1
|
Di Paola D, Rampakakis E, Chan MK, Zannis-Hadjopoulos M. Differential chromatin structure encompassing replication origins in transformed and normal cells. Genes Cancer 2012; 3:152-76. [PMID: 23050047 DOI: 10.1177/1947601912457026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/10/2012] [Indexed: 12/23/2022] Open
Abstract
This study examines the chromatin structure encompassing replication origins in transformed and normal cells. Analysis of the global levels of histone H3 acetylated at K9&14 (open chromatin) and histone H3 trimethylated at K9 (closed chromatin) revealed a higher ratio of open to closed chromatin in the transformed cells. Also, the trithorax and polycomb group proteins, Brg-1 and Bmi-1, respectively, were overexpressed and more abundantly bound to chromatin in the transformed cells. Quantitative comparative analyses of episomal and in situ chromosomal replication origin activity as well as chromatin immunoprecipitation (ChIP) assays, using specific antibodies targeting members of the pre-replication complex (pre-RC) as well as open/closed chromatin markers encompassing both episomal and chromosomal origins, revealed that episomal origins had similar levels of in vivo activity, nascent DNA abundance, pre-RC protein association, and elevated open chromatin structure at the origin in both cell types. In contrast, the chromosomal origins corresponding to 20mer1, 20mer2, and c-myc displayed a 2- to 3-fold higher activity and pre-RC protein abundance as well as higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in the transformed cells, whereas the origin associated with the housekeeping lamin B2 gene exhibited similar levels of activity, pre-RC protein abundance, and higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in both cell types. Nucleosomal positioning analysis, using an MNase-Southern blot assay, showed that all the origin regions examined were situated within regions of inconsistently positioned nucleosomes, with the nucleosomes being spaced farther apart from each other prior to the onset of S phase in both cell types. Overall, the results indicate that cellular transformation is associated with differential epigenetic regulation, whereby chromatin structure is more open, rendering replication origins more accessible to initiator proteins, thus allowing increased origin activity.
Collapse
Affiliation(s)
- Domenic Di Paola
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
2
|
Valenzuela MS, Chen Y, Davis S, Yang F, Walker RL, Bilke S, Lueders J, Martin MM, Aladjem MI, Massion PP, Meltzer PS. Preferential localization of human origins of DNA replication at the 5'-ends of expressed genes and at evolutionarily conserved DNA sequences. PLoS One 2011; 6:e17308. [PMID: 21602917 PMCID: PMC3094316 DOI: 10.1371/journal.pone.0017308] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 01/27/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Replication of mammalian genomes requires the activation of thousands of origins which are both spatially and temporally regulated by as yet unknown mechanisms. At the most fundamental level, our knowledge about the distribution pattern of origins in each of the chromosomes, among different cell types, and whether the physiological state of the cells alters this distribution is at present very limited. METHODOLOGY/PRINCIPAL FINDINGS We have used standard λ-exonuclease resistant nascent DNA preparations in the size range of 0.7-1.5 kb obtained from the breast cancer cell line MCF-7 hybridized to a custom tiling array containing 50-60 nt probes evenly distributed among genic and non-genic regions covering about 1% of the human genome. A similar DNA preparation was used for high-throughput DNA sequencing. Array experiments were also performed with DNA obtained from BT-474 and H520 cell lines. By determining the sites showing nascent DNA enrichment, we have localized several thousand origins of DNA replication. Our major findings are: (a) both array and DNA sequencing assay methods produced essentially the same origin distribution profile; (b) origin distribution is largely conserved (>70%) in all cell lines tested; (c) origins are enriched at the 5'ends of expressed genes and at evolutionarily conserved intergenic sequences; and (d) ChIP on chip experiments in MCF-7 showed an enrichment of H3K4Me3 and RNA Polymerase II chromatin binding sites at origins of DNA replication. CONCLUSIONS/SIGNIFICANCE Our results suggest that the program for origin activation is largely conserved among different cell types. Also, our work supports recent studies connecting transcription initiation with replication, and in addition suggests that evolutionarily conserved intergenic sequences have the potential to participate in origin selection. Overall, our observations suggest that replication origin selection is a stochastic process significantly dependent upon local accessibility to replication factors.
Collapse
Affiliation(s)
- Manuel S. Valenzuela
- Genetics Branch, Center for Cancer Research,
National Cancer Institute, National Institutes of Health, Bethesda, Maryland,
United States of America
- Department of Biochemistry and Cancer Biology,
Meharry Medical College, Nashville, Tennessee, United States of
America
| | - Yidong Chen
- Genetics Branch, Center for Cancer Research,
National Cancer Institute, National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Sean Davis
- Genetics Branch, Center for Cancer Research,
National Cancer Institute, National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Fan Yang
- Genetics Branch, Center for Cancer Research,
National Cancer Institute, National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Robert L. Walker
- Genetics Branch, Center for Cancer Research,
National Cancer Institute, National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Sven Bilke
- Genetics Branch, Center for Cancer Research,
National Cancer Institute, National Institutes of Health, Bethesda, Maryland,
United States of America
| | - John Lueders
- Genetics Branch, Center for Cancer Research,
National Cancer Institute, National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Melvenia M. Martin
- Laboratory of Molecular Pharmacology, Center
for Cancer Research, National Cancer Institute, National Institutes of Health,
Bethesda, Maryland, United States of America
| | - Mirit I. Aladjem
- Laboratory of Molecular Pharmacology, Center
for Cancer Research, National Cancer Institute, National Institutes of Health,
Bethesda, Maryland, United States of America
| | - Pierre P. Massion
- Division of Allergy, Pulmonary and Critical
Care Medicine, Vanderbilt Ingram Cancer Center, Vanderbilt University,
Nashville, Tennessee, United States of America
| | - Paul S. Meltzer
- Genetics Branch, Center for Cancer Research,
National Cancer Institute, National Institutes of Health, Bethesda, Maryland,
United States of America
| |
Collapse
|
3
|
Rampakakis E, Arvanitis DN, Di Paola D, Zannis-Hadjopoulos M. Metazoan origins of DNA replication: regulation through dynamic chromatin structure. J Cell Biochem 2009; 106:512-20. [PMID: 19173303 DOI: 10.1002/jcb.22070] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA replication in eukaryotes is initiated at multiple replication origins distributed over the entire genome, which are normally activated once per cell cycle. Due to the complexity of the metazoan genome, the study of metazoan replication origins and their activity profiles has been less advanced than in simpler genome systems. DNA replication in eukaryotes involves many protein-protein and protein-DNA interactions, occurring in multiple stages. As in prokaryotes, control over the timing and frequency of initiation is exerted at the initiation site. A prerequisite for understanding the regulatory mechanisms of eukaryotic DNA replication is the identification and characterization of the cis-acting sequences that serve as replication origins and the trans-acting factors (proteins) that interact with them. Furthermore, in order to understand how DNA replication may become deregulated in malignant cells, the distinguishing features between normal and malignant origins of DNA replication as well as the proteins that interact with them must be determined. Based on advances that were made using simple genome model systems, several proteins involved in DNA replication have been identified. This review summarizes the current findings about metazoan origins of DNA replication and their interacting proteins as well as the role of chromatin structure in their regulation. Furthermore, progress in origin identification and isolation procedures as well as potential mechanisms to inhibit their activation in cancer development and progression are discussed.
Collapse
Affiliation(s)
- E Rampakakis
- Department of Biochemistry, Goodman Cancer Centre, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
4
|
Kemp M, Bae B, Yu JP, Ghosh M, Leffak M, Nair SK. Structure and function of the c-myc DNA-unwinding element-binding protein DUE-B. J Biol Chem 2007; 282:10441-8. [PMID: 17264083 DOI: 10.1074/jbc.m609632200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Local zones of easily unwound DNA are characteristic of prokaryotic and eukaryotic replication origins. The DNA-unwinding element of the human c-myc replication origin is essential for replicator activity and is a target of the DNA-unwinding element-binding protein DUE-B in vivo. We present here the 2.0A crystal structure of DUE-B and complementary biochemical characterization of its biological activity. The structure corresponds to a dimer of the N-terminal domain of the full-length protein and contains many of the structural elements of the nucleotide binding fold. A single magnesium ion resides in the putative active site cavity, which could serve to facilitate ATP hydrolytic activity of this protein. The structure also demonstrates a notable similarity to those of tRNA-editing enzymes. Consistent with this structural homology, the N-terminal core of DUE-B is shown to display both D-aminoacyl-tRNA deacylase activity and ATPase activity. We further demonstrate that the C-terminal portion of the enzyme is disordered and not essential for dimerization. However, this region is essential for DNA binding in vitro and becomes ordered in the presence of DNA.
Collapse
Affiliation(s)
- Michael Kemp
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, USA
| | | | | | | | | | | |
Collapse
|
5
|
Yakisich JS, Sandoval PY, Morrison TL, Kapler GM. TIF1 activates the intra-S-phase checkpoint response in the diploid micronucleus and amitotic polyploid macronucleus of Tetrahymena. Mol Biol Cell 2006; 17:5185-97. [PMID: 17005912 PMCID: PMC1679683 DOI: 10.1091/mbc.e06-05-0469] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ribosomal DNA origin binding protein Tif1p regulates the timing of rDNA replication and is required globally for proper S-phase progression and division of the Tetrahymena thermophila macronucleus. Here, we show that Tif1p safeguards chromosomes from DNA damage in the mitotic micronucleus and amitotic macronucleus. TIF1p localization is dynamically regulated as it moves into the micro- and macronucleus during the respective S phases. TIF1 disruption mutants are hypersensitive to hydroxyurea and methylmethanesulfonate, inducers of DNA damage and intra-S-phase checkpoint arrest in all examined eukaryotes. TIF1 mutants incur double-strand breaks in the absence of exogenous genotoxic stress, destabilizing all five micronuclear chromosomes. Wild-type Tetrahymena elicits an intra-S-phase checkpoint response that is induced by hydroxyurea and suppressed by caffeine, an inhibitor of the apical checkpoint kinase ATR/MEC1. In contrast, hydroxyurea-challenged TIF1 mutants fail to arrest in S phase or exhibit caffeine-sensitive Rad51 overexpression, indicating the involvement of TIF1 in checkpoint activation. Although aberrant micro- and macronuclear division occurs in TIF1 mutants and caffeine-treated wild-type cells, TIF1p bears no similarity to ATR or its substrates. We propose that TIF1 and ATR function in the same epistatic pathway to regulate checkpoint responses in the diploid mitotic micronucleus and polyploid amitotic macronucleus.
