1
|
Zeng Q, Sang YM. Glutamate dehydrogenase hyperinsulinism: mechanisms, diagnosis, and treatment. Orphanet J Rare Dis 2023; 18:21. [PMID: 36721237 PMCID: PMC9887739 DOI: 10.1186/s13023-023-02624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Congenital hyperinsulinism (CHI) is a genetically heterogeneous disease, in which intractable, persistent hypoglycemia is induced by excessive insulin secretion and increased serum insulin concentration. To date,15 genes have been found to be associated with the pathogenesis of CHI. Glutamate dehydrogenase hyperinsulinism (GDH-HI) is the second most common type of CHI and is caused by mutations in the glutamate dehydrogenase 1 gene. The objective of this review is to summarize the genetic mechanisms, diagnosis and treatment progress of GDH-HI. Early diagnosis and treatment are extremely important to prevent long-term neurological complications in children with GDH-HI.
Collapse
Affiliation(s)
- Qiao Zeng
- grid.411360.1Department of Anesthesiology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310052 China
| | - Yan-Mei Sang
- Department of Endocrinology, Genetics and Metabolism Centre, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, 100045, China.
| |
Collapse
|
2
|
The discovery of human of GLUD2 glutamate dehydrogenase and its implications for cell function in health and disease. Neurochem Res 2013; 39:460-70. [PMID: 24352816 DOI: 10.1007/s11064-013-1227-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/07/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
Abstract
While the evolutionary changes that led to traits unique to humans remain unclear, there is increasing evidence that enrichment of the human genome through DNA duplication processes may have contributed to traits such as bipedal locomotion, higher cognitive abilities and language. Among the genes that arose through duplication in primates during the period of increased brain development was GLUD2, which encodes the hGDH2 isoform of glutamate dehydrogenase expressed in neural and other tissues. Glutamate dehydrogenase GDH is an enzyme central to the metabolism of glutamate, the main excitatory neurotransmitter in mammalian brain involved in a multitude of CNS functions, including cognitive processes. In nerve tissue GDH is expressed in astrocytes that wrap excitatory synapses, where it is thought to play a role in the metabolic fate of glutamate removed from the synaptic cleft during excitatory transmission. Expression of GDH rises sharply during postnatal brain development, coinciding with nerve terminal sprouting and synaptogenesis. Compared to the original hGDH1 (encoded by the GLUD1 gene), which is potently inhibited by GTP generated by the Krebs cycle, hGDH2 can function independently of this energy switch. In addition, hGDH2 can operate efficiently in the relatively acidic environment that prevails in astrocytes following glutamate uptake. This adaptation is thought to provide a biological advantage by enabling enhanced enzyme catalysis under intense excitatory neurotransmission. While the novel protein may help astrocytes to handle increased loads of transmitter glutamate, dissociation of hGDH2 from GTP control may render humans vulnerable to deregulation of this enzyme's function. Here we will retrace the cloning and characterization of the novel GLUD2 gene and the potential implications of this discovery in the understanding of mechanisms that permitted the brain and other organs that express hGDH2 to fine-tune their functions in order to meet new challenging demands. In addition, the potential role of gain-of-function of hGDH2 variants in human neurodegenerative processes will be considered.
Collapse
|
3
|
Zaganas I, Spanaki C, Plaitakis A. Expression of human GLUD2 glutamate dehydrogenase in human tissues: functional implications. Neurochem Int 2012; 61:455-62. [PMID: 22709674 DOI: 10.1016/j.neuint.2012.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 05/31/2012] [Accepted: 06/01/2012] [Indexed: 11/15/2022]
Abstract
Glutamate dehydrogenase (GDH), a mitochondrial enzyme with a key metabolic role, exists in the human in hGDH1 and hGDH2 isoforms encoded by the GLUD1 and GLUD2 genes, respectively. It seems that GLUD1 was retroposed to the X chromosome where it gave rise to GLUD2 via random mutations and natural selection. Of these, evolutionary Gly456Ala substitution dissociated hGDH2 from GTP control, while replacement of Arg443 by Ser drastically modified basal activity, heat stability, optimal pH, allosteric regulation and migration pattern in SDS-PAGE, thus suggesting an effect on enzyme's conformation. While GLUD2-specific transcripts have been detected in human brain, retina and testis, data on the endogenous hGDH2 protein are lacking. Given the housekeeping nature of hGDH1 and its high homology to hGDH2, the specific detection of hGDH2 in tissues presents a challenge. To develop an antibody specific for hGDH2, we considered that an epitope containing the Arg443Ser change was an attractive target. We accordingly used a peptide that corresponds to residues 436-447, with Ser at position 443, to immunize rabbits and succeeded in raising a polyclonal antibody specific for hGDH2. Western blots showed that human testis contained equal amounts of hGDH2 and hGDH1 and that both isoproteins localized to the mitochondrial fraction. In human brain, however, hGDH2 expression was lower than that of hGDH1. Immuno-histochemical studies on human testis and cerebral cortex, showed punctuate, organelle-like hGDH2 immuno-labeling in sertoli cells and in astrocytes, respectively, consistent with the mitochondrial localization of the enzyme. Similar studies in kidney revealed that hGDH2 is expressed in epithelial cells of the proximal convoluted tubule. As hGDH2 can metabolize glutamate at relatively low pH without the GTP constrain, it may function efficiently under conditions of relative acidification that prevail in astrocytes following glutamate uptake. Similarly, in the kidney, hGDH2 could contribute to enhanced excretion of ammonia under acidosis.
