1
|
Manlulu N, Ravela R, Waing F, Gramaje L. Molecular and physiological basis of heterosis in hybrid rice performance. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:49. [PMID: 40417351 PMCID: PMC12102051 DOI: 10.1007/s11032-025-01577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2025] [Accepted: 05/08/2025] [Indexed: 05/27/2025]
Abstract
Heterosis is often exploited to produce high-yielding crops with better performance than their inbred counterparts. Commercial rice breeding has made use of this phenomenon as well, primarily through the use of cytoplasmic male sterility (CMS) and environment-sensitive genic male sterility (EGMS). However, a limited understanding of the molecular and physiological basis of heterosis prevents researchers from harnessing the full potential of hybrid breeding. This review examines the various explanations and mechanisms of heterosis in rice, including evidence fitting the established theories of heterosis and the use of modern omics approaches to characterizing heterosis and heterosis-related traits. Overdominance was the most frequently cited mechanism behind yield-related traits and various molecular and physiological markers associated with heterosis were identified.
Collapse
Affiliation(s)
- Nia Manlulu
- Philippine Rice Research Institute, Maligaya, Nueva Ecija 3119 Science City of Muñoz, Philippines
| | - Rogemae Ravela
- Philippine Rice Research Institute, Maligaya, Nueva Ecija 3119 Science City of Muñoz, Philippines
| | - Frodie Waing
- Philippine Rice Research Institute, Maligaya, Nueva Ecija 3119 Science City of Muñoz, Philippines
| | - Leonilo Gramaje
- Philippine Rice Research Institute, Maligaya, Nueva Ecija 3119 Science City of Muñoz, Philippines
| |
Collapse
|
2
|
Wei S, Cheng L, Qian H, Li X, Shang L, Zhou Y, Ye X, Zhou Y, Gao Y, Cheng L, Xie C, Yang Q, Qian Q, Zhou W. Florigen-like protein OsFTL1 promotes flowering without essential florigens Hd3a and RFT1 in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1307-1322. [PMID: 39960177 DOI: 10.1111/jipb.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/11/2025] [Indexed: 05/10/2025]
Abstract
Flowering time is a critical agronomic trait in rice, directly influencing grain yield and adaptability to specific planting regions and seasons. Florigens, including FLOWERING LOCUS T (FT) proteins Hd3a (OsFTL2) and RFT1 (OsFTL3), play central roles in transmitting flowering signals through rice's photoperiod regulatory network. While Hd3a and RFT1 have been extensively studied, the functions and interactions of other FT-like proteins remain unclear, limiting advancements in breeding strategies for early-maturing rice varieties. Here, we demonstrate that the florigen-like protein OsFTL1 forms a florigen activation complex (FAC) and promotes flowering under both short-day and long-day conditions. OsFTL1 localizes to the nucleus and cytoplasm, with predominant expression in the shoot base, facilitating its mobilization to the shoot apical meristem (SAM) to initiate flowering. Overexpression of OsFTL1 (OsFTL1-OE) in leaves or shoot bases significantly accelerates flowering and alters plant architecture. In the nucleus, OsFTL1 interacts with GF14c and OsFD1 to form an FAC, activating OsMADS14 and OsMADS15 expression to drive flowering. Markedly, OsFTL1-OE plants deficient in Hd3a and RFT1 exhibited earlier flowering compared with wild-type plants, indicating that OsFTL1 can independently promote flowering. Furthermore, haplotype analysis identified OsFTL1-Hap3, a beneficial variant associated with early flowering and comparable grain yields. These findings revealed that OsFTL1 can substitute for Hd3a and RFT1 in FAC formation, promoting flowering across photoperiods, and highlighting its potential application in breeding early-maturing, high-yield rice varieties suitable for diverse environments.
Collapse
Affiliation(s)
- Shaobo Wei
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Long Cheng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongge Qian
- Lingnan Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lianguang Shang
- Lingnan Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Yujie Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiangyuan Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yupeng Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuan Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lin Cheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chen Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingwen Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qian Qian
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
3
|
Ma X, Wang H, Yan S, Zhou C, Zhou K, Zhang Q, Li M, Yang Y, Li D, Song P, Tang C, Geng L, Sun J, Ji Z, Sun X, Zhou Y, Zhou P, Cui D, Han B, Jing X, He Q, Fang W, Han L. Large-scale genomic and phenomic analyses of modern cultivars empower future rice breeding design. MOLECULAR PLANT 2025; 18:651-668. [PMID: 40083159 DOI: 10.1016/j.molp.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/25/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Modern cultivated rice plays a pivotal role in global food security. China accounts for nearly 30% of the world's rice production and has developed numerous cultivated varieties over the past decades that are well adapted to diverse growing regions. However, the genomic bases underlying the phenotypes of these modern cultivars remain poorly characterized, limiting the exploitation of this vast resource for breeding specialized, regionally adapted cultivars. In this study, we constructed a comprehensive genetic variation map of modern rice using resequencing datasets from 6044 representative cultivars from five major rice-growing regions in China. Our genomic and phenotypic analyses of this diversity panel revealed regional preferences for specific genomic backgrounds and traits, such as heading date, biotic/abiotic stress resistance, and grain shape, which are crucial for adaptation to local conditions and consumer preferences. We identified 3131 quantitative trait loci associated with 53 phenotypes across 212 datasets under various environmental conditions through genome-wide association studies. Notably, we cloned and functionally verified a novel gene related to grain length, OsGL3.6. By integrating multiple datasets, we developed RiceAtlas, a versatile multi-scale toolkit for rice breeding design. We successfully utilized the RiceAtlas breeding design function to rapidly improve the grain shape of the Suigeng4 cultivar. These valuable resources enhance our understanding of the adaptability and breeding requirements of modern rice and can facilitate advances in future rice-breeding initiatives.
Collapse
Affiliation(s)
- Xiaoding Ma
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hao Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shen Yan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuanqing Zhou
- Smartgenomics Technology Institute, Tianjin 301700, China
| | - Kunneng Zhou
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Qiang Zhang
- Jilin Provincial Laboratory of Crop Germplasm Resources, Rice Research Institute, Jilin Academy of Agricultural Sciences, Changchun 136100, China
| | - Maomao Li
- Jiangxi Research Center of Crop Germplasm Resources, National Engineering Laboratory for Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Yaolong Yang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Peng Song
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuifeng Tang
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 620205, China
| | - Leiyue Geng
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063300, China
| | - Jianchang Sun
- Institute of Crop Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Zhiyuan Ji
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianjun Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongli Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peng Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Di Cui
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bing Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Jing
- Smartgenomics Technology Institute, Tianjin 301700, China.
| | - Qiang He
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wei Fang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Longzhi Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Dong H, Wen Q, Wu B, Yan Y, Liang L, Yang L, Hu Y, Zhang B, Xie W, Jin W, Xing Y, Liu H. Overexpressing OsCCT23 Delays Heading Date and Increases Grain Yield by Activating Ghd7 in Rice. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40159714 DOI: 10.1111/pce.15513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Heading date and panicle architecture are pivotal traits that significantly influence rice yield. Here, we identified a gene OsCCT23 encoding a CCT domain-containing protein that delays heading by over 40 days and increases grain yield by 60-104% through overexpressing. Two types transcripts OsCCT23L and OsCCT23S were isolated by 5'RACE, and transgenic events demonstrated that the effect of the predominant transcript OsCCT23S, encoding an 81-aa protein without the B-box domain, is comparable to OsCCT23. OsCCT23 is predominantly expressed in leaves and follows a diurnal expression pattern with a peak at dawn. Overexpressing OsCCT23 upregulated the floral repressor Ghd7 and downregulated the floral inducer RID1, consequently led to the downregulation of Ehd1, Hd3a and RFT1. Additionally, it regulates the expression of certain circadian clock-related genes, including OsGI and OsTOC1. RNA in situ hybridisation analysis confirmed that OsCCT23 activates the expression of Ghd7 in the panicle branch meristem. OsCCT23 suppresses the expression of four OsCKX genes including Gn1a, which associate with cytokinin accumulation in panicles. Natural variation in OsCCT23 promoter identified by eGWAS associates its mRNA abundance and rice heading date. Consequently, OsCCT23 substantially delays heading and significantly increases grain yield, making it highly valuable for rice breeding.
Collapse
Affiliation(s)
- Haijiao Dong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingli Wen
- National Key Laboratory of Crop Genetic Improvement, Hongshan Lab, Huazhong Agricultural University, Wuhan, China
| | - Bi Wu
- National Key Laboratory of Crop Genetic Improvement, Hongshan Lab, Huazhong Agricultural University, Wuhan, China
| | - Yutong Yan
- National Key Laboratory of Crop Genetic Improvement, Hongshan Lab, Huazhong Agricultural University, Wuhan, China
| | - Liwen Liang
- National Key Laboratory of Crop Genetic Improvement, Hongshan Lab, Huazhong Agricultural University, Wuhan, China
- Jiangsu Academy of Forestry, Nanjing, China
| | - Lin Yang
- National Key Laboratory of Crop Genetic Improvement, Hongshan Lab, Huazhong Agricultural University, Wuhan, China
| | - Yong Hu
- National Key Laboratory of Crop Genetic Improvement, Hongshan Lab, Huazhong Agricultural University, Wuhan, China
| | - Bo Zhang
- National Key Laboratory of Crop Genetic Improvement, Hongshan Lab, Huazhong Agricultural University, Wuhan, China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, Hongshan Lab, Huazhong Agricultural University, Wuhan, China
| | - Wujun Jin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Hongshan Lab, Huazhong Agricultural University, Wuhan, China
| | - Haiyang Liu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Yangtze University, Jingzhou, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Agricultural College, Yangtze University, Jingzhou, China
| |
Collapse
|
5
|
Yu X, Wang J, Ma W, Yi F, Zhang P. Synergy of osmotic adjustment and antioxidant activity in Catalpa bungei: alleviating persistent drought stress from SL to NSL. FRONTIERS IN PLANT SCIENCE 2025; 16:1536795. [PMID: 40144754 PMCID: PMC11936999 DOI: 10.3389/fpls.2025.1536795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/13/2025] [Indexed: 03/28/2025]
Abstract
Introduction Catalpa bungei C. A. Mey is a precious timber and garden tree species native to China. It is mainly distributed in the semi-arid regions of northern China, where drought stress severely affects its growth. Methods In this study, we investigated the physiological responses and gene expression profiles of C. bungei seedlings subjected to a 28-day drought stress treatment. Results and discussion By reducing stomatal conductance (Cond) and increasing proline (Pro) and soluble sugar contents (SS), C. bungei alleviated mild drought stress (7-14 days). Under moderate drought stress (14-21 days), a synergistic interaction of jasmonic acid (JA) and abscisic acid (ABA) enhanced catalase (CAT) activity and proline (Pro) content, while downregulating guard cell osmotic potential, thereby further decreasing stomatal conductance (Cond). Upon reaching severe drought stress (21-28 days, SWC 22%, LWC 73%), the activity of antioxidant enzymes and the content of osmotic substances continued to increase, while the structure of photosynthetic organs was damaged, resulting in a shift from stomatal limitation (SL) to non-stomatal limitation (NSL). Therefore, C. bungei mitigates mild drought stress through osmotic regulation, and ABA and JA coordinate antioxidant defenses and osmotic regulation as drought persists. Once the shift from SL to NSL caused by severe drought stress, the aforementioned mechanism ceases to be effective in mitigating the deleterious effects of drought stress on C. bungei. These findings enhance our comprehension of the mechanisms underlying C. bungei's response to prolonged drought, providing valuable insights for the precise evaluation of drought intensity and facilitating efficient management of C. bungei plantations.
Collapse
Affiliation(s)
- Xiaochi Yu
- Forestry College, Northeast Forestry University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Fei Yi
- College of Biological and Pharmaceutical Sciences, Three Gorges University, Yichang, China
| | - Peng Zhang
- Forestry College, Northeast Forestry University, Harbin, China
| |
Collapse
|
6
|
Lou Q, Chen Y, Wang X, Zhang Y, Gao T, Shi J, Yan M, Feng F, Xu K, Lin F, Xie S, Xi X, Weikun Li, Nie Y, Gao H, Xia H, Wang L, Li T, Chen S, Zhu Y, Zhang J, Mei H, Chen L, Yang W, Luo L. Phenomics-assisted genetic dissection and molecular design of drought resistance in rice. PLANT COMMUNICATIONS 2025; 6:101218. [PMID: 39645582 PMCID: PMC11956149 DOI: 10.1016/j.xplc.2024.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/16/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Dissecting the mechanism of drought resistance (DR) and designing drought-resistant rice varieties are promising strategies to address the challenge of climate change. Here, we selected a typical drought-avoidant (DA) variety, IRAT109, and a drought-tolerant (DT) variety, Hanhui15, as parents to develop a stable recombinant inbred line (RIL) population (F8, 1262 lines). The de novo assembled genomes of both parents were released. By resequencing of the RIL population, a set of 1 189 216 reliable SNPs were obtained and used to construct a dense genetic map. Using above- and belowground phenomic platforms and multimodal cameras, we captured 139 040 image-based traits (i-traits) of whole-plant phenotypes in response to drought stress throughout the entire rice growth period and identified 32 586 drought-responsive quantitative trait loci (QTLs), including 2097 unique QTLs. QTLs associated with panicle i-traits occurred more than 600 times on the middle of chromosome 8, and QTLs associated with leaf i-traits occurred more than 800 times on the 5' end of chromosome 3, indicating the potential effects of these QTLs on plant phenotypes. We selected three candidate genes (OsMADS50, OsGhd8, OsSAUR11) related to leaf, panicle, and root traits, respectively, and verified their functions in DR. OsMADS50 was found to negatively regulate DR by modulating leaf dehydration, grain size, and downward root growth. A total of 18 and 21 composite QTLs significantly related to grain weight and plant biomass were also screened from 597 lines in the RIL population under drought conditions in field experiments, and the composite QTL regions showed substantial overlap (76.9%) with known DR gene regions. Based on three candidate DR genes, we proposed a haplotype design suitable for different environments and breeding objectives. This study provides a valuable reference for multimodal and time-series phenomic analyses, deciphers the genetic mechanisms of DA and DT rice varieties, and offers a molecular navigation map for breeding of DR varieties.
