1
|
Badia-Bringué G, Canive M, Vázquez P, Garrido JM, Fernández A, Juste RA, Jiménez JA, González-Recio O, Alonso-Hearn M. Association between High Interferon-Gamma Production in Avian Tuberculin-Stimulated Blood from Mycobacterium avium subsp. paratuberculosis-Infected Cattle and Candidate Genes Implicated in Necroptosis. Microorganisms 2023; 11:1817. [PMID: 37512987 PMCID: PMC10384200 DOI: 10.3390/microorganisms11071817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The mechanisms underlying host resistance to Mycobacterium avium subsp. paratuberculosis (MAP) infection are largely unknown. In the current study, we hypothesize that cows with an ability to produce higher levels of interferon-gamma (IFNɣ) might control MAP infection more successfully. To test this hypothesis, IFNɣ production was measured using a specific IFNɣ ELISA kit in avian purified protein derivative (aPPD)-stimulated blood samples collected from 152 Holstein cattle. DNA isolated from peripheral blood samples of the animals included in the study was genotyped with the EuroG Medium-Density Bead Chip, and the genotypes were imputed to whole-genome sequencing. A genome-wide association analysis (GWAS) revealed that high levels of IFNɣ in response to the aPPD were associated with a specific genetic profile (heritability = 0.64) and allowed the identification of 71 SNPs, 40 quantitative trait loci (QTL), and 104 candidate genes. A functional analysis using the 104 candidate genes revealed a significant enrichment of genes involved in the innate immune response and, more specifically, in necroptosis. Taken together, our results define a heritable and distinct immunogenetic profile associated with the production of high IFNɣ levels and with the capacity of the host to lyse MAP-infected macrophages by necroptosis.
Collapse
Affiliation(s)
- Gerard Badia-Bringué
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
- Doctoral Program in Molecular Biology and Biomedicine, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain
| | - María Canive
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Patricia Vázquez
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Joseba M Garrido
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Almudena Fernández
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Ramón A Juste
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | | | - Oscar González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Marta Alonso-Hearn
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| |
Collapse
|
2
|
Leslie CC. Cytosolic phospholipase A₂: physiological function and role in disease. J Lipid Res 2015; 56:1386-402. [PMID: 25838312 DOI: 10.1194/jlr.r057588] [Citation(s) in RCA: 298] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Indexed: 02/06/2023] Open
Abstract
The group IV phospholipase A2 (PLA2) family is comprised of six intracellular enzymes (GIVA, -B, -C, -D, -E, and -F) commonly referred to as cytosolic PLA2 (cPLA2)α, -β, -γ, -δ, -ε, and -ζ. They contain a Ser-Asp catalytic dyad and all except cPLA2γ have a C2 domain, but differences in their catalytic activities and subcellular localization suggest unique regulation and function. With the exception of cPLA2α, the focus of this review, little is known about the in vivo function of group IV enzymes. cPLA2α catalyzes the hydrolysis of phospholipids to arachidonic acid and lysophospholipids that are precursors of numerous bioactive lipids. The regulation of cPLA2α is complex, involving transcriptional and posttranslational processes, particularly increases in calcium and phosphorylation. cPLA2α is a highly conserved widely expressed enzyme that promotes lipid mediator production in human and rodent cells from a variety of tissues. The diverse bioactive lipids produced as a result of cPLA2α activation regulate normal physiological processes and disease pathogenesis in many organ systems, as shown using cPLA2α KO mice. However, humans recently identified with cPLA2α deficiency exhibit more pronounced effects on health than observed in mice lacking cPLA2α, indicating that much remains to be learned about this interesting enzyme.
Collapse
Affiliation(s)
- Christina C Leslie
- Department of Pediatrics, National Jewish Health, Denver, CO 80206; and Departments of Pathology and Pharmacology, University of Colorado Denver, Aurora, CO 80045
| |
Collapse
|
3
|
Matsui M, Chu Y, Zhang H, Gagnon KT, Shaikh S, Kuchimanchi S, Manoharan M, Corey DR, Janowski BA. Promoter RNA links transcriptional regulation of inflammatory pathway genes. Nucleic Acids Res 2013; 41:10086-109. [PMID: 23999091 PMCID: PMC3905862 DOI: 10.1093/nar/gkt777] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Although many long non-coding RNAs (lncRNAs) have been discovered, their function and their association with RNAi factors in the nucleus have remained obscure. Here, we identify RNA transcripts that overlap the cyclooxygenase-2 (COX-2) promoter and contain two adjacent binding sites for an endogenous miRNA, miR-589. We find that miR-589 binds the promoter RNA and activates COX-2 transcription. In addition to miR-589, fully complementary duplex RNAs that target the COX-2 promoter transcript activate COX-2 transcription. Activation by small RNA requires RNAi factors argonaute-2 (AGO2) and GW182, but does not require AGO2-mediated cleavage of the promoter RNA. Instead, the promoter RNA functions as a scaffold. Binding of AGO2 protein/small RNA complexes to the promoter RNA triggers gene activation. Gene looping allows interactions between the promoters of COX-2 and phospholipase A2 (PLA2G4A), an adjacent pro-inflammatory pathway gene that produces arachidonic acid, the substrate for COX-2 protein. miR-589 and fully complementary small RNAs regulate both COX-2 and PLA2G4A gene expression, revealing an unexpected connection between key steps of the eicosanoid signaling pathway. The work demonstrates the potential for RNA to coordinate locus-dependent assembly of related genes to form functional operons through cis-looping.
Collapse
Affiliation(s)
- Masayuki Matsui
- Department of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA and Alnylam Pharmaceuticals, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Bickford JS, Beachy DE, Newsom KJ, Barilovits SJ, Herlihy JDH, Qiu X, Walters JN, Li N, Nick HS. A distal enhancer controls cytokine-dependent human cPLA2α gene expression. J Lipid Res 2013; 54:1915-26. [PMID: 23549331 DOI: 10.1194/jlr.m037382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Specific control of group IVA cytosolic phospholipase A2 (cPLA2α or PLA2G4A) expression modulates arachidonic acid production, thus tightly regulating the downstream effects of pro- and anti-inflammatory eicosanoids. The significance of this pathway in human disease is apparent in a range of pathologies from inflammation to tumorigenesis. While much of the regulation of cPLA2α has focused on posttranslational phosphorylation of the protein, studies on transcriptional regulation of this gene have focused only on proximal promoter regions. We have identified a DNase I hypersensitive site encompassing a 5' distal enhancer element containing a highly conserved consensus AP-1 site involved in transcriptional activation of cPLA2α by interleukin (IL)-1β. Chromatin immunoprecipitation (ChIP), knockdown, knockout, and overexpression analyses have shown that c-Jun acts both in a negative and positive regulatory role. Transcriptional activation of cPLA2α occurs through the phosphorylation of c-Jun in conjunction with increased association of C/EBPβ with the distal novel enhancer. The association of C/EBPβ with the transcriptional activation complex does not require an obvious DNA binding site. These data provide new and important contributions to the understanding of cPLA2α regulation at the transcriptional level, with implications for eicosanoid metabolism, cellular signaling, and disease pathogenesis.
Collapse
Affiliation(s)
- Justin S Bickford
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Nishi M, Horii-Hayashi N, Sasagawa T, Matsunaga W. Effects of early life stress on brain activity: implications from maternal separation model in rodents. Gen Comp Endocrinol 2013; 181:306-9. [PMID: 23032077 DOI: 10.1016/j.ygcen.2012.09.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022]
Abstract
Adverse experiences in early life can affect the formation of neuronal circuits during postnatal development and exert long-lasting influences on neural function. Many studies have shown that daily repeated maternal separation (RMS), an animal model of early life stress, can modulate the hypothalamic-pituitary-adrenal axis (HPA-axis) and can affect subsequent brain function and emotional behavior during adulthood. However, the molecular basis of the long-lasting effects of early life stress on brain function has not been completely elucidated. In this mini-review, we introduce various cases of maternal separation in rodents and illustrate the alterations in HPA-axis activity by focusing on corticosterone (CORT), an end-product of the HPA-axis in rodents. We then present the characterization of the brain regions affected by various patterns of MS, including RMS and single time maternal separation (SMS) at various stages before weaning, by investigating c-Fos expression, a biological marker of neuronal activity. These CORT and c-Fos studies suggest that repeated early life stress may affect neuronal function in region- and temporal-specific manners, indicating a critical period for habituation to early life stress. Furthermore, we introduce changes in behavioral aspects and gene expression in adult mice exposed to RMS.
