1
|
Lin M, Liu L, Chen CA. Transcriptomics of the Anthopleura Sea Anemone Reveals Unique Adaptive Strategies to Shallow-Water Hydrothermal Vent. Ecol Evol 2025; 15:e71252. [PMID: 40225888 PMCID: PMC11985324 DOI: 10.1002/ece3.71252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/13/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
The nonsymbiotic sea anemone Anthopleura nigrescens dominates the shallow-water hydrothermal vents off the coast of Kueishan Island, Taiwan. These vents represent some of the world's most extreme environments, with recorded pH values as low as 1.52 and temperatures reaching 121°C. To investigate the adaptations of A. nigrescens to these extreme conditions, transcriptomic analyses were conducted to compare populations inhabiting vent and non-vent areas. To identify shared genetic mechanisms in vent-dwelling anemones, specific orthologs conserved in vent sea anemones were identified by comparing the genomic data of Anthopleura species and other sea anemones. Tank experiments with elevated temperatures were also performed to evaluate the expression profiles of genes associated with heat resistance. The transcriptomic analysis revealed that enriched genes in vent populations are involved in H2S homeostasis and stress resistance, suggesting that detoxification and thermal stress resistance are critical adaptive strategies. Two significantly upregulated genes encoding hydroxyacylglutathione hydrolase and thiosulfate sulfurtransferase may play a role in managing sulfur toxicity and maintaining redox balance. The enriched genes and vent-specific gene expression patterns also suggest that efficient DNA repair mechanisms play a crucial role in the thermal stress resistance of vent populations. Interestingly, some genes associated with circadian rhythms were upregulated in vent populations, suggesting these genes may help vent anemones adapt to the highly dynamic conditions of hydrothermal vents. Furthermore, the expression profiles of stress-resistance-related genes reveal that vent anemones have developed unique molecular regulatory mechanisms to cope with elevated temperatures, as observed in the tank experiment. These transcriptomic findings advance our understanding of the life adaptations in shallow-water hydrothermal vent environments.
Collapse
Affiliation(s)
- Mei‐Fang Lin
- Department of Marine Biotechnology and ResourcesNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Doctoral Degree Program in Marine BiotechnologyNational Sun Yat‐Sen UniversityKaohsiungTaiwan
| | - Li‐Lian Liu
- Frontier Center for Ocean Science and TechnologyNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Department of OceanographyNational Sun Yat‐Sen UniversityKaohsiungTaiwan
| | | |
Collapse
|
2
|
Cheng J, Xiao Y, Peng T, Zhang Z, Qin Y, Wang Y, Shi J, Yan J, Zhao Z, Zheng L, He Z, Wang J, Zhang Z, Li C, Zhu H, Jiang P. ETV7 limits the antiviral and antitumor efficacy of CD8 + T cells by diverting their fate toward exhaustion. NATURE CANCER 2025; 6:338-356. [PMID: 39805956 DOI: 10.1038/s43018-024-00892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Terminal exhaustion is a critical barrier to antitumor immunity. By integrating and analyzing single-cell RNA-sequencing and single-cell assay for transposase-accessible chromatin with sequencing data, we found that ETS variant 7 (ETV7) is indispensable for determining CD8+ T cell fate in tumors. ETV7 introduction drives T cell differentiation from memory to terminal exhaustion, limiting antiviral and antitumor efficacy in male mice. Mechanistically, ETV7 acts as a central transcriptional node by binding to specific memory genes and exhaustion genes and functionally skewing these transcriptional programs toward exhaustion. Clinically, ETV7 expression is negatively correlated with progression and responsiveness to immune checkpoint blockade in various human cancers. ETV7 depletion strongly enhances the antitumor efficacy of CD8+ T cells and engineered chimeric antigen receptor T cells in solid tumors. Thus, these findings demonstrate a decisive role for ETV7 in driving CD8+ T cell terminal exhaustion and reveal that ETV7 may be a promising target and biomarker for improving the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Jie Cheng
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Department of Pathology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yifeng Xiao
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Ting Peng
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zijian Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China
| | - You Qin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqian Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jiangzhou Shi
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China
| | - Jinxin Yan
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zihao Zhao
- School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - Liangtao Zheng
- School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - Zhijun He
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Zemin Zhang
- School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China.
| | - Cheng Li
- School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China.
| | - Haichuan Zhu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China.
| | - Peng Jiang
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Zhan J, Harwood F, Have ST, Lamond A, Phillips AH, Kriwacki RW, Halder P, Cardone M, Grosveld GC. Assembly of mTORC3 Involves Binding of ETV7 to Two Separate Sequences in the mTOR Kinase Domain. Int J Mol Sci 2024; 25:10042. [PMID: 39337528 PMCID: PMC11432197 DOI: 10.3390/ijms251810042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
mTOR plays a crucial role in cell growth by controlling ribosome biogenesis, metabolism, autophagy, mRNA translation, and cytoskeleton organization. It is a serine/threonine kinase that is part of two distinct extensively described protein complexes, mTORC1 and mTORC2. We have identified a rapamycin-resistant mTOR complex, called mTORC3, which is different from the canonical mTORC1 and mTORC2 complexes in that it does not contain the Raptor, Rictor, or mLST8 mTORC1/2 components. mTORC3 phosphorylates mTORC1 and mTORC2 targets and contains the ETS transcription factor ETV7, which binds to mTOR and is essential for mTORC3 assembly in the cytoplasm. Tumor cells that assemble mTORC3 have a proliferative advantage and become resistant to rapamycin, indicating that inhibiting mTORC3 may have a therapeutic impact on cancer. Here, we investigate which domains or amino acid residues of ETV7 and mTOR are involved in their mutual binding. We found that the mTOR FRB and LBE sequences in the kinase domain interact with the pointed (PNT) and ETS domains of ETV7, respectively. We also found that forced expression of the mTOR FRB domain in the mTORC3-expressing, rapamycin-resistant cell line Karpas-299 out-competes mTOR for ETV7 binding and renders these cells rapamycin-sensitive in vivo. Our data provide useful information for the development of molecules that prevent the assembly of mTORC3, which may have therapeutic value in the treatment of mTORC3-positive cancer.
Collapse
Affiliation(s)
- Jun Zhan
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (F.H.); (P.H.); (M.C.)
| | - Frank Harwood
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (F.H.); (P.H.); (M.C.)
| | - Sara Ten Have
- Center for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK; (S.T.H.); (A.L.)
| | - Angus Lamond
- Center for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK; (S.T.H.); (A.L.)
| | - Aaron H. Phillips
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.H.P.); (R.W.K.)
| | - Richard W. Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.H.P.); (R.W.K.)
| | - Priyanka Halder
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (F.H.); (P.H.); (M.C.)
| | - Monica Cardone
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (F.H.); (P.H.); (M.C.)
| | - Gerard C. Grosveld
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (F.H.); (P.H.); (M.C.)
| |
Collapse
|
4
|
Legrand AJ, Choul-li S, Villeret V, Aumercier M. Poly(ADP-ribose) Polyremase-1 (PARP-1) Inhibition: A Promising Therapeutic Strategy for ETS-Expressing Tumours. Int J Mol Sci 2023; 24:13454. [PMID: 37686260 PMCID: PMC10487777 DOI: 10.3390/ijms241713454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
ETS transcription factors are a highly conserved family of proteins involved in the progression of many cancers, such as breast and prostate carcinomas, Ewing's sarcoma, and leukaemias. This significant involvement can be explained by their roles at all stages of carcinogenesis progression. Generally, their expression in tumours is associated with a poor prognosis and an aggressive phenotype. Until now, no efficient therapeutic strategy had emerged to specifically target ETS-expressing tumours. Nevertheless, there is evidence that pharmacological inhibition of poly(ADP-ribose) polymerase-1 (PARP-1), a key DNA repair enzyme, specifically sensitises ETS-expressing cancer cells to DNA damage and limits tumour progression by leading some of the cancer cells to death. These effects result from a strong interplay between ETS transcription factors and the PARP-1 enzyme. This review summarises the existing knowledge of this molecular interaction and discusses the promising therapeutic applications.
Collapse
Affiliation(s)
- Arnaud J. Legrand
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France; (A.J.L.); (V.V.)
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Deter-minants of Aging-Related Diseases, F-59000 Lille, France
| | - Souhaila Choul-li
- Département de Biologie, Faculté des Sciences, Université Chouaib Doukkali, BP-20, El Jadida 24000, Morocco;
| | - Vincent Villeret
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France; (A.J.L.); (V.V.)
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Deter-minants of Aging-Related Diseases, F-59000 Lille, France
| | - Marc Aumercier
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France; (A.J.L.); (V.V.)
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Deter-minants of Aging-Related Diseases, F-59000 Lille, France
| |
Collapse
|
5
|
Babal YK, Sonmez E, Aksan Kurnaz I. Nervous system-related gene regulatory networks and functional evolution of ETS proteins across species. Biosystems 2023; 227-228:104891. [PMID: 37030605 DOI: 10.1016/j.biosystems.2023.104891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/21/2023] [Accepted: 04/05/2023] [Indexed: 04/10/2023]
Abstract
The ETS domain transcription factor family is one of the major transcription factor superfamilies that play regulatory roles in development, cell growth, and cancer progression. Although different functions of ETS member proteins in the nervous system have been demonstrated in various studies, their role in neuronal cell differentiation and the evolutionary conservation of its target genes have not yet been extensively studied. In this study, we focused on the regulatory role of ETS transcription factors in neuronal differentiation and their functional evolution by comparative transcriptomics. In order to investigate the regulatory role of ETS transcription factors in neuronal differentiation across species, transcriptional profiles of ETS members and their target genes were investigated by comparing differentially expressed genes and gene regulatory networks, which were analyzed using human, gorilla, mouse, fruit fly and worm transcriptomics datasets. Bioinformatics approaches to examine the evolutionary conservation of ETS transcription factors during neuronal differentiation have shown that ETS member proteins regulate genes associated with neuronal differentiation, nervous system development, axon, and synaptic regulation in different organisms. This study is a comparative transcriptomic study of ETS transcription factors in terms of neuronal differentiation using a gene regulatory network inference algorithm. Overall, a comparison of gene regulation networks revealed that ETS members are indeed evolutionarily conserved in the regulation of neuronal differentiation. Nonetheless, ETS, PEA3, and ELF subfamilies were found to be relatively more active transcription factors in the transcriptional regulation of neuronal differentiation.