Collapse
Affiliation(s)
- Ioannis Zaganas
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece.
| | | | | |
Collapse
|
4
|
Plaitakis A, Latsoudis H, Spanaki C. The human GLUD2 glutamate dehydrogenase and its regulation in health and disease. Neurochem Int 2011; 59:495-509. [DOI: 10.1016/j.neuint.2011.03.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 03/04/2011] [Accepted: 03/06/2011] [Indexed: 01/12/2023]
|
5
|
Pajic T, Cernelc P, Sesek Briski A, Lejko-Zupanc T, Malesic I. Glutamate dehydrogenase activity in lymphocytes of B-cell chronic lymphocytic leukaemia patients. Clin Biochem 2009; 42:1677-84. [PMID: 19683518 DOI: 10.1016/j.clinbiochem.2009.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 08/02/2009] [Accepted: 08/05/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To investigate the pattern of glutamate dehydrogenase (GLDH) activity, GLUD1 and GLUD2 expressions in peripheral blood mononuclear cells (PBMC) of untreated B-chronic lymphocytic leukemia (B-CLL) in healthy individuals (HI) and patients with infectious mononucleosis (IM). DESIGN AND METHODS GLDH activity was determined in a supernatant obtained from pelleted PBMC. GLUD1 and GLUD2 mRNA expression was determined using a quantitative real-time polymerase chain reaction. CD19(+) B cells from PBMC were purified by using positive selection. RESULTS The highest GLDH activity was found in PBMC of the B-CLL group followed by the HI group and IM group. The PBMC GLDH activity was higher in 60% of the B-CLL patients according to the established reference interval for our HI (2.17-5.70 microkat/g protein). The greater GLDH activity was also found in the CD19(+) cell preparation of the B-CLL patients (two of the three) but not in HI (n=3). The median value of GLUD1 expression was highest in the IM group (n=11), followed by the HI (n=14) and B-CLL groups (n=59) (median 4.69/3.78, P<0.005 and 4.69/2.91, P<0.0005, respectively). GLUD2 expression was not significantly different between groups. CONCLUSIONS The increased GLDH activity is specific for the PBMC of B-CLL patients. The GLUD1 but not the GLUD2 gene expression pattern is different between the PBMC of IM and B-CLL patients.
Collapse
Affiliation(s)
- Tadej Pajic
- Department of Haematology, Division of Internal Medicine, University Medical Centre Ljubljana, Zaloska 7, SI-1000 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
6
|
Mastorodemos V, Zaganas I, Spanaki C, Bessa M, Plaitakis A. Molecular basis of human glutamate dehydrogenase regulation under changing energy demands. J Neurosci Res 2005; 79:65-73. [PMID: 15578726 DOI: 10.1002/jnr.20353] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glutamate dehydrogenase (GDH), an enzyme central to glutamate metabolism, is located in the mitochondria although there is evidence for extramitochondrial localization of GDH. In the human, housekeeping and nerve tissue-specific isoforms, encoded by the GLUD1 and GLUD2 genes, have been identified. The two isoenzymes differ markedly in their baseline activities, allosteric regulation, and thermal stability. GTP potently inhibits GLUD1-derived GDH (IC(50) = 0.2 muM), whereas the GLUD2-derived isoenzyme is resistant to this compound. The GLUD2-derived GDH shows low basal activity and has the capacity to be activated fully by ADP or L-leucine. We used molecular biological tools to study the subcellular localization of GLUD1-derived GDH in cultured cells and the molecular basis of its regulation. COS7 cells, transfected with a GLUD1-pEGFP-N3 vector, revealed a GFP fluorescence pattern nearly identical to that of the mitochondrial marker pDsRed2-Mito. Site-directed mutagenesis of GLUD1 gene showed that replacement of Gly456 by Ala made the enzyme resistant to GTP (IC(50) = 2.8 +/- 0.15 microM) without altering its regulation by ADP. Substitution of Ser for Arg443 rendered the enzyme virtually inactive at its basal state, but fully responsive to ADP activation. The Arg443Ser mutant was more active at pH 7.0 than at pH 8.0. The Gly456Ala change therefore dissociated GLUD2-derived GDH function from GTP, whereas the Arg443Ser change made enzyme regulation possible without this inhibitor. These properties may allow the brain isoenzyme to function well under conditions of intracellular acidification and increased turnover of ATP to ADP, as occurs in synaptic astrocytes during excitatory transmission.
