1
|
Sugiyama Y, Matsuoka S, Ishizuka W, Sugai T. Reduction of the α and β diversity of ectomycorrhizal fungal community under snowmelt: highlights from a common garden trial using Abies sachalinensis with differing host origins and light condition. MYCORRHIZA 2025; 35:27. [PMID: 40178662 DOI: 10.1007/s00572-025-01201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 03/18/2025] [Indexed: 04/05/2025]
Abstract
The community structure of ectomycorrhizal (ECM) fungi typically displays temporal dynamics. However, heavy snow cover hinders belowground investigations in temperate-to-boreal forests where ECM trees dominate, and the dynamics of the ECM fungal community structure during winter have not been fully elucidated. Given that boreal conifer species start root production in response to snowmelt, studies on the response of the ECM fungal community to snowmelt are needed. In the present study, to infer the community dynamics during the snowmelt season and their susceptibility to host tree conditions, we investigated ECM fungi associated with saplings of the evergreen conifer Abies sachalinensis immediately after the start and end of snowmelt in a common garden experiment. Saplings derived from two sources of contrasting snowfall conditions (heavy vs. little) were grown under two different light conditions (open vs. shaded), and the ECM fungal community dynamics patterns were compared across these combinations. The response of the ECM fungal community structure varied across treatments; although significant loss of ECM fungal operational taxonomic units (OTUs) was observed when saplings from the heavy snowfall region were grown under shade conditions, no change in community structure across the snowmelt season was observed for the other combinations. The stability of community composition despite the change in abiotic conditions with snowmelt, together with the effects of host origin and light conditions on community dynamics patterns, would imply the importance of host-mediated community dynamics of ECM fungi during the snowmelt season.
Collapse
Affiliation(s)
- Yoriko Sugiyama
- Field Science Education and Research Center, Kyoto University, Kyoto, Japan.
| | - Shunsuke Matsuoka
- Field Science Education and Research Center, Kyoto University, Kyoto, Japan
| | | | - Tetsuto Sugai
- Forestry and Forest Products Research Institute, Hokkaido Research Center, Sapporo, Japan
| |
Collapse
|
2
|
Marchand LJ, Gričar J, Zuccarini P, Dox I, Mariën B, Verlinden M, Heinecke T, Prislan P, Marie G, Lange H, Van den Bulcke J, Penuelas J, Fonti P, Campioli M. No winter halt in below-ground wood growth of four angiosperm deciduous tree species. Nat Ecol Evol 2025; 9:386-394. [PMID: 39789168 DOI: 10.1038/s41559-024-02602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/20/2024] [Indexed: 01/12/2025]
Abstract
In the temperate zone, deciduous trees exhibit clear above-ground seasonality, marked by a halt in wood growth that represents the completion of wood formation in autumn and reactivation in spring. However, the growth seasonality of below-ground woody organs, such as coarse roots, has been largely overlooked. Here we use tree monitoring data and pot experiments involving saplings to examine the late-season xylem development of stem and coarse roots with leaf phenology in four common deciduous tree species in Western Europe. Coarse-roots wood growth continued throughout the winter whereas stem wood growth halted in autumn, regardless of the tree species, experimental setting or location. Our results do not indicate a clear temperature constraint on below-ground wood growth, even during prolonged periods with soil temperatures lower than 3 °C. The continuous differentiation of xylem root cells in autumn and winter suggests that the non-growing season does not exist sensu stricto for all woody organs of angiosperm deciduous tree species of the temperate zone. Our findings hold implications for understanding tree functioning, in particular the seasonal wood formation, the environmental controls of tree growth and the carbon reserves dynamics.
Collapse
Affiliation(s)
- Lorène J Marchand
- PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium.
| | - Jožica Gričar
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Paolo Zuccarini
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
| | - Inge Dox
- PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Bertold Mariën
- PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Integrated Science Lab (IceLab), Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
| | - Melanie Verlinden
- PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Thilo Heinecke
- PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Peter Prislan
- Department for Forest Technique and Economics, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Guillaume Marie
- PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Holger Lange
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Jan Van den Bulcke
- UGent-Woodlab, Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| | - Josep Penuelas
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
| | - Patrick Fonti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Matteo Campioli
- PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
3
|
Garthen A, Brandt K, Klisz M, Malyshev AV, Peters B, Weigel R, Kreyling J. Seasonal dynamics of fine root length in European beech: unveiling unexpected winter peaks and summer declines. Oecologia 2025; 207:31. [PMID: 39918635 PMCID: PMC11805861 DOI: 10.1007/s00442-025-05670-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/11/2025] [Indexed: 02/09/2025]
Abstract
Fine roots play a crucial role in many ecological and biogeochemical processes in temperate forests. Generally, fine root biomass is expected to increase during the growing season, when water and nutrient demands are high, but information on seasonal variability is still scarce. Here, seasonal differences in root length of European beech (Fagus sylvatica L.) were analysed at eight sites within its north-eastern distribution range. Fine roots of mature trees were monitored using minirhizotrons. Scans were taken for three different depths at the beginning of winter, the end of winter and over the summer for two consecutive years, and analysed automatically by an AI-algorithm (RootDetector). An additional experiment was carried out to show that the RootDetector was unaffected by changes in soil moisture. Root-length density was 40% higher at the beginning of winter and 51% higher at the end of winter than in summer. Our results indicate a net root loss during adverse conditions in early summer, but no trend towards deeper root growth over these drier periods. Interestingly, the root loss was compensated afterwards during more favourable conditions in autumn. We could show that fine root length in temperate forests is seasonally more variable and, so far, less predictable than previously assumed. A profound understanding of this seasonal variability is important for modelling terrestrial biogeochemical processes and global carbon fluxes.
Collapse
Affiliation(s)
- Aron Garthen
- Experimental Plant Ecology, Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstraße 15, 17489, Greifswald, Germany.
| | - Kirsten Brandt
- Experimental Plant Ecology, Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstraße 15, 17489, Greifswald, Germany
| | - Marcin Klisz
- Department of Silviculture and Genetics of Forest Trees, Forest Research Institute, 05-090, Raszyn, Poland
| | - Andrey V Malyshev
- Experimental Plant Ecology, Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstraße 15, 17489, Greifswald, Germany
| | - Bo Peters
- Experimental Plant Ecology, Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstraße 15, 17489, Greifswald, Germany
| | - Robert Weigel
- Ecological-Botanical Garden, University of Bayreuth, 95447, Bayreuth, Germany
- Plant Ecology, University of Goettingen, 37073, Goettingen, Germany
| | - Juergen Kreyling
- Experimental Plant Ecology, Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstraße 15, 17489, Greifswald, Germany
| |
Collapse
|
4
|
Kressuk JM, Collins JT, Gardiner ES, Bataineh MM, Babst BA. Willow oak (Quercus phellos) seedling roots continue respiration and growth during fall and winter in a soil temperature-dependent manner. TREE PHYSIOLOGY 2025; 45:tpae154. [PMID: 39658210 DOI: 10.1093/treephys/tpae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/08/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024]
Abstract
Many greentree reservoirs (GTRs) and other bottomland hardwood forests have experienced a shift in tree species composition away from desired red oaks (Quercus section Lobatae), like willow oak (Quercus phellos L.), due to flood stress mortality. Trees experience flood stress primarily through their root system, so it is surmised that GTR flooding may be occurring before root systems have reduced their activity entering the winter. Because soils buffer seasonal temperature changes, we hypothesized that root activity would respond to the belowground environment rather than the aboveground environment. To investigate whether cold soil temperatures reduce root growth and respiration in willow oak during winter, soil temperatures for container seedlings were either held at 15 °C or transitioned to 10 or 5 °C in the late fall. Root elongation was measured in seedlings grown in rhizotron pots by analyzing repeated images of roots during the fall-winter transition period. Root respiration, measured at soil temperature levels, was used as an indicator of root energetic expenses. Also, root respiration was measured at 15 and 5 °C to determine Q10 values to test for acclimation to low soil temperature. Root elongation continued in winter, even after stem elongation stopped in soil temperatures ≥5 °C, a condition usually met throughout most of the native range of willow oak. Both root elongation and respiration rates decreased in cooler soil temperatures. However, Q10 values were unaffected by soil temperature treatment. These findings do not support root dormancy or cold acclimation of root respiratory activity but indicate that temperature directly and reversibly affected root respiration rate. Root elongation may have been dependent on photoassimilates produced by green leaves that were retained through much of winter. Overall, our results suggest that willow oak roots may continue a high rate of growth throughout winter, unlike most temperate species measured to date, and that soil temperature has a major influence over their growth and respiration rates.
Collapse
Affiliation(s)
- Jonathan M Kressuk
- College of Forestry Agriculture and Natural Resources, University of Arkansas at Monticello, 110 University Court, Monticello, AR 71656, USA
- College of Natural Resources, North Carolina State University, Raleigh, NC, USA
| | - James T Collins
- College of Forestry Agriculture and Natural Resources, University of Arkansas at Monticello, 110 University Court, Monticello, AR 71656, USA
- Arkansas Game and Fish Commission, Jonesboro, AR, USA
| | - Emile S Gardiner
- Center for Bottomland Hardwoods Research, Southern Research Station, USDA Forest Service, 432 Stoneville Road, Stoneville, MS 38776, USA
| | - Mohammad M Bataineh
- College of Forestry Agriculture and Natural Resources, University of Arkansas at Monticello, 110 University Court, Monticello, AR 71656, USA
- Arkansas Forest Resource Center, Division of Agriculture, University of Arkansas System, 110 University Court, Monticello, AR 71656, USA
- Center for Forest Health and Disturbance, Southern Research Station, USDA Forest Service, Pineville, LA, USA
| | - Benjamin A Babst
- College of Forestry Agriculture and Natural Resources, University of Arkansas at Monticello, 110 University Court, Monticello, AR 71656, USA
- Arkansas Forest Resource Center, Division of Agriculture, University of Arkansas System, 110 University Court, Monticello, AR 71656, USA
| |
Collapse
|
5
|
Rezaie N, D'Andrea E, Scartazza A, Gričar J, Prislan P, Calfapietra C, Battistelli A, Moscatello S, Proietti S, Matteucci G. Upside down and the game of C allocation. TREE PHYSIOLOGY 2024; 44:192-203. [PMID: 36917230 DOI: 10.1093/treephys/tpad034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Non-structural carbohydrates (NSCs) represent the primary carbon (C) reserves and play a crucial role in plant functioning and resilience. Indeed, these compounds are involved in the regulation between C supply and demand, and in the maintenance of hydraulic efficiency. Non-structural carbohydrates are stored in parenchyma of woody organs, which is recognized as a proxy for reserve storage capacity of tree. Notwithstanding the importance of NSCs for tree physiology, their long-term regulation and trade-offs against growth were not deeply investigated. This work evaluated the long-term dynamics of mature tree reserves in stem and root, proxied by parenchyma features and focusing on the trade-off and interplay between the resources allocation in radial growth and reserves in stem and coarse root. In a Mediterranean beech forest, NSCs content, stem and root wood anatomy analysis and eddy covariance data were combined. The parenchyma fraction (RAP) of beech root and stem was different, due to differences in axial parenchyma (AP) and narrow ray parenchyma (nRP) fractions. However, these parenchyma components and radial growth showed synchronous inter-annual dynamics between the two organs. In beech stem, positive correlations were found among soluble sugars content and nRP and among starch content and the AP. Positive correlations were found among Net Ecosystem Exchange (NEE) and AP of both organs. In contrast, NEE was negatively correlated to radial growth of root and stem. Our results suggest a different contribution of stem and roots to reserves storage and a putative partitioning in the functional roles of parenchyma components. Moreover, a long-term trade-off of C allocation between growth and reserve pool was evidenced. Indeed, in case of C source reduction, trees preferentially allocate C toward reserves pool. Conversely, in high productivity years, growth represents the major C sink.