Collapse
Affiliation(s)
- Yigit Koray Babal
- Gebze Technical University, Institute of Biotechnology, 41400, Gebze Kocaeli, Turkey.
| | - Ekin Sonmez
- Gebze Technical University, Institute of Biotechnology, 41400, Gebze Kocaeli, Turkey
| | - Isil Aksan Kurnaz
- Gebze Technical University, Institute of Biotechnology, 41400, Gebze Kocaeli, Turkey; Gebze Technical University, Dept Molecular Biology and Genetics, 41400, Gebze Kocaeli, Turkey
| |
Collapse
|
6
|
Poon GMK. The Non-continuum Nature of Eukaryotic Transcriptional Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1371:11-32. [PMID: 33616894 PMCID: PMC8380751 DOI: 10.1007/5584_2021_618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Eukaryotic transcription factors are versatile mediators of specificity in gene regulation. This versatility is achieved through mutual specification by context-specific DNA binding on the one hand, and identity-specific protein-protein partnerships on the other. This interactivity, known as combinatorial control, enables a repertoire of complex transcriptional outputs that are qualitatively disjoint, or non-continuum, with respect to binding affinity. This feature contrasts starkly with prokaryotic gene regulators, whose activities in general vary quantitatively in step with binding affinity. Biophysical studies on prokaryotic model systems and more recent investigations on transcription factors highlight an important role for folded state dynamics and molecular hydration in protein/DNA recognition. Analysis of molecular models of combinatorial control and recent literature in low-affinity gene regulation suggest that transcription factors harbor unique conformational dynamics that are inaccessible or unused by prokaryotic DNA-binding proteins. Thus, understanding the intrinsic dynamics involved in DNA binding and co-regulator recruitment appears to be a key to understanding how transcription factors mediate non-continuum outcomes in eukaryotic gene expression, and how such capability might have evolved from ancient, structurally conserved counterparts.
Collapse
Affiliation(s)
- Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA, USA.
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
7
|
Vo TD, Schneider AL, Wilson WD, Poon GMK. Salt bridge dynamics in protein/DNA recognition: a comparative analysis of Elk1 and ETV6. Phys Chem Chem Phys 2021; 23:13490-13502. [PMID: 34120158 PMCID: PMC8233815 DOI: 10.1039/d1cp01568k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrostatic protein/DNA interactions arise from the neutralization of the DNA phosphodiester backbone as well as coupled exchanges by charged protein residues as salt bridges or with mobile ions. Much focus has been and continues to be paid to interfacial ion pairs with DNA. The role of extra-interfacial ionic interactions, particularly as dynamic drivers of DNA sequence selectivity, remain poorly known. The ETS family of transcription factors represents an attractive model for addressing this knowledge gap given their diverse ionic composition in primary structures that fold to a tightly conserved DNA-binding motif. To probe the importance of extra-interfacial salt bridges in DNA recognition, we compared the salt-dependent binding by Elk1 with ETV6, two ETS homologs differing markedly in ionic composition. While both proteins exhibit salt-dependent binding with cognate DNA that corresponds to interfacial phosphate contacts, their nonspecific binding diverges from cognate binding as well as each other. Molecular dynamics simulations in explicit solvent, which generated ionic interactions in agreement with the experimental binding data, revealed distinct salt-bridge dynamics in the nonspecific complexes formed by the two proteins. Impaired DNA contact by ETV6 resulted in fewer backbone contacts in the nonspecific complex, while Elk1 exhibited a redistribution of extra-interfacial salt bridges via residues that are non-conserved between the two ETS relatives. Thus, primary structure variation in ionic residues can encode highly differentiated specificity mechanisms in a highly conserved DNA-binding motif.
Collapse
Affiliation(s)
- Tam D Vo
- Department of Chemistry, Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA.
| | - Amelia L Schneider
- Department of Chemistry, Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA.
| | - W David Wilson
- Department of Chemistry, Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA. and Center for Diagnostics and Therapeutics, Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA. and Center for Diagnostics and Therapeutics, Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| |
Collapse
|
8
|
Kobiita A, Godbersen S, Araldi E, Ghoshdastider U, Schmid MW, Spinas G, Moch H, Stoffel M. The Diabetes Gene JAZF1 Is Essential for the Homeostatic Control of Ribosome Biogenesis and Function in Metabolic Stress. Cell Rep 2021; 32:107846. [PMID: 32640216 DOI: 10.1016/j.celrep.2020.107846] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/23/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
The ability of pancreatic β-cells to respond to increased demands for insulin during metabolic stress critically depends on proper ribosome homeostasis and function. Excessive and long-lasting stimulation of insulin secretion can elicit endoplasmic reticulum (ER) stress, unfolded protein response, and β-cell apoptosis. Here we show that the diabetes susceptibility gene JAZF1 is a key transcriptional regulator of ribosome biogenesis, global protein, and insulin translation. JAZF1 is excluded from the nucleus, and its expression levels are reduced upon metabolic stress and in diabetes. Genetic deletion of Jazf1 results in global impairment of protein synthesis that is mediated by defects in ribosomal protein synthesis, ribosomal RNA processing, and aminoacyl-synthetase expression, thereby inducing ER stress and increasing β-cell susceptibility to apoptosis. Importantly, JAZF1 function and its pleiotropic actions are impaired in islets of murine T2D and in human islets exposed to metabolic stress. Our study identifies JAZF1 as a central mediator of metabolic stress in β-cells.
Collapse
Affiliation(s)
- Ahmad Kobiita
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, HPL H36, 8093 Zürich, Switzerland
| | - Svenja Godbersen
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, HPL H36, 8093 Zürich, Switzerland
| | - Elisa Araldi
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, HPL H36, 8093 Zürich, Switzerland
| | - Umesh Ghoshdastider
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, HPL H36, 8093 Zürich, Switzerland
| | - Marc W Schmid
- MWSchmid GmbH, Möhrlistrasse 25, 8006 Zurich, Switzerland
| | - Giatgen Spinas
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitäts-Spital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University and University Hospital Zürich, Schmelzbergstrasse 12, 8091 Zürich, Switzerland
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, HPL H36, 8093 Zürich, Switzerland; Medical Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Chen CH, Su LJ, Tsai HT, Hwang CF. ELF-1 expression in nasopharyngeal carcinoma facilitates proliferation and metastasis of cancer cells via modulation of CCL2/CCR2 signaling. Cancer Manag Res 2019; 11:5243-5254. [PMID: 31289447 PMCID: PMC6560358 DOI: 10.2147/cmar.s196355] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/16/2019] [Indexed: 01/28/2023] Open
Abstract
Background: Nasopharyngeal carcinoma (NPC) is a prevalent malignant tumor in Southeast Asia. The management of NPC has remained a challenge until now. ELF-1 is a member of the ETS family of transcription factors that regulate genes involved in cellular growth. ELF-1 expression has been reported in various cancers and is required for tumor growth and angiogenesis; however, its function in NPC remains unclear. In the present study, we characterized the role and underlying mechanism of ELF-1 in NPC. Methods: The biological functions of ELF-1 in NPC cells such as proliferation, migration, invasion, and drug resistance were investigated using MTT, BrdU incorporation, and Transwell assays. To gain more insight into the mechanism of ELF-1 in NPC, we analyzed CCL2/CCR2 signaling by Western blotting, ELISA, siRNAs, and CCR2 antagonist. Results: Gain-of-function of ELF-1 in TW01 and TW04 cells promoted NPC cell proliferation, BrdU incorporation, migration, invasion and cisplatin resistance. By contrast, knockdown of ELF-1 produced opposite results. Overexpression of ELF-1 enhanced the expression of CCL2 via binding to its promoter region and increased the level of the extracellular matrix protein CCL2 in cell culture medium. ELF-1 expression also modulated the downstream targets of CCL2/CCR2 signaling. Most importantly, ELF-1-induced NPC malignant phenotypes were abrogated by a CCR2 inhibitor, implying that the CCL2/CCR2 signaling axis was involved in ELF-1-mediated regulation in NPC. Conclusion: Our data suggest that ELF-1 plays an oncogenic role in NPC development associated with the CCL2/CCR2 signaling pathway and may therefore be a potential target for NPC therapy.
Collapse
Affiliation(s)
- Chang-Han Chen
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510020, People’s Republic of China
- Department of Applied Chemistry, Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, 54561, Taiwan
| | - Li-Jen Su
- Department of Biomedical Sciences and Engineering, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan
- Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, Taoyuan City, Taiwan
- IHMed Global, Taipei City, Taiwan
| | - Hsin-Ting Tsai
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510020, People’s Republic of China
| | - Chung-Feng Hwang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
- Kaohsiung Chang Gung Head and Neck Oncology Group, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung83301, Taiwan
| |
Collapse
|
10
|
Huang K, Xhani S, Albrecht AV, Ha VLT, Esaki S, Poon GMK. Mechanism of cognate sequence discrimination by the ETS-family transcription factor ETS-1. J Biol Chem 2019; 294:9666-9678. [PMID: 31048376 DOI: 10.1074/jbc.ra119.007866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/01/2019] [Indexed: 12/19/2022] Open
Abstract
Functional evidence increasingly implicates low-affinity DNA recognition by transcription factors as a general mechanism for the spatiotemporal control of developmental genes. Although the DNA sequence requirements for affinity are well-defined, the dynamic mechanisms that execute cognate recognition are much less resolved. To address this gap, here we examined ETS1, a paradigm developmental transcription factor, as a model for which cognate discrimination remains enigmatic. Using molecular dynamics simulations, we interrogated the DNA-binding domain of murine ETS1 alone and when bound to high-and low-affinity cognate sites or to nonspecific DNA. The results of our analyses revealed collective backbone and side-chain motions that distinguished cognate versus nonspecific as well as high- versus low-affinity cognate DNA binding. Combined with binding experiments with site-directed ETS1 mutants, the molecular dynamics data disclosed a triad of residues that respond specifically to low-affinity cognate DNA. We found that a DNA-contacting residue (Gln-336) specifically recognizes low-affinity DNA and triggers the loss of a distal salt bridge (Glu-343/Arg-378) via a large side-chain motion that compromises the hydrophobic packing of two core helices. As an intact Glu-343/Arg-378 bridge is the default state in unbound ETS1 and maintained in high-affinity and nonspecific complexes, the low-affinity complex represents a unique conformational adaptation to the suboptimization of developmental enhancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Gregory M K Poon
- From the Department of Chemistry and .,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
11
|
Roberts SA, Brown AJ, Wyrick JJ. Recurrent Noncoding Mutations in Skin Cancers: UV Damage Susceptibility or Repair Inhibition as Primary Driver? Bioessays 2019; 41:e1800152. [PMID: 30801747 PMCID: PMC6571124 DOI: 10.1002/bies.201800152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/05/2018] [Indexed: 12/14/2022]
Abstract
Somatic mutations arising in human skin cancers are heterogeneously distributed across the genome, meaning that certain genomic regions (e.g., heterochromatin or transcription factor binding sites) have much higher mutation densities than others. Regional variations in mutation rates are typically not a consequence of selection, as the vast majority of somatic mutations in skin cancers are passenger mutations that do not promote cell growth or transformation. Instead, variations in DNA repair activity, due to chromatin organization and transcription factor binding, have been proposed to be a primary driver of mutational heterogeneity in melanoma. However, as discussed in this review here, recent studies indicate that chromatin organization and transcription factor binding also significantly modulate the rate at which UV lesions form in DNA. The authors propose that local variations in lesion susceptibility may be an important driver of mutational hotspots in melanoma and other skin cancers, particularly at binding sites for ETS transcription factors.
