1
|
Muratov V, Jagiello K, Mikolajczyk A, Danielsen PH, Halappanavar S, Vogel U, Puzyn T. The role of machine learning in predicting titanium dioxide nanoparticles induced pulmonary pathology using transcriptomic biomarkers. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138240. [PMID: 40262316 DOI: 10.1016/j.jhazmat.2025.138240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
This study explores the application of machine learning (ML) in identifying transcriptomic changes associated with pulmonary pathologies induced by titanium dioxide nanoparticles (TiO2-NPs). Such an approach significantly contributes to understanding the underlying mode-of-action of TiO2-NP inhalation and follows the European Chemicals Agency's recommendations on applying Novel Approach Methodologies designed for reducing animal studies. The lung gene expression profiles from mice exposed via single intratracheal instillations to TiO2-NPs with varying physicochemical properties on day 1, and day 28 post-exposure were analyzed to develop computational models for predicting the lung pathologies of rutile TiO2-NPs. More than 600 random forest models were generated and rigorously validated, leading to the identification of 17 high-quality models with an average accuracy of 0.95. These models link nanoparticle-deposited surface area, charge, and post-exposure sampling time with dysregulation in key genes, including serum amyloid Saa1 (59.7-fold increase), Saa3 (253.7-fold increase), and the cytokine Ccl2 (3.4-fold increase). These genes are strongly associated with lung inflammation and fibrosis, key pathological responses to nanomaterial exposure. The study highlights critical nanoparticle features that drive transcriptomic changes. Hierarchical clustering confirmed the mechanistic links between nanoparticle properties and transcriptomic changes. This study demonstrates ML's potential to integrate omics data for nanosafety, offering a robust framework for early detection of adverse effects. The models enable the prediction of gene expression changes based on nanoparticle features, aiding in potential Safe and Sustainable-by-design of nanomaterials.
Collapse
Affiliation(s)
- Viacheslav Muratov
- University of Gdansk, Faculty of Chemistry, Laboratory of Environmental Chemoinformatics, Wita Stwosza 63, Gdansk 80-308, Poland
| | - Karolina Jagiello
- University of Gdansk, Faculty of Chemistry, Laboratory of Environmental Chemoinformatics, Wita Stwosza 63, Gdansk 80-308, Poland; QSAR Lab Ltd., Trzy lipy 3, Gdansk 80-172, Poland.
| | - Alicja Mikolajczyk
- University of Gdansk, Faculty of Chemistry, Laboratory of Environmental Chemoinformatics, Wita Stwosza 63, Gdansk 80-308, Poland; QSAR Lab Ltd., Trzy lipy 3, Gdansk 80-172, Poland
| | | | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada; Department of Biology, University of Ottawa, Ontario, Canada
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Copenhagen DK-2100, Denmark
| | - Tomasz Puzyn
- University of Gdansk, Faculty of Chemistry, Laboratory of Environmental Chemoinformatics, Wita Stwosza 63, Gdansk 80-308, Poland; QSAR Lab Ltd., Trzy lipy 3, Gdansk 80-172, Poland.
| |
Collapse
|
2
|
Miszczak M, Khan K, Danielsen PH, Jensen KA, Vogel U, Grafström R, Gajewicz-Skretna A. Dynamic QSAR modeling for predicting in vivo genotoxicity and inflammation induced by nanoparticles and advanced materials: a time-dose-property/response approach. J Nanobiotechnology 2025; 23:420. [PMID: 40481558 PMCID: PMC12142886 DOI: 10.1186/s12951-025-03510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 05/28/2025] [Indexed: 06/11/2025] Open
Abstract
Predicting the health risks of nanoparticles (NPs) and advanced materials (AdMa) is a critical challenge. Due to the complexity and time-consuming nature of experimental testing, there is a reliance on in silico methods such as quantitative structure-activity relationship (QSAR), which, while effective, often fail to capture the dynamic nature of material activity over time-essential for reliable risk assessment. This study develops dynamic QSAR models using machine learning to predict toxicological responses, such as inflammation and genotoxicity, following pulmonary exposure to 39 AdMa across various post-exposure time points and dose levels. By incorporating exposure time, administered dose, and material properties as independent variables, we successfully developed time-dose-property/response models capable of predicting AdMa-induced in vivo genotoxicity in bronchoalveolar lavage fluid cells, lung and liver tissue, and inflammation in terms of neutrophil influx into the lungs of mice. Key factors driving AdMa-induced toxicity were identified, including exposure dose, post-exposure duration time, aspect ratio, surface area, reactive oxygen species generation, and metal ion release. The time-dose-property/response modeling paradigm presented here provides a practical and robust approach for predicting in vivo genotoxicity and inflammation and supports the comprehensive risk assessment of morphologically diverse AdMa.
Collapse
Affiliation(s)
- Michalina Miszczak
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, Poland
| | - Kabiruddin Khan
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, Poland
| | | | | | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Roland Grafström
- Misvik Biology, Division of Toxicology, Karjakatu 35 B, Turku, 20520, Finland
- Institute of Environmental Medicine, Karolinska Insitutet, Stockholm, 171 77, Sweden
| | - Agnieszka Gajewicz-Skretna
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, Poland.
| |
Collapse
|
3
|
Hadrup N, Guldbrandsen M, Terrida E, Bendtsen KMS, Hougaard KS, Jacobsen NR, Vogel U. Intratracheal instillation for the testing of pulmonary toxicity in mice-Effects of instillation devices and feed type on inflammation. Animal Model Exp Med 2025; 8:378-386. [PMID: 39754368 PMCID: PMC11871123 DOI: 10.1002/ame2.12503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/22/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Inhalation exposure is the gold standard when assessing pulmonary toxicity. However, it typically requires substantial amounts of test material. Intratracheal instillation is an alternative administration technique, where the test substance is suspended in a liquid vehicle and deposited into the lung via the trachea. Instillation requires minimal test material, delivers an exact dose deep into the lung, and is less labor-intensive than inhalation exposures. However, one shortcoming is that the procedure may induce short-term inflammation. To minimize this, we tested different modifications of the technique to identify the potential for refinement. METHODS First, we tested whether previous findings of increased inflammation could be confirmed. Next, we tested whether instillation with a disposable 1 mL syringe with ball-tipped steel-needle (Disposable-syringe/steel-needle) induced less inflammation than the use of our standard set-up, a 250 μL reusable glass syringe with a disposable plastic catheter (Glass-syringe/plastic-catheter). Finally, we tested if access to pelleted and liquid feed prior to instillation affected inflammation. We evaluated inflammation by neutrophil numbers in bronchoalveolar fluid 24 h post-exposure. RESULTS Vehicle-instilled mice showed a small increase in neutrophil numbers compared to untreated mice. Neutrophil numbers were slightly elevated in the groups instilled with Disposable-syringe/steel-needle; an interaction with feed type indicated that the increase in neutrophils was more pronounced in combination with feed pellets compared to liquid feed. We found no difference between the feed types when using the Glass-syringe/plastic-catheter combination. CONCLUSION The Glass-syringe/plastic-catheter combination induced the least exposure-related inflammation, confirming this as a preferred instillation procedure.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working EnvironmentCopenhagenDenmark
- Research Group for Risk‐Benefit, National Food InstituteTechnical University of DenmarkCopenhagenDenmark
| | | | - Eva Terrida
- National Research Centre for the Working EnvironmentCopenhagenDenmark
| | | | - Karin S. Hougaard
- National Research Centre for the Working EnvironmentCopenhagenDenmark
- Department of Public HealthUniversity of CopenhagenCopenhagenDenmark
| | | | - Ulla Vogel
- National Research Centre for the Working EnvironmentCopenhagenDenmark
- National Food InstituteTechnical University of DenmarkCopenhagenDenmark
| |
Collapse
|
4
|
Di Ianni E, Erdem JS, Narui S, Wallin H, Lynch I, Vogel U, Jacobsen NR, Møller P. Pro-inflammatory and genotoxic responses by metal oxide nanomaterials in alveolar epithelial cells and macrophages in submerged condition and air-liquid interface: An in vitro-in vivo correlation study. Toxicol In Vitro 2024; 100:105897. [PMID: 39025158 DOI: 10.1016/j.tiv.2024.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Studies on in vitro-in vivo correlations of inflammatory and genotoxic responses are needed to advance new approach methodologies. Here, we assessed pro-inflammatory and genotoxic responses by 13 nanosized metal oxides (nMeOx) and quartz (DQ12) in alveolar epithelial cells (A549) and macrophages (THP-1a) exposed in submerged conditions, and in A549:THP-1a co-cultures in air-liquid interface (ALI) system. Soluble nMeOx produced the highest IL-8 expression in A549 and THP-1a cells in submerged conditions (≥2-fold, p < 0.05), whereas only CuO caused a strong response in co-cultures exposed in the ALI system (13-fold, p < 0.05). IL-8 expression in A549 cells with concentrations as nMeOx specific surface area (SSA) correlated with neutrophil influx in mice (r = 0.89-0.98, p < 0.05). Similarly, IL-8 expression in THP-1a cell with concentrations as mass and SSA (when excluding soluble nMeOx) correlated with neutrophil influx in mice (r = 0.81-0.84, p < 0.05). DNA strand breaks (SB) was measured by the comet assay. We used a scoring system that categorizes effects in standard deviation units for comparison of genotoxicity in different models. Concordant genotoxicity was observed between SB levels in vitro (A549 and co-culture) and in vivo (broncho-alveolar lavage fluid cells and lung tissue). In conclusion, this study shows in vitro-in vivo correlations of nMeOx-induced inflammatory and genotoxic responses.
Collapse
Affiliation(s)
- Emilio Di Ianni
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; National Research Centre for the Working Environment, DK-2100 Copenhagen, Copenhagen, Denmark
| | | | - Shan Narui
- National Institute of Occupational Health, Oslo, Norway
| | - Håkan Wallin
- National Institute of Occupational Health, Oslo, Norway
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Copenhagen, Denmark; DTU Food, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Nicklas Raun Jacobsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Copenhagen, Denmark
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Gutierrez CT, Hadrup N, Loizides C, Hafez I, Biskos G, Roursgaard M, Saber AT, Møller P, Vogel U. Absence of genotoxicity following pulmonary exposure to metal oxides of copper, tin, aluminum, zinc, and titanium in mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:251-260. [PMID: 39394842 DOI: 10.1002/em.22634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/14/2024]
Abstract
Inhalation of nanosized metal oxides may occur at the workplace. Thus, information on potential hazardous effects is needed for risk assessment. We report an investigation of the genotoxic potential of different metal oxide nanomaterials. Acellular and intracellular reactive oxygen species (ROS) production were determined for all the studied nanomaterials. Moreover, mice were exposed by intratracheal instillation to copper oxide (CuO) at 2, 6, and 12 μg/mouse, tin oxide (SnO2) at 54 and 162 μg/mouse, aluminum oxide (Al2O3) at 18 and 54 μg/mouse, zinc oxide (ZnO) at 0.7 and 2 μg/mouse, titanium dioxide (TiO2) and the benchmark carbon black at 162 μg/mouse. The doses were selected based on pilot studies. Post-exposure time points were 1 or 28 days. Genotoxicity, assessed as DNA strand breaks by the comet assay, was measured in lung and liver tissue. The acellular and intracellular ROS measurements were fairly consistent. The CuO and the carbon black bench mark particle were potent ROS generators in both assays, followed by TiO2. Al2O3, ZnO, and SnO2 generated low levels of ROS. We detected no increased genotoxicity in this study using occupationally relevant dose levels of metal oxide nanomaterials after pulmonary exposure in mice, except for a slight increase in DNA damage in liver tissue at the highest dose of CuO. The present data add to the body of evidence for risk assessment of these metal oxides.