Collapse
Affiliation(s)
- Vasileios Mastorodemos
- Department of Neurology, University of Crete, School of Health Sciences, Section of Medicine, Heraklion, Crete, Greece
| | | | | | | | | |
Collapse
|
7
|
Ihara K, Miyako K, Ishimura M, Kuromaru R, Wang HY, Yasuda K, Hara T. A case of hyperinsulinism/hyperammonaemia syndrome with reduced carbamoyl-phosphate synthetase-1 activity in liver: a pitfall in enzymatic diagnosis for hyperammonaemia. J Inherit Metab Dis 2005; 28:681-7. [PMID: 16151898 DOI: 10.1007/s10545-005-0084-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
We report a patient who was first diagnosed as having congenital carbamoyl-phosphate synthetase-1 (CPS-1) deficiency on the basis of significantly low CPS-1 activity in the liver at 1 year of age. We then started therapy against hyperammonaemia with little effect and, at the age of 15 years, we analysed the GLUD1 gene and found a previously reported gain-of-function mutation in the gene, resulting in a change of her diagnosis to hyperinsulinism/hyperammonaemia (HI/HA) syndrome. This case demonstrates that low CPS-1 activity in liver, however significant it might be, does not always come from a primary CPS-1 deficiency and that we have to take into consideration the possibility of a secondary CPS-1 deficiency, such as HI/HA syndrome.
Collapse
Affiliation(s)
- K Ihara
- Department of Pediatrics, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
8
|
Fang J, Hsu BYL, MacMullen CM, Poncz M, Smith TJ, Stanley CA. Expression, purification and characterization of human glutamate dehydrogenase (GDH) allosteric regulatory mutations. Biochem J 2002; 363:81-7. [PMID: 11903050 PMCID: PMC1222454 DOI: 10.1042/0264-6021:3630081] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glutamate dehydrogenase (GDH) catalyses the reversible oxidative deamination of l-glutamate to 2-oxoglutarate in the mitochondrial matrix. In mammals, this enzyme is highly regulated by allosteric effectors. The major allosteric activator and inhibitor are ADP and GTP, respectively; allosteric activation by leucine may play an important role in amino acid-stimulated insulin secretion. The physiological significance of this regulation has been highlighted by the identification of children with an unusual hyperinsulinism/hyperammonaemia syndrome associated with dominant mutations in GDH that cause a loss in GTP inhibition. In order to determine the effects of these mutations on the function of the human GDH homohexamer, we studied the expression, purification and characterization of two of these regulatory mutations (H454Y, which affects the putative GTP-binding site, and S448P, which affects the antenna region) and a mutation designed to alter the putative binding site for ADP (R463A). The sensitivity to GTP inhibition was impaired markedly in the purified H454Y (ED(50), 210 microM) and S448P (ED(50), 3.1 microM) human GDH mutants compared with the wild-type human GDH (ED(50), 42 nM) or GDH isolated from heterozygous patient cells (ED(50), 290 and 280 nM, respectively). Sensitivity to ADP or leucine stimulation was unaffected by these mutations, confirming that they interfere specifically with the inhibitory GTP-binding site. Conversely, the R463A mutation completely eliminated ADP activation of human GDH, but had little effect on either GTP inhibition or leucine activation. The effects of these three mutations on ATP regulation indicated that this nucleotide inhibits human GDH through binding of its triphosphate tail to the GTP site and, at higher concentrations, activates the enzyme through binding of the nucleotide to the ADP site. These data confirm the assignment of the GTP and ADP allosteric regulatory sites on GDH based on X-ray crystallography and provide insight into the structural mechanisms involved in positive and negative allosteric control and in inter-subunit co-operativity of human GDH.