Collapse
Affiliation(s)
- Qiaojun Lou
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Yunyu Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Wang
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yulu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingting Gao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiawei Shi
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming Yan
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Fangjun Feng
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Kai Xu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Feng Lin
- Zhejiang University, Hangzhou 310058, China
| | - Shangyuan Xie
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyan Xi
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Weikun Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Nie
- Jiangxi Research and Development Center of Super Rice, Nanchang Branch of Chinese National Center for Rice Improvement, Nanchang 330200, China
| | - Huan Gao
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Hui Xia
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Lei Wang
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Tiemei Li
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Shoujun Chen
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanwei Mei
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Liang Chen
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China.
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China.
| |
Collapse
|
7
|
Bian Z, Chen M, Wang L, Ma X, Yu Q, Jia Z, Wu J, Wei H, Liu H, Liu Y, Luo L, Yu S. Overexpressing OsNF-YB12 elevated the content of jasmonic acid and impaired drought tolerance in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112397. [PMID: 39864559 DOI: 10.1016/j.plantsci.2025.112397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/07/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Nuclear factor Y (NF-Y) is an evolutionarily conserved heterotrimeric transcription factor in eukaryotes. In a previous study, OsNF-YB12 was confirmed to be associated with drought tolerance using the Ecotilling method. In this study, real-time quantitative RT-PCR revealed that OsNF-YB12 was induced by various abiotic stresses and phytohormones, with expression levels differing between leaves and roots. Rice overexpressing OsNF-YB12 was more sensitive to salinity and PEG osmotic stresses at seed germination stage, as well as reduced drought tolerance at seedling stage. Notably, the accumulation of free proline and photosynthetic efficiency was significantly declined in OsNF-YB12 transgenic plants following osmotic stimuli. Transcriptomic analysis of transgenic OsNF-YB12 plants indicated that OsNF-YB12 could upregulate terpene metabolism related to defense responses and the expression levels of JAZ proteins under normal conditions, while downregulating osmotic stress-related regulatory genes under osmotic stress, in comparison to the wild type. Further analysis revealed that overexpressing OsNF-YB12 promoted JA biosynthesis and inhibit seed germination. Haplotype analysis suggested that OsNF-YB12 may have been selected during the differentiation of indica and japonica rice varieties. Therefore, this research provides a potential molecular target for exploring and harnessing the haplotype diversity of OsNF-YB12 to enhance yield stability under drought stress during rice domestication and improvement.
Collapse
Affiliation(s)
- Zhijuan Bian
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meiyao Chen
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Wang
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Xiaosong Ma
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Qing Yu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zixin Jia
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; College of Life Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghong Wu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Haibin Wei
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Hongyan Liu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Yi Liu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China.
| | - Shunwu Yu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China.
| |
Collapse
|
8
|
Ueda T, Taniguchi Y, Adachi S, Shenton M, Hori K, Tanaka J. Gene Pyramiding Strategies for Sink Size and Source Capacity for High-Yield Japonica Rice Breeding. RICE (NEW YORK, N.Y.) 2025; 18:6. [PMID: 39945924 PMCID: PMC11825427 DOI: 10.1186/s12284-025-00756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025]
Abstract
In Japan, high-yielding indica rice cultivars such as 'Habataki', 'Takanari', and 'Hokuriku 193' have been bred, and many genes related to the high-yield traits have been isolated from these and other indica cultivars. Many such genes are expected to be effective in increasing the yield of japonica rice, including those that increase sink size. It has been expected that high-yielding japonica rice could be bred by introducing sink-size genes into the genetic background of japonica cultivars such as 'Koshihikari', which show strong cold tolerance, have good taste characteristics, and fetch a high price. However, the corresponding near-isogenic lines did not necessarily produce high yields when tested in the field. In this review, we summarize information on the major high-yield-related rice genes and discuss pyramiding strategies to further increase the yield of japonica rice. In parallel with increasing sink size, source capacity needs to be increased by increasing photosynthetic rate per unit leaf area (single leaf photosynthesis), improving canopy structure, and increasing translocation capacity during the ripening stage. To implement these strategies, innovative breeding methodologies that efficiently produce the combinations of desired alleles are required.
Collapse
Affiliation(s)
- Tadamasa Ueda
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Yojiro Taniguchi
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Shunsuke Adachi
- Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Matthew Shenton
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Kiyosumi Hori
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Junichi Tanaka
- NARO Headquarters, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
9
|
Lambret Frotte J, Buarque de Gusmão PP, Smith G, Lo SF, Yu SM, Hendron RW, Kelly S, Langdale JA. Increased chloroplast occupancy in bundle sheath cells of rice hap3H mutants revealed by Chloro-Count: a new deep learning-based tool. THE NEW PHYTOLOGIST 2025; 245:1512-1527. [PMID: 39668515 DOI: 10.1111/nph.20332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024]
Abstract
There is an increasing demand to boost photosynthesis in rice to increase yield potential. Chloroplasts are the site of photosynthesis, and increasing their number and size is a potential route to elevate photosynthetic activity. Notably, bundle sheath cells do not make a significant contribution to overall carbon fixation in rice, and thus, various attempts are being made to increase chloroplast content specifically in this cell type. In this study, we developed and applied a deep learning tool, Chloro-Count, and used it to quantify chloroplast dimensions in bundle sheath cells of OsHAP3H gain- and loss-of-function mutants in rice. Loss of OsHAP3H increased chloroplast occupancy in bundle sheath cells by 50%. When grown in the field, mutants exhibited increased numbers of tillers and panicles. The implementation of Chloro-Count enabled precise quantification of chloroplasts in loss- and gain-of-function OsHAP3H mutants and facilitated a comparison between 2D and 3D quantification methods. Collectively, our observations revealed that a mechanism operates in bundle sheath cells to restrict chloroplast occupancy as cell dimensions increase. That mechanism is unperturbed in Oshap3H mutants but loss of OsHAP3H function leads to an increase in chloroplast numbers. The use of Chloro-Count also revealed that 2D quantification is compromised by the positioning of chloroplasts within the cell.
Collapse
Affiliation(s)
- Julia Lambret Frotte
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | | - Georgia Smith
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Shuen-Fang Lo
- International Doctoral Program in Agriculture, National Chung Hsing University, Taichung, 402, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| | - Su-May Yu
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Ross W Hendron
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Steven Kelly
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Jane A Langdale
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
10
|
Chen M, Hong Y, Fan J, Cao D, Yin C, Yu A, Qiu J, Huang X, Wei X. Genetic interaction network of quantitative trait genes for heading date in rice. J Genet Genomics 2025:S1673-8527(25)00001-3. [PMID: 39778714 DOI: 10.1016/j.jgg.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Several quantitative trait genes (QTGs) related to rice heading date, a key factor for crop development and yield, have been identified, along with complex interactions among genes. However, a comprehensive genetic interaction network for these QTGs has not yet been established. In this study, we use 18K-rice lines to identify QTGs and their epistatic interactions affecting rice heading date. We identify 264 pairs of interacting QTL and construct a comprehensive genetic network of these QTL. On average, the epistatic effects of QTL pairs are estimated to be approximately 12.5% of additive effects of identified QTL. Importantly, epistasis vary among different alleles of several heading date genes. Additionally, 57 pairs of interacting QTGs are also significant in their epistatic effects on 12 other agronomic traits. The identified QTL genetic interactions are further validated using near-isogenic lines, yeast two-hybrid, and split-luciferase complementation assays. Overall, this study provides a genetic network of rice heading date genes, which plays a crucial role in regulating rice heading date and influencing multiple related agronomic traits. This network serves as a foundation for understanding the genetic mechanisms of rice quantitative traits and for advancing rice molecular breeding.
Collapse
Affiliation(s)
- Mengjiao Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yifeng Hong
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jiongjiong Fan
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang 311401, China
| | - Dengyi Cao
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chong Yin
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Anjie Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
11
|
Sohail A. Methyltransferase 1 (OsMTS1) interacts with hydroxycinnamoyltransferase 1 (OsHCT1) and promotes heading by upregulating heading date 1 (Hd1). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112291. [PMID: 39414147 DOI: 10.1016/j.plantsci.2024.112291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Heading date determines the distribution and yield potentials of rice, and is an ideal target for crop improvement using CRISPR/Cas9 genome editing system. In this study, we reported the loss-of-function of Methyltransferase 1 (MTS1), which promotes heading in rice. Here, we constructed knockouts and overexpression transgenic plants of OsMTS1 in ZH8015 and Nipponbare (NIP) for the first time to validate its heading date function in rice subspecies Oryza sativa ssp. Indica and O. Sativa ssp. Japonica, respectively. The OsMTS1 knockouts in ZH8015 and NIP rice significantly promoted heading date under both natural short days (NSD) and natural long days (NLD) conditions, while the overexpression of OsMTS1 significantly delayed heading date in ZH8015 and NIP rice under both NSD and NLD conditions. Likewise, the complementation transgenic plants displayed late heading date phenotype. OsMTS1 repressed heading through up-regulating Heading date 1 (Hd1) and down-regulating Early heading date 1 (Ehd1) and Heading date 3a (Hd3a). The OsMTS1 protein interacted with OsHCT1 proteins using a yeast two-hybrid (Y2H) assay. The Y2H and overexpression confirmed that OsMTS1 interacted with OsHCT1, which delayed heading by 4.7 days under NLD. Taken together, CRISPR/Cas9, genetic complementation, and overexpression results validated that OsMTS1 represses heading in Indica and Japonica rice under both NLD and NSD conditions. These results demonstrated that OsMTS1 is a useful target for breeding early maturing rice varieties by CRISPR/Cas9 gene editing of the functional allele.
Collapse
Affiliation(s)
- Amir Sohail
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China.
| |
Collapse
|
12
|
Li Y, Xiong H, Guo H, Xie Y, Zhao L, Gu J, Li H, Zhao S, Ding Y, Zhou C, Fang Z, Liu L. A gain-of-function mutation at the C-terminus of FT-D1 promotes heading by interacting with 14-3-3A and FDL6 in wheat. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:20-35. [PMID: 39276323 DOI: 10.1111/pbi.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/17/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024]
Abstract
Vernalization and photoperiod pathways converging at FT1 control the transition to flowering in wheat. Here, we identified a gain-of-function mutation in FT-D1 that results in earlier heading date (HD), and shorter plant height and spike length in the gamma ray-induced eh1 wheat mutant. Knockout of the wild-type and overexpression of the mutated FT-D1 indicate that both alleles are functional to affect HD and plant height. Protein interaction assays demonstrated that the frameshift mutation in FT-D1eh1 exon 3 led to gain-of-function interactions with 14-3-3A and FDL6, thereby enabling the formation of florigen activation complex (FAC) and consequently activating a flowering-related transcriptomic programme. This mutation did not affect FT-D1eh1 interactions with TaNaKR5 or TaFTIP7, both of which could modulate HD, potentially via mediating FT-D1 translocation to the shoot apical meristem. Furthermore, the 'Segment B' external loop is essential for FT-D1 interaction with FDL6, while residue Y85 is required for interactions with TaNaKR5 and TaFTIP7. Finally, the flowering regulatory hub gene, ELF5, was identified as the FT-D1 regulatory target. This study illustrates FT-D1 function in determining wheat HD with a suite of interaction partners and provides genetic resources for tuning HD in elite wheat lines.
Collapse
Affiliation(s)
- Yuting Li
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Hongchun Xiong
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huijun Guo
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongdun Xie
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Linshu Zhao
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiayu Gu
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huiyuan Li
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shirong Zhao
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuping Ding
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunyun Zhou
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhengwu Fang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Luxiang Liu
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
13
|
Xu X, Jia Q, Li S, Wei J, Ming L, Yu Q, Jiang J, Zhang P, Yao H, Wang S, Xia C, Wang K, Jia Z, Xie W. Redefining the accumulated temperature index for accurate prediction of rice flowering time in diverse environments. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:302-312. [PMID: 39471282 DOI: 10.1111/pbi.14498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 11/01/2024]
Abstract
Accurate prediction of flowering time across diverse environments is crucial for effective crop management and breeding. While the accumulated temperature index (ATI) is widely used as an indicator for estimating flowering time, its traditional definition lacks systematic evaluation and genetic basis understanding. Here, using data from 422 rice hybrids across 47 locations, we identified the optimal ATI calculation window as 1 day after sowing to 26 days before flowering. Based on this redefined ATI, we developed a single-parameter model that outperforms the state-of-the-art reaction norm index model in both accuracy and stability, especially with limited training data. We identified 10 loci significantly associated with ATI variation, including two near known flowering time genes and four linked to ecotype differentiation. To enhance practical utility, we developed an efficient flowering time prediction kit using 28 functionally relevant markers, complemented by a user-friendly online tool (http://xielab.hzau.edu.cn/ATI). Our approach can be easily applied to other crops, as ATI is commonly used across various agricultural systems.