Collapse
Affiliation(s)
- Claudia Torero Gutierrez
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Niels Hadrup
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
- Research group for risk-benefit, National Food Institute, Technical University of Denmark
| | - Charis Loizides
- Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia, Cyprus
| | - Iosif Hafez
- Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia, Cyprus
| | - George Biskos
- Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia, Cyprus
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands
| | - Martin Roursgaard
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Wolf S, Sriram K, Camassa LMA, Pathak D, Bing HL, Mohr B, Zienolddiny-Narui S, Samulin Erdem J. Systematic review of mechanistic evidence for TiO 2 nanoparticle-induced lung carcinogenicity. Nanotoxicology 2024; 18:437-463. [PMID: 39101876 DOI: 10.1080/17435390.2024.2384408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Nano-sized titanium dioxide particles (TiO2 NPs) are a high-production volume nanomaterial widely used in the paints, cosmetics, food and photovoltaics industry. However, the potential carcinogenic effects of TiO2 NPs in the lung are still unclear despite the vast number of in vitro and in vivo studies investigating TiO2 NPs. Here, we systematically reviewed the existing in vitro and in vivo mechanistic evidence of TiO2 NP lung carcinogenicity using the ten key characteristics of carcinogens for identifying and classifying carcinogens. A total of 346 studies qualified for the quality and reliability assessment, of which 206 were considered good quality. Using a weight-of-evidence approach, these studies provided mainly moderate to high confidence for the biological endpoints regarding genotoxicity, oxidative stress and chronic inflammation. A limited number of studies investigated other endpoints important to carcinogenesis, relating to proliferation and transformation, epigenetic alterations and receptor-mediated effects. In summary, TiO2 NPs might possess the ability to induce chronic inflammation and oxidative stress, but it was challenging to compare the findings in the studies due to the wide variety of TiO2 NPs differing in their physicochemical characteristics, formulation, exposure scenarios/test systems, and experimental protocols. Given the limited number of high-quality and high-reliability studies identified within this review, there is a lack of good enough mechanistic evidence for TiO2 NP lung carcinogenicity. Future toxicology/carcinogenicity research must consider including positive controls, endotoxin testing (where necessary), statistical power analysis, and relevant biological endpoints, to improve the study quality and provide reliable data for evaluating TiO2 NP-induced lung carcinogenicity.
Collapse
Affiliation(s)
- Susann Wolf
- National Institute of Occupational Health, Oslo, Norway
| | - Krishnan Sriram
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - Dhruba Pathak
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Helene L Bing
- National Institute of Occupational Health, Oslo, Norway
| | | | | | | |
Collapse
|
7
|
Berthing T, Lard M, Danielsen PH, Abariute L, Barfod KK, Adolfsson K, Knudsen KB, Wolff H, Prinz CN, Vogel U. Pulmonary toxicity and translocation of gallium phosphide nanowires to secondary organs following pulmonary exposure in mice. J Nanobiotechnology 2023; 21:322. [PMID: 37679803 PMCID: PMC10483739 DOI: 10.1186/s12951-023-02049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND III-V semiconductor nanowires are envisioned as being integrated in optoelectronic devices in the near future. However, the perspective of mass production of these nanowires raises concern for human safety due to their asbestos- and carbon nanotube-like properties, including their high aspect ratio shape. Indeed, III-V nanowires have similar dimensions as Mitsui-7 multi-walled carbon nanotubes, which induce lung cancer by inhalation in rats. It is therefore urgent to investigate the toxicological effects following lung exposure to III-V nanowires prior to their use in industrial production, which entails risk of human exposure. Here, female C57BL/6J mice were exposed to 2, 6, and 18 µg (0.12, 0.35 and 1.1 mg/kg bw) of gallium phosphide (III-V) nanowires (99 nm diameter, 3.7 μm length) by intratracheal instillation and the toxicity was investigated 1, 3, 28 days and 3 months after exposure. Mitsui-7 multi-walled carbon nanotubes and carbon black Printex 90 nanoparticles were used as benchmark nanomaterials. RESULTS Gallium phosphide nanowires induced genotoxicity in bronchoalveolar lavage cells and acute inflammation with eosinophilia observable both in bronchoalveolar lavage and lung tissue (1 and 3 days post-exposure). The inflammatory response was comparable to the response following exposure to Mitsui-7 multi-walled carbon nanotubes at similar dose levels. The nanowires underwent partial dissolution in the lung resulting in thinner nanowires, with an estimated in vivo half-life of 3 months. Despite the partial dissolution, nanowires were detected in lung, liver, spleen, kidney, uterus and brain 3 months after exposure. CONCLUSION Pulmonary exposure to gallium phosphide nanowires caused similar toxicological effects as the multi-walled carbon nanotube Mitsui-7.
Collapse
Affiliation(s)
- Trine Berthing
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Mercy Lard
- Division of Solid State Physics and NanoLund, Lund University, Lund, 22 100, Sweden
| | | | - Laura Abariute
- Division of Solid State Physics and NanoLund, Lund University, Lund, 22 100, Sweden
- Phase Holographic Imaging PHI AB, Lund, 224 78, Sweden
| | - Kenneth K Barfod
- The National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Food Science, Microbiology and Fermentation, University of Copenhagen, Copenhagen, Denmark
| | - Karl Adolfsson
- Division of Solid State Physics and NanoLund, Lund University, Lund, 22 100, Sweden
- Axis Communications AB, Lund, 223 69, Sweden
| | - Kristina B Knudsen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Henrik Wolff
- Finnish Institute of Occupational Health, Helsinki, Finland
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Christelle N Prinz
- Division of Solid State Physics and NanoLund, Lund University, Lund, 22 100, Sweden.
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Copenhagen, Denmark.
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
8
|
Han D, Chen R, Kan H, Xu Y. The bio-distribution, clearance pathways, and toxicity mechanisms of ambient ultrafine particles. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:95-106. [PMID: 38074989 PMCID: PMC10702920 DOI: 10.1016/j.eehl.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 02/17/2024]
Abstract
Ambient particles severely threaten human health worldwide. Compared to larger particles, ultrafine particles (UFPs) are highly concentrated in ambient environments, have a larger specific surface area, and are retained for a longer time in the lung. Recent studies have found that they can be transported into various extra-pulmonary organs by crossing the air-blood barrier (ABB). Therefore, to understand the adverse effects of UFPs, it is crucial to thoroughly investigate their bio-distribution and clearance pathways in vivo after inhalation, as well as their toxicological mechanisms. This review highlights emerging evidence on the bio-distribution of UFPs in pulmonary and extra-pulmonary organs. It explores how UFPs penetrate the ABB, the blood-brain barrier (BBB), and the placental barrier (PB) and subsequently undergo clearance by the liver, kidney, or intestine. In addition, the potential underlying toxicological mechanisms of UFPs are summarized, providing fundamental insights into how UFPs induce adverse health effects.
Collapse
Affiliation(s)
- Dongyang Han
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Gutierrez CT, Loizides C, Hafez I, Brostrøm A, Wolff H, Szarek J, Berthing T, Mortensen A, Jensen KA, Roursgaard M, Saber AT, Møller P, Biskos G, Vogel U. Acute phase response following pulmonary exposure to soluble and insoluble metal oxide nanomaterials in mice. Part Fibre Toxicol 2023; 20:4. [PMID: 36650530 PMCID: PMC9843849 DOI: 10.1186/s12989-023-00514-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Acute phase response (APR) is characterized by a change in concentration of different proteins, including C-reactive protein and serum amyloid A (SAA) that can be linked to both exposure to metal oxide nanomaterials and risk of cardiovascular diseases. In this study, we intratracheally exposed mice to ZnO, CuO, Al2O3, SnO2 and TiO2 and carbon black (Printex 90) nanomaterials with a wide range in phagolysosomal solubility. We subsequently assessed neutrophil numbers, protein and lactate dehydrogenase activity in bronchoalveolar lavage fluid, Saa3 and Saa1 mRNA levels in lung and liver tissue, respectively, and SAA3 and SAA1/2 in plasma. Endpoints were analyzed 1 and 28 days after exposure, including histopathology of lung and liver tissues. RESULTS All nanomaterials induced pulmonary inflammation after 1 day, and exposure to ZnO, CuO, SnO2, TiO2 and Printex 90 increased Saa3 mRNA levels in lungs and Saa1 mRNA levels in liver. Additionally, CuO, SnO2, TiO2 and Printex 90 increased plasma levels of SAA3 and SAA1/2. Acute phase response was predicted by deposited surface area for insoluble metal oxides, 1 and 28 days post-exposure. CONCLUSION Soluble and insoluble metal oxides induced dose-dependent APR with different time dependency. Neutrophil influx, Saa3 mRNA levels in lung tissue and plasma SAA3 levels correlated across all studied nanomaterials, suggesting that these endpoints can be used as biomarkers of acute phase response and cardiovascular disease risk following exposure to soluble and insoluble particles.
Collapse
Affiliation(s)
- Claudia Torero Gutierrez
- grid.5254.60000 0001 0674 042XSection of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark ,grid.418079.30000 0000 9531 3915National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Charis Loizides
- grid.426429.f0000 0004 0580 3152Atmosphere and Climate Research Centre, The Cyprus Institute, Nicosia, Cyprus
| | - Iosif Hafez
- grid.426429.f0000 0004 0580 3152Atmosphere and Climate Research Centre, The Cyprus Institute, Nicosia, Cyprus
| | - Anders Brostrøm
- grid.5170.30000 0001 2181 8870National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Copenhagen, Denmark
| | - Henrik Wolff
- grid.6975.d0000 0004 0410 5926Finnish Institute of Occupational Health, Helsinki, Finland
| | - Józef Szarek
- grid.412607.60000 0001 2149 6795Department of Pathophysiology, Forensic Veterinary Medicine and Administration, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Trine Berthing
- grid.418079.30000 0000 9531 3915National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Alicja Mortensen
- grid.418079.30000 0000 9531 3915National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Keld Alstrup Jensen
- grid.418079.30000 0000 9531 3915National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Martin Roursgaard
- grid.5254.60000 0001 0674 042XSection of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Anne Thoustrup Saber
- grid.418079.30000 0000 9531 3915National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Peter Møller
- grid.5254.60000 0001 0674 042XSection of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - George Biskos
- grid.426429.f0000 0004 0580 3152Atmosphere and Climate Research Centre, The Cyprus Institute, Nicosia, Cyprus ,grid.5292.c0000 0001 2097 4740Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark.
| |
Collapse
|
10
|
A weight of evidence review of the genotoxicity of titanium dioxide (TiO2). Regul Toxicol Pharmacol 2022; 136:105263. [DOI: 10.1016/j.yrtph.2022.105263] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 09/10/2022] [Indexed: 11/06/2022]
|
11
|
Di Ianni E, Møller P, Cholakova T, Wolff H, Jacobsen NR, Vogel U. Assessment of primary and inflammation-driven genotoxicity of carbon black nanoparticles in vitro and in vivo. Nanotoxicology 2022; 16:526-546. [PMID: 35993455 DOI: 10.1080/17435390.2022.2106906] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Carbon black nanoparticles (CBNPs) have a large surface area/volume ratio and are known to generate oxidative stress and inflammation that may result in genotoxicity and cancer. Here, we evaluated the primary and inflammatory response-driven (i.e. secondary) genotoxicity of two CBNPs, Flammruss101 (FL101) and PrintexXE2B (XE2B) that differ in size and specific surface area (SSA), and cause different amounts of reactive oxygen species. Three doses (low, medium and high) of FL101 and XE2B were assessed in vitro in the lung epithelial (A549) and activated THP-1 (THP-1a) monocytic cells exposed in submerged conditions for 6 and 24 h, and in C57BL/6 mice at day 1, 28 and 90 following intratracheal instillation. In vitro, we assessed pro-inflammatory response as IL-8 and IL-1β gene expression, and in vivo, inflammation was determined as inflammatory cell infiltrates in bronchial lavage (BAL) fluid and as histological changes in lung tissue. DNA damage was quantified in vitro and in vivo as DNA strand breaks levels by the alkaline comet assay. Inflammatory responses in vitro and in vivo correlated with dosed CBNPs SSA. Both materials induced DNA damage in THP-1a (correlated with dosed mass), and only XE2B in A549 cells. Non-statistically significant increase in DNA damage in vivo was observed in BAL cells. In conclusion, this study shows dosed SSA predicted inflammation both in vivo and in vitro, whereas dosed mass predicted genotoxicity in vitro in THP-1a cells. The observed lack of correlation between CBNP surface area and genotoxicity provides little evidence of inflammation-driven genotoxicity in vivo and in vitro.