Collapse
Affiliation(s)
- Jie Fang
- Division of Endocrinology, The Children's Hospital of Philadelphia, 34th Street & Civic Center Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
9
|
Kelly A, Stanley CA. Disorders of glutamate metabolism. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2002; 7:287-95. [PMID: 11754524 DOI: 10.1002/mrdd.1040] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The significant role the amino acid glutamate assumes in a number of fundamental metabolic pathways is becoming better understood. As a central junction for interchange of amino nitrogen, glutamate facilitates both amino acid synthesis and degradation. In the liver, glutamate is the terminus for release of ammonia from amino acids, and the intrahepatic concentration of glutamate modulates the rate of ammonia detoxification into urea. In pancreatic beta-cells, oxidation of glutamate mediates amino acid-stimulated insulin secretion. In the central nervous system, glutamate serves as an excitatory neurotransmittor. Glutamate is also the precursor of the inhibitory neurotransmittor GABA, as well as glutamine, a potential mediator of hyperammonemic neurotoxicity. The recent identification of a novel form of congenital hyperinsulinism associated with asymptomatic hyperammonemia assigns glutamate oxidation by glutamate dehydrogenase a more important role than previously recognized in beta-cell insulin secretion and hepatic and CNS ammonia detoxification. Disruptions of glutamate metabolism have been implicated in other clinical disorders, such as pyridoxine-dependent seizures, confirming the importance of intact glutamate metabolism. This article will review glutamate metabolism and clinical disorders associated with disrupted glutamate metabolism.
Collapse
Affiliation(s)
- A Kelly
- Division of Endocrinology, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania Medical School, 19104, USA
| | | |
Collapse
|
10
|
Plaitakis A, Zaganas I. Regulation of human glutamate dehydrogenases: implications for glutamate, ammonia and energy metabolism in brain. J Neurosci Res 2001; 66:899-908. [PMID: 11746417 DOI: 10.1002/jnr.10054] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of glutamate to alpha-ketoglutarate using NAD or NADP as cofactors. In mammalian brain, GDH is located predominantly in astrocytes, where it is probably involved in the metabolism of transmitter glutamate. The exact mechanisms that regulate glutamate fluxes through this pathway, however, have not been fully understood. In the human, GDH exists in heat-resistant and heat-labile isoforms, encoded by the GLUD1 (housekeeping) and GLUD2 (nerve tissue-specific) genes, respectively. These forms differ in their catalytic and allosteric properties. Kinetic studies showed that the K(m) value for glutamate for the nerve tissue GDH is within the range of glutamate levels in astrocytes (2.43 mM), whereas for the housekeeping enzyme, this value is significantly higher (7.64 mM; P < 0.01). The allosteric activators ADP (0.1-1.0 mM) and L-leucine (1.0-10.0 mM) induce a concentration-dependent enzyme stimulation that is proportionally greater for the nerve tissue-specific GDH (up to 1,600%) than for the housekeeping enzyme (up to 150%). When used together at lower concentrations, ADP (10-50 mM) and L-leucine (75-200 microM) act synergistically in stimulating GDH activity. GTP exerts a powerful inhibitory effect (IC(50) = 0.20 mM) on the housekeeping GDH; in contrast, the nerve tissue isoenzyme is resistant to GTP inhibition. Thus, although the housekeeping GDH is regulated primarily by GTP, the nerve tissue GDH activity depends largely on available ADP or L-leucine levels. Conditions associated with enhanced hydrolysis of ATP to ADP (e.g., intense glutamatergic transmission) are likely to activate nerve tissue-specific GDH leading to an increased glutamate flux through this pathway.
Collapse
Affiliation(s)
- A Plaitakis
- Department of Neurology, School of Health Sciences, Section of Medicine, University of Crete, Heraklion, Crete, Greece.
