1
|
Page CK, Shepard JD, Ray SD, Ferguson JA, Rodriguez AJ, Han J, Jacob JC, Rowe-Haas DK, Akinpelu JY, Friedman LM, Hertz T, Ward AB, Tompkins SM. Neuraminidase-specific antibodies drive differential cross-protection between contemporary FLUBV lineages. SCIENCE ADVANCES 2025; 11:eadu3344. [PMID: 40153499 PMCID: PMC11952091 DOI: 10.1126/sciadv.adu3344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/25/2025] [Indexed: 03/30/2025]
Abstract
The two influenza B virus (FLUBV) lineages have continuously diverged from each other since the 1980s, with recent (post-2015) viruses exhibiting accelerated evolutionary rates. Emerging data from human studies and epidemiological models suggest that increased divergence in contemporary viruses may drive differential cross-protection, where infection with Yamagata lineage viruses provides limited immunity against Victoria lineage viruses. Here, we developed animal models to investigate the mechanisms behind asymmetric cross-protection between contemporary FLUBV lineages. Our results show that contemporary Victoria immunity provides robust cross-protection against the Yamagata lineage, whereas Yamagata immunity offers limited protection against the Victoria lineage. This differential cross-protection is driven by Victoria-elicited neuraminidase (NA)-specific antibodies, which show cross-lineage reactivity, unlike those from Yamagata infections. These findings identify a phenomenon in contemporary FLUBV that may help explain the recent disappearance of the Yamagata lineage from circulation, highlighting the crucial role of targeting NA in vaccination strategies to enhance cross-lineage FLUBV protection.
Collapse
Affiliation(s)
- Caroline K. Page
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
- Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Justin D. Shepard
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
- Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Sean D. Ray
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
- Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - James A. Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alesandra J. Rodriguez
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joel C. Jacob
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Dawne K Rowe-Haas
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
- Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Jasmine Y. Akinpelu
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Lilach M. Friedman
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Tomer Hertz
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stephen M. Tompkins
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
- Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Hutchinson EC, Amorim MJ, Yamauchi Y. Understanding Influenza. Methods Mol Biol 2025; 2890:1-26. [PMID: 39890719 DOI: 10.1007/978-1-0716-4326-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Influenza, a serious illness of humans and domesticated animals, has been studied intensively for many years. It therefore provides an example of how much we can learn from detailed studies of an infectious disease, and of how even the most intensive scientific research leaves further questions to answer. This introduction is written for researchers who have become interested in one of these unanswered questions, but who may not have previously worked on influenza. To investigate these questions, researchers must not only have a firm grasp of relevant methods and protocols; they must also be familiar with the basic details of our current understanding of influenza. This chapter briefly covers the burden of disease that has driven influenza research, summarizes how our thinking about influenza has evolved over time, and sets out key features of influenza viruses by discussing how we classify them and what we currently understand of their replication. It does not aim to be comprehensive, as any researcher will read deeply into the specific areas that have grasped their interest. Instead, it aims to provide a general summary of how we came to think about influenza in the way we do now, in the hope that the reader's own research will help us to understand it better.
Collapse
Affiliation(s)
| | - Maria João Amorim
- Católica Biomedical Research Centre (CBR), Católica Medical School, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Yohei Yamauchi
- Institute of Pharmaceutical Sciences, ETH Zurich, Zürich, Switzerland
| |
Collapse
|
3
|
Chen Z, Tsui JLH, Gutierrez B, Moreno SB, du Plessis L, Deng X, Cai J, Bajaj S, Suchard MA, Pybus OG, Lemey P, Kraemer MUG, Yu H. COVID-19 pandemic interventions reshaped the global dispersal of seasonal influenza viruses. Science 2024; 386:eadq3003. [PMID: 39509510 PMCID: PMC11760156 DOI: 10.1126/science.adq3003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/11/2024] [Indexed: 11/15/2024]
Abstract
The global dynamics of seasonal influenza viruses inform the design of surveillance, intervention, and vaccination strategies. The COVID-19 pandemic provided a singular opportunity to evaluate how influenza circulation worldwide was perturbed by human behavioral changes. We combine molecular, epidemiological, and international travel data and find that the pandemic's onset led to a shift in the intensity and structure of international influenza lineage movement. During the pandemic, South Asia played an important role as a phylogenetic trunk location of influenza A viruses, whereas West Asia maintained the circulation of influenza B/Victoria. We explore drivers of influenza lineage dynamics across the pandemic period and reasons for the possible extinction of the B/Yamagata lineage. After a period of 3 years, the intensity of among-region influenza lineage movements returned to pre-pandemic levels, with the exception of B/Yamagata, after the recovery of global air traffic, highlighting the robustness of global lineage dispersal patterns to substantial perturbation.
Collapse
Affiliation(s)
- Zhiyuan Chen
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University; Shanghai, China
| | | | - Bernardo Gutierrez
- Department of Biology, University of Oxford; Oxford, UK
- Colegio de Ciencias Biologicas y Ambientales, Universidad San Francisco de Quito USFQ; Quito, Ecuador
| | | | - Louis du Plessis
- Department of Biosystems Science and Engineering, ETH Zürich; Basel, Switzerland
- Swiss Institute of Bioinformatics; Lausanne, Switzerland
| | - Xiaowei Deng
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University; Shanghai, China
- Department of Epidemiology, National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University; Nanjing, China
| | - Jun Cai
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University; Shanghai, China
| | - Sumali Bajaj
- Department of Biology, University of Oxford; Oxford, UK
| | - Marc A. Suchard
- Departments of Biostatistics, Biomathematics and Human Genetics, University of California, Los Angeles; Los Angeles, CA, USA
| | - Oliver G. Pybus
- Department of Biology, University of Oxford; Oxford, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College; London, UK
- Pandemic Sciences Institute, University of Oxford; Oxford, UK
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven; Leuven, Belgium
| | - Moritz U. G. Kraemer
- Department of Biology, University of Oxford; Oxford, UK
- Pandemic Sciences Institute, University of Oxford; Oxford, UK
| | - Hongjie Yu
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University; Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University; Shanghai, China
- Department of Infectious Diseases, Huashan Hospital, Fudan University; Shanghai, China
| |
Collapse
|
4
|
Do THT, Wille M, Wheatley AK, Koutsakos M. Triton X-100-treated virus-based ELLA demonstrates discordant antigenic evolution of influenza B virus hemagglutinin and neuraminidase. J Virol 2024; 98:e0118624. [PMID: 39360825 PMCID: PMC11494982 DOI: 10.1128/jvi.01186-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/14/2024] [Indexed: 10/23/2024] Open
Abstract
Neuraminidase (NA)-specific antibodies have been associated with protection against influenza and thus NA is considered a promising target for next-generation vaccines against influenza A (IAV) and B viruses (IBV). NA inhibition (NI) by antibodies is typically assessed using an enzyme-linked lectin assay (ELLA). However, ELLA can be confounded by anti-hemagglutinin (anti-HA) antibodies that block NA by steric hindrance (termed HA interference). Although strategies have been employed to overcome HA interference for IAV, similar approaches have not been assessed for IBV. We found that HA interference is common in ELLA using IBV, rendering the technique unreliable. Anti-HA antibodies were not completely depleted from sera by HA-expressing cell lines, and this approach was of limited utility. In contrast, we find that treatment of virions with Triton X-100, but not Tween-20 or ether, efficiently separates the HA and NA components and overcomes interference caused by anti-HA antibodies. We also characterize a panel of recombinant IBV NA proteins that further validated the results from Triton X-100-treated virus-based ELLA. Using these reagents and assays, we demonstrate discordant antigenic evolution between IBV NA and HA over the last 80 years. This optimized ELLA protocol will facilitate further in-depth serological surveys of IBV immunity as well as antigenic characterization of the IBV NA on a larger scale.IMPORTANCEInfluenza B viruses (IBVs) contribute to annual epidemics and may cause severe disease, especially in children. Consequently, several approaches are being explored to improve vaccine efficacy, including the addition of neuraminidase (NA). Antigen selection and assessment of serological responses will require a reliable serological assay to specifically quantify NA inhibition (NI). Although such assays have been assessed for influenza A viruses (IAVs), this has not been done of influenza B viruses. Our study identifies a readily applicable strategy to measure the inhibitory activity of neuraminidase-specific antibodies against influenza B virus without interference from anti-hemagglutinin (anti-HA) antibodies. This will aid broader serological assessment of influenza B virus-specific antibodies and antigenic characterization of the influenza B virus neuraminidase.
Collapse
Affiliation(s)
- Thi H. T. Do
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Michelle Wille
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Ashraf MA, Raza MA, Amjad MN, Ud Din G, Yue L, Shen B, Chen L, Dong W, Xu H, Hu Y. A comprehensive review of influenza B virus, its biological and clinical aspects. Front Microbiol 2024; 15:1467029. [PMID: 39296301 PMCID: PMC11408344 DOI: 10.3389/fmicb.2024.1467029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Influenza B virus (IBV) stands as a paradox, often overshadowed by its more notorious counterpart, influenza A virus (IAV). Yet, it remains a captivating and elusive subject of scientific inquiry. Influenza B is important because it causes seasonal flu outbreaks that can lead to severe respiratory illnesses, including bronchitis, pneumonia, and exacerbations of chronic conditions like asthma. Limitations in the influenza B virus's epidemiological, immunological, and etiological evolution must be addressed promptly. This comprehensive review covers evolutionary epidemiology and pathogenesis, host-virus interactions, viral isolation and propagation, advanced molecular detection assays, vaccine composition and no animal reservoir for influenza B virus. Complex viral etiology begins with intranasal transmission of influenza B virus with the release of a segmented RNA genome that attacks host cell machinery for transcription and translation within the nucleus and the release of viral progeny. Influenza B virus prevalence in domesticated and wild canines, sea mammals, and birds is frequent, yet there is no zoonosis. The periodic circulation of influenza B virus indicates a 1-3-year cycle for monophyletic strain replacement within the Victoria strain due to frequent antigenic drift in the HA near the receptor-binding site (RBS), while the antigenic stability of Yamagata viruses portrays a more conservative evolutionary pattern. Additionally, this article outlines contemporary antiviral strategies, including pharmacological interventions and vaccination efforts. This article serves as a resource for researchers, healthcare professionals, and anyone interested in the mysterious nature of the influenza B virus. It provides valuable insights and knowledge essential for comprehending and effectively countering this viral foe, which continues to pose a significant public health threat.
Collapse
Affiliation(s)
- Muhammad Awais Ashraf
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Asif Raza
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Nabeel Amjad
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ghayyas Ud Din
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lihuan Yue
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Bei Shen
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Lingdie Chen
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Dong
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Huiting Xu
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Yihong Hu
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Marchi S, Bruttini M, Milano G, Manini I, Chironna M, Pariani E, Manenti A, Kistner O, Montomoli E, Temperton N, Trombetta C. Prevalence of Influenza B/Yamagata Viruses From Season 2012/2013 to 2021/2022 in Italy as an Indication of a Potential Lineage Extinction. Influenza Other Respir Viruses 2024; 18:e13359. [PMID: 39257041 PMCID: PMC11387461 DOI: 10.1111/irv.13359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/20/2024] [Accepted: 07/04/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Influenza B/Yamagata viruses exhibited weak antigenic selection in recent years, reducing their prevalence over time and requiring no update of the vaccine component since 2015. To date, no B/Yamagata viruses have been isolated or sequenced since March 2020. METHODS The antibody prevalence against the current B/Yamagata vaccine strain in Italy was investigated: For each influenza season from 2012/2013 to 2021/2022, 100 human serum samples were tested by haemagglutination inhibition (HAI) assay against the vaccine strain B/Phuket/3073/2013. In addition, the sequences of 156 B/Yamagata strains isolated during the influenza surveillance activities were selected for analysis of the haemagglutinin genome segment. RESULTS About 61.9% of the human samples showed HAI antibodies, and 21.7% had protective antibody levels. The prevalence of antibodies at protective levels in the seasons between the isolation of the strain and its inclusion in the vaccine was between 11% and 25%, with no significant changes observed in subsequent years. A significant increase was observed in the 2020/2021 season, in line with the increase in influenza vaccine uptake during the pandemic. Sequence analysis showed that from 2014/2015 season onward, all B/Yamagata strains circulating in Italy were closely related to the B/Phuket/2013 vaccine strain, showing only limited amino acid variation. CONCLUSIONS A consistent prevalence of antibodies to the current B/Yamagata vaccine strain in the general population was observed. The prolonged use of a well-matched influenza vaccine and a low antigenic diversity of B/Yamagata viruses may have facilitated a strong reduction in B/Yamagata circulation, potentially contributing to the disappearance of this lineage.