Collapse
Affiliation(s)
- Emilio Di Ianni
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Tanya Cholakova
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Henrik Wolff
- Occupational Safety, Finnish Institute of Occupational Health, Helsinki, Finland
| | | | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark.,National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
12
|
Huang D, Ju F, Du L, Liu T, Zuo Y, Abbott GW, Hu Z. Empagliflozin Protects against Pulmonary Ischemia/Reperfusion Injury via an Extracellular Signal-Regulated Kinases 1 and 2-Dependent Mechanism. J Pharmacol Exp Ther 2022; 380:230-241. [PMID: 34893552 DOI: 10.1124/jpet.121.000956] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury of the lung can lead to extensive pulmonary damage. Sodium-glucose cotransporter-2 (SGLT2) inhibitors are insulin-independent, oral antihyperglycemic agents used for treating type 2 diabetes mellitus (T2DM). Although their cardioprotective properties have been reported, their potential roles in pulmonary protection in vivo are poorly characterized. Here, we tested a hypothesis that empagliflozin, an SGLT2 inhibitor, can protect lungs in a mouse model of lung I/R injury induced by pulmonary hilum ligation in vivo. We assigned C57/BL6 mice to sham-operated, nonempagliflozin-treated control, or empagliflozin-treated groups. Pulmonary I/R injury was induced by 1-hour left hilum ligation followed by 2-hour reperfusion. Using quantitative polymerase chain reaction (q-PCR) and Western blot analysis, we demonstrate that SGLT2 is highly expressed in mouse kidney but is weakly expressed in mouse lung (n = 5-6 per group, P < 0.01 or P < 0.001). Empagliflozin improved respiratory function, attenuated I/R-induced lung edema, lessened structural damage, inhibited apoptosis, and reduced inflammatory cytokine production and protein concentration in bronchoalveolar lavage (BAL) fluid [P < 0.05 or P < 0.001 versus control group (CON)]. In addition, empagliflozin enhanced phosphorylation of pulmonary extracellular signal-regulated kinases 1 and 2 (ERK1/2) post-I/R injury in vivo (P < 0.001, versus CON, n = 5 per group). We further showed that pharmacological inhibition of ERK1/2 activity reversed these beneficial effects of empagliflozin. In conclusion, we showed that empagliflozin exerts strong lung protective effects against pulmonary I/R injury in vivo, at least in part via the ERK1/2-mediated signaling pathway. SIGNIFICANCE STATEMENT: Pulmonary ischemia-reperfusion (I/R) can exacerbate lung injury. Empagliflozin is a new antidiabetic agent for type 2 diabetes mellitus. This study shows that empagliflozin attenuates lung damage after pulmonary I/R injury in vivo. This protective phenomenon was mediated at least in part via the extracellular signal-regulated kinases 1 and 2-mediated signaling pathway. This opens a new avenue of research for sodium-glucose cotransporter-2 inhibitors in the treatment of reperfusion-induced acute pulmonary injury.
Collapse
Affiliation(s)
- Dou Huang
- Department of Anesthesiology (D.H., L.D., Y.Z.) and Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Department of Anesthesiology (F.J., T.L., Z.H.), West China Hospital, Sichuan University, Chengdu, Sichuan, China; and Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA (G.W.A.)
| | - Feng Ju
- Department of Anesthesiology (D.H., L.D., Y.Z.) and Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Department of Anesthesiology (F.J., T.L., Z.H.), West China Hospital, Sichuan University, Chengdu, Sichuan, China; and Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA (G.W.A.)
| | - Lei Du
- Department of Anesthesiology (D.H., L.D., Y.Z.) and Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Department of Anesthesiology (F.J., T.L., Z.H.), West China Hospital, Sichuan University, Chengdu, Sichuan, China; and Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA (G.W.A.)
| | - Ting Liu
- Department of Anesthesiology (D.H., L.D., Y.Z.) and Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Department of Anesthesiology (F.J., T.L., Z.H.), West China Hospital, Sichuan University, Chengdu, Sichuan, China; and Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA (G.W.A.)
| | - Yunxia Zuo
- Department of Anesthesiology (D.H., L.D., Y.Z.) and Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Department of Anesthesiology (F.J., T.L., Z.H.), West China Hospital, Sichuan University, Chengdu, Sichuan, China; and Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA (G.W.A.)
| | - Geoffrey W Abbott
- Department of Anesthesiology (D.H., L.D., Y.Z.) and Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Department of Anesthesiology (F.J., T.L., Z.H.), West China Hospital, Sichuan University, Chengdu, Sichuan, China; and Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA (G.W.A.)
| | - Zhaoyang Hu
- Department of Anesthesiology (D.H., L.D., Y.Z.) and Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Department of Anesthesiology (F.J., T.L., Z.H.), West China Hospital, Sichuan University, Chengdu, Sichuan, China; and Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA (G.W.A.)
| |
Collapse
|
13
|
Danielsen PH, Bendtsen KM, Knudsen KB, Poulsen SS, Stoeger T, Vogel U. Nanomaterial- and shape-dependency of TLR2 and TLR4 mediated signaling following pulmonary exposure to carbonaceous nanomaterials in mice. Part Fibre Toxicol 2021; 18:40. [PMID: 34717665 PMCID: PMC8557558 DOI: 10.1186/s12989-021-00432-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/12/2021] [Indexed: 12/18/2022] Open
Abstract
Background Pulmonary exposure to high doses of engineered carbonaceous nanomaterials (NMs) is known to trigger inflammation in the lungs paralleled by an acute phase response. Toll-like receptors (TLRs), particularly TLR2 and TLR4, have recently been discussed as potential NM-sensors, initiating inflammation. Using Tlr2 and Tlr4 knock out (KO) mice, we addressed this hypothesis and compared the pattern of inflammation in lung and acute phase response in lung and liver 24 h after intratracheal instillation of three differently shaped carbonaceous NMs, spherical carbon black (CB), multi-walled carbon nanotubes (CNT), graphene oxide (GO) plates and bacterial lipopolysaccharide (LPS) as positive control.
Results The LPS control confirmed a distinct TLR4-dependency as well as a pronounced contribution of TLR2 by reducing the levels of pulmonary inflammation to 30 and 60% of levels in wild type (WT) mice. At the doses chosen, all NM caused comparable neutrophil influxes into the lungs of WT mice, and reduced levels were only detected for GO-exposed Tlr2 KO mice (35%) and for CNT-exposed Tlr4 KO mice (65%). LPS-induced gene expression was strongly TLR4-dependent. CB-induced gene expression was unaffected by TLR status. Both GO and MWCNT-induced Saa1 expression was TLR4-dependent. GO-induced expression of Cxcl2, Cxcl5, Saa1 and Saa3 were TLR2-dependent. NM-mediated hepatic acute phase response in terms of liver gene expression of Saa1 and Lcn2 was shown to depend on TLR2 for all three NMs. TLR4, in contrast, was only relevant for the acute phase response caused by CNTs, and as expected by LPS. Conclusion TLR2 and TLR4 signaling was not involved in the acute inflammatory response caused by CB exposure, but contributed considerably to that of GO and CNTs, respectively. The strong involvement of TLR2 in the hepatic acute phase response caused by pulmonary exposure to all three NMs deserves further investigations. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-021-00432-z.
Collapse
Affiliation(s)
| | | | | | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Tobias Stoeger
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD) Helmholtz Zentrum München, Neuherberg, Germany
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark. .,DTU Food, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
14
|
Hadrup N, Knudsen KB, Carriere M, Mayne-L'Hermite M, Bobyk L, Allard S, Miserque F, Pibaleau B, Pinault M, Wallin H, Vogel U. Safe-by-design strategies for lowering the genotoxicity and pulmonary inflammation of multiwalled carbon nanotubes: Reduction of length and the introduction of COOH groups. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103702. [PMID: 34252584 DOI: 10.1016/j.etap.2021.103702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Potentially, the toxicity of multiwalled carbon nanotubes (MWCNTs) can be reduced in a safe-by-design strategy. We investigated if genotoxicity and pulmonary inflammation of MWCNTs from the same batch were lowered by a) reducing length and b) introducing COOH-groups into the structure. Mice were administered: 1) long and pristine MWCNT (CNT-long) (3.9 μm); 2) short and pristine CNT (CNT-short) (1 μm); 3) CNT modified with high ratio COOH-groups (CNT-COOH-high); 4) CNT modified with low ratio COOH-groups (CNT-COOH-low). MWCNTs were dosed by intratracheal instillation at 18 or 54 μg/mouse (∼0.9 and 2.7 mg/kg bw). Neutrophils numbers were highest after CNT-long exposure, and both shortening the MWCNT and addition of COOH-groups lowered pulmonary inflammation (day 1 and 28). Likewise, CNT-long induced genotoxicity, which was absent with CNT-short and after introduction of COOH groups. In conclusion, genotoxicity and pulmonary inflammation of MWCNTs were lowered, but not eliminated, by shortening the fibres or introducing COOH-groups.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Kristina Bram Knudsen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Marie Carriere
- INAC (Institute for Nanoscience and Cryogenics), LAN (Laboratoire Lésions des Acides Nucléiques, Nucleic Acid Lesions Laboratory), 17 Avenue des Martyrs, 38054, Grenoble Cedex 09, France.
| | | | - Laure Bobyk
- INAC (Institute for Nanoscience and Cryogenics), LAN (Laboratoire Lésions des Acides Nucléiques, Nucleic Acid Lesions Laboratory), 17 Avenue des Martyrs, 38054, Grenoble Cedex 09, France.
| | - Soline Allard
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91 191, Gif sur Yvette Cedex, France.
| | - Frédéric Miserque
- CEA, DES, Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), Laboratoire d'Etude de la Corrosion Aqueuse (LECA), Université Paris-Saclay, F-91191, Gif-sur-Yvette, France.
| | - Baptiste Pibaleau
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91 191, Gif sur Yvette Cedex, France.
| | - Mathieu Pinault
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91 191, Gif sur Yvette Cedex, France.
| | - Håkan Wallin
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark; National Institute of Occupational Health, Pb 5330 Majorstuen, 0304, Oslo, Norway.
| | - Ulla Vogel
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark; DTU Food, Danish Technical University (DTU), Anker Engelunds Vej 1, 2800 Kgs. Lyngby, DK-2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
15
|
Alswady-Hoff M, Erdem JS, Phuyal S, Knittelfelder O, Sharma A, Fonseca DDM, Skare Ø, Slupphaug G, Zienolddiny S. Long-Term Exposure to Nanosized TiO 2 Triggers Stress Responses and Cell Death Pathways in Pulmonary Epithelial Cells. Int J Mol Sci 2021; 22:ijms22105349. [PMID: 34069552 PMCID: PMC8161419 DOI: 10.3390/ijms22105349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/03/2023] Open
Abstract
There is little in vitro data available on long-term effects of TiO2 exposure. Such data are important for improving the understanding of underlying mechanisms of adverse health effects of TiO2. Here, we exposed pulmonary epithelial cells to two doses (0.96 and 1.92 µg/cm2) of TiO2 for 13 weeks and effects on cell cycle and cell death mechanisms, i.e., apoptosis and autophagy were determined after 4, 8 and 13 weeks of exposure. Changes in telomere length, cellular protein levels and lipid classes were also analyzed at 13 weeks of exposure. We observed that the TiO2 exposure increased the fraction of cells in G1-phase and reduced the fraction of cells in G2-phase, which was accompanied by an increase in the fraction of late apoptotic/necrotic cells. This corresponded with an induced expression of key apoptotic proteins i.e., BAD and BAX, and an accumulation of several lipid classes involved in cellular stress and apoptosis. These findings were further supported by quantitative proteome profiling data showing an increase in proteins involved in cell stress and genomic maintenance pathways following TiO2 exposure. Altogether, we suggest that cell stress response and cell death pathways may be important molecular events in long-term health effects of TiO2.
Collapse
Affiliation(s)
- Mayes Alswady-Hoff
- National Institute of Occupational Health, NO-0033 Oslo, Norway; (M.A.-H.); (J.S.E.); (S.P.); (Ø.S.)
| | - Johanna Samulin Erdem
- National Institute of Occupational Health, NO-0033 Oslo, Norway; (M.A.-H.); (J.S.E.); (S.P.); (Ø.S.)
| | - Santosh Phuyal
- National Institute of Occupational Health, NO-0033 Oslo, Norway; (M.A.-H.); (J.S.E.); (S.P.); (Ø.S.)
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0316 Oslo, Norway
| | | | - Animesh Sharma
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (A.S.); (D.d.M.F.); (G.S.)
- Proteomics and Metabolomics Core Facility (PROMEC), Norwegian University of Science and Technology and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Davi de Miranda Fonseca
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (A.S.); (D.d.M.F.); (G.S.)