| | | |
Collapse
|
11
|
MacMullen C, Fang J, Hsu BY, Kelly A, de Lonlay-Debeney P, Saudubray JM, Ganguly A, Smith TJ, Stanley CA. Hyperinsulinism/hyperammonemia syndrome in children with regulatory mutations in the inhibitory guanosine triphosphate-binding domain of glutamate dehydrogenase. J Clin Endocrinol Metab 2001; 86:1782-7. [PMID: 11297618 DOI: 10.1210/jcem.86.4.7414] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hyperinsulinism/hyperammonemia (HI/HA) syndrome is a form of congenital hyperinsulinism in which affected children have recurrent symptomatic hypoglycemia together with asymptomatic, persistent elevations of plasma ammonium levels. We have shown that the disorder is caused by dominant mutations of the mitochondrial enzyme, glutamate dehydrogenase (GDH), that impair sensitivity to the allosteric inhibitor, GTP. In 65 HI/HA probands screened for GDH mutations, we identified 19 (29%) who had mutations in a new domain, encoded by exons 6 and 7. Six new mutations were found: Ser(217)Cys, Arg(221)Cys, Arg(265)Thr, Tyr(266)Cys, Arg(269)Cys, and Arg(269)HIS: In all five mutations tested, lymphoblast GDH showed reduced sensitivity to allosteric inhibition by GTP (IC(50), 60--250 vs. 20--50 nmol/L in normal subjects), consistent with a gain of enzyme function. Studies of ATP allosteric effects on GDH showed a triphasic response with a decrease in high affinity inhibition of enzyme activity in HI/HA lymphoblasts. All of the residues altered by exons 6 and 7 HI/HA mutations lie in the GTP-binding domain of the enzyme. These data confirm the importance of allosteric regulation of GDH as a control site for amino acid-stimulated insulin secretion and indicate that the GTP-binding site is essential for regulation of GDH activity by both GTP and ATP.
Collapse
Affiliation(s)
- C MacMullen
- Division of Endocrinology, The Children's Hospital of Philadelphia , Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Miñambres B, Olivera ER, Jensen RA, Luengo JM. A new class of glutamate dehydrogenases (GDH). Biochemical and genetic characterization of the first member, the AMP-requiring NAD-specific GDH of Streptomyces clavuligerus. J Biol Chem 2000; 275:39529-42. [PMID: 10924516 DOI: 10.1074/jbc.m005136200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A new class of glutamate dehydrogenase (GDH) is reported. The GDH of Streptomyces clavuligerus was purified to homogeneity and characterized. It has a native molecular mass of 1,100 kDa and exists as an alpha(6) oligomeric structure composed of 183-kDa subunits. GDH, which requires AMP as an essential activator, shows a maximal rate of catalysis in 100 mm phosphate buffer, pH 7.0, at 30 degrees C. Under these conditions, GDH displayed hyperbolic behavior toward ammonia (K(m), 33 mm) and sigmoidal responses to changes in alpha-ketoglutarate (S(0.5) 1.3 mm; n(H) 1.50) and NADH (S(0.5) 20 microm; n(H) 1.52) concentrations. Aspartate and asparagine were found to be allosteric activators. This enzyme is inhibited by an excess of NADH or NH(4)(+), by some tricarboxylic acid cycle intermediates and by ATP. This GDH seems to be a catabolic enzyme as indicated by the following: (i) it is NAD-specific; (ii) it shows a high value of K(m) for ammonia; and (iii) when S. clavuligerus was cultured in minimal medium containing glutamate as the sole source of carbon and nitrogen, a 5-fold increase in specific activity of GDH was detected compared with cultures provided with glycerol and ammonia. GDH has 1,651 amino acids, and it is encoded by a DNA fragment of 4,953 base pairs (gdh gene). It shows strong sequence similarity to proteins encoded by unidentified open reading frames present in the genomes of species belonging to the genera Mycobacterium, Rickettsia, Pseudomonas, Vibrio, Shewanella, and Caulobacter, suggesting that it has a broad distribution. The GDH of S. clavuligerus is the first member of a class of GDHs included in a subfamily of GDHs (large GDHs) whose catalytic requirements and evolutionary implications are described and discussed.
Collapse
Affiliation(s)
- B Miñambres
- Department Bioquimica y Biologia Molecular, Facultad de Veterinaria, Universidad de León, 24007 León, España
| | | | | | | |
Collapse
|
13
|
Ciardiello MA, Camardella L, Carratore V, di Prisco G. L-Glutamate dehydrogenase from the antarctic fish Chaenocephalus aceratus. Primary structure, function and thermodynamic characterisation: relationship with cold adaptation. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1543:11-23. [PMID: 11087937 DOI: 10.1016/s0167-4838(00)00186-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In order to study the molecular mechanisms of enzyme cold adaptation, direct amino acid sequence, catalytic features, thermal stability and thermodynamics of the reaction and of heat inactivation of L-glutamate dehydrogenase (GDH) from the liver of the Antarctic fish Chaenocephalus aceratus (suborder Notothenioidei, family Channichthyidae) were investigated. The enzyme shows dual coenzyme specificity, is inhibited by GTP and the forward reaction is activated by ADP and ATP. The complete primary structure of C. aceratus GDH has been established; it is the first amino acid sequence of a fish GDH to be described. In comparison with homologous mesophilic enzymes, the amino acid substitutions suggest a less compact molecular structure with a reduced number of salt bridges. Functional characterisation indicates efficient compensation of Q(10), achieved by increased k(cat) and modulation of S(0.5), which produce a catalytic efficiency at low temperature very similar to that of bovine GDH at its physiological temperature. The structural and functional characteristics are indicative of a high extent of protein flexibility. This property seems to find correspondence in the heat inactivation of Antarctic and bovine enzymes, which are inactivated at very similar temperature, but with different thermodynamics.