Collapse
Affiliation(s)
- J. Sebastian Yakisich
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114
| | - Pamela Y. Sandoval
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114
| | - Tara L. Morrison
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114
| | - Geoffrey M. Kapler
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114
| |
Collapse
|
6
|
Holmquist GP, Ashley T. Chromosome organization and chromatin modification: influence on genome function and evolution. Cytogenet Genome Res 2006; 114:96-125. [PMID: 16825762 DOI: 10.1159/000093326] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 12/15/2005] [Indexed: 11/19/2022] Open
Abstract
Histone modifications of nucleosomes distinguish euchromatic from heterochromatic chromatin states, distinguish gene regulation in eukaryotes from that of prokaryotes, and appear to allow eukaryotes to focus recombination events on regions of highest gene concentrations. Four additional epigenetic mechanisms that regulate commitment of cell lineages to their differentiated states are involved in the inheritance of differentiated states, e.g., DNA methylation, RNA interference, gene repositioning between interphase compartments, and gene replication time. The number of additional mechanisms used increases with the taxon's somatic complexity. The ability of siRNA transcribed from one locus to target, in trans, RNAi-associated nucleation of heterochromatin in distal, but complementary, loci seems central to orchestration of chromatin states along chromosomes. Most genes are inactive when heterochromatic. However, genes within beta-heterochromatin actually require the heterochromatic state for their activity, a property that uniquely positions such genes as sources of siRNA to target heterochromatinization of both the source locus and distal loci. Vertebrate chromosomes are organized into permanent structures that, during S-phase, regulate simultaneous firing of replicon clusters. The late replicating clusters, seen as G-bands during metaphase and as meiotic chromomeres during meiosis, epitomize an ontological utilization of all five self-reinforcing epigenetic mechanisms to regulate the reversible chromatin state called facultative (conditional) heterochromatin. Alternating euchromatin/heterochromatin domains separated by band boundaries, and interphase repositioning of G-band genes during ontological commitment can impose constraints on both meiotic interactions and mammalian karyotype evolution.
Collapse
Affiliation(s)
- G P Holmquist
- Biology Department, City of Hope Medical Center, Duarte, CA, USA.
| | | |
Collapse
|
7
|
Koina E, Piper A. An inactive X specific replication origin associated with a matrix attachment region in the human X linked HPRT gene. J Cell Biochem 2005; 95:391-402. [PMID: 15779006 DOI: 10.1002/jcb.20425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Early in female mammalian embryogenesis, one of the two X chromosomes is inactivated to compensate the gene dosage between males and females. One of the features of X chromosome inactivation (XCI) is the late replication of the inactivated X chromosome. This study reports the identification, by competitive PCR of nascent DNA, of a replication origin in intron 2 of the human X-linked HPRT gene, that is functional only on the inactive X. Features frequently associated with replication origins, including a peak of enhanced DNA flexibility, a perfect match to the yeast ACS sequence, a 14/15 match to the Drosophila topoisomerase II consensus, and a 20/21 match to an initiation region consensus sequence, were identified close to the replication origin. The origin is located approximately 2 kb upstream of a matrix attachment region (MAR) and also contains two A:T-rich elements, thought to facilitate DNA unwinding.
Collapse
Affiliation(s)
- Edda Koina
- Molecular Genetics Unit, Department of Cell and Molecular Biology, University of Technology, Sydney, NSW 2065, Australia.
| | | |
Collapse
|
8
|
Schroeder-Reiter E, Houben A, Grau J, Wanner G. Characterization of a peg-like terminal NOR structure with light microscopy and high-resolution scanning electron microscopy. Chromosoma 2005; 115:50-9. [PMID: 16267675 DOI: 10.1007/s00412-005-0030-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 09/14/2005] [Accepted: 09/19/2005] [Indexed: 11/29/2022]
Abstract
An atypical peg-like terminal constriction ("peg") on metaphase chromosomes of the plant genus Oziroë could be identified as a nucleolus organizing region (NOR) by detecting 45S rDNA with correlative light microscopy (LM) and scanning electron microscopy (SEM) in situ hybridization (ISH). Using high-resolution 3D analytical SEM, the architecture and DNA distribution of the peg-like NOR were characterized as typical for chromosomes, albeit with significantly smaller chromomeres. ISH procedure was improved for SEM concerning signal localization, labeling efficiency, and structural preservation, allowing 3D SEM analysis of the peg-like NOR structure and rDNA distribution for the first time. It could be shown that implementation of FluoroNanogold markers is an attractive tool that allows efficient immunodection in both LM and SEM. A model is proposed for the peg structure and its mode of condensation.
Collapse
|
9
|
Casper JM, Kemp MG, Ghosh M, Randall GM, Vaillant A, Leffak M. The c-myc DNA-unwinding element-binding protein modulates the assembly of DNA replication complexes in vitro. J Biol Chem 2005; 280:13071-83. [PMID: 15653697 DOI: 10.1074/jbc.m404754200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The presence of DNA-unwinding elements (DUEs) at eukaryotic replicators has raised the question of whether these elements contribute to origin activity by their intrinsic helical instability, as protein-binding sites, or both. We used the human c-myc DUE as bait in a yeast one-hybrid screen and identified a DUE-binding protein, designated DUE-B, with a predicted mass of 23.4 kDa. Based on homology to yeast proteins, DUE-B was previously classified as an aminoacyl-tRNA synthetase; however, the human protein is approximately 60 amino acids longer than its orthologs in yeast and worms and is primarily nuclear. In vivo, chromatin-bound DUE-B localized to the c-myc DUE region. DUE-B levels were constant during the cell cycle, although the protein was preferentially phosphorylated in cells arrested early in S phase. Inhibition of DUE-B protein expression slowed HeLa cell cycle progression from G1 to S phase and induced cell death. DUE-B extracted from HeLa cells or expressed from baculovirus migrated as a dimer during gel filtration and co-purified with ATPase activity. In contrast to endogenous DUE-B, baculovirus-expressed DUE-B efficiently formed high molecular mass complexes in Xenopus egg and HeLa extracts. In Xenopus extracts, baculovirus-expressed DUE-B inhibited chromatin replication and replication protein A loading in the presence of endogenous DUE-B, suggesting that differential covalent modification of these proteins can alter their effect on replication. Recombinant DUE-B expressed in HeLa cells restored replication activity to egg extracts immunodepleted with anti-DUE-B antibody, suggesting that DUE-B plays an important role in replication in vivo.
Collapse
Affiliation(s)
- John M Casper
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435, USA
| | | | | | | | | | | |
Collapse
|
10
|
Rana NA, Ebenezer ND, Webster AR, Linares AR, Whitehouse DB, Povey S, Hardcastle AJ. Recombination hotspots and block structure of linkage disequilibrium in the human genome exemplified by detailed analysis of PGM1 on 1p31. Hum Mol Genet 2004; 13:3089-102. [PMID: 15509594 DOI: 10.1093/hmg/ddh337] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The distribution of linkage disequilibrium (LD) in the human genome has important consequences for the design of experiments that infer susceptibility genes for complex disease using association studies. Recent studies have shown a non-random distribution of human meiotic recombination associated with intervening tracts of LD. Little is known about the processes, patterns and frequency of reciprocal meiotic recombination in humans. However, this phenomenon can be better understood by the fine structure analysis of several genomic regions by mapping hotspots and characterizing regions with variable LD. Here, we report clustered hotspot activity with intervening blocks of LD within the human PGM1 gene (1p31) using data derived from meiotic and population studies. Earlier work has suggested a high recombination rate in two regions within the PGM1 gene, site A (exons 4-8) and site B (exons 1A-4). Sequencing of eight individuals across 6 kb of targeted regions in site B identified 18 informative SNPs. Individuals from three distinct populations, Caucasian (n=264), Chinese (n=222) and Vietnamese (n=187), were genotyped, and haplotypes were determined using estimate of haplotypes, ldmax and Arlequin. Allelic association and haplotype analysis in these samples revealed variable recombination rates across PGM1, demonstrating the presence of: (i) three hotspots and (ii) three haplotype blocks. The spatial arrangement of haplotype blocks was identical in all populations studied. The pattern of association within PGM1 represents a region decomposed into small blocks of LD, where increased recombination activity has disrupted the ancestral chromosome. Additionally, crossovers in phased data mapped preferentially to regions where LD collapses, which also overlap with sequence motifs.
Collapse
Affiliation(s)
- Naheed A Rana
- Department of Molecular Genetics, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | | | | | | | | | | | | |
Collapse
|
11
|
Nishant KT, Ravishankar H, Rao MRS. Characterization of a mouse recombination hot spot locus encoding a novel non-protein-coding RNA. Mol Cell Biol 2004; 24:5620-34. [PMID: 15169920 PMCID: PMC419864 DOI: 10.1128/mcb.24.12.5620-5634.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our current knowledge of recombination hot spot activity in mammalian systems implicates a role for both the primary DNA sequence and the nature of the chromatin domain around it. In mice, the only recombination hot spots mapped to date have been confined to a cluster within the major histocompatibility complex (MHC) region. We present a high resolution analysis of a new recombination hot spot in the mouse genome which maps to mouse chromosome 8 C-D. Haplotype diversity analysis across 40 different strains of mice has enabled us to map recombination breakpoints to a 1-kb interval. This hot spot has a recombination intensity that is 10- to 100-fold above the genome average and has a mean gene conversion tract length of 371 bp. This meiotically active locus happens to be flanked by a transcribed region encoding a non-protein-coding RNA polymerase II transcript and the previously characterized repair site. Many of the primary DNA sequence features that have been reported for the mouse MHC hot spots are also shared by this hot spot locus and in addition, along with three other MHC hot spot loci, we show a new parallel feature of association of the crossover sites with the nuclear matrix.