- Proteomics and Metabolomics Core Facility (PROMEC), Norwegian University of Science and Technology and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Øivind Skare
- National Institute of Occupational Health, NO-0033 Oslo, Norway; (M.A.-H.); (J.S.E.); (S.P.); (Ø.S.)
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (A.S.); (D.d.M.F.); (G.S.)
- Proteomics and Metabolomics Core Facility (PROMEC), Norwegian University of Science and Technology and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Shanbeh Zienolddiny
- National Institute of Occupational Health, NO-0033 Oslo, Norway; (M.A.-H.); (J.S.E.); (S.P.); (Ø.S.)
- Correspondence: ; Tel.: +47-23195284
| |
Collapse
|
16
|
EFSA Panel on Food Additives and Flavourings (FAF), Younes M, Aquilina G, Castle L, Engel K, Fowler P, Frutos Fernandez MJ, Fürst P, Gundert‐Remy U, Gürtler R, Husøy T, Manco M, Mennes W, Moldeus P, Passamonti S, Shah R, Waalkens‐Berendsen I, Wölfle D, Corsini E, Cubadda F, De Groot D, FitzGerald R, Gunnare S, Gutleb AC, Mast J, Mortensen A, Oomen A, Piersma A, Plichta V, Ulbrich B, Van Loveren H, Benford D, Bignami M, Bolognesi C, Crebelli R, Dusinska M, Marcon F, Nielsen E, Schlatter J, Vleminckx C, Barmaz S, Carfí M, Civitella C, Giarola A, Rincon AM, Serafimova R, Smeraldi C, Tarazona J, Tard A, Wright M. Safety assessment of titanium dioxide (E171) as a food additive. EFSA J 2021; 19:e06585. [PMID: 33976718 PMCID: PMC8101360 DOI: 10.2903/j.efsa.2021.6585] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The present opinion deals with an updated safety assessment of the food additive titanium dioxide (E 171) based on new relevant scientific evidence considered by the Panel to be reliable, including data obtained with TiO2 nanoparticles (NPs) and data from an extended one-generation reproductive toxicity (EOGRT) study. Less than 50% of constituent particles by number in E 171 have a minimum external dimension < 100 nm. In addition, the Panel noted that constituent particles < 30 nm amounted to less than 1% of particles by number. The Panel therefore considered that studies with TiO2 NPs < 30 nm were of limited relevance to the safety assessment of E 171. The Panel concluded that although gastrointestinal absorption of TiO2 particles is low, they may accumulate in the body. Studies on general and organ toxicity did not indicate adverse effects with either E 171 up to a dose of 1,000 mg/kg body weight (bw) per day or with TiO2 NPs (> 30 nm) up to the highest dose tested of 100 mg/kg bw per day. No effects on reproductive and developmental toxicity were observed up to a dose of 1,000 mg E 171/kg bw per day, the highest dose tested in the EOGRT study. However, observations of potential immunotoxicity and inflammation with E 171 and potential neurotoxicity with TiO2 NPs, together with the potential induction of aberrant crypt foci with E 171, may indicate adverse effects. With respect to genotoxicity, the Panel concluded that TiO2 particles have the potential to induce DNA strand breaks and chromosomal damage, but not gene mutations. No clear correlation was observed between the physico-chemical properties of TiO2 particles and the outcome of either in vitro or in vivo genotoxicity assays. A concern for genotoxicity of TiO2 particles that may be present in E 171 could therefore not be ruled out. Several modes of action for the genotoxicity may operate in parallel and the relative contributions of different molecular mechanisms elicited by TiO2 particles are not known. There was uncertainty as to whether a threshold mode of action could be assumed. In addition, a cut-off value for TiO2 particle size with respect to genotoxicity could not be identified. No appropriately designed study was available to investigate the potential carcinogenic effects of TiO2 NPs. Based on all the evidence available, a concern for genotoxicity could not be ruled out, and given the many uncertainties, the Panel concluded that E 171 can no longer be considered as safe when used as a food additive.
Collapse
|
17
|
Gosens I, Costa PM, Olsson M, Stone V, Costa AL, Brunelli A, Badetti E, Bonetto A, Bokkers BGH, de Jong WH, Williams A, Halappanavar S, Fadeel B, Cassee FR. Pulmonary toxicity and gene expression changes after short-term inhalation exposure to surface-modified copper oxide nanoparticles. NANOIMPACT 2021; 22:100313. [PMID: 35559970 DOI: 10.1016/j.impact.2021.100313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 06/15/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) have previously been shown to cause dose-dependent pulmonary toxicity following inhalation. Here, CuO NPs (10 nm), coated with polyethylenimine (PEI) or ascorbate (ASC) resulting in positively or negatively charged NPs, respectively, were evaluated. Rats were exposed nose-only to similar exposure dose levels of ASC or PEI coated CuO NPs for 5 consecutive days. On day 6 and day 27 post-exposure, pulmonary toxicity markers in bronchoalveolar lavage fluid (BALF), lung histopathology and genome-wide transcriptomic changes in lungs, were assessed. BALF analyses showed a dose-dependent pulmonary inflammation and cell damage, which was supported by the lung histopathological findings of hypertrophy/hyperplasia of bronchiolar and alveolar epithelium, interstitial and alveolar inflammation, and paracortical histiocytosis in mediastinal lymph nodes for both types of CuO NPs. Transcriptomics analysis showed that pathways related to inflammation and cell proliferation were significantly activated. Additionally, we found evidence for the dysregulation of drug metabolism-related genes, especially in rats exposed to ASC-coated CuO NPs. Overall, no differences in the type of toxic effects and potency between the two surface coatings could be established, except with respect to the (regional) dose that initiates bronchiolar and alveolar hypertrophy. This disproves our hypothesis that differences in surface coatings affect the pulmonary toxicity of CuO NPs.
Collapse
Affiliation(s)
- Ilse Gosens
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - Pedro M Costa
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; UCIBIO - Applied molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Magnus Olsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vicki Stone
- Heriot-Watt University, School of Life Sciences, Edinburgh, UK
| | - Anna L Costa
- National Research Council, Institute of Science and Technology for Ceramics, Faenza, Italy
| | - Andrea Brunelli
- Department of Environmental Sciences, Informatics and Statistics, University of Venice Ca' Foscari, Venice, Italy
| | - Elena Badetti
- Department of Environmental Sciences, Informatics and Statistics, University of Venice Ca' Foscari, Venice, Italy
| | - Alessandro Bonetto
- Department of Environmental Sciences, Informatics and Statistics, University of Venice Ca' Foscari, Venice, Italy
| | - Bas G H Bokkers
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Wim H de Jong
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Andrew Williams
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Sabina Halappanavar
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada; Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Flemming R Cassee
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Institute for Risk Assessment Studies, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
18
|
Wani MR, Shadab GGHA. Titanium dioxide nanoparticle genotoxicity: A review of recent in vivo and in vitro studies. Toxicol Ind Health 2020; 36:514-530. [DOI: 10.1177/0748233720936835] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs, size <100 nm) find applications in a wide range of products including food and cosmetics. Studies have found that exposure to TiO2 NPs can cause inflammation, cytotoxicity, genotoxicity and cell apoptosis. In this article, we have reviewed the recent literature on the potential of TiO2 NPs to cause genotoxicity and summarized the results of two standard genotoxicity assays, the comet and micronucleus (MN) assays. Analysis of these peer-reviewed publications shows that the comet assay is the most common genotoxicity test, followed by MN, Ames, and chromosome aberration tests. These assays have reported positive as well as negative results, although there is inconsistency in some results that need to be confirmed further by well-designed experiments. We also discuss the possible mechanisms of TiO2 NP genotoxicity and point out areas that warrant further research.
Collapse
Affiliation(s)
- Mohammad Rafiq Wani
- Cytogenetics and Molecular Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - GGHA Shadab
- Cytogenetics and Molecular Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
19
|
Carriere M, Arnal ME, Douki T. TiO 2 genotoxicity: An update of the results published over the last six years. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 854-855:503198. [PMID: 32660822 DOI: 10.1016/j.mrgentox.2020.503198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Abstract
TiO2 particles are broadly used in daily products, including cosmetics for their UV-absorbing property, food for their white colouring property, water and air purification systems, self-cleaning surfaces and photoconversion electrical devices for their photocatalytic properties. The toxicity of TiO2 nano- and microparticles has been studied for decades, and part of this investigation has been dedicated to the identification of their potential impact on DNA, i.e., their genotoxicity. This review summarizes data retrieved from their genotoxicity testing during the past 6 years, encompassing both in vitro and in vivo studies, mostly performed on lung and intestinal models. It shows that TiO2 particles, both nano- and micro-sized, produce genotoxic damage to a variety of cell types, even at low, realistic doses.
Collapse
Affiliation(s)
- Marie Carriere
- Univ. Grenoble Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, CIBEST, 38000, Grenoble, France.
| | - Marie-Edith Arnal
- Univ. Grenoble Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, CIBEST, 38000, Grenoble, France.
| | - Thierry Douki
- Univ. Grenoble Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, CIBEST, 38000, Grenoble, France.
| |
Collapse
|
20
|
Kermanizadeh A, Powell LG, Stone V. A review of hepatic nanotoxicology - summation of recent findings and considerations for the next generation of study designs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:137-176. [PMID: 32321383 DOI: 10.1080/10937404.2020.1751756] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The liver is one of the most important multi-functional organs in the human body. Amongst various crucial functions, it is the main detoxification center and predominantly implicated in the clearance of xenobiotics potentially including particulates that reach this organ. It is now well established that a significant quantity of injected, ingested or inhaled nanomaterials (NMs) translocate from primary exposure sites and accumulate in liver. This review aimed to summarize and discuss the progress made in the field of hepatic nanotoxicology, and crucially highlight knowledge gaps that still exist.Key considerations include In vivo studies clearly demonstrate that low-solubility NMs predominantly accumulate in the liver macrophages the Kupffer cells (KC), rather than hepatocytes.KCs lining the liver sinusoids are the first cell type that comes in contact with NMs in vivo. Further, these macrophages govern overall inflammatory responses in a healthy liver. Therefore, interaction with of NM with KCs in vitro appears to be very important.Many acute in vivo studies demonstrated signs of toxicity induced by a variety of NMs. However, acute studies may not be that meaningful due to liver's unique and unparalleled ability to regenerate. In almost all investigations where a recovery period was included, the healthy liver was able to recover from NM challenge. This organ's ability to regenerate cannot be reproduced in vitro. However, recommendations and evidence is offered for the design of more physiologically relevant in vitro models.Models of hepatic disease enhance the NM-induced hepatotoxicity.The review offers a number of important suggestions for the future of hepatic nanotoxicology study design. This is of great significance as its findings are highly relevant due to the development of more advanced in vitro, and in silico models aiming to improve physiologically relevant toxicological testing strategies and bridging the gap between in vitro and in vivo experimentation.