Collapse
Affiliation(s)
- Serena Marchi
- Department of Molecular and Developmental MedicineUniversity of SienaSienaItaly
| | - Marco Bruttini
- Tuscan Centre of Precision Medicine, Department of Medicine, Surgery and NeurosciencesUniversity of SienaSienaItaly
| | - Giovanna Milano
- Department of Molecular and Developmental MedicineUniversity of SienaSienaItaly
| | - Ilaria Manini
- Department of Molecular and Developmental MedicineUniversity of SienaSienaItaly
| | - Maria Chironna
- Department of Interdisciplinary MedicineUniversity of Bari Aldo MoroBariItaly
| | - Elena Pariani
- Department of Biomedical Sciences for HealthUniversity of MilanMilanItaly
| | | | | | - Emanuele Montomoli
- Department of Molecular and Developmental MedicineUniversity of SienaSienaItaly
- VisMederi srlSienaItaly
- VisMederi Research srlSienaItaly
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of PharmacyUniversity of Kent and Greenwich Chatham MaritimeKentUK
| | - Claudia Maria Trombetta
- Department of Molecular and Developmental MedicineUniversity of SienaSienaItaly
- VisMederi Research srlSienaItaly
| |
Collapse
|
7
|
Ashraf MA, Raza MA, Amjad MN. Extinction of influenza B Yamagata: Its impact on public health and vaccine implications. J Biomed Res 2024; 39:1-4. [PMID: 39164195 PMCID: PMC11982681 DOI: 10.7555/jbr.38.20240158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Affiliation(s)
- Muhammad Awais Ashraf
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Muhammad Asif Raza
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Muhammad Nabeel Amjad
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
8
|
Caini S, Meijer A, Nunes MC, Henaff L, Zounon M, Boudewijns B, Del Riccio M, Paget J. Probable extinction of influenza B/Yamagata and its public health implications: a systematic literature review and assessment of global surveillance databases. THE LANCET. MICROBE 2024; 5:100851. [PMID: 38729197 DOI: 10.1016/s2666-5247(24)00066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 05/12/2024]
Abstract
Early after the start of the COVID-19 pandemic, the detection of influenza B/Yamagata cases decreased globally. Given the potential public health implications of this decline, in this Review, we systematically analysed data on influenza B/Yamagata virus circulation (for 2020-23) from multiple complementary sources of information. We identified relevant articles published in PubMed and Embase, and data from the FluNet, Global Initiative on Sharing All Influenza Data, and GenBank databases, webpages of respiratory virus surveillance systems from countries worldwide, and the Global Influenza Hospital Surveillance Network. A progressive decline of influenza B/Yamagata detections was reported across all sources, in absolute terms (total number of cases), as positivity rate, and as a proportion of influenza B detections. Sporadically reported influenza B/Yamagata cases since March, 2020 were mostly vaccine-derived, attributed to data entry errors, or have yet to be definitively confirmed. The likelihood of extinction necessitates a rapid response in terms of reassessing the composition of influenza vaccines, enhanced surveillance for B/Yamagata, and a possible change in the biosafety level when handling B/Yamagata viruses in laboratories.
Collapse
Affiliation(s)
- Saverio Caini
- Netherlands Institute for Health Services Research (NIVEL), Utrecht, Netherlands.
| | - Adam Meijer
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Marta C Nunes
- Center of Excellence in Respiratory Pathogens (CERP), Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie, Team Public Health, Epidemiology and Evolutionary Ecology of Infectious Diseases, Université Claude Bernard 1, Inserm U1111, CNRS UMR5308, ENS de Lyon, Lyon, France; South African Medical Research Council, Vaccines & Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Laetitia Henaff
- Centre International de Recherche en Infectiologie, Team Public Health, Epidemiology and Evolutionary Ecology of Infectious Diseases, Université Claude Bernard 1, Inserm U1111, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Malaika Zounon
- Center of Excellence in Respiratory Pathogens (CERP), Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie, Team Public Health, Epidemiology and Evolutionary Ecology of Infectious Diseases, Université Claude Bernard 1, Inserm U1111, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Bronke Boudewijns
- Netherlands Institute for Health Services Research (NIVEL), Utrecht, Netherlands
| | - Marco Del Riccio
- Netherlands Institute for Health Services Research (NIVEL), Utrecht, Netherlands; Department of Health Sciences, University of Florence, Florence, Italy
| | - John Paget
- Netherlands Institute for Health Services Research (NIVEL), Utrecht, Netherlands
| |
Collapse
|
9
|
Singer B, Di Nardo A, Hein J, Ferretti L. Comparing Phylogeographies to Reveal Incompatible Geographical Histories within Genomes. Mol Biol Evol 2024; 41:msae126. [PMID: 38922185 PMCID: PMC11251493 DOI: 10.1093/molbev/msae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Modern phylogeography aims at reconstructing the geographic movement of organisms based on their genomic sequences and spatial information. Phylogeographic approaches are often applied to pathogen sequences and therefore tend to neglect the possibility of recombination, which decouples the evolutionary and geographic histories of different parts of the genome. Genomic regions of recombining or reassorting pathogens often originate and evolve at different times and locations, which characterize their unique spatial histories. Measuring the extent of these differences requires new methods to compare geographic information on phylogenetic trees reconstructed from different parts of the genome. Here we develop for the first time a set of measures of phylogeographic incompatibility, aimed at detecting differences between geographical histories in terms of distances between phylogeographies. We study the effect of varying demography and recombination on phylogeographic incompatibilities using coalescent simulations. We further apply these measures to the evolutionary history of human and livestock pathogens, either reassorting or recombining, such as the Victoria and Yamagata lineages of influenza B and the O/Ind-2001 foot-and-mouth disease virus strain. Our results reveal diverse geographical paths of migration that characterize the origins and evolutionary histories of different viral genes and genomic segments. These incompatibility measures can be applied to any phylogeography, and more generally to any phylogeny where each tip has been assigned either a continuous or discrete "trait" independent of the sequence. We illustrate this flexibility with an analysis of the interplay between the phylogeography and phylolinguistics of Uralic-speaking human populations, hinting at patrilinear language transmission.
Collapse
Affiliation(s)
- Benjamin Singer
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | - Jotun Hein
- Department of Statistics, University of Oxford, Oxford, UK
| | - Luca Ferretti
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Matsuzaki Y, Sugawara K, Kidoguchi Y, Kadowaki Y, Shimotai Y, Katsushima Y, Katsushima F, Tanaka S, Matoba Y, Komabayashi K, Aoki Y, Mizuta K. Genetic Reassortment in a Child Coinfected with Two Influenza B Viruses, B/Yamagata Lineage and B/Victoria-Lineage Strains. Viruses 2024; 16:983. [PMID: 38932274 PMCID: PMC11209448 DOI: 10.3390/v16060983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
We identified a child coinfected with influenza B viruses of B/Yamagata and B/Victoria lineages, in whom we analyzed the occurrence of genetic reassortment. Plaque purification was performed using a throat swab specimen from a 9-year-old child, resulting in 34 well-isolated plaques. The genomic composition of eight gene segments (HA, NA, PB1, PB2, PA, NP, M, and NS genes) for each plaque was determined at the lineage level. Of the 34 plaques, 21 (61.8%) had B/Phuket/3073/2013 (B/Yamagata)-like sequences in all gene segments, while the other 13 (38.2%) were reassortants with B/Texas/02/2013 (B/Victoria)-like sequences in 1-5 of the 8 segments. The PB1 segment had the most B/Victoria lineage genes (23.5%; 8 of 34 plaques), while PB2 and PA had the least (2.9%; 1 of 34 plaques). Reassortants with B/Victoria lineage genes in 2-5 segments showed the same level of growth as viruses with B/Yamagata lineage genes in all segments. However, reassortants with B/Victoria lineage genes only in the NA, PB1, NP, or NS segments exhibited reduced or undetectable growth. We demonstrated that various gene reassortments occurred in a child. These results suggest that simultaneous outbreaks of two influenza B virus lineages increase genetic diversity and could promote the emergence of new epidemic strains.
Collapse
Affiliation(s)
- Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.S.); (Y.K.); (Y.K.); (Y.S.)
| | - Kanetsu Sugawara
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.S.); (Y.K.); (Y.K.); (Y.S.)
| | - Yuko Kidoguchi
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.S.); (Y.K.); (Y.K.); (Y.S.)
| | - Yoko Kadowaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.S.); (Y.K.); (Y.K.); (Y.S.)
| | - Yoshitaka Shimotai
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.S.); (Y.K.); (Y.K.); (Y.S.)
| | - Yuriko Katsushima
- Katsushima Pediatric Clinic, Yamagata 990-2461, Japan; (Y.K.); (F.K.)
| | - Fumio Katsushima
- Katsushima Pediatric Clinic, Yamagata 990-2461, Japan; (Y.K.); (F.K.)
| | - Shizuka Tanaka
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 990-0031, Japan; (S.T.); (Y.M.); (K.K.); (Y.A.); (K.M.)
| | - Yohei Matoba
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 990-0031, Japan; (S.T.); (Y.M.); (K.K.); (Y.A.); (K.M.)
| | - Kenichi Komabayashi
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 990-0031, Japan; (S.T.); (Y.M.); (K.K.); (Y.A.); (K.M.)
| | - Yoko Aoki
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 990-0031, Japan; (S.T.); (Y.M.); (K.K.); (Y.A.); (K.M.)
| | - Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 990-0031, Japan; (S.T.); (Y.M.); (K.K.); (Y.A.); (K.M.)
| |
Collapse
|
11
|
Han AX, de Jong SPJ, Russell CA. Co-evolution of immunity and seasonal influenza viruses. Nat Rev Microbiol 2023; 21:805-817. [PMID: 37532870 DOI: 10.1038/s41579-023-00945-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 08/04/2023]
Abstract
Seasonal influenza viruses cause recurring global epidemics by continually evolving to escape host immunity. The viral constraints and host immune responses that limit and drive the evolution of these viruses are increasingly well understood. However, it remains unclear how most of these advances improve the capacity to reduce the impact of seasonal influenza viruses on human health. In this Review, we synthesize recent progress made in understanding the interplay between the evolution of immunity induced by previous infections or vaccination and the evolution of seasonal influenza viruses driven by the heterogeneous accumulation of antibody-mediated immunity in humans. We discuss the functional constraints that limit the evolution of the viruses, the within-host evolutionary processes that drive the emergence of new virus variants, as well as current and prospective options for influenza virus control, including the viral and immunological barriers that must be overcome to improve the effectiveness of vaccines and antiviral drugs.
Collapse
Affiliation(s)
- Alvin X Han
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Simon P J de Jong
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Colin A Russell
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Global Health, School of Public Health, Boston University, Boston, MA, USA.
| |
Collapse
|
12
|
Zhou T, Xu K, Zhao F, Liu W, Li L, Hua Z, Zhou X. itol.toolkit accelerates working with iTOL (Interactive Tree of Life) by an automated generation of annotation files. Bioinformatics 2023; 39:btad339. [PMID: 37225402 PMCID: PMC10243930 DOI: 10.1093/bioinformatics/btad339] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 05/26/2023] Open
Abstract
SUMMARY iTOL is a powerful and comprehensive phylogenetic tree visualization engine. However, adjusting to new templates can be time-consuming, especially when many templates are available. We developed an R package namely itol.toolkit to help users generate all 23 types of annotation files in iTOL. This R package also provides an all-in-one data structure to store data and themes, accelerating the step from metadata to annotation files of iTOL visualizations through automatic workflows. AVAILABILITY AND IMPLEMENTATION The manual and source code are available at https://github.com/TongZhou2017/itol.toolkit.
Collapse
Affiliation(s)
- Tong Zhou
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuidong Xu
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Zhao
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyue Liu
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longzhao Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongyi Hua
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xin Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
13
|
Portela Catani JP, Ysenbaert T, Smet A, Vuylsteke M, Vogel TU, Saelens X. Anti-neuraminidase and anti-hemagglutinin immune serum can confer inter-lineage cross protection against recent influenza B. PLoS One 2023; 18:e0280825. [PMID: 36689429 PMCID: PMC9870131 DOI: 10.1371/journal.pone.0280825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Influenza B viruses (IBV) are responsible for a considerable part of the burden caused by influenza virus infections. Since their emergence in the 1980s, the Yamagata and Victoria antigenic lineages of influenza B circulate in alternate patterns across the globe. Furthermore, their evolutionary divergence and the appearance of new IBV subclades complicates the prediction of future influenza vaccines compositions. It has been proposed that the addition of the neuraminidase (NA) antigen could potentially induce a broader protection and compensate for hemagglutinin (HA) mismatches in the current vaccines. Here we show that anti-NA and -HA sera against both Victoria and Yamagata lineages have limited inter-lineage cross-reactivity. When transferred to mice prior to infection with a panel of IBVs, anti-NA sera were as potent as anti-HA sera in conferring protection against homologous challenge and, in some cases, conferred superior protection against challenge with heterologous IBV strains.
