1
|
Guttula PK, Monteiro PT, Gupta MK. Prediction and Boolean logical modelling of synergistic microRNA regulatory networks during reprogramming of male germline pluripotent stem cells. Biosystems 2021; 207:104453. [PMID: 34129895 DOI: 10.1016/j.biosystems.2021.104453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Unipotent male germline stem (GS) cells can undergo spontaneous reprogramming to germline pluripotent stem (GPS) cells during in vitro culture. In our previous study, we proposed a Boolean logical model of gene regulatory network (GRN) during reprogramming of GS cells to GPS cells. This study was designed to predict and model synergistic microRNA (miRNA) regulatory network during reprogramming of GS cells into GPS cells. The miRNAs targeting differentially expressed genes (DEGs) among GS and GPS cells were predicted by a novel Gene Ontology (GO) enrichment analysis to construct miRNA synergistic networks (MSN) and identify regulatory miRNA modules. Qualitative Boolean logical model of synergistic miRNAs and its regulated genes was then constructed by considering discrete, asynchronous, multivalued logical formalism using the GINsim modeling and simulation tools. Topology, functional and community overlap studies revealed that mmu-miR-200b-3p, mmu-miR-429-3p and mmu-miR-141-3p, mmu-miR-200a-3p and mmu-miR-200c-3p in MSN belongs to the family of miR-200/429/141 and conjectured to control the pluripotency and reprogramming by promoting Mesenchymal to Epithelial Transition (MET). Synergistic network involving mmu-miR-20b-5p, mmu-miR-20a-5p, mmu-miR-106a-5p, mmu-miR-106b-5p, and mmu-miR-17-5p were found to be essential for the maintenance of GS cells. Logical miRNA regulatory network modelling showed that synergistic miRNAs regulates the gene dynamics of MET during GS-GPS reprogramming, as confirmed by perturbation analysis. Taken together, our study predicted novel synergistic miRNAs involved in the regulation of reprogramming and pluripotency in GPS cells. The Boolean logical model of synergistic miRNAs regulatory network further confirms our previous study that gene dynamics of MET regulates GS-GPS reprogramming.
Collapse
Affiliation(s)
- Praveen Kumar Guttula
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Pedro T Monteiro
- Department of Computer Science and Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; INESC-ID, SW Algorithms and Tools for Constraint Solving Group, R. Alves Redol 9, 1000-029 Lisbon, Portugal
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
2
|
Clotaire DZJ, Du X, Wei Y, Yang D, Hua J. miR-19b-3p integrates Jak-Stat signaling pathway through Plzf to regulate self-renewal in dairy goat male germline stem cells. Int J Biochem Cell Biol 2018; 105:104-114. [PMID: 30393202 DOI: 10.1016/j.biocel.2018.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 12/27/2022]
Abstract
Jak-Stat pathway is the first pathway identified to stimulate spermatogonial stem cells (SSCs) self-renewal and maintenance activity. Recent studies have showed that stat3 a crucial gene implicated in this pathway can regulate self-renewal in male germline stem cell. In our previous study, we demonstrated that miR-19b-3p induces cell proliferation and reduces heterochromatin through Plzf which also regulates the balance between cell self-renewal and differentiation. Because miRNA can target several genes and to understand more about Plzf, a crucial transcription factor of SSCs, we performed microarray and found that miR-19b-3p integrate Jak-Stat through Plzf to regulate cell self-renewal. Our results demonstrated that miR-19b-3p induces Jak-Stat when Plzf is downregulated; overexpression of Plzf reversed the trend and shown an existence of feedback (-/+) between Plzf and GHR. The cell self-renewal markers CD49f, GFRα1, Oct4 and cKIT analyzed in the both groups miR-19b-3p and Plzf-overexpressing compared to their respective control confirm miR-19b-3p regulates cell pluripotency and self-renewal in goat male germline stem cells through Plzf. Together our finding revels that miR-19b-3p control Jak-Stat signaling through Plzf.
Collapse
Affiliation(s)
- Daguia Zambe John Clotaire
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China; Laboratoire des sciences Agronomiques et Biologiques pour le Développement (LASBAD), Faculty of Science, University of Bangui, P.O Box 908, Central Africa, Central African Republic
| | - Xiaomin Du
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Yudong Wei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Donghui Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China.
| |
Collapse
|
3
|
Reza AMMT, Choi YJ, Han SG, Song H, Park C, Hong K, Kim JH. Roles of microRNAs in mammalian reproduction: from the commitment of germ cells to peri-implantation embryos. Biol Rev Camb Philos Soc 2018; 94:415-438. [PMID: 30151880 PMCID: PMC7379200 DOI: 10.1111/brv.12459] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are active regulators of numerous biological and physiological processes including most of the events of mammalian reproduction. Understanding the biological functions of miRNAs in the context of mammalian reproduction will allow a better and comparative understanding of fertility and sterility in male and female mammals. Herein, we summarize recent progress in miRNA‐mediated regulation of mammalian reproduction and highlight the significance of miRNAs in different aspects of mammalian reproduction including the biogenesis of germ cells, the functionality of reproductive organs, and the development of early embryos. Furthermore, we focus on the gene expression regulatory feedback loops involving hormones and miRNA expression to increase our understanding of germ cell commitment and the functioning of reproductive organs. Finally, we discuss the influence of miRNAs on male and female reproductive failure, and provide perspectives for future studies on this topic.
Collapse
Affiliation(s)
- Abu Musa Md Talimur Reza
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Yun-Jung Choi
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| |
Collapse
|
4
|
Zhu H, Zheng L, Wang L, Tang F, Hua J. MiR-302 enhances the viability and stemness of male germline stem cells. Reprod Domest Anim 2018; 53:1580-1588. [PMID: 30070400 DOI: 10.1111/rda.13266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/06/2018] [Indexed: 12/27/2022]
Abstract
MicroRNAs were reported to be able to regulate mGSCs' self-renewal through post-transcriptional inhibition of gene expression. miR-302 worked as one important microRNA family existed mainly in human ESCs, and its role in mGSCs has not been reported yet. To elucidate the role of miR-302 in dairy goat mGSCs, the expression profile of miR-302 was explored through qPCR and FISH. Furthermore, to detect the function of miR-302, the expression vector containing miR-302 was transfected into mGSCs, and then, the cell cycle, the cell apoptosis and the genes associated with mGSCs' self-renewal and differentiation were examined. The results showed that miR-302 expressed in testis moderately and located on the basement of seminiferous tubes which shared the same location as mGSCs. Transfection of the vector containing miR-302 fragment into the immortalized mGSCs obviously enhanced the cell proliferation ability and the attachment ability, also, promoted the expression level of CD49f and OCT4. Also, miR-302 reduced the cell apoptosis and downregulated the expression of P21. miR-302 sustained mGSCs' proliferation in vitro.
Collapse
Affiliation(s)
- Haijing Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China.,Shaanxi Province Engineering and Technology Research Center of Cashmere Goat, Research Center of Life Science in Yulin University, Yulin, China
| | - Liming Zheng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Long Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Furong Tang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Bai Y, Zhu C, Feng M, Wei H, Li L, Tian X, Zhao Z, Liu S, Ma N, Zhang X, Shi R, Fu C, Wu Z, Zhang S. Previously claimed male germline stem cells from porcine testis are actually progenitor Leydig cells. Stem Cell Res Ther 2018; 9:200. [PMID: 30021628 PMCID: PMC6052628 DOI: 10.1186/s13287-018-0931-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/27/2018] [Accepted: 06/14/2018] [Indexed: 11/14/2022] Open
Abstract
Background Male germline stem cells (mGSCs) offer great promise in regenerative medicine and animal breeding due to their capacity to maintain self-renewal and to transmit genetic information to the next generation following spermatogenesis. Human testis-derived embryonic stem cell-like cells have been shown to possess potential of mesenchymal progenitors, but there remains confusion about the characteristics and origin of porcine testis-derived stem cells. Methods Porcine testis-derived stem cells were obtained from primary testicular cultures of 5-day old piglets, and selectively expanded using culture conditions for long-term culture and induction differentiation. The stem cell properties of porcine testis-derived stem cells were subsequently assessed by determining the expression of pluripotency-associated markers, alkaline phosphatase (AP) activity, and capacity for sperm and multilineage differentiation in vitro. The gene expression profile was compared via microarray analysis. Results We identified two different types of testis-derived stem cells (termed as C1 and C2 here) during porcine testicular cell culture. The gene expression microarray analysis showed that the transcriptome profile of C1 and C2 differed significantly from each other. The C1 appeared to be morphologically similar to the previously described mouse mGSCs, expressed pluripotency- and germ cell-associated markers, maintained the paternal imprinted pattern of H19, displayed alkaline phosphatase activity, and could differentiate into sperm. Together, these data suggest that C1 represent the porcine mGSC population. Conversely, the C2 appeared similar to the previously described porcine mGSCs with three-dimensional morphology, abundantly expressed Leydig cell lineage and mesenchymal cell-specific markers, and could differentiate into testosterone-producing Leydig cells, suggesting that they are progenitor Leydig cells (PLCs). Conclusion Collectively, we have established the expected characteristics and markers of authentic porcine mGSCs (C1). We found for the first time that, the C2, equivalent to previously claimed porcine mGSCs, are actually progenitor Leydig cells (PLCs). These findings provide new insights into the discrepancies among previous reports and future identification and analyses of testis-derived stem cells. Electronic supplementary material The online version of this article (10.1186/s13287-018-0931-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yinshan Bai
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.,School of Life Science and Engineering, Foshan University, Foshan, 528231, China
| | - Cui Zhu
- School of Life Science and Engineering, Foshan University, Foshan, 528231, China
| | - Meiying Feng
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Hengxi Wei
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Li Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Xiuchun Tian
- Center for Regenerative Biology, Department of Animal Science, University of Connecticut, 1390 Storrs Road, Storrs, CT, 06269, USA
| | - Zhihong Zhao
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Shanshan Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ningfang Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xianwei Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Ruyi Shi
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of Cell Biology and Genetics, Shanxi Medical University, Taiyuan, 030001, China
| | - Chao Fu
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of Cell Biology and Genetics, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
| | - Shouquan Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Non-coding RNA in Spermatogenesis and Epididymal Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:95-120. [PMID: 26659489 DOI: 10.1007/978-94-017-7417-8_6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Testicular germ and somatic cells express many classes of small ncRNAs, including Dicer-independent PIWI-interacting RNAs, Dicer-dependent miRNAs, and endogenous small interfering RNA. Several studies have identified ncRNAs that are highly, exclusively, or preferentially expressed in the testis and epididymis in specific germ and somatic cell types. Temporal and spatial expression of proteins is a key requirement of successful spermatogenesis and large-scale gene transcription occurs in two key stages, just prior to transcriptional quiescence in meiosis and then during spermiogenesis just prior to nuclear silencing in elongating spermatids. More than 60 % of these transcripts are then stockpiled for subsequent translation. In this capacity ncRNAs may act to interpret and transduce cellular signals to either maintain the undifferentiated stem cell population and/or drive cell differentiation during spermatogenesis and epididymal maturation. The assignation of specific roles to the majority of ncRNA species implicated as having a role in spermatogenesis and epididymal function will underpin fundamental understanding of normal and disease states in humans such as infertility and the development of germ cell tumours.