Collapse
Affiliation(s)
- Ali Kermanizadeh
- School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
- School of Medical Sciences, Bangor University, Bangor, UK
| | - Leagh G Powell
- School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| | - Vicki Stone
- School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| |
Collapse
|
21
|
Hadrup N, Zhernovkov V, Jacobsen NR, Voss C, Strunz M, Ansari M, Schiller HB, Halappanavar S, Poulsen SS, Kholodenko B, Stoeger T, Saber AT, Vogel U. Acute Phase Response as a Biological Mechanism-of-Action of (Nano)particle-Induced Cardiovascular Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907476. [PMID: 32227434 DOI: 10.1002/smll.201907476] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 05/15/2023]
Abstract
Inhaled nanoparticles constitute a potential health hazard due to their size-dependent lung deposition and large surface to mass ratio. Exposure to high levels contributes to the risk of developing respiratory and cardiovascular diseases, as well as of lung cancer. Particle-induced acute phase response may be an important mechanism of action of particle-induced cardiovascular disease. Here, the authors review new important scientific evidence showing causal relationships between inhalation of particle and nanomaterials, induction of acute phase response, and risk of cardiovascular disease. Particle-induced acute phase response provides a means for risk assessment of particle-induced cardiovascular disease and underscores cardiovascular disease as an occupational disease.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
| | - Vadim Zhernovkov
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | | | - Carola Voss
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Maximilian Strunz
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Meshal Ansari
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Sarah S Poulsen
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
| | - Boris Kholodenko
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Tobias Stoeger
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Anne Thoustrup Saber
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
- DTU Health, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
22
|
Billing AM, Knudsen KB, Chetwynd AJ, Ellis LJA, Tang SVY, Berthing T, Wallin H, Lynch I, Vogel U, Kjeldsen F. Fast and Robust Proteome Screening Platform Identifies Neutrophil Extracellular Trap Formation in the Lung in Response to Cobalt Ferrite Nanoparticles. ACS NANO 2020; 14:4096-4110. [PMID: 32167280 PMCID: PMC7498156 DOI: 10.1021/acsnano.9b08818] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/13/2020] [Indexed: 05/28/2023]
Abstract
Despite broad application of magnetic nanoparticles in biomedicine and electronics, only a few in vivo studies on biocompatibility are available. In this study, toxicity of magnetic metal oxide nanoparticles on the respiratory system was examined in vivo by single intratracheal instillation in mice. Bronchoalveolar lavage fluid (BALF) samples were collected for proteome analyses by LC-MS/MS, testing Fe3O4 nanoparticles doped with increasing amounts of cobalt (Fe3O4, CoFe2O4 with an iron to cobalt ratio 5:1, 3:1, 1:3, Co3O4) at two doses (54 μg, 162 μg per animal) and two time points (day 1 and 3 days postinstillation). In discovery phase, in-depth proteome profiling of a few representative samples allowed for comprehensive pathway analyses. Clustering of the 681 differentially expressed proteins (FDR < 0.05) revealed general as well as metal oxide specific responses with an overall strong induction of innate immunity and activation of the complement system. The highest expression increase could be found for a cluster of 39 proteins, which displayed strong dose-dependency to iron oxide and can be attributed to neutrophil extracellular trap (NET) formation. In-depth proteome analysis expanded the knowledge of in vivo NET formation. During screening, all BALF samples of the study (n = 166) were measured label-free as single-injections after a short gradient (21 min) LC separation using the Evosep One system, validating the findings from the discovery and defining protein signatures which enable discrimination of lung inflammation. We demonstrate a proteomics-based toxicity screening with high sample throughput easily transferrable to other nanoparticle types. Data are available via ProteomeXchange with identifier PXD016148.
Collapse
Affiliation(s)
- Anja M. Billing
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense 5230, Denmark
| | - Kristina B. Knudsen
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Andrew J. Chetwynd
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Laura-Jayne A. Ellis
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | | | - Trine Berthing
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Håkan Wallin
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Iseult Lynch
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Ulla Vogel
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
- Department
of Health Technology, Technical University
of Denmark, Lyngby 2800, Denmark
| | - Frank Kjeldsen
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense 5230, Denmark
| |
Collapse
|
23
|
Transcriptomics in Toxicogenomics, Part I: Experimental Design, Technologies, Publicly Available Data, and Regulatory Aspects. NANOMATERIALS 2020; 10:nano10040750. [PMID: 32326418 PMCID: PMC7221878 DOI: 10.3390/nano10040750] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
The starting point of successful hazard assessment is the generation of unbiased and trustworthy data. Conventional toxicity testing deals with extensive observations of phenotypic endpoints in vivo and complementing in vitro models. The increasing development of novel materials and chemical compounds dictates the need for a better understanding of the molecular changes occurring in exposed biological systems. Transcriptomics enables the exploration of organisms' responses to environmental, chemical, and physical agents by observing the molecular alterations in more detail. Toxicogenomics integrates classical toxicology with omics assays, thus allowing the characterization of the mechanism of action (MOA) of chemical compounds, novel small molecules, and engineered nanomaterials (ENMs). Lack of standardization in data generation and analysis currently hampers the full exploitation of toxicogenomics-based evidence in risk assessment. To fill this gap, TGx methods need to take into account appropriate experimental design and possible pitfalls in the transcriptomic analyses as well as data generation and sharing that adhere to the FAIR (Findable, Accessible, Interoperable, and Reusable) principles. In this review, we summarize the recent advancements in the design and analysis of DNA microarray, RNA sequencing (RNA-Seq), and single-cell RNA-Seq (scRNA-Seq) data. We provide guidelines on exposure time, dose and complex endpoint selection, sample quality considerations and sample randomization. Furthermore, we summarize publicly available data resources and highlight applications of TGx data to understand and predict chemical toxicity potential. Additionally, we discuss the efforts to implement TGx into regulatory decision making to promote alternative methods for risk assessment and to support the 3R (reduction, refinement, and replacement) concept. This review is the first part of a three-article series on Transcriptomics in Toxicogenomics. These initial considerations on Experimental Design, Technologies, Publicly Available Data, Regulatory Aspects, are the starting point for further rigorous and reliable data preprocessing and modeling, described in the second and third part of the review series.
Collapse
|
24
|
Braakhuis HM, Gosens I, Heringa MB, Oomen AG, Vandebriel RJ, Groenewold M, Cassee FR. Mechanism of Action of TiO 2: Recommendations to Reduce Uncertainties Related to Carcinogenic Potential. Annu Rev Pharmacol Toxicol 2020; 61:203-223. [PMID: 32284010 DOI: 10.1146/annurev-pharmtox-101419-100049] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Risk Assessment Committee of the European Chemicals Agency issued an opinion on classifying titanium dioxide (TiO2) as a suspected human carcinogen upon inhalation. Recent animal studies indicate that TiO2 may be carcinogenic through the oral route. There is considerable uncertainty on the carcinogenicity of TiO2, which may be decreased if its mechanism of action becomes clearer. Here we consider adverse outcome pathways and present the available information on each of the key events (KEs). Inhalation exposure to TiO2 can induce lung tumors in rats via a mechanism that is also applicable to other poorly soluble, low-toxicity particles. To reduce uncertainties regarding human relevance, we recommend gathering information on earlier KEs such as oxidative stress in humans. For oral exposure, insufficient information is available to conclude whether TiO2 can induce intestinal tumors. An oral carcinogenicity study with well-characterized (food-grade) TiO2 is needed, including an assessment of toxicokinetics and early KEs.
Collapse
Affiliation(s)
- Hedwig M Braakhuis
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands;
| | - Ilse Gosens
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands;
| | - Minne B Heringa
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands; .,Current affiliation: Reckitt Benckiser, 1118 BH Schiphol, The Netherlands
| | - Agnes G Oomen
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands;
| | - Rob J Vandebriel
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands;
| | - Monique Groenewold
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands;
| | - Flemming R Cassee
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands; .,Institute for Risk Assessment Sciences, University of Utrecht, 3508 TD Utrecht, The Netherlands
| |
Collapse
|
25
|
Hadrup N, Saber AT, Kyjovska ZO, Jacobsen NR, Vippola M, Sarlin E, Ding Y, Schmid O, Wallin H, Jensen KA, Vogel U. Pulmonary toxicity of Fe 2O 3, ZnFe 2O 4, NiFe 2O 4 and NiZnFe 4O 8 nanomaterials: Inflammation and DNA strand breaks. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 74:103303. [PMID: 31794919 DOI: 10.1016/j.etap.2019.103303] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Exposure to metal oxide nanomaterials potentially occurs at the workplace. We investigated the toxicity of two Fe-oxides: Fe2O3 nanoparticles and nanorods; and three MFe2O4 spinels: NiZnFe4O8, ZnFe2O4, and NiFe2O4 nanoparticles. Mice were dosed 14, 43 or 128 μg by intratracheal instillation. Recovery periods were 1, 3, or 28 days. Inflammation - neutrophil influx into bronchoalveolar lavage (BAL) fluid - occurred for Fe2O3 rods (1 day), ZnFe2O4 (1, 3 days), NiFe2O4 (1, 3, 28 days), Fe2O3 (28 days) and NiZnFe4O8 (28 days). Conversion of mass-dose into specific surface-area-dose showed that inflammation correlated with deposited surface area and consequently, all these nanomaterials belong to the so-called low-solubility, low-toxicity class. Increased levels of DNA strand breaks were observed for both Fe2O3 particles and rods, in BAL cells three days post-exposure. To our knowledge, this is, besides magnetite (Fe3O4), the first study of the pulmonary toxicity of MFe2O4 spinel nanomaterials.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Anne T Saber
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Zdenka O Kyjovska
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Minnamari Vippola
- Materials Science and Environmental Engineering, Tampere University, P.O.Box 589, 33014 Tampere University, Finland.
| | - Essi Sarlin
- Materials Science and Environmental Engineering, Tampere University, P.O.Box 589, 33014 Tampere University, Finland.
| | - Yaobo Ding
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Max-Lebsche-Platz 31, 81377 Munich, Germany; Institute of Lung Biology and Disease, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| | - Otmar Schmid
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Max-Lebsche-Platz 31, 81377 Munich, Germany; Institute of Lung Biology and Disease, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| | - Håkan Wallin
- National Institute of Occupational Health, Oslo, Norway.
| | - Keld A Jensen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Ulla Vogel
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark; Department of Health Technology, Danish Technical University (DTU), DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
26
|
Barfod KK, Bendtsen KM, Berthing T, Koivisto AJ, Poulsen SS, Segal E, Verleysen E, Mast J, Holländer A, Jensen KA, Hougaard KS, Vogel U. Increased surface area of halloysite nanotubes due to surface modification predicts lung inflammation and acute phase response after pulmonary exposure in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 73:103266. [PMID: 31707308 DOI: 10.1016/j.etap.2019.103266] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
The toxicological potential of halloysite nanotubes (HNTs) and variants after functional alterations to surface area are not clear. We assessed the toxicological response to HNTs (NaturalNano (NN)) before and after surface etching (NN-etched). Potential cytotoxicity of the two HNTs was screened in vitro in MutaTMMouse lung epithelial cells. Lung inflammation, acute phase response and genotoxicity were assessed 1, 3, and 28 days after a single intratracheal instillation of adult female C57BL/6 J BomTac mice. The doses were 6, 18 or 54 μg of HNTs, compared to vehicle controls and the Carbon black NP (Printex 90) of 162 μg/mouse. The cellular composition of bronchoalveolar lavage (BAL) fluid was determined as a measure of lung inflammation. The pulmonary and hepatic acute phase responses were assessed by Serumamyloida mRNA levels in lung and liver tissue by real-time quantitative PCR. Pulmonary and systemic genotoxicity were analyzed by the alkaline comet assay as DNA strand breaks in BAL cells, lung and liver tissue. The etched HNT (NN-etched) had 4-5 times larger BET surface area than the unmodified HNT (NN). Instillation of NN-etched at the highest dose induced influx of neutrophils into the lungs at all time points and increased Saa3 mRNA levels in lung tissue on day 1 and 3 after exposure. No genotoxicity was observed at any time point. In conclusion, functionalization by etching increased BET surface area of the studied NN and enhanced pulmonary inflammatory toxicity in mice.