Collapse
Affiliation(s)
- Xingbing Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qiong Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California, Riverside, CA, USA
| | - Sijia Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Julong Wei
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Luchang Ming
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qi Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jing Jiang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Peng Zhang
- State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding, Life Science and Technology Center, China National Seed Group Co., Ltd, Wuhan, China
| | - Honglin Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Shibo Wang
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Chunjiao Xia
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Kai Wang
- State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding, Life Science and Technology Center, China National Seed Group Co., Ltd, Wuhan, China
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California, Riverside, CA, USA
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Xie K, Ren Y, Huang Y, Wang L, Li L, Ye H, Yang C, Wang S, Xu G, Chen A. A conserved nuclear factor YC subunit, NF-YC3, is essential for arbuscule development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17195. [PMID: 39642156 DOI: 10.1111/tpj.17195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024]
Abstract
Establishing reciprocal symbiosis with arbuscular mycorrhizal (AM) fungi is an important evolutionary strategy of most terrestrial plants to adapt to environmental stresses, especially phosphate (Pi) deficiencies. Identifying the key genes essential for AM symbiosis in plants and dissecting their functional mechanisms will be helpful for the breeding of new crop varieties with enhanced nutrient uptake efficiency. Here, we report a nuclear factor YC subunit-encoding gene, OsNF-YC3, whose expression is specifically induced in arbuscule-containing cells, plays an essential role in AM symbiosis. Knockout of OsNF-YC3 resulted in stunted arbuscule morphology and substantially decreased P accumulation, while overexpressing OsNF-YC3 enhanced mycorrhization and Pi uptake efficiency. OsNF-YC3 is directly regulated by OsPHRs, the major regulators of Pi starvation responses. Chromatin immunoprecipitation sequencing analysis uncovered multiple genes with crucial roles in arbuscule development as its potential downstream targets, including the AM-specific Pi transporter gene OsPT11. OsNF-YC3 can form a heterotrimer with the other two NF-Y subunits, OsNF-YA11 and OsNF-YB11, in yeast. Loss of OsNF-YA11 function also severely impaired arbuscule development in its mutants. Overall, our results highlight an essential role of OsNF-YC3 and its potential interacting NF-Y subunit, OsNF-YA11, in regulating AM symbiosis and arbuscule development.
Collapse
Affiliation(s)
- Kun Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuhan Ren
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yujuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingxiao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lechuan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hanghang Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Congfan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuangshuang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiqun Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
15
|
Hlaing MM, Win KT, Yasui H, Yoshimura A, Yamagata Y. A genome-wide association study using Myanmar indica diversity panel reveals a significant genomic region associated with heading date in rice. BREEDING SCIENCE 2024; 74:415-426. [PMID: 39897663 PMCID: PMC11780332 DOI: 10.1270/jsbbs.23083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/29/2024] [Indexed: 02/04/2025]
Abstract
Heading date is a key agronomic trait for adapting rice varieties to different growing areas and crop seasons. The genetic mechanism of heading date in Myanmar rice accessions was investigated using a genome-wide association study (GWAS) in a 250-variety indica diversity panel collected from different geographical regions. Using the days to heading data collected in 2019 and 2020, a major genomic region associated with the heading date, designated as MTA3, was found on chromosome 3. The linkage disequilibrium block of the MTA3 contained the coding sequence (CDS) of the phytochrome gene PhyC but not in its promoter region. Haplotype analysis of the 2-kb promoter and gene regions of PhyC revealed the six haplotypes, PHYCHapA, B, C, D, E, and F. The most prominent haplotypes, PHYCHapA and PHYCHapC, had different CDS and were associated with late heading and early heading phenotypes in MIDP, respectively. The difference in CDS effects between the PHYCHapB, which has identical CDS to PHYCHapA, and PHYCHapC was validated by QTL analysis using an F2 population. The distribution of PHYCHapA in the southern coastal and delta regions and of PHYCHapC in the northern highlands appears to ensure heading at the appropriate time in each area under the local day-length conditions in Myanmar. The natural variation in PhyC would be a major determinant of heading date in Myanmar accessions.
Collapse
Affiliation(s)
- Moe Moe Hlaing
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Khin Thanda Win
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hideshi Yasui
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Atsushi Yoshimura
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiyuki Yamagata
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
16
|
Lee SJ, Kim Y, Kang K, Yoon H, Kang J, Cho SH, Paek NC. Rice CRYPTOCHROME-INTERACTING BASIC HELIX-LOOP-HELIX 1-LIKE interacts with OsCRY2 and promotes flowering by upregulating Early heading date 1. PLANT, CELL & ENVIRONMENT 2024; 47:4498-4515. [PMID: 39012205 DOI: 10.1111/pce.15046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/06/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024]
Abstract
Flowering time is a crucial adaptive response to seasonal variation in plants and is regulated by environmental cues such as photoperiod and temperature. In this study, we demonstrated the regulatory function of rice CRYPTOCHROME-INTERACTING BASIC HELIX-LOOP-HELIX 1-LIKE (OsCIBL1) in flowering time. Overexpression of OsCIB1L promoted flowering, whereas the oscib1l knockout mutation did not alter flowering time independent of photoperiodic conditions. Cryptochromes (CRYs) are blue light photoreceptors that enable plants to sense photoperiodic changes. OsCIBL1 interacted with OsCRY2, a member of the rice CRY family (OsCRY1a, OsCRY1b, and OsCRY2), and bound to the Early heading date 1 (Ehd1) promoter, activating the rice-specific Ehd1-Heading date 3a/RICE FLOWERING LOCUS T 1 pathway for flowering induction. Dual-luciferase reporter assays showed that the OsCIBL1-OsCRY2 complex required blue light to induce Ehd1 transcription. Natural alleles resulting from nonsynonymous single nucleotide polymorphisms in OsCIB1L and OsCRY2 may contribute to the adaptive expansion of rice cultivation areas. These results expand our understanding of the molecular mechanisms controlling rice flowering and highlight the importance of blue light-responsive genes in the geographic distribution of rice.
Collapse
Affiliation(s)
- Sang-Ji Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yunjeong Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kiyoon Kang
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Hyeryung Yoon
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jinku Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung-Hwan Cho
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Reddy BJ, Baradkar SM, Manogna TVSS, Bordoloi D, Bihani SC, Barua NS, Baruah AR, Das BK, Mondal S, Sarma D. A single-base deletion in exon 2 of Hd1 delineates monogenic recessive photoperiod insensitivity in aromatic Joha rice: a novel allele for seasonal adaptability. Biol Res 2024; 57:94. [PMID: 39614365 DOI: 10.1186/s40659-024-00553-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/03/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Assam's aromatic Joha rice is a unique rice class famous for its aroma, taste, and nutritional benefits, which fetch high market prices in domestic and international markets. Joha landraces are inherently poor yielders due to their strong aroma and predominantly photoperiod sensitivity. Hybridization involving non-aromatic HYVs improves yield with concomitant loss of quality. In this context, mutation breeding, a sustainable approach where genetic mutations are induced to create desirable traits, often provides useful allelic variation in specific morpho-agronomic traits. The present study delves into the genetic characterization of a photoperiod-insensitive mutant. As part of our mutation breeding programme, this mutant was isolated from a gamma ray-induced M2 population of a Joha rice landrace, Kon Joha. RESULTS The mutant was unique, and a single recessive gene conditions the induced photoperiod insensitivity. Mutant gene tagging involved 402 SSR and InDel markers, and later polymorphic markers were used for bulk segregant analysis (BSA) in the F2 population of 'mutant × Kalijeera (distant parent)'. BSA revealed an association between the SSR marker RM527 and this mutant trait. This marker is present on chromosome 6 of the rice genome. Using chromosome 6-specific SSR markers in polymorphic screening and BSA revealed another associated marker, RM19725, for the mutant trait. The genomic interval between RM527 and RM19725 harbors a photoperiod-insensitive gene, Hd1, on chromosome 6. Cloning and sequencing of Hd1 genomic fragments from the parents and mutants revealed a single-base deletion in exon 2, leading to a frameshift mutation in the Hd1 protein. This mutation in exon 2 leads to severe structural abnormalities in the CCT domain of the Hd1 protein that is critical for the interaction of the repressing complex with conserved response elements in the florigen gene under long-day conditions, thereby causing photoperiod insensitivity. CONCLUSIONS The mutant's pleasant aroma and other quality characteristics, comparable to those of the parent cultivar, hold significant promise. They expand its potential use in a structured breeding programme aimed at developing high-value aromatic Joha rice. This rice, resilient to winter- and summer-growing environments and with broad seasonal adaptability, could revolutionize the rice market. The practical value of our research is underscored by this exciting possibility.
Collapse
Affiliation(s)
| | - Shreekant M Baradkar
- Nuclear Agriculture and Biotechnology Division (NA&BTD), Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, 400085, India
| | - Tamma V S S Manogna
- Department of Plant Breeding and Genetics, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Dibosh Bordoloi
- Department of Plant Breeding and Genetics, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Subhash C Bihani
- Protein Crystallography Section, Bio-Science Group, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Nagendra Sarma Barua
- Department of Plant Breeding and Genetics, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Akhil Ranjan Baruah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Bikram Kishore Das
- Nuclear Agriculture and Biotechnology Division (NA&BTD), Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division (NA&BTD), Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, 400085, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
| | - Debojit Sarma
- Department of Plant Breeding and Genetics, Assam Agricultural University, Jorhat, Assam, 785013, India.
| |
Collapse
|
18
|
Dwivedi SL, Heslop‐Harrison P, Amas J, Ortiz R, Edwards D. Epistasis and pleiotropy-induced variation for plant breeding. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2788-2807. [PMID: 38875130 PMCID: PMC11536456 DOI: 10.1111/pbi.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
Epistasis refers to nonallelic interaction between genes that cause bias in estimates of genetic parameters for a phenotype with interactions of two or more genes affecting the same trait. Partitioning of epistatic effects allows true estimation of the genetic parameters affecting phenotypes. Multigenic variation plays a central role in the evolution of complex characteristics, among which pleiotropy, where a single gene affects several phenotypic characters, has a large influence. While pleiotropic interactions provide functional specificity, they increase the challenge of gene discovery and functional analysis. Overcoming pleiotropy-based phenotypic trade-offs offers potential for assisting breeding for complex traits. Modelling higher order nonallelic epistatic interaction, pleiotropy and non-pleiotropy-induced variation, and genotype × environment interaction in genomic selection may provide new paths to increase the productivity and stress tolerance for next generation of crop cultivars. Advances in statistical models, software and algorithm developments, and genomic research have facilitated dissecting the nature and extent of pleiotropy and epistasis. We overview emerging approaches to exploit positive (and avoid negative) epistatic and pleiotropic interactions in a plant breeding context, including developing avenues of artificial intelligence, novel exploitation of large-scale genomics and phenomics data, and involvement of genes with minor effects to analyse epistatic interactions and pleiotropic quantitative trait loci, including missing heritability.
Collapse
Affiliation(s)
| | - Pat Heslop‐Harrison
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
- Department of Genetics and Genome Biology, Institute for Environmental FuturesUniversity of LeicesterLeicesterUK
| | - Junrey Amas
- Centre for Applied Bioinformatics, School of Biological SciencesUniversity of Western AustraliaPerthWAAustralia
| | - Rodomiro Ortiz
- Department of Plant BreedingSwedish University of Agricultural SciencesAlnarpSweden
| | - David Edwards
- Centre for Applied Bioinformatics, School of Biological SciencesUniversity of Western AustraliaPerthWAAustralia
| |
Collapse
|
19
|
Peng M, Gan F, Pan C, Lin X, Lin F, Ren Y, Na S, Zhu X, Tang W, Wu Z, Fan X, Chen K. Expression of AtNF-YB1 activates early flowering, showing potential in breeding hybrid rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14538. [PMID: 39344294 DOI: 10.1111/ppl.14538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/02/2024] [Indexed: 10/01/2024]
Abstract
The nuclear factor Y (NF-Y) has been shown to be involved in plant growth and development in response to various environmental signals. However, the integration of these mechanisms into breeding practices for new cultivars has not been extensively investigated. In this study, the Arabidopsis gene AtNF-YB1 was introduced into rice, including inbred Kasalath and the hybrids Jinfeng × Chenghui 727 and Jinfeng × Chuanhui 907. The obtained transgenic rice showed early flowering under both natural long day (NLD) and natural short day (NSD) conditions. For the inbred Kasalath, the transgenic lines clearly showed a shorter plant height and lower grain yield, with a decrease in spike length and grain number but more productive panicles. However, the hybrids with AtNF-YB1 had much smaller or even zero reduction in spike length and grain number and more productive panicles. Thus, maintained or even increased grain yields of the transgenic hybrids were recorded under the NLD conditions. Quantitative PCR analysis indicated that the rice flowering initiation pathways were early activated via the suppression of Ghd7 induction in the transgenic rice. RNA-Seq further demonstrated that three pathways related to plant photosynthesis were markedly upregulated in both Jinfeng B and the hybrid Jinfeng × Chuanhui 907 with AtNF-YB1 expression. Moreover, physiological experiments showed an upregulation of photosynthetic rates in the transgenic lines. Taken together, this study suggests that AtNF-YB1 expression in rice not only induces early flowering but also benefits photosynthesis, which might be used to develop hybrid varieties with early ripening.