Collapse
Affiliation(s)
- K T Nishant
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
12
|
Abstract
We studied the dependence of the rate of short deletions and insertions on their contexts using the data on mutations within coding exons at 19 human loci that cause mendelian diseases. We confirm that periodic sequences consisting of three to five or more nucleotides are mutagenic. Mutability of sequences with strongly biased nucleotide composition is also elevated, even when mutations within homonucleotide runs longer than three nucleotides are ignored. In contrast, no elevated mutation rates have been detected for imperfect direct or inverted repeats. Among known candidate contexts, the indel context GTAAGT and regions with purine-pyrimidine imbalance between the two DNA strands are mutagenic in our sample, and many others are not mutagenic. Data on mutation hot spots suggest two novel contexts that increase the deletion rate. Comprehensive analysis of mutability of all possible contexts of lengths four, six, and eight indicates a substantially elevated deletion rate within YYYTG and similar sequences, which is one of the two contexts revealed by the hot spots. Possible contexts that increase the insertion rate (AT(A/C)(A/C)GCC and TACCRC) and decrease deletion (TATCGC) or insertion (GCGG) rates have also been identified. Two-thirds of deletions remove a repeat, and over 80% of insertions create a repeat, i.e., they are duplications.
Collapse
Affiliation(s)
- Alexey S Kondrashov
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
13
|
Harvey KJ, Newport J. CpG methylation of DNA restricts prereplication complex assembly in Xenopus egg extracts. Mol Cell Biol 2003; 23:6769-79. [PMID: 12972597 PMCID: PMC193934 DOI: 10.1128/mcb.23.19.6769-6779.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In a Xenopus egg replication system, the origin recognition complex (ORC) does not bind to CpG methylated DNA and DNA replication is inhibited. Insertion of low density CpG DNA of at least 1.2 kb into methylated plasmids rescues both replication and ORC binding. Using this pseudo-origin, we find that ORC binding is restricted to low-CpG-density DNA; however, MCM is loaded onto both weakly and highly methylated DNA and occupies at least approximately 2 kb of DNA. Replication initiates coincident with MCM, and even the most distally bound MCM is associated with sites of replication initiation. These results suggest that in metazoans MCM is loaded onto and initiates replication over a large region distant from ORC.
Collapse
Affiliation(s)
- Kevin J Harvey
- Division of Biology, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
14
|
Shlomai J. Specific recognition of the replication origins of the kinetoplast DNA. Acta Microbiol Immunol Hung 2003; 49:455-67. [PMID: 12512255 DOI: 10.1556/amicr.49.2002.4.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- J Shlomai
- Department of Parasitology, Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University-Hadassah Medical School, Jerusalem, 91120 Israel
| |
Collapse
|
15
|
Sironi M, Pozzoli U, Cagliani R, Giorda R, Comi GP, Bardoni A, Menozzi G, Bresolin N. Relevance of sequence and structure elements for deletion events in the dystrophin gene major hot-spot. Hum Genet 2003; 112:272-88. [PMID: 12596052 DOI: 10.1007/s00439-002-0881-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Accepted: 11/04/2002] [Indexed: 11/24/2022]
Abstract
Large intragenic deletions within the DMD locus account for about 60% of Duchenne and Becker muscular dystrophy patients. Two deletion hot-spots have been described in the dystrophin gene, but the mechanisms that determine chromosome breaks in these regions are unknown, and the huge dimensions of the gene have hampered the description of a consistent number of breakpoint sequences. A long-distance polymerase chain reaction strategy was used to amplify 20 deletion junctions involving the major hot-spot and to describe breakpoint position at the sequence level. These junctions were analyzed together with previously reported breakpoint locations so as to increase the sample number and possibly provide a comprehensive study. Minisatellite core sequences, chi elements, translin-binding sites, Pur elements, and matrix attachment regions were sought over the whole gene. Sequence-dependent DNA curvature and duplex stability were also calculated throughout the gene, and their cumulative frequency distribution was evaluated. No association with either sequence or structure elements involved in known illegitimate recombination mechanisms was identified. This study highlights the importance of a whole gene approach to rule out the presumptive role of specific features that, when locally analyzed, might suggest involvement in gene rearrangements.
Collapse
Affiliation(s)
- Manuela Sironi
- IRCCS E. Medea, Associazione La Nostra Famiglia, Via Don Luigi Monza 20, 23842, Bosisio Parini (LC), Italy.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Reiter A, Saussele S, Grimwade D, Wiemels JL, Segal MR, Lafage-Pochitaloff M, Walz C, Weisser A, Hochhaus A, Willer A, Reichert A, Büchner T, Lengfelder E, Hehlmann R, Cross NCP. Genomic anatomy of the specific reciprocal translocation t(15;17) in acute promyelocytic leukemia. Genes Chromosomes Cancer 2003; 36:175-88. [PMID: 12508246 DOI: 10.1002/gcc.10154] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The genomic breakpoints in the t(15;17)(q22;q21), associated with acute promyelocytic leukemia (APL), are known to occur within three different PML breakpoint cluster regions (bcr) on chromosome 15 and within RARA intron 2 on chromosome 17; however, the precise mechanism by which this translocation arises is unclear. To clarify this mechanism, we (i). assembled the sequence of RARA intron 2, (ii). amplified and sequenced the genomic PML-RARA junction sequences from 37 APL patients, and (iii). amplified and sequenced the reverse RARA-PML genomic fusion in 29 of these cases. Three significant breakpoint microclusters within RARA intron 2 were identified, suggesting that sequence-associated or structural factors play a role in the formation of the t(15;17). There was no evidence that the location of a breakpoint in PML had any relationship to the location of the corresponding breakpoint in RARA. Although some sequence motifs previously implicated in illegitimate recombinations were found in the microcluster regions, these associations were not significant. Comparison of forward and reverse genomic junctions revealed microhomologies, deletions, and/or duplications of either gene in all but one case, in which a complex rearrangement with inversion of the PML-derived sequence was found. These findings are consistent with the hypothesis that the t(15;17) occurs by nonhomologous recombination of DNA after processing of the double-strand breaks by a dysfunctional DNA damage-repair mechanism.
Collapse
MESH Headings
- Chromosome Breakage/genetics
- Chromosome Mapping
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 17/genetics
- Cloning, Molecular
- Cytogenetic Analysis/methods
- Humans
- Introns/genetics
- Leukemia, Promyelocytic, Acute/genetics
- Mutagenesis, Insertional/genetics
- Neoplasm Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Receptors, Retinoic Acid/genetics
- Retinoic Acid Receptor alpha
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- Andreas Reiter
- III. Medizinische Universitätsklinik, Klinikum Mannheim, Fakultät für Klinische Medizin der Universität Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mesner LD, Li X, Dijkwel PA, Hamlin JL. The dihydrofolate reductase origin of replication does not contain any nonredundant genetic elements required for origin activity. Mol Cell Biol 2003; 23:804-14. [PMID: 12529386 PMCID: PMC140713 DOI: 10.1128/mcb.23.3.804-814.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Chinese hamster dihydrofolate reductase (DHFR) origin of replication consists of a broad zone of potential initiation sites scattered throughout a 55-kb intergenic spacer, with at least three sites being preferred (ori-beta, ori-beta', and ori-gamma). We previously showed that deletion of the most active site or region (ori-beta) has no demonstrable effect on initiation in the remainder of the intergenic spacer nor on the time of replication of the DHFR locus as a whole. In the present study, we have now deleted ori-beta', both ori-beta and ori-beta', an 11-kb region just downstream from the DHFR gene, or the central approximately 40-kb core of the spacer. The latter two deletions together encompass >95% of the initiation sites that are normally used in this locus. Two-dimensional gel analysis shows that initiation still occurs in the early S phase in the remainder of the intergenic spacer in each of these deletion variants. Even removal of the 40-kb core fails to elicit a significant effect on the time of replication of the DHFR locus in the S period; indeed, in the truncated spacer that remains, the efficiency of initiation actually appears to increase relative to the corresponding region in the wild-type locus. Thus, if replicators control the positions of nascent strand start sites in this complex origin, either (i) there must be a very large number of redundant elements in the spacer, each of which regulates initiation only in its immediate environment, or (ii) they must lie outside the central core in which the vast majority of nascent strand starts occur.
Collapse
Affiliation(s)
- L D Mesner
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
18
|
Chen Y, Zhao M, Li ZP, He ML. The function of the nuclear matrix attachment region of silkworm rDNA as an autonomously replicating sequence in plasmid and chromosomal replication origin in yeast. Biochem Biophys Res Commun 2002; 299:723-9. [PMID: 12470638 DOI: 10.1016/s0006-291x(02)02746-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nuclear matrix attachment regions (MARs) play a crucial role in chromatin architecture, gene expression, and DNA replication. Although it is well known that yeast autonomously replicating sequences (ARSs) bind nuclear matrix and MARs also function as ARS elements in yeast, whether a heterologous MAR or ARS element acts as a replication origin in the chromosome has not been elucidated. We previously identified a MAR (rMAR) located in the nontranscribed spacer (NTS) of silkworm Attacus ricini rDNA. We report here that this rMAR contains 10 copies of ARS consensus sequence (ACS) and several DNA unwinding regions. The rMAR employs ARS activity in yeast and a rARS element locates in the 3(') region of the rMAR. Furthermore, we have also revealed that either the rMAR or the rARS element functions as a replication origin in the chromosome. Our results provide the first direct evidence to demonstrate that heterologous rMAR and rARS display chromosomal origin activity, suggesting that the chromosome structure and replication origin of rDNA reserve some common features during evolution.
