1
|
Vendruscolo JL, Pereira HG, Schussel JL, Torres‐Pereira CC. High-Power Laser Treatment for Oral Leukoplakia in Fanconi Anemia: A Case Series Report. SPECIAL CARE IN DENTISTRY 2025; 45:e70035. [PMID: 40251844 PMCID: PMC12008610 DOI: 10.1111/scd.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/27/2025] [Accepted: 04/05/2025] [Indexed: 04/21/2025]
Abstract
INTRODUCTION Fanconi Anemia (FA) is a rare genetic disorder with high susceptibility to oral squamous cell carcinoma (SCC). Oral leukoplakia (OL) is frequent in FA patients and lacks a defined treatment. High-power diode lasers (HPDL) offer precise, minimally invasive ablation with favorable healing. This paper reports HPDL use in OL management in FA patients. CASE REPORT Four FA patients (1742 years) with clinically and histologically confirmed OL underwent HPDL ablation (808 nm, 1.52 W). Lesions were removed with a 0.5 mm safety margin. All cases showed good healing, no recurrences within 1218 months, and minimal discomfort. Two lesions had dysplasia; one patient had prior SCC. DISCUSSION/CONCLUSION HPDL showed favorable short-term outcomes for OL in FA patients. Though limited by small sample and follow-up, the approach may delay malignant transformation. Further studies are needed to confirm long-term benefits.
Collapse
|
2
|
Colegrove HL, Monnat RJ, Feder AF. Epithelial competition determines gene therapy potential to suppress Fanconi Anemia oral cancer risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640284. [PMID: 40060430 PMCID: PMC11888451 DOI: 10.1101/2025.02.26.640284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Fanconi Anemia (FA) is a heritable syndrome characterized by DNA damage repair deficits, frequent malformations and a significantly elevated risk of bone marrow failure, leukemia, and mucosal head and neck squamous cell carcinomas (HNSCC). Hematopoietic stem cell gene therapy can prevent marrow failure and lower leukemia risk, but mucosal gene therapy to lower HNSCC risk remains untested. Major knowledge gaps include an incomplete understanding of how rapidly gene-corrected cellular lineages could spread through the oral epithelium, and which delivery parameters are critical for ensuring efficient gene correction. To answer these questions, we extended an agent-based model of the oral epithelium to include the delivery of gene correction in situ to FA cells and the competitive dynamics between cellular lineages with and without gene correction. We found that only gene-corrected lineages with substantial proliferative advantages (probability of resisting displacement out of the basal layer ≥ 0.1) could spread on clinically relevant timelines, and that these lineages were initially at high risk of loss in the generations following correction. Delivering gene correction to many cells minimizes the risk of loss, while delivery to many distinct locations within a tissue maximizes the rate of spread. To determine the impact of mucosal gene therapy in preventing the clonal expansion of pre-cancerous mutations, we compared the expected burden of T P 53 mutations in simulated tissue sections with and without gene correction. We found that when FA cells have elevated genome instability or a T P 53 -dependent proliferative advantage, gene correction can substantially reduce the accumulation of pro-tumorigenic mutations. This model illustrates the power of computational frameworks to identify critical determinants of therapeutic success to enable experimental optimization and support novel and effective gene therapy applications.
Collapse
Affiliation(s)
| | - Raymond J Monnat
- Department of Genome Sciences, University of Washington, Seattle, WA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Department of Bioengineering, University of Washington, Seattle, WA
| | - Alison F Feder
- Department of Genome Sciences, University of Washington, Seattle, WA
- Herbold Computational Biology Program, Fred Hutch Cancer Center, Seattle, WA
| |
Collapse
|
3
|
Elmi M, Dass JH, Dass CR. Current treatments for oropharyngeal squamous cell carcinoma and the move towards molecular therapy. J Pharm Pharmacol 2024; 76:1552-1562. [PMID: 39137149 DOI: 10.1093/jpp/rgae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVES In this review, we discuss oropharyngeal squamous cell carcinoma (OPSCC) treatment options with a focus on the molecular mechanisms of OPSCC in head and neck squamous cell carcinoma (HNSCC) and head and neck cancers (HNCs). Treatment can be radical intent (aim for cure) or palliative intent (aim for disease control and symptom management). OPSCC is a prominent subset of HNSCCs in Australia and the Western World. METHOD We looked at the current conventional treatment options with an overview of recent advances and future endeavours. KEY FINDINGS We identified that radiotherapy is the primary management for OPSCC in most countries, including the USA, UK, NZ, and Australia. In contrast, surgery is only considered for superficial OPSCC or neck surgery. If surgery is incomplete, then definitive management still requires radiotherapy. CONCLUSION Molecular therapy is largely at the preclinical stage, with cetuximab, nivolumab, pembrolizumab, Lenvatinib, and bevacizumab being tested clinically currently.
Collapse
Affiliation(s)
- Mitra Elmi
- Curtin Medical School, Curtin University, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Perth, WA, Australia
| | - Joshua H Dass
- Curtin Medical School, Curtin University, Perth, WA, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Perth, WA, Australia
| |
Collapse
|
4
|
van Harten AM, Shah R, de Boer DV, Buijze M, Kreft M, Song JY, Zürcher LM, Jacobs H, Brakenhoff RH. Gemcitabine as chemotherapy of head and neck cancer in Fanconi anemia patients. Oncogenesis 2024; 13:26. [PMID: 38992100 PMCID: PMC11239817 DOI: 10.1038/s41389-024-00525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Fanconi anemia (FA) is a rare hereditary disease resulting from an inactivating mutation in the FA/BRCA pathway, critical for the effective repair of DNA interstrand crosslinks (ICLs). The disease is characterized by congenital abnormalities, progressing bone marrow failure, and an increased risk of developing malignancies early in life, in particular head and neck squamous cell carcinoma (HNSCC). While ICL-inducing cisplatin combined with radiotherapy is a mainstay of HNSCC treatment, cisplatin is contra-indicated for FA-HNSCC patients. This dilemma necessitates the identification of novel treatment modalities tolerated by FA-HNSCC patients. To identify druggable targets, an siRNA-based genetic screen was previously performed in HNSCC-derived cell lines from FA and non-FA tumor origin. Here, we report that the Ribonucleotide Reductase (RNR) complex, consisting of the RRM1 and RRM2 subunits, was identified as a therapeutic target for both, FA and non-FA HNSCC. While non-FA HNSCC cells responded differentially to RNR depletion, FA-HNSCC cells were consistently found hypersensitive. This insight was confirmed pharmacologically using 2', 2'-difluoro 2'deoxycytidine (dFdC), also known as gemcitabine, a clinically used nucleotide analog that is a potent inhibitor of the RNR complex. Importantly, while cisplatin exposure displayed severe, long-lasting toxicity on the hematopoietic stem and progenitor compartments in Fancg-/- mice, gemcitabine was well tolerated and had only a mild, transient impact. Taken together, our data implicate that gemcitabine-based chemoradiotherapy could serve as an alternative HNSCC treatment in Fanconi patients, and deserves clinical testing.
Collapse
Affiliation(s)
- Anne M van Harten
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Biology & Immunology Section, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Ronak Shah
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - D Vicky de Boer
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Biology & Immunology Section, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Marijke Buijze
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Biology & Immunology Section, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Maaike Kreft
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ji-Ying Song
- Department of Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lisa M Zürcher
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Biology & Immunology Section, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Day T, Stuart L, Ius Y, Haqshenas G, Garland SM, Scurry J. Fanconi Anemia Complicated by Cervical Precancer, Vulvar, and Oral Squamous Cell Cancer. J Low Genit Tract Dis 2024; 28:310-313. [PMID: 38941558 DOI: 10.1097/lgt.0000000000000809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Affiliation(s)
| | - Lilia Stuart
- Maternity and Gynaecology, John Hunter Hospital, Newcastle, Australia
| | - Yvette Ius
- Maternity and Gynaecology, John Hunter Hospital, Newcastle, Australia
| | | | | | | |
Collapse
|
6
|
Rafii H, Volt F, Bierings M, Dalle JH, Ayas M, Rihani R, Faraci M, de Simone G, Sengeloev H, Passweg J, Cavazzana M, Costello R, Maertens J, Biffi A, Johansson JE, Montoro J, Guepin GR, Diaz MA, Sirvent A, Kenzey C, Rivera Franco MM, Cappelli B, Scigliuolo GM, Rocha V, Ruggeri A, Risitano A, De Latour RP, Gluckman E. Umbilical Cord Blood Transplantation for Fanconi Anemia With a Special Focus on Late Complications: a Study on Behalf of Eurocord and SAAWP-EBMT. Transplant Cell Ther 2024; 30:532.e1-532.e16. [PMID: 38452872 DOI: 10.1016/j.jtct.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Hematopoietic cell transplantation (HCT) remains the sole available curative treatment for Fanconi anemia (FA), with particularly favorable outcomes reported after matched sibling donor (MSD) HCT. This study aimed to describe outcomes, with a special focus on late complications, of FA patients who underwent umbilical cord blood transplantation (UCBT). In this retrospective analysis of allogeneic UCBT for FA performed between 1988 and 2021 in European Society for Blood and Marrow Transplantation (EBMT)-affiliated centers, a total of 205 FA patients underwent UCBT (55 related and 150 unrelated) across 77 transplant centers. Indications for UCBT were bone marrow failure in 190 patients and acute leukemia/myelodysplasia in 15 patients. The median age at transplantation was 9 years (range, 1.2 to 43 years), with only 20 patients aged >18 years. Among the donor-recipient pairs, 56% (n = 116) had a 0 to 1/6 HLA mismatch. Limited-field radiotherapy was administered to 28% (n = 58) and 78% (n = 160) received a fludarabine (Flu)-based conditioning regimen. Serotherapy consisted of antithymocyte globulin (n = 159; 78%) or alemtuzumab (n = 12; 6%). The median follow-up was 10 years for related UCBT and 7 years for unrelated UCBT. Excellent outcomes were observed in the setting of related UCBT, including a 60-day cumulative incidence (CuI) of neutrophil recovery of 98.1% (95% confidence interval [CI], 93.9% to 100%), a 100-day CuI of grade II-IV acute graft-versus-host disease (GVHD) of 17.3% (95% CI, 9.5% to 31.6%), and a 5-year CuI of chronic GVHD (cGVHD) of 22.7% (95% CI, 13.3% to 38.7%; 13% extensive). Five-year overall survival (OS) was 88%. In multivariate analysis, none of the factors included in the model predicted a better OS. In unrelated UCBT, the 60-day CuI of neutrophil recovery was 78.7% (95% CI, 71.9% to 86.3%), the 100-day CuI of grade II-IV aGVHD was 31.4% (95% CI, 24.6% to 40.2%), and the 5-year CuI of cGVHD was 24.3% (95% CI, 17.8% to 32.2%; 12% extensive). Five-year OS was 44%. In multivariate analysis, negative recipient cytomegalovirus serology, Flu-based conditioning, age <9 years at UCBT, and 0 to 1/6 HLA mismatch were associated with improved OS. A total of 106 patients, including 5 with acute leukemia/myelodysplasia, survived for >2 years after UCBT. Nine of these patients developed subsequent neoplasms (SNs), including 1 donor-derived acute myelogenous leukemia and 8 solid tumors, at a median of 9.7 years (range, 2.3 to 21.8 years) post-UCBT (1 related and 8 unrelated UCBT). In a subset of 49 patients with available data, late nonmalignant complications affecting various organ systems were observed at a median of 8.7 years (range, 2.7 to 28.8 years) post-UCBT. UCB is a valid source of stem cells for transplantation in patients with FA, with the best results observed after related UCBT. After unrelated UCBT, improved survival was observed in patients who underwent transplantation at a younger age, with Flu-based conditioning, and with better HLA parity. The incidence of organ-specific complications and SNs was relatively low. The incidence of SNs, mostly squamous cell carcinoma, increases with time. Rigorous follow-up and lifelong screening are crucial in survivors of UCBT for FA.
Collapse
Affiliation(s)
- Hanadi Rafii
- Eurocord, Institut de Recherche de Saint-Louis (IRSL) EA3518, Hôpital Saint-Louis, Université Paris Cité, Paris, France
| | - Fernanda Volt
- Eurocord, Institut de Recherche de Saint-Louis (IRSL) EA3518, Hôpital Saint-Louis, Université Paris Cité, Paris, France
| | - Marc Bierings
- Princess Maxima Center, University Hospital for Children, Utrecht, Netherlands
| | - Jean-Hugues Dalle
- Pediatric Hematology and Immunology Department, Robert Debré Hospital, Université Paris Cité, APHP, Paris, France
| | - Mouhab Ayas
- Department of Pediatric Hematology Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rawad Rihani
- Pediatric Blood, Marrow and Cellular Therapy Program, King Hussein Cancer Centre, Amman, Jordan
| | - Maura Faraci
- Hematopoetic Stem Cell Unit, Department of Hematology-Oncology, IRCCS Istituto G. Gaslini, Genova, Italy
| | - Giuseppina de Simone
- Hematology and Stem Cell Transplant Unit, Azienda Ospedaliera di Rilievo Nazionale Santobono-Pausilipon, Napoli, Italy
| | - Henrik Sengeloev
- Bone Marrow Transplant Unit L 4043, National University Hospital, Copenhagen, Denmark
| | - Jakob Passweg
- Hematology Department, University Hospital of Basel, Basel, Switzerland
| | | | - Regis Costello
- Centre Hospitalier Universitaire La Conception, Marseille, France
| | - Johan Maertens
- Departement of Hematology,University Hospital Gasthuisberg, Leuven, Belgium
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | | | | | | | | | - Anne Sirvent
- Pediatric Onco-Hematology Unit, CHU A de Villeneuve, Montpellier, France
| | - Chantal Kenzey
- Eurocord, Institut de Recherche de Saint-Louis (IRSL) EA3518, Hôpital Saint-Louis, Université Paris Cité, Paris, France
| | - Monica M Rivera Franco
- Eurocord, Institut de Recherche de Saint-Louis (IRSL) EA3518, Hôpital Saint-Louis, Université Paris Cité, Paris, France
| | - Barbara Cappelli
- Eurocord, Institut de Recherche de Saint-Louis (IRSL) EA3518, Hôpital Saint-Louis, Université Paris Cité, Paris, France; Monacord, Centre Scientifique de Monaco, Monaco
| | - Graziana Maria Scigliuolo
- Eurocord, Institut de Recherche de Saint-Louis (IRSL) EA3518, Hôpital Saint-Louis, Université Paris Cité, Paris, France; Monacord, Centre Scientifique de Monaco, Monaco
| | - Vanderson Rocha
- Eurocord, Institut de Recherche de Saint-Louis (IRSL) EA3518, Hôpital Saint-Louis, Université Paris Cité, Paris, France; Hematology, Transfusion, and Cell Therapy Service and Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Hospital das Clínicas, Faculty of Medicine, São Paulo University, São Paulo, Brazil
| | - Annalisa Ruggeri
- Eurocord, Institut de Recherche de Saint-Louis (IRSL) EA3518, Hôpital Saint-Louis, Université Paris Cité, Paris, France; Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Risitano
- University of Naples, Avellino, Italy; AORN San Giuseppe Moscati, Avellino, Italy
| | - Regis Peffault De Latour
- Bone Marrow Transplant Unit, Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Eliane Gluckman
- Eurocord, Institut de Recherche de Saint-Louis (IRSL) EA3518, Hôpital Saint-Louis, Université Paris Cité, Paris, France; Monacord, Centre Scientifique de Monaco, Monaco.