Collapse
Affiliation(s)
- Meifang Peng
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Feng Gan
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Chunmei Pan
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaomin Lin
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Feng Lin
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yuanhang Ren
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Shungui Na
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xinhai Zhu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Wenwen Tang
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zhixue Wu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaoli Fan
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Kegui Chen
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
20
|
Li HL, Wu X, Gong M, Xia M, Zhang W, Chen Z, Xing HT. Genome-wide investigation of the nuclear factor Y gene family in Ginger (Zingiber officinale Roscoe): evolution and expression profiling during development and abiotic stresses. BMC Genomics 2024; 25:820. [PMID: 39217307 PMCID: PMC11365145 DOI: 10.1186/s12864-024-10588-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/03/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Nuclear factor Y (NF-Y) plays a vital role in numerous biological processes as well as responses to biotic and abiotic stresses. However, its function in ginger (Zingiber officinale Roscoe), a significant medicinal and dietary vegetable, remains largely unexplored. Although the NF-Y family has been thoroughly identified in many plant species, and the function of individual NF-Y TFs has been characterized, there is a paucity of knowledge concerning this family in ginger. METHODS We identified the largest number of NF-Y genes in the ginger genome using two BLASTP methods as part of our ginger genome research project. The conserved motifs of NF-Y proteins were analyzed through this process. To examine gene duplication events, we employed the Multiple Collinearity Scan toolkit (MCScanX). Syntenic relationships of NF-Y genes were mapped using the Dual Synteny Plotter software. Multiple sequence alignments were performed with MUSCLE under default parameters, and the resulting alignments were used to generate a maximum likelihood (ML) phylogenetic tree with the MEGA X program. RNA-seq analysis was conducted on collected samples, and statistical analyses were performed using Sigma Plot v14.0 (SYSTAT Software, USA). RESULTS In this study, the ginger genome was utilized to identify 36 NF-Y genes (10 ZoNF-YAs, 16 ZoNF-YBs, and 10 ZoNF-YCs), which were renamed based on their chromosomal distribution. Ten distinct motifs were identified within the ZoNF-Y genes, with certain unique motifs being vital for gene function. By analyzing their chromosomal location, gene structure, conserved protein motifs, and gene duplication events, we gained a deeper understanding of the evolutionary characteristics of these ZoNF-Y genes. Detailed analysis of ZoNF-Y gene expression patterns across various tissues, performed through RNA-seq and qRT-PCR, revealed their significant role in regulating ginger rhizome and flower growth and development. Additionally, we identified the ZoNF-Y family genes that responded to abiotic stresses. CONCLUSION This study represents the first identification of the ZoNF-Y family in ginger. Our findings contribute to research on evolutionary characteristics and provide a better understanding of the molecular basis for development and abiotic stress response. Furthermore, it lays the foundation for further functional characterization of ZoNF-Y genes with an aim of ginger crop improvement.
Collapse
Affiliation(s)
- Hong-Lei Li
- Chongqing Engineering Research Center for Horticultural Plant, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Xiaoli Wu
- Chongqing Engineering Research Center for Horticultural Plant, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Min Gong
- Chongqing Engineering Research Center for Horticultural Plant, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - Maoqin Xia
- Chongqing Engineering Research Center for Horticultural Plant, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Wenlin Zhang
- Chongqing Engineering Research Center for Horticultural Plant, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Zhiduan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hai-Tao Xing
- Chongqing Engineering Research Center for Horticultural Plant, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| |
Collapse
|
21
|
Wang P, Yang Y, Li D, Yu Z, zhang B, Zhou X, Xiong L, Zhang J, Wang L, Xing Y. Powerful QTL mapping and favorable allele mining in an all-in-one population: a case study of heading date. Natl Sci Rev 2024; 11:nwae222. [PMID: 39210988 PMCID: PMC11360186 DOI: 10.1093/nsr/nwae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 09/04/2024] Open
Abstract
The multiparent advanced generation intercross (MAGIC) population is characterized with great potentials in power and resolution of quantitative trait locus (QTL) mapping, but single nucleotide polymorphism (SNP)-based GWAS does not fully reach its potential. In this study, a MAGIC population of 1021 lines was developed from four Xian and four Geng varieties from five subgroups of rice. A total of 44 000 genes showed functional polymorphisms among eight parents, including frameshift variations or premature stop codon variations, which provides the potential to map almost all genes of the MAGIC population. Principal component analysis results showed that the MAGIC population had a weak population structure. A high-density bin map of 24 414 bins was constructed. Segregation distortion occurred in the regions possessing the genes underlying genetic incompatibility and gamete development. SNP-based association analysis and bin-based linkage analysis identified 25 significant loci and 47 QTLs for heading date, including 14 known heading date genes. The mapping resolution of genes is dependent on genetic effects with offset distances of <55 kb for major effect genes and <123 kb for moderate effect genes. Four causal variants and noncoding structure variants were identified to be associated with heading date. Three to four types of alleles with strong, intermediate, weak, and no genetic effects were identified from eight parents, providing flexibility for the improvement of rice heading date. In most cases, japonica rice carries weak alleles, and indica rice carries strong alleles and nonfunctional alleles. These results confirm that the MAGIC population provides the exceptional opportunity to detect QTLs, and its use is encouraged for mapping genes and mining favorable alleles for breeding.
Collapse
Affiliation(s)
- Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ying Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Daoyang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhichao Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangchun Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Yazhouwan National Laboratory, Sanya 572024, China
| |
Collapse
|
22
|
Liu W, Han W, Jin G, Gong K, Ma J. Classification of major species in the sericite-Artemisia desert grassland using hyperspectral images and spectral feature identification. PeerJ 2024; 12:e17663. [PMID: 39035157 PMCID: PMC11260411 DOI: 10.7717/peerj.17663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/10/2024] [Indexed: 07/23/2024] Open
Abstract
Background The species composition of and changes in grassland communities are important indices for inferring the number, quality and community succession of grasslands, and accurate monitoring is the foundation for evaluating, protecting, and utilizing grassland resources. Remote sensing technology provides a reliable and powerful approach for measuring regional terrain information, and the identification of grassland species by remote sensing will improve the quality and effectiveness of grassland monitoring. Methods Ground hyperspectral images of a sericite-Artemisia desert grassland in different seasons were obtained with a Soc710 VP imaging spectrometer. First-order differential processing was used to calculate the characteristic parameters. Analysis of variance was used to extract the main species, namely, Seriphidium transiliense (Poljak), Ceratocarpus arenarius L., Petrosimonia sibirica (Pall), bare land and the spectral characteristic parameters and vegetation indices in different seasons. On this basis, Fisher discriminant analysis was used to divide the samples into a training set and a test set at a ratio of 7:3. The spectral characteristic parameters and vegetation indices were used to identify the three main plants and bare land. Results The selection of parameters with significant differences (P < 0.05) between the recognition objects effectively distinguished different land features, and the identification parameters also differed due to differences in growth period and species. The overall accuracy of the recognition model established by the vegetation index decreased in the following order: June (98.87%) > September (91.53%) > April (90.37%). The overall accuracy of the recognition model established by the feature parameters decreased in the following order: September (89.77%) > June (88.48%) > April (85.98%). Conclusions The recognition models based on vegetation indices in different months are superior to those based on feature parameters, with overall accuracies ranging from 1.76% to 9.40% higher. Based on hyperspectral image data, the use of vegetation indices as identification parameters can enable the identification of the main plants in sericite-Artemisia desert grassland, providing a basis for further quantitative classification of the species in community images.
Collapse
Affiliation(s)
- Wenhao Liu
- College of Grassland Sciences of Xinjiang Agricultural University, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| | - Wanqiang Han
- College of Grassland Sciences of Xinjiang Agricultural University, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| | - Guili Jin
- College of Grassland Sciences of Xinjiang Agricultural University, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| | - Ke Gong
- College of Grassland Sciences of Xinjiang Agricultural University, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| | - Jian Ma
- College of Grassland Sciences of Xinjiang Agricultural University, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| |
Collapse
|
23
|
Bian Z, Cao D, Zou Y, Xie D, Zhuang W, Sun Z, Mou N, Sun Y, Zhang C, Li Q, Liu Q, Zhang L. Genetic Dissection of Major Rice QTLs for Strong Culms and Fine Mapping of qWS5 for Breeding Application in Transplanted System. RICE (NEW YORK, N.Y.) 2024; 17:43. [PMID: 38995403 PMCID: PMC11245457 DOI: 10.1186/s12284-024-00723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Rice is one of the major staples that feeds about one half of the global populations, and it is important to identify the genetic loci for the traits related to yield improvement. Lodging will cause severe yield loss when it happens, and stem diameter has been characterized as an important trait for lodging resistance. However, most QTLs for stem diameter have not been finely dissected due to their sensitivity to environmental fluctuation. RESULT In this study, we performed QTL analysis for stem diameter using populations derived from Nipponbare (NIP) and strong culm variety YYP1, and confirmed the single and combined effect of three major QTLs by recombinant inbred lines (RILs). Based on the QTL location, we found that qWS5 is a novel QTL not well characterized before. To finely dissect the novel locus, several recombinant heterogeneous inbred families (HIFs) were selected from the RILs for linkage analysis and their derived nearly isogenic lines (NILs) were subjected to detailed trait investigation throughout different years. The HIF-NILs strategy confined the QTL to about 380 kb region supported by repeated genotype and phenotype data, and it lays the foundation for QTL cloning in the future. In addition, introgression of the QTL to an elite japonica variety SD785 was performed by successive backcrossing, and it confirmed the value of qWS5 in increasing stem diameter and other agronomic traits during rice breeding. CONCLUSIONS We prove that qWS5 is a novel QTL with relatively stable effect for stem diameter and the QTL can be finely mapped to small region by the HIF-NILs strategy. The result will facilitate the improvement of rice lodging resistance by molecular marker assisted selection breeding.
Collapse
Affiliation(s)
- Zhong Bian
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Dongping Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Yiting Zou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Dong Xie
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Wenshu Zhuang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Zixing Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Nana Mou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Yangyang Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Changquan Zhang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Qianfeng Li
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Qiaoquan Liu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China.
| | - Lin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China.
| |
Collapse
|
24
|
Zong W, Guo X, Zhang K, Chen L, Liu YG, Guo J. Photoperiod and temperature synergistically regulate heading date and regional adaptation in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3762-3777. [PMID: 38779909 DOI: 10.1093/jxb/erae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Plants must accurately integrate external environmental signals with their own development to initiate flowering at the appropriate time for reproductive success. Photoperiod and temperature are key external signals that determine flowering time; both are cyclical and periodic, and they are closely related. In this review, we describe photoperiod-sensitive genes that simultaneously respond to temperature signals in rice (Oryza sativa). We introduce the mechanisms by which photoperiod and temperature synergistically regulate heading date and regional adaptation in rice. We also discuss the prospects for designing different combinations of heading date genes and other cold tolerance or thermo-tolerance genes to help rice better adapt to changes in light and temperature via molecular breeding to enhance yield in the future.
Collapse
Affiliation(s)
- Wubei Zong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaotong Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Kai Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
25
|
Zhao L, Liu Y, Zhu Y, Chen S, Du Y, Deng L, Liu L, Li X, Chen W, Xu Z, Xiong Y, Ming Y, Fang S, Chen L, Wang H, Yu D. Transcription factor OsWRKY11 induces rice heading at low concentrations but inhibits rice heading at high concentrations. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1385-1407. [PMID: 38818952 DOI: 10.1111/jipb.13679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
The heading date of rice is a crucial agronomic characteristic that influences its adaptability to different regions and its productivity potential. Despite the involvement of WRKY transcription factors in various biological processes related to development, the precise mechanisms through which these transcription factors regulate the heading date in rice have not been well elucidated. The present study identified OsWRKY11 as a WRKY transcription factor which exhibits a pivotal function in the regulation of the heading date in rice through a comprehensive screening of a clustered regularly interspaced palindromic repeats (CRISPR) ‒ CRISPR-associated nuclease 9 mutant library that specifically targets the WRKY genes in rice. The heading date of oswrky11 mutant plants and OsWRKY11-overexpressing plants was delayed compared with that of the wild-type plants under short-day and long-day conditions. Mechanistic investigation revealed that OsWRKY11 exerts dual effects on transcriptional promotion and suppression through direct and indirect DNA binding, respectively. Under normal conditions, OsWRKY11 facilitates flowering by directly inducing the expression of OsMADS14 and OsMADS15. The presence of elevated levels of OsWRKY11 protein promote formation of a ternary protein complex involving OsWRKY11, Heading date 1 (Hd1), and Days to heading date 8 (DTH8), and this complex then suppresses the expression of Ehd1, which leads to a delay in the heading date. Subsequent investigation revealed that a mild drought condition resulted in a modest increase in OsWRKY11 expression, promoting heading. Conversely, under severe drought conditions, a significant upregulation of OsWRKY11 led to the suppression of Ehd1 expression, ultimately causing a delay in heading date. Our findings uncover a previously unacknowledged mechanism through which the transcription factor OsWRKY11 exerts a dual impact on the heading date by directly and indirectly binding to the promoters of target genes.
