1
|
Van der Eecken H, Joniau S, Berghen C, Rans K, De Meerleer G. The Use of Soy Isoflavones in the Treatment of Prostate Cancer: A Focus on the Cellular Effects. Nutrients 2023; 15:4856. [PMID: 38068715 PMCID: PMC10708402 DOI: 10.3390/nu15234856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
A possible link between diet and cancer has long been considered, with growing interest in phytochemicals. Soy isoflavones have been associated with a reduced risk of prostate cancer in Asian populations. Of the soy isoflavones, genistein and daidzein, in particular, have been studied, but recently, equol as a derivative has gained interest because it is more biologically potent. Different mechanisms of action have already been studied for the different isoflavones in multiple conditions, such as breast, gastrointestinal, and urogenital cancers. Many of these mechanisms of action could also be demonstrated in the prostate, both in vitro and in vivo. This review focuses on the known mechanisms of action at the cellular level and compares them between genistein, daidzein, and equol. These include androgen- and estrogen-mediated pathways, regulation of the cell cycle and cell proliferation, apoptosis, angiogenesis, and metastasis. In addition, antioxidant and anti-inflammatory effects and epigenetics are addressed.
Collapse
Affiliation(s)
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Charlien Berghen
- Department of Radiation Oncology, University Hospitals Leuven, 3000 Leuven, Belgium; (C.B.); (K.R.); (G.D.M.)
| | - Kato Rans
- Department of Radiation Oncology, University Hospitals Leuven, 3000 Leuven, Belgium; (C.B.); (K.R.); (G.D.M.)
| | - Gert De Meerleer
- Department of Radiation Oncology, University Hospitals Leuven, 3000 Leuven, Belgium; (C.B.); (K.R.); (G.D.M.)
| |
Collapse
|
2
|
Isaacs JT, Dalrymple SL, Antony L, Rosen DM, Coleman IM, Nelson PS, Kostova M, Murray IA, Perdew GH, Denmeade SR, Akinboye ES, Brennen WN. Third generation quinoline-3-carboxamide transcriptional disrupter of HDAC4, HIF-1α, and MEF-2 signaling for metastatic castration-resistant prostate cancer. Prostate 2023; 83:1470-1493. [PMID: 37559436 PMCID: PMC10559933 DOI: 10.1002/pros.24606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND The quinoline-3-carboxamide, Tasquinimod (TasQ), is orally active as a maintenance therapy with an on-target mechanism-of-action via allosteric binding to HDAC4. This prevents formation of the HDAC4/NCoR1/HDAC3 complex, disrupting HIF-1α transcriptional activation and repressing MEF-2 target genes needed for adaptive survival signaling in the compromised tumor micro environment. In phase 3 clinical testing against metastatic castration-resistant prostate cancer(mCRPC), TasQ (1 mg/day) increased time-to-progression, but not overall survival. METHODS TasQ analogs were chemically synthesized and tested for activity compared to the parental compound. These included HDAC4 enzymatic assays, qRT-PCR and western blot analyses of gene and protein expression following treatment, in vitro and in vivo efficacy against multiple prostate cancer models including PDXs, pharmacokinetic analyses,AHR binding and agonist assays, SPR analyses of binding to HDAC4 and NCoR1, RNAseq analysis of in vivo tumors, 3D endothelial sprouting assays, and a targeted kinase screen. Genetic knockout or knockdown controls were used when appropriate. RESULTS Here, we document that, on this regimen (1 mg/day), TasQ blood levels are 10-fold lower than the optimal concentration (≥2 μM) needed for anticancer activity, suggesting higher daily doses are needed. Unfortunately, we also demonstrate that TasQ is an arylhydrocarbon receptor (AHR) agonist, which binds with an EC50 of 1 μM to produce unwanted off-target side effects. Therefore, we screened a library of TasQ analogsto maximize on-target versus off-target activity. Using this approach, we identified ESATA-20, which has ~10-fold lower AHR agonism and 5-fold greater potency against prostate cancer patient-derived xenografts. CONCLUSION This increased therapeuticindex nominates ESATA-20 as a lead candidate forclinical development as an orally active third generation quinoline-3-carboxamide analog thatretains its on-target ability to disrupt HDAC4/HIF-1α/MEF-2-dependent adaptive survival signaling in the compromisedtumor microenvironment found in mCRPC.
Collapse
Affiliation(s)
- John T. Isaacs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susan L. Dalrymple
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
| | - Lizamma Antony
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
| | - D. Marc Rosen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
| | - Ilsa M. Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Peter S. Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Maya Kostova
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
| | - Iain A. Murray
- Center for Molecular Toxicology and Carcinogenesis and the Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA
| | - Gary H. Perdew
- Center for Molecular Toxicology and Carcinogenesis and the Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA
| | - Samuel R. Denmeade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emmanuel S. Akinboye
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
| | - W. Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Khoury W, Trus R, Chen X, Baghaie L, Clark M, Szewczuk MR, El-Diasty M. Parsimonious Effect of Pentoxifylline on Angiogenesis: A Novel Pentoxifylline-Biased Adenosine G Protein-Coupled Receptor Signaling Platform. Cells 2023; 12:cells12081199. [PMID: 37190108 DOI: 10.3390/cells12081199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Angiogenesis is the physiological process of developing new blood vessels to facilitate the delivery of oxygen and nutrients to meet the functional demands of growing tissues. It also plays a vital role in the development of neoplastic disorders. Pentoxifylline (PTX) is a vasoactive synthetic methyl xanthine derivative used for decades to manage chronic occlusive vascular disorders. Recently, it has been proposed that PTX might have an inhibitory effect on the angiogenesis process. Here, we reviewed the modulatory effects of PTX on angiogenesis and its potential benefits in the clinical setting. Twenty-two studies met the inclusion and exclusion criteria. While sixteen studies demonstrated that pentoxifylline had an antiangiogenic effect, four suggested it had a proangiogenic effect, and two other studies showed it did not affect angiogenesis. All studies were either in vivo animal studies or in vitro animal and human cell models. Our findings suggest that pentoxifylline may affect the angiogenic process in experimental models. However, there is insufficient evidence to establish its role as an anti-angiogenesis agent in the clinical setting. These gaps in our knowledge regarding how pentoxifylline is implicated in host-biased metabolically taxing angiogenic switch may be via its adenosine A2BAR G protein-coupled receptor (GPCR) mechanism. GPCR receptors reinforce the importance of research to understand the mechanistic action of these drugs on the body as promising metabolic candidates. The specific mechanisms and details of the effects of pentoxifylline on host metabolism and energy homeostasis remain to be elucidated.
Collapse
Affiliation(s)
- William Khoury
- School of Medicine, Queen's University, Kingston, ON K7L 3L4, Canada
| | - Ryan Trus
- Faculty of Arts and Science, Queen's University, Kingston, ON K7L 3N9, Canada
- School of Medicine, The Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Xingyu Chen
- School of Medicine, Queen's University, Kingston, ON K7L 3L4, Canada
| | - Leili Baghaie
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Mira Clark
- Faculty of Arts and Science, Queen's University, Kingston, ON K7L 3N9, Canada
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Myron R Szewczuk
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Mohammad El-Diasty
- Division of Cardiac Surgery, Queen's University, Kingston, ON K7L 2V7, Canada
| |
Collapse
|
4
|
Gallazzi M, Baci D, Mortara L, Bosi A, Buono G, Naselli A, Guarneri A, Dehò F, Capogrosso P, Albini A, Noonan DM, Bruno A. Prostate Cancer Peripheral Blood NK Cells Show Enhanced CD9, CD49a, CXCR4, CXCL8, MMP-9 Production and Secrete Monocyte-Recruiting and Polarizing Factors. Front Immunol 2021; 11:586126. [PMID: 33569050 PMCID: PMC7868409 DOI: 10.3389/fimmu.2020.586126] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells, effector lymphocytes of the innate immunity, have been shown to be altered in several cancers, both at tissue and peripheral levels. We have shown that in Non-Small Cell Lung Cancer (NSCLC) and colon cancer, tumour associated circulating NK (TA-NK) and tumour infiltrating NK (TI-NK) exhibit pro-angiogenic phenotype/functions. However, there is still a lack of knowledge concerning the phenotype of peripheral blood (PB) NK (pNK) cells in prostate cancer (PCa). Here, we phenotypically and functionally characterized pNK from PCa patients (PCa TA-NKs) and investigated their interactions with endothelial cells and monocytes/macrophages. NK cell subset distribution in PB of PCa patients was investigated, by multicolor flow cytometry, for surface antigens expression. Protein arrays were performed to characterize the secretome on FACS-sorted pNK cells. Conditioned media (CM) from FACS-sorted PCa pTA-NKs were used to determine their ability to induce pro-inflammatory/pro-angiogenic phenotype/functions in endothelial cells, monocytes, and macrophages. CM from three different PCa (PC-3, DU-145, LNCaP) cell lines, were used to assess their effects on human NK cell polarization in vitro, by multicolor flow cytometry. We found that PCa pTA-NKs acquire the CD56brightCD9+CD49a+CXCR4+ phenotype, increased the expression of markers of exhaustion (PD-1, TIM-3) and are impaired in their degranulation capabilities. Similar effects were observed on healthy donor-derived pNK cells, exposed to conditioned media of three different PCa cell lines, together with increased production of pro-inflammatory chemokines/chemokine receptors CXCR4, CXCL8, CXCL12, reduced production of TNFα, IFNγ and Granzyme-B. PCa TA-NKs released factors able to support inflammatory angiogenesis in an in vitro model and increased the expression of CXCL8, ICAM-1, and VCAM-1 mRNA in endothelial cells. Secretome analysis revealed the ability of PCa TA-NKs to release pro-inflammatory cytokines/chemokines involved in monocyte recruitment and M2-like polarization. Finally, CMs from PCa pTA-NKs recruit THP-1 and peripheral blood CD14+ monocyte and polarize THP-1 and peripheral blood CD14+ monocyte-derived macrophage towards M2-like/TAM macrophages. Our results show that PCa pTA-NKs acquire properties related to the pro-inflammatory angiogenesis in endothelial cells, recruit monocytes and polarize macrophage to an M2-like type phenotype. Our data provides a rationale for a potential use of pNK profiling in PCa patients.