Collapse
Affiliation(s)
- Steven A. Roberts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - Alexander J. Brown
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - John J. Wyrick
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| |
Collapse
|
12
|
Bègue A, Crepieux P, Vu-Dac N, Hautefeuille A, Spruyt N, Laudet V, Stehelin D. Identification of a second promoter in the human c-ets-2 proto-oncogene. Gene Expr 2018; 6:333-47. [PMID: 9495315 PMCID: PMC6148255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We localized and characterized a new regulatory element with promoter activity in the human c-ets-2 intron 1. This promoter governs the expression of 5' divergent c-ets-2 transcripts through multiple start sites dispersed within 300 bp. Among the multiple start sites detected, three are major transcriptional initiation points. We detected transcripts initiated from this new promoter in various cell lines such as COLO 320, NBE, or HepG2 cells. This promoter exhibits transcriptional activity when linked to the CAT gene, and deletion constructs reveal that it contains activating and repressing elements. The sequence of the promoter reveals putative binding sites for ETS, MYB, GATA, and Oct factors. In addition, we show that this promoter is functionally conserved in the chicken.
Collapse
Affiliation(s)
- A Bègue
- CNRS URA 1160, Oncologie Moléculaire, Institut Pasteur, Lille, France
| | | | | | | | | | | | | |
Collapse
|
13
|
A bipolar role of the transcription factor ERG for cnidarian germ layer formation and apical domain patterning. Dev Biol 2017; 430:346-361. [PMID: 28818668 DOI: 10.1016/j.ydbio.2017.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/29/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023]
Abstract
Germ layer formation and axial patterning are biological processes that are tightly linked during embryonic development of most metazoans. In addition to canonical WNT, it has been proposed that ERK-MAPK signaling is involved in specifying oral as well as aboral territories in cnidarians. However, the effector and the molecular mechanism underlying latter phenomenon is unknown. By screening for potential effectors of ERK-MAPK signaling in both domains, we identified a member of the ETS family of transcription factors, Nverg that is bi-polarily expressed prior to gastrulation. We further describe the crucial role of NvERG for gastrulation, endomesoderm as well as apical domain formation. The molecular characterization of the obtained NvERG knock-down phenotype using previously described as well as novel potential downstream targets, provides evidence that a single transcription factor, NvERG, simultaneously controls expression of two different sets of downstream targets, leading to two different embryonic gene regulatory networks (GRNs) in opposite poles of the developing embryo. We also highlight the molecular interaction of cWNT and MEK/ERK/ERG signaling that provides novel insight into the embryonic axial organization of Nematostella, and show a cWNT repressive role of MEK/ERK/ERG signaling in segregating the endomesoderm in two sub-domains, while a common input of both pathways is required for proper apical domain formation. Taking together, we build the first blueprint for a global cnidarian embryonic GRN that is the foundation for additional gene specific studies addressing the evolution of embryonic and larval development.
Collapse
|
14
|
Rasighaemi P, Ward AC. ETV6 and ETV7: Siblings in hematopoiesis and its disruption in disease. Crit Rev Oncol Hematol 2017; 116:106-115. [PMID: 28693791 DOI: 10.1016/j.critrevonc.2017.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/05/2017] [Accepted: 05/28/2017] [Indexed: 01/07/2023] Open
Abstract
ETV6 (TEL1) and ETV7 (TEL2) are closely-related members of the ETS family of transcriptional regulators. Both ETV6 and ETV7 have been demonstrated to play key roles in hematopoiesis, particularly with regard to maintenance of hematopoietic stem cells and control of lineage-specific differentiation, with evidence of functional interactions between both proteins. ETV6 has been strongly implicated in the molecular etiology of a number of hematopoietic diseases, including as a tumor suppressor, an oncogenic fusion partner, and an important regulator of thrombopoiesis, but recent evidence has also identified ETV7 as a potential oncogene in certain malignancies. This review provides an overview of ETV6 and ETV7 and their contribution to both normal and disrupted hematopoiesis. It also highlights the key clinical implications of the growing knowledge base regarding ETV6 abnormalities with respect to prognosis and treatment.
Collapse
Affiliation(s)
- Parisa Rasighaemi
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, 3216, Australia.
| | - Alister C Ward
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, 3216, Australia.
| |
Collapse
|
15
|
Ye W, Qian T, Liu H, Luo R, Chen HF. Allosteric Autoinhibition Pathway in Transcription Factor ERG: Dynamics Network and Mutant Experimental Evaluations. J Chem Inf Model 2017; 57:1153-1165. [PMID: 28425706 DOI: 10.1021/acs.jcim.7b00073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Allosteric autoinhibition exists in many transcription factors. The ERG proteins exhibit autoinhibition on DNA binding by the C-terminal and N-terminal inhibitory domains (CID and NID). However, the autoinhibition mechanism and allosteric pathway of ERG are unknown. In this study we intend to elucidate the residue-level allosteric mechanism and pathway via a combined approach of computational and experimental analyses. Specifically computational residue-level fluctuation correlation data was analyzed to reveal detailed dynamics signatures in the allosteric autoinhibition process. A hypothesis of "NID/CID binding induced allostery" is proposed to link similar structures and different protein functions, which is subsequently validated by perturbation and mutation analyses in both computation and experiment. Two possible allosteric autoinhibition pathways of L286-L382-A379-G377-I360-Y355-R353 and L286-L382-A379-G377-I360-Y355- A351-K347-R350 were identified computationally and were confirmed by the computational and experimental mutations. Specifically we identified two mutation sites on the allosteric inhibition pathways, L286P/Q383P (NID/CID binding site) and I360G (pathway junction), which completely restore the wild type DNA binding affinity. These results suggest that the putative protein structure-function relationship may be augmented with a general relationship of protein "structure/fluctuation-correlation/function" for more thorough analyses of protein functions.
Collapse
Affiliation(s)
- Wei Ye
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai, 200240, China
| | - Tianle Qian
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai, 200240, China
| | - Hao Liu
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai, 200240, China
| | - Ray Luo
- Departments of Molecular Biology and Biochemistry, Chemical Engineering and Materials Science, and Biomedical Engineering, University of California , Irvine, California 92697-3900, United States
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai, 200240, China.,Shanghai Center for Bioinformation Technology , 1278 Keyuan Road, Shanghai, 200235, China
| |
Collapse
|
16
|
Abstract
The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. DNA target specificity derives from combinatorial interactions with other proteins as well as intrinsic heterogeneity among ETS domains. Emerging evidence suggests molecular hydration as a fundamental feature that defines the intrinsic heterogeneity in DNA target selection and susceptibility to epigenetic DNA modification. This perspective invokes novel hypotheses in the regulation of ETS proteins in physiologic osmotic stress, their pioneering potential in heterochromatin, and the effects of passive and pharmacologic DNA demethylation on ETS regulation.
Collapse
Affiliation(s)
- Gregory M K Poon
- a Department of Chemistry , Georgia State University , Atlanta , GA , USA.,b Center for Diagnostics and Therapeutics, Georgia State University , Atlanta , GA , USA
| | - Hye Mi Kim
- a Department of Chemistry , Georgia State University , Atlanta , GA , USA
| |
Collapse
|
17
|
Saxton J, Ferjentsik Z, Ducker C, Johnson AD, Shaw PE. Stepwise evolution of Elk-1 in early deuterostomes. FEBS J 2016; 283:1025-38. [PMID: 26613204 DOI: 10.1111/febs.13607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 11/29/2022]
Abstract
Metazoans have multiple ETS paralogues with overlapping or indiscriminate biological functions. Elk-1, one of three mammalian ternary complex factors (TCFs), is a well-conserved, ETS domain-containing transcriptional regulator of mitogen-responsive genes that operates in concert with serum response factor (SRF). Nonetheless, its genetic role remains unresolved because the elk-1 gene could be deleted from the mouse genome seemingly without adverse effect. Here we have explored the evolution of Elk-1 to gain insight into its conserved biological role. We identified antecedent Elk-1 proteins in extant early metazoans and used amino acid sequence alignments to chart the appearance of domains characteristic of human Elk-1. We then performed biochemical studies to determine whether putative domains apparent in the Elk-1 protein of a primitive hemichordate were functionally orthologous to those of human Elk-1. Our findings imply the existence of primordial Elk-1 proteins in primitive deuterostomes that could operate as mitogen-responsive ETS transcription factors but not as TCFs. The role of TCF was acquired later, but presumably prior to the whole genome duplications in the basal vertebrate lineage. Thus its evolutionary origins link Elk-1 to the appearance of mesoderm.