Collapse
Affiliation(s)
- Lirong Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Mengla, 666303, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yunwei Liu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Yi Zhu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
- School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Shidie Chen
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Yunnan University, Kunming, 650092, China
| | - Yang Du
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Luyao Deng
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Lei Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Mengla, 666303, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xia Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Yunnan University, Kunming, 650092, China
| | - Wanqin Chen
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Zhiyu Xu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Yangyang Xiong
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
- School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - You Ming
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
- School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Siyu Fang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Ligang Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Mengla, 666303, China
| | - Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
- School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
- School of Life Sciences, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Yunnan University, Kunming, 650092, China
| |
Collapse
|
26
|
Tan J, Muhammad S, Zhang L, He H, Bian J. Functional divergence of FTL9 and FTL10 in flowering control in rice. BMC Genomics 2024; 25:562. [PMID: 38840036 PMCID: PMC11151565 DOI: 10.1186/s12864-024-10441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Floral transition in cereals is a critical phenomenon influenced by exogenous and endogenous signals, determining crop yield and reproduction. Flowering Locus T-like (FT-like) genes encode a mobile florigen, the main signaling molecule for flowering. RESULTS In this study, we characterized two FT-like genes, FTL9 and FTL10, to study their functional diversity in flowering control in rice. We compared independent mutant lines of ftl10 with WT and observed negligible differences in the flowering phenotype, or agronomic traits implying potentially redundant roles of FTL10 loss-of-function in flowering control in rice. Nevertheless, we found that overexpression of FTL10, but not FTL9, substantially accelerated flowering, indicating the flowering-promoting role of FTL10 and the divergent functions between FTL9 and FTL10 in flowering. Besides flowering, additive agronomic roles were observed for FTL10-OE regulating the number of effective panicles per plant, the number of primary branches per panicle, and spikelets per panicle without regulating seed size. Mechanistically, our Y2H and BiFC analyses demonstrate that FTL10, in contrast to FTL9, can interact with FD1 and GF14c, forming a flowering activation complex and thereby regulating flowering. CONCLUSION Altogether, our results elucidate the regulatory roles of FTL9 and FTL10 in flowering control, unveiling the molecular basis of functional divergence between FTL10 and FTL9, which provides mechanistic insights into shaping the dynamics of flowering time regulation in rice.
Collapse
Affiliation(s)
- Jingai Tan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Sajid Muhammad
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lantian Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
27
|
Zong W, Song Y, Xiao D, Guo X, Li F, Sun K, Tang W, Xie W, Luo Y, Liang S, Zhou J, Xie X, Liu D, Chen L, Wang H, Liu YG, Guo J. Dominance complementation of parental heading date alleles of Hd1, Ghd7, DTH8, and PRR37 confers transgressive late maturation in hybrid rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2108-2123. [PMID: 38526880 DOI: 10.1111/tpj.16732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/11/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024]
Abstract
Rice (Oryza sativa L.) is a short-day plant whose heading date is largely determined by photoperiod sensitivity (PS). Many parental lines used in hybrid rice breeding have weak PS, but their F1 progenies have strong PS and exhibit an undesirable transgressive late-maturing phenotype. However, the genetic basis for this phenomenon is unclear. Therefore, effective methods are needed for selecting parents to create F1 hybrid varieties with the desired PS. In this study, we used bulked segregant analysis with F1 Ningyou 1179 (strong PS) and its F2 population, and through analyzing both parental haplotypes and PS data for 918 hybrid rice varieties, to identify the genetic basis of transgressive late maturation which is dependent on dominance complementation effects of Hd1, Ghd7, DTH8, and PRR37 from both parents rather than from a single parental genotype. We designed a molecular marker-assisted selection system to identify the genotypes of Hd1, Ghd7, DTH8, and PRR37 in parental lines to predict PS in F1 plants prior to crossing. Furthermore, we used CRISPR/Cas9 technique to knock out Hd1 in Ning A (sterile line) and Ning B (maintainer line) and obtained an hd1-NY material with weak PS while retaining the elite agronomic traits of NY. Our findings clarified the genetic basis of transgressive late maturation in hybrid rice and developed effective methods for parental selection and gene editing to facilitate the breeding of hybrid varieties with the desired PS for improving their adaptability.
Collapse
Affiliation(s)
- Wubei Zong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yingang Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dongdong Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaotong Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Fuquan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Kangli Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjing Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenhao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanqiu Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shan Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jingyao Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dilin Liu
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice, Breeding-Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
28
|
Madrigal Y, Alzate JF, Pabón-Mora N. Evolution of major flowering pathway integrators in Orchidaceae. PLANT REPRODUCTION 2024; 37:85-109. [PMID: 37823912 PMCID: PMC11180029 DOI: 10.1007/s00497-023-00482-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/10/2023] [Indexed: 10/13/2023]
Abstract
The Orchidaceae is a mega-diverse plant family with ca. 29,000 species with a large variety of life forms that can colonize transitory habitats. Despite this diversity, little is known about their flowering integrators in response to specific environmental factors. During the reproductive transition in flowering plants a vegetative apical meristem (SAM) transforms into an inflorescence meristem (IM) that forms bracts and flowers. In model grasses, like rice, a flowering genetic regulatory network (FGRN) controlling reproductive transitions has been identified, but little is known in the Orchidaceae. In order to analyze the players of the FRGN in orchids, we performed comprehensive phylogenetic analyses of CONSTANS-like/CONSTANS-like 4 (COL/COL4), FLOWERING LOCUS D (FD), FLOWERING LOCUS C/FRUITFULL (FLC/FUL) and SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) gene lineages. In addition to PEBP and AGL24/SVP genes previously analyzed, here we identify an increase of orchid homologs belonging to COL4, and FUL gene lineages in comparison with other monocots, including grasses, due to orchid-specific gene lineage duplications. Contrariwise, local duplications in Orchidaceae are less frequent in the COL, FD and SOC1 gene lineages, which points to a retention of key functions under strong purifying selection in essential signaling factors. We also identified changes in the protein sequences after such duplications, variation in the evolutionary rates of resulting paralogous clades and targeted expression of isolated homologs in different orchids. Interestingly, vernalization-response genes like VERNALIZATION1 (VRN1) and FLOWERING LOCUS C (FLC) are completely lacking in orchids, or alternatively are reduced in number, as is the case of VERNALIZATION2/GHD7 (VRN2). Our findings point to non-canonical factors sensing temperature changes in orchids during reproductive transition. Expression data of key factors gathered from Elleanthus auratiacus, a terrestrial orchid in high Andean mountains allow us to characterize which copies are actually active during flowering. Altogether, our data lays down a comprehensive framework to assess gene function of a restricted number of homologs identified more likely playing key roles during the flowering transition, and the changes of the FGRN in neotropical orchids in comparison with temperate grasses.
Collapse
Affiliation(s)
- Yesenia Madrigal
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Juan F Alzate
- Facultad de Medicina, Centro Nacional de Secuenciación Genómica, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | - Natalia Pabón-Mora
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
29
|
Wang C, Wang Z, Cai Y, Zhu Z, Yu D, Hong L, Wang Y, Lv W, Zhao Q, Si L, Liu K, Han B. A higher-yield hybrid rice is achieved by assimilating a dominant heterotic gene in inbred parental lines. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1669-1680. [PMID: 38450899 PMCID: PMC11123404 DOI: 10.1111/pbi.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 03/08/2024]
Abstract
The exploitation of heterosis to integrate parental advantages is one of the fastest and most efficient ways of rice breeding. The genomic architecture of heterosis suggests that the grain yield is strongly correlated with the accumulation of numerous rare superior alleles with positive dominance. However, the improvements in yield of hybrid rice have shown a slowdown or even plateaued due to the limited availability of complementary superior alleles. In this study, we achieved a considerable increase in grain yield of restorer lines by inducing an alternative splicing event in a heterosis gene OsMADS1 through CRISPR-Cas9, which accounted for approximately 34.1%-47.5% of yield advantage over their corresponding inbred rice cultivars. To achieve a higher yield in hybrid rice, we crossed the gene-edited restorer parents harbouring OsMADS1GW3p6 with the sterile lines to develop new rice hybrids. In two-line hybrid rice Guang-liang-you 676 (GLY676), the yield of modified hybrids carrying the homozygous heterosis gene OsMADS1GW3p6 significantly exceeded that of the original hybrids with heterozygous OsMADS1. Similarly, the gene-modified F1 hybrids with heterozygous OsMADS1GW3p6 increased grain yield by over 3.4% compared to the three-line hybrid rice Quan-you-si-miao (QYSM) with the homozygous genotype of OsMADS1. Our study highlighted the great potential in increasing the grain yield of hybrid rice by pyramiding a single heterosis gene via CRISPR-Cas9. Furthermore, these results demonstrated that the incomplete dominance of heterosis genes played a major role in yield-related heterosis and provided a promising strategy for breeding higher-yielding rice varieties above what is currently achievable.
Collapse
Affiliation(s)
- Changsheng Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Ziqun Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Yunxiao Cai
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Zhou Zhu
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Danheng Yu
- Department of Life Sciences, Imperial College LondonSouth KensingtonLondonUK
| | - Lei Hong
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Yongchun Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Wei Lv
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Qiang Zhao
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Lizhen Si
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Kun Liu
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Bin Han
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| |
Collapse
|
30
|
Kumar K, Kumari A, Durgesh K, Sevanthi AM, Sharma S, Singh NK, Gaikwad K. Identification of superior haplotypes for flowering time in pigeonpea through candidate gene-based association study of a diverse minicore collection. PLANT CELL REPORTS 2024; 43:156. [PMID: 38819495 DOI: 10.1007/s00299-024-03230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/05/2024] [Indexed: 06/01/2024]
Abstract
KEY MESSAGE In current study candidate gene (261 genes) based association mapping on 144 pigeonpea accessions for flowering time and related traits and 29 MTAs producing eight superior haplotypes were identified. In the current study, we have conducted an association analysis for flowering-associated traits in a diverse pigeonpea mini-core collection comprising 144 accessions using the SNP data of 261 flowering-related genes. In total, 13,449 SNPs were detected in the current study, which ranged from 743 (ICP10228) to 1469 (ICP6668) among the individuals. The nucleotide diversity (0.28) and Watterson estimates (0.34) reflected substantial diversity, while Tajima's D (-0.70) indicated the abundance of rare alleles in the collection. A total of 29 marker trait associations (MTAs) were identified, among which 19 were unique to days to first flowering (DOF) and/or days to fifty percent flowering (DFF), 9 to plant height (PH), and 1 to determinate (Det) growth habit using 3 years of phenotypic data. Among these MTAs, six were common to DOF and/or DFF, and four were common to DOF/DFF along with the PH, reflecting their pleiotropic action. These 29 MTAs spanned 25 genes, among which 10 genes clustered in the protein-protein network analysis, indicating their concerted involvement in floral induction. Furthermore, we identified eight haplotypes, four of which regulate late flowering, while the remaining four regulate early flowering using the MTAs. Interestingly, haplotypes conferring late flowering (H001, H002, and H008) were found to be taller, while those involved in early flowering (H003) were shorter in height. The expression pattern of these genes, as inferred from the transcriptome data, also underpinned their involvement in floral induction. The haplotypes identified will be highly useful to the pigeonpea breeding community for haplotype-based breeding.
Collapse
Affiliation(s)
- Kuldeep Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa, New Delhi, India
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Anita Kumari
- Department of Botany, North Campus, University of Delhi, Delhi, New Delhi, India
| | - Kumar Durgesh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | | | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, Pusa, New Delhi, India
| | | | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, Pusa, New Delhi, India.
| |
Collapse
|
31
|
Tam NT, Nhan DK. Identification of Insertion/Deletion Markers for Photoperiod Sensitivity in Rice ( Oryza sativa L.). BIOLOGY 2024; 13:358. [PMID: 38785840 PMCID: PMC11117668 DOI: 10.3390/biology13050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
The current study aims to identify candidate insertion/deletion (INDEL) markers associated with photoperiod sensitivity (PS) in rice landraces from the Vietnamese Mekong Delta. The whole-genome sequencing of 20 accessions was conducted to analyze INDEL variations between two photoperiod-sensitivity groups. A total of 2240 INDELs were identified between the two photoperiod-sensitivity groups. The selection criteria included INDELs with insertions or deletions of at least 20 base pairs within the improved rice group. Six INDELs were discovered on chromosomes 01 (5 INDELs) and 6 (1 INDEL), and two genes were identified: LOC_Os01g23780 and LOC_Os01g36500. The gene LOC_Os01g23780, which may be involved in rice flowering, was identified in a 20 bp deletion on chromosome 01 from the improved rice accession group. A marker was devised for this gene, indicating a polymorphism rate of 20%. Remarkably, 20% of the materials comprised improved rice accessions. This INDEL marker could explain 100% of the observed distinctions. Further analysis of the mapping population demonstrated that an INDEL marker associated with the MADS-box gene on chromosome 01 was linked to photoperiod sensitivity. The F1 population displayed two bands across all hybrid individuals. The marker demonstrates efficacy in distinguishing improved rice accessions within the indica accessions. This study underscores the potential applicability of the INDEL marker in breeding strategies.