Collapse
Affiliation(s)
- Matteo Gallazzi
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Denisa Baci
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Annalisa Bosi
- Laboratory of Pharmacology, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | - Angelo Naselli
- Unit of Urology, San Giuseppe Hospital, IRCCS MultiMedica, Milan, Italy
| | - Andrea Guarneri
- Unit of Urology, San Giuseppe Hospital, IRCCS MultiMedica, Milan, Italy
| | - Federico Dehò
- S.C. of Urology, ASST Settelaghi, Ospedale di Circolo e Fondazione Macchi, Varese, Italy
| | - Paolo Capogrosso
- S.C. of Urology, ASST Settelaghi, Ospedale di Circolo e Fondazione Macchi, Varese, Italy
| | - Adriana Albini
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milano, Italy
| | - Douglas M. Noonan
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milano, Italy
| | | |
Collapse
|
5
|
Masuelli L, Benvenuto M, Focaccetti C, Ciuffa S, Fazi S, Bei A, Miele MT, Piredda L, Manzari V, Modesti A, Bei R. Targeting the tumor immune microenvironment with "nutraceuticals": From bench to clinical trials. Pharmacol Ther 2020; 219:107700. [PMID: 33045254 DOI: 10.1016/j.pharmthera.2020.107700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
The occurrence of immune effector cells in the tissue microenvironment during neoplastic progression is critical in determining tumor growth outcomes. On the other hand, tumors may also avoid immune system-mediated elimination by recruiting immunosuppressive leukocytes and soluble factors, which coordinate a tumor microenvironment that counteracts the efficiency of the antitumor immune response. Checkpoint inhibitor therapy results have indicated a way forward via activation of the immune system against cancer. Widespread evidence has shown that different compounds in foods, when administered as purified substances, can act as immunomodulators in humans and animals. Although there is no universally accepted definition of nutraceuticals, the term identifies a wide category of natural compounds that may impact health and disease statuses and includes purified substances from natural sources, plant extracts, dietary supplements, vitamins, phytonutrients, and various products with combinations of functional ingredients. In this review, we summarize the current knowledge on the immunomodulatory effects of nutraceuticals with a special focus on the cancer microenvironment, highlighting the conceptual benefits or drawbacks and subtle cell-specific effects of nutraceuticals for envisioning future therapies employing nutraceuticals as chemoadjuvants.
Collapse
Affiliation(s)
- Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, via di Sant'Alessandro 8, 00131 Rome, Italy; Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Sara Fazi
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Arianna Bei
- Medical School, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Lucia Piredda
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; CIMER, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
6
|
Zubair H, Khan MA, Anand S, Srivastava SK, Singh S, Singh AP. Modulation of the tumor microenvironment by natural agents: implications for cancer prevention and therapy. Semin Cancer Biol 2020; 80:237-255. [PMID: 32470379 PMCID: PMC7688484 DOI: 10.1016/j.semcancer.2020.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
The development of cancer is not just the growth and proliferation of a single transformed cell, but its surrounding environment also coevolves with it. Indeed, successful cancer progression depends on the ability of the tumor cells to develop a supportive tumor microenvironment consisting of various types of stromal cells. The interactions between the tumor and stromal cells are bidirectional and mediated through a variety of growth factors, cytokines, metabolites, and other biomolecules secreted by these cells. Tumor-stromal crosstalk creates optimal conditions for the tumor growth, metastasis, evasion of immune surveillance, and therapy resistance, and its targeting is being explored for clinical management of cancer. Natural agents from plants and marine life have been at the forefront of traditional medicine. Numerous epidemiological studies have reported the health benefits imparted on the consumption of certain fruits, vegetables, and their derived products. Indeed, a significant majority of anti-cancer drugs in clinical use are either naturally occurring compounds or their derivatives. In this review, we describe fundamental cellular and non-cellular components of the tumor microenvironment and discuss the significance of natural compounds in their targeting. Existing literature provides hope that novel prevention and therapeutic approaches will emerge from ongoing scientific efforts leading to the reduced tumor burden and improve clinical outcomes in cancer patients.
Collapse
Affiliation(s)
- Haseeb Zubair
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Shashi Anand
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
7
|
miR-200c/PAI-2 promotes the progression of triple negative breast cancer via M1/M2 polarization induction of macrophage. Int Immunopharmacol 2020; 81:106028. [DOI: 10.1016/j.intimp.2019.106028] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022]
|
8
|
Lo CH, Lynch CC. Multifaceted Roles for Macrophages in Prostate Cancer Skeletal Metastasis. Front Endocrinol (Lausanne) 2018; 9:247. [PMID: 29867776 PMCID: PMC5968094 DOI: 10.3389/fendo.2018.00247] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
Bone-metastatic prostate cancer is common in men with recurrent castrate-resistant disease. To date, therapeutic focus has largely revolved around androgen deprivation therapy (ADT) and chemotherapy. While second-generation ADTs and combination ADT/chemotherapy approaches have been successful in extending overall survival, the disease remains incurable. It is clear that molecular and cellular components of the cancer-bone microenvironment contribute to the disease progression and potentially to the emergence of therapy resistance. In bone, metastatic prostate cancer cells manipulate bone-forming osteoblasts and bone-resorbing osteoclasts to produce growth and survival factors. While osteoclast-targeted therapies such as bisphosphonates have improved quality of life, emerging data have defined important roles for additional cells of the bone microenvironment, including macrophages and T cells. Disappointingly, early clinical trials with checkpoint blockade inhibitors geared at promoting cytotoxic T cell response have not proved as promising for prostate cancer compared to other solid malignancies. Macrophages, including bone-resident osteomacs, are a major component of the bone marrow and play key roles in coordinating normal bone remodeling and injury repair. The role for anti-inflammatory macrophages in the progression of primary prostate cancer is well established yet relatively little is known about macrophages in the context of bone-metastatic prostate cancer. The focus of the current review is to summarize our knowledge of macrophage contribution to normal bone remodeling and prostate-to-bone metastasis, while also considering the impact of standard of care and targeted therapies on macrophage behavior in the tumor-bone microenvironment.
Collapse
Affiliation(s)
- Chen Hao Lo
- Cancer Biology Program, University of South Florida, Tampa, FL, United States
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Conor C. Lynch
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
9
|
Zarif JC, Yang W, Hernandez JR, Zhang H, Pienta KJ. The Identification of Macrophage-enriched Glycoproteins Using Glycoproteomics. Mol Cell Proteomics 2017; 16:1029-1037. [PMID: 28348171 DOI: 10.1074/mcp.m116.064444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/24/2017] [Indexed: 01/03/2023] Open
Abstract
Prostate cancer is a leading cause of cancer-related deaths of men in the United States. Whereas the localized disease is highly treatable by surgical resection and radiation, cancer that has metastasized remains incurable. Immune cells that primarily scavenge debris and promote prostate cancer angiogenesis and wound repair are M2 macrophages. They are phenotypically similar to M2 tumor-associated macrophages (M2-TAMs) and have been reported to associate with solid tumors and aide in proliferation, metastasis, and resistance to therapy. As an invasive species within the tumor microenvironment, this makes M2-TAMs an ideal therapeutic target in prostate cancer. To identify novel surface glycoproteins expressed on M2 macrophages, we developed a novel method of creating homogeneous populations of human macrophages from human CD14+ monocytes in vitro These homogeneous M1 macrophages secrete pro-inflammatory cytokines, and our M2 macrophages secrete anti-inflammatory cytokines as well as vascular endothelial growth factor (VEGF). To identify enriched surface glycoproteins, we then performed solid-phase extraction of N-linked glycopeptides followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) on our homogeneous macrophage populations. We discovered five novel peptides that are enriched exclusively on human M2 macrophages relative to human M1 macrophages and human CD14+ monocytes. Finally, we determined whether these surface glycoproteins, found enriched on M2 macrophages, were also expressed in human metastatic castrate-resistant prostate cancer (mCRPC) tissues. Using mCRPC tissues from rapid autopsies, we were able to determine M2 macrophage infiltration by using immunohistochemistry and flow cytometry. These findings highlight the presence of macrophage infiltration in human mCRPC but also surface glycoproteins that could be used for prognosis of localized disease and for targeting strategies.