Collapse
Affiliation(s)
- João Paulo Portela Catani
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Tine Ysenbaert
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Anouk Smet
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | | | - Thorsten U. Vogel
- Sanofi, Research North America, Cambridge, Massachusetts, United States of America
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Rosu ME, Lexmond P, Bestebroer TM, Hauser BM, Smith DJ, Herfst S, Fouchier RAM. Substitutions near the HA receptor binding site explain the origin and major antigenic change of the B/Victoria and B/Yamagata lineages. Proc Natl Acad Sci U S A 2022; 119:e2211616119. [PMID: 36215486 PMCID: PMC9586307 DOI: 10.1073/pnas.2211616119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Influenza B virus primarily infects humans, causing seasonal epidemics globally. Two antigenic variants-Victoria-like and Yamagata-like-were detected in the 1980s, of which the molecular basis of emergence is still incompletely understood. Here, the antigenic properties of a unique collection of historical virus isolates, sampled from 1962 to 2000 and passaged exclusively in mammalian cells to preserve antigenic properties, were determined with the hemagglutination inhibition assay and an antigenic map was built to quantify and visualize the divergence of the lineages. The antigenic map revealed only three distinct antigenic clusters-Early, Victoria, and Yamagata-with relatively little antigenic diversity in each cluster until 2000. Viruses with Victoria-like antigenic properties emerged around 1972 and diversified subsequently into two genetic lineages. Viruses with Yamagata-like antigenic properties evolved from one lineage and became clearly antigenically distinct from the Victoria-like viruses around 1988. Recombinant mutant viruses were tested to show that insertions and deletions (indels), as observed frequently in influenza B virus hemagglutinin, had little effect on antigenic properties. In contrast, amino-acid substitutions at positions 148, 149, 150, and 203, adjacent to the hemagglutinin receptor binding site, determined the main antigenic differences between the Early, Victoria-like, and Yamagata-like viruses. Surprisingly, substitutions at two of the four positions reverted in recent viruses of the Victoria lineage, resulting in antigenic properties similar to viruses circulating ∼50 y earlier. These data shed light on the antigenic diversification of influenza viruses and suggest there may be limits to the antigenic evolution of influenza B virus.
Collapse
Affiliation(s)
- Miruna E. Rosu
- Department of Viroscience, Erasmus Medical Centre, Rotterdam 3015 CE, The Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus Medical Centre, Rotterdam 3015 CE, The Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus Medical Centre, Rotterdam 3015 CE, The Netherlands
| | - Blake M. Hauser
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Derek J. Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Centre, Rotterdam 3015 CE, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Centre, Rotterdam 3015 CE, The Netherlands
| |
Collapse
|
15
|
Thoner TW, Meloy MM, Long JM, Diller JR, Slaughter JC, Ogden KM. Reovirus Efficiently Reassorts Genome Segments during Coinfection and Superinfection. J Virol 2022; 96:e0091022. [PMID: 36094315 PMCID: PMC9517712 DOI: 10.1128/jvi.00910-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/21/2022] [Indexed: 11/20/2022] Open
Abstract
Reassortment, or genome segment exchange, increases diversity among viruses with segmented genomes. Previous studies on the limitations of reassortment have largely focused on parental incompatibilities that restrict generation of viable progeny. However, less is known about whether factors intrinsic to virus replication influence reassortment. Mammalian orthoreovirus (reovirus) encapsidates a segmented, double-stranded RNA (dsRNA) genome, replicates within cytoplasmic factories, and is susceptible to host antiviral responses. We sought to elucidate the influence of infection multiplicity, timing, and compartmentalized replication on reovirus reassortment in the absence of parental incompatibilities. We used an established post-PCR genotyping method to quantify reassortment frequency between wild-type and genetically barcoded type 3 reoviruses. Consistent with published findings, we found that reassortment increased with infection multiplicity until reaching a peak of efficient genome segment exchange during simultaneous coinfection. However, reassortment frequency exhibited a substantial decease with increasing time to superinfection, which strongly correlated with viral transcript abundance. We hypothesized that physical sequestration of viral transcripts within distinct virus factories or superinfection exclusion also could influence reassortment frequency during superinfection. Imaging revealed that transcripts from both wild-type and barcoded viruses frequently co-occupied factories, with superinfection time delays up to 16 h. Additionally, primary infection progressively dampened superinfecting virus transcript levels with greater time delay to superinfection. Thus, in the absence of parental incompatibilities and with short times to superinfection, reovirus reassortment proceeds efficiently and is largely unaffected by compartmentalization of replication and superinfection exclusion. However, reassortment may be limited by superinfection exclusion with greater time delays to superinfection. IMPORTANCE Reassortment, or genome segment exchange between viruses, can generate novel virus genotypes and pandemic virus strains. For viruses to reassort their genome segments, they must replicate within the same physical space by coinfecting the same host cell. Even after entry into the host cell, many viruses with segmented genomes synthesize new virus transcripts and assemble and package their genomes within cytoplasmic replication compartments. Additionally, some viruses can interfere with subsequent infection of the same host or cell. However, spatial and temporal influences on reassortment are only beginning to be explored. We found that infection multiplicity and transcript abundance are important drivers of reassortment during coinfection and superinfection, respectively, for reovirus, which has a segmented, double-stranded RNA genome. We also provide evidence that compartmentalization of transcription and packaging is unlikely to influence reassortment, but the length of time between primary and subsequent reovirus infection can alter reassortment frequency.
Collapse
Affiliation(s)
- Timothy W. Thoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Madeline M. Meloy
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jacob M. Long
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Julia R. Diller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James C. Slaughter
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kristen M. Ogden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Barrat-Charlaix P, Vaughan TG, Neher RA. TreeKnit: Inferring ancestral reassortment graphs of influenza viruses. PLoS Comput Biol 2022; 18:e1010394. [PMID: 35984845 PMCID: PMC9447925 DOI: 10.1371/journal.pcbi.1010394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 09/06/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022] Open
Abstract
When two influenza viruses co-infect the same cell, they can exchange genome segments in a process known as reassortment. Reassortment is an important source of genetic diversity and is known to have been involved in the emergence of most pandemic influenza strains. However, because of the difficulty in identifying reassortment events from viral sequence data, little is known about their role in the evolution of the seasonal influenza viruses. Here we introduce TreeKnit, a method that infers ancestral reassortment graphs (ARG) from two segment trees. It is based on topological differences between trees, and proceeds in a greedy fashion by finding regions that are compatible in the two trees. Using simulated genealogies with reassortments, we show that TreeKnit performs well in a wide range of settings and that it is as accurate as a more principled bayesian method, while being orders of magnitude faster. Finally, we show that it is possible to use the inferred ARG to better resolve segment trees and to construct more informative visualizations of reassortments. Influenza viruses evolve quickly and escape immune defenses which requires frequent update of vaccines. Understanding this evolution is key to an effective public health response. The genome of influenza viruses is made up of 8 pieces called segments, each coding for different viral proteins. Within each segment, evolution is an asexual process in which genetic diversity is generated by mutations. But influenza also diversifies through reassortment which can occur when two different viruses infect the same cell: offsprings can then contain a combination of segments from both viruses. Reassortment is akin to sexual reproduction and can generate viruses that combine segments from diverged viral lineages. Reassortment is a crucial component of viral evolution, but it is challenging to reconstruct where reassortments happened and which segments share history. Here, we develop a method called TreeKnit to detect reassortment events. TreeKnit is based on genealogical trees of single segments that can be reconstructed using standard bioinformatics tools. Inconsistencies between these trees are then used as signs of reassortment. We show that TreeKnit is as accurate as other recent methods, but runs much faster. Our method will facilitate the study of reassortment and its consequences for influenza evolution.
Collapse
Affiliation(s)
- Pierre Barrat-Charlaix
- Biozentrum, Universität Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Timothy G. Vaughan
- Swiss Institute of Bioinformatics, Basel, Switzerland
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Richard A. Neher
- Biozentrum, Universität Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
- * E-mail:
| |
Collapse
|
17
|
Xie R, Adam DC, Edwards KM, Gurung S, Wei X, Cowling BJ, Dhanasekaran V. Genomic Epidemiology of Seasonal Influenza Circulation in China During Prolonged Border Closure from 2020 to 2021. Virus Evol 2022; 8:veac062. [PMID: 35919872 PMCID: PMC9338706 DOI: 10.1093/ve/veac062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
China experienced a resurgence of seasonal influenza activity throughout 2021 despite intermittent control measures and prolonged international border closure. We show genomic evidence for multiple A(H3N2), A(H1N1), and B/Victoria transmission lineages circulating over 3 years, with the 2021 resurgence mainly driven by two B/Victoria clades. Phylodynamic analysis revealed unsampled ancestry prior to widespread outbreaks in December 2020, showing that influenza lineages can circulate cryptically under non-pharmaceutical interventions enacted against COVID-19. Novel haemagglutinin gene mutations and altered age profiles of infected individuals were observed, and Jiangxi province was identified as a major source for nationwide outbreaks. Following major holiday periods, fluctuations in the effective reproduction number were observed, underscoring the importance of influenza vaccination prior to holiday periods or travel. Extensive heterogeneity in seasonal influenza circulation patterns in China determined by historical strain circulation indicates that a better understanding of demographic patterns is needed for improving effective controls.
Collapse
Affiliation(s)
- Ruopeng Xie
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong, China
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong, China
| | - Dillon C Adam
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong, China
| | - Kimberly M Edwards
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong, China
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong, China
| | - Shreya Gurung
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong, China
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong, China
| | - Xiaoman Wei
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong, China
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong, China
| | - Benjamin J Cowling
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong, China
| | - Vijaykrishna Dhanasekaran
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong, China
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong, China
| |
Collapse
|
18
|
He D, Wang X, Wu H, Wang X, Yan Y, Li Y, Zhan T, Hao X, Hu J, Hu S, Liu X, Ding C, Su S, Gu M, Liu X. Genome-Wide Reassortment Analysis of Influenza A H7N9 Viruses Circulating in China during 2013-2019. Viruses 2022; 14:v14061256. [PMID: 35746727 PMCID: PMC9230085 DOI: 10.3390/v14061256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Reassortment with the H9N2 virus gave rise to the zoonotic H7N9 avian influenza virus (AIV), which caused more than five outbreak waves in humans, with high mortality. The frequent exchange of genomic segments between H7N9 and H9N2 has been well-documented. However, the reassortment patterns have not been described and are not yet fully understood. Here, we used phylogenetic analyses to investigate the patterns of intersubtype and intrasubtype/intralineage reassortment across the eight viral segments. The H7N9 virus and its progeny frequently exchanged internal genes with the H9N2 virus but rarely with the other AIV subtypes. Before beginning the intrasubtype/intralineage reassortment analyses, five Yangtze River Delta (YRD A-E) and two Pearl River Delta (PRD A-B) clusters were divided according to the HA gene phylogeny. The seven reset segment genes were also nomenclatured consistently. As revealed by the tanglegram results, high intralineage reassortment rates were determined in waves 2–3 and 5. Additionally, the clusters of PB2 c05 and M c02 were the most dominant in wave 5, which could have contributed to the onset of the largest H7N9 outbreak in 2016–2017. Meanwhile, a portion of the YRD-C cluster (HP H7N9) inherited their PB2, PA, and M segments from the co-circulating YRD-E (LP H7N9) cluster during wave 5. Untanglegram results revealed that the reassortment rate between HA and NA was lower than HA with any of the other six segments. A multidimensional scaling plot revealed a robust genetic linkage between the PB2 and PA genes, indicating that they may share a co-evolutionary history. Furthermore, we observed relatively more robust positive selection pressure on HA, NA, M2, and NS1 proteins. Our findings demonstrate that frequent reassortment, particular reassorted patterns, and adaptive mutations shaped the H7N9 viral genetic diversity and evolution. Increased surveillance is required immediately to better understand the current state of the HP H7N9 AIV.
Collapse
Affiliation(s)
- Dongchang He
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Xiyue Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Huiguang Wu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Yayao Yan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Yang Li
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Tiansong Zhan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Xiaoli Hao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Chan Ding
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shuo Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Correspondence: (M.G.); (X.L.)
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Correspondence: (M.G.); (X.L.)
| |
Collapse
|
19
|
Safety, Immunogenicity, and Protective Efficacy of an H5N1 Chimeric Cold-Adapted Attenuated Virus Vaccine in a Mouse Model. Viruses 2021; 13:v13122420. [PMID: 34960689 PMCID: PMC8709164 DOI: 10.3390/v13122420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
H5N1 influenza virus is a threat to public health worldwide. The virus can cause severe morbidity and mortality in humans. We constructed an H5N1 influenza candidate virus vaccine from the A/chicken/Guizhou/1153/2016 strain that was recommended by the World Health Organization. In this study, we designed an H5N1 chimeric influenza A/B vaccine based on a cold-adapted (ca) influenza B virus B/Vienna/1/99 backbone. We modified the ectodomain of H5N1 hemagglutinin (HA) protein, while retaining the packaging signals of influenza B virus, and then rescued a chimeric cold-adapted H5N1 candidate influenza vaccine through a reverse genetic system. The chimeric H5N1 vaccine replicated well in eggs and the Madin-Darby Canine Kidney cells. It maintained a temperature-sensitive and cold-adapted phenotype. The H5N1 vaccine was attenuated in mice. Hemagglutination inhibition (HAI) antibodies, micro-neutralizing (MN) antibodies, and IgG antibodies were induced in immunized mice, and the mucosal IgA antibody responses were detected in their lung lavage fluids. The IFN-γ-secretion and IL-4-secretion by the mouse splenocytes were induced after stimulation with the specific H5N1 HA protein. The chimeric H5N1 candidate vaccine protected mice against lethal challenge with a wild-type highly pathogenic avian H5N1 influenza virus. The chimeric H5 candidate vaccine is thus a potentially safe, attenuated, and reassortment-incompetent vaccine with circulating A viruses.