Collapse
|
7
|
Kristjánsdóttir K, Fogarty EA, Grimson A. Systematic analysis of the Hmga2 3' UTR identifies many independent regulatory sequences and a novel interaction between distal sites. RNA (NEW YORK, N.Y.) 2015; 21:1346-1360. [PMID: 25999317 PMCID: PMC4478353 DOI: 10.1261/rna.051177.115] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/22/2015] [Indexed: 06/04/2023]
Abstract
The 3' untranslated regions (3' UTRs) of mRNAs regulate transcripts by serving as binding sites for regulatory factors, including microRNAs and RNA binding proteins. Binding of such trans-acting factors can control the rates of mRNA translation, decay, and other aspects of mRNA biology. To better understand the role of 3' UTRs in gene regulation, we performed a detailed analysis of a model mammalian 3' UTR, that of Hmga2, with the principal goals of identifying the complete set of regulatory elements within a single 3' UTR, and determining the extent to which elements interact with and affect one another. Hmga2 is an oncogene whose overexpression in cancers often stems from mutations that remove 3'-UTR regulatory sequences. We used reporter assays in cultured cells to generate maps of cis-regulatory information across the Hmga2 3' UTR at different resolutions, ranging from 50 to 400 nt. We found many previously unidentified regulatory sites, a large number of which were up-regulating. Importantly, the overall location and impact of regulatory sites was conserved between different species (mouse, human, and chicken). By systematically comparing the regulatory impact of 3'-UTR segments of different sizes we were able to determine that the majority of regulatory sequences function independently; only a very small number of segments showed evidence of any interactions. However, we discovered a novel interaction whereby terminal 3'-UTR sequences induced internal up-regulating elements to convert to repressive elements. By fully characterizing one 3' UTR, we hope to better understand the principles of 3'-UTR-mediated gene regulation.
Collapse
Affiliation(s)
- Katla Kristjánsdóttir
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Elizabeth A Fogarty
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
8
|
MiR-371-373 cluster acts as a tumor-suppressor-miR and promotes cell cycle arrest in unrestricted somatic stem cells. Tumour Biol 2015; 36:7765-74. [PMID: 25941115 DOI: 10.1007/s13277-015-3519-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022] Open
Abstract
Recent advances in small RNA research have implicated microRNAs (miRNAs) as important regulators of proliferation and development. The miR-371-373 cluster is prominently expressed in human embryonic stem cells (ESCs) and rapidly decreases after cell differentiation. MiR-371-373 cluster was investigated as one of the key factors of stem cell maintenance and pluripotency in unrestricted somatic stem cells (USSCs) using a lentivirus system. Gene expression showed a dual effect on proliferation, which revealed a transient cell cycle progression and consequent repression in pluripotency factors and cell cycle genes. Cell proliferation analysis with CFU, MTT, and DNA content assays further confirmed the dual effect of cluster after prolonged exposure. Analyzing the course of action, it seems that miR-371-373 cluster acts as an onco/tumor suppressor-miR. MiR371-373 cluster acts by modulating the function of these factors and limiting the excessive cell cycle propagation upon oncogenic stimuli to protect cells from replicative stress, but also activate CDK inhibitors and transcriptional repressors of the retinoblastoma family to cause cell cycle arrest. In contrast to the previous studies, we believe that miR-371-373 cluster functions as a self-renewal miRNA to induce and maintain the pluripotent state but also to potentially inhibit dysregulated proliferation through cell cycle arrest. It seems that miR-371-373 cluster presents with a dual effect in this cellular context which may possess different actions in various cells. This not only expands the basic knowledge of the cluster but may offer a great chance for therapeutic interventions.
Collapse
|
9
|
Wang L, Xu C. Role of microRNAs in mammalian spermatogenesis and testicular germ cell tumors. Reproduction 2015; 149:R127-37. [DOI: 10.1530/rep-14-0239] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
microRNAs (miRNAs) are a class of small endogenous RNAs, 19–25 nucleotides in size, which play a role in the regulation of gene expression at transcriptional and post-transcriptional levels. Spermatogenesis is a complex process through which spermatogonial stem cells (SSCs) proliferate and differentiate into mature spermatozoa. A large number of miRNAs are abundantly expressed in spermatogenic cells. Growing evidence supports the essential role of miRNA regulation in normal spermatogenesis and male fertility and cumulative research has shown that this form of regulation contributes to the etiology of testicular germ cell tumors (TGCTs). In this review, we addressed recent advancements of miRNA expression profiles in testis and focused on the regulatory functions of miRNA in the process of SSC renewal, spermatogonial mitosis, spermatocyte meiosis, spermiogenesis, and the occurrence of TGCTs.
Collapse
|
10
|
Lührig S, Siamishi I, Tesmer-Wolf M, Zechner U, Engel W, Nolte J. Lrrc34, a novel nucleolar protein, interacts with npm1 and ncl and has an impact on pluripotent stem cells. Stem Cells Dev 2014; 23:2862-74. [PMID: 24991885 PMCID: PMC4236065 DOI: 10.1089/scd.2013.0470] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 07/02/2014] [Indexed: 11/13/2022] Open
Abstract
The gene Lrrc34 (leucine rich repeat containing 34) is highly expressed in pluripotent stem cells and its expression is strongly downregulated upon differentiation. These results let us to suggest a role for Lrrc34 in the regulation and maintenance of pluripotency. Expression analyses revealed that Lrrc34 is predominantly expressed in pluripotent stem cells and has an impact on the expression of known pluripotency genes, such as Oct4. Methylation studies of the Lrrc34 promoter showed a hypomethylation in undifferentiated stem cells and chromatin immunoprecipitation-quantitative polymerase chain reaction analyses of histone modifications revealed an enrichment of activating histone modifications on the Lrrc34 promoter region. Further, we could verify the nucleolus-the place of ribosome biogenesis-as the major subcellular localization of the LRRC34 protein. We have verified the interaction of LRRC34 with two major nucleolar proteins, Nucleophosmin and Nucleolin, by two independent methods, suggesting a role for Lrrc34 in ribosome biogenesis of pluripotent stem cells. In conclusion, LRRC34 is a novel nucleolar protein that is predominantly expressed in pluripotent stem cells. Its altered expression has an impact on pluripotency-regulating genes and it interacts with proteins known to be involved in ribosome biogenesis. Therefore we suggest a role for Lrrc34 in ribosome biogenesis of pluripotent stem cells.
Collapse
Affiliation(s)
- Sandra Lührig
- Institute of Human Genetics, University of Göttingen, Göttingen, Germany
| | - Iliana Siamishi
- Institute of Human Genetics, University of Göttingen, Göttingen, Germany
| | | | - Ulrich Zechner
- Institute of Human Genetics, University of Mainz, Mainz, Germany
| | - Wolfgang Engel
- Institute of Human Genetics, University of Göttingen, Göttingen, Germany
| | - Jessica Nolte
- Institute of Human Genetics, University of Göttingen, Göttingen, Germany
| |
Collapse
|
11
|
Murray MJ, Nicholson JC, Coleman N. Biology of childhood germ cell tumours, focussing on the significance of microRNAs. Andrology 2014; 3:129-39. [PMID: 25303610 PMCID: PMC4409859 DOI: 10.1111/andr.277] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 02/06/2023]
Abstract
Genomic and protein-coding transcriptomic data have suggested that germ cell tumours (GCTs) of childhood are biologically distinct from those of adulthood. Global messenger RNA profiles segregate malignant GCTs primarily by histology, but then also by age, with numerous transcripts showing age-related differential expression. Such differences are likely to account for the heterogeneous clinico-pathological behaviour of paediatric and adult malignant GCTs. In contrast, as global microRNA signatures of human tumours reflect their developmental lineage, we hypothesized that microRNA profiles would identify common biological abnormalities in all malignant GCTs owing to their presumed shared origin from primordial germ cells. MicroRNAs are short, non-protein-coding RNAs that regulate gene expression via translational repression and/or mRNA degradation. We showed that all malignant GCTs over-express the miR-371-373 and miR-302/367 clusters, regardless of patient age, histological subtype or anatomical tumour site. Furthermore, bioinformatic approaches and subsequent Gene Ontology analysis revealed that these two over-expressed microRNAs clusters co-ordinately down-regulated genes involved in biologically significant pathways in malignant GCTs. The translational potential of this finding has been demonstrated with the detection of elevated serum levels of miR-371-373 and miR-302/367 microRNAs at the time of malignant GCT diagnosis, with levels falling after treatment. The tumour-suppressor let-7 microRNA family has also been shown to be universally down-regulated in malignant GCTs, because of abundant expression of the regulatory gene LIN28. Low let-7 levels resulted in up-regulation of oncogenes including MYCN, AURKB and LIN28 itself, the latter through a direct feedback mechanism. Targeting LIN28, or restoring let-7 levels, both led to effective inhibition of this pathway. In summary, paediatric malignant GCTs show biological differences from their adult counterparts at a genomic and protein-coding transcriptome level, whereas they both display very similar microRNA expression profiles. These similarities and differences may be exploited for diagnostic and/or therapeutic purposes.