Collapse
Affiliation(s)
- Janice Saxton
- School of Life Sciences, University of Nottingham, UK
| | | | | | | | - Peter E Shaw
- School of Life Sciences, University of Nottingham, UK
| |
Collapse
|
18
|
Beuerle MG, Dufton NP, Randi AM, Gould IR. Molecular dynamics studies on the DNA-binding process of ERG. MOLECULAR BIOSYSTEMS 2016; 12:3600-3610. [DOI: 10.1039/c6mb00506c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Molecular dynamics study elucidating the mechanistic background of the DNA-binding process and the sequence specificity of the transcription factor ERG. Along with the biological findings the capabilities of unbiased DNA-binding simulations in combination with various means of analysis in the field of protein DNA-interactions are shown.
Collapse
Affiliation(s)
- Matthias G. Beuerle
- Department of Chemistry and Institute of Chemical Biology
- Imperial College London
- South Kensington SW7 2AZ
- UK
| | - Neil P. Dufton
- National Heart and Lung Institute (NHLI) Vascular Sciences
- Hammersmith Hospital
- Imperial College London
- London W12 0NN
- UK
| | - Anna M. Randi
- National Heart and Lung Institute (NHLI) Vascular Sciences
- Hammersmith Hospital
- Imperial College London
- London W12 0NN
- UK
| | - Ian R. Gould
- Department of Chemistry and Institute of Chemical Biology
- Imperial College London
- South Kensington SW7 2AZ
- UK
| |
Collapse
|
19
|
Laughlin S, Wilson WD. May the Best Molecule Win: Competition ESI Mass Spectrometry. Int J Mol Sci 2015; 16:24506-31. [PMID: 26501262 PMCID: PMC4632762 DOI: 10.3390/ijms161024506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/18/2015] [Accepted: 10/09/2015] [Indexed: 02/07/2023] Open
Abstract
Electrospray ionization mass spectrometry has become invaluable in the characterization of macromolecular biological systems such as nucleic acids and proteins. Recent advances in the field of mass spectrometry and the soft conditions characteristic of electrospray ionization allow for the investigation of non-covalent interactions among large biomolecules and ligands. Modulation of genetic processes through the use of small molecule inhibitors with the DNA minor groove is gaining attention as a potential therapeutic approach. In this review, we discuss the development of a competition method using electrospray ionization mass spectrometry to probe the interactions of multiple DNA sequences with libraries of minor groove binding molecules. Such an approach acts as a high-throughput screening method to determine important information including the stoichiometry, binding mode, cooperativity, and relative binding affinity. In addition to small molecule-DNA complexes, we highlight other applications in which competition mass spectrometry has been used. A competitive approach to simultaneously investigate complex interactions promises to be a powerful tool in the discovery of small molecule inhibitors with high specificity and for specific, important DNA sequences.
Collapse
Affiliation(s)
- Sarah Laughlin
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA.
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
20
|
Pahl MC, Erdman R, Kuivaniemi H, Lillvis JH, Elmore JR, Tromp G. Transcriptional (ChIP-Chip) Analysis of ELF1, ETS2, RUNX1 and STAT5 in Human Abdominal Aortic Aneurysm. Int J Mol Sci 2015; 16:11229-58. [PMID: 25993293 PMCID: PMC4463698 DOI: 10.3390/ijms160511229] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 12/31/2014] [Indexed: 01/22/2023] Open
Abstract
We investigated transcriptional control of gene expression in human abdominal aortic aneurysm (AAA). We previously identified 3274 differentially expressed genes in human AAA tissue compared to non-aneurysmal controls. Four expressed transcription factors (ELF1, ETS2, STAT5 and RUNX1) were selected for genome-wide chromatin immunoprecipitation. Transcription factor binding was enriched in 4760 distinct genes (FDR < 0.05), of which 713 were differentially expressed in AAA. Functional classification using Gene Ontology (GO), KEGG, and Network Analysis revealed enrichment in several biological processes including “leukocyte migration” (FDR = 3.09 × 10−05) and “intracellular protein kinase cascade” (FDR = 6.48 × 10−05). In the control aorta, the most significant GO categories differed from those in the AAA samples and included “cytoskeleton organization” (FDR = 1.24 × 10−06) and “small GTPase mediated signal transduction” (FDR = 1.24 × 10−06). Genes up-regulated in AAA tissue showed a highly significant enrichment for GO categories “leukocyte migration” (FDR = 1.62 × 10−11), “activation of immune response” (FDR = 8.44 × 10−11), “T cell activation” (FDR = 4.14 × 10−10) and “regulation of lymphocyte activation” (FDR = 2.45 × 10−09), whereas the down-regulated genes were enriched in GO categories “cytoskeleton organization” (FDR = 7.84 × 10−05), “muscle cell development” (FDR = 1.00 × 10−04), and “organ morphogenesis” (FDR = 3.00 × 10−04). Quantitative PCR assays confirmed a sub-set of the transcription factor binding sites including those in MTMR11, DUSP10, ITGAM, MARCH1, HDAC8, MMP14, MAGI1, THBD and SPOCK1.
Collapse
Affiliation(s)
- Matthew C Pahl
- Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA.
| | - Robert Erdman
- Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA.
| | - Helena Kuivaniemi
- Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA.
- Department of Surgery, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | - John H Lillvis
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48202, USA.
| | - James R Elmore
- Department of Vascular and Endovascular Surgery, Geisinger Health System, Danville, PA 17822, USA.
| | - Gerard Tromp
- Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA.
| |
Collapse
|
21
|
Cooper CDO, Newman JA, Aitkenhead H, Allerston CK, Gileadi O. Structures of the Ets Protein DNA-binding Domains of Transcription Factors Etv1, Etv4, Etv5, and Fev: DETERMINANTS OF DNA BINDING AND REDOX REGULATION BY DISULFIDE BOND FORMATION. J Biol Chem 2015; 290:13692-709. [PMID: 25866208 PMCID: PMC4447949 DOI: 10.1074/jbc.m115.646737] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Indexed: 12/31/2022] Open
Abstract
Ets transcription factors, which share the conserved Ets DNA-binding domain, number nearly 30 members in humans and are particularly involved in developmental processes. Their deregulation following changes in expression, transcriptional activity, or by chromosomal translocation plays a critical role in carcinogenesis. Ets DNA binding, selectivity, and regulation have been extensively studied; however, questions still arise regarding binding specificity outside the core GGA recognition sequence and the mode of action of Ets post-translational modifications. Here, we report the crystal structures of Etv1, Etv4, Etv5, and Fev, alone and in complex with DNA. We identify previously unrecognized features of the protein-DNA interface. Interactions with the DNA backbone account for most of the binding affinity. We describe a highly coordinated network of water molecules acting in base selection upstream of the GGAA core and the structural features that may account for discrimination against methylated cytidine residues. Unexpectedly, all proteins crystallized as disulfide-linked dimers, exhibiting a novel interface (distant to the DNA recognition helix). Homodimers of Etv1, Etv4, and Etv5 could be reduced to monomers, leading to a 40–200-fold increase in DNA binding affinity. Hence, we present the first indication of a redox-dependent regulatory mechanism that may control the activity of this subset of oncogenic Ets transcription factors.
Collapse
Affiliation(s)
- Christopher D O Cooper
- From the Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Joseph A Newman
- From the Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Hazel Aitkenhead
- From the Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Charles K Allerston
- From the Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Opher Gileadi
- From the Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
22
|
Newman JA, Cooper CDO, Aitkenhead H, Gileadi O. Structural insights into the autoregulation and cooperativity of the human transcription factor Ets-2. J Biol Chem 2015; 290:8539-49. [PMID: 25670864 PMCID: PMC4375503 DOI: 10.1074/jbc.m114.619270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ets-2, like its closely related homologue Ets-1, is a member of the Ets family of DNA binding transcription factors. Both proteins are subject to multiple levels of regulation of their DNA binding and transactivation properties. One such regulatory mechanism is the presence of an autoinhibitory module, which in Ets-1 allosterically inhibits the DNA binding activity. This inhibition can be relieved by interaction with protein partners or cooperative binding to closely separated Ets binding sites in a palindromic arrangement. In this study we describe the 2.5 Å resolution crystal structure of a DNA complex of the Ets-2 Ets domain. The Ets domain crystallized with two distinct species in the asymmetric unit, which closely resemble the autoinhibited and DNA bound forms of Ets-1. This discovery prompted us to re-evaluate the current model for the autoinhibitory mechanism and the structural basis for cooperative DNA binding. In contrast to Ets-1, in which the autoinhibition is caused by a combination of allosteric and steric mechanisms, we were unable to find clear evidence for the allosteric mechanism in Ets-2. We also demonstrated two possibly distinct types of cooperative binding to substrates with Ets binding motifs separated by four and six base pairs and suggest possible molecular mechanisms for this behavior.
Collapse
Affiliation(s)
- Joseph A Newman
- From the Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Christopher D O Cooper
- From the Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Hazel Aitkenhead
- From the Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Opher Gileadi
- From the Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
23
|
Quantitative Investigation of Protein-Nucleic Acid Interactions by Biosensor Surface Plasmon Resonance. Methods Mol Biol 2015; 1334:313-32. [PMID: 26404159 DOI: 10.1007/978-1-4939-2877-4_20] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biosensor-surface plasmon resonance (SPR) technology has emerged as a powerful label-free approach for the study of nucleic acid interactions in real time. The method provides simultaneous equilibrium and kinetic characterization for biomolecular interactions with low sample requirements and without the need for external probes. A detailed and practical guide for protein-DNA interaction analyses using biosensor-SPR methods is presented. Details of SPR technology and basic fundamentals are described with recommendations on the preparation of the SPR instrument, sensor chips and samples, experimental design, quantitative and qualitative data analyses and presentation. A specific example of the interaction of a transcription factor with DNA is provided with results evaluated by both kinetic and steady-state SPR methods.