Collapse
Affiliation(s)
- Mayumi Nishi
- Department of Anatomy and Cell Biology, Faculty of Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | | | | | | |
Collapse
|
6
|
Tanaka K, Siddiqi NJ, Alhomida AS, Farooqui AA, Ong WY. Differential regulation of cPLA2 and iPLA2 expression in the brain. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-012-9247-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Promoter microsatellites as modulators of human gene expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 769:41-54. [PMID: 23560304 DOI: 10.1007/978-1-4614-5434-2_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microsatellites in and around genes have been shown to modulate levels of gene expression in multiple organisms, ranging from bacteria to humans. Here we will discuss promoter microsatellites known to modulate gene expression, with a few key examples related to the human brain. Many of the microsatellites we discuss are highly conserved in mammals, indicating that selection may favor their retention as "tuning knobs" of gene expression. We will also discuss the mechanisms by which microsatellites in promoters can alter gene expression as they expand and contract, with particular attention to secondary structures like Z-DNA and H-DNA. We suggest that promoter microsatellites, especially those that are highly conserved, may be an important source of human phenotypic variation.
Collapse
|
8
|
Cytosolic phospholipase A2 group IVA is overexpressed in patients with persistent asthma and regulated by the promoter microsatellites. J Allergy Clin Immunol 2010; 125:1393-5. [DOI: 10.1016/j.jaci.2010.02.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 01/13/2010] [Accepted: 02/17/2010] [Indexed: 11/22/2022]
|
9
|
Guo C, Li J, Myatt L, Zhu X, Sun K. Induction of Galphas contributes to the paradoxical stimulation of cytosolic phospholipase A2alpha expression by cortisol in human amnion fibroblasts. Mol Endocrinol 2010; 24:1052-61. [PMID: 20203101 DOI: 10.1210/me.2009-0488] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cytosolic phospholipase A (cPLA(2alpha)) catalyzes the formation of arachidonic acid in prostaglandin synthesis. In contrast to the well-described down-regulation of cPLA(2alpha), up-regulation of cPLA(2alpha) by glucocorticoids has been reported in human amnion fibroblasts, which may play a key role in parturition. The mechanisms underlying this paradoxical induction of cPLA(2alpha) by glucocorticoids remain largely unknown. Using cultured human amnion fibroblasts, we found that the induction of cPLA(2alpha) by cortisol required ongoing transcription and synthesis of at least one other protein. The induction of cPLA(2alpha) by cortisol was abolished by mutagenesis of a glucocorticoid response element (GRE) in the promoter. The same GRE was found mediating the classical inhibition of cPLA(2alpha) expression by cortisol in human fetal lung fibroblasts (HFL-1). Cortisol increased Galpha(s) expression in amnion fibroblasts but not in HFL-1 cells. Inhibition of Galpha(s) with NF449 attenuated the phosphorylation of cAMP response element-binding protein-1 (CREB-1) and the induction of cPLA(2alpha) by cortisol in amnion fibroblasts. Both glucocorticoid receptor (GR) and CREB-1 were found bound to the GRE upon cortisol stimulation of amnion fibroblasts. The induction of cPLA(2alpha) by cortisol was blocked by GR antagonist RU486 or protein kinase A inhibitor H89 or dominant-negative CREB-1. In conclusion, cortisol activates the cAMP/protein kinase A/CREB-1 pathway via Galpha(s) induction, and the phosphorylated CREB-1 interacts with GR at the GRE to promote cPLA(2alpha) expression in amnion fibroblasts.
Collapse
Affiliation(s)
- Chunming Guo
- School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | | | | | | | | |
Collapse
|
10
|
Qin Z, Konaniah ES, Neltner B, Nemenoff RA, Hui DY, Weintraub NL. Participation of ATP7A in macrophage mediated oxidation of LDL. J Lipid Res 2009; 51:1471-7. [PMID: 19965596 DOI: 10.1194/jlr.m003426] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
ATP7A primarily functions to egress copper from cells, thereby supplying this cofactor to secreted copper-accepting enzymes. This ATPase has attracted significant attention since the discovery of its mutation leading to human Menkes disease and the demonstration of its distribution in various tissues. Recently, we reported that ATP7A is expressed in the human vasculature. In the present study, we investigated the cellular expression of ATP7A in atherosclerotic lesions of LDL receptor (-/-) mice. Subsequently, we examined the role of ATP7A in regulating the oxidation of LDL in a macrophage cell model. We observed that ATP7A is expressed in atherosclerotic murine aorta and colocalizes with macrophages. To investigate the function of ATP7A, we downregulated ATP7A expression in THP-1 derived macrophages using small interfering RNA (siRNA). ATP7A downregulation attenuated cell-mediated oxidation of LDL. Moreover, downregulation of ATP7A resulted in decreased expression and enzymatic activity of cytosolic phospholipase A(2) alpha (cPLA(2)alpha), a key intracellular enzyme involved in cell-mediated LDL oxidation. In addition, cPLA(2)alpha promoter activity was decreased after downregulation of ATP7A, suggesting that ATP7A transcriptionally regulates cPLA(2)alpha expression. Finally, cPLA(2)alpha overexpression increased LDL oxidation, which was blocked by coadministration of ATP7A siRNA oligonucleotides. These findings suggest a novel mechanism linking ATP7A to cPLA(2)alpha and LDL oxidation, suggesting that this copper transporter could play a previously unrecognized role in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Zhenyu Qin
- Division of Cardiovascular Diseases, Genome Research Institute, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Kharrat N, Al'fadhli S, RebaÏ A. Screening and Validation of Dinucleotide Repeats in Intron 1 of the Human EGFR Gene and its Paralog in the HER2 Gene. J Recept Signal Transduct Res 2008; 28:475-83. [DOI: 10.1080/10799890802439958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
Godkin JD, Roberts MP, Elgayyar M, Guan W, Tithof PK. Phospholipase A2 regulation of bovine endometrial (BEND) cell prostaglandin production. Reprod Biol Endocrinol 2008; 6:44. [PMID: 18811942 PMCID: PMC2563010 DOI: 10.1186/1477-7827-6-44] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 09/23/2008] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Prostaglandins (PG), produced by the uterine endometrium, are key regulators of several reproductive events, including estrous cyclicity, implantation, pregnancy maintenance and parturition. Phospholipase A2 (PLA2) catalyzes the release of arachidonic acid from membrane phospholipids, the rate-limiting step in PG biosynthesis. The bovine endometrial (BEND) cell line has served as a model system for investigating regulation of signaling mechanisms involved in uterine PG production but information concerning the specific PLA2 enzymes involved and their role in regulation of this process is limited. The objectives of this investigation were to evaluate the expression and activities of calcium-dependent group IVA (PLA2G4A) and calcium-independent group VI (PLA2G6) enzymes in the regulation of BEND cell PG production. METHODS Cells were grown to near-confluence and treated with phorbol 12, 13 dibutyrate (PDBu), interferon-tau (IFNT), the PLA2G4A inhibitor pyrrolidine-1 (PYR-1), the PLA2G6 inhibitor bromoenol lactone (BEL) and combinations of each. Concentrations of PGF2alpha and PGE2 released into the medium were determined. Western blot analysis was performed on cellular protein to determine effects of treatment on expression of PLA2G4A, PLA2G6 and PLA2G4C. PLA2 assays were performed on intact cells by measuring arachidonic acid and linoleic acid release and group-specific PLA2 activity assays were performed on cell lysates. RESULTS BEND cells produced about 10-fold more PGE2 than PGF2alpha under resting conditions. Production of both PGs increased significantly in response to PDBu-stimulation. PYR-1 significantly diminished production of both PGs by resting cells and abolished the stimulatory effect of PDBu. BEL stimulated production of both PGs. IFNT reduced both PGE2 and PGF2alpha production by resting cells and diminished PDBu stimulation of PG production. Conversely, IFNT did not significantly reduce BEL stimulation of PG production. Cellular expression of PLA2G4A was enhanced by PDBu and this response was diminished by IFNT. Expression of PLA2G6 was not observed to be affected by treatments and no PLA2G4C expression was observed. Arachidonic acid release from intact cells was significantly increased by PDBu and this effect was attenuated by PYR-1 but not by BEL. Release of linoleic acid from intact cells was stimulated by PDBu and inhibited by BEL but not PYR-1. Group specific PLA2-activity assays demonstrated both PLA2G4A and PLA2G6 activity. CONCLUSION Results from this study demonstrate that PGE2 and PGF2-alpha production by BEND cells is mediated by the activity and expression of PLA2G4A. Interferon-tau treatment diminished expression of PLA2G4A and PG production. BEND cells were shown to express PLA2G6 but, unlike primary or early passage luminal bovine endometrial cells, stimulation of PLA2G6 activity was not associated with increased PG production.