Collapse
Affiliation(s)
- Jelani C Zarif
- From ‡The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287;
| | - Weiming Yang
- the §Department of Pathology, The Johns Hopkins University, Baltimore, Maryland 21231
| | - James R Hernandez
- From ‡The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Hui Zhang
- the §Department of Pathology, The Johns Hopkins University, Baltimore, Maryland 21231
| | - Kenneth J Pienta
- From ‡The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287.,the ¶Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, and.,‖Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland 21287
| |
Collapse
|
10
|
Zhou S, Zhang T, Peng B, Luo X, Liu X, Hu L, Liu Y, Di D, Song Y, Deng Y. Targeted delivery of epirubicin to tumor-associated macrophages by sialic acid-cholesterol conjugate modified liposomes with improved antitumor activity. Int J Pharm 2017; 523:203-216. [PMID: 28336455 DOI: 10.1016/j.ijpharm.2017.03.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/28/2017] [Accepted: 03/18/2017] [Indexed: 12/15/2022]
Abstract
With the knowledge that the receptors of sialic acid are overexpressed on the surface of tumor-associated macrophages (TAMs), which play a crucial role in the tumor's progression and metastasis, a sialic acid-cholesterol conjugate (SA-CH) was synthesized and modified on the surface of epirubicin (EPI)-loaded liposomes (EPI-SAL) to improve the delivery of EPI to the TAMs. The liposomes were developed using remote loading technology via a pH gradient. The liposomes were evaluated for particle size, encapsulation efficiency, in vitro release, stability, in vitro cytotoxicity and pharmacokinetics. And the in vitro and in vivo cellular uptake studies demonstrated EPI-SAL achieved enhanced accumulation of EPI into TAMs. The antitumor studies indicated that EPI-SAL provided the strongest antitumor activity compared with the other formulations (EPI-S, EPI-CL and EPI-PL represent EPI solution, conventional liposomal EPI, PEGylated liposomal EPI, respectively), and the survival percent of tumor-bearing mice was 83.3%. The superior antitumor efficacy was probably attributed to the killing of TAMs by EPI-SAL, and modulating the tumor microenvironment with the depletion of TAMs. These findings suggested that SA-CH decorated EPI-loaded liposomes may present an effective strategy to eradicate TAMs, which may be a promising approach for cancer therapy.
Collapse
Affiliation(s)
- Songlei Zhou
- College of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016, PR China, PR China
| | - Ting Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016, PR China, PR China
| | - Bo Peng
- College of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016, PR China, PR China
| | - Xiang Luo
- College of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016, PR China, PR China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016, PR China, PR China
| | - Ling Hu
- College of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016, PR China, PR China
| | - Yang Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016, PR China, PR China
| | - Donghua Di
- College of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016, PR China, PR China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016, PR China, PR China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016, PR China, PR China.
| |
Collapse
|
11
|
Sun J, Song Y, Lu M, Lin X, Liu Y, Zhou S, Su Y, Deng Y. Evaluation of the antitumor effect of dexamethasone palmitate and doxorubicin co-loaded liposomes modified with a sialic acid–octadecylamine conjugate. Eur J Pharm Sci 2016; 93:177-83. [DOI: 10.1016/j.ejps.2016.08.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/06/2016] [Accepted: 08/13/2016] [Indexed: 02/07/2023]
|
12
|
Diverse macrophages polarization in tumor microenvironment. Arch Pharm Res 2016; 39:1588-1596. [PMID: 27562774 DOI: 10.1007/s12272-016-0820-y] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/18/2016] [Indexed: 12/22/2022]
Abstract
Macrophages are traditional innate immune cells that play critical roles in the clearance of pathogens and the maintenance of tissue homeostasis. Accumulating evidence proves that macrophages affect cancer initiation and malignancy. Macrophages can be categorized into two extreme subsets, classically activated (M1) and alternatively activated (M2) macrophages based on their distinct functional abilities in response to microenvironmental stimuli. In a tumor microenvironment, tumor associated macrophages (TAMs) are considered to be of the polarized M2 phenotype that enhances tumor progression and represent a poor prognosis. Furthermore, TAMs enhance tumor angiogenesis, growth, metastasis, and immunosuppression by secreting a series of cytokines, chemokines, and proteases. The regulation of macrophage polarization is considered to be a potential future therapy for cancer management.
Collapse
|
13
|
Choi HJ, Choi HJ, Chung TW, Ha KT. Luteolin inhibits recruitment of monocytes and migration of Lewis lung carcinoma cells by suppressing chemokine (C–C motif) ligand 2 expression in tumor-associated macrophage. Biochem Biophys Res Commun 2016; 470:101-106. [DOI: 10.1016/j.bbrc.2016.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/01/2016] [Indexed: 12/30/2022]
|
14
|
Varinska L, Gal P, Mojzisova G, Mirossay L, Mojzis J. Soy and breast cancer: focus on angiogenesis. Int J Mol Sci 2015; 16:11728-49. [PMID: 26006245 PMCID: PMC4463727 DOI: 10.3390/ijms160511728] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/08/2015] [Indexed: 02/06/2023] Open
Abstract
Epidemiological studies have revealed that high consumption of soy products is associated with low incidences of hormone-dependent cancers, including breast and prostate cancer. Soybeans contain large amounts of isoflavones, such as the genistein and daidzain. Previously, it has been demonstrated that genistein, one of the predominant soy isoflavones, can inhibit several steps involved in carcinogenesis. It is suggested that genistein possesses pleiotropic molecular mechanisms of action including inhibition of tyrosine kinases, DNA topoisomerase II, 5α-reductase, galectin-induced G2/M arrest, protein histidine kinase, and cyclin-dependent kinases, modulation of different signaling pathways associated with the growth of cancer cells (e.g., NF-κB, Akt, MAPK), etc. Moreover, genistein is also a potent inhibitor of angiogenesis. Uncontrolled angiogenesis is considered as a key step in cancer growth, invasion, and metastasis. Genistein was found to inhibit angiogenesis through regulation of multiple pathways, such as regulation of VEGF, MMPs, EGFR expressions and NF-κB, PI3-K/Akt, ERK1/2 signaling pathways, thereby causing strong antiangiogenic effects. This review focuses on the antiangiogenic properties of soy isoflavonoids and examines their possible underlying mechanisms.
Collapse
Affiliation(s)
- Lenka Varinska
- Department of Pharmacology, P.J. Šafárik University, Faculty of Medicine, Trieda SNP 1, 040 11 Košice, Slovakia.
| | - Peter Gal
- Department of Pharmacology, P.J. Šafárik University, Faculty of Medicine, Trieda SNP 1, 040 11 Košice, Slovakia.
- Department for Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Ondavská 8, 040 11 Košice, Slovakia.
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Commenius University, Odbojárov 10, 832 10 Bratislava, Slovakia.
- Institute of Anatomy, 1st Faculty of Medicine, Charles University, U nemocnice 3, 128 00 Prague, Czech Republic.
| | - Gabriela Mojzisova
- Department of Experimental Medicine, P.J. Šafárik University, Faculty of Medicine, Trieda SNP-1, 040 11 Košice, Slovakia.
| | - Ladislav Mirossay
- Department of Pharmacology, P.J. Šafárik University, Faculty of Medicine, Trieda SNP 1, 040 11 Košice, Slovakia.
| | - Jan Mojzis
- Department of Pharmacology, P.J. Šafárik University, Faculty of Medicine, Trieda SNP 1, 040 11 Košice, Slovakia.
| |
Collapse
|
15
|
Mahmoud AM, Yang W, Bosland MC. Soy isoflavones and prostate cancer: a review of molecular mechanisms. J Steroid Biochem Mol Biol 2014; 140:116-32. [PMID: 24373791 PMCID: PMC3962012 DOI: 10.1016/j.jsbmb.2013.12.010] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 02/08/2023]
Abstract
Soy isoflavones are dietary components for which an association has been demonstrated with reduced risk of prostate cancer (PCa) in Asian populations. However, the exact mechanism by which these isoflavones may prevent the development or progression of PCa is not completely understood. There are a growing number of animal and in vitro studies that have attempted to elucidate these mechanisms. The predominant and most biologically active isoflavones in soy products, genistein, daidzein, equol, and glycetin, inhibit prostate carcinogenesis in some animal models. Cell-based studies show that soy isoflavones regulate genes that control cell cycle and apoptosis. In this review, we discuss the literature relevant to the molecular events that may account for the benefit of soy isoflavones in PCa prevention or treatment. These reports show that although soy isoflavone-induced growth arrest and apoptosis of PCa cells are plausible mechanisms, other chemo protective mechanisms are also worthy of consideration. These possible mechanisms include antioxidant defense, DNA repair, inhibition of angiogenesis and metastasis, potentiation of radio- and chemotherapeutic agents, and antagonism of estrogen- and androgen-mediated signaling pathways. Moreover, other cells in the cancer milieu, such as the fibroblastic stromal cells, endothelial cells, and immune cells, may be targeted by soy isoflavones, which may contribute to soy-mediated prostate cancer prevention. In this review, these mechanisms are discussed along with considerations about the doses and the preclinical models that have been used.