Collapse
Affiliation(s)
- Negar Rezaie
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), Via P. Castellino n. 111, 80131 Napoli, Italy
| | - Ettore D'Andrea
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), via Marconi 2, 05010 Porano, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Andrea Scartazza
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), Via Moruzzi 1, 56124 Pisa, Italy
| | - Jožica Gričar
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| | - Peter Prislan
- Department for Forest Technique and Economics, Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| | - Carlo Calfapietra
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), via Marconi 2, 05010 Porano, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Alberto Battistelli
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), via Marconi 2, 05010 Porano, Italy
| | - Stefano Moscatello
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), via Marconi 2, 05010 Porano, Italy
| | - Simona Proietti
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), via Marconi 2, 05010 Porano, Italy
| | - Giorgio Matteucci
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
- Institute of BioEconomy, National Research Council of Italy (CNR-IBE), via Madonna del Piano, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Zlobin IE. Tree post-drought recovery: scenarios, regulatory mechanisms and ways to improve. Biol Rev Camb Philos Soc 2024; 99:1595-1612. [PMID: 38581143 DOI: 10.1111/brv.13083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Efficient post-drought recovery of growth and assimilation enables a plant to return to its undisturbed state and functioning. Unlike annual plants, trees suffer not only from the current drought, but also from cumulative impacts of consecutive water stresses which cause adverse legacy effects on survival and performance. This review provides an integrated assessment of ecological, physiological and molecular evidence on the recovery of growth and photosynthesis in trees, with a view to informing the breeding of trees with a better ability to recover from water stress. Suppression of recovery processes can result not only from stress damage but also from a controlled downshift of recovery as part of tree acclimation to water-limited conditions. In the latter case, recovery processes could potentially be activated by turning off the controlling mechanisms, but several obstacles make this unlikely. Tree phenology, and specifically photoperiodic constraints, can limit post-drought recovery of growth and photosynthesis, and targeting these constraints may represent a promising way to breed trees with an enhanced ability to recover post-drought. The mechanisms of photoperiod-dependent regulation of shoot, secondary and root growth and of assimilation processes are reviewed. Finally, the limitations and trade-offs of altering the photoperiodic regulation of growth and assimilation processes are discussed.
Collapse
Affiliation(s)
- Ilya E Zlobin
- K.A. Timiryazev Institute of Plant Physiology, RAS, 35 Botanicheskaya St, Moscow, 127276, Russia
| |
Collapse
|
7
|
Qu Z, Lin C, Zhao H, Chen T, Yao X, Wang X, Yang Y, Chen G. Above- and belowground phenology responses of subtropical Chinese fir (Cunninghamia lanceolata) to soil warming, precipitation exclusion and their interaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173147. [PMID: 38740199 DOI: 10.1016/j.scitotenv.2024.173147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Plant phenology plays an important role in nutrient cycling and carbon balance in forest ecosystems, but its response to the interaction of global warming and precipitation reduction remains unclear. In this study, an experiment with factorial soil warming (ambient, ambient +5 °C) and precipitation exclusion (ambient, ambient -50 %) was conducted in a subtropical Chinese fir (Cunninghamia lanceolata) plantation. We investigated the effects of soil warming, precipitation exclusion, and their interactions on Chinese fir phenology involving tree height and fine root growth. In the meantime, the impact of tree height growth and related climatic factors on fine root production was also assessed. The results showed that: (1) more variable phenology responses were observed in fine root growth than in tree height growth to the climatic treatments; the duration of fine root growth and tree height growth was significantly reduced by the precipitation exclusion and warming treatment, respectively; phenology differences of fine root and tree height growth caused by the solo warming and precipitation exclusion treatment were further enhanced by the combined treatment; and despite the greater inter-annual phenology stability of tree height growth than that of fine root growth, both of them showed insignificant response to all the climate treatments; (2) asynchrony of phenology between tree height and fine root growth was significantly enlarged by solo warming and precipitation exclusion treatments, and further enlarged by the combined treatment; (3) fine root production was significantly and positively correlated with air, and soil temperature, and tree height growth as well, which was altered by warming and precipitation exclusion treatments. Our results demonstrated that climatic changes significantly and differently alter phenology of, and extend the phenology asynchrony between, above and below ground plant components, and also highlight the climate-sensitive and variable nature of root phenology. Overall, these phenology responses to climatic change may weaken the close link between fine root production and tree height growth, which may result in temporal mismatch between nutrient demand and supply in Chinese fir plantation.
Collapse
Affiliation(s)
- Zekun Qu
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Fujian Normal University, Fuzhou, China
| | - Chengfang Lin
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Fujian Normal University, Fuzhou, China.
| | - Haiying Zhao
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Fujian Normal University, Fuzhou, China
| | - Tingting Chen
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Fujian Normal University, Fuzhou, China
| | - Xiaodong Yao
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Fujian Normal University, Fuzhou, China
| | - Xiaohong Wang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Fujian Normal University, Fuzhou, China
| | - Yusheng Yang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Fujian Normal University, Fuzhou, China
| | - Guangshui Chen
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
8
|
Parasurama S, Banan D, Yun K, Doty S, Kim SH. Bridging Time-series Image Phenotyping and Functional-Structural Plant Modeling to Predict Adventitious Root System Architecture. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0127. [PMID: 38143722 PMCID: PMC10739341 DOI: 10.34133/plantphenomics.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023]
Abstract
Root system architecture (RSA) is an important measure of how plants navigate and interact with the soil environment. However, current methods in studying RSA must make tradeoffs between precision of data and proximity to natural conditions, with root growth in germination papers providing accessibility and high data resolution. Functional-structural plant models (FSPMs) can overcome this tradeoff, though parameterization and evaluation of FSPMs are traditionally based in manual measurements and visual comparison. Here, we applied a germination paper system to study the adventitious RSA and root phenology of Populus trichocarpa stem cuttings using time-series image-based phenotyping augmented by FSPM. We found a significant correlation between timing of root initiation and thermal time at cutting collection (P value = 0.0061, R2 = 0.875), but little correlation with RSA. We also present a use of RhizoVision [1] for automatically extracting FSPM parameters from time series images and evaluating FSPM simulations. A high accuracy of the parameterization was achieved in predicting 2D growth with a sensitivity rate of 83.5%. This accuracy was lost when predicting 3D growth with sensitivity rates of 38.5% to 48.7%, while overall accuracy varied with phenotyping methods. Despite this loss in accuracy, the new method is amenable to high throughput FSPM parameterization and bridges the gap between advances in time-series phenotyping and FSPMs.
Collapse
Affiliation(s)
- Sriram Parasurama
- School of Environmental and Forest Sciences,
University of Washington, Seattle, USA
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Darshi Banan
- School of Environmental and Forest Sciences,
University of Washington, Seattle, USA
| | - Kyungdahm Yun
- Department of Smart Farm,
Jeonbuk National University, Jeonju, Korea
| | - Sharon Doty
- School of Environmental and Forest Sciences,
University of Washington, Seattle, USA
| | - Soo-Hyung Kim
- School of Environmental and Forest Sciences,
University of Washington, Seattle, USA
| |
Collapse
|
9
|
Malyshev AV, Blume-Werry G, Spiller O, Smiljanić M, Weigel R, Kolb A, Nze BY, Märker F, Sommer FCFJ, Kinley K, Ziegler J, Pasang P, Mahara R, Joshi S, Heinsohn V, Kreyling J. Warming nondormant tree roots advances aboveground spring phenology in temperate trees. THE NEW PHYTOLOGIST 2023; 240:2276-2287. [PMID: 37897071 DOI: 10.1111/nph.19304] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/07/2023] [Indexed: 10/29/2023]
Abstract
Climate warming advances the onset of tree growth in spring, but above- and belowground phenology are not always synchronized. These differences in growth responses may result from differences in root and bud dormancy dynamics, but root dormancy is largely unexplored. We measured dormancy in roots and leaf buds of Fagus sylvatica and Populus nigra by quantifying the warming sum required to initiate above- and belowground growth in October, January and February. We furthermore carried out seven experiments, manipulating only the soil and not air temperature before or during tree leaf-out to evaluate the potential of warmer roots to influence budburst timing using seedlings and adult trees of F. sylvatica and seedlings of Betula pendula. Root dormancy was virtually absent in comparison with the much deeper winter bud dormancy. Roots were able to start growing immediately as soils were warmed during the winter. Interestingly, higher soil temperature advanced budburst across all experiments, with soil temperature possibly accounting for c. 44% of the effect of air temperature in advancing aboveground spring phenology per growing degree hour. Therefore, differences in root and bud dormancy dynamics, together with their interaction, likely explain the nonsynchronized above- and belowground plant growth responses to climate warming.