| |
Collapse
|
7
|
Da Costa L, Mohandas N, David-NGuyen L, Platon J, Marie I, O'Donohue MF, Leblanc T, Gleizes PE. Diamond-Blackfan anemia, the archetype of ribosomopathy: How distinct is it from the other constitutional ribosomopathies? Blood Cells Mol Dis 2024:102838. [PMID: 38413287 DOI: 10.1016/j.bcmd.2024.102838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
Diamond-Blackfan anemia (DBA) was the first ribosomopathy described in humans. DBA is a congenital hypoplastic anemia, characterized by macrocytic aregenerative anemia, manifesting by differentiation blockage between the BFU-e/CFU-e developmental erythroid progenitor stages. In 50 % of the DBA cases, various malformations are noted. Strikingly, for a hematological disease with a relative erythroid tropism, DBA is due to ribosomal haploinsufficiency in 24 different ribosomal protein (RP) genes. A few other genes have been described in DBA-like disorders, but they do not fit into the classical DBA phenotype (Sankaran et al., 2012; van Dooijeweert et al., 2022; Toki et al., 2018; Kim et al., 2017 [1-4]). Haploinsufficiency in a RP gene leads to defective ribosomal RNA (rRNA) maturation, which is a hallmark of DBA. However, the mechanistic understandings of the erythroid tropism defect in DBA are still to be fully defined. Erythroid defect in DBA has been recently been linked in a non-exclusive manner to a number of mechanisms that include: 1) a defect in translation, in particular for the GATA1 erythroid gene; 2) a deficit of HSP70, the GATA1 chaperone, and 3) free heme toxicity. In addition, p53 activation in response to ribosomal stress is involved in DBA pathophysiology. The DBA phenotype may thus result from the combined contributions of various actors, which may explain the heterogenous phenotypes observed in DBA patients, even within the same family.
Collapse
Affiliation(s)
- L Da Costa
- Service d'Hématologie Biologique (Hematology Diagnostic Lab), AP-HP, Hôpital Bicêtre, F-94270 Le Kremlin-Bicêtre, France; University of Paris Saclay, F-94270 Le Kremlin-Bicêtre, France; University of Paris Cité, F-75010 Paris, France; University of Picardie Jules Verne, F-80000 Amiens, France; Inserm U1170, IGR, F-94805 Villejuif/HEMATIM UR4666, F-80000 Amiens, France; Laboratory of Excellence for Red Cells, LABEX GR-Ex, F-75015 Paris, France.
| | | | - Ludivine David-NGuyen
- Service d'Hématologie Biologique (Hematology Diagnostic Lab), AP-HP, Hôpital Bicêtre, F-94270 Le Kremlin-Bicêtre, France
| | - Jessica Platon
- Inserm U1170, IGR, F-94805 Villejuif/HEMATIM UR4666, F-80000 Amiens, France
| | - Isabelle Marie
- Service d'Hématologie Biologique (Hematology Diagnostic Lab), AP-HP, Hôpital Bicêtre, F-94270 Le Kremlin-Bicêtre, France
| | - Marie Françoise O'Donohue
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Thierry Leblanc
- Service d'immuno-hématologie pédiatrique, Hôpital Robert-Debré, F-75019 Paris, France
| | - Pierre-Emmanuel Gleizes
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
8
|
Biglari S, Moghaddam AS, Tabatabaiefar MA, Sherkat R, Youssefian L, Saeidian AH, Vahidnezhad F, Tsoi LC, Gudjonsson JE, Hakonarson H, Casanova JL, Béziat V, Jouanguy E, Vahidnezhad H. Monogenic etiologies of persistent human papillomavirus infections: A comprehensive systematic review. Genet Med 2024; 26:101028. [PMID: 37978863 PMCID: PMC10922824 DOI: 10.1016/j.gim.2023.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE Persistent human papillomavirus infection (PHPVI) causes cutaneous, anogenital, and mucosal warts. Cutaneous warts include common warts, Treeman syndrome, and epidermodysplasia verruciformis, among others. Although more reports of monogenic predisposition to PHPVI have been published with the development of genomic technologies, genetic testing is rarely incorporated into clinical assessments. To encourage broader molecular testing, we compiled a list of the various monogenic etiologies of PHPVI. METHODS We conducted a systematic literature review to determine the genetic, immunological, and clinical characteristics of patients with PHPVI. RESULTS The inclusion criteria were met by 261 of 40,687 articles. In 842 patients, 83 PHPVI-associated genes were identified, including 42, 6, and 35 genes with strong, moderate, and weak evidence for causality, respectively. Autosomal recessive inheritance predominated (69%). PHPVI onset age was 10.8 ± 8.6 years, with an interquartile range of 5 to 14 years. GATA2,IL2RG,DOCK8, CXCR4, TMC6, TMC8, and CIB1 are the most frequently reported PHPVI-associated genes with strong causality. Most genes (74 out of 83) belong to a catalog of 485 inborn errors of immunity-related genes, and 40 genes (54%) are represented in the nonsyndromic and syndromic combined immunodeficiency categories. CONCLUSION PHPVI has at least 83 monogenic etiologies and a genetic diagnosis is essential for effective management.
Collapse
Affiliation(s)
- Sajjad Biglari
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Youssefian
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Amir Hossein Saeidian
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | | | - Hakon Hakonarson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France, EU; Howard Hughes Medical Institute, Chevy Chase, MD
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France
| | - Hassan Vahidnezhad
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA.
| |
Collapse
|
9
|
Chelmow D, Cejtin H, Conageski C, Farid H, Gecsi K, Kesterson J, Khan MJ, Long M, O'Hara JS, Burke W. Executive Summary of the Lower Anogenital Tract Cancer Evidence Review Conference. Obstet Gynecol 2023; 142:708-724. [PMID: 37543740 PMCID: PMC10424818 DOI: 10.1097/aog.0000000000005283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 08/07/2023]
Abstract
The Centers for Disease Control and Prevention sponsored a project conducted by the American College of Obstetricians and Gynecologists to develop educational materials for clinicians on the prevention and early diagnosis of gynecologic cancers. For this final module, focusing on the cancers of the lower anogenital tract (vulva, vagina, and anus), a panel of experts in evidence assessment from the Society for Academic Specialists in General Obstetrics and Gynecology, ASCCP, and the Society of Gynecologic Oncology reviewed relevant literature and current guidelines. Panel members conducted structured literature reviews, which were then reviewed by other panel members. Representatives from stakeholder professional and patient advocacy organizations met virtually in September 2022 to review and provide comment. This article is the executive summary of the review. It covers prevention, early diagnosis, and special considerations of lower anogenital tract cancer. Knowledge gaps are summarized to provide guidance for future research.
Collapse
Affiliation(s)
- David Chelmow
- Departments of Obstetrics and Gynecology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, Feinberg School of Medicine Northwestern University, Stroger Hospital, Chicago, Illinois, University of Colorado School of Medicine, Aurora, Colorado, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, Medical College of Wisconsin, Milwaukee, Wisconsin, Stanford University School of Medicine, Palo Alto, California, Mayo Clinic Alix School of Medicine, Rochester, Minnesota, and Stony Brook University Hospital, Stony Brook, New York; the Division of Gynecologic Oncology, UPMC-Central PA, Mechanicsburg, Pennsylvania; and the American College of Obstetricians and Gynecologists, Washington, DC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Peake JD, Horne KI, Noguchi C, Gilligan JP, Noguchi E. The p53 DNA damage response and Fanconi anemia DNA repair pathway protect against acetaldehyde-induced replication stress in esophageal keratinocytes. Cell Cycle 2023; 22:2088-2096. [PMID: 37749911 PMCID: PMC10761134 DOI: 10.1080/15384101.2023.2261740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/24/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023] Open
Abstract
Alcohol contributes to cellular accumulation of acetaldehyde, a primary metabolite of alcohol and a major human carcinogen. Acetaldehyde can form DNA adducts and induce interstrand crosslinks (ICLs) that are repaired by the Fanconi anemia DNA repair pathway (FA pathway). Individuals with deficiency in acetaldehyde detoxification or in the FA pathway have an increased risk of squamous-cell carcinomas (SCCs) including those of the esophagus. In a recent report, we described the molecular basis of acetaldehyde-induced DNA damage in esophageal keratinocytes [1]. We demonstrated that, at physiologically relevant concentrations, acetaldehyde induces DNA damage at the DNA replication fork. This resulted in replication stress, leading to activation of the ATR-Chk1-dependent cell cycle checkpoints. We also reported that the p53 DNA damage response is elevated in response to acetaldehyde and that the FA pathway limits acetaldehyde-induced genomic instability. Here, we highlight these findings and present additional results to discuss the role of the FA pathway and p53 DNA damage response in the protection against genomic instability and esophageal carcinogenesis.
Collapse
Affiliation(s)
- Jasmine D. Peake
- Program in Molecular and Cellular Biology and Genetics, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kalisse I. Horne
- Program in Molecular and Cellular Biology and Genetics, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Chiaki Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - John P. Gilligan
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
11
|
Nguyen HT, Tang W, Webster ALH, Whiteaker JR, Chandler CM, Errazquin R, Roohollahi K, Fritzke M, Hoskins EE, Jonlin E, Wakefield L, Sullivan LB, Chen EY, Dorsman J, Brakenhoff R, Paulovich AG, Grompe M, Garcia-Escudero R, Wells SI, Smogorzewska A, Monnat RJ. Fanconi anemia-isogenic head and neck cancer cell line pairs: A basic and translational science resource. Int J Cancer 2023; 153:183-196. [PMID: 36912284 DOI: 10.1002/ijc.34506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/27/2023] [Accepted: 02/15/2023] [Indexed: 03/14/2023]
Abstract
Fanconi anemia (FA) is a heritable malformation, bone marrow failure and cancer predisposition syndrome that confers an exceptionally high risk of squamous carcinomas. These carcinomas originate in epithelia lining the mouth, proximal esophagus, vulva and anus: their origins are not understood, and no effective ways have been identified to prevent or delay their appearance. Many FA-associated carcinomas are also therapeutically challenging: they may be multi-focal and stage-advanced at diagnosis, and most individuals with FA cannot tolerate standard-of-care systemic therapies such as DNA cross-linking drugs or ionizing radiation due to constitutional DNA damage hypersensitivity. We developed the Fanconi Anemia Cancer Cell Line Resource (FA-CCLR) to foster new work on the origins, treatment and prevention of FA-associated carcinomas. The FA-CCLR consists of Fanconi-isogenic head and neck squamous cell carcinoma (HNSCC) cell line pairs generated from five individuals with FA-associated HNSCC, and five individuals with sporadic HNSCC. Sporadic, isogenic HNSCC cell line pairs were generated in parallel with FA patient-derived isogenic cell line pairs to provide comparable experimental material to use to identify cell and molecular phenotypes driven by germline or somatic loss of Fanconi pathway function, and the subset of these FA-dependent phenotypes that can be modified, complemented or suppressed. All 10 FANC-isogenic cell line pairs are available to academic, non-profit and industry investigators via the "Fanconi Anemia Research Materials" Resource and Repository at Oregon Health & Sciences University, Portland OR.
Collapse
Affiliation(s)
- Hiep Tai Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Weiliang Tang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Andrew L H Webster
- Laboratory of Genome Maintenance, Rockefeller University, New York, New York, USA
| | - Jeffrey R Whiteaker
- Fred Hutchinson Cancer Center, Clinical Research Division, Seattle, Washington, USA
| | - Christopher M Chandler
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Ricardo Errazquin
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Biomedical Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medio-ambientales y Tecnológicas), Madrid, Spain
| | | | - Madeline Fritzke
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | | | - Erica Jonlin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- University of Washington Institute for Stem Cell and Regenerative Medicine, Seattle, Washington, USA
| | - Leslie Wakefield
- Departments of Pediatrics and Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Lucas B Sullivan
- Fred Hutchinson Cancer Center, Human Biology Division, Seattle, Washington, USA
| | - Eleanor Y Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | | | - Ruud Brakenhoff
- Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Amanda G Paulovich
- Fred Hutchinson Cancer Center, Clinical Research Division, Seattle, Washington, USA
| | - Markus Grompe
- Departments of Pediatrics and Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Ramon Garcia-Escudero
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Biomedical Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medio-ambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Susanne I Wells
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, Rockefeller University, New York, New York, USA
| | - Raymond J Monnat
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
12
|
Errazquin R, Carrasco E, Del Marro S, Suñol A, Peral J, Ortiz J, Rubio JC, Segrelles C, Dueñas M, Garrido-Aranda A, Alvarez M, Belendez C, Balmaña J, Garcia-Escudero R. Early Diagnosis of Oral Cancer and Lesions in Fanconi Anemia Patients: A Prospective and Longitudinal Study Using Saliva and Plasma. Cancers (Basel) 2023; 15:cancers15061871. [PMID: 36980757 PMCID: PMC10046988 DOI: 10.3390/cancers15061871] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/21/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Fanconi anemia (FA) patients display an exacerbated risk of oral squamous cell carcinoma (OSCC) and oral potentially malignant lesions (OPMLs) at early ages. As patients have defects in their DNA repair mechanisms, standard-of-care treatments for OSCC such as radiotherapy and chemotherapy, give rise to severe toxicities. New methods for early diagnosis are urgently needed to allow for treatment in early disease stages and achieve better clinical outcomes. We conducted a prospective, longitudinal study wherein liquid biopsies from sixteen patients with no clinical diagnoses of OPML and/or OSCC were analyzed for the presence of mutations in cancer genes. The DNA from saliva and plasma were sequentially collected and deep-sequenced, and the clinical evaluation followed over a median time of approximately 2 years. In 9/16 FA patients, we detected mutations in cancer genes (mainly TP53) with minor allele frequencies (MAF) of down to 0.07%. Importantly, all patients that had mutations and clinical follow-up data after mutation detection (n = 6) developed oral precursor lesions or OSCC. The lead-time between mutation detection and tumor diagnosis ranged from 23 to 630 days. Strikingly, FA patients without mutations displayed a significantly lower risk of developing precursor lesions or OSCCs. Therefore, our diagnostic approach could help to stratify FA patients into risk groups, which would allow for closer surveillance for OSCCs or precursor lesions.