Collapse
|
20
|
Abstract
Redondoviridae is a newly established family of circular Rep-encoding single-stranded (CRESS) DNA viruses found in the human ororespiratory tract. Redondoviruses were previously found in ∼15% of respiratory specimens from U.S. urban subjects; levels were elevated in individuals with periodontitis or critical illness. Here, we report higher redondovirus prevalence in saliva samples: four rural African populations showed 61 to 82% prevalence, and an urban U.S. population showed 32% prevalence. Longitudinal, limiting-dilution single-genome sequencing revealed diverse strains of both redondovirus species (Brisavirus and Vientovirus) in single individuals, persistence over time, and evidence of intergenomic recombination. Computational analysis of viral genomes identified a recombination hot spot associated with a conserved potential DNA stem-loop structure. To assess the possible role of this site in recombination, we carried out in vitro studies which showed that this potential stem-loop was cleaved by the virus-encoded Rep protein. In addition, in reconstructed reactions, a Rep-DNA covalent intermediate was shown to mediate DNA strand transfer at this site. Thus, redondoviruses are highly prevalent in humans, found in individuals on multiple continents, heterogeneous even within individuals and encode a Rep protein implicated in facilitating recombination. IMPORTANCE Redondoviridae is a recently established family of DNA viruses predominantly found in the human respiratory tract and associated with multiple clinical conditions. In this study, we found high redondovirus prevalence in saliva from urban North American individuals and nonindustrialized African populations in Botswana, Cameroon, Ethiopia, and Tanzania. Individuals on both continents harbored both known redondovirus species. Global prevalence of both species suggests that redondoviruses have long been associated with humans but have remained undetected until recently due to their divergent genomes. By sequencing single redondovirus genomes in longitudinally sampled humans, we found that redondoviruses persisted over time within subjects and likely evolve by recombination. The Rep protein encoded by redondoviruses catalyzes multiple reactions in vitro, consistent with a role in mediating DNA replication and recombination. In summary, we identify high redondovirus prevalence in humans across multiple continents, longitudinal heterogeneity and persistence, and potential mechanisms of redondovirus evolution by recombination.
Collapse
|
21
|
Vieira MC, Donato CM, Arevalo P, Rimmelzwaan GF, Wood T, Lopez L, Huang QS, Dhanasekaran V, Koelle K, Cobey S. Lineage-specific protection and immune imprinting shape the age distributions of influenza B cases. Nat Commun 2021; 12:4313. [PMID: 34262041 PMCID: PMC8280188 DOI: 10.1038/s41467-021-24566-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
How a history of influenza virus infections contributes to protection is not fully understood, but such protection might explain the contrasting age distributions of cases of the two lineages of influenza B, B/Victoria and B/Yamagata. Fitting a statistical model to those distributions using surveillance data from New Zealand, we found they could be explained by historical changes in lineage frequencies combined with cross-protection between strains of the same lineage. We found additional protection against B/Yamagata in people for whom it was their first influenza B infection, similar to the immune imprinting observed in influenza A. While the data were not informative about B/Victoria imprinting, B/Yamagata imprinting could explain the fewer B/Yamagata than B/Victoria cases in cohorts born in the 1990s and the bimodal age distribution of B/Yamagata cases. Longitudinal studies can test if these forms of protection inferred from historical data extend to more recent strains and other populations.
Collapse
Affiliation(s)
- Marcos C Vieira
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.
| | - Celeste M Donato
- Enteric Diseases Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Philip Arevalo
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Timothy Wood
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Liza Lopez
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Q Sue Huang
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Vijaykrishna Dhanasekaran
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
22
|
Anomalous influenza seasonality in the United States and the emergence of novel influenza B viruses. Proc Natl Acad Sci U S A 2021; 118:2012327118. [PMID: 33495348 DOI: 10.1073/pnas.2012327118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 2019/2020 influenza season in the United States began earlier than any season since the 2009 H1N1 pandemic, with an increase in influenza-like illnesses observed as early as August. Also noteworthy was the numerical domination of influenza B cases early in this influenza season, in contrast to their typically later peak in the past. Here, we dissect the 2019/2020 influenza season not only with regard to its unusually early activity, but also with regard to the relative dynamics of type A and type B cases. We propose that the recent expansion of a novel influenza B/Victoria clade may be associated with this shift in the composition and kinetics of the influenza season in the United States. We use epidemiological transmission models to explore whether changes in the effective reproduction number or short-term cross-immunity between these viruses can explain the dynamics of influenza A and B seasonality. We find support for an increase in the effective reproduction number of influenza B, rather than support for cross-type immunity-driven dynamics. Our findings have clear implications for optimal vaccination strategies.
Collapse
|
23
|
Evolution of Type B Influenza Virus Using a Mass Spectrometry Based Phylonumerics Approach. Evol Biol 2021. [DOI: 10.1007/s11692-021-09535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Wei J, Huang H, Qin H, Li S, Xing L, Li Y, Cao M, Wang Y, Bi Y, Liu Y, Yang Y. A newly developed real-time PCR assay for discriminating influenza B virus Yamagata and Victoria lineages. J Med Virol 2020; 92:3067-3072. [PMID: 32497291 DOI: 10.1002/jmv.26133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/27/2020] [Accepted: 06/01/2020] [Indexed: 11/07/2022]
Abstract
Currently, two distinct lineages of influenza B virus (IBV), B/Victoria and B/Yamagata lineage, have been co-circulating in human beings. Assessment of the prevalent lineage is key for the recommendation of the seasonal influenza vaccine composition and the evaluation of its efficacy. In this study, a multiplex qRT-PCR assay for the discrimination of the IBV lineages was designed based on the genetic differences of the hemagglutinin genes between B/Yamagata and B/Victoria lineages. The assay was highly specific and able to discriminate the lineages of IBV without any non-specific reaction against other influenza A viruses. The detection limit of the assay was determined to be 10 genome-equivalent copies and 2.8 × 10-2 50% tissue culture infectious doses (TCID50 ) of live IBV per reaction. Moreover, our assay was able to discriminate the lineages of IBVs in clinical samples with 100% accuracy, when compared with pyrosequencing. Our results indicate that this assay may represent an update of the existing qRT-PCR assays and will be of great use for the rapid and accurate diagnosis and surveillance of the circulating IBVs.
Collapse
Affiliation(s)
- Jinli Wei
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Huaxin Huang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Hucheng Qin
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Shanqin Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Center for Influenza Research and Early-warning (CASCIRE), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Li Xing
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yanjie Li
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Mengli Cao
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yanrong Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Center for Influenza Research and Early-warning (CASCIRE), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Savid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
25
|
Bayesian inference of reassortment networks reveals fitness benefits of reassortment in human influenza viruses. Proc Natl Acad Sci U S A 2020; 117:17104-17111. [PMID: 32631984 PMCID: PMC7382287 DOI: 10.1073/pnas.1918304117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Genetic recombination processes, such as reassortment, make it complex or impossible to use standard phylogenetic and phylodynamic methods. This is due to the fact that the shared evolutionary history of individuals has to be represented by a phylogenetic network instead of a tree. We therefore require novel approaches that allow us to coherently model these processes and that allow us to perform inference in the presence of such processes. Here, we introduce an approach to infer reassortment networks of segmented viruses using a Markov chain Monte Carlo approach. Our approach allows us to study different aspects of the reassortment process and allows us to show fitness benefits of reassortment events in seasonal human influenza viruses. Reassortment is an important source of genetic diversity in segmented viruses and is the main source of novel pathogenic influenza viruses. Despite this, studying the reassortment process has been constrained by the lack of a coherent, model-based inference framework. Here, we introduce a coalescent-based model that allows us to explicitly model the joint coalescent and reassortment process. In order to perform inference under this model, we present an efficient Markov chain Monte Carlo algorithm to sample rooted networks and the embedding of phylogenetic trees within networks. This algorithm provides the means to jointly infer coalescent and reassortment rates with the reassortment network and the embedding of segments in that network from full-genome sequence data. Studying reassortment patterns of different human influenza datasets, we find large differences in reassortment rates across different human influenza viruses. Additionally, we find that reassortment events predominantly occur on selectively fitter parts of reassortment networks showing that on a population level, reassortment positively contributes to the fitness of human influenza viruses.
Collapse
|
26
|
Nyasimi FM, Owuor DC, Ngoi JM, Mwihuri AG, Otieno GP, Otieno JR, Githinji G, Nyiro JU, Nokes DJ, Agoti CN. Epidemiological and evolutionary dynamics of influenza B virus in coastal Kenya as revealed by genomic analysis of strains sampled over a single season. Virus Evol 2020; 6:veaa045. [PMID: 33747542 PMCID: PMC7959010 DOI: 10.1093/ve/veaa045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The genomic epidemiology of influenza B virus (IBV) remains understudied in Africa despite significance to design of effective local and global control strategies. We undertook surveillance throughout 2016 in coastal Kenya, recruiting individuals presenting with acute respiratory illness at nine outpatient health facilities (any age) or admitted to the Kilifi County Hospital (<5 years old). Whole genomes were sequenced for a selected 111 positives; 94 (84.7%) of B/Victoria lineage and 17 (15.3%) of B/Yamagata lineage. Inter-lineage reassortment was detected in ten viruses; nine with B/Yamagata backbone but B/Victoria NA and NP segments and one with a B/Victoria backbone but B/Yamagata PB2, PB1, PA, and MP segments. Five phylogenomic clusters were identified among the sequenced viruses; (i), pure B/Victoria clade 1A (n = 93, 83.8%), (ii), reassortant B/Victoria clade 1A (n = 1, 0.9%), (iii), pure B/Yamagata clade 2 (n = 2, 1.8%), (iv), pure B/Yamagata clade 3 (n = 6, 5.4%), and (v), reassortant B/Yamagata clade 3 (n = 9, 8.1%). Using divergence dates and clustering patterns in the presence of global background sequences, we counted up to twenty-nine independent IBV strain introductions into the study area (∼900 km2) in 2016. Local viruses, including the reassortant B/Yamagata strains, clustered closely with viruses from neighbouring Tanzania and Uganda. Our study demonstrated that genomic analysis provides a clearer picture of locally circulating IBV diversity. The high number of IBV introductions highlights the challenge in controlling local influenza epidemics by targeted approaches, for example, sub-population vaccination or patient quarantine. The finding of divergent IBV strains co-circulating within a single season emphasises why broad immunity vaccines are the most ideal for influenza control in Kenya.
Collapse
Affiliation(s)
- Festus M Nyasimi
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) – Wellcome Trust Research Programme, P.O. Box 230, Kilifi-80108, Kenya
- Department of Public Health, School of Health and Human Sciences, Pwani University, P.O. Box 195, Kilifi-80108, Kenya
| | - David Collins Owuor
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) – Wellcome Trust Research Programme, P.O. Box 230, Kilifi-80108, Kenya
| | - Joyce M Ngoi
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) – Wellcome Trust Research Programme, P.O. Box 230, Kilifi-80108, Kenya
| | - Alexander G Mwihuri
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) – Wellcome Trust Research Programme, P.O. Box 230, Kilifi-80108, Kenya
| | - Grieven P Otieno
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) – Wellcome Trust Research Programme, P.O. Box 230, Kilifi-80108, Kenya
| | - James R Otieno
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) – Wellcome Trust Research Programme, P.O. Box 230, Kilifi-80108, Kenya
| | - George Githinji
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) – Wellcome Trust Research Programme, P.O. Box 230, Kilifi-80108, Kenya
| | - Joyce U Nyiro
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) – Wellcome Trust Research Programme, P.O. Box 230, Kilifi-80108, Kenya
| | - David James Nokes
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) – Wellcome Trust Research Programme, P.O. Box 230, Kilifi-80108, Kenya
- Department of Public Health, School of Health and Human Sciences, Pwani University, P.O. Box 195, Kilifi-80108, Kenya
- School of Life Sciences and Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, CV4, 7AL, UK
| | - Charles N Agoti
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) – Wellcome Trust Research Programme, P.O. Box 230, Kilifi-80108, Kenya
- Department of Public Health, School of Health and Human Sciences, Pwani University, P.O. Box 195, Kilifi-80108, Kenya
| |
Collapse
|
27
|
Rivas MJ, Alegretti M, Cóppola L, Ramas V, Chiparelli H, Goñi N. Epidemiology and Genetic Variability of Circulating Influenza B Viruses in Uruguay, 2012-2019. Microorganisms 2020; 8:E591. [PMID: 32325860 PMCID: PMC7232498 DOI: 10.3390/microorganisms8040591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 02/07/2023] Open
Abstract
Influenza B viruses (IBV) are an important cause of morbidity and mortality during interpandemic periods in the human population. Two phylogenetically distinct IBV lineages, B/Yamagata and B/Victoria, co-circulate worldwide and they present challenges for vaccine strain selection. Until the present study, there was little information regarding the pattern of the circulating strains of IBV in Uruguay. A subset of positive influenza B samples from influenza-like illness (ILI) outpatients and severe acute respiratory illness (SARI) inpatients detected in sentinel hospitals in Uruguay during 2012-2019 were selected. The sequencing of the hemagglutinin (HA) and neuraminidase (NA) genes showed substitutions at the amino acid level. Phylogenetic analysis reveals the co-circulation of both lineages in almost all seasonal epidemics in Uruguay, and allows recognizing a lineage-level vaccine mismatch in approximately one-third of the seasons studied. The epidemiological results show that the proportion of IBV found in ILI was significantly higher than the observed in SARI cases across different groups of age (9.7% ILI, 3.2% SARI) and patients between 5-14 years constituted the majority (33%) of all influenza B infection (p < 0.05). Interestingly, we found that individuals >25 years were particularly vulnerable to Yamagata lineage infections.