Collapse
Affiliation(s)
- Andrey V Malyshev
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489, Greifswald, Germany
| | - Gesche Blume-Werry
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489, Greifswald, Germany
- Department of Ecology and Environmental Science, Umeå Universitet, Umea, 90187, Sweden
| | - Ophelia Spiller
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489, Greifswald, Germany
| | - Marko Smiljanić
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489, Greifswald, Germany
| | - Robert Weigel
- Plant Ecology and Ecosystems Research, University of Goettingen, 37073, Göttingen, Germany
- Ecological-Botanical Garden, University of Bayreuth, 95447, Bayreuth, Germany
| | - Alexander Kolb
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489, Greifswald, Germany
| | - Byron Ye Nze
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489, Greifswald, Germany
| | - Frederik Märker
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489, Greifswald, Germany
| | | | - Kinley Kinley
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489, Greifswald, Germany
- Ecological-Botanical Garden, University of Bayreuth, 95447, Bayreuth, Germany
| | - Jan Ziegler
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489, Greifswald, Germany
- Swiss Federal Research Institute WSL, Birmensdorf, CH-8903, Switzerland
| | - Pasang Pasang
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489, Greifswald, Germany
| | - Robert Mahara
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489, Greifswald, Germany
- Department of Forest and Park Services, Thimphu, 1345, Bhutan
| | - Silviya Joshi
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489, Greifswald, Germany
| | - Vincent Heinsohn
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489, Greifswald, Germany
| | - Juergen Kreyling
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489, Greifswald, Germany
| |
Collapse
|
10
|
Wang B, McCormack ML, Ricciuto DM, Yang X, Iversen CM. Embracing fine-root system complexity in terrestrial ecosystem modeling. GLOBAL CHANGE BIOLOGY 2023; 29:2871-2885. [PMID: 36861355 DOI: 10.1111/gcb.16659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/15/2023] [Indexed: 05/03/2023]
Abstract
Projecting the dynamics and functioning of the biosphere requires a holistic consideration of whole-ecosystem processes. However, biases toward leaf, canopy, and soil modeling since the 1970s have constantly left fine-root systems being rudimentarily treated. As accelerated empirical advances in the last two decades establish clearly functional differentiation conferred by the hierarchical structure of fine-root orders and associations with mycorrhizal fungi, a need emerges to embrace this complexity to bridge the data-model gap in still extremely uncertain models. Here, we propose a three-pool structure comprising transport and absorptive fine roots with mycorrhizal fungi (TAM) to model vertically resolved fine-root systems across organizational and spatial-temporal scales. Emerging from a conceptual shift away from arbitrary homogenization, TAM builds upon theoretical and empirical foundations as an effective and efficient approximation that balances realism and simplicity. A proof-of-concept demonstration of TAM in a big-leaf model both conservatively and radically shows robust impacts of differentiation within fine-root systems on simulating carbon cycling in temperate forests. Theoretical and quantitative support warrants exploiting its rich potentials across ecosystems and models to confront uncertainties and challenges for a predictive understanding of the biosphere. Echoing a broad trend of embracing ecological complexity in integrative ecosystem modeling, TAM may offer a consistent framework where modelers and empiricists can work together toward this grand goal.
Collapse
Affiliation(s)
- Bin Wang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Daniel M Ricciuto
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Xiaojuan Yang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Colleen M Iversen
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
11
|
Tenkanen A, Keinänen M, Oksanen E, Keski-Saari S, Kontunen-Soppela S. Polar day syndrome: differences in growth, photosynthetic traits and sink-size patterns between northern and southern Finnish silver birch (Betula pendula Roth) provenances in native and non-native photoperiods. TREE PHYSIOLOGY 2023; 43:16-30. [PMID: 36049078 PMCID: PMC9833867 DOI: 10.1093/treephys/tpac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Continuous light (CL) is available throughout the polar day for plants in the Arctic during the growing season, whereas provenances of the same species experience a very different environment with non-CL (NCL) just a few latitudes to the south. Both provenances need to acclimate to climate warming, yet we lack comprehensive understanding of how their growth, photosynthesis and leaf traits differ. Further, the provenances presumably have morphological and physiological adaptations to their native environments and therefore differ in response to photoperiod. We tested the height growth, leaf longevity, biomass accumulation, biomass allocation and rates of gas exchange of northern (67°N) and southern (61°N) Finnish silver birch (Betula pendula Roth) origins in CL- and NCL-treatments in a 4-month chamber experiment. Irrespective of photoperiod, 67°N had higher area-based photosynthetic rate (Anet), stomatal conductance (gs) and relative height growth rate (RGR), but lower stomatal density and fewer branches and leaves than 61°N. Photoperiod affected height growth cessation, biomass and photosynthetic traits, whereas leaf longevity and many leaf functional traits remained unchanged. In CL, both provenances had lower gs, higher RGR, increased shoot:root ratio and increased sink sizes (more branching, more leaves, increased total plant dry weight) compared with NCL. In NCL, 67°N ceased height growth earlier than in CL, which altered biomass accumulation and distribution patterns. Northern conditions impose challenges for plant growth and physiology. Whether a provenance inhabits and is adapted to an area with or without CL can also affect its response to the changing climate. Northern birches may have adapted to CL and the short growing season with a 'polar day syndrome' of traits, including relatively high gas exchange rates with low leaf biomass and growth traits that are mainly limited by the environment and the earlier growth cessation (to avoid frost damage).
Collapse
Affiliation(s)
- Antti Tenkanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistokatu 7, P.O. Box 111, 80101 Joensuu, Finland
| | - Markku Keinänen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistokatu 7, P.O. Box 111, 80101 Joensuu, Finland
- University of Eastern Finland, Institute of Photonics, Yliopistokatu 7, PO Box 111, 80101 Joensuu, Finland
| | - Elina Oksanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistokatu 7, P.O. Box 111, 80101 Joensuu, Finland
| | - Sarita Keski-Saari
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistokatu 7, P.O. Box 111, 80101 Joensuu, Finland
| | - Sari Kontunen-Soppela
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistokatu 7, P.O. Box 111, 80101 Joensuu, Finland
| |
Collapse
|
12
|
Kilpeläinen J, Domisch T, Lehto T, Piirainen S, Silvennoinen R, Repo T. Separating the effects of air and soil temperature on silver birch. Part I. Does soil temperature or resource competition determine the timing of root growth? TREE PHYSIOLOGY 2022; 42:2480-2501. [PMID: 35939338 PMCID: PMC9743011 DOI: 10.1093/treephys/tpac092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 05/26/2023]
Abstract
The aboveground parts of boreal forest trees mostly grow earlier, and the roots later, in the growing season. We aimed to experimentally test whether the extrinsic driver of soil temperature or the intrinsic driver (resource competition between plant parts) is a more important control for the root and shoot growth of silver birch (Betula pendula Roth) seedlings. Sixteen two-year-old seedlings were grown in controlled environment rooms for two simulated growing seasons (GS1, GS2). In GS1, all the seedlings were acclimatized under the same conditions, but in GS2, the soil temperature treatments were: (i) constant 10 °C (Cool); (ii) constant 18 °C (Warm); (iii) early growing season at 10 °C, switched to 18 °C later (Early Cool Late Warm, ECLW) and (iv) early growing season 18 °C, switched to 10 °C later (Early Warm Late Cool, EWLC). The treatments did not affect growth allocation between shoots and roots. Warm soil benefitted shoot elongation as it slowed down in EWLC and accelerated in ECLW after the soil temperature switch. However, whole-tree biomasses were similar to Cool and the seedlings grew largest in Warm. Phenology was not strongly affected by soil temperature, and root and shoot growth did not usually peak simultaneously. Short root mortality increased strongly in ECLW and decreased in EWLC after the soil temperature switch. Long root longevity was not significantly affected but long root growth ceased earliest in ECLW. Soil warming increased foliar nutrient contents. Growth dynamics were not solely driven by soil temperature, but resource competition also played a significant role. The study showed the importance of soil temperature for fine root dynamics not only through root growth but also via root mortality, as soil warming increased mortality even more than growth. Soil temperature has complex effects on tree and soil functioning, which further affects carbon dynamics in forest ecosystems that have a climate feedback.
Collapse
Affiliation(s)
- Jouni Kilpeläinen
- Natural Resources Institute Finland (Luke), Yliopistokatu 6 B, 80100 Joensuu, Finland
| | - Timo Domisch
- Natural Resources Institute Finland (Luke), Yliopistokatu 6 B, 80100 Joensuu, Finland
| | - Tarja Lehto
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, 80100 Joensuu, Finland
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Sirpa Piirainen
- Natural Resources Institute Finland (Luke), Yliopistokatu 6 B, 80100 Joensuu, Finland
| | | | - Tapani Repo
- Natural Resources Institute Finland (Luke), Yliopistokatu 6 B, 80100 Joensuu, Finland
| |
Collapse
|
13
|
Möhl P, von Büren RS, Hiltbrunner E. Growth of alpine grassland will start and stop earlier under climate warming. Nat Commun 2022; 13:7398. [PMID: 36456572 PMCID: PMC9715633 DOI: 10.1038/s41467-022-35194-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Alpine plants have evolved a tight seasonal cycle of growth and senescence to cope with a short growing season. The potential growing season length (GSL) is increasing because of climate warming, possibly prolonging plant growth above- and belowground. We tested whether growth dynamics in typical alpine grassland are altered when the natural GSL (2-3 months) is experimentally advanced and thus, prolonged by 2-4 months. Additional summer months did not extend the growing period, as canopy browning started 34-41 days after the start of the season, even when GSL was more than doubled. Less than 10% of roots were produced during the added months, suggesting that root growth was as conservative as leaf growth. Few species showed a weak second greening under prolonged GSL, but not the dominant sedge. A longer growing season under future climate may therefore not extend growth in this widespread alpine community, but will foster species that follow a less strict phenology.
Collapse
Affiliation(s)
- Patrick Möhl
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland.
| | - Raphael S von Büren
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Erika Hiltbrunner
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| |
Collapse
|
14
|
Macabuhay A, Arsova B, Watt M, Nagel KA, Lenz H, Putz A, Adels S, Müller-Linow M, Kelm J, Johnson AAT, Walker R, Schaaf G, Roessner U. Plant Growth Promotion and Heat Stress Amelioration in Arabidopsis Inoculated with Paraburkholderia phytofirmans PsJN Rhizobacteria Quantified with the GrowScreen-Agar II Phenotyping Platform. PLANTS (BASEL, SWITZERLAND) 2022; 11:2927. [PMID: 36365381 PMCID: PMC9655538 DOI: 10.3390/plants11212927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
High temperatures inhibit plant growth. A proposed strategy for improving plant productivity under elevated temperatures is the use of plant growth-promoting rhizobacteria (PGPR). While the effects of PGPR on plant shoots have been extensively explored, roots-particularly their spatial and temporal dynamics-have been hard to study, due to their below-ground nature. Here, we characterized the time- and tissue-specific morphological changes in bacterized plants using a novel non-invasive high-resolution plant phenotyping and imaging platform-GrowScreen-Agar II. The platform uses custom-made agar plates, which allow air exchange to occur with the agar medium and enable the shoot to grow outside the compartment. The platform provides light protection to the roots, the exposure of it to the shoots, and the non-invasive phenotyping of both organs. Arabidopsis thaliana, co-cultivated with Paraburkholderia phytofirmans PsJN at elevated and ambient temperatures, showed increased lengths, growth rates, and numbers of roots. However, the magnitude and direction of the growth promotion varied depending on root type, timing, and temperature. The root length and distribution per depth and according to time was also influenced by bacterization and the temperature. The shoot biomass increased at the later stages under ambient temperature in the bacterized plants. The study offers insights into the timing of the tissue-specific, PsJN-induced morphological changes and should facilitate future molecular and biochemical studies on plant-microbe-environment interactions.