Collapse
Affiliation(s)
- Abeer M Mahmoud
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Wancai Yang
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA; Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Maarten C Bosland
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
16
|
Infiltration of Tumor-associated Macrophages is Increased in the Epithelial and Stromal Compartments of Endometrial Carcinomas. Int J Gynecol Pathol 2013; 32:576-84. [DOI: 10.1097/pgp.0b013e318284e198] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Botti G, Cerrone M, Scognamiglio G, Anniciello A, Ascierto PA, Cantile M. Microenvironment and tumor progression of melanoma: New therapeutic prospectives. J Immunotoxicol 2012; 10:235-52. [DOI: 10.3109/1547691x.2012.723767] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
18
|
Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 2012; 2012:948098. [PMID: 22778768 PMCID: PMC3385963 DOI: 10.1155/2012/948098] [Citation(s) in RCA: 684] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/28/2012] [Accepted: 05/09/2012] [Indexed: 12/23/2022]
Abstract
Macrophages are widely distributed innate immune cells that play indispensable roles in the innate and adaptive immune response to pathogens and in-tissue homeostasis. Macrophages can be activated by a variety of stimuli and polarized to functionally different phenotypes. Two distinct subsets of macrophages have been proposed, including classically activated (M1) and alternatively activated (M2) macrophages. M1 macrophages express a series of proinflammatory cytokines, chemokines, and effector molecules, such as IL-12, IL-23, TNF-α, iNOS and MHCI/II. In contrast, M2 macrophages express a wide array of anti-inflammatory molecules, such as IL-10, TGF-β, and arginase1. In most tumors, the infiltrated macrophages are considered to be of the M2 phenotype, which provides an immunosuppressive microenvironment for tumor growth. Furthermore, tumor-associated macrophages secrete many cytokines, chemokines, and proteases, which promote tumor angiogenesis, growth, metastasis, and immunosuppression. Recently, it was also found that tumor-associated macrophages interact with cancer stem cells. This interaction leads to tumorigenesis, metastasis, and drug resistance. So mediating macrophage to resist tumors is considered to be potential therapy.
Collapse
|
19
|
Tumor microenvironment: a main actor in the metastasis process. Clin Exp Metastasis 2012; 29:381-95. [PMID: 22322279 DOI: 10.1007/s10585-012-9457-5] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 01/25/2012] [Indexed: 12/22/2022]
Abstract
Over recent decades, various studies have argued that the metastatic tissue microenvironment is fully controlled by the intrinsic properties of the cancer cells (growth, motility and invasion, angiogenesis, extracellular matrix remodeling, immune escape) and additional cells types. Overall, the extrinsic factors and determinants mediate the contribution of the host microenvironment to metastasis formation. The tumor microenvironment carries out these functions by secretion of molecules that can influence and modulate its phenotype, making these complex interactions the basis for support for the progression of a cancer. Here, we undertake a summary of the "state of the art" of the functions and actions of these cells, as the main actors in the promotion of the formation of the microenvironment of the metastatic niche, and the associated network of interactions. The unraveling of the relationships between tumorigenic cells and their microenvironment represents an important issue for the development of new therapeutic agents that can fight both initiation and recurrence of cancer.
Collapse
|
20
|
Eisenthal A, Schwartz I, Issakov J, Klausner Y, Misonzhnik F, Lifschitz-Mercer B. Immunohistochemistry Evaluation of the Effect in Vivo of Tumor Necrosis Factor (TNF)-alpha on Blood Vessel Density in Murine Fibrosarcoma. Sarcoma 2011; 7:57-61. [PMID: 18521369 PMCID: PMC2395522 DOI: 10.1080/13577140310001607275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Purpose: Angiogenesis is essential for tumor growth and metastases, thus bestowing obvious importance upon methodologies
which could enable its inhibition. Materials: C57BL/6 female mice bearing a subcutaneous (s.c.) MCA205 fibrosarcoma were used. Methods: Ten mice were divided equally into two groups. One group was injected intraperitoneally (i.p.) with 10 μg tumor
necrosis factor-α (TNF-α and the other (controls) with Hanks balanced salt solution (HBSS). Tumor growth was monitored
at least twice weekly. The number of endothelial cells in the blood microvessels was assessed by immunohistostaining on
paraffin-embedded tumor tissue sections using vascular endothelial growth factor (VEGF) and Factor 8 antibodies.
Expression of the p53 gene was similarly assessed by immunohistostaining. Results: Injection of 10 μg TNF-α into the tumor-bearing mice reduced the number of endothelial cells in the blood
microvessels by 46% on day 3 post-injection which was accompanied by an increase (by 37%) in the expression of p53 in
these cells. It also inhibited tumor growth compared to the HBSS-injected group starting at 17 days post-cytokine injection. Discussion: The antitumor in vivo effect exerted by TNF-α on established murine sarcoma s.c. tumors may be due to an
earlier effect of the cytokine on the tumor's blood microvessels, probably through an apoptotic mechanism involving the
p53 gene.
Collapse
Affiliation(s)
- Avi Eisenthal
- Pathology Institute Tel-Aviv Sourasky Medical Center The Sackler Faculty of Medicine Tel-Aviv University Tel-Aviv 64239 Israel
| | | | | | | | | | | |
Collapse
|
21
|
Melancon MP, Lu W, Huang Q, Thapa P, Zhou D, Ng C, Li C. Targeted imaging of tumor-associated M2 macrophages using a macromolecular contrast agent PG-Gd-NIR813. Biomaterials 2010; 31:6567-73. [PMID: 20537382 DOI: 10.1016/j.biomaterials.2010.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 05/03/2010] [Indexed: 02/07/2023]
Abstract
Tumor-associated macrophages (TAMs) are diverse population containing multiple subtypes. M2 macrophages promote tumor growth and metastasis, in part by secreting a wide range of proangiogenic factors and growth factors. Selective depletion of M2 macrophages has been evaluated as a novel approach to anti-cancer therapy. In this study, a dual magneto-optical imaging probe, PG-Gd-NIR813 was synthesized and evaluated for non-invasive assessment of TAMs after intravenous injection. PG-Gd-NIR813 injected in nude rats bearing C6 tumors showed high uptake of the polymeric contrast agent in the tumor at 1 and 48 h after injection both in vivo and ex vivo optical imaging. T(1)-weighted MR imaging results showed accumulation of PG-Gd-NIR813 into the tumor necrotic area, which was confirmed by TUNEL staining of resected tumors. The uptake of PG-Gd-NIR813 within tumor necrosis decreased after animals were treated by the macrophage-depleting agent. Immunohistochemical staining demonstrated that PG-Gd-NIR813 colocalized with CD68 (marker for macrophages) and CD169 (marker for activated macrophages), but not with CD163 (residential macrophages). Using combined near-infrared fluorescence imaging and magnetic resonance imaging (MRI), we demonstrated that the accumulation of PG-Gd-NIR813 in tumors was mediated through M2 TAMs. Therefore, poly(L-glutamic acid) based reagents could be potentially used to image response to antitumor therapies targeted at M2 TAMs. Furthermore, poly(L-glutamic acid) is a promising carrier for candidate immunotherapeutics targeting M2 TAMs.
Collapse
Affiliation(s)
- Marites P Melancon
- Department of Experimental Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Nonomura N, Takayama H, Kawashima A, Mukai M, Nagahara A, Nakai Y, Nakayama M, Tsujimura A, Nishimura K, Aozasa K, Okuyama A. Decreased infiltration of macrophage scavenger receptor-positive cells in initial negative biopsy specimens is correlated with positive repeat biopsies of the prostate. Cancer Sci 2010; 101:1570-3. [PMID: 20384632 PMCID: PMC11158699 DOI: 10.1111/j.1349-7006.2010.01563.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/26/2010] [Accepted: 03/03/2010] [Indexed: 12/18/2022] Open
Abstract
Macrophage scavenger receptor (MSR)-positive inflammatory cells and tumor-associated macrophages (TAMs) have been reported to regulate the growth of various cancers. In this study, the infiltration of MSR-positive cells and TAMs was analyzed to predict the outcome of repeat biopsy in men diagnosed as having no malignancy at the first prostate biopsy. Repeat biopsy of the prostate was carried out in 92 patients who were diagnosed as having no malignancy at the first biopsy. Of these, 30 patients (32.6%) were positive for prostate cancer at the repeat biopsy. Tumor-associated macrophages and MSR-positive cells were immunohistochemically stained with mAbs CD68 and CD204, respectively. Six ocular measuring fields were chosen randomly under a microscope at x400 power in the initial negative biopsy specimens, and the mean TAM and MSR counts for each case were determined. No difference in TAM count was found between the cases with or without prostate cancer. By contrast, the MSR count in patients with cancer was significantly lower than that in patients without cancer at the repeat biopsy (P < 0.001). Logistic regression analysis indicated that the MSR count at first biopsy is a significantly better predictive factor for positive repeat biopsy than PSA velocity, interval between first and repeat biopsies, or TAM count. Decreased infiltration of MSR-positive cells in negative first biopsy specimens was correlated with positive findings in the repeat biopsy. The MSR count might be a good indicator for avoiding unnecessary repeat biopsies.
Collapse
Affiliation(s)
- Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
El-Rouby DH. Association of macrophages with angiogenesis in oral verrucous and squamous cell carcinomas. J Oral Pathol Med 2010; 39:559-64. [PMID: 20412402 DOI: 10.1111/j.1600-0714.2010.00879.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are a major cellular component of human cancers, yet there is still no consensus as to their role in cancer growth and angiogenesis. METHODS The association between TAMs and angiogenesis was investigated in formalin-fixed, paraffin-embedded archival material of oral squamous cell carcinoma (OSCC) and oral verrucous carcinoma (OVC). TAMs shown by immunohistochemistry for CD68 and microvessels demonstrated by immunohistochemistry for CD31 were quantified using an image analyzer computer system. RESULTS TAMs were observed in all studied specimens. The area percentage of CD68 immunoreactivity and microvessel density (MVD) were significantly lower in OVC compared with the different grades of OSCC (P = 0.0009), (P = 0.0045). Both parameters increased in high-grade malignancy of OSCC. Linear regression analysis revealed a positive correlation between the area percentage of CD68 immunoreactivity and the MVD in the studied tumors. CONCLUSIONS Increased TAMs is associated with angiogenesis and higher histopathological grades in oral cancer.