Collapse
Affiliation(s)
- James D Godkin
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - Mary P Roberts
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - Mona Elgayyar
- The University of Tennessee College of Veterinary Medicine, Department of Pathology, Knoxville, TN, USA
| | - Wei Guan
- The University of Tennessee College of Veterinary Medicine, Department of Pathology, Knoxville, TN, USA
| | - Patricia K Tithof
- The University of Tennessee College of Veterinary Medicine, Department of Pathology, Knoxville, TN, USA
| |
Collapse
|
13
|
Molecules in focus: cytosolic phospholipase A2-alpha. Int J Biochem Cell Biol 2008; 41:994-7. [PMID: 18761105 DOI: 10.1016/j.biocel.2008.07.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/16/2008] [Accepted: 07/17/2008] [Indexed: 11/21/2022]
Abstract
Cytosolic phospholipase A(2)-alpha (cPLA(2)-alpha) cleaves its preferred substrate, arachidonic acid, at the sn-2 position of membrane glycerophospholipids. Stimulation of cells with agents that mobilize intracellular calcium and/or promote the phosphorylation of cPLA(2)-alpha leads to (i) translocation of the enzyme from cytosol to endoplasmic reticulum, Golgi apparatus and perinuclear membranes-where it associates with the arachidonic acid in close proximity to downstream eicosanoid-producing enzymes; and (ii) the change in configuration induced by phosphorylation increases the phospholipid binding affinity and arachidonic acid release. As a mediator of growth factors, cytokines, chemokines, and hormones that modulate survival and growth in various cell types, cPLA(2)-alpha has attracted considerable attention as a potential therapeutic target in control of inflammation and cancer. The importance of the enzyme may have been underestimated by the relatively normal phenotype in the enzyme knockout animals. A clear phenotype has emerged when these knockout animals are used as models of various diseases.
Collapse
|
14
|
Tsou JH, Chang KY, Wang WC, Tseng JT, Su WC, Hung LY, Chang WC, Chen BK. Nucleolin regulates c-Jun/Sp1-dependent transcriptional activation of cPLA2alpha in phorbol ester-treated non-small cell lung cancer A549 cells. Nucleic Acids Res 2008; 36:217-27. [PMID: 18025046 PMCID: PMC2248756 DOI: 10.1093/nar/gkm1027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 10/16/2007] [Accepted: 10/29/2007] [Indexed: 01/01/2023] Open
Abstract
The expression of cPLA2 is critical for transformed growth of non-small cell lung cancer (NSCLC). It is known that phorbol 12-myristate 13-acetate (PMA)-activated signal transduction pathway is thought to be involved in the oncogene action in NSCLC and enzymatic activation of cPLA2. However, the transcriptional regulation of cPLA2alpha in PMA-activated NSCLC is not clear. In this study, we found that PMA induced the mRNA level and protein expression of cPLA2alpha. In addition, two Sp1-binding sites of cPLA2alpha promoter were required for response to PMA and c-Jun overexpression. Small interfering RNA (siRNA) of c-Jun and nucleolin inhibited PMA induced the promoter activity and protein expression of cPLA2alpha. Furthermore, PMA stimulated the formation of c-Jun/Sp1 and c-Jun/nucleolin complexes as well as the binding of these transcription factor complexes to the cPLA2alpha promoter. Although Sp1-binding sites were required for the bindings of Sp1 and nucleolin to the promoter, the binding of nucleolin or Sp1 to the promoter was independent of each other. Our results revealed that c-Jun/nucleolin and c-Jun/Sp1 complexes play an important role in PMA-regulated cPLA2alpha gene expression. It is likely that nucleolin binding at place of Sp1 on gene promoter could also mediate the regulation of c-Jun/Sp1-activated genes.
Collapse
Affiliation(s)
- Jen-Hui Tsou
- Department of Pharmacology, Department of Internal Medicine, College of Medicine, Center for Gene Regulation and Signal Transduction and Institute of Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Kwang-Yu Chang
- Department of Pharmacology, Department of Internal Medicine, College of Medicine, Center for Gene Regulation and Signal Transduction and Institute of Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Chiao Wang
- Department of Pharmacology, Department of Internal Medicine, College of Medicine, Center for Gene Regulation and Signal Transduction and Institute of Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Joseph T. Tseng
- Department of Pharmacology, Department of Internal Medicine, College of Medicine, Center for Gene Regulation and Signal Transduction and Institute of Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Wu-Chou Su
- Department of Pharmacology, Department of Internal Medicine, College of Medicine, Center for Gene Regulation and Signal Transduction and Institute of Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Liang-Yi Hung
- Department of Pharmacology, Department of Internal Medicine, College of Medicine, Center for Gene Regulation and Signal Transduction and Institute of Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Wen-Chang Chang
- Department of Pharmacology, Department of Internal Medicine, College of Medicine, Center for Gene Regulation and Signal Transduction and Institute of Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Ben-Kuen Chen
- Department of Pharmacology, Department of Internal Medicine, College of Medicine, Center for Gene Regulation and Signal Transduction and Institute of Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
15
|
Nolan LS, Jagutpal SS, Cadge BA, Woo P, Dawson SJ. Identification and functional analysis of common sequence variants in the DFNA15 gene, Brn-3c. Gene 2007; 400:89-97. [PMID: 17611044 DOI: 10.1016/j.gene.2007.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 03/29/2007] [Accepted: 05/31/2007] [Indexed: 10/23/2022]
Abstract
A rare mutation in Brn-3c (Brn3.1, POU4F3) underlies adult onset hearing loss (DFNA15) and targeted deletion of this gene in mice leads to complete deafness due to loss of sensory hair cells from the cochlea. Therefore the aim of our study was to identify and characterise common functional variation in the Brn-3c gene, which could potentially be a genetic risk for more common forms of adult onset hearing loss. We identified seven sequence variants at the Brn-3c locus. One of these, a novel, common variant at position -3432 was extremely complex consisting of a variable guanine repeat that also exhibited single nucleotide substitutions within the poly-guanine repeat: -3432 poly-G polymorphism. In-vitro studies show that this polymorphism modifies binding affinity for the SP1 transcription factor. Furthermore, reporter constructs of the Brn-3c 5'-flanking region containing different -3432 poly-G alleles show altered transcriptional activity when endogenous SP1 levels are reduced using a dominant negative approach. Results also indicate that this effect is influenced by the length of a novel polymorphic (GT)(n) repeat at position -566 in the Brn-3c 5'-flanking region. In summary, our data show there are common sequence variants in the Brn-3c 5'-flanking region that affect transcriptional regulation in vitro; these variants are candidates for large-scale population based association analysis as they could potentially affect the genetic risk for more common types of adult onset hearing loss.