Collapse
|
24
|
Wang S, Linde MH, Munde M, Carvalho VD, Wilson WD, Poon GMK. Mechanistic heterogeneity in site recognition by the structurally homologous DNA-binding domains of the ETS family transcription factors Ets-1 and PU.1. J Biol Chem 2014; 289:21605-16. [PMID: 24952944 DOI: 10.1074/jbc.m114.575340] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ETS family transcription factors regulate diverse genes through binding at cognate DNA sites that overlap substantially in sequence. The DNA-binding domains of ETS proteins (ETS domains) are highly conserved structurally yet share limited amino acid homology. To define the mechanistic implications of sequence diversity within the ETS family, we characterized the thermodynamics and kinetics of DNA site recognition by the ETS domains of Ets-1 and PU.1, which represent the extremes in amino acid divergence among ETS proteins. Even though the two ETS domains bind their optimal sites with similar affinities under physiologic conditions, their nature of site recognition differs strikingly in terms of the role of hydration and counter ion release. The data suggest two distinct mechanisms wherein Ets-1 follows a "dry" mechanism that rapidly parses sites through electrostatic interactions and direct protein-DNA contacts, whereas PU.1 utilizes hydration to interrogate sequence-specific sites and form a long-lived complex relative to the Ets-1 counterpart. The kinetic persistence of the high affinity PU.1 · DNA complex may be relevant to an emerging role of PU.1, but not Ets-1, as a pioneer transcription factor in vivo. In addition, PU.1 activity is critical to the development and function of macrophages and lymphocytes, which present osmotically variable environments, and hydration-dependent specificity may represent an important regulatory mechanism in vivo, a hypothesis that finds support in gene expression profiles of primary murine macrophages.
Collapse
Affiliation(s)
- Shuo Wang
- From the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303 and
| | - Miles H Linde
- the Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington 99210-1495
| | - Manoj Munde
- From the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303 and
| | - Victor D Carvalho
- the Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington 99210-1495
| | - W David Wilson
- From the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303 and
| | - Gregory M K Poon
- the Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington 99210-1495
| |
Collapse
|
25
|
Ereskovsky AV, Renard E, Borchiellini C. Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes throughout animal evolution. Dev Genes Evol 2013; 223:5-22. [PMID: 22543423 DOI: 10.1007/s00427-012-0399-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/26/2012] [Indexed: 12/21/2022]
Abstract
The emergence of multicellularity is regarded as one of the major evolutionary events of life. This transition unicellularity/pluricellularity was acquired independently several times (King 2004). The acquisition of multicellularity implies the emergence of cellular cohesion and means of communication, as well as molecular mechanisms enabling the control of morphogenesis and body plan patterning. Some of these molecular tools seem to have predated the acquisition of multicellularity while others are regarded as the acquisition of specific lineages. Morphogenesis consists in the spatial migration of cells or cell layers during embryonic development, metamorphosis, asexual reproduction, growth, and regeneration, resulting in the formation and patterning of a body. In this paper, our aim is to review what is currently known concerning basal metazoans--sponges' morphogenesis from the tissular, cellular, and molecular points of view--and what remains to elucidate. Our review attempts to show that morphogenetic processes found in sponges are as diverse and complex as those found in other animals. In true epithelial sponges (Homoscleromorpha), as well as in others, we find similar cell/layer movements, cellular shape changes involved in major morphogenetic processes such as embryogenesis or larval metamorphosis. Thus, sponges can provide information enabling us to better understand early animal evolution at the molecular level but also at the cell/cell layer level. Indeed, comparison of molecular tools will only be of value if accompanied by functional data and expression studies during morphogenetic processes.
Collapse
Affiliation(s)
- Alexander V Ereskovsky
- Mediterranean Institute of Biodiversity and Ecology Marine and Continental, UMR 7263, CNRS Aix-Marseille University, Station marine d'Endoume, 13007 Marseille, France.
| | | | | |
Collapse
|
26
|
Munde M, Poon GMK, Wilson WD. Probing the electrostatics and pharmacological modulation of sequence-specific binding by the DNA-binding domain of the ETS family transcription factor PU.1: a binding affinity and kinetics investigation. J Mol Biol 2013; 425:1655-69. [PMID: 23416556 DOI: 10.1016/j.jmb.2013.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
Abstract
Members of the ETS family of transcription factors regulate a functionally diverse array of genes. All ETS proteins share a structurally conserved but sequence-divergent DNA-binding domain, known as the ETS domain. Although the structure and thermodynamics of the ETS-DNA complexes are well known, little is known about the kinetics of sequence recognition, a facet that offers potential insight into its molecular mechanism. We have characterized DNA binding by the ETS domain of PU.1 by biosensor-surface plasmon resonance (SPR). SPR analysis revealed a striking kinetic profile for DNA binding by the PU.1 ETS domain. At low salt concentrations, it binds high-affinity cognate DNA with a very slow association rate constant (≤10(5)M(-)(1)s(-)(1)), compensated by a correspondingly small dissociation rate constant. The kinetics are strongly salt dependent but mutually balance to produce a relatively weak dependence in the equilibrium constant. This profile contrasts sharply with reported data for other ETS domains (e.g., Ets-1, TEL) for which high-affinity binding is driven by rapid association (>10(7)M(-)(1)s(-)(1)). We interpret this difference in terms of the hydration properties of ETS-DNA binding and propose that at least two mechanisms of sequence recognition are employed by this family of DNA-binding domain. Additionally, we use SPR to demonstrate the potential for pharmacological inhibition of sequence-specific ETS-DNA binding, using the minor groove-binding distamycin as a model compound. Our work establishes SPR as a valuable technique for extending our understanding of the molecular mechanisms of ETS-DNA interactions as well as developing potential small-molecule agents for biotechnological and therapeutic purposes.
Collapse
Affiliation(s)
- Manoj Munde
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | | |
Collapse
|
27
|
Hollenhorst PC, McIntosh LP, Graves BJ. Genomic and biochemical insights into the specificity of ETS transcription factors. Annu Rev Biochem 2011; 80:437-71. [PMID: 21548782 DOI: 10.1146/annurev.biochem.79.081507.103945] [Citation(s) in RCA: 375] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ETS proteins are a group of evolutionarily related, DNA-binding transcriptional factors. These proteins direct gene expression in diverse normal and disease states by binding to specific promoters and enhancers and facilitating assembly of other components of the transcriptional machinery. The highly conserved DNA-binding ETS domain defines the family and is responsible for specific recognition of a common sequence motif, 5'-GGA(A/T)-3'. Attaining specificity for biological regulation in such a family is thus a conundrum. We present the current knowledge of routes to functional diversity and DNA binding specificity, including divergent properties of the conserved ETS and PNT domains, the involvement of flanking structured and unstructured regions appended to these dynamic domains, posttranslational modifications, and protein partnerships with other DNA-binding proteins and coregulators. The review emphasizes recent advances from biochemical and biophysical approaches, as well as insights from genomic studies that detect ETS-factor occupancy in living cells.
Collapse
Affiliation(s)
- Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
28
|
Deves C, Renck D, Garicochea B, da Silva VD, Giulianni Lopes T, Fillman H, Fillman L, Lunardini S, Basso LA, Santos DS, Batista EL. Analysis of select members of the E26 (ETS) transcription factors family in colorectal cancer. Virchows Arch 2011; 458:421-30. [PMID: 21318373 DOI: 10.1007/s00428-011-1053-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 01/25/2011] [Accepted: 01/28/2011] [Indexed: 12/11/2022]
Abstract
The E-twenty-six (ETS) family of transcription factors is known to act as positive or negative regulators of the expression of genes that are involved in diverse biological processes, including those that control cellular proliferation, differentiation, hematopoiesis, apoptosis, metastasis, tissue remodeling, and angiogenesis. Identification of target gene promoters of normal and oncogenic transcription factors provides new insights into the regulation of genes that are involved in the control of normal cell growth and differentiation. The aim of the present investigation was to analyze the differential expression of 11 ETS (ELF-3, ESE3, ETS1, ETV3, ETV4, ETV6, NERF, PDEF, PU1, Spi-B, and Spi-C) as potential markers for prognostic of colorectal cancer. A series of paired tissue biopsies consisting of a tumor and a non-affected control sample were harvested from 28 individuals suffering from diagnosed colorectal lesions. Total RNA was isolated from the samples, and after reverse transcription, differential expression of the select ETS was carried out through real-time polymerase chain reaction. Tumor staging as determined by histopathology was carried out to correlate the degree of tumor invasiveness with the expression of the ETS genes. The results demonstrated a different quantitative profile of expression in tumors and normal tissues. ETV4 was significantly upregulated with further increase in the event of lymph node involvement. PDEF and Spi-B presented downregulation, which was more significant when lymph node involvement was present. These findings were supported by immunohistochemistry of tumoral tissues. The results suggest that select ETS may serve as potential markers of colorectal cancer invasiveness and metastasis.
Collapse
Affiliation(s)
- Candida Deves
- Center for Research on Molecular and Functional Biology (CP-BMF), Pontificia Universidade Catolica do Rio Grande do Sul, Av. Ipiranga 6681 Bld. 92A, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wang Z, Zhang Q. Genome-wide identification and evolutionary analysis of the animal specific ETS transcription factor family. Evol Bioinform Online 2009; 5:119-31. [PMID: 20011068 PMCID: PMC2789578 DOI: 10.4137/ebo.s2948] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ETS proteins are a family of transcription factors (TFs) that regulate a variety of biological processes. We made genome-wide analyses to explore the classification of the ETS gene family. We identified 207 ETS genes which encode 321 ETS TFs from ten animal species. Of the 321 ETS TFs, 155 contain only an ETS domain, about 50% contain a ETS_PEA3_N or a SAM_PNT domain in addition to an ETS domain, the rest (only four) contain a second ETS domain or a second ETS_PEA3_N domain or an another domain (AT_hook or DNA_pol_B). A Neighbor-Joining phylogenetic tree was constructed using the amino acid sequences of the ETS domain of the ETS TFs. The results revealed that the ETS genes of the ten species can be divided into two distinct groups. Group I contains one nematode ETS gene and 18 vertebrate animal ETS genes. Group II contains the majority of the ETS TFs and can be further divided into eleven subgroups. The sequence motifs outside the DNA-binding domain and the conservation of the exon-intron structural patterns of the ETS TFs in human, cattle, and chicken further support the phylogenetic classification among these ETS TFs. Extensive duplication of the ETS genes was found in the genome of each species. The duplicated ETS genes account for ~69% of the total of ETS genes. Furthermore, we also found there are ETS gene clusters in all of the ten animal species. Statistical analysis of the Gene Ontology annotations of the ETS genes showed that the ETS proteins tend to be related to RNA biosynthetic process, biopolymer metabolic process and macromolecule metabolic process expected from the common GO categories of transcriptional factors. We also discussed the functional conservation and diversification of ETS TFs.