Collapse
Affiliation(s)
- Ricardo Errazquin
- Research Institute Hospital 12 de Octubre (Imas12), University Hospital 12 de Octubre, Av Cordoba s/n, 28041 Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas), Avenida Complutense 40, 28040 Madrid, Spain
| | - Estela Carrasco
- Hereditary Cancer Genetics Group, Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Sonia Del Marro
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas), Avenida Complutense 40, 28040 Madrid, Spain
| | - Anna Suñol
- Hereditary Cancer Genetics Group, Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Jorge Peral
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas), Avenida Complutense 40, 28040 Madrid, Spain
| | - Jessica Ortiz
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas), Avenida Complutense 40, 28040 Madrid, Spain
| | - Juan Carlos Rubio
- Research Institute Hospital 12 de Octubre (Imas12), University Hospital 12 de Octubre, Av Cordoba s/n, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Segrelles
- Research Institute Hospital 12 de Octubre (Imas12), University Hospital 12 de Octubre, Av Cordoba s/n, 28041 Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas), Avenida Complutense 40, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Dueñas
- Research Institute Hospital 12 de Octubre (Imas12), University Hospital 12 de Octubre, Av Cordoba s/n, 28041 Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas), Avenida Complutense 40, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Martina Alvarez
- Centro de Investigaciones Médico-Sanitarias (CIMES), 29071 Malaga, Spain
| | - Cristina Belendez
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Sección de Hematología y Oncología Pediátricas, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
| | - Judith Balmaña
- Hereditary Cancer Genetics Group, Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Ramon Garcia-Escudero
- Research Institute Hospital 12 de Octubre (Imas12), University Hospital 12 de Octubre, Av Cordoba s/n, 28041 Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas), Avenida Complutense 40, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
13
|
Genome-wide siRNA screens identify RBBP9 function as a potential target in Fanconi anaemia-deficient head-and-neck squamous cell carcinoma. Commun Biol 2023; 6:37. [PMID: 36639418 PMCID: PMC9839743 DOI: 10.1038/s42003-022-04389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Fanconi anaemia (FA) is a rare chromosomal-instability syndrome caused by mutations of any of the 22 known FA DNA-repair genes. FA individuals have an increased risk of head-and-neck squamous-cell-carcinomas (HNSCC), often fatal. Systemic intolerance to standard cisplatin-based protocols due to somatic-cell hypersensitivity underscores the urgent need to develop novel therapies. Here, we performed unbiased siRNA screens to unveil genetic interactions synthetic-lethal with FA-pathway deficiency in FA-patient HNSCC cell lines. We identified based on differential-lethality scores between FA-deficient and FA-proficient cells, next to common-essential genes such as PSMC1, PSMB2, and LAMTOR2, the otherwise non-essential RBBP9 gene. Accordingly, low dose of the FDA-approved RBBP9-targeting drug Emetine kills FA-HNSCC. Importantly both RBBP9-silencing as well as Emetine spared non-tumour FA cells. This study provides a minable genome-wide analyses of vulnerabilities to address treatment challenges in FA-HNSCC. Our investigation divulges a DNA-cross-link-repair independent lead, RBBP9, for targeted treatment of FA-HNSCCs without systemic toxicity.
Collapse
|
14
|
Webster ALH, Sanders MA, Patel K, Dietrich R, Noonan RJ, Lach FP, White RR, Goldfarb A, Hadi K, Edwards MM, Donovan FX, Hoogenboezem RM, Jung M, Sridhar S, Wiley TF, Fedrigo O, Tian H, Rosiene J, Heineman T, Kennedy JA, Bean L, Rosti RO, Tryon R, Gonzalez AM, Rosenberg A, Luo JD, Carroll TS, Shroff S, Beaumont M, Velleuer E, Rastatter JC, Wells SI, Surrallés J, Bagby G, MacMillan ML, Wagner JE, Cancio M, Boulad F, Scognamiglio T, Vaughan R, Beaumont KG, Koren A, Imielinski M, Chandrasekharappa SC, Auerbach AD, Singh B, Kutler DI, Campbell PJ, Smogorzewska A. Genomic signature of Fanconi anaemia DNA repair pathway deficiency in cancer. Nature 2022; 612:495-502. [PMID: 36450981 PMCID: PMC10202100 DOI: 10.1038/s41586-022-05253-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/18/2022] [Indexed: 12/03/2022]
Abstract
Fanconi anaemia (FA), a model syndrome of genome instability, is caused by a deficiency in DNA interstrand crosslink repair resulting in chromosome breakage1-3. The FA repair pathway protects against endogenous and exogenous carcinogenic aldehydes4-7. Individuals with FA are hundreds to thousands fold more likely to develop head and neck (HNSCC), oesophageal and anogenital squamous cell carcinomas8 (SCCs). Molecular studies of SCCs from individuals with FA (FA SCCs) are limited, and it is unclear how FA SCCs relate to sporadic HNSCCs primarily driven by tobacco and alcohol exposure or infection with human papillomavirus9 (HPV). Here, by sequencing genomes and exomes of FA SCCs, we demonstrate that the primary genomic signature of FA repair deficiency is the presence of high numbers of structural variants. Structural variants are enriched for small deletions, unbalanced translocations and fold-back inversions, and are often connected, thereby forming complex rearrangements. They arise in the context of TP53 loss, but not in the context of HPV infection, and lead to somatic copy-number alterations of HNSCC driver genes. We further show that FA pathway deficiency may lead to epithelial-to-mesenchymal transition and enhanced keratinocyte-intrinsic inflammatory signalling, which would contribute to the aggressive nature of FA SCCs. We propose that the genomic instability in sporadic HPV-negative HNSCC may arise as a result of the FA repair pathway being overwhelmed by DNA interstrand crosslink damage caused by alcohol and tobacco-derived aldehydes, making FA SCC a powerful model to study tumorigenesis resulting from DNA-crosslinking damage.
Collapse
Affiliation(s)
- Andrew L H Webster
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Mathijs A Sanders
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Krupa Patel
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Ralf Dietrich
- Deutsche Fanconi-Anämie-Hilfe e.V, Unna-Siddinghausen, Germany
| | - Raymond J Noonan
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Francis P Lach
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Ryan R White
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Audrey Goldfarb
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Kevin Hadi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine and New York Genome Center, New York, NY, USA
| | - Matthew M Edwards
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Frank X Donovan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Moonjung Jung
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Sunandini Sridhar
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Tom F Wiley
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Olivier Fedrigo
- Vertebrate Genomes Laboratory, Rockefeller University, New York, NY, USA
| | - Huasong Tian
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine and New York Genome Center, New York, NY, USA
| | - Joel Rosiene
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine and New York Genome Center, New York, NY, USA
| | - Thomas Heineman
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Jennifer A Kennedy
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lorenzo Bean
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Rasim O Rosti
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Rebecca Tryon
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | - Allana Rosenberg
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, Rockefeller University, New York, NY, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, Rockefeller University, New York, NY, USA
| | - Sanjana Shroff
- Department of Genetics and Genomic Sciences. Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Michael Beaumont
- Department of Genetics and Genomic Sciences. Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Eunike Velleuer
- Institute for Pathology, Department for Cytopathology, University Hospital of Düsseldorf, Düsseldorf, Germany
- Pediatric Cancer Center, Helios Hospital Krefeld, Düsseldorf, Germany
| | - Jeff C Rastatter
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL, USA
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Susanne I Wells
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jordi Surrallés
- Genomic Instability and DNA Repair Syndromes Group and Joint Research Unit on Genomic Medicine UAB-Sant Pau Biomedical Research Institute (IIB Sant Pau), Institut de Recerca Hospital de la Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain
| | - Grover Bagby
- Departments of Medicine and Molecular and Medical Genetics, Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | | | - John E Wagner
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Maria Cancio
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Farid Boulad
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Roger Vaughan
- Department of Biostatistics, The Rockefeller University, New York, NY, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences. Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Marcin Imielinski
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine and New York Genome Center, New York, NY, USA
| | - Settara C Chandrasekharappa
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arleen D Auerbach
- Human Genetics and Hematology Program, The Rockefeller University, New York, NY, USA
| | - Bhuvanesh Singh
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David I Kutler
- Department of Otolaryngology-Head and Neck Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA.
| |
Collapse
|
15
|
Errazquin R, Page A, Suñol A, Segrelles C, Carrasco E, Peral J, Garrido-Aranda A, Del Marro S, Ortiz J, Lorz C, Minguillon J, Surralles J, Belendez C, Alvarez M, Balmaña J, Bravo A, Ramirez A, Garcia-Escudero R. Development of a mouse model for spontaneous oral squamous cell carcinoma in Fanconi anemia. Oral Oncol 2022; 134:106184. [PMID: 36191479 DOI: 10.1016/j.oraloncology.2022.106184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/29/2022]
Abstract
Fanconi anemia (FA) patients frequently develop oral squamous cell carcinoma (OSCC). This cancer in FA patients is diagnosed within the first 3-4 decades of life, very often preceded by lesions that suffer a malignant transformation. In addition, they respond poorly to current treatments due to toxicity or multiple recurrences. Translational research on new chemopreventive agents and therapeutic strategies has been unsuccessful partly due to scarcity of disease models or failure to fully reproduce the disease. Here we report that Fanca gene knockout mice (Fanca-/-) frequently display pre-malignant lesions in the oral cavity. Moreover, when these animals were crossed with animals having conditional deletion of Trp53 gene in oral mucosa (K14cre;Trp53F2-10/F2-10), they spontaneously developed OSCC with high penetrance and a median latency of less than ten months. Tumors were well differentiated and expressed markers of squamous differentiation, such as keratins K5 and K10. In conclusion, Fanca and Trp53 genes cooperate to suppress oral cancer in mice, and Fanca-/-;K14cre;Trp53F2-10/F2-10 mice constitute the first animal model of spontaneous OSCC in FA.
Collapse
Affiliation(s)
- Ricardo Errazquin
- Research Institute Hospital 12 de Octubre (imas12), University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain
| | - Angustias Page
- Research Institute Hospital 12 de Octubre (imas12), University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; Biomedical Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense 40, 28040 Madrid, Spain
| | - Anna Suñol
- Hereditary Cancer Genetics Group and Medical Oncology Department, VHIO, Barcelona, Spain
| | - Carmen Segrelles
- Research Institute Hospital 12 de Octubre (imas12), University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; Biomedical Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense 40, 28040 Madrid, Spain
| | - Estela Carrasco
- Hereditary Cancer Genetics Group and Medical Oncology Department, VHIO, Barcelona, Spain
| | - Jorge Peral
- Biomedical Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense 40, 28040 Madrid, Spain
| | | | - Sonia Del Marro
- Biomedical Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense 40, 28040 Madrid, Spain
| | - Jessica Ortiz
- Biomedical Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense 40, 28040 Madrid, Spain
| | - Corina Lorz
- Research Institute Hospital 12 de Octubre (imas12), University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; Biomedical Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense 40, 28040 Madrid, Spain
| | - Jordi Minguillon
- Join Research Unit on Genomic Medicine UAB-Sant Pau Biomedical Research Institute (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Jordi Surralles
- Join Research Unit on Genomic Medicine UAB-Sant Pau Biomedical Research Institute (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Cristina Belendez
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), 28029 Madrid, Spain; Pediatric Hematology and Oncology, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Facultad de Medicina, Universidad Complutense de Madrid, Spain; Instituto Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Martina Alvarez
- Centro de Investigaciones Médico-Sanitarias (CIMES), Malaga, Spain
| | - Judith Balmaña
- Hereditary Cancer Genetics Group and Medical Oncology Department, VHIO, Barcelona, Spain
| | - Ana Bravo
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Laboratory of Pathology Phenotyping of Genetically Engineered Mice, Faculty of Veterinary Medicine, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Angel Ramirez
- Research Institute Hospital 12 de Octubre (imas12), University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; Biomedical Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense 40, 28040 Madrid, Spain
| | - Ramon Garcia-Escudero
- Research Institute Hospital 12 de Octubre (imas12), University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; Biomedical Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense 40, 28040 Madrid, Spain.
| |
Collapse
|
16
|
Chihanga T, Vicente-Muñoz S, Ruiz-Torres S, Pal B, Sertorio M, Andreassen PR, Khoury R, Mehta P, Davies SM, Lane AN, Romick-Rosendale LE, Wells SI. Head and Neck Cancer Susceptibility and Metabolism in Fanconi Anemia. Cancers (Basel) 2022; 14:cancers14082040. [PMID: 35454946 PMCID: PMC9025423 DOI: 10.3390/cancers14082040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Fanconi anemia (FA) is a rare inherited, generally autosomal recessive syndrome, but it displays X-linked or dominant negative inheritance for certain genes. FA is characterized by a deficiency in DNA damage repair that results in bone marrow failure, and in an increased risk for various epithelial tumors, most commonly squamous cell carcinomas of the head and neck (HNSCC) and of the esophagus, anogenital tract and skin. Individuals with FA exhibit increased human papilloma virus (HPV) prevalence. Furthermore, a subset of anogenital squamous cell carcinomas (SCCs) in FA harbor HPV sequences and FA-deficient laboratory models reveal molecular crosstalk between HPV and FA proteins. However, a definitive role for HPV in HNSCC development in the FA patient population is unproven. Cellular metabolism plays an integral role in tissue homeostasis, and metabolic deregulation is a known hallmark of cancer progression that supports uncontrolled proliferation, tumor development and metastatic dissemination. The metabolic consequences of FA deficiency in keratinocytes and associated impact on the development of SCC in the FA population is poorly understood. Herein, we review the current literature on the metabolic consequences of FA deficiency and potential effects of resulting metabolic reprogramming on FA cancer phenotypes.
