrants further investigation. In our study, we examined how mirtazapine affects metabolic parameters, insulin profiles, glucose metabolism, and obesity changes in high-fat diet-fed C57BL6/J mice. Our results indicated that compared with untreated mice, mirtazapine-treated obese mice had lower insulin levels, daily food efficiency, body weight, serum triglyceride levels, aspartate aminotransferase levels, liver and epididymal fat pad weight, and fatty acid regulation marker expression. Moreover, the blood glucose levels and area under the curve for glucose levels observed over a 120 min assessment period were lower in the treated mice, but the insulin sensitivity and glucose transporter 4 expression levels were higher in these mice. They also demonstrated a considerable decrease in fatty liver scores and mean fat cell size in the epididymal white adipose tissue, paralleling adenosine monophosphate (AMP)-activated protein kinase expression activation. In conclusion, mirtazapine administration may alleviate type 2 diabetes mellitus with hyperglycemia. Abstract Metabolic syndrome is known to engender type 2 diabetes as well as some cardiac, cerebrovascular, and kidney diseases. Mirtazapine—an atypical second-generation antipsychotic drug with less severe side effects than atypical first-generation antipsychotics—may have positive effects on blood glucose levels and obesity. In our executed study, we treated male high-fat diet (HFD)-fed C57BL/6J mice with mirtazapine (10 mg/kg/day mirtazapine) for 4 weeks to understand its antiobesity effects. We noted these mice to exhibit lower insulin levels, daily food efficiency, body weight, serum triglyceride levels, aspartate aminotransferase levels, liver and epididymal fat pad weight, and fatty acid regulation marker expression when compared with their counterparts (i.e., HFD-fed control mice). Furthermore, we determined a considerable drop in fatty liver scores and mean fat cell size in the epididymal white adipose tissue in the treated mice, corresponding to AMP-activated protein kinase expression activation. Notably, the treated mice showed lower glucose tolerance and blood glucose levels, but higher glucose transporter 4 expression. Overall, the aforementioned findings signify that mirtazapine could reduce lipid accumulation and thus prevent HFD-induced increase in body weight. In conclusion, mirtazapine may be useful in body weight control and antihyperglycemia therapy.
Collapse
|
23
|
Hepatocyte Injury and Hepatic Stem Cell Niche in the Progression of Non-Alcoholic Steatohepatitis. Cells 2020; 9:cells9030590. [PMID: 32131439 PMCID: PMC7140508 DOI: 10.3390/cells9030590] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by lipid accumulation in hepatocytes in the absence of excessive alcohol consumption. The global prevalence of NAFLD is constantly increasing. NAFLD is a disease spectrum comprising distinct stages with different prognoses. Non-alcoholic steatohepatitis (NASH) is a progressive condition, characterized by liver inflammation and hepatocyte ballooning, with or without fibrosis. The natural history of NAFLD is negatively influenced by NASH onset and by the progression towards advanced fibrosis. Pathogenetic mechanisms and cellular interactions leading to NASH and fibrosis involve hepatocytes, liver macrophages, myofibroblast cell subpopulations, and the resident progenitor cell niche. These cells are implied in the regenerative trajectories following liver injury, and impairment or perturbation of these mechanisms could lead to NASH and fibrosis. Recent evidence underlines the contribution of extra-hepatic organs/tissues (e.g., gut, adipose tissue) in influencing NASH development by interacting with hepatic cells through various molecular pathways. The present review aims to summarize the role of hepatic parenchymal and non-parenchymal cells, their mutual influence, and the possible interactions with extra-hepatic tissues and organs in the pathogenesis of NAFLD.
Collapse
|
24
|
Reference Gene and Protein Expression Levels in Two Different NAFLD Mouse Models. Gastroenterol Res Pract 2020; 2020:1093235. [PMID: 32089674 PMCID: PMC7023843 DOI: 10.1155/2020/1093235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
The expression levels of some reference genes and proteins are used for data normalization and quantification. However, these levels can change in response to experimental conditions or treatments. Aim. The aim of this work was to evaluate reference gene and protein expression in models of nonalcoholic fatty liver disease, using mice fed with a high-fat diet (HFD) and mice that are genetically obese (ob/ob). Main Methods. Histological staining techniques were used to verify the morphology and quantify the amount of lipid droplets present in the liver. Real-time polymerase chain reaction and immunoblotting were employed for monitoring protein expression and gene expression levels, respectively. Key Finding. The results showed that there was a substantial increase in the amount of lipid droplets in the livers of HFD and ob/ob animals when compared to the standard diet (SD) group. There was an observed reduction in the expression of β-actin (10%), α-tubulin (6%), GAPDH (19%), and RPL3 (15%) genes when comparing the ob/ob group to the HFD group. Additionally, the ob/ob mice displayed GAPDH protein levels that were substantially, but not significantly, reduced when compared to SD. Significance. It was concluded that there are slight differences in the expression levels of reference genes and proteins in these two NAFLD animal models, and researchers should consider these alterations when working with these models.
Collapse
|
25
|
Chen L, Zhang X, Zhang L, Zheng D. Effect of Saxagliptin, a Dipeptidyl Peptidase 4 Inhibitor, on Non-Alcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2020; 13:3507-3518. [PMID: 33116702 PMCID: PMC7547785 DOI: 10.2147/dmso.s262284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND AIM Non-alcoholic fatty liver disease (NAFLD) represents a broad spectrum of chronic liver disease characterized by aberrant accumulation of triglycerides (TG) in hepatocytes without excessive alcohol consumption. Hepatic lipotoxicity derived from overaccumulation of free fatty acids is considered as one of the typical hallmarks of NAFLD. Insulin resistance (IR) and chronic inflammation are widely recognized as the key etiological factors associated with NAFLD. Dipeptidyl peptidase 4 inhibitor (DPP4i) is a novel pharmacological agent extensively applied in the treatment of Type 2 Diabetes Mellitus (T2DM) for decades which also have a liver protective effect. METHODS In order to invest the therapeutic efficiency and underlying mechanism of DPP4i saxagliptin, we used high-fat diet (HFD) and streptozotocin-induced NAFLD treated with saxagliptin. Biochemical, histomorphological, genetic and protein expression of related pathways were investigated. RESULTS Fasting blood glucose (FBG), TG, total cholesterol (TC), and low-density lipoprotein cholesterin significantly increased in NAFLD group, which also exhibited severe steatosis. Other remarkable findings were hyperinsulinemia, increased DPP4, PTP-1B and TNF-α level and decreased GLP-1, ACOX-1, CPT-1A expression, concomitant with liver DPP4 expression enhancement and serum DPP4 elevation. These undesirable consequences were alleviated by saxagliptin to a certain degree. CONCLUSION DPP4i saxagliptin improves NAFLD by ameliorating IR, inflammation, downregulation of hepatic DPP4 and sDPP4, as well as subsequent steatosis. The elevation of hepatic DPP4 and sDPP4 and succedent post-treatment decrease suggested that DPP4 may involve in the development of NAFLD. The anti-lipotoxic effect of DPP4i may involve the activation of CPT1A and ACOX1 related β-oxidation signaling pathway suppression of TNF-α mediated inflammatory and PTP-1B. The results covered in this article showed that saxagliptin affects many aspects of the pathological characteristics of NAFLD, suggesting that DPP4i saxagliptin may offer a novel therapeutic option for NAFLD.
Collapse
Affiliation(s)
- Lin Chen
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Xiujuan Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Li Zhang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Dongmei Zheng
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Correspondence: Dongmei Zheng Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province250021, People’s Republic of ChinaTel + 86 531 68776375 Email
| |
Collapse
|