Collapse
Affiliation(s)
- Zhipeng Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
30
|
Ma H, Wang J, Wang B, Zhao Y, Yang C. Characterization of an ETS transcription factor in the sea scallop Chlamys farreri. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:953-958. [PMID: 19446578 DOI: 10.1016/j.dci.2009.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 05/08/2009] [Accepted: 05/08/2009] [Indexed: 05/27/2023]
Abstract
We have cloned and characterized a cDNA encoding a putative ETS transcription factor, designated Cf-ets. The Cf-ets encodes a 406 amino acid protein containing a conserved ETS domain and a Pointed domain. Phylogenetic analysis revealed that Cf-ets belongs to the ESE group of ETS transcription factor family. Real-time PCR analysis of Cf-ets expression in adult sea scallop tissues revealed that Cf-ets was expressed mainly in gill and hemocytes, in a constitutive manner. Cf-ets mRNA level in hemocytes increased drastically after microbial challenge indicated its indispensable role in the anti-infection process. Simultaneously, the circulating hemocyte number decreased. In mammals, most ETS transcription factors play indispensable roles in blood cell differentiation and linage commitment during hematopoisis. Cf-ets is therefore likely to be a potential biomarker for hematopoiesis studies in scallops.
Collapse
Affiliation(s)
- Hongming Ma
- Key Laboratory of Mariculture, Ministry of Education of China, Food Science and Technology College, Ocean University of China, Qingdao, China.
| | | | | | | | | |
Collapse
|
31
|
Abele D, Brey T, Philipp E. Bivalve models of aging and the determination of molluscan lifespans. Exp Gerontol 2009; 44:307-15. [DOI: 10.1016/j.exger.2009.02.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 02/21/2009] [Accepted: 02/23/2009] [Indexed: 01/20/2023]
|
32
|
Armata IA, Ananthanarayanan M, Balasubramaniyan N, Shashidharan P. Regulation of DYT1 gene expression by the Ets family of transcription factors. J Neurochem 2008; 106:1052-65. [PMID: 18466338 DOI: 10.1111/j.1471-4159.2008.05465.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The DYT1 gene encodes for torsinA, a protein with widespread tissue distribution, involved in early onset dystonia (EOD). Numerous studies have focused on torsinA function but no information is available on its transcriptional regulation. We cloned mouse and human 5'-upstream DYT1 DNA fragments, exhibiting high transcriptional activity, as well as tissue specificity. We identified a proximal minimal DYT1 promoter within -141 bp for mouse and -191 bp for human with respect to the ATG codon. Primer extension analysis indicated multiple transcription start sites. In silico analysis of approximately 500 bp 5'-upstream DYT1 fragment demonstrated lack of a classical TATA or CAAT box and the presence of a highly conserved direct repeat of two Ets binding cores within -86 bp to -77 bp and -78 bp to -69 bp of the mouse and human DYT1 gene, respectively. A single or a two base nucleotide alteration within the downstream Ets core resulted in approximately 90% (mouse) or 45-60% (human) drop in activity. Interestingly, a 3-bp distance increase between the two Ets cores dramatically decreased transcriptional activity which was partially restored when the distance was increased up to 10 bp. Ets-like dominant negatives confirmed the Ets factors as DYT1 transcriptional activators.
Collapse
Affiliation(s)
- Ioanna A Armata
- Department of Neurology, Laboratory of Developmental and Molecular Hepatology, Mount Sinai School of Medicine, New York 10029, USA
| | | | | | | |
Collapse
|
33
|
Higuchi T, Bartel FO, Masuya M, Deguchi T, Henderson KW, Li R, Muise-Helmericks RC, Kern MJ, Watson DK, Spyropoulos DD. Thymomegaly, microsplenia, and defective homeostatic proliferation of peripheral lymphocytes in p51-Ets1 isoform-specific null mice. Mol Cell Biol 2007; 27:3353-66. [PMID: 17339335 PMCID: PMC1899970 DOI: 10.1128/mcb.01871-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ets1 is a member of the Ets transcription factor family. Alternative splicing of exon VII results in two naturally occurring protein isoforms: full-length Ets1 (p51-Ets1) and Ets1(DeltaVII) (p42-Ets1). These isoforms bear key distinctions regarding protein-protein interactions, DNA binding kinetics, and transcriptional target specificity. Disruption of both Ets1 isoforms in mice results in the loss of detectable NK and NKT cell activity and defects in B and T lymphocytes. We generated mice that express only the Ets1(DeltaVII) isoform. Ets1(DeltaVII) homozygous mice express no p51-Ets1 and elevated levels of the p42-Ets1 protein relative to the wild type and display increased perinatal lethality, thymomegaly, and peripheral lymphopenia. Proliferation was increased in both the thymus and the spleen, while apoptosis was decreased in the thymus and increased in the spleen of homozygotes. Significant elevations of CD8(+) and CD8(+)CD4(+) thymocytes were observed. Lymphoid cell (CD19(+), CD4(+), and CD8(+)) reductions were predominantly responsible for diminished spleen cellularity, with fewer memory cells and a failure of homeostatic proliferation to maintain peripheral lymphocytes. Collectively, the Ets1(DeltaVII) mutants demonstrate lymphocyte maturation defects associated with misregulation of p16(Ink4a), p27(Kip1), and CD44. Thus, a balance in the differential regulation of Ets1 isoforms represents a potential mechanism in the control of lymphoid maturation and homeostasis.
Collapse
Affiliation(s)
- Tsukasa Higuchi
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rizzo F, Fernandez-Serra M, Squarzoni P, Archimandritis A, Arnone MI. Identification and developmental expression of the ets gene family in the sea urchin (Strongylocentrotus purpuratus). Dev Biol 2006; 300:35-48. [PMID: 16997294 DOI: 10.1016/j.ydbio.2006.08.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 08/02/2006] [Accepted: 08/03/2006] [Indexed: 11/29/2022]
Abstract
A systematic search in the available scaffolds of the Strongylocentrotus purpuratus genome has revealed that this sea urchin has 11 members of the ets gene family. A phylogenetic analysis of these genes showed that almost all vertebrate ets subfamilies, with the exception of one, so far found only in mammals, are each represented by one orthologous sea urchin gene. The temporal and spatial expression of the identified ETS factors was also analyzed during embryogenesis. Five ets genes (Sp-Ets1/2, Sp-Tel, Sp-Pea, Sp-Ets4, Sp-Erf) are also maternally expressed. Three genes (Sp-Elk, Sp-Elf, Sp-Erf) are ubiquitously expressed during embryogenesis, while two others (Sp-Gabp, Sp-Pu.1) are not transcribed until late larval stages. Remarkably, five of the nine sea urchin ets genes expressed during embryogenesis are exclusively (Sp-Ets1/2, Sp-Erg, Sp-Ese) or additionally (Sp-Tel, Sp-Pea) expressed in mesenchyme cells and/or their progenitors. Functional analysis of Sp-Ets1/2 has previously demonstrated an essential role of this gene in the specification of the skeletogenic mesenchyme lineage. The dynamic, and in some cases overlapping and/or unique, developmental expression pattern of the latter five genes suggests a complex, non-redundant function for ETS factors in sea urchin mesenchyme formation and differentiation.
Collapse
Affiliation(s)
- Francesca Rizzo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | | | | | | | | |
Collapse
|
35
|
Larroux C, Fahey B, Liubicich D, Hinman VF, Gauthier M, Gongora M, Green K, Wörheide G, Leys SP, Degnan BM. Developmental expression of transcription factor genes in a demosponge: insights into the origin of metazoan multicellularity. Evol Dev 2006; 8:150-73. [PMID: 16509894 DOI: 10.1111/j.1525-142x.2006.00086.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Demosponges are considered part of the most basal evolutionary lineage in the animal kingdom. Although the sponge body plan fundamentally differs from that of other metazoans, their development includes many of the hallmarks of bilaterian and eumetazoan embryogenesis, namely fertilization followed by a period of cell division yielding distinct cell populations, which through a gastrulation-like process become allocated into different cell layers and patterned within these layers. These observations suggest that the last common ancestor (LCA) to all living animals was developmentally more sophisticated than is widely appreciated and used asymmetric cell division and morphogen gradients to establish localized populations of specified cells within the embryo. Here we demonstrate that members of a range of transcription factor gene classes, many of which appear to be metazoan-specific, are expressed during the development of the demosponge Reniera, including ANTP, Pax, POU, LIM-HD, Sox, nuclear receptor, Fox (forkhead), T-box, Mef2, and Ets genes. Phylogenetic analysis of these genes suggests that not only the origin but the diversification of some of the major developmental metazoan transcription factor classes took place before sponges diverged from the rest of the Metazoa. Their expression during demosponge development suggests that, as in today's sophisticated metazoans, these genes may have functioned in the regulatory network of the metazoan LCA to control cell specification and regionalized gene expression during embryogenesis.