Collapse
Affiliation(s)
- Ying Chen
- The Institute of Molecular Biology, The University of Hong Kong, Hong Kong
| | | | | | | |
Collapse
|
19
|
Cullen M, Perfetto SP, Klitz W, Nelson G, Carrington M. High-resolution patterns of meiotic recombination across the human major histocompatibility complex. Am J Hum Genet 2002; 71:759-76. [PMID: 12297984 PMCID: PMC378534 DOI: 10.1086/342973] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2002] [Accepted: 06/27/2002] [Indexed: 11/03/2022] Open
Abstract
Definitive characteristics of meiotic recombination events over large (i.e., >1 Mb) segments of the human genome remain obscure, yet they are essential for establishing the haplotypic structure of the genome and for efficient mapping of complex traits. We present a high-resolution map of recombination at the kilobase level across a 3.3-Mb interval encompassing the major histocompatibility complex (MHC). Genotyping of 20,031 single sperm from 12 individuals resulted in the identification and fine mapping of 325 recombinant chromosomes within genomic intervals as small as 7 kb. Several principal characteristics of recombination in this region were observed: (1) rates of recombination can differ significantly between individuals; (2) intense hot spots of recombination occur at least every 0.8 Mb but are not necessarily evenly spaced; (3) distribution in the location of recombination events can differ significantly among individuals; (4) between hot spots, low levels of recombination occur fairly evenly across 100-kb segments, suggesting the presence of warm spots of recombination; and (5) specific sequence motifs associate significantly with recombination distribution. These data provide a plausible model for recombination patterns of the human genome overall.
Collapse
Affiliation(s)
- Michael Cullen
- Basic Research Program, SAIC–Frederick, National Cancer Institute, Frederick, MD; Graduate Genetics Program, Institute for Biomedical Sciences, The George Washington University, Washington DC; USA Program Vaccine Research Center, National Institutes of Health, Bethesda; Children’s Hospital Oakland Research Institute, Oakland, CA; and School of Public Health, University of California, Berkeley
| | - Stephen P. Perfetto
- Basic Research Program, SAIC–Frederick, National Cancer Institute, Frederick, MD; Graduate Genetics Program, Institute for Biomedical Sciences, The George Washington University, Washington DC; USA Program Vaccine Research Center, National Institutes of Health, Bethesda; Children’s Hospital Oakland Research Institute, Oakland, CA; and School of Public Health, University of California, Berkeley
| | - William Klitz
- Basic Research Program, SAIC–Frederick, National Cancer Institute, Frederick, MD; Graduate Genetics Program, Institute for Biomedical Sciences, The George Washington University, Washington DC; USA Program Vaccine Research Center, National Institutes of Health, Bethesda; Children’s Hospital Oakland Research Institute, Oakland, CA; and School of Public Health, University of California, Berkeley
| | - George Nelson
- Basic Research Program, SAIC–Frederick, National Cancer Institute, Frederick, MD; Graduate Genetics Program, Institute for Biomedical Sciences, The George Washington University, Washington DC; USA Program Vaccine Research Center, National Institutes of Health, Bethesda; Children’s Hospital Oakland Research Institute, Oakland, CA; and School of Public Health, University of California, Berkeley
| | - Mary Carrington
- Basic Research Program, SAIC–Frederick, National Cancer Institute, Frederick, MD; Graduate Genetics Program, Institute for Biomedical Sciences, The George Washington University, Washington DC; USA Program Vaccine Research Center, National Institutes of Health, Bethesda; Children’s Hospital Oakland Research Institute, Oakland, CA; and School of Public Health, University of California, Berkeley
| |
Collapse
|
20
|
Dijkwel PA, Wang S, Hamlin JL. Initiation sites are distributed at frequent intervals in the Chinese hamster dihydrofolate reductase origin of replication but are used with very different efficiencies. Mol Cell Biol 2002; 22:3053-65. [PMID: 11940663 PMCID: PMC133756 DOI: 10.1128/mcb.22.9.3053-3065.2002] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous radiolabeling and two-dimensional (2-D) gel studies of the dihydrofolate reductase (DHFR) domain of Chinese hamster cells have suggested that replication can initiate at any one of a very large number of inefficient sites scattered throughout the 55-kb intergenic spacer region, with two broad subregions (ori-beta and ori-gamma) preferred. However, high-resolution analysis by a PCR-based nascent strand abundance assay of the 12-kb subregion encompassing ori-beta has suggested the presence of a relatively small number of fixed, highly efficient initiation sites distributed at infrequent intervals that correspond to genetic replicators. To attempt to reconcile these observations, two different approaches were taken in the present study. In the first, neutral-neutral 2-D gel analysis was used to examine replication intermediates in 31 adjacent and overlapping restriction fragments in the spacer, ranging in size from 1.0 to 18 kb. Thirty of 31 fragments displayed the complete bubble arcs characteristic of centered origins. Taking into account overlapping fragments, these data suggest a minimum of 14 individual start sites in the spacer. In the second approach, a quantitative early labeled fragment hybridization assay was performed in which radioactive origin-containing DNA 300 to 1,000 nucleotides in length was synthesized in the first few minutes of the S period and used to probe 15 clones distributed throughout the intergenic spacer but separated on average by more than 1,000 bp. This small nascent DNA fraction hybridized to 14 of the 15 clones, ranging from just above background to a maximum at the ori-beta locus. The only silent region detected was a small fragment lying just upstream from a centered matrix attachment region--the same region that was also negative for initiation by 2-D gel analysis. Results of both approaches suggest a minimum of approximately 20 initiation sites in the spacer (two of them being ori-beta and ori-gamma), with ori-beta accounting for a maximum of approximately 20% of initiations occurring in the spacer. We believe that the results of all experimental approaches applied to this locus so far can be fitted to a model in which the DHFR origin consists of a 55-kb intergenic zone of potential sites that are used with very different efficiencies and which are separated in many cases by a few kilobases or less.
Collapse
Affiliation(s)
- Pieter A Dijkwel
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
21
|
Abstract
Cell differentiation may depend in part upon a type of unbalanced growth in which several cell cycles occur with a reduced level of total protein synthesis. During this period the synthesis of the chromatin protein HMG-I/Y is reduced since its synthesis is correlated with that of total protein. The synthesis of histone H1 shows less reduction since its synthesis is entrained with that of DNA. This greater reduction of HMG-I/Y than of histone H1 is thought to delay or prevent replicon initiations within AT-enriched isochores. This shifts their time of replication from early to late S phase. This may restrict certain pathways of cell differentiation in multipotent progenitor cells and allow one particular type of differentiation.
Collapse
Affiliation(s)
- R Flickinger
- Department of Biological Sciences, State University of New York at Buffalo, 14260, USA
| |
Collapse
|
22
|
Fiorini A, Basso LR, Paçó-Larson ML, Fernandez MA. Mapping of intrinsic bent DNA sites in the upstream region of DNA puff BhC4-1 amplified gene. J Cell Biochem 2001; 83:1-13. [PMID: 11500949 DOI: 10.1002/jcb.1188] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have identified bent DNA sites in the distal and proximal DNA puff BhC4-1 amplified gene promoter region of Bradysia hygida. The 2D modeling of the 3D DNA path and the ENDS ratio values calculated in this promoter region resulted in the identification of ten pronounced bent sites named BhC4B - 9 to + 1. The 1847 bp fragment (- 3697 to - 1850) in relation to the transcription start site shows multiple bending sites, BhC4B - 9 to BhC4B - 4, with periodicity approximately 300 bp. The analysis of the other identified bent region, starting at position - 957, reveals that the BhC4B + 1 bent site colocalizes with the putative BhC4-1 minimal promoter. The sequence analysis of bent site BhC4B - 4 shows a distribution of dA*dT at approximately 10 bp intervals between the middle of each tract, but intervals with more than one turn, approximately 20 bp, two helix turns, were detected in the other bent sites described here. The bent sites BhC4B - 6 and BhC4B - 4, contain two consensus sequences, with 60 bp each. The apparent molecular weight of fragments in the BhC4-1 promoter region were estimated in agarose gels and compared with the data obtained in polyacrylamide gels without and with ethidium bromide. The mobility reduction ratios (R-values) were determined, and a high R-value, 1.80, for a 1215 bp fragment in the distal promoter region and a 1.23 significant R-value for a 662 bp fragment in the proximal segment were found. To further analyze the predicted bent DNA sites in these fragments, the 2D trajectories of the 3D DNA path and other parameters, AT percentage, roll angle, ENDS ratio and DeltaG, were determined. The role of these bent sites in the BhC4-1 transcription regulation is discussed.
Collapse
Affiliation(s)
- A Fiorini
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Maringá, Paraná 87020-900, Brazil
| | | | | | | |
Collapse
|
23
|
Toledo F, Coquelle A, Svetlova E, Debatisse M. Enhanced flexibility and aphidicolin-induced DNA breaks near mammalian replication origins: implications for replicon mapping and chromosome fragility. Nucleic Acids Res 2000; 28:4805-13. [PMID: 11095694 PMCID: PMC115181 DOI: 10.1093/nar/28.23.4805] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Common fragile sites are chromosomal loci prone to breakage and rearrangement that can be induced by aphidicolin, an inhibitor of DNA polymerases. Within these loci, sites of preferential DNA breaks were proposed to correlate with peaks of enhanced DNA flexibility, the function of which remains elusive. Here we show that mammalian DNA replication origins are enriched in peaks of enhanced flexibility. This finding suggests that the search for these features may help in the mapping of replication origins, and we present evidence supporting this hypothesis. The association of peaks of flexibility with replication origins also suggests that some origins may associate with minor levels of fragility. As shown here, an increased sensitivity to aphidicolin was found near two mammalian DNA replication origins.