Collapse
Affiliation(s)
- M J Murray
- Department of Pathology, University of Cambridge, Cambridge, UK; Department of Paediatric Haematology and Oncology, Addenbrooke's Hospital, Cambridge, UK
| | | | | |
Collapse
|
12
|
Pourrajab F, Babaei Zarch M, BaghiYazdi M, Hekmatimoghaddam S, Zare-Khormizi MR. MicroRNA-based system in stem cell reprogramming; differentiation/dedifferentiation. Int J Biochem Cell Biol 2014; 55:318-28. [PMID: 25150833 DOI: 10.1016/j.biocel.2014.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/09/2014] [Accepted: 08/11/2014] [Indexed: 12/26/2022]
Abstract
Stem cells (SCs) have self-renew ability and give rise to committed progenitors of a single or multiple lineages. Elucidating the genetic circuits that govern SCs to self-renew and to differentiate is essential to understand the roles of SCs and promise of these cells in regenerative medicine. MicroRNAs are widespread agents playing critical roles in regulatory networks of transcriptional expression and have been strongly linked with SCs for simultaneous maintenance of pluripotency properties such as self-renewal. This review aims to provide state-of-the-art presentations on microRNA-dependent molecular mechanisms contribute to the maintenance of pluripotency. Understanding the microRNA signature interactions, in conjunction with cell signaling, is critical for development of improved strategies to reprogram differentiated cells or direct differentiation of pluripotent cells.
Collapse
Affiliation(s)
- Fatemeh Pourrajab
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Clinical Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | | | - Mohammad BaghiYazdi
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | |
Collapse
|
13
|
miRNA signature in mouse spermatogonial stem cells revealed by high-throughput sequencing. BIOMED RESEARCH INTERNATIONAL 2014; 2014:154251. [PMID: 25136556 PMCID: PMC4124761 DOI: 10.1155/2014/154251] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/20/2014] [Indexed: 12/24/2022]
Abstract
Spermatogonial stem cells (SSCs) play fundamental roles in spermatogenesis. Although a handful of genes have been discovered as key regulators of SSC self-renewal and differentiation, the regulatory network responsible for SSC function remains unclear. In particular, small RNA signatures during mouse spermatogenesis are not yet systematically investigated. Here, using next generation sequencing, we compared small RNA signatures of in vitro expanded SSCs, testis-derived somatic cells (Sertoli cells), developing germ cells, mouse embryonic stem cells (ESCs), and mouse mesenchymal stem cells among mouse embryonic stem cells (ESCs) to address small RNA transition during mouse spermatogenesis. The results manifest that small RNA transition during mouse spermatogenesis displays overall declined expression profiles of miRNAs and endo-siRNAs, in parallel with elevated expression profiles of piRNAs, resulting in the normal biogenesis of sperms. Meanwhile, several novel miRNAs were preferentially expressed in mouse SSCs, and further investigation of their functional annotation will allow insights into the mechanisms involved in the regulation of SSC activities. We also demonstrated the similarity of miRNA signatures between SSCs and ESCs, thereby providing a new clue to understanding the molecular basis underlying the easy conversion of SSCs to ESCs.
Collapse
|
14
|
Abstract
We provide a review of microRNA (miRNA) related to human implantation which shows the potential diagnostic role of miRNAs in impaired endometrial receptivity, altered embryo development, implantation failure after assisted reproduction technology, and in ectopic pregnancy and pregnancies of unknown location. MicroRNAs may be emerging diagnostic markers and potential therapeutic tools for understanding implantation disorders. However, further research is needed before miRNAs can be used in clinical practice for identifying and treating implantation failure.
Collapse
|
15
|
Teichert AM, Pereira S, Coles B, Chaddah R, Runciman S, Brokhman I, van der Kooy D. The neural stem cell lineage reveals novel relationships among spermatogonial germ stem cells and other pluripotent stem cells. Stem Cells Dev 2014; 23:767-78. [PMID: 24192139 DOI: 10.1089/scd.2013.0245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The embryonic stem cell (ESC) derived from the inner cell mass is viewed as the core pluripotent cell (PC) type from which all other cell types emanate. This familiar perspective derives from an embryological time line in which PCs are ordered according to their time of appearance. However, this schema does not take into account their potential for interconversion, thereby excluding this critical quality of PCs. The persistence of bona fide pluripotent adult stem cells has garnered increasing attention in recent years. Adult pluripotent spermatogonial germ stem cells (aSGSCs) arise from primordial germ cells (pGCs) that emerge from the epiblast during gastrulation. Adult definitive neural stem cells (dNSCs) arise clonally from pluripotent embryonic primitive neural stem cells (pNSCs), which can also be derived clonally from ESCs. To test for stem cell-type convertibility, we employed differentiation in the clonal lineage from ESCs to pNSCs to dNSCs, and revealed the relationships and lineage positioning among various PC populations, including spermatogonial germ cells (aSGSCs), epiblast-derived stem cells (Epi-SCs) and the bFGF, Activin, and BIO-derived stem cell (FAB-SC). Adult, murine aSGSCs assumed a 'pseudo-ESC' state in vitro, and then differentiated into dNSCs, but not pNSCs. Similarly, Epi-SCs and FAB-SCs only gave rise to dNSCs and not to pNSCs. The results of these experiments suggest a new pluripotency lineage model describing the relationship(s) among PCs that better reflects the transitions between these cell types in vitro.
Collapse
|
16
|
Mukherjee A, Koli S, Reddy KVR. Regulatory non-coding transcripts in spermatogenesis: shedding light on ‘dark matter’. Andrology 2014; 2:360-9. [DOI: 10.1111/j.2047-2927.2014.00183.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 12/26/2013] [Accepted: 12/26/2013] [Indexed: 11/29/2022]
Affiliation(s)
- A. Mukherjee
- Division of Molecular Immunology and Microbiology; National Institute for Research in Reproductive Health; Indian Council of Medical Research; Mumbai India
| | - S. Koli
- Division of Molecular Immunology and Microbiology; National Institute for Research in Reproductive Health; Indian Council of Medical Research; Mumbai India
| | - K. V. R. Reddy
- Division of Molecular Immunology and Microbiology; National Institute for Research in Reproductive Health; Indian Council of Medical Research; Mumbai India
| |
Collapse
|
17
|
Ma K, Song G, An X, Fan A, Tan W, Tang B, Zhang X, Li Z. miRNAs promote generation of porcine-induced pluripotent stem cells. Mol Cell Biochem 2014; 389:209-18. [PMID: 24464032 DOI: 10.1007/s11010-013-1942-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 12/18/2013] [Indexed: 12/21/2022]
Abstract
The pigs have similarities of organ size, immunology and physiology with humans. Porcine-induced pluripotent stem cells (piPSCs) have great potential application in regenerative medicine. Here, we established piPSCs induced from porcine fetal fibroblasts by the retroviral overexpression of Oct4, Sox2, Klf4, and c-Myc. The piPSCs not only express pluripotent markers but also have the capacity for differentiation in vivo and in vitro, including EB and teratoma formation. We supplemented microRNAs during the induction process because miR-302a, miR-302b, and miR-200c have been reported to be highly expressed in human and mouse embryonic stem cells and in iPSCs. In this study, we found that the overexpression of miR-302a, miR-302b, and miR-200c effectively improved the reprogramming efficiency and reduced the induction time for piPSCs in the OSKM and OSK induction systems. Due to the similar induction efficiency of 4F-induced piPSCs or of three factors combined with miR-302a, miR-302b, and miR-200c (3F-miRNA-induced piPSCs), we recommend the addition of miRNAs instead of c-Myc to reduce the tumorigenicity of piPSCs.
Collapse
Affiliation(s)
- Kuiying Ma
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, The Center for Animal Embryo Engineering of Jilin Province, College of Veterinary Medicine, Jilin University, 5333 Xi An Da Lu, Changchun, 130062, Jilin, China,
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zheng Y, Tan X, Pyczek J, Nolte J, Pantakani DVK, Engel W. Generation and characterization of yeast two-hybrid cDNA libraries derived from two distinct mouse pluripotent cell types. Mol Biotechnol 2013; 54:228-37. [PMID: 22674187 PMCID: PMC3636440 DOI: 10.1007/s12033-012-9561-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pluripotent stem cells have the therapeutic potential in future regenerative medicine applications. Therefore, it is highly important to understand the molecular mechanisms governing the pluripotency and differentiation potential of these cells. Our current knowledge of pluripotent cells is largely limited owing to the candidate gene/protein approach rather than studying the complex interactions of the proteins. Experimentally, yeast two-hybrid system (Y2H) is by far the most useful and widely used method to detect the protein-protein interactions in high-throughput screenings. Unfortunately, currently there is no GAL4-based pluripotent stem cell-specific cDNA library available for screening the interaction proteins impeding the large-scale studies. In this study, we report the construction of Y2H cDNA libraries derived from mouse pluripotent embryonic stem cells (ESCs) and multipotent adult germ-line stem cells (maGSCs) in GAL4-based Y2H vector system with very high transformation efficiency. Furthermore, we have constructed two different baits and screened for interaction partners in an effort to characterize the libraries and also as a part of our ongoing studies. Consequently, many putative interaction proteins were identified in both cases and their interaction was further validated by direct-Y2H. The observed interactions between bait proteins and their respective analyzed putative interaction proteins were further confirmed using two independent approaches in mammalian cells, thus highlighting the biological significance of the identified interactor (s). Finally, we would like to make these cDNA libraries as a resource that can be distributed to the research community.