Collapse
Affiliation(s)
- María José Rivas
- Centro Nacional de Referencia de Influenza, Unidad de Virología, Departamento de Laboratorios de Salud Pública, Ministerio de Salud, Montevideo 11600, Uruguay; (M.J.R.); (L.C.); (V.R.); (H.C.)
| | - Miguel Alegretti
- Departamento de Vigilancia en Salud, Ministerio de Salud, Montevideo 11200, Uruguay;
| | - Leticia Cóppola
- Centro Nacional de Referencia de Influenza, Unidad de Virología, Departamento de Laboratorios de Salud Pública, Ministerio de Salud, Montevideo 11600, Uruguay; (M.J.R.); (L.C.); (V.R.); (H.C.)
| | - Viviana Ramas
- Centro Nacional de Referencia de Influenza, Unidad de Virología, Departamento de Laboratorios de Salud Pública, Ministerio de Salud, Montevideo 11600, Uruguay; (M.J.R.); (L.C.); (V.R.); (H.C.)
| | - Héctor Chiparelli
- Centro Nacional de Referencia de Influenza, Unidad de Virología, Departamento de Laboratorios de Salud Pública, Ministerio de Salud, Montevideo 11600, Uruguay; (M.J.R.); (L.C.); (V.R.); (H.C.)
| | - Natalia Goñi
- Centro Nacional de Referencia de Influenza, Unidad de Virología, Departamento de Laboratorios de Salud Pública, Ministerio de Salud, Montevideo 11600, Uruguay; (M.J.R.); (L.C.); (V.R.); (H.C.)
| |
Collapse
|
28
|
Valesano AL, Fitzsimmons WJ, McCrone JT, Petrie JG, Monto AS, Martin ET, Lauring AS. Influenza B Viruses Exhibit Lower Within-Host Diversity than Influenza A Viruses in Human Hosts. J Virol 2020; 94:e01710-19. [PMID: 31801858 PMCID: PMC7022338 DOI: 10.1128/jvi.01710-19] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
Influenza B virus (IBV) undergoes seasonal antigenic drift more slowly than influenza A virus, but the reasons for this difference are unclear. While the evolutionary dynamics of influenza viruses play out globally, they are fundamentally driven by mutation, reassortment, drift, and selection at the level of individual hosts. These processes have recently been described for influenza A virus, but little is known about the evolutionary dynamics of IBV during individual infections and transmission events. Here, we define the within-host evolutionary dynamics of IBV by sequencing virus populations from naturally infected individuals enrolled in a prospective, community-based cohort over 8,176 person-seasons of observation. Through analysis of high depth-of-coverage sequencing data from samples from 91 individuals with influenza B, we find that IBV accumulates lower genetic diversity than previously observed for influenza A virus during acute infections. Consistent with studies of influenza A viruses, the within-host evolution of IBVs is characterized by purifying selection and the general absence of widespread positive selection of within-host variants. Analysis of shared genetic diversity across 15 sequence-validated transmission pairs suggests that IBV experiences a tight transmission bottleneck similar to that of influenza A virus. These patterns of local-scale evolution are consistent with the lower global evolutionary rate of IBV.IMPORTANCE The evolution of influenza virus is a significant public health problem and necessitates the annual evaluation of influenza vaccine formulation to keep pace with viral escape from herd immunity. Influenza B virus is a serious health concern for children, in particular, yet remains understudied compared to influenza A virus. Influenza B virus evolves more slowly than influenza A virus, but the factors underlying this are not completely understood. We studied how the within-host diversity of influenza B virus relates to its global evolution by sequencing viruses from a community-based cohort. We found that influenza B virus populations have lower within-host genetic diversity than influenza A virus and experience a tight genetic bottleneck during transmission. Our work provides insights into the varying dynamics of influenza viruses in human infection.
Collapse
Affiliation(s)
- Andrew L Valesano
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, USA
| | - William J Fitzsimmons
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - John T McCrone
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Joshua G Petrie
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Arnold S Monto
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily T Martin
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Adam S Lauring
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
29
|
Ivan FX, Zhou X, Lau SH, Rashid S, Teo JSM, Lee HK, Koay ES, Chan KP, Leo YS, Chen MIC, Kwoh CK, Chow VT. Molecular insights into evolution, mutations and receptor-binding specificity of influenza A and B viruses from outpatients and hospitalized patients in Singapore. Int J Infect Dis 2020; 90:84-96. [PMID: 31669593 DOI: 10.1016/j.ijid.2019.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND This study compared the genomes of influenza viruses that caused mild infections among outpatients and severe infections among hospitalized patients in Singapore, and characterized their molecular evolution and receptor-binding specificity. METHODS The complete genomes of influenza A/H1N1, A/H3N2 and B viruses that caused mild infections among outpatients and severe infections among inpatients in Singapore during 2012-2015 were sequenced and characterized. Using various bioinformatics approaches, we elucidated their evolutionary, mutational and structural patterns against the background of global and vaccine strains. RESULTS The phylogenetic trees of the 8 gene segments revealed that the outpatient and inpatient strains overlapped with representative global and vaccine strains. We observed a cluster of inpatients with A/H3N2 strains that were closely related to vaccine strain A/Texas/50/2012(H3N2). Several protein sites could accurately discriminate between outpatient versus inpatient strains, with site 221 in neuraminidase (NA) achieving the highest accuracy for A/H3N2. Interestingly, amino acid residues of inpatient but not outpatient isolates at those sites generally matched the corresponding residues in vaccine strains, except at site 145 of hemagglutinin (HA). This would be especially relevant for future surveillance of A/H3N2 strains in relation to their antigenicity and virulence. Furthermore, we observed a trend in which the HA proteins of influenza A/H3N2 and A/H1N1 exhibited enhanced ability to bind both avian and human host cell receptors. In contrast, the binding ability to each receptor was relatively stable for the HA of influenza B. CONCLUSIONS Overall, our findings extend our understanding of the molecular and structural evolution of influenza virus strains in Singapore within the global context of these dynamic viruses.
Collapse
Affiliation(s)
- Fransiskus X Ivan
- School of Computer Science and Engineering, Nanyang Technological University, Singapore
| | - Xinrui Zhou
- School of Computer Science and Engineering, Nanyang Technological University, Singapore
| | - Suk Hiang Lau
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shamima Rashid
- School of Computer Science and Engineering, Nanyang Technological University, Singapore
| | - Jasmine S M Teo
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hong Kai Lee
- Molecular Diagnosis Centre, National University Hospital, Singapore; Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Evelyn S Koay
- Molecular Diagnosis Centre, National University Hospital, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kwai Peng Chan
- Department of Pathology, Singapore General Hospital, Singapore
| | - Yee Sin Leo
- National Centre for Infectious Diseases, Singapore
| | - Mark I C Chen
- National Centre for Infectious Diseases, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, Singapore.
| | - Vincent T Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
30
|
Divergent evolutionary trajectories of influenza B viruses underlie their contemporaneous epidemic activity. Proc Natl Acad Sci U S A 2019; 117:619-628. [PMID: 31843889 PMCID: PMC6955377 DOI: 10.1073/pnas.1916585116] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Two influenza B viruses (Victoria and Yamagata) cocirculate in humans and contribute to the estimated 290,000–650,000 annual influenza-attributed deaths. Here, we analysed influenza B genomic data to understand the causes of a recent surge in human influenza B infections. We found that evolution is acting differently on Yamagata and Victoria viruses and that this has led to the cocirculation of a diverse group of influenza B viruses. If this phenomenon continues, we could potentially witness the emergence of 3 or more distinct influenza B viruses that could require their own vaccine component, thereby complicating influenza vaccine formulation and highlighting the urgency of developing universal influenza vaccines. Influenza B viruses have circulated in humans for over 80 y, causing a significant disease burden. Two antigenically distinct lineages (“B/Victoria/2/87-like” and “B/Yamagata/16/88-like,” termed Victoria and Yamagata) emerged in the 1970s and have cocirculated since 2001. Since 2015 both lineages have shown unusually high levels of epidemic activity, the reasons for which are unclear. By analyzing over 12,000 influenza B virus genomes, we describe the processes enabling the long-term success and recent resurgence of epidemics due to influenza B virus. We show that following prolonged diversification, both lineages underwent selective sweeps across the genome and have subsequently taken alternate evolutionary trajectories to exhibit epidemic dominance, with no reassortment between lineages. Hemagglutinin deletion variants emerged concomitantly in multiple Victoria virus clades and persisted through epistatic mutations and interclade reassortment—a phenomenon previously only observed in the 1970s when Victoria and Yamagata lineages emerged. For Yamagata viruses, antigenic drift of neuraminidase was a major driver of epidemic activity, indicating that neuraminidase-based vaccines and cross-reactivity assays should be employed to monitor and develop robust protection against influenza B morbidity and mortality. Overall, we show that long-term diversification and infrequent selective sweeps, coupled with the reemergence of hemagglutinin deletion variants and antigenic drift of neuraminidase, are factors that contributed to successful circulation of diverse influenza B clades. Further divergence of hemagglutinin variants with poor cross-reactivity could potentially lead to circulation of 3 or more distinct influenza B viruses, further complicating influenza vaccine formulation and highlighting the urgent need for universal influenza vaccines.
Collapse
|
31
|
Potter BI, Kondor R, Hadfield J, Huddleston J, Barnes J, Rowe T, Guo L, Xu X, Neher RA, Bedford T, Wentworth DE. Evolution and rapid spread of a reassortant A(H3N2) virus that predominated the 2017-2018 influenza season. Virus Evol 2019; 5:vez046. [PMID: 33282337 DOI: 10.1093/ve/vez046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The 2017-2018 North American influenza season caused more hospitalizations and deaths than any year since the 2009 H1N1 pandemic. The majority of recorded influenza infections were caused by A(H3N2) viruses, with most of the virus's North American diversity falling into the A2 clade. Within A2, we observe a subclade which we call A2/re that rose to comprise almost 70 per cent of A(H3N2) viruses circulating in North America by early 2018. Unlike most fast-growing clades, however, A2/re contains no amino acid substitutions in the hemagglutinin (HA) segment. Moreover, hemagglutination inhibition assays did not suggest substantial antigenic differences between A2/re viruses and viruses sampled during the 2016-2017 season. Rather, we observe that the A2/re clade was the result of a reassortment event that occurred in late 2016 or early 2017 and involved the combination of the HA and PB1 segments of an A2 virus with neuraminidase (NA) and other segments a virus from the clade A1b. The success of this clade shows the need for antigenic analysis that targets NA in addition to HA. Our results illustrate the potential for non-HA drivers of viral success and necessitate the need for more thorough tracking of full viral genomes to better understand the dynamics of influenza epidemics.