Collapse
Affiliation(s)
- F Toledo
- Unité de Génétique Somatique (URA CNRS 1960), Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
24
|
Borisjuk N, Borisjuk L, Komarnytsky S, Timeva S, Hemleben V, Gleba Y, Raskin I. Tobacco ribosomal DNA spacer element stimulates amplification and expression of heterologous genes. Nat Biotechnol 2000; 18:1303-6. [PMID: 11101812 DOI: 10.1038/82430] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here we show that the cis-acting genetic element aps (amplification-promoting sequence), isolated from the nontranscribed spacer region of tobacco ribosomal DNA (rDNA), increases the level of expression of recombinant proteins. Transgenic tobacco plants, transformed with expression cassettes containing the herbicide-resistant acetolactate synthase (hr-ALS) gene or the green fluorescent protein (GFP) gene fused to the aps sequence, had greater levels of corresponding messenger RNAs (mRNAs) and proteins compared to transformants lacking aps. Analysis of transgenic plants showed that aps increased the copy number and transcription of the adjacent heterologous genes and, in the case of hr-ALS, enhanced the herbicide resistance phenotype. Both the increased transgene copy number and enhanced expression were stably inherited. These data provide the first evidence that the aps sequence can be used for gene amplification in transgenic plants and possibly other multicellular organisms.
Collapse
Affiliation(s)
- N Borisjuk
- Biotech Center, Foran Hall, Cook College, Rutgers University, 59 Dudley Rd., New Brunswick, NJ 08901-8520, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Cario G, Stadt UZ, Reiter A, Welte K, Sykora KW. Variant translocations in sporadic Burkitt's lymphoma detected in fresh tumour material: analysis of three cases. Br J Haematol 2000; 110:537-46. [PMID: 10997962 DOI: 10.1046/j.1365-2141.2000.02241.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Burkitt's lymphoma/Burkitt cell leukaemia (BL) is characterized by one of the reciprocal translocations involving the MYC oncogene on chromosome 8 and one of the immunoglobulin (Ig) loci on chromosomes 14, 2 or 22. In the few cell lines with the variant translocations t(2;8) and t(8;22) reported to date, the breakpoints on chromosome 8 were located downstream of MYC at a distance of up to 300 kb and more. Here, we describe three new cases with variant translocations. Fresh tumour material from paediatric patients, negative for the common translocation t(8;14), was analysed using a long-distance (LD) polymerase chain reaction (PCR) approach. On chromosome 8, primers were derived from several different regions 3' of MYC, and on chromosomes 2 and 22 from the constant regions of the Ig kappa (Igkappa) and lambda (Iglambda) genes. One translocation t(2;8) and two t(8;22) were detected. In the t(2;8) translocation, the chromosome 8 breakpoint was located 2 kb 3' of the MYC exon 3 and the chromosome 2 breakpoint within an unrearranged Igkappa locus. The breakpoints of the two translocations t(8;22) were detected 16 kb for one and 58 kb for the other downstream of MYC. Sequencing the t(8;22) translocation in one of the cases showed hypermutation of the translocated variable Vlambda4b gene. The presence of hypermutated variable regions in the t(8;22) case suggests germinal centre B cells as the origin of this translocation. The t(2;8) translocation is the first description of a translocation t(2;8) involving an unrearranged Igkappa gene. A mechanism different from V-J recombination and somatic hypermutation has to be proposed for this translocation.
Collapse
Affiliation(s)
- G Cario
- Department of Paediatric Haematology and Oncology, Medical School Hannover, Hannover, Germany
| | | | | | | | | |
Collapse
|
26
|
Abstract
DNA replication initiation sites and initiation frequencies over 12. 5 kb of the human c-myc locus, including 4.6 kb of new 5' sequence, were determined based on short nascent DNA abundance measured by competitive polymerase chain reaction using 21 primer sets. In previous measurements, no comparative quantitation of nascent strand abundance was performed, and distinction of major from minor initiation sites was not feasible. Two major initiation sites were identified in this study. One predominant site has been located at approximately 0.5 kb upstream of exon 1 of the c-myc gene, and a second new major site is located in exon 2. The site in exon 2 has not been previously identified. In addition, there are other sites that may act as less frequently used initiation sites, some of which may correspond to sites in previous reports. Furthermore, a comparison of the abundance of DNA replication intermediates over this same region of the c-myc locus between HeLa and normal skin fibroblast (NSF) cells indicated that the relative distribution was very similar, but that nascent strand abundance in HeLa cells was approximately twice that in NSF relative to the abundance at the lamin B2 origin. This increased activity at initiation sites in the c-myc locus may mainly be influenced by regulators at higher levels in transformed cells like HeLa.
Collapse
Affiliation(s)
- L Tao
- McGill Cancer Center, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
27
|
Saha S, Kapler GM. Allele-specific protein-DNA interactions between the single-stranded DNA-binding protein, ssA-TIBF, and DNA replication determinants in Tetrahymena. J Mol Biol 2000; 295:423-39. [PMID: 10623536 DOI: 10.1006/jmbi.1999.3365] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Type I elements are multifunctional, cis-acting determinants that regulate the initiation of DNA replication, replication fork movement and transcription of the Tetrahymena thermophila rDNA minichromosome. Previous studies identified a protein, ssA-TIBF, that binds specifically to the A-rich strand of type I elements. Here, we examine interactions of ssA-TIBF with the wild-type C3 allele, and a natural variant, B rDNA, which manifests a defect in replication initiation and fork pausing. Purified ssA-TIBF is a homotetramer that binds one substrate molecule and contacts DNA via a single 24 kDa subunit. Both the A-rich and T-rich strands of type I elements are bound by ssA-TIBF, suggesting that this protein might stabilize replication origins in their unwound state. Nucleotides downstream of type I elements contribute to DNA binding, with the extent of DNA-protein contact being greater for wild-type C3 rDNA compared to B rDNA. Allele-specific protein-DNA contacts also occur within the conserved type I element itself. Despite these differences, the binding affinities of ssA-TIBF for C3 and B rDNA substrates are indistinguishable. Consequently, the mode of DNA binding must account for any role ssA-TIBF might play in the regulation of rDNA replication.
Collapse
Affiliation(s)
- S Saha
- College Station, Texas A&M Health Science Center, TX, 77843-1114, USA
| | | |
Collapse
|
28
|
Fullerton SM, Bond J, Schneider JA, Hamilton B, Harding RM, Boyce AJ, Clegg JB. Polymorphism and divergence in the beta-globin replication origin initiation region. Mol Biol Evol 2000; 17:179-88. [PMID: 10666717 DOI: 10.1093/oxfordjournals.molbev.a026230] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA sequence polymorphism and divergence was examined in the vicinity of the human beta-globin gene cluster origin of replication initiation region (IR), a 1.3-kb genomic region located immediately 5' of the adult-expressed beta-globin gene. DNA sequence variation in the replication origin IR and 5 kb of flanking DNA was surveyed in samples drawn from two populations, one African (from the Gambia, West Africa) and the other European (from Oxford, England). In these samples, levels of nucleotide and length polymorphism in the IR were found to be more than two times as high as adjacent non-IR-associated regions (estimates of per-nucleotide heterozygosity were 0.30% and 0.12%, respectively). Most polymorphic positions identified in the origin IR fall within or just adjacent to a 52-bp alternating purine-pyrimidine ((RY)n) sequence repeat. Within- and between-populations divergence is highest in this portion of the IR, and interspecific divergence in the same region, determined by comparison with an orthologous sequence from the chimpanzee, is also pronounced. Higher levels of diversity in this subregion are not, however, primarily attributable to slippage-mediated repeat unit changes, as nucleotide substitution contributes disproportionately to allelic heterogeneity. An estimate of helical stability in the sequenced region suggests that the hypervariable (RY)n constitutes the major DNA unwinding element (DUE) of the replication origin IR, the location at which the DNA duplex first unwinds and new strand synthesis begins. These findings suggest that the beta-globin IR experiences a higher underlying rate of neutral mutation than do adjacent genomic regions and that enzyme fidelity associated with the initiation of DNA replication at this origin may be compromised. The significance of these findings for our understanding of eukaryotic replication origin biology is discussed.
Collapse
Affiliation(s)
- S M Fullerton
- Department of Biology, Pennsylvania State University, University Park 16802, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Yip SP, Lovegrove JU, Rana NA, Hopkinson DA, Whitehouse DB. Mapping recombination hotspots in human phosphoglucomutase (PGM1). Hum Mol Genet 1999; 8:1699-706. [PMID: 10441333 DOI: 10.1093/hmg/8.9.1699] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human phosphoglucomutase (PGM1) is a highly poly-morphic protein. Three mutations and four intragenic recombination events between the three mutation sites generate eight protein variants including the four universally common alleles, 1+, 1 -, 2+ and 2 -, and four others that are polymorphic in some Oriental populations, 3+, 3-, 7+ and 7-. The mutations 3/7, 2/1 and +/-are in exons 1A, 4 and 8, and are 40 and 18 kb apart, respectively. Using 12 polymorphic markers, including 2/1 and +/-, we have now obtained direct evidence for a high rate of intragenic recombination across this 58 kb region. From segregation analysis of PGM1 haplotypes in CEPH families, the recombination frequency was estimated to be 1.7%. We have also used a population genetics approach to map the patterns of linkage disequilibrium across the PGM1 gene in three diverse population samples (Caucasian, Chinese and Vietnamese). This has allowed us to compare indirect estimates of intragenic recombination with the meiotic data from family studies. Comprehensive pairwise allelic association analysis of the markers indicated the presence of two recombi-nation 'hotspots': one between exons 1A and 4 and the other in the region of exon 7. These locations are in keeping with the meiotic data and with the original hypothesis of intragenic recombination based on PGM1 isozyme analysis.