Collapse
Affiliation(s)
- Tafadzwa Chihanga
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Sara Vicente-Muñoz
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.V.-M.); (L.E.R.-R.)
| | - Sonya Ruiz-Torres
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Bidisha Pal
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Mathieu Sertorio
- Department of Radiation Oncology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Paul R. Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Ruby Khoury
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Parinda Mehta
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Stella M. Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Andrew N. Lane
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Lindsey E. Romick-Rosendale
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.V.-M.); (L.E.R.-R.)
| | - Susanne I. Wells
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
- Correspondence: ; Tel.: +1-513-636-5986
| |
Collapse
|
17
|
Vagher J, Gammon A, Kohlmann W, Jeter J. Non-Melanoma Skin Cancers and Other Cutaneous Manifestations in Bone Marrow Failure Syndromes and Rare DNA Repair Disorders. Front Oncol 2022; 12:837059. [PMID: 35359366 PMCID: PMC8960432 DOI: 10.3389/fonc.2022.837059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
Although most non-melanoma skin cancers are felt to be sporadic in origin, these tumors do play a role in several cancer predisposition syndromes. The manifestations of skin cancers in these hereditary populations can include diagnosis at extremely early ages and/or multiple primary cancers, as well as tumors at less common sites. Awareness of baseline skin cancer risks for these individuals is important, particularly in the setting of treatments that may compromise the immune system and further increase risk of cutaneous malignancies. Additionally, diagnosis of these disorders and management of non-cutaneous manifestations of these diseases have profound implications for both the patient and their family. This review highlights the current literature on the diagnosis, features, and non-melanoma skin cancer risks associated with lesser-known cancer predisposition syndromes, including bone marrow failure disorders, genomic instability disorders, and base excision repair disorders.
Collapse
Affiliation(s)
- Jennie Vagher
- Family Cancer Assessment Clinic, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Amanda Gammon
- Family Cancer Assessment Clinic, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Wendy Kohlmann
- Family Cancer Assessment Clinic, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Joanne Jeter
- Family Cancer Assessment Clinic, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
18
|
Wallner C, Hurst J, Behr B, Rony MAT, Barabás A, Smith G. Fanconi Anemia: Examining Guidelines for Testing All Patients with Hand Anomalies Using a Machine Learning Approach. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9010085. [PMID: 35053710 PMCID: PMC8774393 DOI: 10.3390/children9010085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/01/2022]
Abstract
Background: This study investigated the questionable necessity of genetic testing for Fanconi anemia in children with hand anomalies. The current UK guidelines suggest that every child with radial ray dysplasia or a thumb anomaly should undergo further cost intensive investigation for Fanconi anemia. In this study we reviewed the numbers of patients and referral patterns, as well as the financial and service provision implications UK guidelines provide. Methods: Over three years, every patient with thumb or radial ray anomaly referred to our service was tested for Fanconi Anemia. CART Analysis and machine learning techniques using Waikato Environment for Knowledge Analysis were applied to evaluate single clinical features predicting Fanconi anemia. Results: Youden Index and Predictive Summary Index (PSI) scores suggested no clinical significance of hand anomalies associated with Fanconi anemia. CART Analysis and attribute evaluation with Waikato Environment for Knowledge Analysis (WEKA) showed no single feature predictive for Fanconi anemia. Furthermore, none of the positive Fanconi anemia patients in this study had an isolated upper limb anomaly without presenting other features of Fanconi anemia. Conclusion: As a conclusion, this study does not support Fanconi anemia testing for isolated hand abnormalities in the absence of other features associated with this blood disease.
Collapse
Affiliation(s)
- Christoph Wallner
- Department of Plastic Surgery, Great Ormond Street Hospital, London WC1N 3JH, UK; (J.H.); (A.B.); (G.S.)
- Department of Plastic and Hand Surgery, Burn Center Sarcoma Center, BG University Hospital Bergmannsheil Bochum, Ruhr University Bochum, 44789 Bochum, Germany;
- Correspondence:
| | - Jane Hurst
- Department of Plastic Surgery, Great Ormond Street Hospital, London WC1N 3JH, UK; (J.H.); (A.B.); (G.S.)
| | - Björn Behr
- Department of Plastic and Hand Surgery, Burn Center Sarcoma Center, BG University Hospital Bergmannsheil Bochum, Ruhr University Bochum, 44789 Bochum, Germany;
| | - Mohammad Abu Tareq Rony
- Department of Statistics, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Anthony Barabás
- Department of Plastic Surgery, Great Ormond Street Hospital, London WC1N 3JH, UK; (J.H.); (A.B.); (G.S.)
| | - Gill Smith
- Department of Plastic Surgery, Great Ormond Street Hospital, London WC1N 3JH, UK; (J.H.); (A.B.); (G.S.)
| |
Collapse
|
19
|
Silva de Araujo BE, Velleuer E, Dietrich R, Pomjanski N, de Santana Almeida Araujo IK, Schlensog M, Wells SI, Dorsman JC, Schramm M. Detection of cytogenetic changes and chromosomal aneuploidy with fluorescent in situ hybridization in cytological specimens of oral cancers in Fanconi anemia-Proof of concept. Clin Exp Dent Res 2021; 8:108-116. [PMID: 34854575 PMCID: PMC8874072 DOI: 10.1002/cre2.519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Fanconi anemia (FA) is a rare inherited DNA instability disorder with a remarkably elevated risk of neoplasia compared with the general population, mainly leukemia and squamous cell carcinoma (SCC). Two thirds of the SCCs arise in the oral cavity and are typically preceded by visible lesions. These lesions can be classified with brush biopsy-based cytological methods regarding their risk of a malignant transformation. As a proof of concept, this study aims to investigate genetic changes and chromosomal aneuploidy using fluorescent in situ hybridization (FISH) on oral squamous cells derived from FA affected individuals. MATERIAL AND METHODS Five FA oral SCC (OSCC) tumor cell lines, one FA OSCC cervical lymph node metastasis as well as tumor-negative and atypical smears from oral brush biopsies were analyzed with FISH probes covering 5p15.2, MYC, EGFR, TERC, 9q34.1, CCND1, 9p21 and centromeres of chromosomes 3, 6, 7, 9, 11, and 17. RESULTS OSCC specimens showed gains of all analyzed chromosomal regions. Chromosomal aneuploidy was observed in five of the six OSCC specimens in two multicolor FISH assays with panels of four probes each. Five out of six OSCC specimens displayed a relative deletion of 9p21. Applied on atypical brush biopsy-based smears, chromosomal aneuploidy was detected in malignant lesions but not in the smear derived from a severe parodontitis. CONCLUSIONS As proof of concept, FISH was able to detect genetic changes and chromosomal aneuploidy discriminating oral cancer from noncancerous lesions in individuals with FA. This supports its application on oral brush biopsy-based cytology.
Collapse
Affiliation(s)
| | - Eunike Velleuer
- Department of Cytopathology, Heinrich Heine University, Düsseldorf, Germany.,Centre for Child and Adolescent Health, HELIOS Klinikum, Krefeld, Germany
| | - Ralf Dietrich
- German Fanconi Anemia Support Group, Eschau, Germany
| | - Natalia Pomjanski
- Department of Cytopathology, Heinrich Heine University, Düsseldorf, Germany
| | | | - Martin Schlensog
- Institute of Pathology, Heinrich Heine University, Düsseldorf, Germany
| | - Susanne Irmtraud Wells
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Josephine Christine Dorsman
- Department of Clinical Genetics and Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Martin Schramm
- Department of Cytopathology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
20
|
Murillo-Sanjuán L, Balmaña J, de Pablo García-Cuenca A, Lorente Guerrero J, Uria Oficialdegui ML, Carrasco E, Diaz-de-Heredia C. Post-hematopoietic stem cell transplant squamous cell carcinoma in patients with Fanconi anemia: a dreadful enemy. Clin Transl Oncol 2021; 24:388-392. [PMID: 34417960 DOI: 10.1007/s12094-021-02693-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Hematopoietic stem cell transplantation (HSCT) is a curative option for patients with Fanconi anemia (FA) and hematological manifestations but it does not prevent solid tumors, especially squamous cell carcinomas (SCC). METHODS Retrospective study in 22 FA patients who had received HSCT and had been followed up beyond 2 years after HSCT. RESULTS The median follow-up was 15 years. Six patients developed head-and-neck SCC after transplantation. The cumulative incidence of SCC at 15 and 30 years from the HSCT was 14.2% and 71.2%, respectively. One patient was diagnosed in stage IV and the rest, who were being followed up in cancer screening programs, in stage I. Treatment of SCC consisted of surgery in all patients; radiotherapy and chemotherapy were used in two patients and were poorly tolerated. CONCLUSION FA patients have high risk of head-and-neck SCC. Multi-disciplinary programs for early cancer detection are of special relevance in these patients.
Collapse
Affiliation(s)
- L Murillo-Sanjuán
- Department of Pediatric Oncology and Hematology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - J Balmaña
- Department of Medical Oncology and Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - A de Pablo García-Cuenca
- Department of Oral and Maxillofacial Surgery, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - J Lorente Guerrero
- Department of Otorhinolaryngology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - M L Uria Oficialdegui
- Department of Pediatric Oncology and Hematology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - E Carrasco
- Department of Medical Oncology and Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - C Diaz-de-Heredia
- Department of Pediatric Oncology and Hematology, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
| |
Collapse
|
21
|
van Harten AM, Brakenhoff RH. Targeted Treatment of Head and Neck (Pre)Cancer: Preclinical Target Identification and Development of Novel Therapeutic Applications. Cancers (Basel) 2021; 13:2774. [PMID: 34204886 PMCID: PMC8199752 DOI: 10.3390/cancers13112774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) develop in the mucosal lining of the upper-aerodigestive tract. In carcinogen-induced HNSCC, tumors emerge from premalignant mucosal changes characterized by tumor-associated genetic alterations, also coined as 'fields' that are occasionally visible as leukoplakia or erythroplakia lesions but are mostly invisible. Consequently, HNSCC is generally diagnosed de novo at more advanced stages in about 70% of new diagnosis. Despite intense multimodality treatment protocols, the overall 5-years survival rate is 50-60% for patients with advanced stage of disease and seems to have reached a plateau. Of notable concern is the lack of further improvement in prognosis despite advances in treatment. This can be attributed to the late clinical presentation, failure of advanced HNSCC to respond to treatment, the deficit of effective targeted therapies to eradicate tumors and precancerous changes, and the lack of suitable markers for screening and personalized therapy. The molecular landscape of head and neck cancer has been elucidated in great detail, but the absence of oncogenic mutations hampers the identification of druggable targets for therapy to improve outcome of HNSCC. Currently, functional genomic approaches are being explored to identify potential therapeutic targets. Identification and validation of essential genes for both HNSCC and oral premalignancies, accompanied with biomarkers for therapy response, are being investigated. Attentive diagnosis and targeted therapy of the preceding oral premalignant (preHNSCC) changes may prevent the development of tumors. As classic oncogene addiction through activating mutations is not a realistic concept for treatment of HNSCC, synthetic lethality and collateral lethality need to be exploited, next to immune therapies. In recent studies it was shown that cell cycle regulation and DNA damage response pathways become significantly altered in HNSCC causing replication stress, which is an avenue that deserves further exploitation as an HNSCC vulnerability for treatment. The focus of this review is to summarize the current literature on the preclinical identification of potential druggable targets for therapy of (pre)HNSCC, emerging from the variety of gene knockdown and knockout strategies, and the testing of targeted inhibitors. We will conclude with a future perspective on targeted therapy of HNSCC and premalignant changes.
Collapse
Affiliation(s)
- Anne M. van Harten
- Cancer Center Amsterdam, Otolaryngology-Head and Neck Surgery, Tumor Biology & Immunology Section, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; or
- Sidney Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ruud H. Brakenhoff
- Cancer Center Amsterdam, Otolaryngology-Head and Neck Surgery, Tumor Biology & Immunology Section, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; or
| |
Collapse
|
22
|
Babaei M, Roudini K, Shirkhoda M, Ganjalikhani M, Kolahdouzan K. Successful radiotherapy of de novo hypopharyngeal cancer in a Fanconi anemia patient with previous esophageal cancer. Clin Case Rep 2021; 9:e04159. [PMID: 34194758 PMCID: PMC8222646 DOI: 10.1002/ccr3.4159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 12/02/2022] Open
Abstract
Definitive radiotherapy was effectively used for treatment of de novo hypopharyngeal SCC in a previous esophageal cancer patient with a history of Fanconi anemia, resulting in a complete clinical response.
Collapse
Affiliation(s)
- Mohammad Babaei
- Radiation Oncology Research Center (RORC)Cancer InstituteTehran University of Medical SciencesTehranIran
- Department of Radiation OncologyCancer InstituteImam Khomeini Hospital ComplexTehran University of Medical SciencesTehranIran
| | - Kamran Roudini
- Department of Internal Medicine, Hematology and Medical Oncology WardCancer Research CenterCancer InstituteImam Khomeini Hospital ComplexTehran University of medical SciencesTehranIran
| | - Mohammad Shirkhoda
- Department of OncosurgeryCancer InstituteTehran University of Medical sciencesTehranIran
| | - Maryam Ganjalikhani
- Department of Sports MedicineTaleghani HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Kasra Kolahdouzan
- Radiation Oncology Research Center (RORC)Cancer InstituteTehran University of Medical SciencesTehranIran
- Department of Radiation OncologyCancer InstituteImam Khomeini Hospital ComplexTehran University of Medical SciencesTehranIran
| |
Collapse
|
23
|
Lee RH, Kang H, Yom SS, Smogorzewska A, Johnson DE, Grandis JR. Treatment of Fanconi Anemia-Associated Head and Neck Cancer: Opportunities to Improve Outcomes. Clin Cancer Res 2021; 27:5168-5187. [PMID: 34045293 DOI: 10.1158/1078-0432.ccr-21-1259] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022]
Abstract
Fanconi anemia, the most frequent genetic cause of bone marrow failure, is characterized by an extreme predilection toward multiple malignancies, including a greater than 500-fold incidence of head and neck squamous cell carcinoma (HNSCC) relative to the general population. Fanconi anemia-associated HNSCC and esophageal SCC (FA-HNSCC) often present at advanced stages with poor survival. Surgical resection remains the primary treatment for FA-HNSCC, and there is often great reluctance to administer systemic agents and/or radiotherapy to these patients given their susceptibility to DNA damage. The paucity of FA-HNSCC case reports limits evidence-based management, and such cases have not been analyzed collectively in detail. We present a systematic review of FA-HNSCC treatments reported from 1966 to 2020, defining a cohort of 119 patients with FA-HNSCC including 16 esophageal SCCs (131 total primary tumors), who were treated with surgery, radiotherapy, systemic therapy (including cytotoxic agents, EGFR inhibitors, or immune checkpoint inhibitors), or a combination of modalities. We summarize the clinical responses and regimen-associated toxicities by treatment modality. The collective evidence suggests that when possible, surgical resection with curative intent should remain the primary treatment modality for FA-HNSCC. Radiation can be administered with acceptable toxicity in the majority of cases, including patients who have undergone stem cell transplantation. Although there is little justification for cytotoxic chemotherapy, EGFR inhibitors and tyrosine kinase inhibitors may be both safe and effective. Immunotherapy may also be considered. Most oncologists have little personal experience with FA-HNSCC. This review is intended as a comprehensive resource for clinicians.