Collapse
Affiliation(s)
- Nguyen Thanh Tam
- Mekong Delta Development Research Institute, Can Tho University, Campus 2, 3-2 Street, Can Tho 94115, Vietnam
| | - Dang Kieu Nhan
- Mekong Delta Development Research Institute, Can Tho University, Campus 2, 3-2 Street, Can Tho 94115, Vietnam
| |
Collapse
|
32
|
Luo X, Fu W, Li L, Qin Z, Wan H, Zhang Z, Zhang Q. The complete chloroplast genome sequence of Hydrocotyle vulgaris L. (Araliaceae). Mitochondrial DNA B Resour 2024; 9:647-651. [PMID: 38770144 PMCID: PMC11104692 DOI: 10.1080/23802359.2024.2349333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Hydrocotyle vulgaris is a perennial wetland clonal plant in the Araliaceae family, which was introduced to China as an ornamental plant in the 1990s. Although H. vulgaris is now considered a potential invasiveness species in China, it also plays a significant role in the remediation of water pollution. Here, we reported its complete chloroplast genome and analyzed the basic characteristics. The chloroplast genome was 153,165 bp in length, including a pair of inverted repeat (IR) regions of 25,072 bp separated by a large single-copy (LSC) region of 84,291 bp and a small single-copy (SSC) region of 18,730 bp. The H. vulgaris chloroplast genome contained 132 predicted genes, and its overall GC content was 37.60%. Phylogenetic analysis revealed that H. vulgaris was closely related to H. verticillata. The H. vulgaris chloroplast genome presented in this study will lay a foundation for further genetic and genomic studies of the genus Hydrocotyle.
Collapse
Affiliation(s)
- Xingwu Luo
- College of Biological and Food Engineering, Hubei University for Nationalities, Enshi, China
| | - Wei Fu
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, China
| | - Lin Li
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, China
| | - Zhanghui Qin
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, China
| | - Haiying Wan
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, China
| | - Zhexian Zhang
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, China
| | - Qiaohui Zhang
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, China
| |
Collapse
|
33
|
Maple R, Zhu P, Hepworth J, Wang JW, Dean C. Flowering time: From physiology, through genetics to mechanism. PLANT PHYSIOLOGY 2024; 195:190-212. [PMID: 38417841 PMCID: PMC11060688 DOI: 10.1093/plphys/kiae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024]
Abstract
Plant species have evolved different requirements for environmental/endogenous cues to induce flowering. Originally, these varying requirements were thought to reflect the action of different molecular mechanisms. Thinking changed when genetic and molecular analysis in Arabidopsis thaliana revealed that a network of environmental and endogenous signaling input pathways converge to regulate a common set of "floral pathway integrators." Variation in the predominance of the different input pathways within a network can generate the diversity of requirements observed in different species. Many genes identified by flowering time mutants were found to encode general developmental and gene regulators, with their targets having a specific flowering function. Studies of natural variation in flowering were more successful at identifying genes acting as nodes in the network central to adaptation and domestication. Attention has now turned to mechanistic dissection of flowering time gene function and how that has changed during adaptation. This will inform breeding strategies for climate-proof crops and help define which genes act as critical flowering nodes in many other species.
Collapse
Affiliation(s)
- Robert Maple
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Pan Zhu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jo Hepworth
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- New Cornerstone Science Laboratory, Shanghai 200032, China
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
34
|
Li S, Wang X, Wang W, Zhang Z, Wang X, Zhang Q, Wang Y. Genome-wide identification and expression analysis of the ALDH gene family and functional analysis of PaALDH17 in Prunus avium. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:633-645. [PMID: 38737320 PMCID: PMC11087402 DOI: 10.1007/s12298-024-01444-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 05/14/2024]
Abstract
ALDH (Aldehyde dehydrogenase), as an enzyme that encodes the dehydroxidization of aldehydes into corresponding carboxylic acids, played an important role inregulating gene expression in response to many kinds of biotic and abiotic stress, including saline-alkali stress. Saline-alkali stress was a common stress that seriously affected plant growth and productivity. Saline-alkali soil contained the characteristics of high salinity and high pH value, which could cause comprehensive damage such as osmotic stress, ion toxicity, high pH, and HCO3-/CO32- stress. In our study, 18 PaALDH genes were identified in sweet cherry genome, and their gene structures, phylogenetic analysis, chromosome localization, and promoter cis-acting elements were analyzed. Quantitative real-time PCR confirmed that PaALDH17 exhibited the highest expression compared to other members under saline-alkali stress. Subsequently, it was isolated from Prunus avium, and transgenic A. thaliana was successfully obtained. Compared with wild type, transgenic PaALDH17 plants grew better under saline-alkali stress and showed higher chlorophyll content, Superoxide dismutase (SOD), Peroxidase (POD) and Catalase (CAT) enzyme activities, which indicated that they had strong resistance to stress. These results indicated that PaALDH17 improved the resistance of sweet cherries to saline-alkali stress, which in turn improved quality and yields. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01444-7.
Collapse
Affiliation(s)
- Sitian Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Xiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Wanxia Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Zhongxing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Xingbin Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Qingxia Zhang
- College of Agriculture and Forestry Technology, Longdong University, Qingyang, 745000 China
| | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|
35
|
Jiang Y, Dong L, Li H, Liu Y, Wang X, Liu G. Genetic linkage map construction and QTL analysis for plant height in proso millet (Panicum miliaceum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:78. [PMID: 38466414 DOI: 10.1007/s00122-024-04576-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024]
Abstract
KEY MESSAGE A genetic linkage map representing proso millet genome was constructed with SSR markers, and a major QTL corresponding to plant height was mapped on chromosome 14 of this map. Proso millet (Panicum miliaceum L.) has the lowest water requirements of all cultivated cereal crops. However, the lack of a genetic map and the paucity of genomic resources for this species have limited the utility of proso millet for detailed genetic studies and hampered genetic improvement programs. In this study, 97,317 simple sequence repeat (SSR) markers were developed based on the genome sequence of the proso millet landrace Longmi 4. Using some of these markers in conjunction with previously identified SSRs, an SSR-based linkage map for proso millet was successfully constructed using a large mapping population (316 F2 offspring). In total, 186 SSR markers were assigned to 18 linkage groups corresponding to the haploid chromosomes. The constructed map had a total length of 3033.42 centimorgan (cM) covering 78.17% of the assembled reference genome. The length of the 18 linkage groups ranged from 88.89 cM (Chr. 15) to 274.82 cM (Chr. 16), with an average size of 168.17 cM. To our knowledge, this is the first genetic linkage map for proso millet based on SSR markers. Plant height is one of the most important traits in crop improvement. A major QTL was repeatedly detected in different environments, explaining 8.70-24.50% of the plant height variations. A candidate gene affecting auxin biosynthesis and transport, and ROS homeostasis regulation was predicted. Thus, the linkage map and QTL analysis provided herein will promote the development of gene mining and molecular breeding in proso millet.
Collapse
Affiliation(s)
- Yanmiao Jiang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Li Dong
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Haiquan Li
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Yanan Liu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Xindong Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
| | - Guoqing Liu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China.
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China.
| |
Collapse
|
36
|
Meng QL, Qiang CG, Li JL, Geng MF, Ren NN, Cai Z, Wang MX, Jiao ZH, Zhang FM, Song XJ, Ge S. Genetic architecture of ecological divergence between Oryza rufipogon and Oryza nivara. Mol Ecol 2024; 33:e17268. [PMID: 38230514 DOI: 10.1111/mec.17268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
Ecological divergence due to habitat difference plays a prominent role in the formation of new species, but the genetic architecture during ecological speciation and the mechanism underlying phenotypic divergence remain less understood. Two wild ancestors of rice (Oryza rufipogon and Oryza nivara) are a progenitor-derivative species pair with ecological divergence and provide a unique system for studying ecological adaptation/speciation. Here, we constructed a high-resolution linkage map and conducted a quantitative trait locus (QTL) analysis of 19 phenotypic traits using an F2 population generated from a cross between the two Oryza species. We identified 113 QTLs associated with interspecific divergence of 16 quantitative traits, with effect sizes ranging from 1.61% to 34.1% in terms of the percentage of variation explained (PVE). The distribution of effect sizes of QTLs followed a negative exponential, suggesting that a few genes of large effect and many genes of small effect were responsible for the phenotypic divergence. We observed 18 clusters of QTLs (QTL hotspots) on 11 chromosomes, significantly more than that expected by chance, demonstrating the importance of coinheritance of loci/genes in ecological adaptation/speciation. Analysis of effect direction and v-test statistics revealed that interspecific differentiation of most traits was driven by divergent natural selection, supporting the argument that ecological adaptation/speciation would proceed rapidly under coordinated selection on multiple traits. Our findings provide new insights into the understanding of genetic architecture of ecological adaptation and speciation in plants and help effective manipulation of specific genes or gene cluster in rice breeding.
Collapse
Affiliation(s)
- Qing-Lin Meng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Gen Qiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ji-Long Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mu-Fan Geng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ning-Ning Ren
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhe Cai
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Mei-Xia Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zi-Hui Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fu-Min Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xian-Jun Song
- Key Laboratory of Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Wang P, Ma L, Li D, Zhang B, Zhou T, Zhou X, Xing Y. Fine mapping of the panicle length QTL qPL5 in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:6. [PMID: 38261843 PMCID: PMC10794681 DOI: 10.1007/s11032-024-01443-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/02/2023] [Indexed: 01/25/2024]
Abstract
Panicle length is a crucial trait tightly associated with spikelets per panicle and grain yield in rice. To dissect the genetic basis of panicle length, a population of 161 recombinant inbred lines (RILs) was developed from the cross between an aus variety Chuan 7 (C7) and a tropical Geng variety Haoboka (HBK). C7 has a panicle length of 30 cm, 7 cm longer than that of HBK, and the panicle length was normally distributed in the RIL population. A total of six quantitative trait loci (QTLs) for panicle length were identified, and single QTLs explained the phenotypic variance from 4.9 to 18.1%. Among them, three QTLs were mapped to the regions harbored sd1, DLT, and Ehd1, respectively. To validate the genetic effect of a minor QTL qPL5, a near-isogenic F2 (NIF2) population segregated at qPL5 was developed. Interestingly, panicle length displayed bimodal distribution, and heading date also exhibited significant variation in the NIF2 population. qPL5 accounted for 66.5% of the panicle length variance. The C7 allele at qPL5 increased panicle length by 2.4 cm and promoted heading date by 5 days. Finally, qPL5 was narrowed down to an 80-kb region flanked by markers M2197 and M2205 using a large NIF2 population of 7600 plants. LOC_Os05g37540, encoding a phytochrome signal protein whose homolog in Arabidopsis enlarges panicle length, is regarded as the candidate gene because a single-nucleotide mutation (C1099T) caused a premature stop codon in HBK. The characterization of qPL5 with enlarging panicle length but promoting heading date makes its great value in breeding early mature varieties without yield penalty in rice. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01443-2.
Collapse
Affiliation(s)
- Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ling Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Daoyang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Bo Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tianhao Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiangchun Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
38
|
Singh G, Kaur N, Khanna R, Kaur R, Gudi S, Kaur R, Sidhu N, Vikal Y, Mangat GS. 2Gs and plant architecture: breaking grain yield ceiling through breeding approaches for next wave of revolution in rice ( Oryza sativa L.). Crit Rev Biotechnol 2024; 44:139-162. [PMID: 36176065 DOI: 10.1080/07388551.2022.2112648] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 07/10/2022] [Accepted: 07/27/2022] [Indexed: 11/03/2022]
Abstract
Rice is a principal food crop for more than half of the global population. Grain number and grain weight (2Gs) are the two complex traits controlled by several quantitative trait loci (QTLs) and are considered the most critical components for yield enhancement in rice. Novel molecular biology and QTL mapping strategies can be utilized in dissecting the complex genetic architecture of these traits. Discovering the valuable genes/QTLs associated with 2Gs traits hidden in the rice genome and utilizing them in breeding programs may bring a revolution in rice production. Furthermore, the positional cloning and functional characterization of identified genes and QTLs may aid in understanding the molecular mechanisms underlying the 2Gs traits. In addition, knowledge of modern genomic tools aids the understanding of the nature of plant and panicle architecture, which enhances their photosynthetic activity. Rice researchers continue to combine important yield component traits (including 2Gs for the yield ceiling) by utilizing modern breeding tools, such as marker-assisted selection (MAS), haplotype-based breeding, and allele mining. Physical co-localization of GW7 (for grain weight) and DEP2 (for grain number) genes present on chromosome 7 revealed the possibility of simultaneous introgression of these two genes, if desirable allelic variants were found in the single donor parent. This review article will reveal the genetic nature of 2Gs traits and use this knowledge to break the yield ceiling by using different breeding and biotechnological tools, which will sustain the world's food requirements.