Collapse
Affiliation(s)
- S P Yip
- MRC Human Biochemical Genetics Unit, Galton Laboratory, University College London, Wolfson House, 4 Stephenson Way, London NW1 2HE, UK
| | | | | | | | | |
Collapse
|
30
|
Smith ZE, Higgs DR. The pattern of replication at a human telomeric region (16p13.3): its relationship to chromosome structure and gene expression. Hum Mol Genet 1999; 8:1373-86. [PMID: 10400984 DOI: 10.1093/hmg/8.8.1373] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have studied replication throughout 325 kb of the telomeric region of a human chromosome (16p13.3) and related the findings to various aspects of chromosome structure and function (DNA sequence organization, nuclease-hypersensitive sites, nuclear matrix attachment sites, patterns of methylation and gene expression). The GC-rich isochore lying adjacent to the telomere, which contains the alpha-globin locus and many widely expressed genes, replicates early in the cell cycle regardless of the pattern of gene expression. In subtelomeric DNA, replication occurs later in the cell cycle and the most telomeric region (20 kb) is late replicating. Juxtaposition of early replicating DNA next to the telomere causes it to replicate later in S-phase. Analysis of the timing of replication in chromosomes with deletions, or in transgenes containing various segments of this telomeric region, suggests that there are no critical origins or zones that initiate replication, rather the pattern of replication appears to be related to the underlying chromatin structure which may restrict or facilitate access to multiple, redundant origins. These results contrast with the pattern of replication at the human beta-globin locus and this may similarly reflect the different chromosomal environments containing these gene clusters.
Collapse
Affiliation(s)
- Z E Smith
- MRC Molecular Haematology Unit, Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | | |
Collapse
|
31
|
Abstract
DNA replication starts at multiple discrete sites across the human chromosomal c-myc region, including two or more sites within 2.4 kb upstream of the c-myc gene. The corresponding 2.4-kb c-myc origin fragment confers autonomously replicating sequence (ARS) activity on plasmids, which specifically initiate replication in the origin fragment in vitro and in vivo. To test whether the region that displays plasmid replicator activity also acts as a chromosomal replicator, HeLa cell sublines that each contain a single copy of the Saccharomyces cerevisiae FLP recombinase target (FRT) sequence flanked by selectable markers were constructed. A clonal line containing a single unrearranged copy of the transduced c-myc origin was produced by cotransfecting a donor plasmid containing the 2.4-kb c-myc origin fragment and FRT, along with a plasmid expressing the yeast FLP recombinase, into cells containing a chromosomal FRT acceptor site. The amount of short nascent DNA strands at the chromosomal acceptor site was quantitated before and after targeted integration of the origin fragment. Competitive PCR quantitation showed that the c-myc origin construct substantially increased the amount of nascent DNA relative to that at the unoccupied acceptor site and to that after the insertion of non-myc DNA. The abundance of nascent strands was greatest close to the c-myc insert of the integrated donor plasmid, and significant increases in nascent strand abundance were observed at sites flanking the insertion. These results provide biochemical and genetic evidence for the existence of chromosomal replicators in metazoan cells and are consistent with the presence of chromosomal replicator activity in the 2.4-kb region of c-myc origin DNA.
Collapse
Affiliation(s)
- M Malott
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio 45345, USA
| | | |
Collapse
|
32
|
Mills W, Critcher R, Lee C, Farr CJ. Generation of an approximately 2.4 Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation in DT40. Hum Mol Genet 1999; 8:751-61. [PMID: 10196364 DOI: 10.1093/hmg/8.5.751] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A linear mammalian artificial chromosome (MAC) will require at least three types of functional element: a centromere, two telomeres and origins of replication. As yet, our understanding of these elements, as well as many other aspects of structure and organization which may be critical for a fully functional mammalian chromosome, remains poor. As a way of defining these various requirements, minichromosome reagents are being developed and analysed. Approaches for minichromosome generation fall into two broad categories: de novo assembly from candidate DNA sequences, or the fragmentation of an existing chromosome to reduce it to a minimal size. Here we describe the generation of a human minichromosome using the latter, top-down, approach. A human X chromosome, present in a DT40-human microcell hybrid, has been manipulated using homologous recombination and the targeted seeding of a de novo telomere. This strategy has generated a linear approximately 2.4 Mb human X centromere-based minichromosome capped by two artificially seeded telomeres: one immediately flanking the centromeric alpha-satellite DNA and the other targeted to the zinc finger gene ZXDA in Xp11.21. The chromosome retains an alpha-satellite domain of approximately 1. 8 Mb, a small array of gamma-satellite repeat ( approximately 40 kb) and approximately 400 kb of Xp proximal DNA sequence. The mitotic stability of this minichromosome has been examined, both in DT40 and following transfer into hamster and human cell lines. In all three backgrounds, the minichromosome is retained efficiently, but in the human and hamster microcell hybrids its copy number is poorly regulated. This approach of engineering well-defined chromosome reagents will allow key questions in MAC development (such as whether a lower size limit exists) to be addressed. In addition, the 2.4 Mb minichromosome described here has potential to be developed as a vector for gene delivery.
Collapse
Affiliation(s)
- W Mills
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | | | | | | |
Collapse
|
33
|
Vernis L, Chasles M, Pasero P, Lepingle A, Gaillardin C, Fournier P. Short DNA fragments without sequence similarity are initiation sites for replication in the chromosome of the yeast Yarrowia lipolytica. Mol Biol Cell 1999; 10:757-69. [PMID: 10069816 PMCID: PMC25200 DOI: 10.1091/mbc.10.3.757] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have previously shown that both a centromere (CEN) and a replication origin are necessary for plasmid maintenance in the yeast Yarrowia lipolytica (). Because of this requirement, only a small number of centromere-proximal replication origins have been isolated from Yarrowia. We used a CEN-based plasmid to obtain noncentromeric origins, and several new fragments, some unique and some repetitive sequences, were isolated. Some of them were analyzed by two-dimensional gel electrophoresis and correspond to actual sites of initiation (ORI) on the chromosome. We observed that a 125-bp fragment is sufficient for a functional ORI on plasmid, and that chromosomal origins moved to ectopic sites on the chromosome continue to act as initiation sites. These Yarrowia origins share an 8-bp motif, which is not essential for origin function on plasmids. The Yarrowia origins do not display any obvious common structural features, like bent DNA or DNA unwinding elements, generally present at or near eukaryotic replication origins. Y. lipolytica origins thus share features of those in the unicellular Saccharomyces cerevisiae and in multicellular eukaryotes: they are discrete and short genetic elements without sequence similarity.
Collapse
Affiliation(s)
- L Vernis
- Laboratoire de Génétique Moléculaire et Cellulaire, Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique, 78850 Thiverval-Grignon, France.
| | | | | | | | | | | |
Collapse
|
34
|
Hurst ST, Rivier DH. Identification of a compound origin of replication at the HMR-E locus in Saccharomyces cerevisiae. J Biol Chem 1999; 274:4155-9. [PMID: 9933610 DOI: 10.1074/jbc.274.7.4155] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic chromosomal origins of replication are best defined in Saccharomyces cerevisiae. Previous analysis of yeast origins suggests that they are relatively simple structures comprised of three or four small DNA sequence elements contained within approximately 100-200-base pair regions (Gilbert, D. M. (1998) Curr. Opin. Genet. Dev. 8, 194-199). In contrast, the sequence elements that may comprise origins in multicellular eukaryotes are largely unknown. The yeast HMR-E region is both a chromosomal origin of replication and a silencer that represses transcription of adjacent genes through a position effect. The analysis presented here indicated that HMR-E had a novel DNA structure that was more complex than defined for other yeast origins, and thus revealed that there is variation in the structural complexity of yeast origins. In contrast to "simple" yeast origins, the origin at HMR-E consisted of at least three independent subregions that had the capacity to initiate replication. We have termed HMR-E a compound origin to reflect its structural complexity. Furthermore, only one origin within the compound origin was a silencer.
Collapse
Affiliation(s)
- S T Hurst
- Department of Cell and Structural Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
35
|
Cohen SM, Cobb ER, Cordeiro-Stone M, Kaufman DG. Identification of chromosomal bands replicating early in the S phase of normal human fibroblasts. Exp Cell Res 1998; 245:321-9. [PMID: 9851873 DOI: 10.1006/excr.1998.4258] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Normal human fibroblasts (NHF1) were released from confluence arrest (G0) and replated in medium containing bromodeoxyuridine (BrdU) and aphidicolin. Despite severe reduction in the rate of DNA synthesis by aphidicolin, cells reentering the cell cycle incorporated BrdU at regions of the human genome that replicated very early in S phase. After removal of aphidicolin and BrdU from the tissue culture medium, cells were collected in mitosis. Q-banding with 4', 6-diamidino-2-phenylindole/actinomycin D was used to identify metaphase chromosomes. A monoclonal anti-BrdU antibody and a fluorescein isothiocyanate (FITC)-conjugated goat anti-mouse antibody were used to identify the BrdU-labeled sites. The criterion for scoring DNA replication sites was the detection of FITC fluorescence at homologous regions of both sister chromatids. Early replicating regions mapped within R-bands, but not all R-bands incorporated BrdU. Chromosomal bands 1p36.1, 8q24.1, 12q13, 15q15, 15q22, and 22q13 were labeled in 53% or more of the copies of these chromosomes in the data set, suggesting that these sites replicated very early in S phase. Chromosomal band 15q22 was the most frequently labeled site (64%), which indicates that it contains some of the earliest replicating sequences in normal human fibroblasts.
Collapse
Affiliation(s)
- S M Cohen
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7525, USA
| | | | | | | |
Collapse
|
36
|
Abstract
AbstractThe human β-globin gene complex spans a region of 70 kb and contains numerous sequence variants. These variant sites form a 5′ cluster (5′ β-haplotype) and a 3′ cluster (3′ β-haplotype) with strong linkage disequilibrium among the sites within each cluster, but not between the two clusters. The 9-kb region between the 5′ and 3′ clusters has been estimated to have rates of recombination that are 3 to 30 times normal, and the region has therefore been proposed as a ‘hotspot’ of recombination. We describe three families with evidence of meiotic recombination within this ‘hotspot’ of the β-globin gene cluster and in which the cross-over breakpoints have been defined at the sequence level. In one family, the recombination has occurred in the maternal chromosome within a region of 361 bp between positions −911 and −550 5′ to the β-globin gene. In the other two families, the recombination has occurred in the paternal chromosome within a region of approximately 1,100 bp between positions −542 and +568 relative to the β-globin gene cap site. Both regions occur within the 2-kb region of replication initiation (IR) in the β-globin gene domain with no overlap. The IR region contains a consensus sequence for a protein (Pur), which binds preferentially to single-stranded DNA, a role implicated in recombination events.