Collapse
Affiliation(s)
- Ying Zheng
- Institute of Human Genetics, University of Goettingen, Goettingen, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Guo J, Wang H, Hu X. Reprogramming and transdifferentiation shift the landscape of regenerative medicine. DNA Cell Biol 2013; 32:565-72. [PMID: 23930590 DOI: 10.1089/dna.2013.2104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Regenerative medicine is a new interdisciplinary field in biomedical science, which aims at the repair or replacement of the defective tissue or organ by congenital defects, age, injury, or disease. Various cell-related techniques such as stem cell-based biotherapy are a hot topic in the current press, and stem cell research can help us to expand our understanding of development as well as the pathogenesis of disease. In addition, new technology such as reprogramming or dedifferentiation and transdifferentiation open a new area for regenerative medicine. Here we review new approaches of these technologies used for cell-based therapy and discuss future directions and challenges in the field of regeneration.
Collapse
Affiliation(s)
- Jingjing Guo
- 1 College of Life and Environmental Sciences, Shanghai Normal University , Shanghai, China
| | | | | |
Collapse
|
20
|
Dihazi GH, Bibi A, Jahn O, Nolte J, Mueller GA, Engel W, Dihazi H. Impact of the antiproliferative agent ciclopirox olamine treatment on stem cells proteome. World J Stem Cells 2013; 5:9-25. [PMID: 23362436 PMCID: PMC3557350 DOI: 10.4252/wjsc.v5.i1.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 09/19/2012] [Accepted: 12/20/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the proteome changes of stem cells due to ciclopirox olamine (CPX) treatment compared to control and retinoic acid treated cells. METHODS Stem cells (SCs) are cells, which have the ability to continuously divide and differentiate into various other kinds of cells. Murine embryonic stem cells (ESCs) and multipotent adult germline stem cells (maGSCs) were treated with CPX, which has been shown to have an antiproliferative effect on stem cells, and compared to stem cells treated with retinoic acid (RA), which is known to have a differentiating effect on stem cells. Classical proteomic techniques like 2-D gel electrophoresis and differential in-gel electrophoresis (DIGE) were used to generate 2D protein maps from stem cells treated with RA or CPX as well as from non-treated stem cells. The resulting 2D gels were scanned and the digitalized images were collated with the help of Delta 2D software. The differentially expressed proteins were analyzed by a MALDI-TOF-TOF mass spectrometer, and the identified proteins were investigated and categorized using bioinformatics. RESULTS Treatment of stem cells with CPX, a synthetic antifungal clinically used to treat superficial mycoses, resulted in an antiproliferative effect in vitro, without impairment of pluripotency. To understand the mechanisms induced by CPX treatments which results in arrest of cell cycle without any marked effect on pluripotency, a comparative proteomics study was conducted. The obtained data revealed that the CPX impact on cell proliferation was accompanied with a significant alteration in stem cell proteome. By peptide mass fingerprinting and tandem mass spectrometry combined with searches of protein sequence databases, a set of 316 proteins was identified, corresponding to a library of 125 non-redundant proteins. With proteomic analysis of ESCs and maGSCs treated with CPX and RA, we could identify more than 90 single proteins, which were differently expressed in both cell lines. We could highlight, that CPX treatment of stem cells, with subsequent proliferation inhibition, resulted in an alteration of the expression of 56 proteins compared to non-treated cells, and 54 proteins compared to RA treated cells. Bioinformatics analysis of the regulated proteins demonstrated their involvement in various biological processes. To our interest, a number of proteins have potential roles in the regulation of cell proliferation either directly or indirectly. Furthermore the classification of the altered polypeptides according to their main known/postulated functions revealed that the majority of these proteins are involved in molecular functions like nucleotide binding and metal ion binding, and biological processes like nucleotide biosynthetic processes, gene expression, embryonic development, regulation of transcription, cell cycle processes, RNA and mRNA processing. Proteins, which are involved in nucleotide biosynthetic process and proteolysis, were downregulated in CPX treated cells compared to control, as well as in RA treated cells, which may explain the cell cycle arrest. Moreover, proteins which were involved in cell death, positive regulation of biosynthetic process, response to organic substance, glycolysis, anti-apoptosis, and phosphorylation were downregulated in RA treated cells compared to control and CPX treated cells. CONCLUSION The CPX treatment of SCs results in downregulation of nucleotide binding proteins and leads to cell cycle stop without impairment of pluripotency.
Collapse
Affiliation(s)
- Gry H Dihazi
- Gry H Dihazi, Asima Bibi, Gerhard A Mueller, Hassan Dihazi, Department of Nephrology and Rheumatology, Georg-August University Goettingen, D-37075 Goettingen, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
[Role of microRNA in induced pluripotent stem cell]. YI CHUAN = HEREDITAS 2012; 34:1545-50. [PMID: 23262101 DOI: 10.3724/sp.j.1005.2012.01545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
MicroRNAs are ~22 nt long small noncoding RNA molecules that silence post-transcription gene expression. It has proven that microRNAs are widely expressed in eukaryotes and play an important role in the regulation of cell differentiation and development, growth metabolism, and many other cell activities. Induced pluripotent stem cells (iPS) are a type of pluripotent stem cells reprogrammed from somatic cells and exhibit the essential characteristics of embryonic stem cells. iPS technology has been widely applied in the biological and medical fields, and the key of it is reprogramming of somatic epigenetic state. Therefore, it is of important theoretical and practical significance to study the mechanisms of somatic reprogramming for establishment of an improved iPS technology. The methods of transfection of defined exogenetic stem factors, such as Oct4, Sox2, Klf4, and c-Myc into somatic cells through viral vectors have been continuously improving, but the genome integration and reactivation of the oncogenic gene increase the tumorigenicity of induced cells. The integration-free ways, such as adenovirus, plasmid, recombinant proteins, and L-myc replacement used in iPS technology significantly reduce the risk of cancer. However, the inducing mechanisms are still unclear. Recent studies showed that microRNA affect the process of somatic cell reprogramming, especially embryonic stem cell regulating (ESCC) family of microRNAs (miR302/367, miR200, miR-34, and miR290/295) enhances the reprogramming of embryonic fibroblasts to iPS. This article reviews the recent progresses of roles of microRNA in iPS.
Collapse
|
23
|
Khromov T, Dressel R, Siamishi I, Nolte J, Opitz L, Engel W, Pantakani DVK. Apoptosis-related gene expression profiles of mouse ESCs and maGSCs: role of Fgf4 and Mnda in pluripotent cell responses to genotoxicity. PLoS One 2012; 7:e48869. [PMID: 23145002 PMCID: PMC3492253 DOI: 10.1371/journal.pone.0048869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 10/02/2012] [Indexed: 01/27/2023] Open
Abstract
Stem cells in the developing embryo proliferate and differentiate while maintaining genomic integrity, failure of which may lead to accumulation of mutations and subsequent damage to the embryo. Embryonic stem cells (ESCs), the in vitro counterpart of embryo stem cells are highly sensitive to genotoxic stress. Defective ESCs undergo either efficient DNA damage repair or apoptosis, thus maintaining genomic integrity. However, the genotoxicity- and apoptosis-related processes in germ-line derived pluripotent cells, multipotent adult germ-line stem cells (maGSCs), are currently unknown. Here, we analyzed the expression of apoptosis-related genes using OligoGEArray in undifferentiated maGSCs and ESCs and identified a similar set of genes expressed in both cell types. We detected the expression of intrinsic, but not extrinsic, apoptotic pathway genes in both cell types. Further, we found that apoptosis-related gene expression patterns of differentiated ESCs and maGSCs are identical to each other. Comparative analysis revealed that several pro- and anti-apoptotic genes are expressed specifically in pluripotent cells, but markedly downregulated in the differentiated counterparts of these cells. Activation of the intrinsic apoptotic pathway cause approximately ∼35% of both ESCs and maGSCs to adopt an early-apoptotic phenotype. Moreover, we performed transcriptome studies using early-apoptotic cells to identify novel pluripotency- and apoptosis-related genes. From these transcriptome studies, we selected Fgf4 (Fibroblast growth factor 4) and Mnda (Myeloid cell nuclear differentiating antigen), which are highly downregulated in early-apoptotic cells, as novel candidates and analyzed their roles in apoptosis and genotoxicity responses in ESCs. Collectively, our results show the existence of common molecular mechanisms for maintaining the pristine stem cell pool of both ESCs and maGSCs.
Collapse
Affiliation(s)
- Tatjana Khromov
- Institute of Human Genetics, University of Goettingen, Goettingen, Germany
| | - Ralf Dressel
- Department of Cellular and Molecular Immunology, University of Goettingen, Goettingen, Germany
| | - Iliana Siamishi
- Institute of Human Genetics, University of Goettingen, Goettingen, Germany
| | - Jessica Nolte
- Institute of Human Genetics, University of Goettingen, Goettingen, Germany
| | - Lennart Opitz
- DNA Microarray Facility, University of Goettingen, Goettingen, Germany
| | - Wolfgang Engel
- Institute of Human Genetics, University of Goettingen, Goettingen, Germany
| | | |
Collapse
|
24
|
Tancos Z, Nemes C, Polgar Z, Gocza E, Daniel N, Stout T, Maraghechi P, Pirity M, Osteil P, Tapponnier Y, Markossian S, Godet M, Afanassieff M, Bosze Z, Duranthon V, Savatier P, Dinnyes A. Generation of rabbit pluripotent stem cell lines. Theriogenology 2012; 78:1774-86. [DOI: 10.1016/j.theriogenology.2012.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 06/09/2012] [Accepted: 06/10/2012] [Indexed: 12/20/2022]
|
25
|
Imamura M, Lin ZYC, Okano H. Cell-intrinsic reprogramming capability: gain or loss of pluripotency in germ cells. Reprod Med Biol 2012; 12:1-14. [PMID: 29699125 DOI: 10.1007/s12522-012-0131-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/30/2012] [Indexed: 12/23/2022] Open
Abstract
In multicellular organisms, germ cells are an extremely specialized cell type with the vital function of transmitting genetic information across generations. In this respect, they are responsible for the perpetuity of species, and are separated from somatic lineages at each generation. Interestingly, in the past two decades research has shown that germ cells have the potential to proceed along two distinct pathways: gametogenesis or pluripotency. Unequivocally, the primary role of germ cells is to produce gametes, the sperm or oocyte, to produce offspring. However, under specific conditions germ cells can become pluripotent, as shown by teratoma formation in vivo or cell culture-induced reprogramming in vitro. This phenomenon seems to be a general propensity of germ cells, irrespective of developmental phase. Recent attempts at cellular reprogramming have resulted in the generation of induced pluripotent stem cells (iPSCs). In iPSCs, the intracellular molecular networks instructing pluripotency have been activated and override the exclusively somatic cell programs that existed. Because the generation of iPSCs is highly artificial and depends on gene transduction, whether the resulting machinery reflects any physiological cell-intrinsic programs is open to question. In contrast, germ cells can spontaneously shift their fate to pluripotency during in-vitro culture. Here, we review the two fates of germ cells, i.e., differentiation and reprogramming. Understanding the molecular mechanisms regulating differentiation versus reprogramming would provide invaluable insight into understanding the mechanisms of cellular reprogramming that generate iPSCs.