Collapse
Affiliation(s)
- Lisa S Nolan
- Centre for Auditory Research, Ear Institute, University College London, 332 Gray's Inn Road, London, WC1X 8EE, United Kingdom
| | | | | | | | | |
Collapse
|
16
|
Guo C, Yang Z, Li W, Zhu P, Myatt L, Sun K. Paradox of glucocorticoid-induced cytosolic phospholipase A2 group IVA messenger RNA expression involves glucocorticoid receptor binding to the promoter in human amnion fibroblasts. Biol Reprod 2007; 78:193-7. [PMID: 17901074 DOI: 10.1095/biolreprod.107.063990] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Glucocorticoids (GCs) are well-known anti-inflammatory drugs inhibiting prostaglandin production. Paradoxically, GCs are reported to stimulate cytosolic phosphoplipase A2 group IVA (PLA2G4A) and prostaglandin-endoperoxide synthase 2 (PTGS2) expression in human amnion fibroblasts. This study was designed to examine the molecular mechanisms underlying glucocorticoid-induced PLA2G4A expression in human amnion fibroblasts. Our data showed that cortisol (0.01 approximately 1 microM) increased PLA2G4A mRNA level in a dose-dependent manner in human amnion fibroblasts, which was blocked by glucocorticoid receptor antagonist RU486 (1 microM) as well as by the mRNA transcription inhibitor 5,6-dichlorobenzimidazole riboside (DRB; 75 microM). Concurrently, cortisol (0.01 approximately 1 microM) decreased rather than increased proinflammatory cytokine mRNA levels, including interleukin 1 beta (IL1B), interleukin 6 (IL6), and tumor necrosis factor alpha (TNF), in a dose-dependent manner in human amnion fibroblasts. Chromatin immunoprecipitation assay revealed that glucocorticoid receptor was bound to PLA2G4A promoter in human amnion fibroblasts upon cortisol stimulation. This was confirmed by electrophoretic mobility shift assay showing that nuclear protein extracted from human amnion fibroblasts upon cortisol stimulation could bind the synthesized oligonucleotide sequence corresponding to PLA2G4A promoter region from -95 bp to -65 bp bearing the putative glucocorticoid response element. This binding was super shifted by glucocorticoid receptor antibody. In conclusion, we demonstrated in this study that cortisol increased PLA2G4A mRNA level via GR-dependent ongoing transcription in human amnion fibroblasts by activating the binding of GR to PLA2G4A promoter directly, and this effect appeared unlikely to be secondary to the effect of cortisol on the expression of proinflammatory cytokines in human amnion fibroblasts.
Collapse
Affiliation(s)
- Chunming Guo
- School of Life Sciences, Fudan University, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
17
|
Marcet-Palacios M, Ulanova M, Duta F, Puttagunta L, Munoz S, Gibbings D, Radomski M, Cameron L, Mayers I, Befus AD. The transcription factor Wilms tumor 1 regulates matrix metalloproteinase-9 through a nitric oxide-mediated pathway. THE JOURNAL OF IMMUNOLOGY 2007; 179:256-65. [PMID: 17579045 DOI: 10.4049/jimmunol.179.1.256] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) is released by human lung epithelial cells (LEC) in conditions such as asthma and chronic obstructive pulmonary disease and expression of MMP-9 correlates with the severity of these disorders. MMP-9 production has been reported to be regulated by a NO/soluble guanylate cyclase-dependent pathway. Transcriptional regulation of this enzyme, however, is poorly understood. Using phylogenetic analysis, we observed a highly conserved sequence in the 5' flanking region of the MMP-9 gene containing binding sites for the transcription factor Wilms tumor 1 (WT1). We confirmed the presence of WT1 in human LEC and that treatment with TNF or a mixture containing LPS, PMA, and IFN-gamma resulted in translocation of WT1 from the nucleus to the cytosol. This translocation coincided with increased expression of MMP-9 and could be blocked by inhibitors of the NO/soluble guanylate cyclase pathway. WT1 knockdown using small-interfering RNA up-regulated MMP-9 expression in the presence of the NO synthase inhibitor 1400W. Using either WT1 pulldown with probes for the conserved region of the MMP-9 promoter or chromatin immunoprecipitation, we confirmed WT1 binding to the MMP-9 promoter. These findings indicate WT1 is a repressor of MMP-9, regulated by a NO-mediated pathway in human LEC. To our knowledge, this is the first report of WT1 regulating MMP-9 expression. Further study is needed to determine whether clinical conditions exhibiting tissue remodeling, such as asthma and/or chronic obstructive pulmonary disease, demonstrate reduced levels of WT1 or its repressor activity.
Collapse
Affiliation(s)
- Marcelo Marcet-Palacios
- Glaxo-Heritage Asthma Research Laboraotries, Heritage Medical Research Center, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sokolowska M, Borowiec M, Ptasinska A, Cieslak M, Shelhamer JH, Kowalski ML, Pawliczak R. 85-kDa cytosolic phospholipase A2 group IValpha gene promoter polymorphisms in patients with severe asthma: a gene expression and case-control study. Clin Exp Immunol 2007; 150:124-31. [PMID: 17672871 PMCID: PMC2219277 DOI: 10.1111/j.1365-2249.2007.03459.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cytosolic phospholipase A(2) (cPLA(2)) group IValpha is a critical enzyme involved in the liberation of arachidonic acid from cellular membranes. cPLA(2)(-/-) mice have reduced allergen-induced bronchoconstriction and bronchial hyperresponsiveness. The goal of this study was to investigate polymorphisms of the (CA)(n) and (T)(n) microsatellites and surrounding regions in the cPLA(2)alpha gene promoter. We analysed the cPLA(2) promoter regions containing (CA)(n) and (T)(n) repeats in 87 patients with severe asthma and in 48 control subjects by bidirectional sequencing. Functional studies were performed utilizing reporter genes derived from subjects with varying numbers of these repeats, and on constructs with a series of deletions. We found that the (CA)(n) and (T)(n) regions are polymorphic and that constructs with CA or T repeats or CA and T repeats deleted revealed, respectively, a 41.8 +/- 7%, 22.3 +/- 5% and 100 +/- 20% increase in reporter gene activity. A lower number of CA or T repeats caused higher cPLA(2) promoter luciferase activity. The group of shorter alleles of the (CA)(n) microsatellite region (n = 12-18) (P(cor) = 0.00006), and the group of shorter alleles of (T)(n) repeats region (n = 17-38) (P(cor) = 0.0039) occurred significantly more often in patients with severe asthma. We also found novel SNPs in positions -292 C > G, -185 A > C, -180 T > C and -165 A > C. Two of them were associated with the severe asthma phenotype: -180T allele (P(cor) = 0.03996) and -185 A allele (P(cor) = 0.03966). These results demonstrate that (CA)(n) and (T)(n) repeats may have an influence on cPLA(2) transcription which might play a role in severe asthma pathogenesis.
Collapse
Affiliation(s)
- M Sokolowska
- Department of Immunopathology, Medical University of Lodz, Poland
| | | | | | | | | | | | | |
Collapse
|
19
|
Lovgren AK, Kovarova M, Koller BH. cPGES/p23 is required for glucocorticoid receptor function and embryonic growth but not prostaglandin E2 synthesis. Mol Cell Biol 2007; 27:4416-30. [PMID: 17438133 PMCID: PMC1900037 DOI: 10.1128/mcb.02314-06] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 01/10/2007] [Accepted: 03/24/2007] [Indexed: 11/20/2022] Open
Abstract
A number of studies have identified cytosolic prostaglandin E(2) synthase (cPGES)/p23 as a cytoplasmic protein capable of metabolism of prostaglandin E(2) (PGE(2)) from the cyclooxygenase metabolite prostaglandin endoperoxide (PGH(2)). However, this protein has also been implicated in a number of other pathways, including stabilization of the glucocorticoid receptor (GR) complex. To define the importance of the functions assigned to this protein, mice lacking detectible cPGES/p23 expression were generated. cPGES/p23(-/-) pups die during the perinatal period and display retarded lung development reminiscent of the phenotype of GR-deficient neonates. Furthermore, GR-sensitive gluconeogenic enzymes are not induced in the prenatal period. However, unlike GR-deficient embryos, cPGES/p23(-/-) embryos are small and a proliferation defect is observed in cPGES/p23(-/-) fibroblasts. Analysis of arachidonic acid metabolites in embryonic tissues and primary fibroblasts failed to support a function for this protein in PGE(2) biosynthesis. Thus, while the growth retardation of the cPGES/p23(-/-) pups and decreased proliferation of primary fibroblasts identify functions for this protein in addition to GR stabilization, it is unlikely that these functions include metabolism of PGH(2) to PGE(2).