Collapse
|
37
|
Recombination Breakpoints in the Human β-Globin Gene Cluster. Blood 1998. [DOI: 10.1182/blood.v92.11.4415.423a07_4415_4421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human β-globin gene complex spans a region of 70 kb and contains numerous sequence variants. These variant sites form a 5′ cluster (5′ β-haplotype) and a 3′ cluster (3′ β-haplotype) with strong linkage disequilibrium among the sites within each cluster, but not between the two clusters. The 9-kb region between the 5′ and 3′ clusters has been estimated to have rates of recombination that are 3 to 30 times normal, and the region has therefore been proposed as a ‘hotspot’ of recombination. We describe three families with evidence of meiotic recombination within this ‘hotspot’ of the β-globin gene cluster and in which the cross-over breakpoints have been defined at the sequence level. In one family, the recombination has occurred in the maternal chromosome within a region of 361 bp between positions −911 and −550 5′ to the β-globin gene. In the other two families, the recombination has occurred in the paternal chromosome within a region of approximately 1,100 bp between positions −542 and +568 relative to the β-globin gene cap site. Both regions occur within the 2-kb region of replication initiation (IR) in the β-globin gene domain with no overlap. The IR region contains a consensus sequence for a protein (Pur), which binds preferentially to single-stranded DNA, a role implicated in recombination events.
Collapse
|
38
|
Trivedi A, Waltz SE, Kamath S, Leffak M. Multiple initiations in the c-myc replication origin independent of chromosomal location. DNA Cell Biol 1998; 17:885-96. [PMID: 9809750 DOI: 10.1089/dna.1998.17.885] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
At supramolecular resolution, DNA synthesis begins at preferred replication origins in the chromosomes of metazoan cells. To characterize one of these origins in detail, the initiation of replication was examined in the HeLa c-myc origin. Polymerase chain reaction (PCR) amplification of size-fractionated nascent chromosomal DNAs revealed multiple replication initiation sites over a 12-kb region spanning the c-myc origin, including the transcribed region and the 5' and 3' flanking DNA of the gene. Two of the start sites for chromosomal replication occurred inside a 2.4-kb region of the origin that exhibits autonomously replicating sequence (ARS) activity. When a plasmid containing the 2.4-kb ARS region was transfected into HeLa cells, PCR mapping of nascent plasmid DNA confirmed that the plasmid replicated semiconservatively and autonomously and that replication did not initiate at random sites but rather began at multiple sites in a limited zone overlapping the c-myc DNA insert. Within the resolution of the PCR assay, the same sites that were used in the chromosomal c-myc origin were used in the 2.4-kb ARS fragment. The locations of replication start sites determined by PCR are considered in the context of other functional and structural elements of the c-myc origin.
Collapse
Affiliation(s)
- A Trivedi
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA
| | | | | | | |
Collapse
|
39
|
Palin AH, Critcher R, Fitzgerald DJ, Anderson JN, Farr CJ. Direct cloning and analysis of DNA sequences from a region of the Chinese hamster genome associated with aphidicolin-sensitive fragility. J Cell Sci 1998; 111 ( Pt 12):1623-34. [PMID: 9601093 DOI: 10.1242/jcs.111.12.1623] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fragile sites are reproducibly expressed and chemically induced decondensations on mitotic chromosomes observed under cytological conditions. They are classified both on the basis of the frequency with which they occur (rare and common) and in terms of the chemical agent used to induce expression in tissue culture cells. Aphidicolin-sensitive common fragile sites appear to be ubiquitous in humans and other mammals and have been considered as candidates of pathological importance. Recently DNA from FRA3B, the most highly expressed constitutive fragile site in the human genome, has been cloned although as yet the cause of the underlying fragility has not been identified. In this study we describe the isolation, using a direct cloning approach, of DNA from a region of the Chinese hamster genome associated with aphidicolin-inducible fragility. Cells of a human-hamster somatic cell hybrid were transfected with a pSV2HPRT vector while exposed to aphidicolin, an inhibitor of DNA polymerases alpha, delta and epsilon. FISH analysis of stable transfectant clones revealed that the ingoing plasmid DNA had preferentially integrated into fragile site-containing chromosomal bands. Plasmid rescue was used to recover DNA sequences flanking one such integration site in the hamster genome. We demonstrate by FISH analysis of metaphase cells induced with aphidicolin that the rescued DNA is from a region of fragility on Chinese hamster chromosome 2, distal to the DHFR locus. Analysis of the DNA sequences flanking the integration site revealed the overall A+T content of the 3,725 bp region sequenced to be 63.3%, with a highly [A].[T]-rich 156 bp region (86.5%) almost adjacent to the integration site. Computational analyses have identified strong homologies to Saccharomyces cerevisiae autonomous replicating sequences (ARS), polypyrimidine tracts, scaffold attachment site consensus sequences and a 24 bp consensus sequence highly conserved in eukaryotic replication origins, all of which appear to cluster around the [A].[T]-rich sequences. This domain also possesses structural characteristics which are common to both prokaryotic and eukaryotic origins of replications, in particular an unusually straight conformation of low thermal stability flanked either side by highly bent DNA segments. Further isolation and characterisation of DNA sequences from common fragile sites will facilitate studies into the underlying nature of these enigmatic regions of the mammalian genome, leading to a greater understanding of chromatin structure.
Collapse
Affiliation(s)
- A H Palin
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | | | | | | | | |
Collapse
|
40
|
Abstract
Artificial chromosomes have been developed in the last 10 years to sustain genome mapping and, more recently, to begin initiating functional studies and some approaches to gene therapy. The use of yeast artificial chromosomes (YACs) in mapping the human X chromosome is reported as an example. The requirements which have postponed the development of human artificial chromosomes have now been relatively met, and some prospects are previewed here.
Collapse
Affiliation(s)
- D Schlessinger
- Center for Genetics in Medicine, Washington University School of Medicine, St Louis, MO, USA.
| | | |
Collapse
|
41
|
Huvos PE, Wu M, Gorovsky MA. A developmentally eliminated sequence in the flanking region of the histone H1 gene in Tetrahymena thermophila contains short repeats. J Eukaryot Microbiol 1998; 45:189-97. [PMID: 9561773 DOI: 10.1111/j.1550-7408.1998.tb04524.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Tetrahymena, as in other ciliated protozoans, a transcriptionally active, 'somatic' macronucleus develops from a transcriptionally inactive 'germline' micronucleus after conjugation. The process of development involves elimination of germline DNA segments at thousands of locations in the genome. The characterization of one of these segments in Tetrahymena thermophila is described here. This micronucleus-specific DNA has been identified by comparing the sequence of the corresponding micronuclear and macronuclear regions. The micronucleus-specific DNA is over 1 kb long, is AT-rich and has TTT direct repeats at its termini. At one end of the micronuclear sequence there is a 130 bp duplication, and at the other end there are several related repeats of a 13-mer. Short G-rich sections are found in the middle of the eliminated DNA, as well as on one side of the rearrangement junction. Short G-rich segments are also detectable in three previously described micronucleus-specific sequences. The micronuclear sequence described here is a member of a repeat family. Cross-hybridizing sequences are also detectable in some other Tetrahymena species. The distribution of cross-hybridizing sequences among related species is not consistent with the phylogenetic tree.
Collapse
Affiliation(s)
- P E Huvos
- Department of Medical Biochemistry, Southern Illinois University, Carbondale 62901, USA.
| | | | | |
Collapse
|
42
|
Pelletier R, Mah D, Landry S, Matheos D, Price GB, Zannis-Hadjopoulos M. Deletion analysis ofors12, a centromeric, early activated, mammalian origin of DNA replication. J Cell Biochem 1997. [DOI: 10.1002/(sici)1097-4644(19970701)66:1<87::aid-jcb10>3.0.co;2-a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Portes-Sentis S, Sergeant A, Gruffat H. A particular DNA structure is required for the function of a cis-acting component of the Epstein-Barr virus OriLyt origin of replication. Nucleic Acids Res 1997; 25:1347-54. [PMID: 9060428 PMCID: PMC146601 DOI: 10.1093/nar/25.7.1347] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OriLyt, thecis-acting element of Epstein-Barr virus lytic origin of replication, consists of upstream and downstream components. The upstream component plays a dual role in transcription and replication. The downstream component contains a homopurine-homopyrimidine sequence which forms an H palindrome. We show that the downstream component can adopt a triple helix structure in vitro, that the 5' border of the homopyrimidine sequence is sensitive to P1 nuclease when carried by a supercoiled plasmid and that an oligonucleotide complementary to the homopyrimidine strand is taken up by a plasmid carrying the OriLyt H palindrome. We also show that all mutations which alter the H palindrome impair both oligonucleotide uptake and OriLyt-dependent replication. Interestingly, compensatory mutations which restore an H palindrome also restore oligonucleotide uptake by the mutated plasmids and their OriLyt-dependent replication. Thus, there is a strong correlation between the inability of the OriLyt H palindrome to form a non-B-DNA structure in vitro and impairment of OriLyt-dependent replication. This suggests that the presence of a non-B-DNA structure in the OriLyt downstream component is required for OriLyt-dependent replication.
Collapse
Affiliation(s)
- S Portes-Sentis
- Laboratoire de Virologie Humaine, U412 INSERM, ENS-Lyon, 46 Allée d'Italie, F-69364 Lyon cedex 07, France
| | | | | |
Collapse
|
44
|
Greally JM, Guinness ME, McGrath J, Zemel S. Matrix-attachment regions in the mouse chromosome 7F imprinted domain. Mamm Genome 1997; 8:805-10. [PMID: 9337391 DOI: 10.1007/s003359900583] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have mapped the matrix-attachment regions (MARs) in 200 kilobases of the mouse Chromosome (Chr) 7F imprinted domain. MARs are genetic elements known to have effects in cis on methylation at nonimprinted loci. The imprinting of the Igf2 and Ins2 genes is dependent on the transcription of the downstream H19 gene. The transcription of H19 is dependent in turn on its methylation status. The cis-acting regulators of methylation at this site are not known. As MARs are potential regulators not only of methylation but also other elements of genomic imprinting, we mapped the MARs within the 200 kilobases around H19. This report describes the mapping of four MARs from this region.