Collapse
Affiliation(s)
- Rex H Lee
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Hyunseok Kang
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Sue S Yom
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York
| | - Daniel E Johnson
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Jennifer R Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| |
Collapse
|
24
|
García-de-Teresa B, Rodríguez A, Frias S. Chromosome Instability in Fanconi Anemia: From Breaks to Phenotypic Consequences. Genes (Basel) 2020; 11:E1528. [PMID: 33371494 PMCID: PMC7767525 DOI: 10.3390/genes11121528] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Fanconi anemia (FA), a chromosomal instability syndrome, is caused by inherited pathogenic variants in any of 22 FANC genes, which cooperate in the FA/BRCA pathway. This pathway regulates the repair of DNA interstrand crosslinks (ICLs) through homologous recombination. In FA proper repair of ICLs is impaired and accumulation of toxic DNA double strand breaks occurs. To repair this type of DNA damage, FA cells activate alternative error-prone DNA repair pathways, which may lead to the formation of gross structural chromosome aberrations of which radial figures are the hallmark of FA, and their segregation during cell division are the origin of subsequent aberrations such as translocations, dicentrics and acentric fragments. The deficiency in DNA repair has pleiotropic consequences in the phenotype of patients with FA, including developmental alterations, bone marrow failure and an extreme risk to develop cancer. The mechanisms leading to the physical abnormalities during embryonic development have not been clearly elucidated, however FA has features of premature aging with chronic inflammation mediated by pro-inflammatory cytokines, which results in tissue attrition, selection of malignant clones and cancer onset. Moreover, chromosomal instability and cell death are not exclusive of the somatic compartment, they also affect germinal cells, as evidenced by the infertility observed in patients with FA.
Collapse
Affiliation(s)
- Benilde García-de-Teresa
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Alfredo Rodríguez
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Sara Frias
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
25
|
Canonical and Noncanonical Roles of Fanconi Anemia Proteins: Implications in Cancer Predisposition. Cancers (Basel) 2020; 12:cancers12092684. [PMID: 32962238 PMCID: PMC7565043 DOI: 10.3390/cancers12092684] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Fanconi anemia (FA) is a genetic disorder that is characterized by bone marrow failure (BMF), developmental abnormalities, and predisposition to cancer. In this review, we present an overview of both canonical (regulation of interstrand cross-links repair, ICLs) and noncanonical roles of FA proteins. We divide noncanonical alternative functions in two types: nuclear (outside ICLs such as FA action in replication stress or DSB repair) and cytosolic (such as in mitochondrial quality control or selective autophagy). We further discuss the involvement of FA genes in the predisposition to develop different types of cancers and we examine current DNA damage response-targeted therapies. Finally, we promote an insightful perspective regarding the clinical implication of the cytosolic noncanonical roles of FA proteins in cancer predisposition, suggesting that these alternative roles could be of critical importance for disease progression. Abstract Fanconi anemia (FA) is a clinically and genetically heterogeneous disorder characterized by the variable presence of congenital somatic abnormalities, bone marrow failure (BMF), and a predisposition to develop cancer. Monoallelic germline mutations in at least five genes involved in the FA pathway are associated with the development of sporadic hematological and solid malignancies. The key function of the FA pathway is to orchestrate proteins involved in the repair of interstrand cross-links (ICLs), to prevent genomic instability and replication stress. Recently, many studies have highlighted the importance of FA genes in noncanonical pathways, such as mitochondria homeostasis, inflammation, and virophagy, which act, in some cases, independently of DNA repair processes. Thus, primary defects in DNA repair mechanisms of FA patients are typically exacerbated by an impairment of other cytoprotective pathways that contribute to the multifaceted clinical phenotype of this disease. In this review, we summarize recent advances in the understanding of the pathogenesis of FA, with a focus on the cytosolic noncanonical roles of FA genes, discussing how they may contribute to cancer development, thus suggesting opportunities to envisage novel therapeutic approaches.
Collapse
|
26
|
Beddok A, Krieger S, Castera L, Stoppa-Lyonnet D, Thariat J. Management of Fanconi Anemia patients with head and neck carcinoma: Diagnosis and treatment adaptation. Oral Oncol 2020; 108:104816. [PMID: 32480311 DOI: 10.1016/j.oraloncology.2020.104816] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
Fanconi anemia (FA) is a rare genetic disease that is mostly transmitted, according to a recessive model with biallelic germline alterations in one of the 22 genes of the FA pathway, or monoallelic alteration of the 23rd FA gene (RAD51). The FA pathway is implicated in interstrand DNA crosslink repair, induces genome stability, and is a potent driver of tumorigenesis. Patients with FA have a 500 to 1000-fold increased risk of developing head and neck squamous cell carcinoma (HNSCC). Patients with FA developing an HNSCC, usually have severe radiation toxicities. In this context, the modalities of radiation therapy should be adapted. Some patients with FA present a milder phenotype, especially in the case of medullary FA gene spontaneous reversion. Therefore, in an unusual context of HNSCC, such as no risk factors or a young age, it may be very useful to search anemia or development abnormalities, that may unravel a yet undiagnosed FA disease. Besides, in some young patients with HNSCC who did not suffer from FA, a monoallelic germline alteration in an FA gene could be combined with a second risk factor such as HPV infection or APOBEC alteration. Although several in vitro studies showed that normal cells with monoallelic FA gene alteration may have a particular radiosensitivity, these observations have not been confirmed in vivo in FA heterozygotes patients. Finally, some somatic activating alterations have also been found in HSNCC tumor samples and could be associated with radioresistance.
Collapse
Affiliation(s)
- Arnaud Beddok
- Department of Radiation Oncology, Curie Institute, Paris, France.
| | - Sophie Krieger
- Department of Cancer Biology and Genetics, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, François Baclesse Center, Caen, France
| | - Laurent Castera
- Department of Cancer Biology and Genetics, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, François Baclesse Center, Caen, France
| | | | - Juliette Thariat
- Department of Radiation Oncology, François Baclesse Center, Caen, France
| |
Collapse
|
27
|
Impact of Epigenetics on Complications of Fanconi Anemia: The Role of Vitamin D-Modulated Immunity. Nutrients 2020; 12:nu12051355. [PMID: 32397406 PMCID: PMC7285109 DOI: 10.3390/nu12051355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Fanconi anemia (FA) is a rare disorder with the clinical characteristics of (i) specific malformations at birth, (ii) progressive bone marrow failure already during early childhood and (iii) dramatically increased risk of developing cancer in early age, such as acute myeloid leukemia and squamous cell carcinoma. Patients with FA show DNA fragility due to a defect in the DNA repair machinery based on predominately recessive mutations in 23 genes. Interestingly, patients originating from the same family and sharing an identical mutation, frequently show significant differences in their clinical presentation. This implies that epigenetics plays an important role in the manifestation of the disease. The biologically active form of vitamin D, 1α,25-dihydroxyvitamin D3 controls cellular growth, differentiation and apoptosis via the modulation of the immune system. The nuclear hormone activates the transcription factor vitamin D receptor that affects, via fine-tuning of the epigenome, the transcription of >1000 human genes. In this review, we discuss that changes in the epigenome, in particular in immune cells, may be central for the clinical manifestation of FA. These epigenetic changes can be modulated by vitamin D suggesting that the individual FA patient’s vitamin D status and responsiveness are of critical importance for disease progression.
Collapse
|
28
|
Montanuy H, Martínez-Barriocanal Á, Antonio Casado J, Rovirosa L, Ramírez MJ, Nieto R, Carrascoso-Rubio C, Riera P, González A, Lerma E, Lasa A, Carreras-Puigvert J, Helleday T, Bueren JA, Arango D, Minguillón J, Surrallés J. Gefitinib and Afatinib Show Potential Efficacy for Fanconi Anemia-Related Head and Neck Cancer. Clin Cancer Res 2020; 26:3044-3057. [PMID: 32005748 DOI: 10.1158/1078-0432.ccr-19-1625] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/29/2019] [Accepted: 01/28/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Fanconi anemia rare disease is characterized by bone marrow failure and a high predisposition to solid tumors, especially head and neck squamous cell carcinoma (HNSCC). Patients with Fanconi anemia with HNSCC are not eligible for conventional therapies due to high toxicity in healthy cells, predominantly hematotoxicity, and the only treatment currently available is surgical resection. In this work, we searched and validated two already approved drugs as new potential therapies for HNSCC in patients with Fanconi anemia. EXPERIMENTAL DESIGN We conducted a high-content screening of 3,802 drugs in a FANCA-deficient tumor cell line to identify nongenotoxic drugs with cytotoxic/cytostatic activity. The best candidates were further studied in vitro and in vivo for efficacy and safety. RESULTS Several FDA/European Medicines Agency (EMA)-approved anticancer drugs showed cancer-specific lethality or cell growth inhibition in Fanconi anemia HNSCC cell lines. The two best candidates, gefitinib and afatinib, EGFR inhibitors approved for non-small cell lung cancer (NSCLC), displayed nontumor/tumor IC50 ratios of approximately 400 and approximately 100 times, respectively. Neither gefitinib nor afatinib activated the Fanconi anemia signaling pathway or induced chromosomal fragility in Fanconi anemia cell lines. Importantly, both drugs inhibited tumor growth in xenograft experiments in immunodeficient mice using two Fanconi anemia patient-derived HNSCCs. Finally, in vivo toxicity studies in Fanca-deficient mice showed that administration of gefitinib or afatinib was well-tolerated, displayed manageable side effects, no toxicity to bone marrow progenitors, and did not alter any hematologic parameters. CONCLUSIONS Our data present a complete preclinical analysis and promising therapeutic line of the first FDA/EMA-approved anticancer drugs exerting cancer-specific toxicity for HNSCC in patients with Fanconi anemia.
Collapse
Affiliation(s)
- Helena Montanuy
- Department of Genetics and Microbiology. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Águeda Martínez-Barriocanal
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Group of Molecular Oncology, IRB Lleida, Lleida, Spain
| | - José Antonio Casado
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Llorenç Rovirosa
- Department of Genetics and Microbiology. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria José Ramírez
- Department of Genetics and Microbiology. Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Genetics Department and Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Rocío Nieto
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos Carrascoso-Rubio
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Pau Riera
- Genetics Department and Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Alan González
- Department of Anatomic Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Enrique Lerma
- Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Adriana Lasa
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Genetics Department and Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jordi Carreras-Puigvert
- Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Department of Molecular Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Helleday
- Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Department of Molecular Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Juan A Bueren
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Group of Molecular Oncology, IRB Lleida, Lleida, Spain
| | - Jordi Minguillón
- Department of Genetics and Microbiology. Universitat Autònoma de Barcelona, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Jordi Surrallés
- Department of Genetics and Microbiology. Universitat Autònoma de Barcelona, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| |
Collapse
|
29
|
Khanal S, Galloway DA. High-risk human papillomavirus oncogenes disrupt the Fanconi anemia DNA repair pathway by impairing localization and de-ubiquitination of FancD2. PLoS Pathog 2019; 15:e1007442. [PMID: 30818369 PMCID: PMC6413947 DOI: 10.1371/journal.ppat.1007442] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/12/2019] [Accepted: 02/04/2019] [Indexed: 12/31/2022] Open
Abstract
Persistent expression of high-risk HPV oncogenes is necessary for the development of anogenital and oropharyngeal cancers. Here, we show that E6/E7 expressing cells are hypersensitive to DNA crosslinking agent cisplatin and have defects in repairing DNA interstrand crosslinks (ICL). Importantly, we elucidate how E6/E7 attenuate the Fanconi anemia (FA) DNA crosslink repair pathway. Though E6/E7 activated the pathway by increasing FancD2 monoubiquitination and foci formation, they inhibited the completion of the repair by multiple mechanisms. E6/E7 impaired FancD2 colocalization with double-strand breaks (DSB), which subsequently hindered the recruitment of the downstream protein Rad51 to DSB in E6 cells. Further, E6 expression caused delayed FancD2 de-ubiquitination, an important process for effective ICL repair. Delayed FancD2 de-ubiquitination was associated with the increased chromatin retention of FancD2 hindering USP1 de-ubiquitinating activity, and persistently activated ATR/CHK-1/pS565 FancI signaling. E6 mediated p53 degradation did not hamper the cell cycle specific process of FancD2 modifications but abrogated repair by disrupting FancD2 de-ubiquitination. Further, E6 reduced the expression and foci formation of Palb2, which is a repair protein downstream of FancD2. These findings uncover unique mechanisms by which HPV oncogenes contribute to genomic instability and the response to cisplatin therapies.