Collapse
Affiliation(s)
- Dalia H El-Rouby
- Oral Pathology Department, Faculty of Oral and Dental Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
24
|
Piña Y, Boutrid H, Murray TG, Jager MJ, Cebulla CM, Schefler A, Ly LV, Alegret A, Celdran M, Feuer W, Jockovich ME. Impact of tumor-associated macrophages in LH(BETA)T(AG) mice on retinal tumor progression: relation to macrophage subtype. Invest Ophthalmol Vis Sci 2010; 51:2671-7. [PMID: 20053982 DOI: 10.1167/iovs.09-4255] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine the distribution of tumor-associated macrophages (TAMs) during retinoblastoma tumor development, examine the contribution of bone marrow-derived TAMs in retinoblastoma tumors, and evaluate the supportive role of TAMs in tumor growth in a transgenic retinoblastoma mouse model. METHODS The time course of macrophage infiltration in transgenic retinoblastoma tumors was assessed by immunohistochemistry at different time points in tumorigenesis. The origin of TAMs in transgenic retinoblastoma tumors was determined by transplanting 10(7) bone marrow cells from green fluorescent protein (GFP)-positive 16-week-old mice into age-matched, irradiated LH(BETA)T(AG) mice via tail vein injections. Macrophage depletion was performed by subconjunctival (SC) delivery of liposomal clodronate. RESULTS The density of TAMs increased from 4 to 12 weeks of age in mice with small to medium tumors (P = 0.037) and remained stable in the later stages of disease (i.e., 16 weeks old with large tumors; P = 0.20). In 16-week-old mice, 38% (2.5 +/- 3.2 cells per 400x high-power field) of TAMs were GFP-positive, bone marrow-derived macrophages. Total TAM depletion was associated with a significant decrease in the expression levels of MMP-9 (P = 0.014) and mature vessels (P < 0.001) and a nonsignificant decrease in the density of neovessels (P = 0.94). The density of M2-polarized TAMs did not change significantly after TAM depletion (P = 0.68). After M1-polarized TAM depletion, the tumor burden increased (P = 0.056). CONCLUSIONS This work extends understanding of the complex role that macrophages play in retinoblastoma. Macrophage modulation in the tumor microenvironment is a critical factor in retinoblastoma tumor progression.
Collapse
Affiliation(s)
- Yolanda Piña
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gust R, Beck W, Jaouen G, Schönenberger H. Optimization of cisplatin for the treatment of hormone dependent tumoral diseases. Coord Chem Rev 2009. [DOI: 10.1016/j.ccr.2009.02.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Gust R, Beck W, Jaouen G, Schönenberger H. Optimization of cisplatin for the treatment of hormone-dependent tumoral diseases. Coord Chem Rev 2009. [DOI: 10.1016/j.ccr.2009.02.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Rabbani ZN, Spasojevic I, Zhang X, Moeller BJ, Haberle S, Vasquez-Vivar J, Dewhirst MW, Vujaskovic Z, Batinic-Haberle I. Antiangiogenic action of redox-modulating Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP(5+), via suppression of oxidative stress in a mouse model of breast tumor. Free Radic Biol Med 2009; 47:992-1004. [PMID: 19591920 PMCID: PMC2749298 DOI: 10.1016/j.freeradbiomed.2009.07.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 06/13/2009] [Accepted: 07/02/2009] [Indexed: 12/20/2022]
Abstract
MnTE-2-PyP(5+) is a potent catalytic scavenger of reactive oxygen and nitrogen species, primarily superoxide and peroxynitrite. It therefore not only attenuates primary oxidative damage, but was found to modulate redox-based signaling pathways (HIF-1alpha, NF-kappaB, SP-1, and AP-1) and thus, in turn, secondary oxidative injury also. Cancer has been widely considered an oxidative stress condition. The goal of this study was to prove if and why a catalytic SOD mimic/peroxynitrite scavenger would exert anti-cancer effects, i.e., to evaluate whether the attenuation of the oxidative stress by MnTE-2-PyP(5+) could suppress tumor growth in a 4T1 mouse breast tumor model. Tumor cells were implanted into Balb/C mouse flanks. Three groups of mice (n=25) were studied: control (PBS) and 2 and 15 mg/kg/day of MnTE-2-PyP(5+) given subcutaneously twice daily starting when the tumors averaged 200 mm(3) (until they reached approximately 5-fold the initial volume). Intratumoral hypoxia (pimonidazole, carbonic anhydrase), HIF-1alpha, VEGF, proliferating capillary index (CD105), microvessel density (CD31), protein nitration, DNA oxidation (8-OHdG), NADPH oxidase (Nox-4), apoptosis (CD31), macrophage infiltration (CD68), and tumor drug levels were assessed. With 2 mg/kg/day a trend toward tumor growth delay was observed, and a significant trend was observed with 15 mg/kg/day. The 7.5-fold increase in drug dose was accompanied by a similar (6-fold) increase in tumor drug levels. Oxidative stress was largely attenuated as observed through the decreased levels of DNA damage, protein 3-nitrotyrosine, macrophage infiltration, and NADPH oxidase. Further, hypoxia was significantly decreased as were the levels of HIF-1alpha and VEGF. Consequently, suppression of angiogenesis was observed; both the microvessel density and the endothelial cell proliferation were markedly decreased. Our study indicates for the first time that MnTE-2-PyP(5+) has anti-cancer activity in its own right. The anti-cancer activity via HIF/VEGF pathways probably arises from the impact of the drug on the oxidative stress. Therefore, the catalytic scavenging of ROS/RNS by antioxidants, which in turn suppresses cellular transcriptional activity, could be an appropriate strategy for anti-cancer therapy. Enhancement of the anti-cancer effects may be achieved by optimizing the dosing regime, utilizing more bioavailable Mn porphyrins (MnP), and combining MnP treatment with irradiation, hyperthermia, and chemotherapy. Mn porphyrins may be advantageous compared to other anti-cancer drugs, owing to their radioprotection of normal tissue and the ability to afford pain management in cancer patients via prevention of chronic morphine tolerance.
Collapse
Affiliation(s)
- Zahid N. Rabbani
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - XiuWu Zhang
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710
| | - Benjamin J. Moeller
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710
| | - Sinisa Haberle
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | | | - Mark W. Dewhirst
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710
- Corresponding authors: Ines Batinic-Haberle, Ph. D., Department of Radiation Oncology-Cancer Biology, Duke University Medical Center, Research Drive, 281b/285 MSRB I, Box 3455, Durham, NC 27710, Tel: 919-684-2101, Fax: 919-684-8718, , Zeljko Vujaskovic, MD, PhD, Duke University Medical Center, 201 MSRB, Box 3455, Durham, NC 27710, Tel: 919-681-1675, Fax: 919-684-8718,
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710
- Corresponding authors: Ines Batinic-Haberle, Ph. D., Department of Radiation Oncology-Cancer Biology, Duke University Medical Center, Research Drive, 281b/285 MSRB I, Box 3455, Durham, NC 27710, Tel: 919-684-2101, Fax: 919-684-8718, , Zeljko Vujaskovic, MD, PhD, Duke University Medical Center, 201 MSRB, Box 3455, Durham, NC 27710, Tel: 919-681-1675, Fax: 919-684-8718,
| |
Collapse
|
28
|
Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 2009; 86:1065-73. [DOI: 10.1189/jlb.0609385] [Citation(s) in RCA: 1031] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
29
|
Extratumoral macrophages promote tumor and vascular growth in an orthotopic rat prostate tumor model. Neoplasia 2009; 11:177-86. [PMID: 19177202 DOI: 10.1593/neo.81338] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/01/2008] [Accepted: 12/01/2008] [Indexed: 12/31/2022] Open
Abstract
Tumor-associated macrophages are involved in angiogenesis and tumor progression, but their role and specific site of action in prostate cancer remain unknown. To explore this, Dunning R-3327 AT-1 rat prostate tumor cells were injected into the prostate of syngenic and immunocompetent Copenhagen rats and analyzed at different time points for vascular proliferation and macrophage density. Endothelial proliferation increased with tumor size both in the tumor and importantly also in the extratumoral normal prostate tissue. Macrophages accumulated in the tumor and in the extratumoral normal prostate tissue and were most abundant in the invasive zone. Moreover, only extratumoral macrophages showed strong positive associations with tumor size and extratumoral vascular proliferation. Treatment with clodronate-encapsulated liposomes reduced the monocyte/macrophage infiltration and resulted in a significant inhibition of tumor growth. This was accompanied by a suppressed proliferation in microvessels and in the extratumoral prostate tissue also in arterioles and venules. The AT-1 tumors produced, as examined by RT(2) Profiler PCR arrays, numerous factors promoting monocyte recruitment, angiogenesis, and tissue remodeling. Several, namely, chemokine (C-C) ligand 2, fibroblast growth factor 2, matrix metalloproteinase 9, interleukin 1beta, interferon gamma, and transforming growth factor beta, were highly upregulated by the tumor in vivo compared with tumor cells in vitro, suggesting macrophages as a plausible source. In conclusion, we here show the importance of extratumoral monocytes/macrophages for prostate tumor growth, angiogenesis, and extratumoral arteriogenesis. Our findings identify tumor-associated macrophages and several chemotactic and angiogenic factors as potential targets for prostate cancer therapy.