Collapse
Affiliation(s)
- Gurjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Navdeep Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Renu Khanna
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Rupinder Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Rajvir Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Navjot Sidhu
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - G S Mangat
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
39
|
Lindsay P, Swentowsky KW, Jackson D. Cultivating potential: Harnessing plant stem cells for agricultural crop improvement. MOLECULAR PLANT 2024; 17:50-74. [PMID: 38130059 DOI: 10.1016/j.molp.2023.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Meristems are stem cell-containing structures that produce all plant organs and are therefore important targets for crop improvement. Developmental regulators control the balance and rate of cell divisions within the meristem. Altering these regulators impacts meristem architecture and, as a consequence, plant form. In this review, we discuss genes involved in regulating the shoot apical meristem, inflorescence meristem, axillary meristem, root apical meristem, and vascular cambium in plants. We highlight several examples showing how crop breeders have manipulated developmental regulators to modify meristem growth and alter crop traits such as inflorescence size and branching patterns. Plant transformation techniques are another innovation related to plant meristem research because they make crop genome engineering possible. We discuss recent advances on plant transformation made possible by studying genes controlling meristem development. Finally, we conclude with discussions about how meristem research can contribute to crop improvement in the coming decades.
Collapse
Affiliation(s)
- Penelope Lindsay
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
40
|
Zhang L, Chen Y, Leng Q, Lin X, Lu J, Xu Y, Li H, Xu S, Huang S, López Hernán A, Wang Y, Yin J, Niu J. A High-Resolution Linkage Map Construction and QTL Analysis for Morphological Traits in Anthurium ( Anthurium andraeanum Linden). PLANTS (BASEL, SWITZERLAND) 2023; 12:4185. [PMID: 38140512 PMCID: PMC10747322 DOI: 10.3390/plants12244185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Anthurium andraeanum Linden is a prominent ornamental plant belonging to the family Araceae and is cultivated worldwide. The morphology characteristics are crucial because they significantly impact ornamental values, commercial properties, and the efficiency of space utilization in production. However, only a few related investigations have been conducted in anthurium to date. In this study, an F1 genetic segregation population containing 160 progenies was generated through hybridization between potted and cut anthurium varieties. Fifteen morphological traits were assessed and revealed substantial levels of genetic variation and widespread positive correlation. Based on specific length amplified fragment (SLAF) sequencing technology, 8171 single nucleotide polymorphism (SNP) markers were developed, and the high-density linkage map of 2202.27 cM in length distributed on 15 linkage groups was constructed successfully, with an average distance of 0.30 cM. Using the inclusive composite interval mapping (ICIM) method, 59 QTLs related to 15 key morphological traits were successfully identified, which explained phenotypic variance (PVE) ranging from 6.21% to 17.74%. Thirty-three of those associated with 13 traits were designated as major QTLs with PVE > 10%. These findings offer valuable insights into the genetic basis of quantitative traits and are beneficial for molecular marker-assisted selection (MAS) in anthurium breeding.
Collapse
Affiliation(s)
- Linbi Zhang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China (Y.X.); (H.L.); (Y.W.)
| | - Yanyan Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China (Y.X.); (H.L.); (Y.W.)
- Institute of Crops Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qingyun Leng
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China (Y.X.); (H.L.); (Y.W.)
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou 571737, China
| | - Xinge Lin
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China (Y.X.); (H.L.); (Y.W.)
| | - Jinping Lu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China (Y.X.); (H.L.); (Y.W.)
| | - Yueting Xu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China (Y.X.); (H.L.); (Y.W.)
| | - Haiyan Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China (Y.X.); (H.L.); (Y.W.)
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou 571737, China
| | - Shisong Xu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China (Y.X.); (H.L.); (Y.W.)
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou 571737, China
| | - Shaohua Huang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China (Y.X.); (H.L.); (Y.W.)
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou 571737, China
| | - Ariel López Hernán
- Multidisciplinary Workshop on Vascular Plants, Border Ecology Laboratory, University of Flores, Sede Comahue (UFLO), Rio Negro 8328, Argentina;
- Botanical Garden of Plottier City, Neuquen 8316, Argentina
| | - Yaru Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China (Y.X.); (H.L.); (Y.W.)
| | - Junmei Yin
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China (Y.X.); (H.L.); (Y.W.)
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou 571737, China
| | - Junhai Niu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China (Y.X.); (H.L.); (Y.W.)
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou 571737, China
| |
Collapse
|
41
|
Park JR, Jang YH, Kim EG, Hur SS, Kim KM. Quantitative Trait Loci Mapping Identified Candidate Genes Involved in Plant Height Regulation in Rice. Int J Mol Sci 2023; 24:16895. [PMID: 38069217 PMCID: PMC10706376 DOI: 10.3390/ijms242316895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Rice plant height is an agricultural trait closely related to biomass, lodging tolerance, and yield. Identifying quantitative trait loci (QTL) regions related to plant height regulation and developing strategies to screen potential candidate genes can improve agricultural traits in rice. In this study, a double haploid population (CNDH), derived by crossing 'Cheongcheong' and 'Nagdong' individuals, was used, and a genetic map was constructed with 222 single-sequence repeat markers. In the RM3482-RM212 region on chromosome 1, qPh1, qPh1-1, qPh1-3, qPh1-5, and qPh1-6 were identified for five consecutive years. The phenotypic variance explained ranged from 9.3% to 13.1%, and the LOD score ranged between 3.6 and 17.6. OsPHq1, a candidate gene related to plant height regulation, was screened in RM3482-RM212. OsPHq1 is an ortholog of gibberellin 20 oxidase 2, and its haplotype was distinguished by nine SNPs. Plants were divided into two groups based on their height, and tall and short plants were distinguished and clustered according to the expression level of OsPHq1. QTLs and candidate genes related to plant height regulation, and thus, biomass regulation, were screened and identified in this study, but the molecular mechanism of the regulation remains poorly known. The information obtained in this study will help develop molecular markers for marker-assisted selection and breeding through rice plant height control.
Collapse
Affiliation(s)
- Jae-Ryoung Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea;
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Yoon-Hee Jang
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Eun-Gyeong Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Sang-Sun Hur
- Division of Health and Welfare, Department of BioFood Science, Joongbu University, Geunmsan 32713, Republic of Korea;
| | - Kyung-Min Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
42
|
Li X, Zhang S, Lowey D, Hissam C, Clevenger J, Perera S, Jia Y, Caicedo AL. A derived weedy rice × ancestral cultivar cross identifies evolutionarily relevant weediness QTLs. Mol Ecol 2023; 32:5971-5985. [PMID: 37861465 DOI: 10.1111/mec.17172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/02/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Weedy rice (Oryza spp.) is a weedy relative of the cultivated rice that competes with the crop and causes significant production loss. The BHA (blackhull awned) US weedy rice group has evolved from aus cultivated rice and differs from its ancestors in several important weediness traits, including flowering time, plant height and seed shattering. Prior attempts to determine the genetic basis of weediness traits in plants using linkage mapping approaches have not often considered weed origins. However, the timing of divergence between crossed parents can affect the detection of quantitative trait loci (QTL) relevant to the evolution of weediness. Here, we used a QTL-seq approach that combines bulked segregant analysis and high-throughput whole genome resequencing to map the three important weediness traits in an F2 population derived from a cross between BHA weedy rice with an ancestral aus cultivar. We compared these QTLs with those previously detected in a cross of BHA with a more distantly related crop, indica. We identified multiple QTLs that overlapped with regions under selection during the evolution of weedy BHA rice and some candidate genes possibly underlying the evolution weediness traits in BHA. We showed that QTLs detected with ancestor-descendant crosses are more likely to be involved in the evolution of weediness traits than those detected from crosses of more diverged taxa.
Collapse
Affiliation(s)
- Xiang Li
- Plant Biology Graduate Program and Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Shulin Zhang
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, China
| | - Daniel Lowey
- Plant Biology Graduate Program and Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Carter Hissam
- Plant Biology Graduate Program and Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Josh Clevenger
- HudsonAlpha Institute of Biotechnology, Huntsville, Alabama, USA
| | - Sherin Perera
- Plant Biology Graduate Program and Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Yulin Jia
- United States Department of Agriculture-Agricultural Research Service, Dale Bumpers National Rice Research Center, Stuttgart, Arkansas, USA
| | - Ana L Caicedo
- Plant Biology Graduate Program and Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
43
|
Zhang X, Feng Q, Miao J, Zhu J, Zhou C, Fan D, Lu Y, Tian Q, Wang Y, Zhan Q, Wang ZQ, Wang A, Zhang L, Shangguan Y, Li W, Chen J, Weng Q, Huang T, Tang S, Si L, Huang X, Wang ZX, Han B. The WD40 domain-containing protein Ehd5 positively regulates flowering in rice (Oryza sativa). THE PLANT CELL 2023; 35:4002-4019. [PMID: 37648256 PMCID: PMC10615205 DOI: 10.1093/plcell/koad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023]
Abstract
Heading date (flowering time), which greatly influences regional and seasonal adaptability in rice (Oryza sativa), is regulated by many genes in different photoperiod pathways. Here, we characterized a heading date gene, Early heading date 5 (Ehd5), using a modified bulked segregant analysis method. The ehd5 mutant showed late flowering under both short-day and long-day conditions, as well as reduced yield, compared to the wild type. Ehd5, which encodes a WD40 domain-containing protein, is induced by light and follows a circadian rhythm expression pattern. Transcriptome analysis revealed that Ehd5 acts upstream of the flowering genes Early heading date 1 (Ehd1), RICE FLOWERING LOCUS T 1 (RFT1), and Heading date 3a (Hd3a). Functional analysis showed that Ehd5 directly interacts with Rice outermost cell-specific gene 4 (Roc4) and Grain number, plant height, and heading date 8 (Ghd8), which might affect the formation of Ghd7-Ghd8 complexes, resulting in increased expression of Ehd1, Hd3a, and RFT1. In a nutshell, these results demonstrate that Ehd5 functions as a positive regulator of rice flowering and provide insight into the molecular mechanisms underlying heading date.
Collapse
Affiliation(s)
- Xuening Zhang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
- University of Chinese Academy of Sciences, Beijing 100049,China
| | - Qi Feng
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Jiashun Miao
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Jingjie Zhu
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Congcong Zhou
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Danlin Fan
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Yiqi Lu
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Qilin Tian
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Yongchun Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Qilin Zhan
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Zi-Qun Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Ahong Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Lei Zhang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Yingying Shangguan
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Wenjun Li
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Jiaying Chen
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Qijun Weng
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Tao Huang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Shican Tang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Lizhen Si
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Xuehui Huang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234,China
| | - Zi-Xuan Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| | - Bin Han
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233,China
| |
Collapse
|
44
|
Joshi B, Singh S, Tiwari GJ, Kumar H, Boopathi NM, Jaiswal S, Adhikari D, Kumar D, Sawant SV, Iquebal MA, Jena SN. Genome-wide association study of fiber yield-related traits uncovers the novel genomic regions and candidate genes in Indian upland cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1252746. [PMID: 37941674 PMCID: PMC10630025 DOI: 10.3389/fpls.2023.1252746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/11/2023] [Indexed: 11/10/2023]
Abstract
Upland cotton (Gossypium hirsutum L.) is a major fiber crop that is cultivated worldwide and has significant economic importance. India harbors the largest area for cotton cultivation, but its fiber yield is still compromised and ranks 22nd in terms of productivity. Genetic improvement of cotton fiber yield traits is one of the major goals of cotton breeding, but the understanding of the genetic architecture underlying cotton fiber yield traits remains limited and unclear. To better decipher the genetic variation associated with fiber yield traits, we conducted a comprehensive genome-wide association mapping study using 117 Indian cotton germplasm for six yield-related traits. To accomplish this, we generated 2,41,086 high-quality single nucleotide polymorphism (SNP) markers using genotyping-by-sequencing (GBS) methods. Population structure, PCA, kinship, and phylogenetic analyses divided the germplasm into two sub-populations, showing weak relatedness among the germplasms. Through association analysis, 205 SNPs and 134 QTLs were identified to be significantly associated with the six fiber yield traits. In total, 39 novel QTLs were identified in the current study, whereas 95 QTLs overlapped with existing public domain data in a comparative analysis. Eight QTLs, qGhBN_SCY_D6-1, qGhBN_SCY_D6-2, qGhBN_SCY_D6-3, qGhSI_LI_A5, qGhLI_SI_A13, qGhLI_SI_D9, qGhBW_SCY_A10, and qGhLP_BN_A8 were identified. Gene annotation of these fiber yield QTLs revealed 2,509 unique genes. These genes were predominantly enriched for different biological processes, such as plant cell wall synthesis, nutrient metabolism, and vegetative growth development in the gene ontology (GO) enrichment study. Furthermore, gene expression analysis using RNAseq data from 12 diverse cotton tissues identified 40 candidate genes (23 stable and 17 novel genes) to be transcriptionally active in different stages of fiber, ovule, and seed development. These findings have revealed a rich tapestry of genetic elements, including SNPs, QTLs, and candidate genes, and may have a high potential for improving fiber yield in future breeding programs for Indian cotton.