Collapse
Affiliation(s)
- Allene Macabuhay
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, 53115 Bonn, Germany
| | - Borjana Arsova
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Michelle Watt
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kerstin A. Nagel
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Henning Lenz
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Alexander Putz
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Sascha Adels
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Mark Müller-Linow
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Jana Kelm
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | | | - Robert Walker
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, 53115 Bonn, Germany
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
15
|
Hiiragi K, Matsuo N, Sakai S, Kawahara K, Ichie T, Kenzo T, Aurelia DC, Kume T, Nakagawa M. Water uptake patterns of tropical canopy trees in Borneo: species-specific and temporal variation and relationships with aboveground traits. TREE PHYSIOLOGY 2022; 42:1928-1942. [PMID: 35656927 DOI: 10.1093/treephys/tpac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Root water uptake depth and its temporal variation are important determinants of tree mortality, resource partitioning and drought resistance; however, their effects on tropical trees remain poorly understood. In this study, we investigated interspecific differences in water uptake depth and its temporal variation using stable isotope analysis and examined the relationships between water uptake depth and aboveground traits in a humid aseasonal tropical rainforest in Borneo. Species-specific differences in water uptake depth were examined for six dominant dipterocarp species. Temporal variation in water uptake depth for various canopy trees was assessed in three periods with different soil moisture conditions. We then examined the relationships between water uptake depth and aboveground traits including wood density, maximum tree height, flowering frequency and growth rate. Dipterocarpus globosus appeared to be more reliant on deep water resources than the other dipterocarp species. Water uptake from the soil layers varied among the three sampling periods. Trees generally utilized deeper soil water during the second driest sampling period, when temperatures were lowest. During the driest and wettest sampling periods, species with higher flowering frequencies tended to preferentially uptake deep soil water. These results suggest that low temperature and soil moisture promote increased deep soil water uptake in the study region. Dynamic relationships between water uptake patterns and aboveground tree traits may be related to resource partitioning among co-existing species.
Collapse
Affiliation(s)
- Katsuura Hiiragi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Naoko Matsuo
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Shoko Sakai
- Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan
| | - Kazuma Kawahara
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Tomoaki Ichie
- Faculty of Agriculture and Marine Science, Kochi University, 783-8502, Japan
| | - Tanaka Kenzo
- Japan International Research Center for Agricultural Sciences, Tsukuba 305-8686, Japan
| | - Dulce Chung Aurelia
- Research, Development and Innovation Division, Forest Department Sarawak, 93250 Kuching, Sarawak, Malaysia
| | - Tomonori Kume
- Kasuya Research Forest, Kyusyu University, Sasaguri, Kasuya, Fukuoka 811-2415, Japan
| | - Michiko Nakagawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
16
|
Temporal dynamics of fine root production, mortality and turnover deviate across branch orders in a larch stand. Oecologia 2022; 199:699-709. [PMID: 35776205 DOI: 10.1007/s00442-022-05206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/03/2022] [Indexed: 10/17/2022]
Abstract
Fine roots play a key role in carbon, nutrient, and water biogeochemical cycles in forest ecosystems. However, inter-annual dynamics of fine root production, mortality, and turnover on the basis of long-term measurement have been less studied. Here, field scanning rhizotrons were employed for tracking fine root by branch order over a 6 years period in a larch plantation. For total fine roots, from the first- to the fifth-order roots, annual root length production, length mortality, standing crops, and turnover rate varied up to 3.4, 2.3, 1.5, and 2.3-folds during the study period, respectively. The inter-annual variability of those roots indices in the first-order and the second-order roots were greater than that of the higher order (third- to fifth-order) roots. The turnover rate was markedly larger for the first-order roots than for the higher order roots, showing the greatest variability up to 20 times. Seasonal dynamics of root length production followed a general concentrated pattern with peak typically occurring in June or July, whereas root length mortality followed a general bimodal mortality pattern with the dominant peak in May and the secondary peak in August or October. Furthermore, the seasonal patterns of root length production and mortality were similar across years, especially for the first-order and the second-order roots. These results from long-term observation were beneficial for reducing uncertainty of characterizing fine root demography in consideration of large variation among years. Our findings highlight it is important for better understanding of fine root dynamics and determining root demography through distinguishing observation years and root branch orders.
Collapse
|
17
|
Schwieger S, Kreyling J, Peters B, Gillert A, Freiherr von Lukas U, Jurasinski G, Köhn D, Blume‐Werry G. Rewetting prolongs root growing season in minerotrophic peatlands and mitigates negative drought effects. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sarah Schwieger
- Experimental Plant Ecology Institute of Botany and Landscape Ecology, Greifswald University Greifswald Germany
- Department of Ecology and Environmental Sciences Umeå University Umeå Sweden
| | - Juergen Kreyling
- Experimental Plant Ecology Institute of Botany and Landscape Ecology, Greifswald University Greifswald Germany
| | - Bo Peters
- Experimental Plant Ecology Institute of Botany and Landscape Ecology, Greifswald University Greifswald Germany
| | - Alexander Gillert
- Fraunhofer Institute for Computer Graphics Research IGD Rostock Germany
| | | | - Gerald Jurasinski
- Faculty of Agriculture and Environmental Sciences University of Rostock Rostock Germany
| | - Daniel Köhn
- Faculty of Agriculture and Environmental Sciences University of Rostock Rostock Germany
| | - Gesche Blume‐Werry
- Experimental Plant Ecology Institute of Botany and Landscape Ecology, Greifswald University Greifswald Germany
- Department of Ecology and Environmental Sciences Umeå University Umeå Sweden
| |
Collapse
|
18
|
Amato MT, Giménez D. Quantifying root turnover in grasslands from biomass dynamics: Application of the growth-maintenance respiration paradigm and re-analysis of historical data. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.109940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Nakahata R. Time-varying response of fine root growth to soil temperature and soil moisture in cypress and deciduous oak forests. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2022; 3:60-73. [PMID: 37284007 PMCID: PMC10168066 DOI: 10.1002/pei3.10072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 06/08/2023]
Abstract
Fine root phenology is controlled by complex mechanisms associated with aboveground phenological events and environmental conditions, and therefore, elucidating fine root responses to changing environments remains difficult without considering the dynamics within and among years. This study evaluated the response of fine root growth at variable time scales to the surrounding environments of soil temperature and moisture at ecosystem scales. Optical scanners were used to measure fine root production over 4 years in two forests dominated by either cypress or deciduous oak trees. Correlations between fine root production and soil temperature and moisture were analyzed using the state-space model. Fine root phenology varied among years in the cypress stand and showed stable growth patterns in the oak stand as production peaked in spring every year. Soil temperature had a dominant influence on fine root production, while soil moisture enhanced fine root growth especially in the oak stand. Fine root responses to both soil temperature and moisture peaked during the early growing season, indicating its own temperature hysteresis that means different responses under same temperature within a year. The time-varying response of fine root growth to external factors is a key perspective to explain fine root growth mechanisms, and whether evergreen or deciduous habits differentiates the fine root phenology due to a linkage between above- and belowground resource dynamics.
Collapse
Affiliation(s)
- Ryo Nakahata
- Center for Ecological ResearchKyoto UniversityKyotoJapan
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| |
Collapse
|
20
|
Ma T, Parker T, Unger S, Gewirtzman J, Fetcher N, Moody ML, Tang J. Responses of root phenology in ecotypes of Eriophorum vaginatum to transplantation and warming in the Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:149926. [PMID: 34543789 DOI: 10.1016/j.scitotenv.2021.149926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/15/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
The effect of climate change on phenology and growth is less understood for belowground plant tissues than for aboveground plant tissues, particularly in high-latitude regions. Ecotypes within a species adapted to a locality may display different responses to climate change. We established two common garden plots in the Arctic tundra north of the Brooks Range in northern Alaska. Three ecotypes of Eriophorum vaginatum along a latitudinal gradient were transplanted into common gardens, and half of the transplants were warmed using open-top chambers (OTCs). Minirhizotrons were used to track the root phenology during the growing seasons of 2016 and 2017. Warming with OTCs (approximately +1 °C in air) did not affect the root biomass, root production or root phenology. The southern ecotype (from 67°16'N) of Eriophorum vaginatum transplanted northward experienced delayed startup and root production compared to two northern ecotypes (from 68°38'N and 69°25'N), although significant differences were not observed in the three ecotypes in terms of root production, root biomass and growth duration at the two sites. Our results suggest that as the climate warms, ecotypes of Eriophorum vaginatum may be able to adjust their duration of root growth and root productivity by phenotypic plasticity, although the degree of plasticity controlling the root startup time may vary between southern and northern ecotypes.
Collapse
Affiliation(s)
- Ting Ma
- The Ecosystems Center, Marine Biological Laboratory, 7 MBL St., Woods Hole, MA 02543, USA; Lanzhou University, Lanzhou, China.
| | - Thomas Parker
- The Ecosystems Center, Marine Biological Laboratory, 7 MBL St., Woods Hole, MA 02543, USA; Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Steven Unger
- The Ecosystems Center, Marine Biological Laboratory, 7 MBL St., Woods Hole, MA 02543, USA
| | | | - Ned Fetcher
- Institute for Environmental Science and Sustainability, Wilkes University, Wilkes-Barre, PA, USA
| | - Michael L Moody
- Biological Sciences, University of Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA
| | - Jianwu Tang
- The Ecosystems Center, Marine Biological Laboratory, 7 MBL St., Woods Hole, MA 02543, USA.
| |
Collapse
|
21
|
Gavelienė V, Jurkonienė S, Jankovska-Bortkevič E, Švegždienė D. Effects of Elevated Temperature on Root System Development of Two Lupine Species. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020192. [PMID: 35050080 PMCID: PMC8777784 DOI: 10.3390/plants11020192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 05/31/2023]
Abstract
The aim of this study was to assess the effect of elevated temperature on the growth, morphology and spatial orientation of lupine roots at the initial stages of development and on the formation of lupine root architecture at later stages. Two lupine species were studied-the invasive Lupinus polyphyllus Lindl. and the non-invasive L. luteus L. The plants were grown in climate chambers under 25 °C and simulated warming at 30 °C conditions. The angle of root curvature towards the vector of gravity was measured at the 48th hour of growth, and during a 4-h period after 90° reorientation. Root biometrical, histological measurements were carried out on 7-day-old and 30-day-old plants. The elevation of 5 °C affected root formation of the two lupine species differently. The initial roots of L. polyphyllus were characterized by worse spatial orientation, reduced growth and reduced mitotic index of root apical meristem at 30 °C compared with 25 °C. The length of primary roots of 30-day-old lupines and the number of lateral roots decreased by 14% and 16%, respectively. More intense root development and formation were observed in non-invasive L. luteus at 30 °C. Our results provide important information on the effect of elevated temperature on the formation of root architecture in two lupine species and suggest that global warming may impact the invasiveness of these species.