Collapse
Affiliation(s)
- Alysia Kern Lovgren
- University of North Carolina, Department of Genetics, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
20
|
Lindbom J, Ljungman AG, Tagesson C. Interferon gamma-induced gene expression of the novel secretory phospholipase A2 type IID in human monocyte-derived macrophages is inhibited by lipopolysaccharide. Inflammation 2007; 29:108-117. [PMID: 16897354 DOI: 10.1007/s10753-006-9007-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phospholipase A(2) (PLA(2)) is a superfamily of enzymes that may play a major role in airways inflammation. We investigated the effect of interferon-gamma (IFN-gamma) on the gene expression of 19 different PLA(2) types in human monocyte-derived macrophages and nasal epithelial cells (RPMI 2650). The cells were stimulated with IFN-gamma for different lengths of time (up to 48 h), and the mRNA levels of the different PLA(2) types were determined by reverse transcriptase-PCR (RT-PCR) and normalized to those of the house-keeping gene, GAPDH. It appeared that IFN-gamma clearly increased the expression of secretory PLA(2) IID (but not IIA) in macrophages, while both PLA(2) IID and IIA were upregulated in RPMI 2650 cells. Moreover, after 18 h, the mRNA levels of cytosolic PLA(2) IVA were 2-3 times higher in IFN-gamma-stimulated macrophages than controls, while there was no such effect of IFN-gamma in RPMI 2650 cells. Lipopolysaccharide (LPS) augmented the increased gene expression of PLA(2) IVA but decreased both the basal and the IFN-gamma-induced PLA(2) IID mRNA expression in macrophages (but not in RPMI 2650 cells). The NF-kappaB inhibitor Pyrrolidine dithiocarbamate (PDTC) and the phoshatidylinositol 3-kinase (PI3K) inhibitor wortmannin were employed to get an insight into the mechanism behind these observations. Incubation of macrophages with PDTC had no effect on the LPS impairment of PLA(2) IID gene expression, but inhibited the LPS mediated activation of PLA(2) IVA. No significant effect was noted of PDTC on IFN-gamma stimulation, while PI3K had no effect at all on any of the stimuli used. Furthermore, LPS (but not IFN-gamma) increased the mRNA levels of the nuclear factor (NF)-kappaB inhibitors alpha and xi in macrophages, but not in RPMI 2650 cells. These findings indicate that (a) the gene expression of secretory types PLA(2) IID and IIA in response to IFN-gamma is much dependent on cell type, and (b) the regulation of PLA(2) type IID in human macrophages is clearly different from that of PLA(2) type IVA. (c) PLA(2) IVA is probably under control of both NF-kappaB and IFN-gamma-responsive elements (GRE) or IFN-gamma-activating sites (GAS). The possibility that PLA(2) IID is involved in cytokine-mediated inflammation in the nasal mucosa is inferred, as is the potential role of PLA(2) IID in the host defense against LPS-containing bacteria.
Collapse
Affiliation(s)
- John Lindbom
- Department of Molecular and Clinical Medicine, Division of Occupational and Environmental Medicine, Faculty of Health Sciences, University of Linköping, S-581 85 Linköping, Sweden.
| | | | | |
Collapse
|
21
|
Hsieh HL, Wu CY, Hwang TL, Yen MH, Parker P, Yang CM. BK-induced cytosolic phospholipase A2 expression via sequential PKC-delta, p42/p44 MAPK, and NF-kappaB activation in rat brain astrocytes. J Cell Physiol 2006; 206:246-54. [PMID: 15991247 DOI: 10.1002/jcp.20457] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bradykinin (BK), an inflammatory mediator, has been shown to induce cytosolic phospholipase A2 (cPLA2) expression implicating in inflammatory responses in various cell types. However, the detailed mechanisms underlying BK-induced cPLA2 expression in astrocytes remain unclear. RT-PCR and Western blotting analysis showed that BK induced the expression of cPLA2 mRNA and protein, which was inhibited by Hoe140, suggesting the involvement of B2 BK receptors, confirmed by immunofluorescence staining using anti-B2 BK receptor antibody. BK-induced cPLA2 expression and phosphorylation of p42/p44 MAPK was attenuated by PD98059, indicating the involvement of MEK1/2-p42/p44 MAPK in these responses. BK-induced cPLA2 expression might be due to the translocation of NF-kappaB into nucleus which was inhibited by Hoe140, helenalin, and PD98059, implying the involvement of NF-kappaB. Moreover, BK-induced cPLA2 expression was attenuated by rottlerin, suggesting that PKC-delta might be involved in these responses. This hypothesis was supported by the transfection with a dominant negative plasmid of PKC-delta significantly attenuated BK-induced response. In addition, BK-stimulated translocation of PKC-delta from cytosol to membrane fraction was inhibited by rottlerin but not by PD98059, indicating that PKC-delta might be an upstream component of p42/p44 MAPK. Accordingly, BK-induced phosphorylation of p42/p44 MAPK was attenuated by rottlerin but not by helenalin. These results suggest that in RBA-1 cells, BK-induced cPLA2 expression was sequentially mediated through activation of PKC-delta, p42/p44 MAPK, and NF-kappaB. Understanding the regulation of cPLA2 expression induced by BK in astrocytes might provide a new therapeutic strategy of brain injury and inflammatory diseases.
Collapse
Affiliation(s)
- Hsi-Lung Hsieh
- Department of Physiology and Pharmacology, Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | | | | | |
Collapse
|
22
|
D'Orazi G, Sciulli MG, Di Stefano V, Riccioni S, Frattini M, Falcioni R, Bertario L, Sacchi A, Patrignani P. Homeodomain-Interacting Protein Kinase-2 Restrains Cytosolic Phospholipase A2–Dependent Prostaglandin E2Generation in Human Colorectal Cancer Cells. Clin Cancer Res 2006; 12:735-41. [PMID: 16467083 DOI: 10.1158/1078-0432.ccr-05-1557] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Homeodomain-interacting protein kinase-2 (HIPK2), a corepressor for homeodomain transcription factors, is a multifunctional kinase whose role in tumor cell survival is not completely clarified. We addressed whether HIPK2 restrains colon tumorigenesis by turning off cytosolic phospholipase A2 (cPLA2)-dependent prostaglandin E2 (PGE2) generation in the light of overwhelming evidence suggesting the contribution of this prostanoid in a variety of cancers. EXPERIMENTAL DESIGN In the human colorectal cancer cell line, RKO, we studied the effect of RNA interference for HIPK2 (HIPK2i) on prostanoid biosynthesis, both in the absence and in the presence of the cPLA2 inhibitor arachidonyl trifluoromethyl ketone. We evaluated the role of HIPK2 in the cPLA2 gene regulation by reverse transcriptase-PCR, transcriptional activity, and chromatin immunoprecipitation analyses. The involvement of HIPK2 in tumorigenicity in vivo was studied by tumor growth of HIPK2i cells in nude mice. We compared the gene expression of HIPK2 and cPLA2 in human colorectal cancer specimens by reverse transcriptase-PCR. RESULTS HIPK2 silencing was associated with rousing PGE2 biosynthesis that was profoundly suppressed by the cPLA2 inhibitor. HIPK2 overexpression, along with histone deacetylase-1, inhibited the cPLA2-luc promoter that is strongly acetylated in HIPK2i cells. The tumors derived from HIPK2i cells injected in nude mice showed noticeably increased growth compared with parental cells. HIPK2 mRNA levels were significantly higher in colorectal cancers of patients with familial adenomatous polyposis, which showed undetectable cPLA2 levels compared with sporadic colorectal cancer expressing cPLA2. CONCLUSIONS Our findings reveal the novel mechanism of HIPK2 to restrain progression of human colon tumorigenesis, at least in part, by turning off cPLA2-dependent PGE2 generation.