Collapse
Affiliation(s)
- Masanori Imamura
- Department of Physiology, School of Medicine Keio University 35 Shinanomachi 160-8582 Shinjuku-ku Tokyo Japan
| | - Zachary Yu-Ching Lin
- Department of Physiology, School of Medicine Keio University 35 Shinanomachi 160-8582 Shinjuku-ku Tokyo Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine Keio University 35 Shinanomachi 160-8582 Shinjuku-ku Tokyo Japan
| |
Collapse
|
26
|
McIver SC, Stanger SJ, Santarelli DM, Roman SD, Nixon B, McLaughlin EA. A unique combination of male germ cell miRNAs coordinates gonocyte differentiation. PLoS One 2012; 7:e35553. [PMID: 22536405 PMCID: PMC3334999 DOI: 10.1371/journal.pone.0035553] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/21/2012] [Indexed: 12/16/2022] Open
Abstract
The last 100 years have seen a concerning decline in male reproductive health associated with decreased sperm production, sperm function and male fertility. Concomitantly, the incidence of defects in reproductive development, such as undescended testes, hypospadias and testicular cancer has increased. Indeed testicular cancer is now recognised as the most common malignancy in young men. Such cancers develop from the pre-invasive lesion Carcinoma in Situ (CIS), a dysfunctional precursor germ cell or gonocyte which has failed to successfully differentiate into a spermatogonium. It is therefore essential to understand the cellular transition from gonocytes to spermatogonia, in order to gain a better understanding of the aetiology of testicular germ cell tumours. MicroRNA (miRNA) are important regulators of gene expression in differentiation and development and thus highly likely to play a role in the differentiation of gonocytes. In this study we have examined the miRNA profiles of highly enriched populations of gonocytes and spermatogonia, using microarray technology. We identified seven differentially expressed miRNAs between gonocytes and spermatogonia (down-regulated: miR-293, 291a-5p, 290-5p and 294*, up-regulated: miR-136, 743a and 463*). Target prediction software identified many potential targets of several differentially expressed miRNA implicated in germ cell development, including members of the PTEN, and Wnt signalling pathways. These targets converge on the key downstream cell cycle regulator Cyclin D1, indicating that a unique combination of male germ cell miRNAs coordinate the differentiation and maintenance of pluripotency in germ cells.
Collapse
Affiliation(s)
- Skye C. McIver
- ARC Centre of Excellence in Biotechnology and Development, Discipline of Biological Sciences, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Simone J. Stanger
- ARC Centre of Excellence in Biotechnology and Development, Discipline of Biological Sciences, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Danielle M. Santarelli
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Shaun D. Roman
- ARC Centre of Excellence in Biotechnology and Development, Discipline of Biological Sciences, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Brett Nixon
- ARC Centre of Excellence in Biotechnology and Development, Discipline of Biological Sciences, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Eileen A. McLaughlin
- ARC Centre of Excellence in Biotechnology and Development, Discipline of Biological Sciences, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- * E-mail:
| |
Collapse
|
27
|
Kumar De A, Malakar D, Akshey YS, Jena MK, Dutta R. Isolation and characterization of embryonic stem cell-like cells from in vitro produced goat (Capra hircus) embryos. Anim Biotechnol 2012; 22:181-96. [PMID: 22132812 DOI: 10.1080/10495398.2011.622189] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of the present study was to isolate and characterize goat embryonic stem cell-like cells from in vitro produced goat embryos. Inner cell mass (ICM) cells were isolated either mechanically or by enzymatic digestion from 150 blastocysts and 35 hatched blastocysts whereas 100 morulae were used for blastomeres isolation mechanically. The ICM derived cells or blastomeres were cultured on a feeder layer. The primary colony formation was significantly higher (P < 0.01) for hatched blastocysts (77.14%) than early/expanded blastocysts (54%) or morula (14%). When ICMs were isolated mechanically the primary colony formation for hatched blastocysts (90%) as well as blastocysts (66%) were significantly more than when ICMs were isolated by enzymatic digestion (60% and 30%, respectively). The colonies were disaggregated either mechanically or by enzymatic digestion for further subculture. When mechanical method was followed, the colonies remained undifferentiated up to 15 passages and three ES cell-like cell lines were produced (gES-1, gES-2, and gES-3). However, enzymatic disaggregation resulted in differentiation. The undifferentiated cells showed stem cell like morphological features, normal karyotype, and expressed stem cell specific surface markers like alkaline phosphatase, TRA-1-61, TRA-1-81, and intracellular markers Oct4, Sox2, and Nanog. Following prolonged culture of the ES cell-like cells were differentiated into several types of cells including neuron like and epithelium-like cells. In conclusion, goat embryonic stem cell-like cells can be isolated from in vitro produced goat embryos and can be maintained for long periods in culture.
Collapse
Affiliation(s)
- Arun Kumar De
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | | | | | | | | |
Collapse
|
28
|
Kuo CH, Deng JH, Deng Q, Ying SY. A novel role of miR-302/367 in reprogramming. Biochem Biophys Res Commun 2012; 417:11-6. [DOI: 10.1016/j.bbrc.2011.11.058] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 11/14/2011] [Indexed: 11/25/2022]
|
29
|
Iwagawa T, Ohuchi SP, Watanabe S, Nakamura Y. Selection of RNA aptamers against mouse embryonic stem cells. Biochimie 2011; 94:250-7. [PMID: 22085640 DOI: 10.1016/j.biochi.2011.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/28/2011] [Indexed: 12/30/2022]
Abstract
Embryonic stem cells (ESCs) are capable of unlimited self-renewal and differentiation into multiple cell types. Recent large-scale analyses have identified various cell surface molecules on ESCs. Some of them are considered to be beneficial markers for characterization of cellular phenotypes and/or play an essential role for regulating the differentiation state. Thus, it is desired to efficiently produce affinity reagents specific to these molecules. In this study, to develop such reagents for mouse ESCs (mESCs), we selected RNA aptamers against intact, live mESCs using several selection strategies. The initial selection provided us with several anti-mESC aptamers of distinct sequences, which unexpectedly react with the same molecule on mESCs. Then, to isolate aptamers against different surface markers on mESCs, one of the selected aptamers was used as a competitor in the subsequent selections. In addition, one of the selections further employed negative selection against differentiated mouse cells. Consequently, we successfully isolated three classes of anti-mESC aptamers that do not compete with one another. The isolated aptamers were shown to distinguish mESCs from differentiated mouse cell lines and trace the differentiation process of mESCs. These aptamers could prove useful for developing molecular probes and manipulation tools for mESCs.
Collapse
Affiliation(s)
- Toshiro Iwagawa
- Division of Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
30
|
McIver S, Roman S, Nixon B, McLaughlin E. miRNA and mammalian male germ cells. Hum Reprod Update 2011; 18:44-59. [DOI: 10.1093/humupd/dmr041] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
31
|
Kim S, Izpisua Belmonte JC. Pluripotency of male germline stem cells. Mol Cells 2011; 32:113-21. [PMID: 21448589 PMCID: PMC3887674 DOI: 10.1007/s10059-011-1024-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/06/2011] [Accepted: 03/07/2011] [Indexed: 12/22/2022] Open
Abstract
The ethical issues and public concerns regarding the use of embryonic stem (ES) cells in human therapy have motivated considerable research into the generation of pluripotent stem cell lines from non-embryonic sources. Numerous reports have shown that pluripotent cells can be generated and derived from germline stem cells (GSCs) in mouse and human testes during in vitro cultivation. The gene expression patterns of these cells are similar to those of ES cells and show the typical self-renewal and differentiation patterns of pluripotent cells in vivo and in vitro. However, the mechanisms underlying the spontaneous dedifferentiation of GSCs remain to be elucidated. Studies to identify master regulators in this reprogramming process are of critical importance for understanding the gene regulatory networks that sustain the cellular status of these cells. The results of such studies would provide a theoretical background for the practical use of these cells in regenerative medicine. Such studies would also help elucidate the molecular mechanisms underlying certain diseases, such as testicular germ cell tumors.