Collapse
|
22
|
Nakahata R, Naramoto M, Sato M, Mizunaga H. Multifunctions of fine root phenology in vegetative and reproductive growth in mature beech forest ecosystems. Ecosphere 2021. [DOI: 10.1002/ecs2.3788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ryo Nakahata
- Center for Ecological Research Kyoto University Kyoto Japan
- Graduate School of Agriculture Kyoto University Kyoto Japan
| | | | - Masako Sato
- Graduate School of Agriculture Shizuoka University Shizuoka Japan
| | | |
Collapse
|
23
|
O'Brien AM, Ginnan NA, Rebolleda-Gómez M, Wagner MR. Microbial effects on plant phenology and fitness. AMERICAN JOURNAL OF BOTANY 2021; 108:1824-1837. [PMID: 34655479 DOI: 10.1002/ajb2.1743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Plant development and the timing of developmental events (phenology) are tightly coupled with plant fitness. A variety of internal and external factors determine the timing and fitness consequences of these life-history transitions. Microbes interact with plants throughout their life history and impact host phenology. This review summarizes current mechanistic and theoretical knowledge surrounding microbe-driven changes in plant phenology. Overall, there are examples of microbes impacting every phenological transition. While most studies have focused on flowering time, microbial effects remain important for host survival and fitness across all phenological phases. Microbe-mediated changes in nutrient acquisition and phytohormone signaling can release plants from stressful conditions and alter plant stress responses inducing shifts in developmental events. The frequency and direction of phenological effects appear to be partly determined by the lifestyle and the underlying nature of a plant-microbe interaction (i.e., mutualistic or pathogenic), in addition to the taxonomic group of the microbe (fungi vs. bacteria). Finally, we highlight biases, gaps in knowledge, and future directions. This biotic source of plasticity for plant adaptation will serve an important role in sustaining plant biodiversity and managing agriculture under the pressures of climate change.
Collapse
Affiliation(s)
- Anna M O'Brien
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Nichole A Ginnan
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - María Rebolleda-Gómez
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, CA, USA
| | - Maggie R Wagner
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
24
|
Lubbe FC, Klimešová J, Henry HAL. Winter belowground: Changing winters and the perennating organs of herbaceous plants. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Jitka Klimešová
- Institute of Botany of the Czech Academy of Sciences Třeboň Czech Republic
- Department of Botany Faculty of Science Charles University Praha 2 Czech Republic
| | - Hugh A. L. Henry
- Department of Biology University of Western Ontario London ON Canada
| |
Collapse
|
25
|
Savage JA, Chuine I. Coordination of spring vascular and organ phenology in deciduous angiosperms growing in seasonally cold climates. THE NEW PHYTOLOGIST 2021; 230:1700-1715. [PMID: 33608961 DOI: 10.1111/nph.17289] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/17/2020] [Indexed: 05/29/2023]
Abstract
In seasonally cold climates, many woody plants tolerate chilling and freezing temperatures by ceasing growth, shedding leaves and entering dormancy. At the same time, transport within these plants often decreases as the vascular system exhibits reduced functionality. As spring growth requires water and nutrients, we ask the question: how much does bud, leaf and flower development depend on the vasculature in spring? In this review, we present what is known about leaf, flower and vascular phenology to sort out this question. In early stages of bud development, buds rely on internal resources and do not appear to require vascular support. The situation changes during organ expansion, after leaves and flowers reconnect to the stem vascular system. However, there are major gaps in our understanding of the timing of vascular development, especially regarding the phloem, as well as the synchronization among leaves, flowers, stem and root vasculature. We believe these gaps are mainly the outcome of research completed in silo and urge future work to take a more integrative approach. We highlight current challenges and propose future directions to make rapid progress on this important topic in upcoming years.
Collapse
Affiliation(s)
- Jessica A Savage
- Department of Biology, University of Minnesota, Duluth, MN, 55811, USA
| | - Isabelle Chuine
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, FR-34293, Cedex 5, France
| |
Collapse
|
26
|
Liu C, Xiang W, Xie B, Ouyang S, Zeng Y, Lei P, Peng C. Decoupling the Complementarity Effect and the Selection Effect on the Overyielding of Fine Root Production Along a Tree Species Richness Gradient in Subtropical Forests. Ecosystems 2021. [DOI: 10.1007/s10021-020-00538-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Zhu M, De Boeck HJ, Xu H, Chen Z, Lv J, Zhang Z. Seasonal variations in the response of soil respiration to rainfall events in a riparian poplar plantation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141222. [PMID: 32795795 DOI: 10.1016/j.scitotenv.2020.141222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Rainfall events have profound influence on the soil carbon release in different forest ecosystems. However, seasonal variations in soil respiration (RS) response to rainfall events and associated regulatory processes are not well documented in riparian forest ecosystems to date. We continuously measured soil respiration in a riparian plantation ecosystem from 2015 to 2018 to explore the relationships between soil respiration and rainfall events. Across the 4 years, 83 individual rainfall events were identified for spring, summer and autumn. We found that mean RS rate after rain (post-RS) was significantly higher than that before rain (pre-RS) (p < 0.05) in spring, and the relative change in soil respiration (RSrc) increased against rainfall size due to the stimulation by the significant increases in soil moisture content (ΔSM). In contrast, mean post-RS was lower than pre-RS and RSrc was significantly decreased with the increasing rainfall size (p < 0.01) in summer and autumn. Reduced changes in soil temperature (ΔTS) and increased soil moisture content after rain (post-SM) contributed to the decreased RS due to frequently occurring heavy rain events in summer. Increased ΔSM following rainfall events coupled with groundwater level increase suppressed RSrc in autumn, even though increased ΔTS could offset the negative effects of SM on RS to some extent. In addition, we found that higher post-SM after large rainfall events (>10 mm day-1) changed the response of RS to soil temperature (TS) by reducing the temperature sensitivity (Q10) even in this riparian plantation ecosystem. Our study highlights the importance of integrating seasonal difference in soil respiration response to rainfall events and the impact of large rainfall events on soil C release for estimating forest soil carbon cycling at multiple scales.
Collapse
Affiliation(s)
- Mengxun Zhu
- Key Laboratory of Soil and Water Conservation and Desertification Combating, State Forestry and Grassland Administration, PR China; College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, PR China.
| | - Hans J De Boeck
- Research group PLECO (Plants and Ecosystems), Universiteit Antwerpen, 2610 Wilrijk, Belgium.
| | - Hang Xu
- Key Laboratory of Soil and Water Conservation and Desertification Combating, State Forestry and Grassland Administration, PR China; College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, PR China.
| | - Zuosinan Chen
- Key Laboratory of Soil and Water Conservation and Desertification Combating, State Forestry and Grassland Administration, PR China; College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, PR China.
| | - Jiang Lv
- Gongqing Forest Farm, Beijing Municipal Forestry and Landscape Administration, Beijing 101300, PR China.
| | - Zhiqiang Zhang
- Key Laboratory of Soil and Water Conservation and Desertification Combating, State Forestry and Grassland Administration, PR China; College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
28
|
Rudgers JA, Afkhami ME, Bell-Dereske L, Chung YA, Crawford KM, Kivlin SN, Mann MA, Nuñez MA. Climate Disruption of Plant-Microbe Interactions. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-090819] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interactions between plants and microbes have important influences on evolutionary processes, population dynamics, community structure, and ecosystem function. We review the literature to document how climate change may disrupt these ecological interactions and develop a conceptual framework to integrate the pathways of plant-microbe responses to climate over different scales in space and time. We then create a blueprint to aid generalization that categorizes climate effects into changes in the context dependency of plant-microbe pairs, temporal mismatches and altered feedbacks over time, or spatial mismatches that accompany species range shifts. We pair a new graphical model of how plant-microbe interactions influence resistance to climate change with a statistical approach to predictthe consequences of increasing variability in climate. Finally, we suggest pathways through which plant-microbe interactions can affect resilience during recovery from climate disruption. Throughout, we take a forward-looking perspective, highlighting knowledge gaps and directions for future research.
Collapse
Affiliation(s)
- Jennifer A. Rudgers
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA;,
| | - Michelle E. Afkhami
- Department of Biology, University of Miami, Coral Gables, Florida 33157, USA
| | - Lukas Bell-Dereske
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060, USA
| | - Y. Anny Chung
- Departments of Plant Biology and Plant Pathology, University of Georgia, Athens, Georgia 30602, USA
| | - Kerri M. Crawford
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Stephanie N. Kivlin
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Michael A. Mann
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA;,
| | - Martin A. Nuñez
- Grupo de Ecología de Invasiones, Instituto de Investigaciones en Biodiversidad y Medioambiente, CONICET/Universidad Nacional del Comahue, Bariloche 8400, Argentina
| |
Collapse
|
29
|
Niinemets Ü, Ostonen I. Plant organ senescence above- and belowground in trees: how to best salvage resources for new growth? TREE PHYSIOLOGY 2020; 40:981-986. [PMID: 32353147 DOI: 10.1093/treephys/tpaa060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/21/2020] [Indexed: 05/26/2023]
Affiliation(s)
- Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| | - Ivika Ostonen
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| |
Collapse
|
30
|
Guérin M, von Arx G, Martin-Benito D, Andreu-Hayles L, Griffin KL, McDowell NG, Pockman W, Gentine P. Distinct xylem responses to acute vs prolonged drought in pine trees. TREE PHYSIOLOGY 2020; 40:605-620. [PMID: 31976523 DOI: 10.1093/treephys/tpz144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 09/17/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Increasing dryness challenges trees' ability to maintain water transport to the leaves. Most plant hydraulics models use a static xylem response to water stress. Yet, in reality, lower soil moisture and warmer temperatures during growing seasons feed back onto xylem development. In turn, adjustments to water stress in the newly built xylem influence future physiological responses to droughts. In this study, we investigate the annual variation of anatomical traits in branch xylem in response to different soil and atmospheric moisture conditions and tree stress levels, as indicated by seasonal predawn leaf water potential (ΨL,pd). We used a 6-year field experiment in southwestern USA with three soil water treatments applied to Pinus edulis Engelm trees-ambient, drought (45% rain reduction) and irrigation (15-35% annual water addition). All trees were also subject to a natural 1-year acute drought (soil and atmospheric) that occurred during the experiment. The irrigated trees showed only moderate changes in anatomy-derived hydraulic traits compared with the ambient trees, suggesting a generally stable, well-balanced xylem structure under unstressed conditions. The artificial prolonged soil drought increased hydraulic efficiency but lowered xylem construction costs and decreased tracheid implosion safety ((t/b)2), suggesting that annual adjustments of xylem structure follow a safety-efficiency trade-off. The acute drought plunged hydraulic efficiency across all treatments. The combination of acute and prolonged drought resulted in vulnerable and inefficient new xylem, disrupting the stability of the anatomical trade-off observed in the rest of the years. The xylem hydraulic traits showed no consistent direct link to ΨL,pd. In the future, changes in seasonality of soil and atmospheric moisture are likely to have a critical impact on the ability of P. edulis to acclimate its xylem to warmer climate. Furthermore, the increasing frequency of acute droughts might reduce hydraulic resilience of P. edulis by repeatedly creating vulnerable and less efficient anatomical structure.