Collapse
Affiliation(s)
- Gabriella D'Orazi
- Department of Oncology and Neurosciences, Centre of Excellence on Aging, University G. d'Annunzio, Gabriele D'Annunzio University Foundation, Chieti, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sun K, Qu X, Gao L, Myatt L. Dexamethasone Fails to Inhibit the Induction of Cytosolic Phospholipase A2 Expression by Interleukin-1β in Cultured Primary Human Amnion Fibroblasts. Placenta 2006; 27:164-70. [PMID: 16338461 DOI: 10.1016/j.placenta.2005.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 03/07/2005] [Accepted: 03/07/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To investigate the interaction of dexamethasone and interleukin-1beta (IL-1beta) on the expression of cytosolic phospholipase A(2) (cPLA(2)), the enzyme catalyzing the first reaction in the formation of prostaglandins, in cultured primary human amnion fibroblasts. DESIGN AND METHODS Human amnion fibroblasts were prepared from fetal amnion collected at term and were treated with dexamethasone with or without interleukin-1beta for 24h. Prostaglandin E(2) (PGE(2)) output and cPLA(2) expression in cultured amnion fibroblasts were measured with radioimmunoassay, quantitative real-time polymerase chain reaction, Western blotting and cPLA(2) promoter-driven luciferase reporter gene activity. RESULTS Both dexamethasone and IL-1beta caused a significant increase in prostaglandin E(2) output, cPLA(2) mRNA and protein expression in cultured human amnion fibroblasts. Both dexamethasone and IL-1beta stimulated cPLA(2) promoter-driven luciferase reporter gene activity. There was no obvious antagonistic or synergistic effect of combined treatment of dexamethasone and IL-1beta on PGE(2) output, cPLA(2) expression or cPLA(2) promoter-driven luciferase reporter gene activity in cultured human amnion fibroblasts. CONCLUSION The above findings suggest that paradoxically dexamethasone is a stimulator for both prostaglandin synthesis and cPLA(2) expression in human amnion fibroblasts. The interaction between dexamethasone and IL-1beta on prostaglandin synthesis and cPLA(2) expression is neither synergistic nor conventionally antagonistic.
Collapse
Affiliation(s)
- K Sun
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Second Military Medical University, 220 Handan Road, Shanghai 200433, P.R. China.
| | | | | | | |
Collapse
|
24
|
Guo Y, Jamison DC. The distribution of SNPs in human gene regulatory regions. BMC Genomics 2005; 6:140. [PMID: 16209714 PMCID: PMC1260019 DOI: 10.1186/1471-2164-6-140] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 10/06/2005] [Indexed: 11/25/2022] Open
Abstract
Background As a result of high-throughput genotyping methods, millions of human genetic variants have been reported in recent years. To efficiently identify those with significant biological functions, a practical strategy is to concentrate on variants located in important sequence regions such as gene regulatory regions. Results Analysis of the most common type of variant, single nucleotide polymorphisms (SNPs), shows that in gene promoter regions more SNPs occur in close proximity to transcriptional start sites than in regions further upstream, and a disproportionate number of those SNPs represent nucleotide transversions. Additionally, the number of SNPs found in the predicted transcription factor binding sites is higher than in non-binding site sequences. Conclusion Current information about transcription factor binding site sequence patterns may not be exhaustive, and SNPs may be actively involved in influencing gene expression by affecting the transcription factor binding sites.
Collapse
Affiliation(s)
- Yongjian Guo
- School of Computational Sciences, George Mason University, Manassas, VA 20110 USA
- Virginia Bioinformatics Institute, Bioinformatics Facility I (0477), Virginia Tech, Blacksburg, VA 24060 USA
| | - D Curtis Jamison
- School of Computational Sciences, George Mason University, Manassas, VA 20110 USA
| |
Collapse
|
25
|
Wick M, Blaine S, Van Putten V, Saavedra M, Nemenoff R. Lung Krüppel-like factor (LKLF) is a transcriptional activator of the cytosolic phospholipase A2 alpha promoter. Biochem J 2005; 387:239-46. [PMID: 15540987 PMCID: PMC1134952 DOI: 10.1042/bj20041458] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Increased expression of cPLA2 (cytosolic phospholipase A2) has been shown to be the cause of tumorigenesis of NSCLC (non-small-cell lung cancer). Our laboratory has previously demonstrated that oncogenic forms of Ras increase transcription of cPLA2 in normal lung epithelial cells and NSCLC lines through activation of the ERK (extracellular-signal-regulated kinase) and JNK (c-Jun N-terminal kinase) MAPK (mitogen-activated protein kinase) family. We have also defined a minimal region of the cPLA2 promoter that is critical for this induction. To identify potential transcription factors that bind to this region and regulate expression, a yeast one-hybrid screen was performed with a rat lung cDNA library. Multiple members of the Krüppel family were identified, with LKLF (lung Krüppel-like factor) being isolated a number of times. Overexpression of LKLF in lung epithelial cells or Drosophila SL-2 cells increased cPLA2 promoter activity. Conversely, expression of a dominant negative form of LKLF inhibited induction of cPLA2 promoter activity by oncogenic Ras in normal lung epithelial cells and NSCLC. By electrophoretic mobility-shift assay analysis, it was found that LKLF bound to a GC-rich region of the cPLA2 promoter located between -37 and -30 upstream from the transcription start site. Expression of siRNA (small interfering RNA) directed against LKLF inhibited basal expression of cPLA2 in lung epithelial cells and blocked induction by H-Ras. In NSCLC, siRNA against LKLF co-operated with siRNA against Sp1 (stimulatory protein 1) to inhibit cPLA2 promoter activity. Finally, recombinant LKLF was a substrate for ERKs. These results indicate that LKLF is an important regulator of cPLA2 expression and participates in the induction of this protein, which is critical for increased eicosanoid production associated with lung tumorigenesis.
Collapse
Affiliation(s)
- Marilee J. Wick
- Department of Medicine, University of Colorado Health Sciences Center, 4200 E. 9th Ave., Denver, CO 80262, U.S.A
| | - Stacy Blaine
- Department of Medicine, University of Colorado Health Sciences Center, 4200 E. 9th Ave., Denver, CO 80262, U.S.A
| | - Vicki Van Putten
- Department of Medicine, University of Colorado Health Sciences Center, 4200 E. 9th Ave., Denver, CO 80262, U.S.A
| | - Milene Saavedra
- Department of Medicine, University of Colorado Health Sciences Center, 4200 E. 9th Ave., Denver, CO 80262, U.S.A
| | - Raphael A. Nemenoff
- Department of Medicine, University of Colorado Health Sciences Center, 4200 E. 9th Ave., Denver, CO 80262, U.S.A
- To whom correspondence should be addressed, at Division of Renal Diseases and Hypertension, University of Colorado Health Sciences Center (email )
| |
Collapse
|
26
|
Parhamifar L, Jeppsson B, Sjölander A. Activation of cPLA 2 is required for leukotriene D 4 -induced proliferation in colon cancer cells. Carcinogenesis 2005; 26:1988-98. [PMID: 15975962 DOI: 10.1093/carcin/bgi159] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is well documented that prolonged inflammatory conditions, particularly those relating to the colon, have been shown to induce cancer. We have previously demonstrated that the pro-inflammatory mediator leukotriene D(4) (LTD(4)) induces survival and proliferation in intestinal cells and that its receptor, CysLT(1), is upregulated in human colon cancer tissue. Here we demonstrate, for the first time that in both Int 407 (a non-transformed human intestinal epithelial cell line) and Caco-2 cells (a human colorectal carcinoma cell line), cytosolic phospholipase A(2)alpha (cPLA(2)alpha) is activated and translocates to the nucleus upon LTD(4) stimulation via a calcium-dependent mechanism that involves activation of protein kinase C (PKC), and the mitogen-activated protein kinases ERK1/2 and p38. We also show with a cPLA(2)alpha promoter luciferase assay, that LTD(4) induces an increase in the transcriptional activity of cPLA(2)alpha via activation of cPLA(2)alpha and the transcription factor NFkappaB. Interestingly we demonstrate here that both the basal and the LTD(4)-induced cPLA(2)alpha activity is elevated approximately 3-fold in Caco-2 colon cancer cells compared with Int 407 cells. The difference in basal activity was confirmed in human colon tumor samples by the finding of a similar increase in cPLA(2)alpha activity when compared with normal colon tissue. A functional role of the increased cPLA(2)alpha activity in tumor cells was revealed by our findings that inhibition of this enzyme reduced both basal and LTD(4)-induced proliferation, the effects being most pronounced in Caco-2 tumor cells. The present data reveal that cPLA(2)alpha, an important intracellular signal activated by inflammatory mediators, is an important regulator of colon tumor growth.