Collapse
Affiliation(s)
- Babita Joshi
- Plant Genetic Resources and Improvement, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanjay Singh
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Gopal Ji Tiwari
- Plant Genetic Resources and Improvement, CSIR-National Botanical Research Institute, Lucknow, India
| | - Harish Kumar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Regional Research Station, Faridkot, Punjab, India
| | - Narayanan Manikanda Boopathi
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dibyendu Adhikari
- Plant Ecology and Climate Change Science, CSIR-National Botanical Research Institute, Lucknow, India
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Samir V. Sawant
- Molecular Biology & Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Satya Narayan Jena
- Plant Genetic Resources and Improvement, CSIR-National Botanical Research Institute, Lucknow, India
| |
Collapse
|
45
|
Sun K, Zong W, Xiao D, Wu Z, Guo X, Li F, Song Y, Li S, Wei G, Hao Y, Xu B, Li W, Lin Z, Xie W, Liu YG, Guo J. Effects of the core heading date genes Hd1, Ghd7, DTH8, and PRR37 on yield-related traits in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:227. [PMID: 37851149 DOI: 10.1007/s00122-023-04476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
KEY MESSAGE We clarify the influence of the genotypes of the heading date genes Hd1, Ghd7, DTH8, and PRR37 and their combinations on yield-related traits and the functional differences between different haplotypes. Heading date is a key agronomic trait in rice (Oryza sativa L.) that determines yield and adaptability to different latitudes. Heading date 1 (Hd1), Grain number, plant height, and heading date 7 (Ghd7), Days to heading on chromosome 8 (DTH8), and PSEUDO-RESPONSE REGULATOR 37 (PRR37) are core rice genes controlling photoperiod sensitivity, and these genes have many haplotypes in rice cultivars. However, the effects of different haplotypes at these genes on yield-related traits in diverse rice materials remain poorly characterized. In this study, we knocked out Hd1, Ghd7, DTH8, or PRR37, alone or together, in indica and japonica varieties and systematically investigated the agronomic traits of each knockout line. Ghd7 and PRR37 increased the number of spikelets and improved yield, and this effect was enhanced with the Ghd7 DTH8 or Ghd7 PRR37 combination, but Hd1 negatively affected yield. We also identified a new weak functional Ghd7 allele containing a mutation that interferes with splicing. Furthermore, we determined that the promotion or inhibition of heading date by different PRR37 haplotypes is related to PRR37 expression levels, day length, and the genetic background. For rice breeding, a combination of functional alleles of Ghd7 and DTH8 or Ghd7 and PRR37 in the hd1 background can be used to increase yield. Our study clarifies the effects of heading date genes on yield-related traits and the functional differences among their different haplotypes, providing valuable information to identify and exploit elite haplotypes for heading date genes to breed high-yielding rice varieties.
Collapse
Affiliation(s)
- Kangli Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wubei Zong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dongdong Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zeqiang Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaotong Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Fuquan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yingang Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shengting Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Guangliang Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yu Hao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Bingqun Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Weitao Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiwei Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenhao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
46
|
Fan X, Wang P, Qi F, Hu Y, Li S, Zhang J, Liang L, Zhang Z, Liu J, Xiong L, Xing Y. The CCT transcriptional activator Ghd2 constantly delays the heading date by upregulating CO3 in rice. J Genet Genomics 2023; 50:755-764. [PMID: 36906137 DOI: 10.1016/j.jgg.2023.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023]
Abstract
CONSTANS, CO-like, and TOC1 (CCT) family genes play important roles in regulating heading date, which exerts a large impact on the regional and seasonal adaptation of rice. Previous studies have shown that Grain number, plant height, and heading date2 (Ghd2) exhibits a negative response to drought stress by directly upregulating Rubisco activase and exerting a negative effect on heading date. However, the target gene of Ghd2 regulating heading date is still unknown. In this study, CO3 is identified by analyzing Ghd2 ChIP-seq data. Ghd2 activates CO3 expression by binding to the CO3 promoter through its CCT domain. EMSA experiments show that the motif CCACTA in the CO3 promoter was recognized by Ghd2. A comparison of the heading dates among plants with CO3 knocked out or overexpressed and double-mutants with Ghd2 overexpressed and CO3 knocked out shows that CO3 negatively and constantly regulates flowering by repressing the transcription of Ehd1, Hd3a, and RFT1. In addition, the target genes of CO3 are explored via a comprehensive analysis of DAP-seq and RNA-seq data. Taken together, these results suggest that Ghd2 directly binds to the downstream gene CO3, and the Ghd2-CO3 module constantly delays heading date via the Ehd1-mediated pathway.
Collapse
Affiliation(s)
- Xiaowei Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Feixiang Qi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yong Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuangle Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jia Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Liwen Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhanyi Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Juhong Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
47
|
Ntakirutimana F, Tranchant-Dubreuil C, Cubry P, Chougule K, Zhang J, Wing RA, Adam H, Lorieux M, Jouannic S. Genome-wide association analysis identifies natural allelic variants associated with panicle architecture variation in African rice, Oryza glaberrima Steud. G3 (BETHESDA, MD.) 2023; 13:jkad174. [PMID: 37535690 PMCID: PMC10542218 DOI: 10.1093/g3journal/jkad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/12/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
African rice (Oryza glaberrima Steud), a short-day cereal crop closely related to Asian rice (Oryza sativa L.), has been cultivated in Sub-Saharan Africa for ∼ 3,000 years. Although less cultivated globally, it is a valuable genetic resource in creating high-yielding cultivars that are better adapted to diverse biotic and abiotic stresses. While inflorescence architecture, a key trait for rice grain yield improvement, has been extensively studied in Asian rice, the morphological and genetic determinants of this complex trait are less understood in African rice. In this study, using a previously developed association panel of 162 O. glaberrima accessions and new SNP variants characterized through mapping to a new version of the O. glaberrima reference genome, we conducted a genome-wide association study of four major morphological panicle traits. We have found a total of 41 stable genomic regions that are significantly associated with these traits, of which 13 co-localized with previously identified QTLs in O. sativa populations and 28 were unique for this association panel. Additionally, we found a genomic region of interest on chromosome 3 that was associated with the number of spikelets and primary and secondary branches. Within this region was localized the O. sativa ortholog of the PHYTOCHROME B gene (Oglab_006903/OgPHYB). Haplotype analysis revealed the occurrence of natural sequence variants at the OgPHYB locus associated with panicle architecture variation through modulation of the flowering time phenotype, whereas no equivalent alleles were found in O. sativa. The identification in this study of genomic regions specific to O. glaberrima indicates panicle-related intra-specific genetic variation in this species, increasing our understanding of the underlying molecular processes governing panicle architecture. Identified candidate genes and major haplotypes may facilitate the breeding of new African rice cultivars with preferred panicle traits.
Collapse
Affiliation(s)
| | | | - Philippe Cubry
- DIADE, University of Montpellier, IRD, CIRAD, 34394 Montpellier, France
| | - Kapeel Chougule
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jianwei Zhang
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
- Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Hélène Adam
- DIADE, University of Montpellier, IRD, CIRAD, 34394 Montpellier, France
| | - Mathias Lorieux
- DIADE, University of Montpellier, IRD, CIRAD, 34394 Montpellier, France
| | - Stefan Jouannic
- DIADE, University of Montpellier, IRD, CIRAD, 34394 Montpellier, France
| |
Collapse
|
48
|
Sun W, Sun Q, Tian L, Sun Y, Yu S. A Structure Variation in qPH8.2 Detrimentally Affects Plant Architecture and Yield in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3336. [PMID: 37765500 PMCID: PMC10536775 DOI: 10.3390/plants12183336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Plant height is an important agronomic trait associated with plant architecture and grain yield in rice (Oryza sativa L.). In this study, we report the identification of quantitative trait loci (QTL) for plant height using a chromosomal segment substitution line (CSSL) population with substituted segments from japonica variety Nipponbare (NIP) in the background of the indica variety 9311. Eight stable QTLs for plant height were identified in three environments. Among them, six loci were co-localized with known genes such as semidwarf-1 (sd1) and Grain Number per Panicle1 (GNP1) involved in gibberellin biosynthesis. A minor QTL qPH8.2 on chromosome 8 was verified and fine-mapped to a 74 kb region. Sequence comparison of the genomic region revealed the presence/absence of a 42 kb insertion between NIP and 9311. This insertion occurred predominantly in temperate japonica rice. Comparisons on the near-isogenic lines showed that the qPH8.2 allele from NIP exhibits pleiotropic effects on plant growth, including reduced plant height, leaf length, photosynthetic capacity, delayed heading date, decreased yield, and increased tiller angle. These results indicate that qPH8.2 from temperate japonica triggers adverse effects on plant growth and yield when introduced into the indica rice, highlighting the importance of the inter-subspecies crossing breeding programs.
Collapse
Affiliation(s)
- Wenqiang Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (W.S.); (Y.S.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.S.); (L.T.)
| | - Li Tian
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.S.); (L.T.)
| | - Yongjian Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (W.S.); (Y.S.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.S.); (L.T.)
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (W.S.); (Y.S.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.S.); (L.T.)
| |
Collapse
|
49
|
Zhang L, Li P, Zhang X, Li J. Two floral forms in the same species-distyly. PLANTA 2023; 258:72. [PMID: 37656285 DOI: 10.1007/s00425-023-04229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
MAIN CONCLUSION This paper reviews the progress of research on the morphology, physiology and molecular biology of distyly in plants. It will help to elucidate the mysteries of distyly in plants. Distyly is a unique representative type of heterostyly in plants, primarily characterized by the presence of long style and short style within the flowers of the same species. This interesting trait has always fascinated researchers. With the rapid development of molecular biology, the molecular mechanism for the production of dimorphic styles in plants is also gaining ground. Researchers have been studying plant dimorphic styles from various perspectives. The researchers are gradually unravelling the mechanisms by which plants produce distyly traits. This paper reviews advances in the study of plant dimorphic style characteristics, mainly in terms of the morphology, physiology and molecular biology of plants with dimorphic styles. The aim is to provide a theoretical basis for the study of the mechanism of distyly formation in plants.
Collapse
Affiliation(s)
- Lu Zhang
- College of Landscape and Tourism, Hebei Agricultural University, No. 289 Lingyusi Street, P. O. Box 28, Baoding, 071000, Hebei, China
| | - Ping Li
- College of Landscape and Tourism, Hebei Agricultural University, No. 289 Lingyusi Street, P. O. Box 28, Baoding, 071000, Hebei, China.
| | - Xiaoman Zhang
- College of Landscape and Tourism, Hebei Agricultural University, No. 289 Lingyusi Street, P. O. Box 28, Baoding, 071000, Hebei, China.
| | - Jinfeng Li
- College of Landscape and Tourism, Hebei Agricultural University, No. 289 Lingyusi Street, P. O. Box 28, Baoding, 071000, Hebei, China
| |
Collapse
|
50
|
Sun Y, Yuan X, Chen K, Wang H, Luo Y, Guo C, Wang Z, Shu C, Yang Y, Weng Y, Zhou X, Yang Z, Chen Z, Ma J, Sun Y. Improving the yield and nitrogen use efficiency of hybrid rice through rational use of controlled-release nitrogen fertilizer and urea topdressing. FRONTIERS IN PLANT SCIENCE 2023; 14:1240238. [PMID: 37692439 PMCID: PMC10484103 DOI: 10.3389/fpls.2023.1240238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
Introduction Controlled-release fertilizers effectively improve crop yield and nitrogen use efficiency (NUE). However, their use increases the cost of crop production. Optimal management modes involving urea replacement with controlled-release N fertilizers to increase rice yield through enhanced NUE are not widely explored. Methods Field experiments were conducted from 2017 to 2018 to determine the effects of different controlled-release N fertilizers combined with urea [urea-N (180 kg ha-1, N1)]. We used controlled-release N (150 kg ha-1, N2) as the base, and four controlled-release N and urea-N ratio treatments [(80%:0% (N3), 60%:20% (N4), 40%:40% (N5), or 20%:60% (N6) as the base with 20% urea-N as topdressing at the panicle initiation stage under 150 kg ha-1] to study their impact on the grain yield and NUE of machine-transplanted rice. Results and discussion Grain yield and NUE were positively correlated with increases in photosynthetic production, flag leaf net photosynthetic rate (Pn), root activity, N transport, and grain-filling characteristics. The photosynthetic potential and population growth rate from the jointing to the full-heading stage, highly effective leaf area index (LAI) rate and Pn at the full-heading stage, root activity at 15 d after the full-heading stage, and N transport in the leaves from the full-heading to mature stage were significantly increased by the N4 treatment, thereby increasing both grain yield and NUE. Furthermore, compared with the other N treatments, the N4 treatment promoted the mean filling rate of inferior grains, which is closely related to increased filled grains per spikelet and filled grains rate. These effects ultimately improved the grain yield (5.03-25.75%), N agronomic efficiency (NAE, 3.96-17.58%), and N partial factor productivity (NPP, 3.98-27.13%) under the N4 treatment. Thus, the N4 treatment with controlled-release N (60%) and urea-N (20%) as a base and urea-N (20%) as topdressing at the panicle-initiation stage proved effective in improving the grain yield and NUE of machine-transplanted hybrid indica rice. These findings offer a theoretical and practical basis for enhancing rice grain yield, NUE, and saving the cost of fertilizer.
Collapse
Affiliation(s)
- Yuanyuan Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Plateau Meteorology, China Meteorological Administration, Chengdu, Sichuan, China
| | - Xiaojuan Yuan
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Kairui Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Haiyue Wang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yongheng Luo
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Changchun Guo
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhonglin Wang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Chuanhai Shu
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yonggang Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yanfang Weng
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Zhou
- Sichuan Agricultural Machinery Research Academy, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Zhiyuan Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zongkui Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jun Ma
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yongjian Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|