Collapse
Affiliation(s)
- Barney I Potter
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Rebecca Kondor
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA 30333, USA
| | - James Hadfield
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA.,Molecular and Cellular Biology Program, University of Washington, 4109 E Stevens Way NE, Seattle, WA 98105, USA
| | - John Barnes
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Thomas Rowe
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Lizheng Guo
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Xiyan Xu
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Richard A Neher
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - David E Wentworth
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA 30333, USA
| |
Collapse
|
32
|
Theys K, Lemey P, Vandamme AM, Baele G. Advances in Visualization Tools for Phylogenomic and Phylodynamic Studies of Viral Diseases. Front Public Health 2019; 7:208. [PMID: 31428595 PMCID: PMC6688121 DOI: 10.3389/fpubh.2019.00208] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/12/2019] [Indexed: 01/28/2023] Open
Abstract
Genomic and epidemiological monitoring have become an integral part of our response to emerging and ongoing epidemics of viral infectious diseases. Advances in high-throughput sequencing, including portable genomic sequencing at reduced costs and turnaround time, are paralleled by continuing developments in methodology to infer evolutionary histories (dynamics/patterns) and to identify factors driving viral spread in space and time. The traditionally static nature of visualizing phylogenetic trees that represent these evolutionary relationships/processes has also evolved, albeit perhaps at a slower rate. Advanced visualization tools with increased resolution assist in drawing conclusions from phylogenetic estimates and may even have potential to better inform public health and treatment decisions, but the design (and choice of what analyses are shown) is hindered by the complexity of information embedded within current phylogenetic models and the integration of available meta-data. In this review, we discuss visualization challenges for the interpretation and exploration of reconstructed histories of viral epidemics that arose from increasing volumes of sequence data and the wealth of additional data layers that can be integrated. We focus on solutions that address joint temporal and spatial visualization but also consider what the future may bring in terms of visualization and how this may become of value for the coming era of real-time digital pathogen surveillance, where actionable results and adequate intervention strategies need to be obtained within days.
Collapse
Affiliation(s)
- Kristof Theys
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Anne-Mieke Vandamme
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| |
Collapse
|
33
|
Byrne-Nash RT, Gillis JH, Miller DF, Bueter KM, Kuck LR, Rowlen KL. A neuraminidase potency assay for quantitative assessment of neuraminidase in influenza vaccines. NPJ Vaccines 2019; 4:3. [PMID: 30675394 PMCID: PMC6342948 DOI: 10.1038/s41541-019-0099-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/19/2018] [Indexed: 01/06/2023] Open
Abstract
Neuraminidase (NA) immunity leads to decreased viral shedding and reduced severity of influenza disease; however, NA content in influenza vaccines is currently not regulated, resulting in inconsistent quality and quantity of NA that can vary from manufacturer to manufacturer, from year to year, and from lot to lot. To address this problem, we have developed an assay for NA quantification that could be used by the industry to move toward developing influenza vaccines that induce a predictable immune response to NA. The VaxArray Influenza Seasonal NA Potency Assay (VXI-sNA) is a multiplexed sandwich immunoassay that relies on six subtype-specific monoclonal antibodies printed in microarray format and a suite of fluor-conjugated “label” antibodies. The performance of the assay as applied to a wide range of influenza vaccines is described herein. The assay demonstrated high NA subtype specificity and high sensitivity, with quantification limits ranging from 1 to 60 ng/mL and linear dynamic ranges of 24–500-fold. When compared to an enzymatic activity assay for samples exposed to thermal degradation conditions, the assay was able to track changes in protein stability over time and exhibited good correlation with enzyme activity. The assay also demonstrated excellent analytical precision with relative error ranging from 6 to 12% over day-to-day, user-to-user, and lot-to-lot variation. The high sensitivity and reproducibility of the assay enabled robust detection and quantification of NA in crude in-process samples and low-dose, adjuvanted vaccines with an accuracy of 100 ± 10%. Influenza vaccines that contain neuraminidase (NA) are associated with lower disease severity and better prognosis in vaccinated individuals, but the amount and quality of NA present in vaccines remains difficult to determine. Here, Rose Byrne-Nash and colleagues present the VaxArray Influenza Seasonal NA Potency Assay (VXI-sNA), a multiplexed sandwich immunoassay for the quantification of NA of all subtypes and for the determination of its potency. Featuring multiple NA subtype-specific antibodies printed in microarray format, the VXI-sNA showed high precision, dynamic range and reproducibility, and its results correlated well with NA enzymatic activity. This method is a step forward towards standardization of NA quantification for the assessment of stability, batch-to-batch variation and immunogenicity of NA in influenza vaccine formulations, and may help to develop influenza vaccines that trigger predictable immune responses to NA for increased protection against influenza infections.
Collapse
|
34
|
Monamele CG, Vernet MA, Njankouo MR, Kenmoe S, Schoenhals M, Yahaya AA, Anong DN, Akoachere JF, Njouom R. Genetic characterization of influenza B virus in Cameroon and high frequency of reassortant strains. J Med Virol 2018; 90:1848-1855. [PMID: 30036447 DOI: 10.1002/jmv.25273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/05/2018] [Indexed: 11/06/2022]
Abstract
Influenza B is broadly divided into B/Victoria and B/Yamagata lineages based on its genetic and antigenic properties. We describe in this study the first report on genome characterization of type B influenza virus in the Cameroon National Influenza Center (NIC) between 2014 and 2017. Respiratory samples were collected as part of the influenza surveillance activity in the NIC. RNA products were tested for the presence of influenza using the CDC Influenza A/B typing panel. Thirty-five samples positive for influenza B were selected for sequencing three gene segments (HA, NA, and M) and phylogenetic trees were generated by MEGA version 6.0. Nucleotide phylogenetic analysis of the HA gene revealed the presence of three major clades among Cameroonian strains. All Victoria lineages grouped into B/Victoria clade 1A, while, Yamagata lineages grouped into Yamagata clade 2 (2014 strains) and Yamagata clade 3 (2015-2017). We observed a high frequency of reassortant viruses with Yamagata-like HA gene and Victoria-like NA gene (27.4%; 23/84). The results from this study confirm variations in the genome composition of type B influenza virus and emphasize on the relevance of molecular surveillance for spotting peculiar genetic variants of public health and clinical significance.
Collapse
Affiliation(s)
- Chavely Gwladys Monamele
- Virology Department, Centre Pasteur of Cameroon, Institute Pasteur International Network, Yaounde, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Marie-Astrid Vernet
- Virology Department, Centre Pasteur of Cameroon, Institute Pasteur International Network, Yaounde, Cameroon
| | - Mohamadou Ripa Njankouo
- Virology Department, Centre Pasteur of Cameroon, Institute Pasteur International Network, Yaounde, Cameroon
| | - Sebastien Kenmoe
- Virology Department, Centre Pasteur of Cameroon, Institute Pasteur International Network, Yaounde, Cameroon
| | - Matthieu Schoenhals
- Virology Department, Centre Pasteur of Cameroon, Institute Pasteur International Network, Yaounde, Cameroon
| | - Ali Ahmed Yahaya
- World Health Organization, Regional Office for Africa, Brazzaville, Congo
| | - Damian Nota Anong
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Department of Biological Sciences, University of Bamenda, Bamenda, Cameroon
| | | | - Richard Njouom
- Virology Department, Centre Pasteur of Cameroon, Institute Pasteur International Network, Yaounde, Cameroon
| |
Collapse
|
35
|
Tsedenbal N, Tsend-Ayush A, Badarch D, Jav S, Pagbajab N. Influenza B viruses circulated during last 5 years in Mongolia. PLoS One 2018; 13:e0206987. [PMID: 30439983 PMCID: PMC6237300 DOI: 10.1371/journal.pone.0206987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022] Open
Abstract
Influenza B virus-caused illness has recently been considered as an urgent public health problem due to substantial morbidity, mortality and life-threatening medical complications. In this study, we have reported the main characteristics of influenza B virus in Mongolia, including prevalence, lineages, suitability with vaccine strains and drug susceptibility against the virus. 15768 specimens were tested by qPCR for detecting influenza viruses. From positive specimens for influenza B virus, the clinical isolates were isolated using MDCK cells. Sequencing analysis, hemagglutination inhibition assay and Neuraminidase inhibitor (NAI) drug susceptibility testing were performed for the clinical isolates. Influenza B virus was around in 3.46% of the samples in Mongolia, and B/Victoria clade-1A and B/Yamagata clade-3 lineages were predominant. Importantly, it was confirmed that the lineages corresponded to the vaccine strains. Moreover, drug susceptibility tests revealed that some Mongolian clinical isolates showed reduced susceptibility to antiviral agents. Interestingly, G104R was identified as a novel mutation, which might have a significant role in drug resistance of the virus. These results describe the characteristics of influenza B viruses that have caused respiratory illness in the population of Mongolia between 2013 and 2017.
Collapse
Affiliation(s)
- Naranzul Tsedenbal
- National Influenza Center, National Center for Communicable Diseases, Ministry of Health, Ulaanbaatar, Mongolia
| | - Altansukh Tsend-Ayush
- School of Bio-Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Darmaa Badarch
- National Influenza Center, National Center for Communicable Diseases, Ministry of Health, Ulaanbaatar, Mongolia
| | - Sarantuya Jav
- School of Bio-Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
- * E-mail:
| | - Nymadawa Pagbajab
- National Influenza Center, National Center for Communicable Diseases, Ministry of Health, Ulaanbaatar, Mongolia
- Mongolian Academy of Medical Sciences, Ulaanbaatar, Mongolia
| |
Collapse
|
36
|
A Single Amino Acid in the Polymerase Acidic Protein Determines the Pathogenicity of Influenza B Viruses. J Virol 2018; 92:JVI.00259-18. [PMID: 29643248 PMCID: PMC6002706 DOI: 10.1128/jvi.00259-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022] Open
Abstract
Influenza B virus (IBV) is one of the human respiratory viruses and one of the targets of seasonal vaccination. However, the bifurcation of two antigenically distinct lineages of IBVs makes it difficult to arrange proper medical countermeasures. Moreover, compared with pathogenicity-related molecular markers known for influenza A virus, little has been known for IBVs. To understand pathogenicity caused by IBVs, we investigated the molecular determinants of IBV pathogenicity in animal models. After serial lung-to-lung passages of Victoria lineage B/Brisbane/60/2008 (Vc_BR60) and Yamagata lineage B/Wisconsin/01/2010 (Ym_WI01) viruses in BALB/c mice, we identified the mouse-adapted Vc_BR60 (maVc_BR60) and Ym_WI01 (maYm_WI01) viruses, respectively. To find a molecular clue(s) to the increased pathogenicity of maVc_BR60 and maYm_WI01, we determined their genetic sequences. Several amino acid mutations were identified in the PB2, PB1, PA, BM2, and/or NS1 protein-coding regions, and one concurrent lysine (K)-to-arginine (R) mutation in PA residue 338 (PA K338R) was found in both maVc_BR60 and maYm_WI01 viruses. When analyzed using viruses rescued through reverse genetics, it was shown that PA K338R alone could increase the pathogenicity of both IBVs in mice and viral replication in the respiratory tracts of ferrets. In a subsequent minireplicon assay, the effect of PA K338R was highlighted by the enhancement of viral polymerase complex activity of both Vc_BR60 and Ym_WI01 viruses. These results suggest that the PA K338R mutation may be a molecular determinant of IBV pathogenicity via modulating the viral polymerase function of IBVs.IMPORTANCE To investigate molecular pathogenic determinants of IBVs, which are one of the targets of seasonal influenza vaccines, we adapted both Victoria and Yamagata lineage IBVs independently in mice. The recovered mouse-adapted viruses exhibited increased virulence, and of the various mutations identified from both mouse-adapted viruses, a concurrent amino acid mutation was found in the PA protein-coding region. When analyzed using viruses rescued through reverse genetics, the PA mutation alone appeared to contribute to viral pathogenicity in mice within the compatible genetic constellation between the IBV lineages and to the replication of IBVs in ferrets. Regarding the potential mechanism of increased viral pathogenicity, it was shown that the PA mutation could upregulate the viral polymerase complex activity of both IBV lineages. These results indicate that the PA mutation could be a newly defined molecular pathogenic determinant of IBVs that substantiates our understanding of the viral pathogenicity and public health risks of IBVs.
Collapse
|
37
|
Whidden C, Matsen F. Calculating the Unrooted Subtree Prune-and-Regraft Distance. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 16:898-911. [PMID: 29994585 DOI: 10.1109/tcbb.2018.2802911] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The subtree prune-and-regraft (SPR) distance metric is a fundamental way of comparing evolutionary trees. It has wide-ranging applications, such as to study lateral genetic transfer, viral recombination, and Markov chain Monte Carlo phylogenetic inference. Although the rooted version of SPR distance can be computed relatively efficiently between rooted trees using fixed-parameter-tractable maximum agreement forest (MAF) algorithms, no MAF formulation is known for the unrooted case. Correspondingly, previous algorithms are unable to compute unrooted SPR distances larger than 7.