Collapse
Affiliation(s)
- Ladan Parhamifar
- Experimental Pathology, The Department of Laboratory Medicine and Surgery, Lund University, Malmö University Hospital, Malmö, Sweden
| | | | | |
Collapse
|
27
|
Cowan MJ, Yao XL, Pawliczak R, Huang X, Logun C, Madara P, Alsaaty S, Wu T, Shelhamer JH. The role of TFIID, the initiator element and a novel 5' TFIID binding site in the transcriptional control of the TATA-less human cytosolic phospholipase A2-alpha promoter. ACTA ACUST UNITED AC 2004; 1680:145-57. [PMID: 15507318 DOI: 10.1016/j.bbaexp.2004.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 09/20/2004] [Accepted: 09/20/2004] [Indexed: 12/17/2022]
Abstract
Human cytosolic phospholipase A2-alpha (cPLA2-alpha) is a critical enzyme in the liberation of arachidonic acid (AA) from cellular membranes and the subsequent formation of prostaglandins (PGs), leukotrienes (LTs), hydroxyeicosatetraenoic acids (HETEs) and platelet activating factor in many different cell types. Much is known of the effect of posttranslational phosphorylation and calcium binding events on the enzymatic activity of cPLA2-alpha, but to date little is known about its specific transcriptional control. Through the use of reporter gene constructs and eletrophoretic mobility shift assays (EMSAs), this study determined the minimal promoter required for basal transcriptional activity of the human cPLA2-alpha promoter to include base pairs -40 through the transcription start site (TSS). In addition, it confirms the importance of an initiator (Inr) element at the TSS by deletion reporter gene analysis, and further identifies bases -3 (C) and -2 (T) as critical bases in the Inr function by mutation reporter gene analysis. Finally, this study describes a novel AAGGAG motif at -30 to -35 which is bound by TATA-box binding protein (TBP) and is critical for basal transcriptional activity.
Collapse
Affiliation(s)
- Mark J Cowan
- Division of Pulmonary and Critical Care Medicine, The University of Maryland, 10 North Greene Street, Room 3D-127, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dronadula N, Liu Z, Wang C, Cao H, Rao GN. STAT-3-dependent cytosolic phospholipase A2 expression is required for thrombin-induced vascular smooth muscle cell motility. J Biol Chem 2004; 280:3112-20. [PMID: 15548519 DOI: 10.1074/jbc.m409739200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) migration from media to intima and its multiplication in intima is a contributing factor in the pathogenesis of atherosclerosis and restenosis after angioplasty. Previously, we have demonstrated that STAT-3-dependent cytosolic phospholipase A(2) (cPLA(2)) expression is needed for VSMC motility induced by platelet-derived growth factor-BB, a receptor tyrosine kinase agonist (Neeli et al. (2005) J. Biol. Chem. 279, 46122-46128). In order to learn more about the STAT-3-cPLA(2) axis in motogenic signaling, here we have studied its role in VSMC motility in response to a G protein-coupled receptor (GPCR) agonist, thrombin. Thrombin induced VSMC motility in a dose-dependent manner with a maximum effect at 0.5 units/ml. Thrombin activated STAT-3 as measured by its tyrosine phosphorylation and translocation from the cytoplasm to the nucleus. Forced expression of a dominant negative mutant of STAT-3 reduced thrombin-induced STAT-3 tyrosine phosphorylation and its translocation from the cytoplasm to the nucleus. Thrombin stimulated STAT-3-DNA binding and reporter gene activities in VSMC, and these responses were blocked by FS3DM, a dominant negative mutant of STAT-3. FS3DM also attenuated thrombin-induced VSMC motility. Thrombin induced the expression of cPLA(2) in a time- and STAT-3-dependent manner. In addition, pharmacological inhibition of cPLA(2) blocked thrombin-induced VSMC motility. Furthermore, exogenous addition of arachidonic acid rescued thrombin-induced VSMC motility from inhibition by blockade of STAT-3 activation. Forced expression of cPLA(2) also surpassed the inhibitory effect of dominant negative STAT-3 on thrombin-induced VSMC motility. Together, these results show that thrombin-induced VSMC motility requires STAT-3-dependent induction of expression of cPLA(2).
Collapse
Affiliation(s)
- Nagadhara Dronadula
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | |
Collapse
|
29
|
Neeli I, Liu Z, Dronadula N, Ma ZA, Rao GN. An essential role of the Jak-2/STAT-3/cytosolic phospholipase A(2) axis in platelet-derived growth factor BB-induced vascular smooth muscle cell motility. J Biol Chem 2004; 279:46122-8. [PMID: 15322111 DOI: 10.1074/jbc.m406922200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Platelet-derived growth factor-BB (PDGF-BB) is a potent motogen for vascular smooth muscle cells (VSMCs). To understand its motogenic signaling events, we have studied the role of the Janus-activated kinase/signal transducers and activators of transcription (Jak/STAT) pathway and cytosolic phospholipase A(2) (cPLA(2)). PDGF-BB stimulated tyrosine phosphorylation of Jak-2 and STAT-3 in a time-dependent manner in VSMCs. In addition, AG490 and Jak-2KEpRK5, a selective pharmacological inhibitor and a dominant negative mutant, respectively, of Jak-2, attenuated PDGF-BB-induced STAT-3 tyrosine phosphorylation and its DNA binding and reporter gene activities. PDGF-BB induced VSMC motility in a dose-dependent manner with a maximum effect at 10 ng/ml. Dominant negative mutant-dependent suppression of Jak-2 and STAT-3 blocked PDGF-BB-induced VSMC motility. PDGF-BB induced the expression of cPLA(2) in a Jak-2/STAT-3-dependent manner, and pharmacological inhibitors of cPLA(2) prevented PDGFBB-induced VSMC motility. Furthermore, either exogenous addition of arachidonic acid or forced expression of cPLA(2) rescued PDGF-BB-induced VSMC motility from inhibition by blockade of Jak-2 and STAT-3 activation. Together, these results for the first time show that PDGF-BB-induced VSMC motility requires activation of the Jak-2/STAT-3/cPLA(2) signaling axis.
Collapse
Affiliation(s)
- Indira Neeli
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | |
Collapse
|
30
|
Lindstrom T, Bennett P. Transcriptional regulation of genes for enzymes of the prostaglandin biosynthetic pathway. Prostaglandins Leukot Essent Fatty Acids 2004; 70:115-35. [PMID: 14683688 DOI: 10.1016/j.plefa.2003.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Numerous studies over the years have demonstrated changes in prostaglandin (PG) levels in intrauterine tissues in association with labour, and PG administration has long been used to induce delivery. While it is now widely accepted that PGs play a major role in human parturition, the complex regulation of their levels is still being elucidated, with the focus on the transcriptional control of the enzymes responsible for the various steps in PG biosynthesis and catabolism.