Collapse
Affiliation(s)
- Kenneth Klingenberg Barfod
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark; Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, DK-1014, Denmark
| | - Katja Maria Bendtsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark
| | - Trine Berthing
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark
| | - Antti Joonas Koivisto
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark
| | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | | | - Jan Mast
- Sciensano, Groeselenbergstraat 99, 1180, Uccle, Belgium
| | - Andreas Holländer
- Fraunhofer-Institut für Angewandte Polymerforschung, Geiselbergstr. 69, 14476, Potsdam, Germany
| | - Keld Alstrup Jensen
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark
| | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark; Department of Public Health, University of Copenhagen, Copenhagen, DK-1014, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark; DTU Health Tech, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| |
Collapse
|
27
|
Danielsen PH, Knudsen KB, Štrancar J, Umek P, Koklič T, Garvas M, Vanhala E, Savukoski S, Ding Y, Madsen AM, Jacobsen NR, Weydahl IK, Berthing T, Poulsen SS, Schmid O, Wolff H, Vogel U. Effects of physicochemical properties of TiO 2 nanomaterials for pulmonary inflammation, acute phase response and alveolar proteinosis in intratracheally exposed mice. Toxicol Appl Pharmacol 2019; 386:114830. [PMID: 31734322 DOI: 10.1016/j.taap.2019.114830] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 11/16/2022]
Abstract
Nanomaterial (NM) characteristics may affect the pulmonary toxicity and inflammatory response, including specific surface area, size, shape, crystal phase or other surface characteristics. Grouping of TiO2 in hazard assessment might be challenging because of variation in physicochemical properties. We exposed C57BL/6 J mice to a single dose of four anatase TiO2 NMs with various sizes and shapes by intratracheal instillation and assessed the pulmonary toxicity 1, 3, 28, 90 or 180 days post-exposure. The quartz DQ12 was included as benchmark particle. Pulmonary responses were evaluated by histopathology, electron microscopy, bronchoalveolar lavage (BAL) fluid cell composition and acute phase response. Genotoxicity was evaluated by DNA strand break levels in BAL cells, lung and liver in the comet assay. Multiple regression analyses were applied to identify specific TiO2 NMs properties important for the pulmonary inflammation and acute phase response. The TiO2 NMs induced similar inflammatory responses when surface area was used as dose metrics, although inflammatory and acute phase response was greatest and more persistent for the TiO2 tube. Similar histopathological changes were observed for the TiO2 tube and DQ12 including pulmonary alveolar proteinosis indicating profound effects related to the tube shape. Comparison with previously published data on rutile TiO2 NMs indicated that rutile TiO2 NMs were more inflammogenic in terms of neutrophil influx than anatase TiO2 NMs when normalized to total deposited surface area. Overall, the results suggest that specific surface area, crystal phase and shape of TiO2 NMs are important predictors for the observed pulmonary effects of TiO2 NMs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Esa Vanhala
- Finnish Institute of Occupational Health, Helsinki, Finland
| | | | - Yaobo Ding
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Anne Mette Madsen
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | | | | | - Trine Berthing
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Otmar Schmid
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Henrik Wolff
- Finnish Institute of Occupational Health, Helsinki, Finland; Helsinki University, Department of Pathology, Helsinki, Finland
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark; DTU Health Tech, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
28
|
Liao F, Chen L, Liu Y, Zhao D, Peng W, Wang W, Feng S. The size-dependent genotoxic potentials of titanium dioxide nanoparticles to endothelial cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:1199-1207. [PMID: 31294929 DOI: 10.1002/tox.22821] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/22/2019] [Accepted: 06/26/2019] [Indexed: 05/28/2023]
Abstract
Despite intensive research activities, there are still many major knowledge gaps over the potential adverse effects of titanium dioxide nanoparticles (TiO2 -NPs), one of the most widely produced and used nanoparticles, on human cardiovascular health and the underlying mechanisms. In the present study, alkaline comet assay and cytokinesis-block micronucleus test were employed to determine the genotoxic potentials of four sizes (100, 50, 30, and 10 nm) of anatase TiO2 -NPs to human umbilical vein endothelial cells (HUVECs) in culture. Also, the intracellular redox statuses were explored through the measurement of the levels of reactive oxygen species (ROS) and reduced glutathione (GSH) with kits, respectively. Meanwhile, the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) were also detected by western blot. The results showed that at the exposed levels (1, 5, and 25 μg/mL), all the four sizes of TiO2 -NPs could elicit an increase of both DNA damage and MN frequency in HUVECs in culture, with a positive dose-dependent and negative size-dependent effect relationship (T100 < T50 < T30 < T10). Also, increased levels of intracellular ROS, but decreased levels of GSH, were found in all the TiO2 -NP-treated groups. Intriguingly, a very similar manner of dose-dependent and size-dependent effect relationship was observed between the ROS test and both comet assay and MN test, but contrary to that of GSH assay. Correspondingly, the levels of Nrf2 protein were also elevated in the TiO2 -NP-exposed HUVECs, with an inversely size-dependent effect relationship. These findings indicated that induction of oxidative stress and subsequent genotoxicity might be an important biological mechanism by which TiO2 -NP exposure would cause detrimental effects to human cardiovascular health.
Collapse
Affiliation(s)
- Fen Liao
- The School of Public Health, University of South China, Hengyang, China
| | - Lingying Chen
- The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yuanfeng Liu
- The School of Public Health, University of South China, Hengyang, China
| | - Dongting Zhao
- The School of Public Health, University of South China, Hengyang, China
| | - Wenyi Peng
- The School of Public Health, University of South China, Hengyang, China
| | - Wuxiang Wang
- The School of Public Health, University of South China, Hengyang, China
- The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Shaolong Feng
- The School of Public Health, University of South China, Hengyang, China
- The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
29
|
Hadrup N, Rahmani F, Jacobsen NR, Saber AT, Jackson P, Bengtson S, Williams A, Wallin H, Halappanavar S, Vogel U. Acute phase response and inflammation following pulmonary exposure to low doses of zinc oxide nanoparticles in mice. Nanotoxicology 2019; 13:1275-1292. [DOI: 10.1080/17435390.2019.1654004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Feriel Rahmani
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Anne T. Saber
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Petra Jackson
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Stefan Bengtson
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Håkan Wallin
- Department of Biological and Chemical Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
- DTU Health Tech, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
30
|
Doumandji Z, Safar R, Lovera-Leroux M, Nahle S, Cassidy H, Matallanas D, Rihn B, Ferrari L, Joubert O. Protein and lipid homeostasis altered in rat macrophages after exposure to metallic oxide nanoparticles. Cell Biol Toxicol 2019; 36:65-82. [PMID: 31352547 PMCID: PMC7051947 DOI: 10.1007/s10565-019-09484-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022]
Abstract
Metal oxide nanoparticles (NPs), such as ZnO, ZnFe2O4, and Fe2O3, are widely used in industry. However, little is known about the cellular pathways involved in their potential toxicity. Here, we particularly investigated the key molecular pathways that are switched on after exposure to sub-toxic doses of ZnO, ZnFe2O4, and Fe2O3 in the in vitro rat alveolar macrophages (NR8383). As in our model, the calculated IC50 were respectively 16, 68, and more than 200 μg/mL for ZnO, ZnFe2O4, and Fe2O3; global gene and protein expression profiles were only analyzed after exposure to ZnO and ZnFe2O4 NPs. Using a rat genome microarray technology, we found that 985 and 1209 genes were significantly differentially expressed in NR8383 upon 4 h exposure to ¼ IC50 of ZnO and ZnFe2O4 NPs, respectively. It is noteworthy that metallothioneins were overexpressed genes following exposure to both NPs. Moreover, Ingenuity Pathway Analysis revealed that the top canonical pathway disturbed in NR8383 exposed to ZnO and ZnFe2O4 NPs was eIF2 signaling involved in protein homeostasis. Quantitative mass spectrometry approach performed from both NR8383 cell extracts and culture supernatant indicated that 348 and 795 proteins were differentially expressed upon 24 h exposure to ¼ IC50 of ZnO and ZnFe2O4 NPs, respectively. Bioinformatics analysis revealed that the top canonical pathways disturbed in NR8383 were involved in protein homeostasis and cholesterol biosynthesis for both exposure conditions. While VEGF signaling was specific to ZnO exposure, iron homeostasis signaling pathway was specific to ZnFe2O4 NPs. Overall, the study provides resource of transcriptional and proteomic markers of response to ZnO and ZnFe2O4 NP-induced toxicity through combined transcriptomics, proteomics, and bioinformatics approaches.
Collapse
Affiliation(s)
- Zahra Doumandji
- Institut Jean Lamour, UMR 7198, CNRS-Université de Lorraine, 2 allée André Guinier, BP 50840, 54011, Nancy, France.
| | - Ramia Safar
- Faculté de Médecine, INSERM UMR_S NGERE 954, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Mélanie Lovera-Leroux
- Institut Jean Lamour, UMR 7198, CNRS-Université de Lorraine, 2 allée André Guinier, BP 50840, 54011, Nancy, France
| | - Sara Nahle
- Institut Jean Lamour, UMR 7198, CNRS-Université de Lorraine, 2 allée André Guinier, BP 50840, 54011, Nancy, France
| | - Hilary Cassidy
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - David Matallanas
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Bertrand Rihn
- Institut Jean Lamour, UMR 7198, CNRS-Université de Lorraine, 2 allée André Guinier, BP 50840, 54011, Nancy, France
| | - Luc Ferrari
- Institut Jean Lamour, UMR 7198, CNRS-Université de Lorraine, 2 allée André Guinier, BP 50840, 54011, Nancy, France
| | - Olivier Joubert
- Institut Jean Lamour, UMR 7198, CNRS-Université de Lorraine, 2 allée André Guinier, BP 50840, 54011, Nancy, France
| |
Collapse
|
31
|
Bendtsen KM, Brostrøm A, Koivisto AJ, Koponen I, Berthing T, Bertram N, Kling KI, Dal Maso M, Kangasniemi O, Poikkimäki M, Loeschner K, Clausen PA, Wolff H, Jensen KA, Saber AT, Vogel U. Airport emission particles: exposure characterization and toxicity following intratracheal instillation in mice. Part Fibre Toxicol 2019; 16:23. [PMID: 31182125 PMCID: PMC6558896 DOI: 10.1186/s12989-019-0305-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Little is known about the exposure levels and adverse health effects of occupational exposure to airplane emissions. Diesel exhaust particles are classified as carcinogenic to humans and jet engines produce potentially similar soot particles. Here, we evaluated the potential occupational exposure risk by analyzing particles from a non-commercial airfield and from the apron of a commercial airport. Toxicity of the collected particles was evaluated alongside NIST standard reference diesel exhaust particles (NIST2975) in terms of acute phase response, pulmonary inflammation, and genotoxicity after single intratracheal instillation in mice. RESULTS Particle exposure levels were up to 1 mg/m3 at the non-commercial airfield. Particulate matter from the non-commercial airfield air consisted of primary and aggregated soot particles, whereas commercial airport sampling resulted in a more heterogeneous mixture of organic compounds including salt, pollen and soot, reflecting the complex occupational exposure at an apron. The particle contents of polycyclic aromatic hydrocarbons and metals were similar to the content in NIST2975. Mice were exposed to doses 6, 18 and 54 μg alongside carbon black (Printex 90) and NIST2975 and euthanized after 1, 28 or 90 days. Dose-dependent increases in total number of cells, neutrophils, and eosinophils in bronchoalveolar lavage fluid were observed on day 1 post-exposure for all particles. Lymphocytes were increased for all four particle types on 28 days post-exposure as well as for neutrophil influx for jet engine particles and carbon black nanoparticles. Increased Saa3 mRNA levels in lung tissue and increased SAA3 protein levels in plasma were observed on day 1 post-exposure. Increased levels of DNA strand breaks in bronchoalveolar lavage cells and liver tissue were observed for both particles, at single dose levels across doses and time points. CONCLUSIONS Pulmonary exposure of mice to particles collected at two airports induced acute phase response, inflammation, and genotoxicity similar to standard diesel exhaust particles and carbon black nanoparticles, suggesting similar physicochemical properties and toxicity of jet engine particles and diesel exhaust particles. Given this resemblance as well as the dose-response relationship between diesel exhaust exposure and lung cancer, occupational exposure to jet engine emissions at the two airports should be minimized.