Collapse
|
38
|
Laurie KL, Horman W, Carolan LA, Chan KF, Layton D, Bean A, Vijaykrishna D, Reading PC, McCaw JM, Barr IG. Evidence for Viral Interference and Cross-reactive Protective Immunity Between Influenza B Virus Lineages. J Infect Dis 2018; 217:548-559. [PMID: 29325138 PMCID: PMC5853430 DOI: 10.1093/infdis/jix509] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 11/19/2017] [Indexed: 12/18/2022] Open
Abstract
Background Two influenza B virus lineages, B/Victoria and B/Yamagata, cocirculate in the human population. While the lineages are serologically distinct, cross-reactive responses to both lineages have been detected. Viral interference describes the situation whereby infection with one virus limits infection and replication of a second virus. We investigated the potential for viral interference between the influenza B virus lineages. Methods Ferrets were infected and then challenged 3, 10, or 28 days later with pairs of influenza B/Victoria and B/Yamagata viruses. Results Viral interference occurred at challenge intervals of 3 and 10 days and occasionally at 28 days. At the longer interval, shedding of challenge virus was reduced, and this correlated with cross-reactive interferon γ responses from lymph nodes from virus-infected animals. Viruses from both lineages could prevent or significantly limit subsequent infection with a virus from the other lineage. Coinfections were rare, indicating the potential for reassortment between lineages is limited. Conclusions These data suggest that innate and cross-reactive immunity mediate viral interference and that this may contribute to the dominance of a specific influenza B virus lineage in any given influenza season. Furthermore, infection with one influenza B virus lineage may be beneficial in protecting against subsequent infection with either influenza B virus lineage.
Collapse
Affiliation(s)
- Karen L Laurie
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Melbourne, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
- School of Applied and Biomedical Sciences, Federation University, Churchill, Australia
| | - William Horman
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Louise A Carolan
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Melbourne, Australia
| | - Kok Fei Chan
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Melbourne, Australia
| | - Daniel Layton
- Australian Animal Health Laboratory, Health and Biosecurity Unit, Commonwealth Scientific and Industrial Research Organisation, Geelong, Australia
| | - Andrew Bean
- Australian Animal Health Laboratory, Health and Biosecurity Unit, Commonwealth Scientific and Industrial Research Organisation, Geelong, Australia
| | - Dhanasekaran Vijaykrishna
- Department of Microbiology, School of Biomedical Sciences, Monash University, Clayton, Australia
- Infection and Immunity Program, Biomedicine Discovery Institute, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Clayton, Australia
| | - Patrick C Reading
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Melbourne, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - James M McCaw
- Centre for Epidemiology and Biostatistics, School of Mathematics and Statistics and Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
- Modelling and Simulation Unit, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Melbourne, Australia
- School of Applied and Biomedical Sciences, Federation University, Churchill, Australia
| |
Collapse
|
39
|
Dudas G, Carvalho LM, Rambaut A, Bedford T. MERS-CoV spillover at the camel-human interface. eLife 2018; 7:e31257. [PMID: 29336306 PMCID: PMC5777824 DOI: 10.7554/elife.31257] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic virus from camels causing significant mortality and morbidity in humans in the Arabian Peninsula. The epidemiology of the virus remains poorly understood, and while case-based and seroepidemiological studies have been employed extensively throughout the epidemic, viral sequence data have not been utilised to their full potential. Here, we use existing MERS-CoV sequence data to explore its phylodynamics in two of its known major hosts, humans and camels. We employ structured coalescent models to show that long-term MERS-CoV evolution occurs exclusively in camels, whereas humans act as a transient, and ultimately terminal host. By analysing the distribution of human outbreak cluster sizes and zoonotic introduction times, we show that human outbreaks in the Arabian peninsula are driven by seasonally varying zoonotic transfer of viruses from camels. Without heretofore unseen evolution of host tropism, MERS-CoV is unlikely to become endemic in humans.
Collapse
Affiliation(s)
- Gytis Dudas
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Luiz Max Carvalho
- Institute of Evolutionary BiologyUniversity of EdinburghEdinburghUnited Kingdom
| | - Andrew Rambaut
- Institute of Evolutionary BiologyUniversity of EdinburghEdinburghUnited Kingdom
- Fogarty International CenterNational Institutes of HealthBethesdaUnited States
| | - Trevor Bedford
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
40
|
Abstract
Influenza, a serious illness of humans and domesticated animals, has been studied intensively for many years. It therefore provides an example of how much we can learn from detailed studies of an infectious disease and of how even the most intensive scientific research leaves further questions to answer. This introduction is written for researchers who have become interested in one of these unanswered questions, but who may not have previously worked on influenza. To investigate these questions, researchers must not only have a firm grasp of relevant methods and protocols; they must also be familiar with the basic details of our current understanding of influenza. This article therefore briefly covers the burden of disease that has driven influenza research, summarizes how our thinking about influenza has evolved over time, and sets out key features of influenza viruses by discussing how we classify them and what we understand of their replication. It does not aim to be comprehensive, as any researcher will read deeply into the specific areas that have grasped their interest. Instead, it aims to provide a general summary of how we came to think about influenza in the way we do now, in the hope that the reader's own research will help us to understand it better.
Collapse
Affiliation(s)
| | - Yohei Yamauchi
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| |
Collapse
|
41
|
Langat P, Raghwani J, Dudas G, Bowden TA, Edwards S, Gall A, Bedford T, Rambaut A, Daniels RS, Russell CA, Pybus OG, McCauley J, Kellam P, Watson SJ. Genome-wide evolutionary dynamics of influenza B viruses on a global scale. PLoS Pathog 2017; 13:e1006749. [PMID: 29284042 PMCID: PMC5790164 DOI: 10.1371/journal.ppat.1006749] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/10/2018] [Accepted: 11/13/2017] [Indexed: 12/14/2022] Open
Abstract
The global-scale epidemiology and genome-wide evolutionary dynamics of influenza B remain poorly understood compared with influenza A viruses. We compiled a spatio-temporally comprehensive dataset of influenza B viruses, comprising over 2,500 genomes sampled worldwide between 1987 and 2015, including 382 newly-sequenced genomes that fill substantial gaps in previous molecular surveillance studies. Our contributed data increase the number of available influenza B virus genomes in Europe, Africa and Central Asia, improving the global context to study influenza B viruses. We reveal Yamagata-lineage diversity results from co-circulation of two antigenically-distinct groups that also segregate genetically across the entire genome, without evidence of intra-lineage reassortment. In contrast, Victoria-lineage diversity stems from geographic segregation of different genetic clades, with variability in the degree of geographic spread among clades. Differences between the lineages are reflected in their antigenic dynamics, as Yamagata-lineage viruses show alternating dominance between antigenic groups, while Victoria-lineage viruses show antigenic drift of a single lineage. Structural mapping of amino acid substitutions on trunk branches of influenza B gene phylogenies further supports these antigenic differences and highlights two potential mechanisms of adaptation for polymerase activity. Our study provides new insights into the epidemiological and molecular processes shaping influenza B virus evolution globally.
Collapse
Affiliation(s)
- Pinky Langat
- Wellcome Trust Sanger Institute, Hinxton, United
Kingdom
| | - Jayna Raghwani
- Department of Zoology, University of Oxford, Oxford, United
Kingdom
| | - Gytis Dudas
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh,
United Kingdom
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research
Center, Seattle, Washington, United States of America
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics,
University of Oxford, Oxford, United Kingdom
| | | | - Astrid Gall
- Wellcome Trust Sanger Institute, Hinxton, United
Kingdom
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research
Center, Seattle, Washington, United States of America
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh,
United Kingdom
- Fogarty International Center, National Institutes of Health, Bethesda,
Maryland, United States of America
| | - Rodney S. Daniels
- Worldwide Influenza Centre, The Francis Crick Institute, London, United
Kingdom
| | - Colin A. Russell
- Department of Veterinary Medicine, University of Cambridge, Cambridge,
United Kingdom
| | - Oliver G. Pybus
- Department of Zoology, University of Oxford, Oxford, United
Kingdom
| | - John McCauley
- Worldwide Influenza Centre, The Francis Crick Institute, London, United
Kingdom
| | - Paul Kellam
- Wellcome Trust Sanger Institute, Hinxton, United
Kingdom
| | | |
Collapse
|
42
|
Fitness cost of reassortment in human influenza. PLoS Pathog 2017; 13:e1006685. [PMID: 29112968 PMCID: PMC5675378 DOI: 10.1371/journal.ppat.1006685] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022] Open
Abstract
Reassortment, which is the exchange of genome sequence between viruses co-infecting a host cell, plays an important role in the evolution of segmented viruses. In the human influenza virus, reassortment happens most frequently between co-existing variants within the same lineage. This process breaks genetic linkage and fitness correlations between viral genome segments, but the resulting net effect on viral fitness has remained unclear. In this paper, we determine rate and average selective effect of reassortment processes in the human influenza lineage A/H3N2. For the surface proteins hemagglutinin and neuraminidase, reassortant variants with a mean distance of at least 3 nucleotides to their parent strains get established at a rate of about 10−2 in units of the neutral point mutation rate. Our inference is based on a new method to map reassortment events from joint genealogies of multiple genome segments, which is tested by extensive simulations. We show that intra-lineage reassortment processes are, on average, under substantial negative selection that increases in strength with increasing sequence distance between the parent strains. The deleterious effects of reassortment manifest themselves in two ways: there are fewer reassortment events than expected from a null model of neutral reassortment, and reassortant strains have fewer descendants than their non-reassortant counterparts. Our results suggest that influenza evolves under ubiquitous epistasis across proteins, which produces fitness barriers against reassortment even between co-circulating strains within one lineage. The genome of the human influenza virus consists of 8 disjoint RNA polymer segments. These segments can undergo reassortment: when two viruses co-infect a host cell, they can produce viral offspring with a new combination of segments. In this paper, we show that reassortment within a given influenza lineage induces a fitness cost that increases in strength with increasing genetic distance of the parent viruses. Our finding suggests that evolution continuously produces viral proteins whose fitness depends on each other; reassortment reduces fitness by breaking up successful combinations of proteins. Thus, selection across proteins constrains viral evolution within a given lineage, and it may be an important factor in defining a viral species.
Collapse
|
43
|
Affiliation(s)
- Katherine E. E. Johnson
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Timothy Song
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Benjamin Greenbaum
- Tisch Cancer Institute, Departments of Genetics and Genomics, Medicine, Oncological Sciences, and Pathology, Icahn School of Medicine of Mt Sinai, New York, New York, United States of America
| | - Elodie Ghedin
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Epidemiology, College of Global Public Health, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
44
|
Seasonal H3N2 and 2009 Pandemic H1N1 Influenza A Viruses Reassort Efficiently but Produce Attenuated Progeny. J Virol 2017. [PMID: 28637755 DOI: 10.1128/jvi.00830-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Reassortment of gene segments between coinfecting influenza A viruses (IAVs) facilitates viral diversification and has a significant epidemiological impact on seasonal and pandemic influenza. Since 1977, human IAVs of H1N1 and H3N2 subtypes have cocirculated with relatively few documented cases of reassortment. We evaluated the potential for viruses of the 2009 pandemic H1N1 (pH1N1) and seasonal H3N2 lineages to reassort under experimental conditions. Results of heterologous coinfections with pH1N1 and H3N2 viruses were compared to those obtained following coinfection with homologous, genetically tagged, pH1N1 viruses as a control. High genotype diversity was observed among progeny of both coinfections; however, diversity was more limited following heterologous coinfection. Pairwise analysis of genotype patterns revealed that homologous reassortment was random while heterologous reassortment was characterized by specific biases. pH1N1/H3N2 reassortant genotypes produced under single-cycle coinfection conditions showed a strong preference for homologous PB2-PA combinations and general preferences for the H3N2 NA, pH1N1 M, and H3N2 PB2 except when paired with the pH1N1 PA or NP. Multicycle coinfection results corroborated these findings and revealed an additional preference for the H3N2 HA. Segment compatibility was further investigated by measuring chimeric polymerase activity and growth of selected reassortants in human tracheobronchial epithelial cells. In guinea pigs inoculated with a mixture of viruses, parental H3N2 viruses dominated but reassortants also infected and transmitted to cage mates. Taken together, our results indicate that strong intrinsic barriers to reassortment between seasonal H3N2 and pH1N1 viruses are few but that the reassortants formed are attenuated relative to parental strains.IMPORTANCE The genome of IAV is relatively simple, comprising eight RNA segments, each of which typically encodes one or two proteins. Each viral protein carries out multiple functions in coordination with other viral components and the machinery of the cell. When two IAVs coinfect a cell, they can exchange genes through reassortment. The resultant progeny viruses often suffer fitness defects due to suboptimal interactions among divergent viral components. The genetic diversity generated through reassortment can facilitate the emergence of novel outbreak strains. Thus, it is important to understand the efficiency of reassortment and the factors that limit its potential. The research described here offers new tools for studying reassortment between two strains of interest and applies those tools to viruses of the 2009 pandemic H1N1 and seasonal H3N2 lineages, which currently cocirculate in humans and therefore have the potential to give rise to novel epidemic strains.