Collapse
Affiliation(s)
- M A Ciardiello
- Institute of Protein Biochemistry and Enzymology, C.N.R., Via Marconi 10, I-80125, Naples, Italy
| | | | | | | |
Collapse
|
14
|
Lee WK, Shin S, Cho SS, Park JS. Purification and characterization of glutamate dehydrogenase as another isoprotein binding to the membrane of rough endoplasmic reticulum. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000201)76:2<244::aid-jcb8>3.0.co;2-k] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
15
|
Stanley CA, Lieu YK, Hsu BY, Burlina AB, Greenberg CR, Hopwood NJ, Perlman K, Rich BH, Zammarchi E, Poncz M. Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med 1998; 338:1352-7. [PMID: 9571255 DOI: 10.1056/nejm199805073381904] [Citation(s) in RCA: 451] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND A new form of congenital hyperinsulinism characterized by hypoglycemia and hyperammonemia was described recently. We hypothesized that this syndrome of hyperinsulinism and hyperammonemia was caused by excessive activity of glutamate dehydrogenase, which oxidizes glutamate to alpha-ketoglutarate and which is a potential regulator of insulin secretion in pancreatic beta cells and of ureagenesis in the liver. METHODS We measured glutamate dehydrogenase activity in lymphoblasts from eight unrelated children with the hyperinsulinism-hyperammonemia syndrome: six with sporadic cases and two with familial cases. We identified mutations in the glutamate dehydrogenase gene by sequencing glutamate dehydrogenase complementary DNA prepared from lymphoblast messenger RNA. Site-directed mutagenesis was used to express the mutations in COS-7 cells. RESULTS The sensitivity of glutamate dehydrogenase to inhibition by guanosine 5'-triphosphate was a quarter of the normal level in the patients with sporadic hyperinsulinism-hyperammonemia syndrome and half the normal level in patients with familial cases and their affected relatives, findings consistent with overactivity of the enzyme. These differences in enzyme insensitivity correlated with differences in the severity of hypoglycemia in the two groups. All eight children were heterozygous for the wild-type allele and had a mutation in the proposed allosteric domain of the enzyme. Four different mutations were identified in the six patients with sporadic cases; the two patients with familial cases shared a fifth mutation. In two clones of COS-7 cells transfected with the mutant sequence from one patient, the sensitivity of the enzyme to guanosine 5'-triphosphate was reduced, findings similar to those in the child's lymphoblasts. CONCLUSIONS The hyperinsulinism-hyperammonemia syndrome is caused by mutations in the glutamate dehydrogenase gene that impair the control of enzyme activity.
Collapse
Affiliation(s)
- C A Stanley
- Division of Endocrinology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shashidharan P, Michaelidis T, Robakis N, Kresovali A, Papamatheakis J, Plaitakis A. Novel human glutamate dehydrogenase expressed in neural and testicular tissues and encoded by an X-linked intronless gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)89484-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Benachenhou-Lahfa N, Labedan B, Forterre P. PCR-mediated cloning and sequencing of the gene encoding glutamate dehydrogenase from the archaeon Sulfolobus shibatae: identification of putative amino-acid signatures for extremophilic adaptation. Gene X 1994; 140:17-24. [PMID: 8125334 DOI: 10.1016/0378-1119(94)90725-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Highly degenerate oligodeoxyribonucleotides (oligos) were used to PCR amplify the most conserved region of the glutamate dehydrogenase (GDH)-encoding gene from the extreme thermophilic archaeon, Sulfolobus shibatae. The amplified fragment was cloned and sequenced, and then used as a homologous probe to clone a genomic restriction fragment containing the near-complete gdhA gene. The deduced amino acid (aa) sequence shows a very high degree of similarity with the aa sequence previously determined by direct sequencing of the purified enzyme from Sulfolobus solfataricus [Maras et al., Eur. J. Biochem. 203 (1992) 81-87]. The introduction of this new sequence into our GDH phylogenetic trees [Benachenhou-Lahfa et al., J. Mol. Evol. 35 (1993) 335-346] showed that it is a new member of hexameric GDH family II, and did not modify the topology of the trees. Comparison of the primary structures of extremophilic GDH enzymes (halophilic, thermophilic and hyperthermophilic) with those of their non-halophilic and mesophilic counterparts in this family II led us to identify a few aa changes which seem to be specific either to hyperthermophilic or halophilic adaptation.