Collapse
Affiliation(s)
- Sungtae Kim
- Department of Chemistry, Korea University, Seoul 136-701, Korea
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Center of Regenerative Medicine in Barcelona, Dr. Aiguader, Barcelona, Spain
| |
Collapse
|
32
|
Shin JY, Gupta MK, Jung YH, Uhm SJ, Lee HT. Differential genomic imprinting and expression of imprinted microRNAs in testes-derived male germ-line stem cells in mouse. PLoS One 2011; 6:e22481. [PMID: 21799869 PMCID: PMC3142150 DOI: 10.1371/journal.pone.0022481] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 06/22/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Testis-derived male germ-line stem (GS) cells, the in vitro counterpart of spermatogonial stem cells (SSC), can acquire multipotency under appropriate culture conditions to become multipotent adult germ-line stem (maGS) cells, which upon testicular transplantation, produce teratoma instead of initiating spermatogenesis. Consequently, a molecular marker that can distinguish GS cells from maGS cells would be of potential value in both clinical and experimental research settings. METHODS AND FINDINGS Using mouse as a model system, here we show that, similar to sperm, expression of imprinted and paternally expressed miRNAs (miR-296-3p, miR-296-5p, miR-483) were consistently higher (P<0.001), while those of imprinted and maternally expressed miRNA (miR-127, miR-127-5p) were consistently lower (P<0.001) in GS cells than in control embryonic stem (ES) cells. DNA methylation analyses of imprinting control regions (ICR), that control the expression of all imprinted miRNAs in respective gene clusters (Gnas-Nespas DMR, Igf2-H19 ICR and Dlk1-Dio3 IG-DMR), confirmed that imprinted miRNAs were androgenetic in GS cells. On the other hand, DNA methylation of imprinted miRNA genes in maGS cells resembled those of ES cells but the expression pattern of the imprinted miRNAs was intermediate between those of GS and ES cells. The expression of imprinted miRNAs in GS and maGS cells were also altered during their in vitro differentiation and varied both with the differentiation stage and the miRNA. CONCLUSIONS Our data suggest that GS cells have androgenetic DNA methylation and expression of imprinted miRNAs which changes to ES cell-like pattern upon their conversion to maGS cells. Differential genomic imprinting of imprinted miRNAs may thus, serve as epigenetic miRNA signature or molecular marker to distinguish GS cells from maGS cells.
Collapse
Affiliation(s)
- Ji Young Shin
- Department of Animal Biotechnology, Bio-Organ Research Center/Animal Resources Research Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, South Korea
| | - Mukesh Kumar Gupta
- Department of Animal Biotechnology, Bio-Organ Research Center/Animal Resources Research Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, South Korea
| | - Yoon Hee Jung
- Department of Animal Biotechnology, Bio-Organ Research Center/Animal Resources Research Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, South Korea
| | - Sang Jun Uhm
- Department of Animal Biotechnology, Bio-Organ Research Center/Animal Resources Research Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, South Korea
| | - Hoon Taek Lee
- Department of Animal Biotechnology, Bio-Organ Research Center/Animal Resources Research Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, South Korea
| |
Collapse
|
33
|
Fagoonee S, Pellicano R, Silengo L, Altruda F. Potential applications of germline cell-derived pluripotent stem cells in organ regeneration. Organogenesis 2011; 7:116-122. [PMID: 21593601 PMCID: PMC3142448 DOI: 10.4161/org.7.2.16284] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/24/2011] [Accepted: 05/02/2011] [Indexed: 01/01/2023] Open
Abstract
Impressive progress has been made since the turn of the century in the field of stem cells. Different types of stem cells have now been isolated from different types of tissues. Pluripotent stem cells are the most promising cell source for organ regeneration. One such cell type is the germline cell-derived pluripotent cell, which is derived from adult spermatogonial stem cells. The germline cell-derived pluripotent stem cells have been obtained from both human and mouse and, importantly, are adult stem cells with embryonic stem cell-like properties that do not require specific manipulations for pluripotency acquisition, hence bypassing problems related to induced pluripotent stem cells and embryonic stem cells. The germline cell-derived pluripotent stem cells have been induced to differentiate into cells deriving from the three germ layers and shown to be functional in vitro. This review will discuss the plasticity of the germline cell-derived pluripotent stem cells and their potential applications in human organ regeneration, with special emphasis on liver regeneration. Potential problems related to their use are also highlighted.
Collapse
|
34
|
Condic ML, Rao M. Alternative sources of pluripotent stem cells: ethical and scientific issues revisited. Stem Cells Dev 2011; 19:1121-9. [PMID: 20397928 DOI: 10.1089/scd.2009.0482] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stem cell researchers in the United States continue to face an uncertain future, because of the changing federal guidelines governing this research, the restrictive patent situation surrounding the generation of new human embryonic stem cell lines, and the ethical divide over the use of embryos for research. In this commentary, we describe how recent advances in the derivation of induced pluripotent stem cells and the isolation of germ-line-derived pluripotent stem cells resolve a number of these uncertainties. The availability of patient-matched, pluripotent stem cells that can be obtained by ethically acceptable means provides important advantages for stem cell researchers, by both avoiding protracted ethical debates and giving U.S. researchers full access to federal funding. Thus, ethically uncompromised stem cells, such as those derived by direct reprogramming or from germ-cell precursors, are likely to yield important advances in stem cell research and move the field rapidly toward clinical applications.
Collapse
Affiliation(s)
- Maureen L Condic
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah 84132-3401, USA.
| | | |
Collapse
|
35
|
Murray MJ, Saini HK, van Dongen S, Palmer RD, Muralidhar B, Pett MR, Piipari M, Thornton CM, Nicholson JC, Enright AJ, Coleman N. The two most common histological subtypes of malignant germ cell tumour are distinguished by global microRNA profiles, associated with differential transcription factor expression. Mol Cancer 2010; 9:290. [PMID: 21059207 PMCID: PMC2993676 DOI: 10.1186/1476-4598-9-290] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 11/08/2010] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND We hypothesised that differences in microRNA expression profiles contribute to the contrasting natural history and clinical outcome of the two most common types of malignant germ cell tumour (GCT), yolk sac tumours (YSTs) and germinomas. RESULTS By direct comparison, using microarray data for paediatric GCT samples and published qRT-PCR data for adult samples, we identified microRNAs significantly up-regulated in YSTs (n = 29 paediatric, 26 adult, 11 overlapping) or germinomas (n = 37 paediatric). By Taqman qRT-PCR we confirmed differential expression of 15 of 16 selected microRNAs and further validated six of these (miR-302b, miR-375, miR-200b, miR-200c, miR-122, miR-205) in an independent sample set. Interestingly, the miR-302 cluster, which is over-expressed in all malignant GCTs, showed further over-expression in YSTs versus germinomas, representing six of the top eight microRNAs over-expressed in paediatric YSTs and seven of the top 11 in adult YSTs. To explain this observation, we used mRNA expression profiles of paediatric and adult malignant GCTs to identify 10 transcription factors (TFs) consistently over-expressed in YSTs versus germinomas, followed by linear regression to confirm associations between TF and miR-302 cluster expression levels. Using the sequence motif analysis environment iMotifs, we identified predicted binding sites for four of the 10 TFs (GATA6, GATA3, TCF7L2 and MAF) in the miR-302 cluster promoter region. Finally, we showed that miR-302 family over-expression in YST is likely to be functionally significant, as mRNAs down-regulated in YSTs were enriched for 3' untranslated region sequences complementary to the common seed of miR-302a~miR-302d. Such mRNAs included mediators of key cancer-associated processes, including tumour suppressor genes, apoptosis regulators and TFs. CONCLUSIONS Differential microRNA expression is likely to contribute to the relatively aggressive behaviour of YSTs and may enable future improvements in clinical diagnosis and/or treatment.
Collapse
Affiliation(s)
- Matthew J Murray
- Medical Research Council Cancer Cell Unit, Cambridge, CB2 0XZ, UK
| | - Harpreet K Saini
- EMBL-European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | - Stijn van Dongen
- EMBL-European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | - Roger D Palmer
- Medical Research Council Cancer Cell Unit, Cambridge, CB2 0XZ, UK
| | | | - Mark R Pett
- Medical Research Council Cancer Cell Unit, Cambridge, CB2 0XZ, UK
| | - Matias Piipari
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Claire M Thornton
- Department of Pathology, Royal Group of Hospitals Trust, Belfast, UK
| | - James C Nicholson
- Department of Paediatric Haematology and Oncology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Anton J Enright
- EMBL-European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | - Nicholas Coleman
- Medical Research Council Cancer Cell Unit, Cambridge, CB2 0XZ, UK
- Department of Pathology, University of Cambridge, CB2 1QP, UK
| |
Collapse
|
36
|
Lee MR, Kim JS, Kim KS. miR-124a is important for migratory cell fate transition during gastrulation of human embryonic stem cells. Stem Cells 2010; 28:1550-9. [PMID: 20665740 DOI: 10.1002/stem.490] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Precise control of gene expression is of paramount importance for proper embryonic development. Although a number of microRNAs (miRNAs) has been implicated in fine-tuning mRNA translation during development, their exact roles for gastrulation, particularly in connection with functional targets, have yet to be clarified, with regard to stage-specific cell migration to form three embryonic germ layers. We found that miR-124a is expressed in human embryonic stem cells (hESC), but is gradually downregulated during embryoid body (EB) formation in vitro. We also provide evidence that SLUG and IQGAP1, which modulates rearrangement of the migratory cytoskeleton, are specific targets for miR-124a during EB formation. Furthermore, we show that the beginning of cell migration, a hallmark event in gastrulation, is tightly coupled with downregulation of miR-124a during EB formation and induction of SLUG and IQGAP1. Overexpressed miR-124a in hESC reduced expression of SLUG and IQGAP1 and blocked migratory cell behavior in EB. An expression level of MIXL1, associated with gastulation process, was also inversely correlated with expression of miR-124a. Taken together, our results strongly suggest that miR-124a may play an active role in inhibiting hESCs from differentiation into EB by downregulating expression of SLUG and IQGAP1, thereby maintaining stemness.