Collapse
|
30
|
Stachon A, Aweimer A, Stachon T, Tannapfel A, Thoms S, Ubrig B, Köller M, Krieg M, Truss MC. Secretion of soluble VEGF receptor 2 by microvascular endothelial cells derived by human benign prostatic hyperplasia. Growth Factors 2009; 27:71-8. [PMID: 19199116 DOI: 10.1080/08977190802709619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vascular endothelial growth factor (VEGF) is one of the most potent mitogenic factors stimulating both prostate endothelial and prostate epithelial cells. Recently, some studies reported on the endothelial secretion of a soluble VEGF receptor 2 (sVEGFR-2) that modifies the free VEGF concentration by binding VEGF. For the first time in this study, we report on the secretion and the regulation of the secretion of sVEGFR-2 by microvascular endothelial cells derived from the tissue of human benign prostatic hyperplasia (HPEC). HPEC were isolated and cultured from fresh prostate tissue. The prostate epithelial cell line BPH-1 was cultured with the supernatant of the HPEC cell culture (fractioned by fast protein liquid chromatography) and the VEGF concentration was subsequently measured. HPEC were incubated with VEGF or tumor necrosis factor alpha (TNF-alpha). Afterwards, the concentration of sVEGFR-2 in the supernatant of unstimulated and stimulated HPEC was measured by ELISA. HPEC showed a typical endothelial morphology. Under cell culture conditions sVEGFR-2 binds VEGF: The measured VEGF concentration in the supernatant of BPH-1 cells was reduced when the fractions of HPEC conditioned medium with the highest sVEGFR-2 concentration were incubated with the BPH-1 cells. The sVEGFR-2 secretion of HPEC was stimulated by VEGF and TNF-alpha. For the first time we report on the secretion of sVEGFR-2 by microvascular endothelial cells of prostate origin. The secretion of sVEGFR-2 by HPEC was stimulated by VEGF and TNF-alpha. Our data suggest that sVEGFR-2 secreted by prostate endothelial cells could modify the effect of VEGF on prostate endothelial and prostate epithelial cells.
Collapse
Affiliation(s)
- Axel Stachon
- Institute of Clinical Chemistry, Transfusion, and Laboratory Medicine, BG-University Hospital Bergmannsheil, Ruhr-University of Bochum, Bochum, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Siveen KS, Kuttan G. Role of macrophages in tumour progression. Immunol Lett 2009; 123:97-102. [PMID: 19428556 DOI: 10.1016/j.imlet.2009.02.011] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/06/2009] [Accepted: 02/10/2009] [Indexed: 02/08/2023]
Abstract
It is now becoming clear that the inflammatory cells that exist in the tumour microenvironment play an indispensable role in cancer progression. Tumour associated macrophages (TAMs) represent a prominent component of the mononuclear leukocyte population of solid tumours, which displays an ambivalent relationship with tumours. They originate in the circulation and are recruited to the tumour site by tumour-derived attractants such as chemokines and interact with the tumour cells and preferentially localize at the tumour-host tissue interface, in regions often associated with low oxygen tensions. The tumour microenvironment, including cytokines and hypoxia, regulates the localization and function of TAMs. Upon activated by cancer cells, the TAMs can release a vast diversity of growth factors, proteolytic enzymes, cytokines, and inflammatory mediators. Many of these factors are key agents in cancer metastasis. Substantial evidence suggests that TAMs can interact with cancer cells, modify the ECM, and promote cancer cell invasion and metastasis. Several natural products have shown ability to inhibit the production of proinflammatory cytokines and growth factors by TAMs. The presence of extensive TAM infiltration has been shown to correlate with cancer metastasis and poor prognosis in a variety of human carcinomas.
Collapse
Affiliation(s)
- K S Siveen
- Dept. of Immunology, Amala Cancer Research Centre, Amala Nagar Post, Thrissur 680 555, Kerala, India
| | | |
Collapse
|
32
|
Abstract
The initiation and progression of cancer is dependent on factors both intrinsic and extrinsic to the malignant cells. Stromal, vascular endothelial, and inflammatory cells are the principal normal populations that support tumors by supplying factors and nutrients. The mononuclear phagocyte lineage, which includes monocytes, macrophages, and dendritic cells is of particular clinical interest because lineage members can enhance tumor angiogenesis and metastasis, or alternately contribute to tumor destruction. Thus therapies that regulate these cells represent an innovative approach for improving patient survival in childhood cancer.
Collapse
|
33
|
Translational strategies exploiting TNF-alpha that sensitize tumors to radiation therapy. Cancer Gene Ther 2008; 16:373-81. [PMID: 18974777 DOI: 10.1038/cgt.2008.86] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
TNFerade is a radioinducible adenoviral vector expressing tumor necrosis factor-alpha (TNF-alpha) (Ad.Egr-TNF) currently in a phase III trial for inoperable pancreatic cancer. We studied B16-F1 melanoma tumors in TNF receptor wild-type (C57BL/6) and deficient (TNFR1,2-/- and TNFR1-/-) mice. Ad.Egr-TNF+IR inhibited tumor growth compared with IR in C57BL/6 but not in receptor-deficient mice. Tumors resistant to TNF-alpha were also sensitive to Ad.Egr-TNF+IR in C57BL/6 mice. Ad.Egr-TNF+IR produced an increase in tumor-associated endothelial cell apoptosis not observed in receptor-deficient animals. Also, B16-F1 tumors in mice with germline deletions of TNFR1,2, TNFR1 or TNF-alpha, or in mice receiving anti-TNF-alpha exhibited radiosensitivity. These results show that tumor-associated endothelium is the principal target for Ad.Egr-TNF radiosensitization and implicate TNF-alpha signaling in tumor radiosensitivity.
Collapse
|
34
|
Germano G, Allavena P, Mantovani A. Cytokines as a key component of cancer-related inflammation. Cytokine 2008; 43:374-9. [PMID: 18701317 DOI: 10.1016/j.cyto.2008.07.014] [Citation(s) in RCA: 246] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 07/23/2008] [Indexed: 12/17/2022]
Abstract
Inflammatory conditions in some tissues increase the risk of cancer. Cytokines and chemokines are components of an intensive dialog promoting angiogenesis, metastasis, subversion of adaptive immunity and changing response to hormones and to chemotherapeutic agents. Cytokines involved in cancer-related inflammation represent a target for innovative diagnostic and therapeutic strategies, and a future challenge for scientists and clinicians.
Collapse
Affiliation(s)
- Giovanni Germano
- Istituto Clinico Humanitas IRCCS, Via Manzoni 56, Rozzano, Milan, Italy
| | | | | |
Collapse
|
35
|
Sica A, Allavena P, Mantovani A. Cancer related inflammation: the macrophage connection. Cancer Lett 2008; 267:204-15. [PMID: 18448242 DOI: 10.1016/j.canlet.2008.03.028] [Citation(s) in RCA: 434] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 02/26/2008] [Accepted: 03/12/2008] [Indexed: 02/08/2023]
Abstract
Tumor-associated macrophages (TAM) are key regulators of the link between inflammation and cancer. In the tumor microenvironment neoplastic cells shape the differentiation and functional orientation of TAM which, in turn, express several protumoral functions, including secretion of growth factors and matrix-proteases, promotion of angiogenesis and suppression of adaptive immunity. This review analyzes our current knowledge of TAM and their involvement in tumor development and progression. The interplay between TAM and neoplastic cells represents a promising target of future therapeutic approaches.
Collapse
Affiliation(s)
- Antonio Sica
- Fondazione Humanitas per Ricerca, 20089 Rozzano, Milan, Italy
| | | | | |
Collapse
|
36
|
Linking Inflammation Reactions to Cancer: Novel Targets for Therapeutic Strategies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 610:112-27. [DOI: 10.1007/978-0-387-73898-7_9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Allavena P, Sica A, Solinas G, Porta C, Mantovani A. The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 2007; 66:1-9. [PMID: 17913510 DOI: 10.1016/j.critrevonc.2007.07.004] [Citation(s) in RCA: 772] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 07/06/2007] [Accepted: 07/31/2007] [Indexed: 02/08/2023] Open
Abstract
The link between inflammation and cancer proposed more than a century ago by Rudolf Virchow, who noticed the infiltration of leukocytes in malignant tissues, has recently found a number of genetic and molecular confirmations. Experimental, clinical and epidemiological studies have revealed that chronic inflammation contributes to cancer progression and even predisposes to different types of cancer. Cancer-associated inflammation includes: the presence of leukocyte infiltration; the expression of cytokines such as tumor necrosis factor (TNF) or interleukin (IL)-1; chemokines such as CCL2 and CXCL8; active tissue remodelling and neo-angiogenesis. Tumor-associated macrophages (TAM) are key regulators of the link between inflammation and cancer. Many observations indicate that, in the tumor micro-environment, TAM have several protumoral functions, including expression of growth factors, matrix proteases, promotion of angiogenesis and suppression of adaptive immunity. In this review we will discuss the role of TAM in the inflammatory micro-environment of solid tumors and will try to identify potential target for future therapeutic approaches.
Collapse
Affiliation(s)
- Paola Allavena
- IRCCS Istituto Clinico Humanitas, Via Manzoni 56, Rozzano 20089, Milan, Italy.
| | | | | | | | | |
Collapse
|
38
|
Sica A, Rubino L, Mancino A, Larghi P, Porta C, Rimoldi M, Solinas G, Locati M, Allavena P, Mantovani A. Targeting tumour-associated macrophages. Expert Opin Ther Targets 2007; 11:1219-29. [PMID: 17845147 DOI: 10.1517/14728222.11.9.1219] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clinical and experimental evidence have highlighted that a major leukocyte population present in tumours, the so-called tumour-associated macrophages (TAM), is the principal component of the leukocyte infiltrate supporting tumour growth. Over the years the mechanisms supporting the protumoural functions of TAM have become increasingly clear and in several experimental tumour models, the activation of an inflammatory response (most frequently mediated by macrophages) has been shown to play an essential role for full neoplastic transformation and progression. This evidence strongly supports the idea that TAM are central orchestrators of the inflammatory networks expressed in the tumour microenvironment, and suggest these cells as possible targets of anticancer therapies.