Collapse
Affiliation(s)
- Claire Larroux
- School of Integrative Biology, University of Queensland, Brisbane, Qld 4072, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Carella C, Potter M, Bonten J, Rehg JE, Neale G, Grosveld GC. The ETS factor TEL2 is a hematopoietic oncoprotein. Blood 2006; 107:1124-32. [PMID: 16234363 PMCID: PMC1895909 DOI: 10.1182/blood-2005-03-1196] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Accepted: 09/20/2005] [Indexed: 11/20/2022] Open
Abstract
TEL2/ETV7 is highly homologous to the ETS transcription factor TEL/ETV6, a frequent target of chromosome translocation in human leukemia. Although both proteins are transcriptional inhibitors binding similar DNA recognition sequences, they have opposite biologic effects: TEL inhibits proliferation while TEL2 promotes it. In addition, forced expression of TEL2 but not TEL blocks vitamin D3-induced differentiation of U937 and HL60 myeloid cells. TEL2 is expressed in the hematopoietic system, and its expression is up-regulated in bone marrow samples of some patients with leukemia, suggesting a role in oncogenesis. Recently we also showed that TEL2 cooperates with Myc in B lymphomagenesis in mice. Here we show that forced expression of TEL2 alone in mouse bone marrow causes a myeloproliferative disease with a long latency period but with high penetrance. This suggested that secondary mutations are necessary for disease development. Treating mice receiving transplants with TEL2-expressing bone marrow with the chemical carcinogen N-ethyl-N-nitrosourea (ENU) resulted in significantly accelerated disease onset. Although the mice developed a GFP-positive myeloid disease with 30% of the mice showing elevated white blood counts, they all died of T-cell lymphoma, which was GFP negative. Together our data identify TEL2 as a bona fide oncogene, but leukemic transformation is dependent on secondary mutations.
Collapse
Affiliation(s)
- Cintia Carella
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
37
|
Argyropoulos C, Nikiforidis GC, Theodoropoulou M, Adamopoulos P, Boubali S, Georgakopoulos TN, Paliogianni F, Papavassiliou AG, Mouzaki A. Mining microarray data to identify transcription factors expressed in naïve resting but not activated T lymphocytes. Genes Immun 2004; 5:16-25. [PMID: 14735145 DOI: 10.1038/sj.gene.6364034] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transcriptional repressors controlling the expression of cytokine genes have been implicated in a variety of physiological and pathological phenomena. An unknown repressor that binds to the distal NFAT element of the interleukin-2 (IL-2) gene promoter in naive T-helper lymphocytes has been implicated in autoimmune phenomena and has emerged as a potentially important factor controlling the latency of HIV-1. The aim of this paper was the identification of this repressor. We resorted to public microarray databases looking for DNA-binding proteins that are present in naïve resting T cells but are downregulated when the cells are activated. A Bayesian data mining statistical analysis uncovered 25 candidate factors. Of the 25, NFAT4 and the oncogene ets-2 bind to the common motif AAGGAG found in the HIV-1 LTR and IL-2 probes. Ets-2 binding site contains the three G's that have been shown to be important for binding of the unknown factor; hence, we considered it the likeliest candidate. Electrophoretic mobility shift assays confirmed cross-reactivity between the unknown repressor and anti-ets-2 antibodies, and cotransfection experiments demonstrated the direct involvement of Ets-2 in silencing the IL-2 promoter. Designing experiments for transcription factor analysis using microarrays and Bayesian statistical methodologies provides a novel way toward elucidation of gene control networks.
Collapse
Affiliation(s)
- C Argyropoulos
- Laboratory of Hematology and Transfusion Medicine, University of Patras, Patras, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yamada T, Okabe M, Hiromi Y. EDL/MAE regulates EGF-mediated induction by antagonizing Ets transcription factor Pointed. Development 2003; 130:4085-96. [PMID: 12874129 DOI: 10.1242/dev.00624] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inductive patterning mechanisms often use negative regulators to coordinate the effects and efficiency of induction. During Spitz EGF-mediated neuronal induction in the Drosophila compound eye and chordotonal organs, Spitz causes activation of Ras signaling in the induced cells, resulting in the activation of Ets transcription factor Pointed P2. We describe developmental roles of a novel negative regulator of Ras signaling, EDL/MAE, a protein with an Ets-specific Pointed domain but not an ETS DNA-binding domain. The loss of EDL/MAE function results in reduced number of photoreceptor neurons and chordotonal organs, suggesting a positive role in the induction by Spitz EGF. However, EDL/MAE functions as an antagonist of Pointed P2, by binding to its Pointed domain and abolishing its transcriptional activation function. Furthermore, edl/mae appears to be specifically expressed in cells with inducing ability. This suggests that inducing cells, which can respond to Spitz they themselves produce, must somehow prevent activation of Pointed P2. Indeed hyperactivation of Pointed P2 in inducing cells interferes with their inducing ability, resulting in the reduction in inducing ability. We propose that EDL/MAE blocks autocrine activation of Pointed P2 so that inducing cells remain induction-competent. Inhibition of inducing ability by Pointed probably represents a novel negative feedback system that can prevent uncontrolled spread of induction of similar cell fates.
Collapse
Affiliation(s)
- Takuma Yamada
- Department of Developmental Genetics, National Institute of Genetics, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
39
|
Bocquet-Muchembled B, Leroux R, Chotteau-Lelièvre A, Vergoten G, Fontaine F. Expression and evolution studies of ets genes in a primitive coelomate, the polychaete annelid, Hediste (Nereis) diversicolor. Comp Biochem Physiol B Biochem Mol Biol 2002; 132:685-97. [PMID: 12128055 DOI: 10.1016/s1096-4959(01)00511-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Ets family includes numerous proteins with a highly conserved DNA-binding domain of 85 amino acids named the ETS domain. Phylogenetic analyses from ETS domains revealed that this family could be divided into 13 groups, among them are ETS and ERG. The ets genes are present in the Metazoan kingdom and we have previously characterized the Nd ets and Nd erg genes in the polychaete annelid Hediste diversicolor. Here, we isolated a fragment encoding the ETS domain from Nd Ets, by genomic library screening. By Northern blot analysis, we showed that this gene was transcribed as one major mRNA of 2.6 kb and one minor mRNA of 3.2 kb. By in situ hybridization, we observed that Nd ets was expressed in the intestine and oocytes and that Nd erg was expressed in cellular clumps present in the coelomic cavity, in an area of proliferating cells situated between the last metamere and the pygidium. Finally, we showed that Nd erg shared the expression pattern of Nd ets in oocytes. Molecular modeling studies have revealed that the spatial structure of ETS domain of Nd Ets and Nd Erg was conserved, in comparison to the murine Ets-1 and human Fli-1 proteins, respectively.
Collapse
Affiliation(s)
- Béatrice Bocquet-Muchembled
- Laboratoire ELICO (Ecosystèmes Littoraux et Côtiers), groupe d'Ecologie Moléculaire, CNRS UPRES-A 8013, Bât. SN3, U.S.T.L., 59655 d'Ascq Cedex, Villeneuve, France
| | | | | | | | | |
Collapse
|
40
|
Bocquet-Muchembled B, Leroux R, Chotteau-Lelièvre A, Fontaine F. Isolation of a member of ets gene family in the polychaete annelid Perinereis cultrifera. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2002; 12:121-4. [PMID: 11761710 DOI: 10.3109/10425170109047565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Numerous genes belonging to the ets gene family have been described for a few years. The founder of this family is the v-ets proto-oncogene, which is the viral counterpart of the chicken c-ets-1 proto-oncogene. Main research was carried out both on Vertebrates, Drosophila and the nematod Caenorhabditis elegans. Previously, two genes of this family named Nd ets and Nd erg, were isolated in the polychaete annelid Hediste (Nereis) diversicolor. Here we have described the isolation of one gene from the ets family in another polychaete annelid named Perinereis cultrifera. By polymerase chain reaction using degenerated primers, we have amplified an approximatively 515 pb genomic region encoding the ETS domain and another domain designed as "R" domain by Qi et al. (1992) and which can mediate transactivation. By using this method for isolating members of the ets gene family, we are going to realize a phylogenetic study of the phylum of polychaete annelids.
Collapse
Affiliation(s)
- B Bocquet-Muchembled
- Laboratoire d'Etude des Ecosystèmes Littoraux et Côtiers, groupe d'Ecologie Moléculaire, CNRS UPRES-A 8013, Bât. SN3, U.S.T.L., 59655 Villeneuve d'Ascq, France
| | | | | | | |
Collapse
|
41
|
Leys SP, Degnan BM. Cytological basis of photoresponsive behavior in a sponge larva. THE BIOLOGICAL BULLETIN 2001; 201:323-338. [PMID: 11751245 DOI: 10.2307/1543611] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ontogenetic changes in the photoresponse of larvae from the demosponge Reneira sp. were studied by analyzing the swimming paths of individual larvae exposed to diffuse white light. Larvae swam upward upon release from the adult, but were negatively phototactic until at least 12 hours after release. The larval photoreceptors are presumed to be a posterior ring of columnar monociliated epithelial cells that possess 120-microm-long cilia and pigment-filled protrusions. A sudden increase in light intensity caused these cilia to become rigidly straight. If the light intensity remained high, the cilia gradually bent over the pigmented vesicles in the adjacent cytoplasm, and thus covered one entire pole of the larva. The response was reversed upon a sudden decrease in light intensity. The ciliated cells were sensitive to changes in light intensity in larvae of all ages. This response is similar to the shadow response in tunicate larvae or the shading of the photoreceptor in Euglena and is postulated to allow the larvae to steer away from brighter light to darker areas, such as under coral rubble-the preferred site of the adult sponge on the reef flat. In the absence of a coordinating system in cellular sponges, the spatial organization and autonomous behavior of the pigmented posterior cells control the rapid responses to light shown by these larvae.
Collapse
Affiliation(s)
- S P Leys
- Department of Biology, University of Victoria, British Columbia, Canada.
| | | |
Collapse
|
42
|
Abstract
ETS-domain transcription-factor networks represent a model for how combinatorial gene expression is achieved. These transcription factors interact with a multitude of co-regulatory partners to elicit gene-specific responses and drive distinct biological processes. These proteins are controlled by a complex series of inter and intramolecular interactions, and signalling pathways impinge on these proteins to further regulate their action.