Collapse
Affiliation(s)
- Sujita Khanal
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Denise A. Galloway
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
30
|
Itskoviz D, Tamary H, Krasnov T, Yacobovich J, Sahar N, Zevit N, Shamir R, Ben-Bassat O, Leibovici Wiseman Y, Dickman R, Ringel Y, Dotan I, Goldberg Y, Morgenstern S, Levi Z. Endoscopic findings and esophageal cancer incidence among Fanconi Anemia patients participating in an endoscopic surveillance program. Dig Liver Dis 2019; 51:242-246. [PMID: 30249500 DOI: 10.1016/j.dld.2018.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS The primary clinical characteristics of Fanconi Anemia (FA) include typical physical features, progressive bone marrow failure, and an increased incidence of neoplasms, including esophageal carcinoma. Currently, there are no data regarding endoscopic findings or the interval time to malignancy in these patients. Data about the contribution of Human Papilloma Virus (HPV) to esophageal carcinoma is conflicting. Our objective is to document the upper gastrointestinal (GI) findings at baseline, document cancer incidence, and evaluate the role of HPV among these cancers. METHODS We reviewed endoscopic and clinical data of FA subjects who participated in active surveillance before cancer diagnosis. Incident esophageal cancers were stained for HPV p16 protein. RESULTS Eight FA patients were included (men 62.5%; median age at first endoscopy 20 years, median endoscopies number: 5.5). At baseline, 8/8 had endoscopic evidence for reflux esophagitis. In 3/8 the reflux esophagitis was mild and in 5/8 it was moderate or severe. During the follow up time (median time 4.5 years 2/8 developed Barrett's esophagus and 2/8 patients had incident esophageal squamous cell carcinoma during follow up, at intervals of eight and eighteen months from the previous upper endoscopy. Both cancers stained negative for HPV P16. CONCLUSIONS FA subjects have both an extremely high risk for esophageal cancer within short intervals and a very high prevalence of reflux esophagitis with various severities. Active surveillance programs in specialized centers including annual upper endoscopies should be considered in these patients.
Collapse
Affiliation(s)
- David Itskoviz
- Gastroenterology Department, Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Hannah Tamary
- Pediatrics Hematology Unit, Schneider's Children Medical Center, Petach Tikva, Israel; Genetic Department, Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Tanya Krasnov
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Beilinson Campus, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Joannae Yacobovich
- Pediatrics Hematology Unit, Schneider's Children Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Nadav Sahar
- Gastroenterology Department, Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Noam Zevit
- Institue of Gastroenterology, Nutrition and Liver Disease, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Raanan Shamir
- Institue of Gastroenterology, Nutrition and Liver Disease, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Offer Ben-Bassat
- Gastroenterology Department, Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yaara Leibovici Wiseman
- Gastroenterology Department, Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ram Dickman
- Gastroenterology Department, Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yehuda Ringel
- Gastroenterology Department, Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Iris Dotan
- Gastroenterology Department, Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yael Goldberg
- Genetic Department, Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Sara Morgenstern
- Pathology Department, Rabin Medical Center, Petach Tikva, Israel
| | - Zohar Levi
- Gastroenterology Department, Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
31
|
Beckham TH, Leeman J, Jillian Tsai C, Riaz N, Sherman E, Singh B, Lee N, McBride S, Higginson DS. Treatment modalities and outcomes of Fanconi anemia patients with head and neck squamous cell carcinoma: Series of 9 cases and review of the literature. Head Neck 2019; 41:1418-1426. [PMID: 30633423 DOI: 10.1002/hed.25577] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/04/2018] [Accepted: 12/03/2018] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Fanconi anemia (FA) is associated with an increased risk of developing head and neck squamous cell cancer (HNSCC) and presents a treatment dilemma due to concerns of increased toxicities from chemotherapy and radiation therapy (RT). METHODS We reviewed the literature on HNSCC in FA patients and report on our experience treating 9 FA patients with HNSCC. RESULTS Surgery was generally well-tolerated and surgery alone resulted in durable local control for 2 patients. Four patients received adjuvant RT that was tolerable in most cases, although 1 patient required a treatment break and early cessation of RT. Three of the irradiated patients received concurrent cetuximab. CONCLUSIONS In patients with adverse features, adjuvant radiation with concurrent cetuximab may be feasible with careful monitoring, although local disease control is infrequent. Early detection via screening permitting a surgery-alone approach represents the best opportunity for cure in FA patients with HSNCC.
Collapse
Affiliation(s)
- Thomas H Beckham
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jonathan Leeman
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chiaojung Jillian Tsai
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric Sherman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bhuvanesh Singh
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sean McBride
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel S Higginson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
32
|
Portugal MEG, Raboni SM, Nogueira MB, Vidal LRR, Dingueleski AH, Kluk E, Bonfim C, Ribeiro LL, Torres-Pereira CC. High frequency of multiple HPV types detection in Fanconi anemia patients oral swabs. Transpl Infect Dis 2018; 21:e13030. [PMID: 30449057 DOI: 10.1111/tid.13030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/16/2018] [Accepted: 11/06/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Fanconi anemia (FA) is a rare genetic disease usually characterized by bone marrow failure and congenital malformations. The risk of development of malignancies in the oral cavity of FA patients, such as squamous cell carcinoma (SCC), increases significantly after a hematopoietic stem cells transplant (HSCT), and may also be linked with the presence of human papillomavirus (HPV) infections in the oral cavity. We investigated the prevalence and the HPV genotypes in oral mucosa of Brazilian FA patients. METHODS AND RESULTS Oral swabs of 49 FA patients were collected. The median age of patients was 20 years (range 5-44) and 57% were over 18 years. Oral lesions were present in 20% of all patients, being 90% leukoplakia. HPV DNA was detected in 28% (14/49) of patients, and one of them also reported genital HPV lesions. Sixty-seven percent of all patients had undergone HSCT, including 12 patients (86%) of those with HPV results. Multiple HPV types were detected in 78% and 71% of HPV samples by Sanger sequencing and reverse hybridization methods, respectively. The most prevalent HPV types detected were 6, 11, 18, and 68. CONCLUSIONS HPV prevalence in the oral mucosa of the assessed FA patients was higher than reported in the general population. Additional studies with collection of sequential samples are needed to know the natural history of the presence of multiple HPV types in these individuals and its association with the development of tumors, to evaluate the implementation of preventive measures, such as vaccination, and to guide early treatment.
Collapse
Affiliation(s)
- Magda Eline Guerrart Portugal
- Postgraduate Program in Internal Medicine and Health Science, Federal University of Paraná, Curitiba, Brazil.,Laboratory of Virology, Federal University of Paraná, Curitiba, Brazil.,Herrero Faculty - Dentistry Graduation Course, Curitiba, Brazil
| | - Sonia Mara Raboni
- Postgraduate Program in Internal Medicine and Health Science, Federal University of Paraná, Curitiba, Brazil.,Laboratory of Virology, Federal University of Paraná, Curitiba, Brazil.,Infectious Diseases Division, Federal University of Paraná, Curitiba, Brazil
| | | | | | | | - Edelaine Kluk
- Herrero Faculty - Dentistry Graduation Course, Curitiba, Brazil
| | - Carmem Bonfim
- Bone Marrow Transplant Division, Federal University of Paraná, Curitiba, Brazil
| | | | | |
Collapse
|
33
|
Furquim CP, Pivovar A, Amenábar JM, Bonfim C, Torres-Pereira CC. Oral cancer in Fanconi anemia: Review of 121 cases. Crit Rev Oncol Hematol 2018; 125:35-40. [DOI: 10.1016/j.critrevonc.2018.02.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 01/05/2018] [Accepted: 02/25/2018] [Indexed: 11/27/2022] Open
|
34
|
Risk of Human Papillomavirus Infection in Cancer-Prone Individuals: What We Know. Viruses 2018; 10:v10010047. [PMID: 29361695 PMCID: PMC5795460 DOI: 10.3390/v10010047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 02/06/2023] Open
Abstract
Human papillomavirus (HPV) infections cause a significant proportion of cancers worldwide, predominantly squamous cell carcinomas (SCC) of the mucosas and skin. High-risk HPV types are associated with SCCs of the anogenital and oropharyngeal tract. HPV oncogene activities and the biology of SCCs have been intensely studied in laboratory models and humans. What remains largely unknown are host tissue and immune-related factors that determine an individual's susceptibility to infection and/or carcinogenesis. Such susceptibility factors could serve to identify those at greatest risk and spark individually tailored HPV and SCC prevention efforts. Fanconi anemia (FA) is an inherited DNA repair disorder that is in part characterized by extreme susceptibility to SCCs. An increased prevalence of HPV has been reported in affected individuals, and molecular and functional connections between FA, SCC, and HPV were established in laboratory models. However, the presence of HPV in some human FA tumors is controversial, and the extent of the etiological connections remains to be established. Herein, we discuss cellular, immunological, and phenotypic features of FA, placed into the context of HPV pathogenesis. The goal is to highlight this orphan disease as a unique model system to uncover host genetic and molecular HPV features, as well as SCC susceptibility factors.
Collapse
|
35
|
Abstract
Genetically engineered mice (GEMs) have provided valuable insights into the carcinogenic properties of various human tumor viruses, which, in aggregate, are etiologically associated with over 15% of all human cancers. This review provides an overview of seminal discoveries made through the use of GEM models for human DNA tumor viruses. Emphasis is placed on the discoveries made in the study of human papillomaviruses, Merkel cell carcinoma-associated polyomavirus, Epstein-Barr virus, and Kaposi's sarcoma-associated herpesvirus, because GEMs have contributed extensively to our understanding of how these DNA tumor viruses directly contribute to human cancers.
Collapse
Affiliation(s)
- Paul F Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705;
| |
Collapse
|
36
|
Alter BP, Giri N, Savage SA, Rosenberg PS. Cancer in the National Cancer Institute inherited bone marrow failure syndrome cohort after fifteen years of follow-up. Haematologica 2017; 103:30-39. [PMID: 29051281 PMCID: PMC5777188 DOI: 10.3324/haematol.2017.178111] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/13/2017] [Indexed: 11/11/2022] Open
Abstract
The National Cancer Institute Inherited Bone Marrow Failure Syndromes Cohort enrolls patients with the four major syndromes: Fanconi anemia, dyskeratosis congenita, Diamond-Blackfan anemia, and Shwachman-Diamond syndrome, and follows them with a common comprehensive protocol. The current analysis includes more than double the numbers of patients and person-years since our first report, published in 2010. Patients with Fanconi anemia and dyskeratosis congenita developed head and neck and anogenital squamous cell carcinomas at rates that were hundreds-fold greater than those of the general population. In competing risk analyses the cumulative incidence of severe bone marrow failure, leading to stem cell transplantation or death, was more than 70% by age 60. Patients with Diamond-Blackfan anemia developed lung, colon, and cervical cancer at rates greater than those of the general population. The cumulative incidence of severe bone marrow failure in those with Diamond-Blackfan anemia was 50% by age 60. The smaller group, with Shwachman-Diamond syndrome, have not as yet developed a significant number of solid tumors, but 40% developed bone marrow failure by age 50. The risk of solid tumors following stem cell transplantation in Fanconi anemia and in dyskeratosis congenita was significantly higher than in non-transplanted patients. There was no clear association of genotype with cancer in any of the syndromes. Cancer was most common in Fanconi anemia, followed by dyskeratosis congenita; Diamond-Blackfan anemia and Shwachman-Diamond syndrome are less cancer-prone, but nonetheless all patients are at increased risks of bone marrow failure and specific cancers. clinicaltrials.gov Identifier: 00027274
Collapse
Affiliation(s)
- Blanche P Alter
- Clinical Genetics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Neelam Giri
- Clinical Genetics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Sharon A Savage
- Clinical Genetics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Philip S Rosenberg
- Biostatistics Branches, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
37
|
Mehta PA, Sauter S, Zhang X, Davies SM, Wells SI, Myers KC, Panicker G, Unger ER, Butsch Kovacic M. Antibody response to human papillomavirus vaccination and natural exposure in individuals with Fanconi Anemia. Vaccine 2017; 35:6712-6719. [PMID: 29042204 DOI: 10.1016/j.vaccine.2017.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 11/20/2022]
Abstract
Fanconi anemia (FA) is a rare genetic disorder associated with predisposition to head and neck and gynecological squamous cell cancers. In the general population, these cancers are commonly linked to human papillomavirus (HPV) infection. Antibodies to natural HPV infection and HPV vaccination were evaluated in 63 individuals with FA while considering host immune factors. Approximately 30% of reportedly unvaccinated participants were seropositive (HPV6-38%, HPV11-25%, HPV16-26%, and HPV18-26%). Seropositivity was significantly associated with having had sex regardless of age (p=.007). Most participants showed seropositivity after HPV vaccination (HPV6-100%, HPV11-100%, HPV16-100% and HPV18-92%). Interestingly, titers for all 4 subtypes were significantly lower in the post-hematopoietic stem cell transplant (HSCT) participants compared to those who received the vaccine, but had not undergone HSCT (HPV6-p=.030, HPV11-p=.003, HPV16-p=.018, HPV18-p=<.001). It is unclear if these titers sufficiently protect from new infection since protective serologic cut offs have not yet been defined for the HPV vaccine. Individual immune functions were not associated with HPV seropositivity, however, underlying heterogeneous immune deficiency may explain higher rates of seropositivity in our younger unvaccinated participants (age 4-13 years). To better measure the efficacy of HPV vaccination in those with FA and other immune-compromised or cancer-prone disorders, future well-controlled vaccine studies are required.
Collapse
Affiliation(s)
- Parinda A Mehta
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| | - Sharon Sauter
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Xue Zhang
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Stella M Davies
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Suzanne I Wells
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Kasiani C Myers
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Gitika Panicker
- National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Elizabeth R Unger
- National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | | |
Collapse
|
38
|
Odera JO, Odera E, Githang’a J, Walong EO, Li F, Xiong Z, Chen XL. Esophageal cancer in Kenya. AMERICAN JOURNAL OF DIGESTIVE DISEASE 2017; 4:23-33. [PMID: 29082268 PMCID: PMC5659304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Kenya belongs to a high incidence region known as Africa's esophageal cancer (EC) corridor. It has one of the highest incidence rates of EC worldwide, but research on EC in Kenya has gone highly unnoticed. EC in Kenya is unique in its high percentage of young cases (< 30 years of age). In this review, we show the current status of EC in the country. We mainly focus on significant risk factors such as alcohol drinking, genetic factors, malnutrition and hot food/drink. Future directions in the study and prevention of EC in Kenya are also discussed.