Collapse
Affiliation(s)
- Antonio Sica
- Department of Immunology, Fondazione Humanitas per la Ricerca, 20089 Rozzano, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Schertl S, Hartmann RW, Batzl-Hartmann C, Spruss T, Maucher A, von Angerer E, Schiller CD, Schneider MR, Gust R, Schönenberger H. Platinum(II) complexes interfering with testicular steroid biosynthesis: drugs for the therapy of advanced or recurrent prostate cancers? Preclinical studies. J Cancer Res Clin Oncol 2006; 133:153-67. [PMID: 17024493 DOI: 10.1007/s00432-006-0151-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Abstract
[Meso-1,2-bis(2,6-dihalo-3/4-hydroxyphenyl)ethylenediamine]platinum(II) complexes (meso-1-PtLL': 2,6-F(2),3-OH; meso-2-PtLL': 2,6-F(2),4-OH; meso-3-PtLL': 2,6-Cl(2),3-OH; meso-4-PtLL': 2,6-Cl(2),4-OH; L = OH(2), L' = OSO(3) or L,L' = Cl(2)) were designed with the aim to get drugs comprising both cytotoxic and testosterone level lowering potencies. It is assumed that such compounds are more efficient than the established endocrine therapeutic measures and can affect the development of hormone refractory prostate cancer (PC). With exception of meso-3-PtLL' all Pt-complexes and the comparison compound cisplatin significantly reduced the testosterone level in experiments on male rats. However, in the test on the Dunning R3327 PC of the rat only cisplatin and meso-4-PtLL' showed a significant anti-tumor activity at well-tolerated dose ranges. Meso-4-PtLL' also significantly extended the time to disease progression in comparison with orchiectomy in this tumor model. Interestingly, the relapsed tumor, too, responded to meso-4-PtLL' as demonstrated in a long-term study on orchiectomized rats bearing Dunning R3327 PC grafts. This effect cannot be ascribed to cytotoxic effects of meso-4-PtLL' because of its inactivity on the human LNCaP/FGC PC cell line. Therefore, the contribution of an additional mechanism to the anti-prostate cancer activity of meso-4-PtLL', presumably owing to its estrogenic potency, must be considered. This assumption was supported by test results with diethylstilbestrol (DES) (non-steroidal estrogen) on the Dunning R3327 PC of the rat relapsed after orchiectomy. This tumor model was strongly inhibited by DES. The possible mode of action of meso-4-PtLL' is thoroughly discussed.
Collapse
Affiliation(s)
- Sabine Schertl
- Lehrstuhl für Pharmazeutische Chemie II, Institut für Pharmazie, Universität Regensburg, 93040 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Eisenthal A, Barbarsteyn E, Gitstein G, Lifschitz-Mercer B. Inhibition of lymphokine-activated killer cells generation in vitro by soluble factors released from mixed human tumor and peripheral blood mononuclear adherent cells culture. Cancer Invest 2006; 24:28-34. [PMID: 16466989 DOI: 10.1080/07357900500449561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND A variety of molecules produced by both tumor cells and normal cells reduce the activity of lymphokine-activated killer (LAK) cells. We tested the possible cross-regulation of mel-624 melanoma cells and adherent peripheral blood mononuclear cells (PBMCs) in affecting LAK cell activity. METHODS PBMC adherent cells were cultured together with mel-624 melanoma cells. Supernatant was transferred to a 4-day LAK cells generation culture consisted of PBMC nonadherent cells and interleukin-2. LAK cytotoxic activity was tested in a 4-hour assay against Daudi tumor cells prelabeled with sodium (51)chromate. RESULTS The supernatant produced within the first 48 hours of mixed mel-624 melanoma cell and adherent PBMC culture substantially (by 69 percent) reduced the generation of LAK cells, whereas the supernatant from either tumor culture or adherent PBMC culture had no effect. The inhibitory effect was manifested on the generation of LAK cells when autologous nonadherent cells were cultured with 1,000 units/ml IL-2, but there was no effect on mature LAK cell cytotoxic activity. Inhibition of LAK cell generation was partially dependent on protein synthesis and was not mediated by transforming growth factor ss (TGF-ss). CONCLUSION Our results point toward the production of soluble, yet unidentified proteins, in mixed tumor-adherent PBMC cultures, which substantially reduced the induction of LAK cells in culture.
Collapse
Affiliation(s)
- Avi Eisenthal
- Pathology Institute, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Israel.
| | | | | | | |
Collapse
|
42
|
MacRae EJ, Giannoudis A, Ryan R, Brown NJ, Hamdy FC, Maitland N, Lewis CE. Gene therapy for prostate cancer: current strategies and new cell-based approaches. Prostate 2006; 66:470-94. [PMID: 16353250 DOI: 10.1002/pros.20388] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Prostate cancer is the most commonly diagnosed cancer in adult males in the Western world. It accounts for one in ten cancer cases and is the second leading cause of cancer death in men, after lung cancer. A number of curative treatments are available for patients with localized prostate cancer such as radical prostatectomy, radiotherapy, or brachytherapy. However, a proportion of these men will develop progressive disease, and some will present de novo with advanced and metastatic prostate cancer, which is amenable to palliation only with androgen-withdrawal therapy. Most of these patients will eventually develop hormone refractory disease which is incurable, and for whom gene therapy, if feasible may develop as an alternative treatment option. In this review we discuss the gene therapy vectors and strategies that are currently in use, new cell-based approaches, discuss their advantages and disadvantages, and review the potential or proven pre-clinical and clinical efficacy in prostate cancer models/patients.
Collapse
Affiliation(s)
- E J MacRae
- Tumour Targeting Group, University of Sheffield Medical School, Beech Hill Road, Sheffield, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
43
|
Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 2006; 42:717-27. [PMID: 16520032 DOI: 10.1016/j.ejca.2006.01.003] [Citation(s) in RCA: 1118] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 01/11/2006] [Indexed: 12/17/2022]
Abstract
Tumour-associated macrophages (TAM) represent the major inflammatory component of the stroma of many tumours, and can affect different aspects of the neoplastic tissue. Many observations indicate that TAM express several M2-associated pro-tumoural functions, including promotion of angiogenesis, matrix remodelling and suppression of adaptive immunity. The pro-tumoural role of TAM in cancer is further supported by clinical studies that found a correlation between the high macrophage content of tumours and poor patient prognosis. Evidence is presented here supporting the view that TAM represent a unique and distinct M2-skewed myeloid population and are a potential target for anti-cancer therapy.
Collapse
Affiliation(s)
- Antonio Sica
- Istituto Clinico Humanitas, 20089 Rozzano, Milan, Italy.
| | | | | | | |
Collapse
|
44
|
Lee H, Baek S, Joe SJ, Pyo SN. Modulation of IFN-γ production by TNF-α in macrophages from the tumor environment: Significance as an angiogenic switch. Int Immunopharmacol 2006; 6:71-8. [PMID: 16332515 DOI: 10.1016/j.intimp.2005.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 07/23/2005] [Accepted: 08/01/2005] [Indexed: 11/25/2022]
Abstract
BACKGROUND The role of macrophages in tumor angiogenesis has been known to influence in the production of angiogenic cytokines and growth factors including TNF-alpha. Recently, macrophages were also found to produce INF-gamma, which were found to be involved in angiogenic inhibition. Thus, the importance of macrophages in tumor angiogenesis might be the angiogenic switch. The hypothesis tested here is that TNF-alpha can modulate the INF-gamma production in macrophages in tumor environment as part of the tumor angiogenic switch. METHODS Macrophages in tumor environment were obtained from peritoneal cavity and s.c. grown tumor of C57BL/6 mice injected with B16F10 melanoma cell line for 6 and 11 days, respectively. Mac1+-macrophages were purified using magnetic beads (MACs; Milteny Biotech, Germany) and cultured with various concentrations of TNF-alpha at various time points at 37 degrees C. The supernatants were analyzed for IFN-gamma or VEGF by ELISA kit. RESULTS Residential macrophages from peritoneal cavity did not respond to LPS or TNF-alpha to produce INF-gamma. However, the cells from tumor environment produced IFN-gamma as well as VEGF. Upregulation of IFN-gamma production by the addition of LPS or TNF-alpha was observed in macrophages from the tumor bearing peritoneal cavity. RT-PCR analysis revealed external TNF-alpha-induced IFN-gamma gene expression in macrophages from tumor environment. CONCLUSION The overall data suggest that the macrophages in tumor environment might play an important role not only in angiogenic signal but also in anti-angiogenic signal by producing related cytokines. Moreover, TNF-alpha might be a key cytokine functioning as a tumor angiogenic switch.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Line, Tumor
- Female
- In Vitro Techniques
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Lipopolysaccharides/pharmacology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/immunology
- Mice
- Mice, Inbred C57BL
- Neovascularization, Pathologic/etiology
- Neovascularization, Pathologic/immunology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Signal Transduction
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/pharmacology
- Vascular Endothelial Growth Factor A/biosynthesis
Collapse
Affiliation(s)
- Hyunah Lee
- The Cancer Center, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 50 IL-Won Dong, Kang-Nam Gu, 135-710, Seoul, Korea.
| | | | | | | |
Collapse
|
45
|
Lewis C, Murdoch C. Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:627-35. [PMID: 16127144 PMCID: PMC1698733 DOI: 10.1016/s0002-9440(10)62038-x] [Citation(s) in RCA: 314] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/19/2005] [Indexed: 01/22/2023]
Abstract
The presence of multiple areas of hypoxia (low oxygen tension) is a hallmark feature of human and experimental tumors. Monocytes are continually recruited into tumors, differentiate into tumor-associated macrophages (TAMs), and then accumulate in these hypoxic areas. A number of recent studies have shown that macrophages respond to the levels of hypoxia found in tumors by up-regulating such transcription factors as hypoxia-inducible factors 1 and 2, which in turn activate a broad array of mitogenic, pro-invasive, pro-angiogenic, and pro-metastatic genes. This could explain why high numbers of TAMs correlate with poor prognosis in various forms of cancer. In this review, we assess the evidence for hypoxia activating a distinct, pro-tumor phenotype in macrophages and the possible effect of this on the growth, invasion, angiogenesis, and immune evasion of tumors. We also discuss current attempts to selectively target TAMs for destruction or to use them to deliver gene therapy specifically to hypoxic tumor sites.