Collapse
|
18
|
Benachenhou-Lahfa N, Forterre P, Labedan B. Evolution of glutamate dehydrogenase genes: evidence for two paralogous protein families and unusual branching patterns of the archaebacteria in the universal tree of life. J Mol Evol 1993; 36:335-46. [PMID: 8315654 DOI: 10.1007/bf00182181] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The existence of two families of genes coding for hexameric glutamate dehydrogenases has been deduced from the alignment of 21 primary sequences and the determination of the percentages of similarity between each pair of proteins. Each family could also be characterized by specific motifs. One family (Family I) was composed of gdh genes from six eubacteria and six lower eukaryotes (the primitive protozoan Giardia lamblia, the green alga Chlorella sorokiniana, and several fungi and yeasts). The other one (Family II) was composed of gdh genes from two eubacteria, two archaebacteria, and five higher eukaryotes (vertebrates). Reconstruction of phylogenetic trees using several parsimony and distance methods confirmed the existence of these two families. Therefore, these results reinforced our previously proposed hypothesis that two close but already different gdh genes were present in the last common ancestor to the three Ur-kingdoms (eubacteria, archaebacteria, and eukaryotes). The branching order of the different species of Family I was found to be the same whatever the method of tree reconstruction although it varied slightly according the region analyzed. Similarly, the topological positions of eubacteria and eukaryotes of Family II were independent of the method used. However, the branching of the two archaebacteria in Family II appeared to be unexpected: (1) the thermoacidophilic Sulfolobus solfataricus was found clustered with the two eubacteria of this family both in parsimony and distance trees, a situation not predicted by either one of the contradictory trees recently proposed; and (2) the branching of the halophilic Halobacterium salinarium varied according to the method of tree construction: it was closer to the eubacteria in the maximum parsimony tree and to eukaryotes in distance trees. Therefore, whatever the actual position of the halophilic species, archaebacteria did not appear to be monophyletic in these gdh gene trees. This result questions the firmness of the presently accepted interpretation of previous protein trees which were supposed to root unambiguously the universal tree of life and place the archaebacteria in this tree.
Collapse
|
19
|
Das AT, Arnberg AC, Malingré H, Moerer P, Charles R, Moorman AF, Lamers WH. Isolation and characterization of the rat gene encoding glutamate dehydrogenase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 211:795-803. [PMID: 8094669 DOI: 10.1111/j.1432-1033.1993.tb17611.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The concentration of glutamate dehydrogenase (GDH) varies strongly between different organs and between different regions within organs. To permit further studies on the regulation of GDH expression, we isolated and characterized the rat gene encoding the GDH protein. This gene contains 13 exons and spans approximately 34 kbp. The GDH gene is present as a single, autosomally located copy in the Wistar rat genome, but shows an extensive restriction-fragment-length polymorphism for several enzymes. Promoter activity of the 5'-flanking sequence is shown by transient transfection experiments. The 5'-flanking sequence contains a TTAAAA sequence at position -29, instead of a consensus TATA box and, like many other TATA-less promoters, is characterized by a very high G + C content. In addition, consensus sequences for the binding sites of the transcription factors Sp1 and Zif268 are present in the G + C-rich upstream region.
Collapse
Affiliation(s)
- A T Das
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
20
|
Teller JK, Smith RJ, McPherson MJ, Engel PC, Guest JR. The glutamate dehydrogenase gene of Clostridium symbiosum. Cloning by polymerase chain reaction, sequence analysis and over-expression in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 206:151-9. [PMID: 1587267 DOI: 10.1111/j.1432-1033.1992.tb16912.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The gene encoding the NAD(+)-dependent glutamate dehydrogenase (GDH) of Clostridium symbiosum was cloned using the polymerase chain reaction (PCR) because it could not be recovered by standard techniques. The nucleotide sequence of the gdh gene was determined and it was overexpressed from the controllable tac promoter in Escherichia coli so that active clostridial GDH represented 20% of total cell protein. The recombinant plasmid complemented the nutritional lesion of an E. coli glutamate auxotroph. There was a marked difference between the nucleotide compositions of the coding region (G + C = 52%) and the flanking sequences (G + C = 30% and 37%). The structural gene encoded a polypeptide of 450 amino acid residues and relative molecular mass (M(r) 49,295 which corresponds to a single subunit of the hexameric enzyme. The DNA-derived amino acid sequence was consistent with a partial sequence from tryptic and cyanogen bromide peptides of the clostridial enzyme. The N-terminal amino acid sequence matched that of the purified protein, indicating that the initiating methionine is removed post-translationally, as in the natural host. The amino acid sequence is similar to those of other bacterial GDHs although it has a Gly-Xaa-Gly-Xaa-Xaa-Ala motif in the NAD(+)-binding domain, which is more typical of the NADP(+)-dependent enzymes. The sequence data now permit a detailed interpretation of the X-ray crystallographic structure of the enzyme and the cloning and expression of the clostridial gene will facilitate site-directed mutagenesis.