Collapse
Affiliation(s)
- Joab Otieno Odera
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham 27707, NC, USA
- Integrated Biosciences PhD Program, North Carolina Central University, Durham 27707, NC, USA
| | - Elizabeth Odera
- Department of Human Pathology, University of Nairobi, P. O. Box 19676, Kenyatta National Hospital, Nairobi 00202, Kenya
| | - Jessie Githang’a
- Department of Human Pathology, University of Nairobi, P. O. Box 19676, Kenyatta National Hospital, Nairobi 00202, Kenya
| | - Edwin Oloo Walong
- Department of Human Pathology, University of Nairobi, P. O. Box 19676, Kenyatta National Hospital, Nairobi 00202, Kenya
| | - Fang Li
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham 27707, NC, USA
- Department of Dentistry, Dalian University Affiliated Zhongshan Hospital, 6 Jiefang Street, Zhongshan District, Dalian 116001, Liaoning Province, China
| | - Zhaohui Xiong
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham 27707, NC, USA
| | - Xiaoxin Luke Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham 27707, NC, USA
- Center for Esophageal Disease and Swallowing, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill 27519, NC, USA
| |
Collapse
|
39
|
Porter SS, Stepp WH, Stamos JD, McBride AA. Host cell restriction factors that limit transcription and replication of human papillomavirus. Virus Res 2017; 231:10-20. [PMID: 27863967 PMCID: PMC5325803 DOI: 10.1016/j.virusres.2016.11.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 02/08/2023]
Abstract
The life cycle of human papillomaviruses (HPV) is tightly regulated by the differentiation state of mucosal and cutaneous keratinocytes. To counteract viral infection, constitutively expressed cellular factors, which are defined herein as restriction factors, directly mitigate viral gene expression and replication. In turn, some HPV gene products target these restriction factors and abrogate their anti-viral effects to establish efficient gene expression and replication programs. Ironically, in certain circumstances, this delicate counterbalance between viral gene products and restriction factors facilitates persistent infection by HPVs. This review serves to recapitulate the current knowledge of nuclear restriction factors that directly affect the HPV infectious cycle.
Collapse
Affiliation(s)
- Samuel S Porter
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD 20892, USA; Biological Sciences Graduate Program, University of Maryland, University of Maryland, 4066 Campus Drive, College Park, MD 20742, USA
| | - Wesley H Stepp
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD 20892, USA
| | - James D Stamos
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD 20892, USA
| | - Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD 20892, USA.
| |
Collapse
|
40
|
Barbeiro S, Atalaia-Martins C, Marcos P, Gonçalves C, Cotrim I, Vasconcelos H. A Case Series of Anal Carcinoma Misdiagnosed as Idiopathic Chronic Anal Fissure. GE-PORTUGUESE JOURNAL OF GASTROENTEROLOGY 2016; 24:227-231. [PMID: 29255757 DOI: 10.1159/000452869] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/17/2016] [Indexed: 12/31/2022]
Abstract
Chronic anal fissure is a linear ulcer in the anal canal that has not cicatrized for more than 8-12 weeks of treatment. Most anal fissures are idiopathic and are located in the posterior midline. Squamous cell carcinoma of the anus commonly presents as bleeding and anal pain. It may also present as a mass, nonhealing ulcer, itching, discharge, fecal incontinence and fistulae. Not uncommonly, small and early cancers are misdiagnosed as benign anorectal disorders like anal fissures or hemorrhoids. The clinical suspicion of squamous cell carcinoma of the anus is of paramount importance in patients with nonhealing anal fissures, fissures in atypical positions or with indurated or ulcerated anal tags and in patients with risk factors for the development of anal squamous intraepithelial lesions that are precursors of invasive anal squamous cell carcinoma. The authors present 3 cases of squamous cell carcinoma of the anus initially misdiagnosed as benign chronic anal fissure.
Collapse
Affiliation(s)
- Sandra Barbeiro
- Gastroenterology Department, Centro Hospitalar de Leiria, Leiria, Portugal
| | | | - Pedro Marcos
- Gastroenterology Department, Centro Hospitalar de Leiria, Leiria, Portugal
| | - Cláudia Gonçalves
- Gastroenterology Department, Centro Hospitalar de Leiria, Leiria, Portugal
| | - Isabel Cotrim
- Gastroenterology Department, Centro Hospitalar de Leiria, Leiria, Portugal
| | - Helena Vasconcelos
- Gastroenterology Department, Centro Hospitalar de Leiria, Leiria, Portugal
| |
Collapse
|
41
|
Loss of Dependence on Continued Expression of the Human Papillomavirus 16 E7 Oncogene in Cervical Cancers and Precancerous Lesions Arising in Fanconi Anemia Pathway-Deficient Mice. mBio 2016; 7:mBio.00628-16. [PMID: 27190216 PMCID: PMC4895109 DOI: 10.1128/mbio.00628-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fanconi anemia (FA) is a rare genetic disorder caused by defects in DNA damage repair. FA patients often develop squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) are known to cause cancer, including the cervix. However, SCCs found in human FA patients are often HPV negative, even though the majority of female FA patients with anogenital cancers had preexisting HPV-positive dysplasia. We hypothesize that HPVs contribute to the development of SCCs in FA patients but that the continued expression of HPV oncogenes is not required for the maintenance of the cancer state because FA deficiency leads to an accumulation of mutations in cellular genes that render the cancer no longer dependent upon viral oncogenes. We tested this hypothesis, making use of Bi-L E7 transgenic mice in which we temporally controlled expression of HPV16 E7, the dominant viral oncogene in HPV-associated cancers. As seen before, the persistence of cervical neoplastic disease was highly dependent upon the continued expression of HPV16 E7 in FA-sufficient mice. However, in mice with FA deficiency, cervical cancers persisted in a large fraction of the mice after HPV16 E7 expression was turned off, indicating that these cancers had escaped from their dependency on E7. Furthermore, the severity of precancerous lesions also failed to be reduced significantly in the mice with FA deficiency upon turning off expression of E7. These findings confirm our hypothesis and may explain the fact that, while FA patients have a high frequency of infections by HPVs and HPV-induced precancerous lesions, the cancers are frequently HPV negative. IMPORTANCE : Fanconi anemia (FA) patients are at high risk for developing squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) frequently cause cancer. Yet these SCCs are often HPV negative. FA patients have a genetic defect in their capacity to repair damaged DNA. HPV oncogenes cause an accumulation of DNA damage. We hypothesize, therefore, that DNA damage induced by HPV leads to an accumulation of mutations in patients with FA deficiency and that such mutations allow HPV-driven cancers to become independent of the viral oncogenes. Consistent with this hypothesis, we found that cervical cancers arising in HPV16 transgenic mice with FA deficiency frequently escape from dependency on the HPV16 oncogene that drove its development. Our report provides further support for vaccination of FA patients against HPVs and argues for the need to define mutational profiles of SCCs arising in FA patients in order to inform precision medicine-based approaches to treating these patients.
Collapse
|
42
|
Tanaka K, Whelan KA, Chandramouleeswaran PM, Kagawa S, Rustgi SL, Noguchi C, Guha M, Srinivasan S, Amanuma Y, Ohashi S, Muto M, Klein-Szanto AJ, Noguchi E, Avadhani NG, Nakagawa H. ALDH2 modulates autophagy flux to regulate acetaldehyde-mediated toxicity thresholds. Am J Cancer Res 2016; 6:781-96. [PMID: 27186430 PMCID: PMC4859883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 01/31/2016] [Indexed: 02/15/2023] Open
Abstract
A polymorphic mutation in the acetaldehyde dehydrogenase 2 (ALDH2) gene has been epidemiologically linked to the high susceptibility to esophageal carcinogenesis for individuals with alcohol use disorders. Mice subjected to alcohol drinking show increased oxidative stress and DNA adduct formation in esophageal epithelia where Aldh2 loss augments alcohol-induced genotoxic effects; however, it remains elusive as to how esophageal epithelial cells with dysfunctional Aldh2 cope with oxidative stress related to alcohol metabolism. Here, we investigated the role of autophagy in murine esophageal epithelial cells (keratinocytes) exposed to ethanol and acetaldehyde. We find that ethanol and acetaldehyde trigger oxidative stress via mitochondrial superoxide in esophageal keratinocytes. Aldh2-deficient cells appeared to be highly susceptible to ethanol- or acetaldehyde-mediated toxicity. Alcohol dehydrogenase-mediated acetaldehyde production was implicated in ethanol-induced cell injury in Aldh2 deficient cells as ethanol-induced oxidative stress and cell death was partially inhibited by 4-methylpyrazole. Acetaldehyde activated autophagy flux in esophageal keratinocytes where Aldh2 deficiency increased dependence on autophagy to cope with ethanol-induced acetaldehyde-mediated oxidative stress. Pharmacological inhibition of autophagy flux by chloroquine stabilized p62/SQSTM1, and increased basal and acetaldehyde-mediate oxidative stress in Aldh2 deficient cells as documented in monolayer culture as well as single-cell derived three-dimensional esophageal organoids, recapitulating a physiological esophageal epithelial proliferation-differentiation gradient. Our innovative approach indicates, for the first time, that autophagy may provide cytoprotection to esophageal epithelial cells responding to oxidative stress that is induced by ethanol and its major metabolite acetaldehyde. Defining autophagymediated cytoprotection against alcohol-induced genotoxicity in the context of Aldh2 deficiency, our study provides mechanistic insights into the tumor suppressor functions of ALDH2 and autophagy in alcohol-related esophageal carcinogenesis.
Collapse
Affiliation(s)
- Koji Tanaka
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of MedicinePhiladelphia, PA, USA,University of Pennsylvania Abramson Cancer CenterPhiladelphia, PA, USA
| | - Kelly A Whelan
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of MedicinePhiladelphia, PA, USA,University of Pennsylvania Abramson Cancer CenterPhiladelphia, PA, USA
| | - Prasanna M Chandramouleeswaran
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of MedicinePhiladelphia, PA, USA,University of Pennsylvania Abramson Cancer CenterPhiladelphia, PA, USA
| | - Shingo Kagawa
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of MedicinePhiladelphia, PA, USA,University of Pennsylvania Abramson Cancer CenterPhiladelphia, PA, USA
| | - Sabrina L Rustgi
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of MedicinePhiladelphia, PA, USA,University of Pennsylvania Abramson Cancer CenterPhiladelphia, PA, USA
| | - Chiaki Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of MedicinePhiladelphia, PA, USA
| | - Manti Guha
- Department of Animal Biology, Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Satish Srinivasan
- Department of Animal Biology, Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Yusuke Amanuma
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | - Shinya Ohashi
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | - Manabu Muto
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | - Andres J Klein-Szanto
- Histopathology Facility and Cancer Biology Program, Fox Chase Cancer CenterPhiladelphia, PA, USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of MedicinePhiladelphia, PA, USA
| | - Narayan G Avadhani
- Department of Animal Biology, Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Hiroshi Nakagawa
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of MedicinePhiladelphia, PA, USA,University of Pennsylvania Abramson Cancer CenterPhiladelphia, PA, USA
| |
Collapse
|
43
|
Bonfim C, Ribeiro L, Nichele S, Bitencourt M, Loth G, Koliski A, Funke VAM, Pilonetto DV, Pereira NF, Flowers MED, Velleuer E, Dietrich R, Fasth A, Torres-Pereira CC, Pedruzzi P, Eapen M, Pasquini R. Long-term Survival, Organ Function, and Malignancy after Hematopoietic Stem Cell Transplantation for Fanconi Anemia. Biol Blood Marrow Transplant 2016; 22:1257-1263. [PMID: 26976241 DOI: 10.1016/j.bbmt.2016.03.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/03/2016] [Indexed: 11/27/2022]
Abstract
We report on long-term survival in 157 patients with Fanconi anemia (FA) who survived 2 years or longer after their first transplantation with a median follow-up of 9 years. Marrow failure (80%) was the most common indication for transplantation. There were 20 deaths beyond 2 years after transplantation, with 12 of the deaths occurring beyond 5 years after transplantation. Donor chimerism was available for 149 patients: 112 (76%) reported > 95% chimerism, 27 (18%) reported 90% to 95% chimerism, and 8 (5%) reported 20% to 89% donor chimerism. Two patients have < 20% donor chimerism. The 10- and 15-year probabilities of survival were 90% and 79%, respectively. Results of multivariate analysis showed higher mortality risks for transplantations before 2003 (hazard ratio [HR], 7.87; P = .001), chronic graft-versus-host disease (GVHD) (HR, 3.80; P = .004) and squamous cell carcinoma after transplantation (HR, 38.17; P < .0001). The predominant cause of late mortality was squamous cell carcinoma, with an incidence of 8% and 14% at 10 and 15 years after transplantation, respectively, and was more likely to occur in those with chronic GVHD. Other causes of late mortality included chronic GVHD, infection, graft failure, other cancers, and hemorrhage. Although most patients are disease free and functional long term, our data support aggressive surveillance for long periods to identify those at risk for late mortality.