Collapse
Affiliation(s)
- Katja Maria Bendtsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Anders Brostrøm
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Fysikvej, Building 307, DK-2800 Kgs Lyngby, Denmark
| | - Antti Joonas Koivisto
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Ismo Koponen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
- FORCE Technology, Park Allé 345, 2605 Brøndby, Denmark
| | - Trine Berthing
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Nicolas Bertram
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Kirsten Inga Kling
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Fysikvej, Building 307, DK-2800 Kgs Lyngby, Denmark
| | - Miikka Dal Maso
- Aerosol Physics, Laboratory of Physics, Faculty of Natural Sciences, Tampere University of Technology, PO Box 527, FI-33101 Tampere, Finland
| | - Oskari Kangasniemi
- Aerosol Physics, Laboratory of Physics, Faculty of Natural Sciences, Tampere University of Technology, PO Box 527, FI-33101 Tampere, Finland
| | - Mikko Poikkimäki
- Aerosol Physics, Laboratory of Physics, Faculty of Natural Sciences, Tampere University of Technology, PO Box 527, FI-33101 Tampere, Finland
| | - Katrin Loeschner
- National Food Institute, Research Group for Nano-Bio Science, Technical University of Denmark, Kemitorvet 201, DK-2800 Kgs Lyngby, Denmark
| | - Per Axel Clausen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Henrik Wolff
- Finnish Institute of Occupational Health, P.O. Box 40, FI-00032, Työterveyslaitos, Helsinki, Finland
| | - Keld Alstrup Jensen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Anne Thoustrup Saber
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| |
Collapse
|
32
|
Evans SJ, Clift MJD, Singh N, Wills JW, Hondow N, Wilkinson TS, Burgum MJ, Brown AP, Jenkins GJ, Doak SH. In vitro detection of in vitro secondary mechanisms of genotoxicity induced by engineered nanomaterials. Part Fibre Toxicol 2019; 16:8. [PMID: 30760282 PMCID: PMC6374901 DOI: 10.1186/s12989-019-0291-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND It is well established that toxicological evaluation of engineered nanomaterials (NMs) is vital to ensure the health and safety of those exposed to them. Further, there is a distinct need for the development of advanced physiologically relevant in vitro techniques for NM hazard prediction due to the limited predictive power of current in vitro models and the unsustainability of conducting nano-safety evaluations in vivo. Thus, the purpose of this study was to develop alternative in vitro approaches to assess the potential of NMs to induce genotoxicity by secondary mechanisms. RESULTS This was first undertaken by a conditioned media-based technique, whereby cell culture media was transferred from differentiated THP-1 (dTHP-1) macrophages treated with γ-Fe2O3 or Fe3O4 superparamagnetic iron oxide nanoparticles (SPIONs) to the bronchial cell line 16HBE14o-. Secondly construction and SPION treatment of a co-culture model comprising of 16HBE14o- cells and dTHP-1 macrophages. For both of these approaches no cytotoxicity was detected and chromosomal damage was evaluated by the in vitro micronucleus assay. Genotoxicity assessment was also performed using 16HBE14o- monocultures, which demonstrated only γ-Fe2O3 nanoparticles to be capable of inducing chromosomal damage. In contrast, immune cell conditioned media and dual cell co-culture SPION treatments showed both SPION types to be genotoxic to 16HBE14o- cells due to secondary genotoxicity promoted by SPION-immune cell interaction. CONCLUSIONS The findings of the present study demonstrate that the approach of using single in vitro cell test systems precludes the ability to consider secondary genotoxic mechanisms. Consequently, the use of multi-cell type models is preferable as they better mimic the in vivo environment and thus offer the potential to enhance understanding and detection of a wider breadth of potential damage induced by NMs.
Collapse
Affiliation(s)
- Stephen J Evans
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Martin J D Clift
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Neenu Singh
- Faculty of Health Sciences and Life Sciences, School of Allied Health Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - John W Wills
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Thomas S Wilkinson
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Michael J Burgum
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Andy P Brown
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Gareth J Jenkins
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK.
| |
Collapse
|
33
|
Hadrup N, Bengtson S, Jacobsen NR, Jackson P, Nocun M, Saber AT, Jensen KA, Wallin H, Vogel U. Influence of dispersion medium on nanomaterial-induced pulmonary inflammation and DNA strand breaks: investigation of carbon black, carbon nanotubes and three titanium dioxide nanoparticles. Mutagenesis 2018; 32:581-597. [PMID: 29301028 PMCID: PMC5907907 DOI: 10.1093/mutage/gex042] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Intratracheal instillation serves as a model for inhalation exposure. However, for this, materials are dispersed in appropriate media that may influence toxicity. We tested whether different intratracheal instillation dispersion media influence the pulmonary toxicity of different nanomaterials. Rodents were intratracheally instilled with 162 µg/mouse/1620 µg/rat carbon black (CB), 67 µg/mouse titanium dioxide nanoparticles (TiO2) or 54 µg/mouse carbon nanotubes (CNT). The dispersion media were as follows: water (CB, TiO2); 2% serum in water (CB, CNT, TiO2); 0.05% serum albumin in water (CB, CNT, TiO2); 10% bronchoalveolar lavage fluid in 0.9% NaCl (CB), 10% bronchoalveolar lavage (BAL) fluid in water (CB) or 0.1% Tween-80 in water (CB). Inflammation was measured as pulmonary influx of neutrophils into bronchoalveolar fluid, and DNA damage as DNA strand breaks in BAL cells by comet assay. Inflammation was observed for all nanomaterials (except 38-nm TiO2) in all dispersion media. For CB, inflammation was dispersion medium dependent. Increased levels of DNA strand breaks for CB were observed only in water, 2% serum and 10% BAL fluid in 0.9% NaCl. No dispersion medium-dependent effects on genotoxicity were observed for TiO2, whereas CNT in 2% serum induced higher DNA strand break levels than in 0.05% serum albumin. In conclusion, the dispersion medium was a determinant of CB-induced inflammation and genotoxicity. Water seemed to be the best dispersion medium to mimic CB inhalation, exhibiting DNA strand breaks with only limited inflammation. The influence of dispersion media on nanomaterial toxicity should be considered in the planning of intratracheal investigations.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, Lersø Parkallé, DK Copenhagen, Denmark
| | - Stefan Bengtson
- National Research Centre for the Working Environment, Lersø Parkallé, DK Copenhagen, Denmark
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment, Lersø Parkallé, DK Copenhagen, Denmark
| | - Petra Jackson
- National Research Centre for the Working Environment, Lersø Parkallé, DK Copenhagen, Denmark
| | - Marek Nocun
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Anne T Saber
- National Research Centre for the Working Environment, Lersø Parkallé, DK Copenhagen, Denmark
| | - Keld A Jensen
- National Research Centre for the Working Environment, Lersø Parkallé, DK Copenhagen, Denmark
| | - Håkan Wallin
- National Research Centre for the Working Environment, Lersø Parkallé, DK Copenhagen, Denmark.,Department of Biological and Chemical Work Environment, National Institute of Occupational Health, Gydas vei, Majorstuen, Oslo, Norway
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lersø Parkallé, DK Copenhagen, Denmark
| |
Collapse
|
34
|
What is the impact of surface modifications and particle size on commercial titanium dioxide particle samples? - A review of in vivo pulmonary and oral toxicity studies - Revised 11-6-2018. Toxicol Lett 2018; 302:42-59. [PMID: 30468858 DOI: 10.1016/j.toxlet.2018.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/06/2018] [Accepted: 11/19/2018] [Indexed: 11/24/2022]
Abstract
There is an ongoing discussion on the influence of surface-modifications on the toxicity of commercial particulate materials and how alterations in physical-chemical properties of surfaces impact toxicity. Titanium dioxide (TiO2) is a poorly soluble particulate material of significant socioeconomic importance that largely exists as surface-modified particle-types in commerce. The observed toxicological effects of TiO2 are primarily due to particle effects rather than substance chemistry, as such TiO2 is commonly considered to be a poorly soluble low toxicity (PSLT) particle. This review provides an overview of the effect of surface modifications on the pulmonary and oral toxicity of commercial TiO2 particles with emphasis on in vivo studies with appropriate controls, and where both surface modified and untreated materials are present in the same study. Published literature findings involving pulmonary and oral exposures to surface modified TiO2 particles were reviewed and evaluated for quality and commercial relevance. Suitable publications involving animal studies were identified and summarized. Several studies were identified that have evaluated commercially-relevant surface-modified forms of titanium dioxide with appropriate data quality and with direct comparison to untreated counterparts. Hydrophilic inorganic surface modifications including silica, alumina/alumina hydroxide depositions have been tested along with common hydrophilic and hydrophobic-organic surface treatments. The results for both pigmentary and nanoscale materials demonstrate similar behaviour and indicate limited impact of particle size, surface chemistry, surface charge and surface wettability on observed pulmonary or oral toxicity effects. The low intrinsic toxicity of the TiO2 base particle and evaluated surface modifications may account for the observed outcomes. A few published studies have drawn different conclusions; however, these were either not conducted using commercial TiO2 samples (with surface coatings), had several confounding variables to investigate, or were carried out using mouse strains. The differences in experimental designs are described. The identified pulmonary and oral toxicity studies largely indicate that surface modifications and particle size alone have little or no impact on the lung toxicity of TiO2 particles, following pulmonary exposures when all constituent materials are comprised of chemicals of low specific toxicity particles. In addition, based upon the results of 2 oral toxicity studies, one with surface treated TiO2 particles (OECD 408) and one without surface treated (OECD 407) TiO2 particles, there appears to have been no adverse impact on toxicity with the surface-coated material, as both studies produced no adverse effects at the very high doses tested.
Collapse
|
35
|
Møller P. The comet assay: ready for 30 more years. Mutagenesis 2018; 33:1-7. [PMID: 29325088 DOI: 10.1093/mutage/gex046] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
Abstract
During the last 30 years, the comet assay has become widely used for the measurement of DNA damage and repair in cells and tissues. A landmark achievement was reached in 2016 when the Organization for Economic Co-operation and Development adopted a comet assay guideline for in vivo testing of DNA strand breaks in animals. However, the comet assay has much more to offer than being an assay for testing DNA strand breaks in animal organs. The use of repair enzymes increases the range of DNA lesions that can be detected with the assay. It can also be modified to measure DNA repair activity. Still, despite the long-term use of the assay, there is a need for studies that assess the impact of variation in specific steps of the procedure. This is particularly important for the on-going efforts to decrease the variation between experiments and laboratories. The articles in this Special Issue of Mutagenesis cover important technical issues of the comet assay procedure, nanogenotoxicity and ionising radiation sensitivity on plant cells. The included biomonitoring studies have assessed seasonal variation and certain predictors for the basal level of DNA damage in white blood cells. Lastly, the comet assay has been used in studies on genotoxicity of environmental and occupational exposures in human biomonitoring studies and animal models. Overall, the articles in this Special Issue demonstrate the versatility of the comet assay and they hold promise that the assay is ready for the next 30 years.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade, Copenhagen K, Denmark
| |
Collapse
|
36
|
Umezawa M, Onoda A, Korshunova I, Jensen ACØ, Koponen IK, Jensen KA, Khodosevich K, Vogel U, Hougaard KS. Maternal inhalation of carbon black nanoparticles induces neurodevelopmental changes in mouse offspring. Part Fibre Toxicol 2018; 15:36. [PMID: 30201004 PMCID: PMC6131790 DOI: 10.1186/s12989-018-0272-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/24/2018] [Indexed: 02/07/2023] Open
Abstract
Background Engineered nanoparticles are smaller than 100 nm and designed to improve or creating even new physico-chemical properties. Consequently, toxicological properties of materials may change as size reaches the nm size-range. We examined outcomes related to the central nervous system in the offspring following maternal inhalation exposure to nanosized carbon black particles (Printex 90). Methods Time-mated mice (NMRI) were exposed by inhalation, for 45 min/day to 0, 4.6 or 37 mg/m3 aerosolized carbon black on gestation days 4–18, i.e. for a total of 15 days. Outcomes included maternal lung inflammation (differential cell count in bronchoalveolar lavage fluid and Saa3 mRNA expression in lung tissue), offspring neurohistopathology and behaviour in the open field test. Results Carbon black exposure did not cause lung inflammation in the exposed females, measured 11 or 28–29 days post-exposure. Glial fibrillary acidic protein (GFAP) expression levels were dose-dependently increased in astrocytes around blood vessels in the cerebral cortex and hippocampus in six weeks old offspring, indicative of reactive astrogliosis. Also enlarged lysosomal granules were observed in brain perivascular macrophages (PVMs) in the prenatally exposed offspring. The number of parvalbumin-positive interneurons and the expression levels of parvalbumin were decreased in the motor and prefrontal cortices at weaning and 120 days of age in the prenatally exposed offspring. In the open field test, behaviour was dose-dependently altered following maternal exposure to Printex 90, at 90 days of age. Prenatally exposed female offspring moved a longer total distance, and especially males spent significantly longer time in the central zone of the maze. In the offspring, the described effects were long-lasting as they were present at all time points investigated. Conclusion The present study reports for the first time that maternal inhalation exposure to Printex 90 carbon black induced dose-dependent denaturation of PVM and reactive astrocytes, similarly to the findings observed following maternal exposure to Printex 90 by airway instillation. Of note, some of the observed effects have striking similarities with those observed in mouse models of neurodevelopmental disorders. Electronic supplementary material The online version of this article (10.1186/s12989-018-0272-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Masakazu Umezawa
- Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Chiba, Japan.,Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika, Tokyo, Japan
| | - Atsuto Onoda
- Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Chiba, Japan.,Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan.,Japan Society for the Promotion of Science, Chiyoda, Tokyo, 102-0083, Japan
| | - Irina Korshunova
- Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen K, Denmark
| | - Alexander C Ø Jensen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Ismo K Koponen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Keld A Jensen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen K, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark.,Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| | - Karin S Hougaard
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark. .,Institute of Public Health, University of Copenhagen, Copenhagen K, Denmark.