Collapse
Affiliation(s)
- Marceau Guérin
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | - Georg von Arx
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111 CH-8903 Birmensdorf, Switzerland
| | - Dario Martin-Benito
- INIA, CIFOR, Ctra La Coruña km 7.5, 28040 Madrid, Spain
- Forest Ecology, Department of Environmental Sciences, Swiss Federal Institute of Technology, ETH Zurich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Laia Andreu-Hayles
- Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9 W, Palisades, NY 10964, USA
| | - Kevin L Griffin
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA
| | - Nate G McDowell
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, USA
| | - William Pockman
- Biology Department, MSC03 202, University of New Mexico, Albuquerque, NM 87131, USA
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
- Earth Institute, Columbia University, Hogan Hall, 2910 Broadway, New York, NY 10027, USA
| |
Collapse
|
31
|
Luo H, Xu H, Chu C, He F, Fang S. High Temperature can Change Root System Architecture and Intensify Root Interactions of Plant Seedlings. FRONTIERS IN PLANT SCIENCE 2020; 11:160. [PMID: 32161613 PMCID: PMC7054236 DOI: 10.3389/fpls.2020.00160] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/03/2020] [Indexed: 05/24/2023]
Abstract
Climate change could alter plant aboveground and belowground resource allocation. Compared with shoots, we know much less about how roots, especially root system architecture (RSA) and their interactions, may respond to temperature changes. Such responses could have great influence on species'acquisition of resources and their competition with neighbors. We used a gel-based transparent growth system to in situ observe the responses of RSA and root interactions of three common subtropical plant species seedlings in Asia differing in growth forms (herb, shrub, and tree) under a wide growth temperature range of 18-34°C, including low and supra-optimal temperatures. Results showed that the RSA, especially root depth and root width, of the three species varied significantly in response to increased temperature although the response of their aboveground shoot traits was very similar. Increased temperature was also observed to have little impact on shoot/root resource allocation pattern. The variations in RSA responses among species could lead to both the intensity and direction change of root interactions. Under high temperature, negative root interactions could be intensified and species with larger root size and fast early root expansion had competitive advantages. In summary, our findings indicate that greater root resilience play a key role in plant adapting to high temperature. The varied intensity and direction of root interactions suggest changed temperatures could alter plant competition. Seedlings with larger root size and fast early root expansion may better adapt to warmer climates.
Collapse
Affiliation(s)
- Hongxia Luo
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Han Xu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Chengjin Chu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fangliang He
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Suqin Fang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Makoto K, Wilson SD, Sato T, Blume‐Werry G, Cornelissen JHC. Synchronous and asynchronous root and shoot phenology in temperate woody seedlings. OIKOS 2020. [DOI: 10.1111/oik.06996] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Kobayashi Makoto
- Teshio Experimental Forest, Hokkaido Univ. Horonobe 098‐2943 Hokkaido Japan
| | | | - Takao Sato
- Forestry Research Inst., HRO Bibai Hokkaido Japan
| | - Gesche Blume‐Werry
- Inst. of Botany and Landscape Ecology, Greifswald Univ. Greifswald Germany
| | | |
Collapse
|
33
|
Dynamics and Vertical Distribution of Roots in European Beech Forests and Douglas Fir Plantations in Bulgaria. FORESTS 2019. [DOI: 10.3390/f10121123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Identifying patterns in roots spatial distribution and dynamics, and quantifying the root stocks, annual production and turnover rates at species level is essential for understanding plant ecological responses to local environmental factors and climate change. We studied selected root traits in four different stands, two European beech (Fagus sylvatica L.) forests and two Douglas fir (Pseudotsuga menziezii Mirb. Franco) plantations. Root system vertical distribution and dynamics were studied using sequential coring method and characterised into three root diameter size classes (0–2, 2–5 and 5–10 mm) sampled at three different soil depths (0–15, 15–30, 30–45 cm). Root annual production and turnover rates were analysed and quantified using Decision Matrix and Maximum-Minimum estimation approaches. The overall root mass (<10 mm diameter up to 0–45 cm soil depth) was higher in the beech forests than in the Douglas fir plantations. Some root traits, e.g., the overall root mass, the fine (0–2 mm) and small (2–5 mm) roots mass, differed significantly between the sampling plots rather than between the forest types. The root system revealed a tree species specific vertical distribution pattern. More than half of the fine and small roots biomass of the Douglas fir stands were allocated in the uppermost soil layer and decreased significantly with depths, while in the beech forests the biomass was more uniformly distributed and decreased gradually with increasing soil depth. Although both tree species belong to two different plant functional types and the stands were situated in two distantly located regions with different climatic and soil characteristics, we revealed similar trends in the root biomass and necromass dynamics, and close values for the annual production and turnover rates. The mean turnover rates for all studied stands obtained by sequential coring and Decision Matrix were 1.11 yr−1 and 0.76 yr−1 based on mean and maximum biomass data, respectively. They were similar to the averaged values suggested for Central and Northern European forests but higher compared to those reported from Southern Europe.
Collapse
|
34
|
Albert LP, Restrepo-Coupe N, Smith MN, Wu J, Chavana-Bryant C, Prohaska N, Taylor TC, Martins GA, Ciais P, Mao J, Arain MA, Li W, Shi X, Ricciuto DM, Huxman TE, McMahon SM, Saleska SR. Cryptic phenology in plants: Case studies, implications, and recommendations. GLOBAL CHANGE BIOLOGY 2019; 25:3591-3608. [PMID: 31343099 DOI: 10.1111/gcb.14759] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 06/10/2023]
Abstract
Plant phenology-the timing of cyclic or recurrent biological events in plants-offers insight into the ecology, evolution, and seasonality of plant-mediated ecosystem processes. Traditionally studied phenologies are readily apparent, such as flowering events, germination timing, and season-initiating budbreak. However, a broad range of phenologies that are fundamental to the ecology and evolution of plants, and to global biogeochemical cycles and climate change predictions, have been neglected because they are "cryptic"-that is, hidden from view (e.g., root production) or difficult to distinguish and interpret based on common measurements at typical scales of examination (e.g., leaf turnover in evergreen forests). We illustrate how capturing cryptic phenology can advance scientific understanding with two case studies: wood phenology in a deciduous forest of the northeastern USA and leaf phenology in tropical evergreen forests of Amazonia. Drawing on these case studies and other literature, we argue that conceptualizing and characterizing cryptic plant phenology is needed for understanding and accurate prediction at many scales from organisms to ecosystems. We recommend avenues of empirical and modeling research to accelerate discovery of cryptic phenological patterns, to understand their causes and consequences, and to represent these processes in terrestrial biosphere models.
Collapse
Affiliation(s)
- Loren P Albert
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, USA
- Institute at Brown for Environment and Society, Brown University, Providence, RI, USA
| | - Natalia Restrepo-Coupe
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, USA
- School of Life Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Marielle N Smith
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, USA
| | - Jin Wu
- Biological, Environmental & Climate Sciences Department, Brookhaven National Laboratory, New York, NY, USA
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Cecilia Chavana-Bryant
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- Climate & Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, USA
| | - Neill Prohaska
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, USA
| | - Tyeen C Taylor
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, USA
| | - Giordane A Martins
- Ciências de Florestas Tropicais, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace, Gif sur Yvette, France
| | - Jiafu Mao
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - M Altaf Arain
- School of Geography and Earth Sciences & McMaster Centre for Climate Change, McMaster University, Hamilton, ON, Canada
| | - Wei Li
- Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace, Gif sur Yvette, France
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Tsinghua University, Beijing, China
| | - Xiaoying Shi
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Daniel M Ricciuto
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Travis E Huxman
- Ecology and Evolutionary Biology & Center for Environmental Biology, University of California, Irvine, CA, USA
| | - Sean M McMahon
- Smithsonian Institution's Forest Global Earth Observatory & Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Scott R Saleska
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
35
|
The Dynamics of Living and Dead Fine Roots of Forest Biomes Across the Northern Hemisphere. FORESTS 2019. [DOI: 10.3390/f10110953] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Research Highlights: A detailed picture of the seasonality in fine root biomass (FRB), necromass (FRN), and the biomass/necromass ratio (FRBN) throughout the whole year is crucial to uncover profound effects of long-term environmental changes on fine root dynamics. Materials and Methods: We used meta-analysis to characterize the variability of FRB, FRN and FRBN, and determined their relations with climatic (monthly versus annual), edaphic and geomorphic factors for tropical, temperate and boreal forest biomes across the Northern Hemisphere. Results: Boreal forests exhibited the highest FRB and FRN, while tropical forests yielded the lowest FRN, and thus the greatest FRBN. FRB and FRN significantly decreased with sampling depth, but increased with soil organic carbon content and elevation, while an opposite pattern was found for FRBN. Temperature and precipitation at different time scales (monthly versus annual) and latitude had varying influences on fine roots. High FRB and FRN were observed during dry season for tropical forests, but in the late growing season for temperate forests. The three forest biomes exhibited the high root activity (measured as FRBN) in June or July. Conclusions: It is crucial to realize the universal and specific responses of fine roots to multiple environmental factors when attempting to incorporate these parameters into fine root monthly dynamic models in forest ecosystems. The biome-specific fluctuation of fine roots contributes to identify the influence factors on fine root seasonal patterns throughout the whole year. Our analysis is expected to improve the understanding of the key role of fine roots at monthly level in modeling and predicting carbon budget of various forest biomes under future climate change.
Collapse
|
36
|
Matysek M, Leake J, Banwart S, Johnson I, Page S, Kaduk J, Smalley A, Cumming A, Zona D. Impact of fertiliser, water table, and warming on celery yield and CO 2 and CH 4 emissions from fenland agricultural peat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:179-190. [PMID: 30826678 DOI: 10.1016/j.scitotenv.2019.02.360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 02/23/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
Peatlands are globally important areas for carbon preservation; although covering only 3% of global land area, they store 30% of total soil carbon. Lowland peat soils can also be very productive for agriculture, but their cultivation requires drainage as most crops are intolerant of root-zone anoxia. This leads to the creation of oxic conditions in which organic matter becomes vulnerable to mineralisation. Given the demand for high quality agricultural land, 40% of the UK's peatlands have been drained for agricultural use. In this study we present the outcomes of a controlled environment experiment conducted on agricultural fen peat to examine possible trade-offs between celery growth (an economically important crop on the agricultural peatlands of eastern England) and emissions of greenhouse gases (carbon dioxide (CO2) and methane (CH4)) at different temperatures (ambient and ambient +5 °C), water table levels (-30 cm, and -50 cm below the surface), and fertiliser use. Raising the water table from -50 cm to -30 cm depressed yields of celery, and at the same time decreased the entire ecosystem CO2 loss by 31%. A 5 °C temperature increase enhanced ecosystem emissions of CO2 by 25% and increased celery dry shoot weight by 23% while not affecting the shoot fresh weight. Fertiliser addition increased both celery yields and soil respiration by 22%. Methane emissions were generally very low and not significantly different from zero. Our results suggest that increasing the water table can lower emissions of greenhouse gases and reduce the rate of peat wastage, but reduces the productivity of celery. If possible, the water table should be raised to -30 cm before and after cultivation, and only decreased during the growing season, as this would reduce the overall greenhouse gas emissions and peat loss, potentially not affecting the production of vegetable crops.