Collapse
Affiliation(s)
- J M Greally
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
45
|
Sarisky RT, Hayward GS. Evidence that the UL84 gene product of human cytomegalovirus is essential for promoting oriLyt-dependent DNA replication and formation of replication compartments in cotransfection assays. J Virol 1996; 70:7398-413. [PMID: 8892858 PMCID: PMC190807 DOI: 10.1128/jvi.70.11.7398-7413.1996] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The protein products of 11 viral genomic loci cooperate in a transient cotransfection assay to mediate lytic-phase DNA replication of oriLyt, the human cytomegalovirus (HCMV) origin of replication. Six of these genes have homology with the well-characterized herpes simplex virus replication genes and encode core replication machinery proteins that are typically essential for DNA synthesis. The remaining five HCMV gene loci, initially referred to as auxiliary components, include several known immediate-early (IE) transcriptional regulatory proteins as well as genes encoding functionally uncharacterized polypeptides. Some or all of the auxiliary components may be necessary in trans to replicate the HCMV oriLyt only because they are required for efficient expression or transactivation of the native early promoters and 3' processing elements included in the genomic clones. Therefore, we reassessed the requirements for the auxiliary components by adding constitutive heterologous promoters and control signals to the coding regions and carrying out transient DpnI replication assays in cotransfected Vero cells. The results revealed that in the presence of the UL69 posttranscriptional activator and the remaining auxiliary polypeptides, UL84 was the only auxiliary component that could not be omitted to obtain oriLyt-dependent DNA replication. Nevertheless, in human diploid fibroblasts, some additional auxiliary loci as well as UL84 were critical. There was also an obligatory requirement for UL84, in cooperation with two other auxiliary factors, UL112-113 and IE2, and the core machinery, to constitute the minimal HCMV proteins necessary to direct oriLyt-dependent DNA amplification. However, the Epstein-Barr virus core replication genes could substitute for the HCMV core genes, and in these circumstances, UL84 alone directed amplification of HCMV oriLyt. Moreover, there was also an absolute requirement for UL84 along with the core and other auxiliary factors for the formation of intranuclear replication compartments as assayed by immunofluorescence in transient DNA cotransfection assays. These compartments were typical of those associated with active viral DNA replication in HCMV-infected cells, they incorporated pulse-labeled bromodeoxyuridine, and their formation was both phosphonoacetic acid sensitive and oriLyt dependent. These results demonstrate that UL84 is obligatory for both intranuclear replication compartment formation and origin-dependent DNA amplification and suggest that it is a key viral component in promoting the initiation of HCMV oriLyt-directed DNA replication.
Collapse
Affiliation(s)
- R T Sarisky
- Molecular Virology Laboratories, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | |
Collapse
|
46
|
Jurk M, Weissinger F, Lottspeich F, Schwarz U, Winnacker EL. Characterization of the single-strand-specific BPV-1 origin binding protein, SPSF I, as the HeLa Pur alpha factor. Nucleic Acids Res 1996; 24:2799-806. [PMID: 8759014 PMCID: PMC146002 DOI: 10.1093/nar/24.14.2799] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
SPSF I and II are two cellular proteins which bind specifically to single-stranded DNA. SPSF I and II binding sites are found in the minimal origin of replication of BPV-1 DNA and near the P2 promoter of the cellular c-myc gene. DNA-binding properties of the two proteins to single-stranded oligonucleotides of different lengths and sequences were quantified by determination of DNA-binding constants. The binding constant of SPSF proteins to the lower strand of the BPV-1 origin was determined to be 1.5 x 10(-10) M-1. Peptide sequences derived from purified SPSF I and II revealed the identity of at least one of the SPSF proteins with the so-called HeLa Pur alpha factor. The HeLa Pur alpha factor was identified previously by virtue of its capacity to bind to purine-rich strands of the PUR element found in initiation zones of DNA replication [Bergemann, A.D., Ma,Z.-W. and Johnson, E.M. (1992) Mol. Cell. Biol. 12, 5673-5682]. Expression of the Pur cDNA confirmed the identity of the Pur alpha protein with the 42 kDa SPSF I protein. Analysis of several Pur alpha cDNA clones revealed the existence of an extended 3'-untranslated region in all Pur mRNAs.
Collapse
Affiliation(s)
- M Jurk
- Institut für Biochemie, Ludwig-Maximilians-Universität München, Germany
| | | | | | | | | |
Collapse
|
47
|
Waltz SE, Trivedi AA, Leffak M. DNA replication initiates non-randomly at multiple sites near the c-myc gene in HeLa cells. Nucleic Acids Res 1996; 24:1887-94. [PMID: 8657570 PMCID: PMC145880 DOI: 10.1093/nar/24.10.1887] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The origin of replication of the c-myc gene in HeLa cells was previously identified at low resolution within 3.5 kb 5' to the P1 promoter, based on replication fork polarity and the location of DNA nascent strands. To define the initiation events in the c-myc origin at higher resolution the template bias of nascent DNAs in a 12 kb c-myc domain has been analyzed by hybridization to strand specific probes. Strong switches in the asymmetry of nascent strand template preference confirm that replication initiates non-randomly at multiple sites within 2.4 kb 5' to the c-myc P1 promoter, and at other sites over a region of 12 kb or more. The strongest template biases occur in the 2.4 kb region 5' of the P1 promoter, shown earlier to contain sequences which allow the autonomous semiconservative replication of c-myc plasmids. An asymmetric pyrimidine heptanucleotide consensus sequence has been identified which occurs 12 times in the c-myc origin zone, and whose polarity exactly correlates with the polarity of nascent strand synthesis.
Collapse
Affiliation(s)
- S E Waltz
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA
| | | | | |
Collapse
|
48
|
Bénard M, Lagnel C, Pallotta D, Pierron G. Mapping of a replication origin within the promoter region of two unlinked, abundantly transcribed actin genes of Physarum polycephalum. Mol Cell Biol 1996; 16:968-76. [PMID: 8622700 PMCID: PMC231079 DOI: 10.1128/mcb.16.3.968] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We analyzed the replication of two unlinked actin genes, ardB and ardC , which are abundantly transcribed in the naturally synchronous plasmodium of the slime mold Physarum polycephalum. Detection and size measurements of single-stranded nascent replication intermediates (RIs) demonstrate that these two genes are concomitantly replicated at the onset of the 3-h S phase and tightly linked to replication origins. Appearance of RIs on neutral-neutral two-dimensional gels at specific time points in early S phase and analysis of their structure confirmed these results and further established that, in both cases, an efficient, site-specific, bidirectional origin of replication is localized within the promoter region of the gene. We also determined similar elongation rates for the divergent replication forks of the ardC gene replicon. Finally, taking advantage of a restriction fragment length polymorphism, we studied allelic replicons and demonstrate similar localizations and a simultaneous firing of allelic replication origins. Computer search revealed a low level of homology between the promoters of ardB and ardC and, most notably, the absence of DNA sequences similar to the yeast autonomously replicating sequence consensus sequence in these Physarum origin regions. Our results with the ardB and ardC actin genes support the model of early replicating origins located within the promoter regions of abundantly transcribed genes in P. polycephalum.
Collapse
Affiliation(s)
- M Bénard
- Laboratoire Organisation Fonctionnelle du Noyau, Villejuif, France
| | | | | | | |
Collapse
|
49
|
Gencheva M, Anachkova B, Russev G. Mapping the sites of initiation of DNA replication in rat and human rRNA genes. J Biol Chem 1996; 271:2608-14. [PMID: 8576229 DOI: 10.1074/jbc.271.5.2608] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To study the organization of DNA replication in mammalian rRNA genes, the sites of initiation of DNA synthesis in rat and human rRNA genes were mapped by two independent techniques. In rat cells the growth of the nascent DNA chains was blocked by Trioxsalen cross-links introduced in vivo. The fraction of "restricted" nascent DNA chains labeled in vivo was isolated, and the abundance in this fraction of cloned ribosomal DNA sequences was determined by hybridization. In the experiments with human cells, the nascent DNA chains were allowed to grow unrestricted for a certain period of time and the movement of the replication forks along the rRNA genes was followed by hybridization of cloned ribosomal DNA sequences to the "unrestricted" nascent DNA fragments fractionated according to size. The results show that in both rRNA genes there are two well defined regions of initiation of DNA synthesis. The first one is located upstream of the transcription units and the second one is located at the 3'-end of the coding regions of the ribosomal DNA repeats.
Collapse
Affiliation(s)
- M Gencheva
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | |
Collapse
|
50
|
Dijkwel PA, Hamlin JL. Origins of replication and the nuclear matrix: the DHFR domain as a paradigm. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 162A:455-84. [PMID: 8575885 DOI: 10.1016/s0074-7696(08)61236-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The eukaryotic genome appears to be organized in a loopwise fashion by periodic attachment to the nuclear matrix. The proposal that a chromatin loop corresponds to a functional domain has stirred interest in the properties of the DNA sequences at the bases of these loops, the matrix-attached regions (MARs). Evidence has been presented suggesting that certain MARs act as boundary elements isolating domains from their chromosomal context. MARs have also been found in the vicinity of promoters and enhancers and they could act by displacing these cis-regulatory elements into the proper nuclear subcompartment. Attachment to the matrix might also play a role in DNA replication. A large body of evidence indicates that replication occurs on the nuclear matrix. This implies that any DNA sequence will be attached to the matrix at a certain time during the cell cycle. This transient mode of attachment contrasts with the proposed permanent attachment of origins of DNA replication with the nuclear matrix. While some data exist that support this suggestion, the current lack of understanding of the mammalian replication origin precludes definitive conclusions regarding the role of MARs in the initiation process.
Collapse
Affiliation(s)
- P A Dijkwel
- Department of Biochemistry, University of Virginia, School of Medicine, Charlottesville 22908, USA
| | | |
Collapse
|