| |
Collapse
|
37
|
Modrzynska J, Berthing T, Ravn-Haren G, Kling K, Mortensen A, Rasmussen RR, Larsen EH, Saber AT, Vogel U, Loeschner K. In vivo-induced size transformation of cerium oxide nanoparticles in both lung and liver does not affect long-term hepatic accumulation following pulmonary exposure. PLoS One 2018; 13:e0202477. [PMID: 30125308 PMCID: PMC6101382 DOI: 10.1371/journal.pone.0202477] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/04/2018] [Indexed: 02/07/2023] Open
Abstract
Recent findings show that cerium oxide (CeO2) nanoparticles may undergo in vivo-induced size transformation with the formation of smaller particles that could result in a higher translocation following pulmonary exposure compared to virtually insoluble particles, like titanium dioxide (TiO2). Therefore, we compared liver deposition of CeO2 and TiO2 nanoparticles of similar primary sizes 1, 28 or 180 days after intratracheal instillation of 162 μg of NPs in female C57BL/6 mice. Mice exposed to 162 μg CeO2 or TiO2 nanoparticles by intravenous injection or oral gavage were included as reference groups to assess the amount of NPs that reach the liver bypassing the lungs and the translocation of NPs from the gastrointestinal tract to the liver, respectively. Pulmonary deposited CeO2 nanoparticles were detected in the liver 28 and 180 days post-exposure and TiO2 nanoparticles 180 days post-exposure as determined by darkfield imaging and by the quantification of Ce and Ti mass concentration by inductively coupled plasma-mass spectrometry (ICP-MS). Ce and Ti concentrations increased over time and 180 days post-exposure the translocation to the liver was 2.87 ± 3.37% and 1.24 ± 1.98% of the initial pulmonary dose, respectively. Single particle ICP-MS showed that the size of CeO2 nanoparticles in both lung and liver tissue decreased over time. No nanoparticles were detected in the liver following oral gavage. Our results suggest that pulmonary deposited CeO2 and TiO2 nanoparticles translocate to the liver with similar calculated translocation rates despite their different chemical composition and shape. The observed particle size distributions of CeO2 nanoparticles indicate in vivo processing over time both in lung and liver. The fact that no particles were detected in the liver following oral exposure showed that direct translocation of nanoparticles from lung to the systemic circulation was the most important route of translocation for pulmonary deposited particles.
Collapse
Affiliation(s)
- Justyna Modrzynska
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Trine Berthing
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Gitte Ravn-Haren
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kirsten Kling
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Alicja Mortensen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Rie R. Rasmussen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Erik H. Larsen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne T. Saber
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Katrin Loeschner
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
38
|
Saber AT, Mortensen A, Szarek J, Jacobsen NR, Levin M, Koponen IK, Jensen KA, Vogel U, Wallin H. Toxicity of pristine and paint-embedded TiO 2 nanomaterials. Hum Exp Toxicol 2018; 38:11-24. [PMID: 29766753 DOI: 10.1177/0960327118774910] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Little is known on the toxicity of nanomaterials in the user phase. Inclusion of nanomaterials in paints is a common nanotechnology application. This study focuses on the toxicity of dusts from sanding of paints containing nanomaterials. We compared the toxicity of titanium dioxide nanomaterials (TiO2NMs) and dusts generated by sanding boards coated with paints with different amounts of two different types of uncoated TiO2NMs (diameters:10.5 nm and 38 nm). Mice were intratracheally instilled with a single dose of 18, 54 and 162 µg of TiO2NMs or 54, 162 and 486 µg of sanding dusts. At 1, 3 and 28 days post-instillation, we evaluated pulmonary inflammation, liver histology and DNA damage in lung and liver. Pulmonary exposure to both pristine TiO2NMs and sanding dusts with different types of TiO2NMs resulted in dose-dependently increased influx of neutrophils into the lung lumen. There was no difference between the sanding dusts from the two paints. For all exposures but not in vehicle controls, mild histological lesions were observed in the liver. Pulmonary exposure to pristine TiO2NMs and paint dusts with TiO2NMs caused similar type of histological lesions in the liver.
Collapse
Affiliation(s)
- A T Saber
- 1 The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - A Mortensen
- 1 The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - J Szarek
- 2 Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - N R Jacobsen
- 1 The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - M Levin
- 1 The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - I K Koponen
- 1 The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - K A Jensen
- 1 The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - U Vogel
- 1 The National Research Centre for the Working Environment, Copenhagen, Denmark.,3 Department of Micro and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| | - H Wallin
- 1 The National Research Centre for the Working Environment, Copenhagen, Denmark.,4 Present address: National Institute of Occupational Health, Oslo, Norway
| |
Collapse
|
39
|
Gonçalves RA, de Oliveira Franco Rossetto AL, Nogueira DJ, Vicentini DS, Matias WG. Comparative assessment of toxicity of ZnO and amine-functionalized ZnO nanorods toward Daphnia magna in acute and chronic multigenerational tests. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 197:32-40. [PMID: 29428564 DOI: 10.1016/j.aquatox.2018.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Zinc oxide nanomaterials (ZnO NM) have been used in a large number of applications due to their interesting physicochemical properties. However, the increasing use of ZnO NM has led to concerns regarding their environmental impacts. In this study, the acute and chronic toxicity of ZnO nanorods (NR) bare (ZnONR) and amine-functionalized (ZnONR@AF) toward the freshwater microcrustacean Daphnia magna was evaluated. The ZnO NR were characterized by transmission electron microscopy (TEM), X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and the zeta potential and hydrodynamic diameter (HD). The acute EC50(48h) values for D. magna revealed that the ZnONR@AF were more toxic than the ZnONR. The generation of reactive oxygen species (ROS) was observed in both NM. Regarding the chronic toxicity, the ZnONR@AF were again found to be more toxic than the ZnONR toward D. magna. An effect on longevity was observed for ZnONR, while ZnONR@AF affected the reproduction, growth and longevity. In the multigenerational recovery test, we observed that maternal exposure can affect the offspring even when these organisms are not directly exposed to the ZnO NR.
Collapse
Affiliation(s)
- Renata Amanda Gonçalves
- Laboratório de Toxicologia Ambiental, LABTOX, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, CEP: 88040-970, Florianópolis, SC, Brazil
| | - Ana Letícia de Oliveira Franco Rossetto
- Laboratório de Toxicologia Ambiental, LABTOX, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, CEP: 88040-970, Florianópolis, SC, Brazil
| | - Diego José Nogueira
- Laboratório de Toxicologia Ambiental, LABTOX, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, CEP: 88040-970, Florianópolis, SC, Brazil
| | - Denice Schulz Vicentini
- Laboratório de Toxicologia Ambiental, LABTOX, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, CEP: 88040-970, Florianópolis, SC, Brazil
| | - William Gerson Matias
- Laboratório de Toxicologia Ambiental, LABTOX, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, CEP: 88040-970, Florianópolis, SC, Brazil.
| |
Collapse
|
40
|
Modrzynska J, Berthing T, Ravn-Haren G, Jacobsen NR, Weydahl IK, Loeschner K, Mortensen A, Saber AT, Vogel U. Primary genotoxicity in the liver following pulmonary exposure to carbon black nanoparticles in mice. Part Fibre Toxicol 2018; 15:2. [PMID: 29298701 PMCID: PMC5753473 DOI: 10.1186/s12989-017-0238-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/15/2017] [Indexed: 11/20/2022] Open
Abstract
Background Little is known about the mechanism underlying the genotoxicity observed in the liver following pulmonary exposure to carbon black (CB) nanoparticles (NPs). The genotoxicity could be caused by the presence of translocated particles or by circulating inflammatory mediators released during pulmonary inflammation and acute-phase response. To address this, we evaluated induction of pulmonary inflammation, pulmonary and hepatic acute-phase response and genotoxicity following exposure to titanium dioxide (TiO2), cerium oxide (CeO2) or CB NPs. Female C57BL/6 mice were exposed by intratracheal instillation, intravenous injection or oral gavage to a single dose of 162 μg NPs/mouse and terminated 1, 28 or 180 days post-exposure alongside vehicle control. Results Liver DNA damage assessed by the Comet Assay was observed after intravenous injection and intratracheal instillation of CB NPs but not after exposure to TiO2 or CeO2. Intratracheal exposure to NPs resulted in pulmonary inflammation in terms of increased neutrophils influx for all NPs 1 and 28 days post-exposure. Persistent pulmonary acute phase response was detected for all NPs at all three time points while only a transient induction of hepatic acute phase response was observed. All 3 materials were detected in the liver by enhanced darkfield microscopy up to 180 days post-exposure. In contrast to TiO2 and CeO2 NPs, CB NPs generated ROS in an acellular assay. Conclusions Our results suggest that the observed hepatic DNA damage following intravenous and intratracheal dosing with CB NPs was caused by the presence of translocated, ROS-generating, particles detected in the liver rather than by the secondary effects of pulmonary inflammation or hepatic acute phase response. Electronic supplementary material The online version of this article (10.1186/s12989-017-0238-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justyna Modrzynska
- Technical University of Denmark, National Food Institute, Lyngby, Denmark.,The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Trine Berthing
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Gitte Ravn-Haren
- Technical University of Denmark, National Food Institute, Lyngby, Denmark
| | - Nicklas Raun Jacobsen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Ingrid Konow Weydahl
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Katrin Loeschner
- Technical University of Denmark, National Food Institute, Lyngby, Denmark
| | - Alicja Mortensen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Anne Thoustrup Saber
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark. .,Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
41
|
Abstract
This Mutagenesis special issue is on the topic of nanogenotoxicology. It unites a collection of reports that provide insight into: (i) the properties of engineered nanomaterials (ENMs) that contribute to genotoxicity, (ii) the genotoxic mechanisms associated with DNA damage observed in both in vitro and in vivo tests and (iii) the future test systems that will provide more accurate prediction of ENM genotoxicity to support regulatory hazard assessment frameworks. The contributions within therefore provide collective oversight of our current understanding, coupled to future perspectives aimed at overcoming technical hurdles and describing novel analytical methods to further advance the field.
Collapse
Affiliation(s)
- Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Science and Centre for NanoHealth, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK and
| | - Maria Dusinska
- Health Effects Group, Department of Environmental Chemistry, NILU- Norwegian Institute for Air Research, N-2027 Kjeller, Norway
| |
Collapse
|
42
|
Bengtson S, Knudsen KB, Kyjovska ZO, Berthing T, Skaug V, Levin M, Koponen IK, Shivayogimath A, Booth TJ, Alonso B, Pesquera A, Zurutuza A, Thomsen BL, Troelsen JT, Jacobsen NR, Vogel U. Differences in inflammation and acute phase response but similar genotoxicity in mice following pulmonary exposure to graphene oxide and reduced graphene oxide. PLoS One 2017; 12:e0178355. [PMID: 28570647 PMCID: PMC5453440 DOI: 10.1371/journal.pone.0178355] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/11/2017] [Indexed: 12/15/2022] Open
Abstract
We investigated toxicity of 2–3 layered >1 μm sized graphene oxide (GO) and reduced graphene oxide (rGO) in mice following single intratracheal exposure with respect to pulmonary inflammation, acute phase response (biomarker for risk of cardiovascular disease) and genotoxicity. In addition, we assessed exposure levels of particulate matter emitted during production of graphene in a clean room and in a normal industrial environment using chemical vapour deposition. Toxicity was evaluated at day 1, 3, 28 and 90 days (18, 54 and 162 μg/mouse), except for GO exposed mice at day 28 and 90 where only the lowest dose was evaluated. GO induced a strong acute inflammatory response together with a pulmonary (Serum-Amyloid A, Saa3) and hepatic (Saa1) acute phase response. rGO induced less acute, but a constant and prolonged inflammation up to day 90. Lung histopathology showed particle agglomerates at day 90 without signs of fibrosis. In addition, DNA damage in BAL cells was observed across time points and doses for both GO and rGO. In conclusion, pulmonary exposure to GO and rGO induced inflammation, acute phase response and genotoxicity but no fibrosis.
Collapse
Affiliation(s)
- Stefan Bengtson
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | - Zdenka O. Kyjovska
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Trine Berthing
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Vidar Skaug
- National Institute of Occupational Health, Oslo, Norway
| | - Marcus Levin
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Ismo K. Koponen
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Abhay Shivayogimath
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Timothy J. Booth
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | | - Birthe L. Thomsen
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Jesper T. Troelsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
- * E-mail:
| |
Collapse
|