Collapse
Affiliation(s)
- Man Ryul Lee
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, Korea
| | | | | |
Collapse
|
37
|
PSCDGs of mouse multipotent adult germline stem cells can enter and progress through meiosis to form haploid male germ cells in vitro. Differentiation 2010; 80:184-94. [DOI: 10.1016/j.diff.2010.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 08/03/2010] [Accepted: 08/12/2010] [Indexed: 11/22/2022]
|
38
|
Jung YH, Gupta MK, Shin JY, Uhm SJ, Lee HT. MicroRNA signature in testes-derived male germ-line stem cells. Mol Hum Reprod 2010; 16:804-810. [PMID: 20610616 DOI: 10.1093/molehr/gaq058] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The testis-derived male germ-line stem (GS) cell, the in vitro counterpart of spermatogonial stem cell (SSC), can initiate donor-derived spermatogenesis in recipient testes and therefore, has been viewed as a future therapeutic modality for treatment of male infertility in azoospermic patients and in cancer patients who are expecting chemotherapy. Upon extended in vitro culture, GS cells also generate a second cell type called multipotent adult germ-line stem (maGS) cell which, upon testicular transplantation, produces teratoma instead of initiating spermatogenesis. Here, we show that expressions of both Let-7a and Let-7d were consistently higher while that of miR-294 (embryonic stem cell-cycle-regulating miRNA; ESCC) was lower in GS cells than in maGS cells. Furthermore, among several putative targets of Let-7 identified by in silico bioinformatics, expressions of Igf2 and H19 mRNA targets significantly differed between GS and maGS cells. However, although the CTCF binding factor (a component of DNA methylation machinery at Igf2-H19 cluster) was also a putative target for Let-7, the difference in expressions of Igf2 and H19 between GS and maGS cells was not mediated through a change in DNA methylation. Both GS and maGS cells maintained androgenetic imprinting at the Igf2-H19 imprinting control region and Peg1 differentially methylated region. In conclusion, our study suggests that high Let-7 expression may be a unique property of GS cells and expressions of Let-7 and ESCC miRNAs may serve as miRNA signatures to distinguish them from maGS cells during clinical transplantation, to avoid the likelihood of teratoma formation due to maGS cells generated during extended in vitro culture of GS cells.
Collapse
Affiliation(s)
- Yoon Hee Jung
- Department of Bioscience and Biotechnology, Konkuk University, 1, Hwayang-dong, Gwangjin-gu, Seoul 143 701, South Korea
| | | | | | | | | |
Collapse
|
39
|
Koledova Z, Krämer A, Kafkova LR, Divoky V. Cell-cycle regulation in embryonic stem cells: centrosomal decisions on self-renewal. Stem Cells Dev 2010; 19:1663-78. [PMID: 20594031 DOI: 10.1089/scd.2010.0136] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Embryonic stem cells seem to have the intriguing capacity to divide indefinitely while retaining their pluripotency. This self-renewal is accomplished by specialized mechanisms of cell-cycle control. In the last few years, several studies have provided evidence for a direct link between cell-cycle regulation and cell-fate decisions in stem cells. In this review, we discuss the peculiarities of embryonic stem cell-cycle control mechanisms, implicate their involvement in cell-fate decisions, and distinguish centrosomes as important players in the self-renewal versus differentiation roulette.
Collapse
Affiliation(s)
- Zuzana Koledova
- Department of Biology, Faculty of Medicine, Palacky University, Olomouc, Czech Republic.
| | | | | | | |
Collapse
|
40
|
Khromov T, Pantakani DVK, Nolte J, Wolf M, Dressel R, Engel W, Zechner U. Global and gene-specific histone modification profiles of mouse multipotent adult germline stem cells. Mol Hum Reprod 2010; 17:166-74. [DOI: 10.1093/molehr/gaq085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
41
|
Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K. The microRNA spectrum in 12 body fluids. Clin Chem 2010; 56:1733-41. [PMID: 20847327 DOI: 10.1373/clinchem.2010.147405] [Citation(s) in RCA: 2067] [Impact Index Per Article: 137.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are small, noncoding RNAs that play an important role in regulating various biological processes through their interaction with cellular messenger RNAs. Extracellular miRNAs in serum, plasma, saliva, and urine have recently been shown to be associated with various pathological conditions including cancer. METHODS With the goal of assessing the distribution of miRNAs and demonstrating the potential use of miRNAs as biomarkers, we examined the presence of miRNAs in 12 human body fluids and urine samples from women in different stages of pregnancy or patients with different urothelial cancers. Using quantitative PCR, we conducted a global survey of the miRNA distribution in these fluids. RESULTS miRNAs were present in all fluids tested and showed distinct compositions in different fluid types. Several of the highly abundant miRNAs in these fluids were common among multiple fluid types, and some of the miRNAs were enriched in specific fluids. We also observed distinct miRNA patterns in the urine samples obtained from individuals with different physiopathological conditions. CONCLUSIONS MicroRNAs are ubiquitous in all the body fluid types tested. Fluid type-specific miRNAs may have functional roles associated with the surrounding tissues. In addition, the changes in miRNA spectra observed in the urine samples from patients with different urothelial conditions demonstrates the potential for using concentrations of specific miRNAs in body fluids as biomarkers for detecting and monitoring various physiopathological conditions.
Collapse
Affiliation(s)
- Jessica A Weber
- Institute for Systems Biology, 1441 North 34th St., Seattle, WA 98103, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Meyer S, Nolte J, Opitz L, Salinas-Riester G, Engel W. Pluripotent embryonic stem cells and multipotent adult germline stem cells reveal similar transcriptomes including pluripotency-related genes. Mol Hum Reprod 2010; 16:846-55. [PMID: 20624824 DOI: 10.1093/molehr/gaq060] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA microarray analysis was performed with mouse multipotent adult germline stem cells (maGSCs) and embryonic stem cells (ESCs) from different genetic backgrounds cultured under standard ESC-culture conditions and under differentiation-promoting conditions by the withdrawal of the leukemia inhibitory factor (LIF) and treatment with retinoic acid (RA). The analyzed undifferentiated cell lines are very similar based on their global gene expression pattern and show 97-99% identity dependent on the analyzed background. Only 621 genes are differentially expressed in cells derived from mouse 129SV-background and 72 genes show differences in expression in cells generated from transgenic Stra8-EGFP/Rosa26-LacZ-background. Both maGSCs and ESCs express the same genes involved in the regulation of pluripotency and even show no differences in the expression level of these genes. When comparing maGSCs with previously published signature genes of other pluripotent cell lines, we found that maGSCs shared a very similar gene expression pattern with embryonic germ cells (EGCs). Also after differentiation of maGSCs and ESCs the transcriptomes of the cell lines are nearly identical which suggests that both cell types differentiate spontaneously in a very similar way. This is the first study, at transcriptome level, to compare ESCs and a pluripotent cell line derived from an adult organism (maGSCs).
Collapse
Affiliation(s)
- S Meyer
- Institute of Human Genetics, Georg-August-University Göttingen, Heinrich-Düker-Weg 12, D-37073 Göttingen, Germany
| | | | | | | | | |
Collapse
|
43
|
Zovoilis A, Pantazi A, Smorag L, Opitz L, Riester GS, Wolf M, Zechner U, Holubowska A, Stewart CL, Engel W. Embryonic stem cell-related miRNAs are involved in differentiation of pluripotent cells originating from the germ line. ACTA ACUST UNITED AC 2010; 16:793-803. [DOI: 10.1093/molehr/gaq053] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Schnerch A, Cerdan C, Bhatia M. Distinguishing between mouse and human pluripotent stem cell regulation: the best laid plans of mice and men. Stem Cells 2010; 28:419-30. [PMID: 20054863 DOI: 10.1002/stem.298] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pluripotent stem cells (PSCs) have been derived from the embryos of mice and humans, representing the two major sources of PSCs. These cells are universally defined by their developmental properties, specifically their self-renewal capacity and differentiation potential which are regulated in mice and humans by complex transcriptional networks orchestrated by conserved transcription factors. However, significant differences exist in the transcriptional networks and signaling pathways that control mouse and human PSC self-renewal and lineage development. To distinguish between universally applicable and species-specific features, we collated and compared the molecular and cellular descriptions of mouse and human PSCs. Here we compare and contrast the response to signals dictated by the transcriptome and epigenome of mouse and human PSCs that will hopefully act as a critical resource to the field. These analyses underscore the importance of accounting for species differences when designing strategies to capitalize on the clinical potential of human PSCs.
Collapse
Affiliation(s)
- Angelique Schnerch
- Stem Cell and Cancer Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
45
|
Yi YH, Sun XS, Qin JM, Zhao QH, Liao WP, Long YS. Experimental identification of microRNA targets on the 3′ untranslated region of human FMR1 gene. J Neurosci Methods 2010; 190:34-8. [DOI: 10.1016/j.jneumeth.2010.04.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/22/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
|
46
|
Abstract
We review the application of Caenorhabditis elegans as a model system to understand key aspects of stem cell biology. The only bona fide stem cells in C. elegans are those of the germline, which serves as a valuable paradigm for understanding how stem-cell niches influence maintenance and differentiation of stem cells and how somatic differentiation is repressed during germline development. Somatic cells that share stem cell-like characteristics also provide insights into principles in stem-cell biology. The epidermal seam cell lineages lend clues to conserved mechanisms of self-renewal and expansion divisions. Principles of developmental plasticity and reprogramming relevant to stem-cell biology arise from studies of natural transdifferentiation and from analysis of early embryonic progenitors, which undergo a dramatic transition from a pluripotent, reprogrammable condition to a state of committed differentiation. The relevance of these developmental processes to our understanding of stem-cell biology in other organisms is discussed.