Collapse
|
45
|
Sobel Leonard A, McClain MT, Smith GJD, Wentworth DE, Halpin RA, Lin X, Ransier A, Stockwell TB, Das SR, Gilbert AS, Lambkin-Williams R, Ginsburg GS, Woods CW, Koelle K, Illingworth CJR. The effective rate of influenza reassortment is limited during human infection. PLoS Pathog 2017; 13:e1006203. [PMID: 28170438 PMCID: PMC5315410 DOI: 10.1371/journal.ppat.1006203] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/17/2017] [Accepted: 01/26/2017] [Indexed: 12/31/2022] Open
Abstract
We characterise the evolutionary dynamics of influenza infection described by viral sequence data collected from two challenge studies conducted in human hosts. Viral sequence data were collected at regular intervals from infected hosts. Changes in the sequence data observed across time show that the within-host evolution of the virus was driven by the reversion of variants acquired during previous passaging of the virus. Treatment of some patients with oseltamivir on the first day of infection did not lead to the emergence of drug resistance variants in patients. Using an evolutionary model, we inferred the effective rate of reassortment between viral segments, measuring the extent to which randomly chosen viruses within the host exchange genetic material. We find strong evidence that the rate of effective reassortment is low, such that genetic associations between polymorphic loci in different segments are preserved during the course of an infection in a manner not compatible with epistasis. Combining our evidence with that of previous studies we suggest that spatial heterogeneity in the viral population may reduce the extent to which reassortment is observed. Our results do not contradict previous findings of high rates of viral reassortment in vitro and in small animal studies, but indicate that in human hosts the effective rate of reassortment may be substantially more limited. The influenza virus is an important cause of disease in the human population. During the course of an infection the virus can evolve rapidly. An important mechanism of viral evolution is reassortment, whereby different segments of the influenza genome are shuffled with other segments, producing new viral combinations. Here we study natural selection and reassortment during the course of infections occurring in human hosts. Examining viral genome sequence data from these infections, we note that genetic variants that were acquired during the growth of viruses in culture are selected against in the human host. In addition, we find evidence that the effective rate of reassortment is low. We suggest that the spatial separation between viruses in different parts of the host airway may limit the extent to which genetically distinct segments reassort with one another. Within the global population of influenza viruses, reassortment remains an important factor. However, reassortment is not so rapid as to exclude the possibility of interactions between genome segments affecting the course of influenza evolution during a single infection.
Collapse
Affiliation(s)
- Ashley Sobel Leonard
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Micah T. McClain
- Duke Center for Applied Genomics and Precision Medicine, Durham, North Carolina, United States of America
| | - Gavin J. D. Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - David E. Wentworth
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rebecca A. Halpin
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Xudong Lin
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Amy Ransier
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Suman R. Das
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Anthony S. Gilbert
- hVivo PLC, The QMB Innovation Centre, Queen Mary, University of London, London, United Kingdom
| | - Rob Lambkin-Williams
- hVivo PLC, The QMB Innovation Centre, Queen Mary, University of London, London, United Kingdom
| | - Geoffrey S. Ginsburg
- Duke Center for Applied Genomics and Precision Medicine, Durham, North Carolina, United States of America
| | - Christopher W. Woods
- Duke Center for Applied Genomics and Precision Medicine, Durham, North Carolina, United States of America
| | - Katia Koelle
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Christopher J. R. Illingworth
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Maths and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
46
|
Oong XY, Ng KT, Tan JL, Chan KG, Kamarulzaman A, Chan YF, Sam IC, Tee KK. Whole-Genome Phylogenetic Analysis of Influenza B/Phuket/3073/2013-Like Viruses and Unique Reassortants Detected in Malaysia between 2012 and 2014. PLoS One 2017; 12:e0170610. [PMID: 28129386 PMCID: PMC5271328 DOI: 10.1371/journal.pone.0170610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/06/2017] [Indexed: 11/19/2022] Open
Abstract
Reassortment of genetic segments between and within influenza B lineages (Victoria and Yamagata) has been shown to generate novel reassortants with unique genetic characteristics. Based on hemagglutinin (HA) and neuraminidase (NA) genes, recent surveillance study has identified reassortment properties in B/Phuket/3073/2013-like virus, which is currently used in the WHO-recommended influenza vaccine. To understand the potential reassortment patterns for all gene segments, four B/Phuket/3073/2013-like viruses and two unique reassortants (one each from Yamagata and Victoria) detected in Malaysia from 2012-2014 were subjected to whole-genome sequencing. Each gene was phylogenetically classified into lineages, clades and sub-clades. Three B/Phuket/3073/2013-like viruses from Yamagata lineage were found to be intra-clade reassortants, possessing PA and NA genes derived from Stockholm/12-like sub-clade, while the remaining genes from Wisconsin/01-like sub-clade (both sub-clades were within Yamagata Clade 3/Yam-3). However, the other B/Phuket/3073/2013-like virus had NS gene that derived from Stockholm/12-like sub-clade instead of Wisconsin/01-like sub-clade. One inter-clade reassortant had Yamagata Clade 2/Yam-2-derived HA and NP, and its remaining genes were Yam-3-derived. Within Victoria Clade 1/Vic-1 in Victoria lineage, one virus had intra-clade reassortment properties: HA and PB2 from Vic-1B sub-clade, MP and NS from a unique sub-clade "Vic-1C", and the remaining genes from Vic-1A sub-clade. Although random reassortment event may generate unique reassortants, detailed phylogenetic classification of gene segments showed possible genetic linkage between PA and NA genes in B/Phuket/3073/2013-like viruses, which requires further investigation. Understanding on reassortment patterns in influenza B evolution may contribute to future vaccine design.
Collapse
Affiliation(s)
- Xiang Yong Oong
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kim Tien Ng
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Joon Ling Tan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Adeeba Kamarulzaman
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
47
|
Tewawong N, Suntronwong N, Korkong S, Theamboonlers A, Vongpunsawad S, Poovorawan Y. Evidence for influenza B virus lineage shifts and reassortants circulating in Thailand in 2014-2016. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2017; 47:35-40. [PMID: 27845268 DOI: 10.1016/j.meegid.2016.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022]
Abstract
Towards the surveillance of seasonal influenza viruses between August 2015 and June 2016, respiratory samples (n=3390) were collected from Thai patients with influenza-like illness. One-hundred fifty-seven (4.6%) samples tested positive for influenza B virus by real-time reverse-transcription polymerase chain reaction (RT-PCR). While the influenza B virus Yamagata lineage strains were more prevalent than the Victoria lineage strains in 2015 (77.5% vs. 22.5%), the Victoria lineage strains appeared to dominate the first half of 2016 (62.3%). To better assess possible lineage shift in this transition period, 73 influenza B virus strains circulating between March 2014 and May 2016 were randomly selected for hemagglutinin (HA) and neuraminidase (NA) gene sequencing. Phylogenetic analysis of the HA gene showed clustering in Yamagata clade 3 (61.6%), Victoria clade 1 (20.6%), and Yamagata clade 2 (17.8%). Analyses of both the HA and NA segments together, however, demonstrated that 5 influenza B strains (6.8%) were of mixed lineages. Our findings suggest that the circulating strains of the Victoria and Yamagata lineages underwent another lineage shift in 2016. The identification of mutations and reassortment of influenza B virus underscores the importance of careful surveillance and the selection of optimal vaccine strains.
Collapse
Affiliation(s)
- Nipaporn Tewawong
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nungruthai Suntronwong
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sumeth Korkong
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Apiradee Theamboonlers
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
48
|
Maljkovic Berry I, Melendrez MC, Li T, Hawksworth AW, Brice GT, Blair PJ, Halsey ES, Williams M, Fernandez S, Yoon IK, Edwards LD, Kuschner R, Lin X, Thomas SJ, Jarman RG. Frequency of influenza H3N2 intra-subtype reassortment: attributes and implications of reassortant spread. BMC Biol 2016; 14:117. [PMID: 28034300 PMCID: PMC5200972 DOI: 10.1186/s12915-016-0337-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing evidence suggests that influenza reassortment not only contributes to the emergence of new human pandemics but also plays an important role in seasonal influenza epidemics, disease severity, evolution, and vaccine efficacy. We studied this process within 2091 H3N2 full genomes utilizing a combination of the latest reassortment detection tools and more conventional phylogenetic analyses. RESULTS We found that the amount of H3N2 intra-subtype reassortment depended on the number of sampled genomes, occurred with a steady frequency of 3.35%, and was not affected by the geographical origins, evolutionary patterns, or previous reassortment history of the virus. We identified both single reassortant genomes and reassortant clades, each clade representing one reassortment event followed by successful spread of the reassorted variant in the human population. It was this spread that was mainly responsible for the observed high presence of H3N2 intra-subtype reassortant genomes. The successfully spread variants were generally sampled within one year of their formation, highlighting the risk of their rapid spread but also presenting an opportunity for their rapid detection. Simultaneous spread of several different reassortant lineages was observed, and despite their limited average lifetime, second and third generation reassortment was detected, as well as reassortment between viruses belonging to different vaccine-associated clades, likely displaying differing antigenic properties. Some of the spreading reassortants remained confined to certain geographical regions, while others, sharing common properties in amino acid positions of the HA, NA, and PB2 segments, were found throughout the world. CONCLUSIONS Detailed surveillance of seasonal influenza reassortment patterns and variant properties may provide unique information needed for prediction of spread and construction of future influenza vaccines.
Collapse
Affiliation(s)
| | | | - Tao Li
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Anthony W Hawksworth
- Operational Infectious Diseases Directorate, Naval Health Research Center, San Diego, CA, USA
| | - Gary T Brice
- Operational Infectious Diseases Directorate, Naval Health Research Center, San Diego, CA, USA
| | - Patrick J Blair
- Operational Infectious Diseases Directorate, Naval Health Research Center, San Diego, CA, USA
| | | | | | - Stefan Fernandez
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - In-Kyu Yoon
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- Present Address: International Vaccine Institute, Seoul, Republic of Korea
| | - Leslie D Edwards
- Office of Medical Services, US Department of State, Washington, DC, USA
| | - Robert Kuschner
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Xiaoxu Lin
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | | |
Collapse
|
49
|
Chen H, Zhou X, Zheng J, Kwoh CK. Rules of co-occurring mutations characterize the antigenic evolution of human influenza A/H3N2, A/H1N1 and B viruses. BMC Med Genomics 2016; 9:69. [PMID: 28117657 PMCID: PMC5260787 DOI: 10.1186/s12920-016-0230-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The human influenza viruses undergo rapid evolution (especially in hemagglutinin (HA), a glycoprotein on the surface of the virus), which enables the virus population to constantly evade the human immune system. Therefore, the vaccine has to be updated every year to stay effective. There is a need to characterize the evolution of influenza viruses for better selection of vaccine candidates and the prediction of pandemic strains. Studies have shown that the influenza hemagglutinin evolution is driven by the simultaneous mutations at antigenic sites. Here, we analyze simultaneous or co-occurring mutations in the HA protein of human influenza A/H3N2, A/H1N1 and B viruses to predict potential mutations, characterizing the antigenic evolution. METHODS We obtain the rules of mutation co-occurrence using association rule mining after extracting HA1 sequences and detect co-mutation sites under strong selective pressure. Then we predict the potential drifts with specific mutations of the viruses based on the rules and compare the results with the "observed" mutations in different years. RESULTS The sites under frequent mutations are in antigenic regions (epitopes) or receptor binding sites. CONCLUSIONS Our study demonstrates the co-occurring site mutations obtained by rule mining can capture the evolution of influenza viruses, and confirms that cooperative interactions among sites of HA1 protein drive the influenza antigenic evolution.
Collapse
Affiliation(s)
- Haifen Chen
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Xinrui Zhou
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Jie Zheng
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
- Genome Institute of Singapore, A*STAR, Biopolis, 138672, Singapore, Singapore
| | - Chee-Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore.
| |
Collapse
|
50
|
Kim JI, Lee I, Park S, Bae JY, Yoo K, Lemey P, Park MS, Song JW, Kee SH, Song KJ, Park MS. Reassortment compatibility between PB1, PB2, and HA genes of the two influenza B virus lineages in mammalian cells. Sci Rep 2016; 6:27480. [PMID: 27270757 PMCID: PMC4897687 DOI: 10.1038/srep27480] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/19/2016] [Indexed: 11/12/2022] Open
Abstract
In addition to influenza A subtypes, two distinct lineages of influenza B virus also cause seasonal epidemics to humans. Recently, Dudas et al. have done evolutionary analyses of reassortment patterns of the virus and suggested genetic lineage relationship between PB1, PB2, and HA genes. Using genetic plasmids and reassortant viruses, we here demonstrate that a homologous lineage PB1-PB2 pair exhibits better compatibility than a heterologous one and that the lineage relationship between PB1 and HA is more important for viral replication than that between PB2 and HA. However, co-adaptation of PB1-PB2-HA genes appears to be affected by complete gene constellation.
Collapse
Affiliation(s)
- Jin Il Kim
- Department of Microbiology, the Institute of Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Ilseob Lee
- Department of Microbiology, the Institute of Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Sehee Park
- Department of Microbiology, the Institute of Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, the Institute of Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Kirim Yoo
- Department of Microbiology, the Institute of Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, Leuven 3000, Belgium
| | - Mee Sook Park
- Department of Microbiology, the Institute of Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, the Institute of Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Sun-Ho Kee
- Department of Microbiology, the Institute of Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Ki-Joon Song
- Department of Microbiology, the Institute of Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, the Institute of Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|