Collapse
Affiliation(s)
- A D Sharrocks
- School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
43
|
Nikko E, Van de Vyver G, Richelle-Maurer E. Retinoic acid down-regulates the expression of EmH-3 homeobox-containing gene in the freshwater sponge Ephydatia muelleri. Mech Ageing Dev 2001; 122:779-94. [PMID: 11337008 DOI: 10.1016/s0047-6374(01)00235-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of retinoic acid (RA), a common morphogen and gene expression regulator in vertebrates, were studied in the freshwater sponge Ephydatia muelleri, both on morphogenesis and on the expression of EmH-3 homeobox-containing gene. At 0.3 microM, RA had no noticeable influence on sponge development, slightly up-regulating EmH-3 expression. In contrast, in sponges reared in 10, 8 microM and to a lesser extent 2 microM RA, there was a strong down-regulation of EmH-3 expression after hatching. This induced modifications in cell composition and morphology, greatly disturbing normal development. Archaeocytes kept the features found in newly hatched sponges while choanocytes and a functional aquiferous system were completely absent. The inhibition of morphogenesis and down-regulation of EmH-3 expression were reversible when sponges were no longer subjected to RA. After RA removal, EmH-3 expression returned to the high values found in untreated sponges, archaeocytes differentiated into choanocytes and sponges achieved a normal development. These results clearly show that, in freshwater sponges, the most primitive metazoan, RA may also act as a morphogen, regulating the expression of a homeobox-containing gene. They demonstrate that the expression of EmH-3 is necessary for the differentiation of archaeocytes into choanocytes and hence for the formation of a complete functional aquiferous system.
Collapse
Affiliation(s)
- E Nikko
- Laboratoire de Physiologie Cellulaire, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, CP 300, Rue des professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium.
| | | | | |
Collapse
|
44
|
Peterson KJ, Eernisse DJ. Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evol Dev 2001; 3:170-205. [PMID: 11440251 DOI: 10.1046/j.1525-142x.2001.003003170.x] [Citation(s) in RCA: 400] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Insight into the origin and early evolution of the animal phyla requires an understanding of how animal groups are related to one another. Thus, we set out to explore animal phylogeny by analyzing with maximum parsimony 138 morphological characters from 40 metazoan groups, and 304 18S rDNA sequences, both separately and together. Both types of data agree that arthropods are not closely related to annelids: the former group with nematodes and other molting animals (Ecdysozoa), and the latter group with molluscs and other taxa with spiral cleavage. Furthermore, neither brachiopods nor chaetognaths group with deuterostomes; brachiopods are allied with the molluscs and annelids (Lophotrochozoa), whereas chaetognaths are allied with the ecdysozoans. The major discordance between the two types of data concerns the rooting of the bilaterians, and the bilaterian sister-taxon. Morphology suggests that the root is between deuterostomes and protostomes, with ctenophores the bilaterian sister-group, whereas 18S rDNA suggests that the root is within the Lophotrochozoa with acoel flatworms and gnathostomulids as basal bilaterians, and with cnidarians the bilaterian sister-group. We suggest that this basal position of acoels and gnathostomulids is artifactal because for 1,000 replicate phylogenetic analyses with one random sequence as outgroup, the majority root with an acoel flatworm or gnathostomulid as the basal ingroup lineage. When these problematic taxa are eliminated from the matrix, the combined analysis suggests that the root lies between the deuterostomes and protostomes, and Ctenophora is the bilaterian sister-group. We suggest that because chaetognaths and lophophorates, taxa traditionally allied with deuterostomes, occupy basal positions within their respective protostomian clades, deuterostomy most likely represents a suite of characters plesiomorphic for bilaterians.
Collapse
Affiliation(s)
- K J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover NH 03755, USA
| | | |
Collapse
|
45
|
Anderson MK, Sun X, Miracle AL, Litman GW, Rothenberg EV. Evolution of hematopoiesis: Three members of the PU.1 transcription factor family in a cartilaginous fish, Raja eglanteria. Proc Natl Acad Sci U S A 2001; 98:553-8. [PMID: 11149949 PMCID: PMC14625 DOI: 10.1073/pnas.98.2.553] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T lymphocytes and B lymphocytes are present in jawed vertebrates, including cartilaginous fishes, but not in jawless vertebrates or invertebrates. The origins of these lineages may be understood in terms of evolutionary changes in the structure and regulation of transcription factors that control lymphocyte development, such as PU.1. The identification and characterization of three members of the PU.1 family of transcription factors in a cartilaginous fish, Raja eglanteria, are described here. Two of these genes are orthologs of mammalian PU.1 and Spi-C, respectively, whereas the third gene, Spi-D, is a different family member. In addition, a PU.1-like gene has been identified in a jawless vertebrate, Petromyzon marinus (sea lamprey). Both DNA-binding and transactivation domains are highly conserved between mammalian and skate PU.1, in marked contrast to lamprey Spi, in which similarity is evident only in the DNA-binding domain. Phylogenetic analysis of sequence data suggests that the appearance of Spi-C may predate the divergence of the jawed and jawless vertebrates and that Spi-D arose before the divergence of the cartilaginous fish from the lineage leading to the mammals. The tissue-specific expression patterns of skate PU.1 and Spi-C suggest that these genes share regulatory as well as structural properties with their mammalian orthologs.
Collapse
Affiliation(s)
- M K Anderson
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | |
Collapse
|
46
|
Evolution of hematopoiesis: Three members of the PU.1 transcription factor family in a cartilaginous fish, Raja eglanteria. Proc Natl Acad Sci U S A 2001. [PMID: 11149949 PMCID: PMC14625 DOI: 10.1073/pnas.021478998] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T lymphocytes and B lymphocytes are present in jawed vertebrates, including cartilaginous fishes, but not in jawless vertebrates or invertebrates. The origins of these lineages may be understood in terms of evolutionary changes in the structure and regulation of transcription factors that control lymphocyte development, such as PU.1. The identification and characterization of three members of the PU.1 family of transcription factors in a cartilaginous fish, Raja eglanteria, are described here. Two of these genes are orthologs of mammalian PU.1 and Spi-C, respectively, whereas the third gene, Spi-D, is a different family member. In addition, a PU.1-like gene has been identified in a jawless vertebrate, Petromyzon marinus (sea lamprey). Both DNA-binding and transactivation domains are highly conserved between mammalian and skate PU.1, in marked contrast to lamprey Spi, in which similarity is evident only in the DNA-binding domain. Phylogenetic analysis of sequence data suggests that the appearance of Spi-C may predate the divergence of the jawed and jawless vertebrates and that Spi-D arose before the divergence of the cartilaginous fish from the lineage leading to the mammals. The tissue-specific expression patterns of skate PU.1 and Spi-C suggest that these genes share regulatory as well as structural properties with their mammalian orthologs.
Collapse
|
47
|
Mavrothalassitis G, Ghysdael J. Proteins of the ETS family with transcriptional repressor activity. Oncogene 2000; 19:6524-32. [PMID: 11175368 DOI: 10.1038/sj.onc.1204045] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ETS proteins form one of the largest families of signal-dependent transcriptional regulators, mediating cellular proliferation, differentiation and tumorigenesis. Most of the known ETS proteins have been shown to activate transcription. However, four ETS proteins (YAN, ERF, NET and TEL) can act as transcriptional repressors. In three cases (ERF, NET and TEL) distinct repression domains have been identified and there are indications that NET and TEL may mediate transcription via Histone Deacetylase recruitment. All four proteins appear to be regulated by MAPKs, though for YAN and ERF this regulation seems to be restricted to ERKs. YAN, ERF and TEL have been implicated in cellular proliferation although there are indications suggesting a possible involvement of YAN and TEL in differentiation as well. Other ETS-domain proteins have been shown to repress transcription in a context specific manner, and there are suggestions that the ETS DNA-binding domain may act as a transcriptional repressor. Transcriptional repression by ETS domain proteins adds an other level in the orchestrated regulation by this diverse family of transcription factors that often recognize similar if not identical binding sites on DNA and are believed to regulate critical genes in a variety of biological processes. Definitive assessment of the importance of this novel regulatory level will require the identification of ETS proteins target genes and the further analysis of transcriptional control and biological function of these proteins in defined pathways.
Collapse
Affiliation(s)
- G Mavrothalassitis
- School of Medicine, University of Crete and IMBB-FORTH, Voutes, Heraklion, Crete 714-09, Greece
| | | |
Collapse
|
48
|
Abstract
The recent completion of the Caenorhabditis elegans genome has revealed that this nematode worm has 10 members of the ETS gene family. Isolation and analysis of C. elegans mutants and subsequent screens to identify interacting genes can proceed very quickly in this model organism. Molecular genetic analysis of the receptor tyrosine kinase-Ras-MAP kinase signaling pathway in C. elegans identified the ETS family transcription factor Lin-1 as a nuclear effector of this evolutionarily conserved signal transduction pathway. Here we review classical genetic approaches used to discover the role of Lin-1 in the Ras-MAP kinase signaling pathway and describe new technologies that can be applied to the analyses of signaling pathways and transcription factor regulatory networks in C. elegans.
Collapse
Affiliation(s)
- A H Hart
- Program of Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5
| | | | | |
Collapse
|
49
|
Iguchi A, Kitajima I, Yamakuchi M, Ueno S, Aikou T, Kubo T, Matsushima K, Mukaida N, Maruyama I. PEA3 and AP-1 are required for constitutive IL-8 gene expression in hepatoma cells. Biochem Biophys Res Commun 2000; 279:166-171. [PMID: 11112434 DOI: 10.1006/bbrc.2000.3925] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin-8 (IL-8) mRNA was constitutively expressed in human hepatoma cell line, HepG2 and in human hepatocellular carcinoma (HCC), which often form hypervascular tumors. The sequence 5'-AGGAAG-3' at -137 to -132 bp of IL-8 promoter was shown to be polyomavirus enhancer A binding protein-3 (PEA3) binding site, which can cooperate with activator protein-1 (AP-1). Both PEA3 and AP-1 are essential for constitutive IL-8 expression in HepG2 cells, determined by promoter assays. Moreover, PEA3 and IL-8 proteins coexisted in HCC tissues, but not in uninvolved liver tissues. It is possible PEA3 may have important roles in tumor progression and in angiogenesis in HCC.
Collapse
Affiliation(s)
- A Iguchi
- Department of Laboratory and Molecular Medicine, Kagoshima University School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Anderson MK, Rothenberg EV. Transcription factor expression in lymphocyte development: clues to the evolutionary origins of lymphoid cell lineages? Curr Top Microbiol Immunol 2000; 248:137-55. [PMID: 10793477 DOI: 10.1007/978-3-642-59674-2_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- M K Anderson
- Department of Biology, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|