Collapse
Affiliation(s)
- Pradeep M. Joshi
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Misty R. Riddle
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Nareg J.V. Djabrayan
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Joel H. Rothman
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
47
|
Dihazi H, Dihazi GH, Nolte J, Meyer S, Jahn O, Müller GA, Engel W. Multipotent adult germline stem cells and embryonic stem cells: comparative proteomic approach. J Proteome Res 2010; 8:5497-510. [PMID: 19810753 DOI: 10.1021/pr900565b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Spermatogonial stem cells isolated from the adult mouse testis acquire under certain culture conditions pluripotency and become so-called multipotent adult germline stem cells (maGSCs). They can be differentiated into somatic cells of the three germ layers. We investigated a subset of the maGSCs and ESCs proteomes using cell lines derived from two different mouse strains, narrow range immobilized pH gradients to favor the detection of less abundant proteins, and DIGE to ensure confident comparison between the two cell types. 2-D reference maps of maGSCs and ESCs in the pI ranges 3-6 and 5-8 were created, and protein entities were further processed for protein identification. By peptide mass fingerprinting and tandem mass spectrometry combined with searches of protein sequence databases, a set of 409 proteins was identified, corresponding to a library of 166 nonredundant stem cell-associated proteins. The identified proteins were classified according to their main known/postulated functions using bioinformatics. Furthermore, we used DIGE to highlight the ESC-like nature of maGSCs on the proteome scale. We concluded that the proteome of maGSCs is highly similar to that of ESCs as we could identify only a small subset of 18 proteins to be differentially expressed between the two cell types. Moreover, comparative analysis of the cell line proteomes from two different mouse strains showed that the interindividual differences in maGSCs proteomes are minimal. With our study, we created for the first time a proteomic map for maGSCs and compared it to the ESCs proteome from the same mouse. We confirmed on the proteome level the ESC-like nature of maGSCs.
Collapse
Affiliation(s)
- Hassan Dihazi
- Department of Nephrology and Rheumatology, Georg-August University Goettingen, Robert-Koch-Strasse 40, D-37075 Goettingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
48
|
Dressel R, Nolte J, Elsner L, Novota P, Guan K, Streckfuss-Bömeke K, Hasenfuss G, Jaenisch R, Engel W. Pluripotent stem cells are highly susceptible targets for syngeneic, allogeneic, and xenogeneic natural killer cells. FASEB J 2010; 24:2164-77. [PMID: 20145206 DOI: 10.1096/fj.09-134957] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multipotent adult germ-line stem cells (maGSCs) and induced pluripotent stem cells (iPSCs) could be used to generate autologous cells for therapeutic purposes, which are expected to be tolerated by the recipient. However, effects of the immune system on these cells have not been investigated. We have compared the susceptibility of maGSC lines to IL-2-activated natural killer (NK) cells with embryonic stem cell (ESC) lines, iPSCs, and F9 teratocarcinoma cells. The killing of pluripotent cell lines by syngeneic, allogeneic, and xenogeneic killer cells ranged between 48 and 265% in chromium release assays when compared to YAC-1 cells, which served as highly susceptible reference cells. With the exception of 2 maGSC lines, they expressed ligands for the activating NK receptor NKG2D that belong to the RAE-1 family, and killing could be inhibited by soluble NKG2D, demonstrating a functional role of these molecules. Furthermore, ligands of the activating receptor DNAM-1 were frequently expressed. The susceptibility to NK cells might constitute a common feature of pluripotent cells. It could result in rejection after transplantation, as suggested by a reduced teratoma growth after NK cell activation in vivo, but it might also offer a strategy to deplete contaminating pluripotent cells before grafting of differentiated cells.
Collapse
Affiliation(s)
- Ralf Dressel
- Department of Cellular and Molecular Immunology, University of Göttingen, Humboldtallee 34, 37073 Göttingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dressel R, Guan K, Nolte J, Elsner L, Monecke S, Nayernia K, Hasenfuss G, Engel W. Multipotent adult germ-line stem cells, like other pluripotent stem cells, can be killed by cytotoxic T lymphocytes despite low expression of major histocompatibility complex class I molecules. Biol Direct 2009; 4:31. [PMID: 19715575 PMCID: PMC2745366 DOI: 10.1186/1745-6150-4-31] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 08/28/2009] [Indexed: 01/09/2023] Open
Abstract
Background Multipotent adult germ-line stem cells (maGSCs) represent a new pluripotent cell type that can be derived without genetic manipulation from spermatogonial stem cells (SSCs) present in adult testis. Similarly to induced pluripotent stem cells (iPSCs), they could provide a source of cellular grafts for new transplantation therapies of a broad variety of diseases. To test whether these stem cells can be rejected by the recipients, we have analyzed whether maGSCs and iPSCs can become targets for cytotoxic T lymphocytes (CTL) or whether they are protected, as previously proposed for embryonic stem cells (ESCs). Results We have observed that maGSCs can be maintained in prolonged culture with or without leukemia inhibitory factor and/or feeder cells and still retain the capacity to form teratomas in immunodeficient recipients. They were, however, rejected in immunocompetent allogeneic recipients, and the immune response controlled teratoma growth. We analyzed the susceptibility of three maGSC lines to CTL in comparison to ESCs, iPSCs, and F9 teratocarcinoma cells. Major histocompatibility complex (MHC) class I molecules were not detectable by flow cytometry on these stem cell lines, apart from low levels on one maGSC line (maGSC Stra8 SSC5). However, using a quantitative real time PCR analysis H2K and B2m transcripts were detected in all pluripotent stem cell lines. All pluripotent stem cell lines were killed in a peptide-dependent manner by activated CTLs derived from T cell receptor transgenic OT-I mice after pulsing of the targets with the SIINFEKL peptide. Conclusion Pluripotent stem cells, including maGSCs, ESCs, and iPSCs can become targets for CTLs, even if the expression level of MHC class I molecules is below the detection limit of flow cytometry. Thus they are not protected against CTL-mediated cytotoxicity. Therefore, pluripotent cells might be rejected after transplantation by this mechanism if specific antigens are presented and if specific activated CTLs are present. Our results show that the adaptive immune system has in principle the capacity to kill pluripotent and teratoma forming stem cells. This finding might help to develop new strategies to increase the safety of future transplantations of in vitro differentiated cells by exploiting a selective immune response against contaminating undifferentiated cells. Reviewers This article was reviewed by Bhagirath Singh, Etienne Joly and Lutz Walter.
Collapse
Affiliation(s)
- Ralf Dressel
- Department of Cellular and Molecular Immunology, University of Göttingen, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ciaudo C, Servant N, Cognat V, Sarazin A, Kieffer E, Viville S, Colot V, Barillot E, Heard E, Voinnet O. Highly dynamic and sex-specific expression of microRNAs during early ES cell differentiation. PLoS Genet 2009; 5:e1000620. [PMID: 19714213 PMCID: PMC2725319 DOI: 10.1371/journal.pgen.1000620] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 07/29/2009] [Indexed: 11/28/2022] Open
Abstract
Embryonic stem (ES) cells are pluripotent cells derived from the inner cell mass of the mammalian blastocyst. Cellular differentiation entails loss of pluripotency and gain of lineage-specific characteristics. However, the molecular controls that govern the differentiation process remain poorly understood. We have characterized small RNA expression profiles in differentiating ES cells as a model for early mammalian development. High-throughput 454 pyro-sequencing was performed on 19-30 nt RNAs isolated from undifferentiated male and female ES cells, as well as day 2 and 5 differentiating derivatives. A discrete subset of microRNAs (miRNAs) largely dominated the small RNA repertoire, and the dynamics of their accumulation could be readily used to discriminate pluripotency from early differentiation events. Unsupervised partitioning around meloids (PAM) analysis revealed that differentiating ES cell miRNAs can be divided into three expression clusters with highly contrasted accumulation patterns. PAM analysis afforded an unprecedented level of definition in the temporal fluctuations of individual members of several miRNA genomic clusters. Notably, this unravelled highly complex post-transcriptional regulations of the key pluripotency miR-290 locus, and helped identify miR-293 as a clear outlier within this cluster. Accordingly, the miR-293 seed sequence and its predicted cellular targets differed drastically from those of the other abundant cluster members, suggesting that previous conclusions drawn from whole miR-290 over-expression need to be reconsidered. Our analysis in ES cells also uncovered a striking male-specific enrichment of the miR-302 family, which share the same seed sequence with most miR-290 family members. Accordingly, a miR-302 representative was strongly enriched in embryonic germ cells derived from primordial germ cells of male but not female mouse embryos. Identifying the chromatin remodelling and E2F-dependent transcription repressors Ari4a and Arid4b as additional targets of miR-302 and miR-290 supports and possibly expands a model integrating possible overlapping functions of the two miRNA families in mouse cell totipotency during early development. This study demonstrates that small RNA sampling throughout early ES cell differentiation enables the definition of statistically significant expression patterns for most cellular miRNAs. We have further shown that the transience of some of these miRNA patterns provides highly discriminative markers of particular ES cell states during their differentiation, an approach that might be broadly applicable to the study of early mammalian development.
Collapse
Affiliation(s)
- Constance Ciaudo
- CNRS UPR2357—Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
- CNRS UMR3215—INSERM U934, Institut Curie, Paris, France
| | - Nicolas Servant
- INSERM U900, Institut Curie, Paris, France
- Ecole des Mines de Paris, ParisTech, Fontainebleau, France
| | - Valérie Cognat
- CNRS UPR2357—Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Alexis Sarazin
- CNRS UMR 8186—Département de Biologie, Ecole Normale Supérieure, Paris, France
| | - Emmanuelle Kieffer
- CNRS UMR7104—INSERM U964, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Developmental Biology, Université de Strasbourg, Faculté de Médecine, Centre Hospitalier Universitaire de Strasbourg, Illkirch, France
| | - Stéphane Viville
- CNRS UMR7104—INSERM U964, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Developmental Biology, Université de Strasbourg, Faculté de Médecine, Centre Hospitalier Universitaire de Strasbourg, Illkirch, France
| | - Vincent Colot
- CNRS UMR 8186—Département de Biologie, Ecole Normale Supérieure, Paris, France
| | - Emmanuel Barillot
- INSERM U900, Institut Curie, Paris, France
- Ecole des Mines de Paris, ParisTech, Fontainebleau, France
| | - Edith Heard
- CNRS UMR3215—INSERM U934, Institut Curie, Paris, France
| | - Olivier Voinnet
- CNRS UPR2357—Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| |
Collapse
|