Collapse
Affiliation(s)
- Claire Lewis
- Tumor Targeting Group, Academic Unit of Pathology, Division of Genomic Medicine, Sir Henry Wellcome Laboratories for Medical Research, University of Sheffield Medical School, Sheffield S10 2RX, UK.
| | | |
Collapse
|
46
|
Abstract
BACKGROUND Angiogenesis and tumor-associated immunosuppression are two of the hallmarks of carcinogenesis. In previous studies we demonstrated in vitro that HNSCC tumor cells attract monocytes via monocyte chemotactic protein-1 (MCP-1) and activate them via transforming growth factor-beta 1(TGF-beta1) to secrete interleukin (IL)-1alpha, which in turn stimulates tumor cells to secrete increased levels of the angiogenic and immunosuppressive vascular endothelial growth factor (VEGF). These findings suggest that interaction between the immune system and VEGF-mediated angiogenesis is important for progression of HNSCC. Recent studies in vitro show that retinoic acid (RA) downregulates the release of MCP-1 and TGF-beta1 by tumor cells. Therefore, we investigated the ability of RA to modulate the ability of tumor cells to recruit and activate monocytes for participation in VEGF-mediated angiogenesis and immunosuppression in vivo. MATERIAL AND METHODS Mice (ten/group) were injected daily with RA (160 microg/kg) for 3 weeks. After that time mice were sacrificed, and paraffin sections of tumors were obtained and stained for VEGF-A, CD68, and PECAM (CD31) by immunohistochemistry. The lungs, liver, and myocardium were analyzed for macro- and micrometastases. The plasma protein levels of VEGF-A and MCP-1 were determined by ELISA. RESULTS In RA-treated mice tumors regressed completely and RA prevented metastases (p=0.00) and macrophage infiltration (p=0.007). Treated mice downregulated VEGF-A (0 pg/ml) and MCP-1 (12 pg/ml) in peripheral blood (p=0.001). CONCLUSION Our findings suggest a new therapeutic possibility: the development of treatment protocols that can block each of the ways in which tumors induce new blood vessel growth and immunosuppression of the host.
Collapse
Affiliation(s)
- L Strauss
- Abteilung Onkologie, Universitätsspital Zürich.
| | | | | | | |
Collapse
|
47
|
Abstract
Thalidomide has several targets and mechanisms of action: a hypnosedative effect, several immunomodulatory properties with an effect on the production of TNF-alpha and the balance between the different lymphocyte subsets and an antiangiogenic action. Thalidomide has been used in several cutaneous inflammatory disorders (e.g., erythema nodosum leprosum in lepromatous leprosy, cutaneous lupus erythematosus and severe aphtosis), cancers (e.g., relapsed/refractory multiple myeloma, malignant melanoma and systemic signs in cancer) and inflammatory conditions (e.g., Crohn's disease and rheumatoid arthritis). Several side effects are associated with thalidomide. Some are major, such as teratogenicity, peripheral neuropathy and deep vein thrombosis. Somnolence and rash are frequently reported when thalidomide is used at higher doses as an anticarcinogenic agent and can lead to dose reduction or treatment discontinuation depending on severity. Minor side effects include abdominal pain and endocrine disturbances. To prevent the teratogenicity, use of thalidomide is strictly controlled in western countries with close adherence to a birth control programme. Close monitoring for early development of peripheral neuropathy is also recommended.
Collapse
Affiliation(s)
- Emmanuel Laffitte
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| | | |
Collapse
|
48
|
Brennen WN, Cooper CR, Capitosti S, Brown ML, Sikes RA. Thalidomide and analogues: current proposed mechanisms and therapeutic usage. ACTA ACUST UNITED AC 2004; 3:54-61. [PMID: 15279692 DOI: 10.3816/cgc.2004.n.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microvessel density is a prognostic factor for many cancers, including prostate. For this reason, several studies and therapeutic approaches that target the tumor microvasculature have been attempted. Thalidomide has long been recognized as an antiangiogenic molecule. Recently, this drug has regained favor as an anticancer agent and is in clinical trial for multiple myeloma and prostate cancer, among others. This article will briefly review the proposed mechanisms of action for thalidomide, discuss why these activities are of therapeutic value in diseases currently undergoing clinical trials, and summarize the current status of clinical trials for prostate cancer. The focus will be predominantly on the relationship of thalidomide to angiogenesis, as well as on the future and potential value of thalidomide-inspired structural derivatives.
Collapse
Affiliation(s)
- W Nathaniel Brennen
- Laboratory for Cancer Ontogeny and Therapeutics, University of Delaware, Newark 19716, USA
| | | | | | | | | |
Collapse
|
49
|
Obermueller E, Vosseler S, Fusenig NE, Mueller MM. Cooperative autocrine and paracrine functions of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor in the progression of skin carcinoma cells. Cancer Res 2004; 64:7801-12. [PMID: 15520186 DOI: 10.1158/0008-5472.can-03-3301] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor growth and progression are critically controlled by alterations in the microenvironment often caused by an aberrant expression of growth factors and receptors. We demonstrated previously that tumor progression in patients and in the experimental HaCaT tumor model for skin squamous cell carcinomas is associated with a constitutive neoexpression of the hematopoietic growth factors granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF), causing an autocrine stimulation of tumor cell proliferation and migration in vitro. To analyze the critical contribution of both factors to tumor progression, G-CSF or GM-CSF was stably transfected in factor-negative benign tumor cells. Forced expression of GM-CSF resulted in invasive growth and enhanced tumor cell proliferation in a three-dimensional culture model in vitro, yet tumor growth in vivo remained only transient. Constitutive expression of G-CSF, however, caused a shift from benign to malignant and strongly angiogenic tumors. Moreover, cells recultured from G-CSF-transfected tumors exhibited enhanced tumor aggressiveness upon reinjection, i.e., earlier onset and faster tumor expansion. Remarkably, this further step in tumor progression was again associated with the constitutive expression of GM-CSF strongly indicating a synergistic action of both factors. Additionally, expression of GM-CSF in the transfected tumors mediated an earlier recruitment of granulocytes and macrophages to the tumor site, and expression of G-CSF induced an enhanced and persistent angiogenesis and increased the number of granulocytes and macrophages in the tumor vicinity. Thus both factors directly stimulate tumor cell growth and, by modulating the tumor stroma, induce a microenvironment that promotes tumor progression.
Collapse
Affiliation(s)
- Eva Obermueller
- Division of Carcinogenesis and Differentiation, German Cancer Research Center, Heidelberg, Germany
| | | | | | | |
Collapse
|
50
|
De Larco JE, Wuertz BRK, Furcht LT. The Potential Role of Neutrophils in Promoting the Metastatic Phenotype of Tumors Releasing Interleukin-8. Clin Cancer Res 2004; 10:4895-900. [PMID: 15297389 DOI: 10.1158/1078-0432.ccr-03-0760] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the last decade, several groups have shown a direct correlation between the inappropriate or ectopic release of interleukin (IL)-8 by tumor cells in vitro and their growth and metastatic potential using in vivo models of tumor growth. IL-8 is a potent neutrophil chemoattractant. Neutrophils, as "early responders" to wounds and infections, release enzymes to remodel the extracellular matrix of the tissues through which they migrate to reach the site of the wound or infection. It is proposed that the host's cellular response to IL-8 released by tumor cells enhances angiogenesis and contributes to tumor growth and progression. The activities released by the responding neutrophils could serve as enablers of tumor cell migration through the extracellular matrix, helping them enter the vasculature and journey to new, metastatic sites. The reactive oxygen species produced by neutrophilic oxidases to kill invading organisms have the potential to interact with tumor cells to attenuate their apoptotic cascade and increase their mutational rate. It is proposed that the increase in metastatic potential of tumors ectopically releasing IL-8 is, in part, attributable to their ability to attract neutrophils. Discussed here are possible mechanisms by which the neutrophils responding to ectopic IL-8 contribute to the in vivo growth, progression, and metastatic potential of tumor cells. Possible targets are also presented for the development of therapies to attenuate the effects of the ectopic IL-8 release by tumor cells.
Collapse
Affiliation(s)
- Joseph E De Larco
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|