Collapse
Affiliation(s)
- Magdalena Matysek
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom.
| | - Jonathan Leake
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Steven Banwart
- Global Food and Environment Institute and School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Irene Johnson
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Susan Page
- School of Geography, Geology and the Environment, University of Leicester, Leicester LE1 7RH, United Kingdom.
| | - Jorg Kaduk
- School of Geography, Geology and the Environment, University of Leicester, Leicester LE1 7RH, United Kingdom.
| | - Alan Smalley
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Alexander Cumming
- School of Geography, Geology and the Environment, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Donatella Zona
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom; Global Change Research Group, Dept. Biology, San Diego State University, San Diego, CA 92182, USA.
| |
Collapse
|
37
|
Roitto M, Sutinen S, Wang AF, Domisch T, Lehto T, Repo T. Waterlogging and soil freezing during dormancy affected root and shoot phenology and growth of Scots pine saplings. TREE PHYSIOLOGY 2019; 39:805-818. [PMID: 30753688 DOI: 10.1093/treephys/tpz003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/10/2018] [Accepted: 01/04/2019] [Indexed: 05/06/2023]
Abstract
Soil waterlogging is predicted to increase in the future climate in boreal regions due to increased precipitation. Snowmelt periods in winter may also become more common and further increase the amount of water in soil. It is not well known how waterlogging and soil freezing during winter affect the physiology, phenology and growth of trees. Our aim was to study the below- and aboveground responses of Scots pine (Pinus sylvestris L.) saplings to waterlogging (WL) in frozen (Fr) and unfrozen (NoFr) soils in a growth chamber experiment. The soil was either -2 °C or +2 °C and either waterlogged or not in a split-plot design for 6 weeks during dormancy, with similar air conditions in all treatments, which were Fr + WL, NoFr + WL, Fr + NoWL and NoFr + NoWL. Needles showed a shift towards a deeper dormancy in frozen than unfrozen soil in terms of chlorophyll fluorescence (Fv/Fm), water potential and apoplastic electrical resistance. In spring, initiation of shoot elongation started earlier if the soil was frozen during dormancy. In Fr + WL, initiation of root growth was delayed by 20 days compared with other treatments; after that, the root growth peaked at the same time as needle elongation. Needles remained smaller in Fr + WL than in the other treatments, indicating that roots formed a strong sink for carbon. Shoot and root biomass were not negatively affected by waterlogging if the soil remained unfrozen. In Fr + WL, survival and growth capacity of new terminal and whorl buds, the number of bud scales and the number of dwarf shoots were reduced. We conclude that soil freezing on sites prone to waterlogging should be considered in management of boreal forests, especially in the face of predicted climate change.
Collapse
Affiliation(s)
- Marja Roitto
- Natural Resources Institute Finland (Luke), Natural Resources, Joensuu, PO Box 68, Joensuu, Finland
| | - Sirkka Sutinen
- Natural Resources Institute Finland (Luke), Natural Resources, Joensuu, PO Box 68, Joensuu, Finland
| | - Ai-Fang Wang
- Natural Resources Institute Finland (Luke), Natural Resources, Joensuu, PO Box 68, Joensuu, Finland
| | - Timo Domisch
- Natural Resources Institute Finland (Luke), Natural Resources, Joensuu, PO Box 68, Joensuu, Finland
| | - Tarja Lehto
- School of Forest Sciences, University of Eastern Finland, PO Box 111, Joensuu, Finland
| | - Tapani Repo
- Natural Resources Institute Finland (Luke), Natural Resources, Joensuu, PO Box 68, Joensuu, Finland
| |
Collapse
|
38
|
Kou L, Li S, Wang H, Fu X, Dai X. Unaltered phenology but increased production of ectomycorrhizal roots of Pinus elliottii under 4 years of nitrogen addition. THE NEW PHYTOLOGIST 2019; 221:2228-2238. [PMID: 30320883 DOI: 10.1111/nph.15542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Timing (phenology) and amount (production) are two integral facets of root growth, and their shifts have profound influences on below-ground resource acquisition. However, the environmental control and the effects of nitrogen (N) deposition on the production and phenology of ectomycorrhizal (ECM) roots remain unclear. Using a 4 yr minirhizotron experiment, we explored the control of the production and three phenophases (initiation, peak, and cessation of growth) of ECM roots in two soil layers and investigated their dynamic responses to N addition in a seasonally dry subtropical Pinus elliottii forest. We found a stronger control of water availability on the production and a stronger control of temperature on the phenology of ECM roots under ambient conditions. Temperature was correlated positively with initiation and negatively with cessation, especially in the shallow layer. N addition did not affect the phenology of ECM roots but increased their production by modifying N and phosphorus (P) stoichiometry in the soil and foliage. Our findings suggest a greater sensitivity of production than phenology of ECM roots to N addition. The increased production of ECM roots under N addition could be driven by N-induced P limitation or some combination of below-ground resources (P, N, water).
Collapse
Affiliation(s)
- Liang Kou
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shenggong Li
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huimin Wang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- Jiangxi Provincial Key Laboratory of Ecosystem Processes and Information, Taihe, 343725, China
| | - Xiaoli Fu
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqin Dai
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
39
|
Mrak T, Štraus I, Grebenc T, Gričar J, Hoshika Y, Carriero G, Paoletti E, Kraigher H. Different belowground responses to elevated ozone and soil water deficit in three European oak species (Quercus ilex, Q. pubescens and Q. robur). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1310-1320. [PMID: 30360263 DOI: 10.1016/j.scitotenv.2018.09.246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Effects on roots due to ozone and/or soil water deficit often occur through diminished belowground allocation of carbon. Responses of root biomass, morphology, anatomy and ectomycorrhizal communities were investigated in seedlings of three oak species: Quercus ilex L., Q. pubescens Willd. and Q. robur L., exposed to combined effects of elevated ozone (ambient air and 1.4 × ambient air) and water deficit (100% and 10% irrigation relative to field capacity) for one growing season at a free-air ozone exposure facility. Effects on root biomass were observed as general reduction in coarse root biomass by -26.8% and in fine root biomass by -13.1% due to water deficit. Effect on coarse root biomass was the most prominent in Q. robur (-36.3%). Root morphological changes manifested as changes in proportions of fine root (<2 mm) diameter classes due to ozone and water deficit in Q. pubescens and due to water deficit in Q. robur. In addition, reduced fine root diameter (-8.49%) in Q. robur was observed under water deficit. Changes in root anatomy were observed as increased vessel density (+18.5%) due to ozone in all three species, as reduced vessel tangential diameter (-46.7%) in Q. ilex due to interaction of ozone and water, and as generally increased bark to secondary xylem ratio (+47.0%) due to interaction of ozone and water. Water deficit influenced occurrence of distinct growth ring boundaries in roots of Q. ilex and Q. robur. It shifted the ectomycorrhizal community towards dominance of stress-resistant species, with reduced relative abundance of Tomentella sp. 2 and increased relative abundances of Sphaerosporella brunnea and Thelephora sp. Our results provide evidence that expression of stress effects varies between root traits; therefore the combined analysis of root traits is necessary to obtain a complete picture of belowground responses.
Collapse
Affiliation(s)
- Tanja Mrak
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia.
| | - Ines Štraus
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| | - Tine Grebenc
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| | - Jožica Gričar
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| | - Yasutomo Hoshika
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| | - Giulia Carriero
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| | - Elena Paoletti
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| | - Hojka Kraigher
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
40
|
Wang Y, Kim JH, Mao Z, Ramel M, Pailler F, Perez J, Rey H, Tron S, Jourdan C, Stokes A. Tree root dynamics in montane and sub-alpine mixed forest patches. ANNALS OF BOTANY 2018; 122:861-872. [PMID: 29506133 PMCID: PMC6215049 DOI: 10.1093/aob/mcy021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND AIMS The structure of heterogeneous forests has consequences for their biophysical environment. Variations in the local climate significantly affect tree physiological processes. We hypothesize that forest structure also alters tree root elongation and longevity through temporal and spatial variations in soil temperature and water potential. METHODS We installed rhizotrons in paired vegetation communities of closed forest (tree islands) and open patches (canopy gaps), along a soil temperature gradient (elevations of 1400, 1700 and 2000 m) in a heterogeneous mixed forest. We measured the number of growing tree roots, elongation and mortality every month over 4 years. KEY RESULTS The results showed that the mean daily root elongation rate (RER) was not correlated with soil water potential but was significantly and positively correlated with soil temperature between 0 and 8 °C only. The RER peaked in spring, and a smaller peak was usually observed in the autumn. Root longevity was dependent on altitude and the season in which roots were initiated, and root diameter was a significant factor explaining much of the variability observed. The finest roots usually grew faster and had a higher risk of mortality in gaps than in closed forest. At 2000 m, the finest roots had a higher risk of mortality compared with the lower altitudes. CONCLUSIONS The RER was largely driven by soil temperature and was lower in cold soils. At the treeline, ephemeral fine roots were more numerous, probably in order to compensate for the shorter growing season. Differences in soil climate and root dynamics between gaps and closed forest were marked at 1400 and 1700 m, but not at 2000 m, where canopy cover was more sparse. Therefore, heterogeneous forest structure and situation play a significant role in determining root demography in temperate, montane forests, mostly through impacts on soil temperature.