Collapse
Affiliation(s)
- J K Teller
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, England
| | | | | | | | | |
Collapse
|
21
|
Maras B, Consalvi V, Chiaraluce R, Politi L, De Rosa M, Bossa F, Scandurra R, Barra D. The protein sequence of glutamate dehydrogenase from Sulfolobus solfataricus, a thermoacidophilic archaebacterium. Is the presence of N-epsilon-methyllysine related to thermostability? EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 203:81-7. [PMID: 1730244 DOI: 10.1111/j.1432-1033.1992.tb19831.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The complete amino acid sequence of glutamate dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus has been determined. The sequence was reconstructed by automated sequence analysis of peptides obtained after cleavage by trypsin, cyanogen bromide, Staphylococcus aureus V8 protease and pepsin. The enzyme subunit is composed of 421 amino acid residues yielding a molecular mass of 46.078 kDa. The presence of N-epsilon-methyllysine in six positions of the sequence was observed. Comparison of the sequence of glutamate dehydrogenase from S. solfataricus with the other known primary structures of the corresponding enzyme from different sources, gives an overall identity of 9.2% and shows a symmetrical evolutionary distance of this archaebacterial protein from the two groups of vertebrate on one side and eubacterial and low eucaryote enzymes on the other side. The occurrence of specific substitutions and a possible role for N-epsilon-methylation of lysine residues are discussed in view of current hypotheses on the molecular basis of thermal adaptation of proteins.
Collapse
Affiliation(s)
- B Maras
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Università La Sapienza, Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Tzimagiorgis G, Adamson MC, Kozak CA, Moschonas NK. Chromosomal mapping of glutamate dehydrogenase gene sequences to mouse chromosomes 7 and 14. Genomics 1991; 10:83-8. [PMID: 2045113 DOI: 10.1016/0888-7543(91)90487-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glutamate dehydrogenase (GLUD) plays an important role in mammalian neuronal transmission. In human, GLUD is encoded by a small gene family. To determine whether defects in Glud genes are associated with known neurological mutations in the mouse and to contribute to the comparative mapping of homologous genes in man and mouse, the chromosomal location of genes reactive with a mouse brain GLUD cDNA were determined. Genomic Southern analysis of a well-characterized panel of Chinese hamster x mouse somatic cell hybrids identified two GLUD-reactive loci, one residing on mouse Chromosome 14 and the other on Chromosome 7. Progeny of an intersubspecies backcross were used to map one of these genes, Glud, proximal to Np-1 on Chromosome 14, but no restriction fragment polymorphisms could be identified for the second locus, Glud-2.
Collapse
Affiliation(s)
- G Tzimagiorgis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Crete, Greece
| | | | | | | |
Collapse
|
23
|
Amuro N, Goto Y, Okazaki T. Isolation and characterization of the two distinct genes for human glutamate dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1049:216-8. [PMID: 2364112 DOI: 10.1016/0167-4781(90)90043-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two genomic clones containing a part of the glutamate dehydrogenase gene were isolated from a human genomic library. The restriction map of both clones were distinctly different from one another, although the nucleotide sequences of the three exons that they contained were virtually the same in each clone. Southern blotting analysis of the genomic DNAs from several unrelated human individuals revealed that in every case the probe hybridized with at least two DNA fragments of different sizes, each characteristic to one of the two clones. These results strongly suggest that the two clones presently obtained do not result from polymorphism but are generated from two different gene loci for glutamate dehydrogenase on the human chromosome.
Collapse
Affiliation(s)
- N Amuro
- Department of Biochemistry, Nippon Medical School, Tokyo, Japan
| | | | | |
Collapse
|
24
|
Das AT, Moerer P, Charles R, Moorman AF, Lamers WH. Nucleotide sequence of rat liver glutamate dehydrogenase cDNA. Nucleic Acids Res 1989; 17:2355. [PMID: 2704624 PMCID: PMC317604 DOI: 10.1093/nar/17.6.2355] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- A T Das
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|