Collapse
Affiliation(s)
- Carmem Bonfim
- Bone Marrow Transplantation Unit, Federal University of Paraná, Curitiba, Brazil.
| | - Lisandro Ribeiro
- Bone Marrow Transplantation Unit, Federal University of Paraná, Curitiba, Brazil
| | - Samantha Nichele
- Bone Marrow Transplantation Unit, Federal University of Paraná, Curitiba, Brazil
| | - Marco Bitencourt
- Bone Marrow Transplantation Unit, Federal University of Paraná, Curitiba, Brazil
| | - Gisele Loth
- Bone Marrow Transplantation Unit, Federal University of Paraná, Curitiba, Brazil
| | - Adriana Koliski
- Bone Marrow Transplantation Unit, Federal University of Paraná, Curitiba, Brazil
| | - Vaneuza A M Funke
- Bone Marrow Transplantation Unit, Federal University of Paraná, Curitiba, Brazil
| | | | - Noemi F Pereira
- Immunogenetics Laboratory, Federal University of Paraná, Curitiba, Brazil
| | - Mary E D Flowers
- Clinical Research Divisions, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Eunike Velleuer
- Clinic for Pediatric Oncology, Hematology and Clinical Immunology, Children's Hospital, University Hospital of Düsseldorf, Germany
| | - Ralf Dietrich
- Deutsche Fanconi-Anämie-Hilfe, Unna-Siddinghausen, Germany
| | - Anders Fasth
- Department of Pediatrics, University of Gothenburg, Gothenburg, Sweden
| | | | - Paola Pedruzzi
- Oncology Department, Hospital Erasto Gaertner, Curitiba, Brazil
| | - Mary Eapen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ricardo Pasquini
- Bone Marrow Transplantation Unit, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
44
|
Alter BP, Rosenberg PS. In reference to Natural history and management of fanconi anemia patients with head and neck cancer: A 10-year follow-up. Laryngoscope 2016; 126:E229. [PMID: 26801202 DOI: 10.1002/lary.25874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 11/12/2022]
Affiliation(s)
| | - Philip S Rosenberg
- Biostatistics Branch Division of Cancer Epidemiology and Genetics National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
45
|
Kutler DI, Patel KR, Auerbach AD, Kennedy J, Lach FP, Sanborn E, Cohen MA, Kuhel WI, Smogorzewska A. Natural history and management of Fanconi anemia patients with head and neck cancer: A 10-year follow-up. Laryngoscope 2015; 126:870-9. [PMID: 26484938 DOI: 10.1002/lary.25726] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/10/2015] [Accepted: 09/17/2015] [Indexed: 12/29/2022]
Abstract
OBJECTIVES/HYPOTHESIS To describe the management and outcomes of Fanconi anemia (FA) patients with head and neck squamous cell carcinoma. STUDY DESIGN Cohort study. METHODS Demographic information, prognostic factors, therapeutic management, and survival outcomes for FA patients enrolled in the International Fanconi Anemia Registry who developed head and neck squamous cell carcinoma (HNSCC) were analyzed. RESULTS Thirty-five FA patients were diagnosed with HNSCC at a mean age of 32 years. The most common site of primary cancer was the oral cavity (26 of 35, 74%). Thirty patients underwent surgical resection of the cancer. Sixteen patients received radiation therapy with an average radiation dose of 5,050 cGy. The most common toxicities were high-grade mucositis (9 of 16, 56%), hematologic abnormalities (8 of 16, 50%), and dysphagia (8 of 16, 50%). Three patients received conventional chemotherapy and had significant complications, whereas three patients who received targeted chemotherapy with cetuximab had fewer toxicities. The 5-year overall survival rate was 39%, with a cause-specific survival rate of 47%. CONCLUSIONS Fanconi anemia patients have a high risk of developing aggressive HNSCC at an early age. Fanconi anemia patients can tolerate complex ablative and reconstructive surgeries, but careful postoperative care is required to reduce morbidity. The treatment of FA-associated HNSCC is difficult secondary to the poor tolerance of radiation and chemotherapy. However, radiation should be used for high-risk cancers due to the poor survival in these patients. LEVEL OF EVIDENCE 4.
Collapse
Affiliation(s)
- David I Kutler
- Department of Otolaryngology-Head and Neck Surgery, New York Presbyterian Hospital/Weill Cornell Medical College, New York, New York, U.S.A
| | - Krupa R Patel
- Weill Cornell Medical College, The Rockefeller University, New York, New York, U.S.A
| | - Arleen D Auerbach
- Program in Human Genetics and Hematology, The Rockefeller University, New York, New York, U.S.A
| | - Jennifer Kennedy
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York, U.S.A
| | - Francis P Lach
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York, U.S.A
| | - Erica Sanborn
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York, U.S.A
| | - Marc A Cohen
- Department of Otolaryngology-Head and Neck Surgery, New York Presbyterian Hospital/Weill Cornell Medical College, New York, New York, U.S.A
| | - William I Kuhel
- Department of Otolaryngology-Head and Neck Surgery, New York Presbyterian Hospital/Weill Cornell Medical College, New York, New York, U.S.A
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York, U.S.A
| |
Collapse
|
46
|
Smetsers SE, Velleuer E, Dietrich R, Wu T, Brink A, Buijze M, Deeg DJH, Soulier J, Leemans CR, Braakhuis BJM, Brakenhoff RH. Noninvasive molecular screening for oral precancer in Fanconi anemia patients. Cancer Prev Res (Phila) 2015; 8:1102-11. [PMID: 26276748 DOI: 10.1158/1940-6207.capr-15-0220] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/05/2015] [Indexed: 11/16/2022]
Abstract
LOH at chromosome arms 3p, 9p, 11q, and 17p are well-established oncogenetic aberrations in oral precancerous lesions and promising biomarkers to monitor the development of oral cancer. Noninvasive LOH screening of brushed oral cells is a preferable method for precancer detection in patients at increased risk for head and neck squamous cell carcinoma (HNSCC), such as patients with Fanconi anemia. We determined the prevalence of LOH in brushed samples of the oral epithelium of 141 patients with Fanconi anemia and 144 aged subjects, and studied the association between LOH and HNSCC. LOH was present in 14 (9.9%) nontransplanted patients with Fanconi anemia, whereas LOH was not detected in a low-risk group (n = 50, >58 years, nonsmoking/nonalcohol history) and a group with somewhat increased HNSCC risk (n = 94, >58 years, heavy smoking/excessive alcohol use); Fisher exact test, P = 0.023 and P = 0.001, respectively. Most frequent genetic alteration was LOH at 9p. Age was a significant predictor of LOH (OR, 1.13, P = 0.001). Five patients with Fanconi anemia developed HNSCC during the study at a median age of 39.6 years (range, 24.8-53.7). LOH was significantly associated with HNSCC (Fisher exact test, P = 0.000). Unexpectedly, the LOH assay could not be used for transplanted patients with Fanconi anemia because donor DNA in brushed oral epithelium, most likely from donor leukocytes present in the oral cavity, disturbed the analysis. Noninvasive screening using a LOH assay on brushed samples of the oral epithelium has a promising outlook in patients with Fanconi anemia. However, assays need to be adapted in case of stem cell transplantation, because of contaminating donor DNA.
Collapse
Affiliation(s)
- Stephanie E Smetsers
- Section Tumor Biology, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Eunike Velleuer
- Clinic of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ralf Dietrich
- Fanconi-Anämie Hilfe e.V., Unna-Siddinghausen, Germany
| | - Thijs Wu
- Section Tumor Biology, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Arjen Brink
- Section Tumor Biology, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Marijke Buijze
- Section Tumor Biology, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Dorly J H Deeg
- Department of Epidemiology and Biostatistics, EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Jean Soulier
- Department of Hematology, Saint Louis Hospital, Paris, France
| | - C René Leemans
- Section Tumor Biology, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Boudewijn J M Braakhuis
- Section Tumor Biology, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Ruud H Brakenhoff
- Section Tumor Biology, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
47
|
Thariat J, Vignot S, Lapierre A, Falk AT, Guigay J, Van Obberghen-Schilling E, Milano G. Integrating genomics in head and neck cancer treatment: Promises and pitfalls. Crit Rev Oncol Hematol 2015; 95:397-406. [PMID: 25979769 DOI: 10.1016/j.critrevonc.2015.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/20/2015] [Accepted: 03/26/2015] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) represent a multifactorial disease of poor prognosis. They have lagged behind other cancers in terms of personalized therapy. With expansion and high throughput sequencing methods, recent landmark exonic studies and Cancer Genome Atlas data have identified genes relevant to carcinogenesis and cancer progression. Mutational profiles and rates vary widely depending on exposure to carcinogens, anatomic subsites and human papilloma virus (HPV) infection. Tumors may exhibit specific, tissue-specific, not exclusively HPV-related, gene alterations, such those observed in oral cavity cancers in Asia or Occident. Except for the PI3K pathway, the rate of mutations in HPV+ cancers is much lower than in tobacco/alcohol-related cancers. Somatic driver mutation analyses show that relatively few driver genes are druggable in HNSCC and that tumor suppressor gene alterations prevail. More mature for therapeutic applications is the oncogenic PI3K pathway, with preclinical human xenograft models suggesting that PI3KCA pathway mutations may be used as predictive biomarkers and clinical data showing efficacy of mTOR/Akt inhibitors. Therapeutic guidance, to date, relies on classical histoprognostic factors, anatomic subsite and HPV status, with integration of hierarchized supervised mutational profiling to provide additional therapeutic options in advanced HNSCC in a near future. Unsupervised controlled genomic analyses remain necessary to unravel potentially relevant genes.
Collapse
Affiliation(s)
- Juliette Thariat
- Oncopharmacology Unit EA 3836, Centre A. Lacassagne, 33 Av de Valombrose, 06189 Nice, France; Department of Radiation Oncology, Centre A. Lacassagne, 33 Av de Valombrose, 06189 Nice, France.
| | - Stéphane Vignot
- Department of Oncology and Hematology-Hôpitaux de Chartres, 6 rue Claude Bernard, 28630 Chartres Le Coudray, France
| | - Ariane Lapierre
- Service d'Oncologie Radiothérapie, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon Université Claude Bernard, Lyon 69008, France
| | - Alexander T Falk
- Department of Radiation Oncology, Centre A. Lacassagne, 33 Av de Valombrose, 06189 Nice, France
| | - Joel Guigay
- Department of Medical Oncology, Centre A. Lacassagne, 33 Av de Valombrose, 06189 Nice, France
| | | | - Gerard Milano
- Oncopharmacology Unit EA 3836, Centre A. Lacassagne, 33 Av de Valombrose, 06189 Nice, France
| |
Collapse
|
48
|
Sauter SL, Wells SI, Zhang X, Hoskins EE, Davies SM, Myers KC, Mueller R, Panicker G, Unger ER, Sivaprasad U, Brown DR, Mehta PA, Butsch Kovacic M. Oral human papillomavirus is common in individuals with Fanconi anemia. Cancer Epidemiol Biomarkers Prev 2015; 24:864-72. [PMID: 25809863 DOI: 10.1158/1055-9965.epi-15-0097-t] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/09/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Fanconi anemia is a rare genetic disorder resulting in a loss of function of the Fanconi anemia-related DNA repair pathway. Individuals with Fanconi anemia are predisposed to some cancers, including oropharyngeal and gynecologic cancers, with known associations with human papillomavirus (HPV) in the general population. As individuals with Fanconi anemia respond poorly to chemotherapy and radiation, prevention of cancer is critical. METHODS To determine whether individuals with Fanconi anemia are particularly susceptible to oral HPV infection, we analyzed survey-based risk factor data and tested DNA isolated from oral rinses from 126 individuals with Fanconi anemia and 162 unaffected first-degree family members for 37 HPV types. RESULTS Fourteen individuals (11.1%) with Fanconi anemia tested positive, significantly more (P = 0.003) than family members (2.5%). While HPV prevalence was even higher for sexually active individuals with Fanconi anemia (17.7% vs. 2.4% in family; P = 0.003), HPV positivity also tended to be higher in the sexually inactive (8.7% in Fanconi anemia vs. 2.9% in siblings). Indeed, having Fanconi anemia increased HPV positivity 4.9-fold (95% CI, 1.6-15.4) considering age and sexual experience, but did not differ by other potential risk factors. CONCLUSION Our studies suggest that oral HPV is more common in individuals with Fanconi anemia. It will be essential to continue to explore associations between risk factors and immune dysfunction on HPV incidence and persistence over time. IMPACT HPV vaccination should be emphasized in those with Fanconi anemia as a first step to prevent oropharyngeal cancers, although additional studies are needed to determine whether the level of protection it offers in this population is adequate.
Collapse
Affiliation(s)
- Sharon L Sauter
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Susanne I Wells
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Xue Zhang
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Elizabeth E Hoskins
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Stella M Davies
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Kasiani C Myers
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Robin Mueller
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Gitika Panicker
- Chronic Viral Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Elizabeth R Unger
- Chronic Viral Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Umasundari Sivaprasad
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Darron R Brown
- Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, Indiana
| | - Parinda A Mehta
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Melinda Butsch Kovacic
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
49
|
Malric A, Defachelles AS, Leblanc T, Lescoeur B, Lacour B, Peuchmaur M, Maurage CA, Pierron G, Guillemot D, d'Enghien CD, Soulier J, Stoppa-Lyonnet D, Bourdeaut F. Fanconi anemia and solid malignancies in childhood: a national retrospective study. Pediatr Blood Cancer 2015; 62:463-70. [PMID: 25381700 DOI: 10.1002/pbc.25303] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 09/12/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Fanconi anemia (FA) predisposes to hematologic disorders and myeloid neoplasia in childhood and to solid cancers, mainly oral carcinomas, in early adulthood. Few cases of solid cancers have been reported in childhood. PROCEDURES We conducted a national retrospective study of solid tumors occurring in patients registered with or determined to have FA during childhood in France. Phenotypic features, tumor type, cancer treatment, and outcome were analyzed. Whenever available, fresh-frozen tumors were analyzed by microarray-based comparative genomics hybridization. RESULTS We identified eight patients with FA with solid tumor from 1986 to 2012. For two patients, the diagnosis of FA was unknown at the time of cancer diagnosis. Moreover, we identified one fetus with a brain tumor. All patients showed failure to thrive and had dysmorphic features and abnormal skin pigmentation. Seven patients had BRCA2/FANCD1 mutations; five of these featured more than one malignancy and the median age at the time of cancer diagnosis was 11 months (range 0.4-3 years). Solid tumor types included five nephroblastomas, two rhabdomyosarcomas, two neuroblastomas, and three brain tumors. Two children died from the toxic effects of chemotherapy, two patients from the cancer, and one patient from secondary leukemia. Only one BRCA2 patient was alive more than 3 years after diagnosis, after tailored chemotherapy. CONCLUSION Solid tumors are rare in FA during childhood, except in patients with BRCA2/FANCD1 mutations. The proper genetic diagnosis is mandatory to tailor the treatment.
Collapse
Affiliation(s)
- Aurore Malric
- Department of Pediatrics, Curie Institute, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Schneider M, Chandler K, Tischkowitz M, Meyer S. Fanconi anaemia: genetics, molecular biology, and cancer - implications for clinical management in children and adults. Clin Genet 2014; 88:13-24. [DOI: 10.1111/cge.12517] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 01/30/2023]
Affiliation(s)
- M. Schneider
- Stem Cell and Leukaemia Proteomics Laboratory; University of Manchester; Manchester UK
- Manchester Academic Health Science Centre; Manchester UK
| | - K. Chandler
- Manchester Academic Health Science Centre; Manchester UK
- Department of Genetic Medicine; University of Manchester, St Mary's Hospital; Manchester UK
| | - M. Tischkowitz
- Department of Medical Genetics; University of Cambridge, Addenbrooke's Hospital; Cambridge UK
| | - S. Meyer
- Stem Cell and Leukaemia Proteomics Laboratory; University of Manchester; Manchester UK
- Manchester Academic Health Science Centre; Manchester UK
- Department of Paediatric Haematology and Oncology; Royal Manchester Children's Hospital; Manchester UK
- Department of Paediatric and Adolescent Oncology; Young Oncology Unit, The Christie NHS Foundation Trust; Manchester UK
| |
Collapse
|