Collapse
Affiliation(s)
- Y Wang
- University Montpellier, INRA, CNRS, IRD, CIRAD, AMAP, Montpellier, France
| | - J H Kim
- University Montpellier, INRA, CNRS, IRD, CIRAD, AMAP, Montpellier, France
- Max Planck Institute of Biogeochemistry, Jena, Germany
| | - Z Mao
- University Montpellier, INRA, CNRS, IRD, CIRAD, AMAP, Montpellier, France
| | - M Ramel
- University Montpellier, INRA, CNRS, IRD, CIRAD, AMAP, Montpellier, France
| | - F Pailler
- University Montpellier, INRA, CNRS, IRD, CIRAD, AMAP, Montpellier, France
| | - J Perez
- University Montpellier, INRA, CNRS, IRD, CIRAD, AMAP, Montpellier, France
| | - H Rey
- University Montpellier, INRA, CNRS, IRD, CIRAD, AMAP, Montpellier, France
| | - S Tron
- ÖGUT, Austrian Society for Environment and Technology, Vienna, Austria
| | - C Jourdan
- CIRAD, UMR Eco&Sols – Ecologie Fonctionnelle & Biogéochimie des Sols & Agroécosystèmes (Montpellier SupAgro-CIRAD-INRA-IRD), Montpellier, France
| | - A Stokes
- University Montpellier, INRA, CNRS, IRD, CIRAD, AMAP, Montpellier, France
| |
Collapse
|
41
|
D’Imperio L, Arndal MF, Nielsen CS, Elberling B, Schmidt IK. Fast Responses of Root Dynamics to Increased Snow Deposition and Summer Air Temperature in an Arctic Wetland. FRONTIERS IN PLANT SCIENCE 2018; 9:1258. [PMID: 30214452 PMCID: PMC6125414 DOI: 10.3389/fpls.2018.01258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
In wet tundra ecosystems, covering vast areas of the Arctic, the belowground plant biomass exceeds the aboveground, making root dynamics a crucial component of the nutrient cycling and the carbon (C) budget of the Arctic. In response to the projected climatic scenarios for the Arctic, namely increased temperature and changes in precipitation patterns, root dynamics may be altered leading to significant changes in the net ecosystem C budget. Here, we quantify the single and combined effects of 1 year of increased winter snow deposition by snow fences and summer warming by open-top chambers (OTCs) on root dynamics in a wetland at Disko Island (West Greenland). Based on ingrowth bags, snow accumulation decreased root productivity by 42% in the 0-15 cm soil depth compared to ambient conditions. Over the growing season 2014, minirhizotron observations showed that root growth continued until mid-September in all treatments, and it peaked between the end of July and mid-August. During the season, plots exposed to experimental warming showed a significant increase in root number during September (between 39 and 53%) and a 39% increase in root length by the beginning of September. In addition, a significant reduction of root diameter (14%) was observed in plots with increased snow accumulation. Along the soil profile (0-40 cm) summer warming by OTCs significantly increased the total root length (54%), root number (41%) and the root growth in the 20-30 cm soil depth (71%). These results indicate a fast response of this ecosystem to changes in air temperature and precipitation. Hence, on a short-term, summer warming may lead to increased root depth and belowground C allocation, whereas increased winter snow precipitation may reduce root production or favor specific plant species by means of reduced growing season length or increased nutrient cycling. Knowledge on belowground root dynamics is therefore critical to improve the estimation of the C balance of the Arctic.
Collapse
Affiliation(s)
- Ludovica D’Imperio
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Section for Forest, Nature and Biomass, Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Marie F. Arndal
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Section for Forest, Nature and Biomass, Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Cecilie S. Nielsen
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Bo Elberling
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Inger K. Schmidt
- Section for Forest, Nature and Biomass, Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
42
|
Fei Q, Li J, Luo Y, Ma K, Niu B, Mu C, Gao H, Li X. Plant molecular responses to the elevated ambient temperatures expected under global climate change. PLANT SIGNALING & BEHAVIOR 2018; 13:e1414123. [PMID: 29227189 PMCID: PMC5790401 DOI: 10.1080/15592324.2017.1414123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/04/2017] [Indexed: 05/29/2023]
Abstract
Environmental temperatures affect plant distribution, growth, and development. The Intergovernmental Panel on Climate Change (IPCC) predicts that global temperatures will rise by at least 1.5°C by the end of this century. Global temperature changes have already had a discernable impact on agriculture, phenology, and ecosystems. At the molecular level, extensive literature exists on the mechanism controlling plant responses to high temperature stress. However, few studies have focused on the molecular mechanisms behind plant responses to mild increases in ambient temperature. Previous research has found that moderately higher ambient temperatures can induce hypocotyl elongation and early flowering. Recent evidence demonstrates roles for the phytohormones auxin and ethylene in adaptive growth of plant roots to slightly higher ambient temperatures.
Collapse
Affiliation(s)
- Qionghui Fei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Jingjing Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yunhe Luo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Kun Ma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Bingtao Niu
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Changjun Mu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Huanhuan Gao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaofeng Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
43
|
Prevéy J, Vellend M, Rüger N, Hollister RD, Bjorkman AD, Myers-Smith IH, Elmendorf SC, Clark K, Cooper EJ, Elberling B, Fosaa AM, Henry GHR, Høye TT, Jónsdóttir IS, Klanderud K, Lévesque E, Mauritz M, Molau U, Natali SM, Oberbauer SF, Panchen ZA, Post E, Rumpf SB, Schmidt NM, Schuur EAG, Semenchuk PR, Troxler T, Welker JM, Rixen C. Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes. GLOBAL CHANGE BIOLOGY 2017; 23:2660-2671. [PMID: 28079308 DOI: 10.1111/gcb.13619] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/30/2016] [Accepted: 12/03/2016] [Indexed: 05/12/2023]
Abstract
Warmer temperatures are accelerating the phenology of organisms around the world. Temperature sensitivity of phenology might be greater in colder, higher latitude sites than in warmer regions, in part because small changes in temperature constitute greater relative changes in thermal balance at colder sites. To test this hypothesis, we examined up to 20 years of phenology data for 47 tundra plant species at 18 high-latitude sites along a climatic gradient. Across all species, the timing of leaf emergence and flowering was more sensitive to a given increase in summer temperature at colder than warmer high-latitude locations. A similar pattern was seen over time for the flowering phenology of a widespread species, Cassiope tetragona. These are among the first results highlighting differential phenological responses of plants across a climatic gradient and suggest the possibility of convergence in flowering times and therefore an increase in gene flow across latitudes as the climate warms.
Collapse
Affiliation(s)
- Janet Prevéy
- WSL Institute for Snow and Avalanche Research SLF, 7260 Davos, Switzerland
- USDA-Forest Service, Pacific Northwest Research Station, Olympia, WA 98512, USA
| | - Mark Vellend
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Nadja Rüger
- German Centre for Integrative Biodiversity Research (iDiv), 04103 Leipzig, Germany
- Smithsonian Tropical Research Institute, Balboa Ancón, Panama, Republic of Panama
| | - Robert D Hollister
- Biology Department, Grand Valley State University, Allendale, MI 49041, USA
| | - Anne D Bjorkman
- German Centre for Integrative Biodiversity Research (iDiv), 04103 Leipzig, Germany
- School of Geosciences, University of Edinburgh, Edinburgh, UK
| | | | | | - Karin Clark
- Environment and Natural Resources, Government of the Northwest Territories, NT X1A 3S8, Canada
| | - Elisabeth J Cooper
- Institute for Arctic and Marine Biology, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Bo Elberling
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, DK-1350 Copenhagen, Denmark
| | - Anna M Fosaa
- Faroese Museum of Natural History, Hoyvík 188, Faroe Islands
| | - Gregory H R Henry
- Department of Geography and Biodiversity Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Toke T Høye
- Arctic Research Center, Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - Ingibjörg S Jónsdóttir
- The University Centre in Svalbard, N-9171 Longyearbyen, Norway
- Faculty of Life and Environmental Sciences, University of Iceland, 101 Reykjavík, Iceland
| | - Kari Klanderud
- Department of Ecology and Natural Resources, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | - Esther Lévesque
- Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada
| | - Marguerite Mauritz
- Center for Ecosystem Science and Society Center, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Ulf Molau
- Department of Biology and Environmental Sciences, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | | | - Steven F Oberbauer
- Department of Biological Sciences, Florida International University, Miami, FL 33181, USA
| | - Zoe A Panchen
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Eric Post
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, CA 95616, USA
| | - Sabine B Rumpf
- Department of Botany and Biodiversity Research, University of Vienna, A-1030 Vienna, Austria
| | - Niels M Schmidt
- Arctic Research Center, Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - Edward A G Schuur
- Center for Ecosystem Science and Society Center, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Phillip R Semenchuk
- Institute for Arctic and Marine Biology, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | | | - Jeffrey M Welker
- Department of Biological Sciences, University of Alaska, Anchorage, AK 99508, USA
| | - Christian Rixen
- WSL Institute for Snow and Avalanche Research SLF, 7260 Davos, Switzerland
| |
Collapse
|
44
|
Blume‐Werry G, Jansson R, Milbau A. Root phenology unresponsive to earlier snowmelt despite advanced above‐ground phenology in two subarctic plant communities. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12853] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Gesche Blume‐Werry
- Climate Impacts Research Centre Department of Ecology and Environmental Science Umeå University 981 07 Abisko Sweden
| | - Roland Jansson
- Department of Ecology and Environmental Science Umeå University 901 87 Umeå Sweden
| | - Ann Milbau
- Climate Impacts Research Centre Department of Ecology and Environmental Science Umeå University 981 07 Abisko Sweden
- Department of Biodiversity and Natural Environment Research Institute for Nature and Forest INBO Kliniekstraat 25 1070 Brussels Belgium
| |
Collapse
|
45
|
Radville L, Bauerle TL, Comas LH, Marchetto KA, Lakso AN, Smart DR, Dunst RM, Eissenstat DM. Limited linkages of aboveground and belowground phenology: A study in grape. AMERICAN JOURNAL OF BOTANY 2016; 103:1897-1911. [PMID: 27879261 DOI: 10.3732/ajb.1600212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF THE STUDY Plant phenology influences resource utilization, carbon fluxes, and interspecific interactions. Although controls on aboveground phenology have been studied to some degree, controls on root phenology are exceptionally poorly understood. METHODS We used minirhizotrons to examine the timing of grape root production over 5 yr in Fredonia, New York, USA, in a humid continental climate; and over 3 yr in Oakville, California, USA, in a Mediterranean climate. We used data from previous experiments to examine the relationship of root phenology with aboveground phenology. We compared interannual variability in root and shoot growth and determined the influence of abiotic factors on the timing of root initiation, peak root standing crop, peak root growth rate, and cessation of root growth. KEY RESULTS Root phenology was not tightly coupled with aboveground phenological periods. Both sites typically had one yearly root flush and high interannual variability in root growth. Root phenology was more variable in California than in New York. In this and other published studies, interannual variation in root phenology was greater than variation in aboveground phenology. The three phenological phases of root growth-root initiation, peak root growth, and root cessation-were related to different suites of abiotic factors. CONCLUSIONS Root phenology is highly variable among years. Analysis of potential controlling factors over several years suggest that belowground phenological phases should be analyzed separately from each other. If aboveground grape phenology responds differently than belowground phenology to changes in air temperature, global warming may further uncouple the timing of aboveground and belowground growth.
Collapse
Affiliation(s)
- Laura Radville
- Department of Ecosystem Science and Management and the Ecology Graduate Program, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Taryn L Bauerle
- Department of Ecosystem Science and Management and the Ecology Graduate Program, The Pennsylvania State University, State College, Pennsylvania, USA
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Louise H Comas
- Department of Ecosystem Science and Management and the Ecology Graduate Program, The Pennsylvania State University, State College, Pennsylvania, USA
- USDA-ARS Water Management and Systems Research Unit, Fort Collins, Colorado, USA
| | - Katherine A Marchetto
- Department of Ecosystem Science and Management and the Ecology Graduate Program, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Alan N Lakso
- Horticulture Section, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, USA
| | - David R Smart
- Department of Viticulture and Enology, University of California-Davis, Davis, California, USA
| | - Richard M Dunst
- Horticulture Section, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, USA
| | - David M Eissenstat
- Department of Ecosystem Science and Management and the Ecology Graduate Program, The Pennsylvania State University, State College, Pennsylvania, USA
| |
Collapse
|
46
|
From inspiration to impact: delivering value from global root research. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3601-3603. [PMCID: PMC4896363 DOI: 10.1093/jxb/erw215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|