Collapse
Affiliation(s)
- Tamsin Lindstrom
- Faculty of Medicine, Institute of Reproductive and Developmental Biology, Parturition Research Group, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | | |
Collapse
|
31
|
Sun K, Ma R, Cui X, Campos B, Webster R, Brockman D, Myatt L. Glucocorticoids induce cytosolic phospholipase A2 and prostaglandin H synthase type 2 but not microsomal prostaglandin E synthase (PGES) and cytosolic PGES expression in cultured primary human amnion cells. J Clin Endocrinol Metab 2003; 88:5564-71. [PMID: 14602805 DOI: 10.1210/jc.2003-030875] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
This study examines the regulation of major enzymes in prostaglandin E(2) (PGE(2)) synthesis by glucocorticoids in separate cultures of human amnion epithelial and fibroblast cells at term. Cytosolic phospholipase A(2) (cPLA(2)), cytosolic PGES (cPGES), and microsomal PGES (mPGES) mRNA were expressed at similar levels in both cell types, whereas a greater prostaglandin H synthase type 2 (PGHS-2) mRNA expression was observed in amnion fibroblasts than in epithelial cells. Amnion fibroblasts produced 50-fold more PGE(2) per cell than epithelial cells. Dexamethasone (0.01-1 microM) increased PGE(2) production in amnion fibroblasts in a concentration-dependent manner but did not affect PGE(2) production in amnion epithelial cells. Both mRNA and protein expression of cPLA(2) and PGHS-2 but not cPGES and mPGES were increased in a dose-dependent manner by dexamethasone (0.01-1 microM) in amnion fibroblasts. Induction of cPLA(2) and PGHS-2 mRNA by dexamethasone was blocked by RU486. Dexamethasone did not affect PGHS-2, cPGES, and mPGES mRNA expression in amnion epithelial cells. In conclusion, amnion fibroblasts express a higher level of PGHS-2 mRNA and produced more PGE(2) per cell than amnion epithelial cells at term of human pregnancy. Glucocorticoids increase PGE(2) production only in the amnion fibroblasts mainly through induction of cPLA(2) and PGHS-2 expression.
Collapse
Affiliation(s)
- Kang Sun
- Department of Physiology, Second Military Medical University, Shanghai 200433, China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Several new PLA(2)s have been identified based on their nucleotide gene sequences. They were classified mainly into three groups: cytosolic PLA(2) (cPLA(2)), secretary PLA(2) (sPLA(2)), and intracellular PLA(2) (iPLA(2)). They differ from each other in terms of substrate specificity, Ca(2+) requirement and lipid modification. The questions that still remain to be addressed are the subcellular localization and differential regulation of the isoforms in various cell types and under different physiological conditions. It is required to identify the downstream events that occur upon PLA(2) activation, particularly target protein or metabolic pathway for liberated arachidonic acid or other fatty acids. Understanding the same will greatly help in the development of potent and specific pharmacological modulators that can be used for basic research and clinical applications. The information of the human and other genomes of PLA(2)s, combined with the use of proteomics and genetically manipulated mouse models of different diseases, will illuminate us about the specific and potentially overlapping roles of individual phospholipases as mediators of physiological and pathological processes. Hopefully, such understanding will enable the development of specific agents aimed at decreasing the potential contribution of individual secretary phospholipases to vascular diseases. The signaling cascades involved in the activation of cPLA(2) by mitogen activated protein kinases (MAPKs) is now evident. It has been demonstrated that p44 MAPK phosphorylates cPLA(2) and increases its activity in cells and tissues. The phosphorylation of cPLA(2) at ser505 occurs before the increase in intracellular Ca(2+) that facilitate the binding of the lipid binding domain of cPLA(2) to phospholipids, promoting its translocation to cellular membranes and AA release. Recently, a negative feed back loop for cPLA(2) activation by MAPK has been proposed. If PLA(2) activation in a given model depends on PKC, PKA, cAMP, or MAPK then inhibition of these phosphorylating enzymes may alter activities of PLA(2) isoforms during cellular injury. Understanding the signaling pathways involved in the activation/deactivation of PLA(2) during cellular injury will point to key events that can be used to prevent the cellular injury. Furthermore, to date, there is limited information available regarding the regulation of iPLA(2) or sPLA(2) by these pathways.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
33
|
Li G, Tolstonog GV, Traub P. Interaction in vitro of type III intermediate filament proteins with Z-DNA and B-Z-DNA junctions. DNA Cell Biol 2003; 22:141-69. [PMID: 12804114 DOI: 10.1089/104454903321655783] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The selection of DNA fragments containing simple d(GT)(n) and composite d(GT)(m). d(GA)(n) microsatellites during affinity binding of mouse genomic DNA to type III cytoplasmic intermediate filaments (cIFs) in vitro, and the detection of such repeats, often as parts of nuclear matrix attachment region (MAR)-like DNA, in SDS-stable DNA-vimentin crosslinkage products isolated from intact fibroblasts, prompted a detailed study of the interaction of type III cIF proteins with left-handed Z-DNA formed from d(GT)(17) and d(CG)(17) repeats under the topological tension of negatively supercoiled plasmids. Although d(GT)(n) tracts possess a distinctly lower Z-DNA-forming potential than d(CG)(n) tracts, the filament proteins produced a stronger electrophoretic mobility shift with a plasmid carrying a d(GT)(17) insert than with plasmids containing different d(CG)(n) inserts, consistent with the facts that the B-Z transition of d(GT)(n) repeats requires a higher negative superhelical density than that of d(CG)(n) repeats and the affinity of cIF proteins for plasmid DNA increases with its superhelical tension. That both types of dinucleotide repeat had indeed undergone B-Z transition was confirmed by S1 nuclease and chemical footprinting analysis of the plasmids, which also demonstrated efficient protection by cIF proteins from nucleolytic and chemical attack of the Z-DNA helices as such, as well as of the flanking B-Z junctions. The analysis also revealed sensibilization of nucleotides in the center of one of the two strands of a perfect d(CG)(17) insert toward S1 nuclease, indicating cIF protein-induced bending of the repeat. In all these assays, vimentin and glial fibrillary acidic protein (GFAP) showed comparable activities, versus desmin, which was almost inactive. In addition, vimentin and GFAP exhibited much higher affinities for the Z-DNA conformation of brominated, linear d(CG)(25) repeats than for the B-DNA configuration of the unmodified oligonucleotides. While double-stranded DNA was incapable of chasing the Z-DNA from its protein complexes, and Holliday junction and single-stranded (ss)DNA were distinguished by reasonable competitiveness, phosphatidylinositol (PI) and, particularly, phosphatidylinositol 4,5-diphosphate (PIP(2)) turned out to be extremely potent competitors. Because PIP(2) is an important member of the nuclear PI signal transduction cascade, it might exert a regulatory influence on the binding of cIF proteins to Z- and other DNA conformations. From this interaction of cIF proteins with Z- and bent DNA and their previously detected affinities for MAR-like, ss, triple helical, and four-way junction DNA, it may be concluded that the filament proteins play a general role in such nuclear matrix-associated processes as DNA replication, recombination, repair, and transcription.
Collapse
Affiliation(s)
- Guohong Li
- Max-Planck Institut für Zellbiologie, Rosenhof, 68526 Ladenburg, Germany
| | | | | |
Collapse
|
34
|
Tremblay J, Hum DHF, Sanchez R, Dumas P, Pravenec M, Krenova D, Kren V, Kunes J, Pausova Z, Gossard F, Hamet P. TA repeat variation, Npr1 expression, and blood pressure: impact of the Ace locus. Hypertension 2003; 41:16-24. [PMID: 12511524 DOI: 10.1161/01.hyp.0000042664.75193.1b] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The activity of the atrial natriuretic peptide receptor (Npr1) is altered in spontaneously hypertensive rats (SHR) in relation to its mRNA levels, suggesting abnormal transcriptional control in hypertension. A single-stranded conformational polymorphism caused by a repetitive dinucleotide segment of 10 TA in BN-Lx and of 40 TA in SHR was localized at position -943 relative to the transcription start site of the Npr1 gene, downstream of a putative cGMP-regulatory region, and was the only sequence difference noted between the two strains. Transient transfections of -1520 to -920 Npr1 promoter-SV40-luciferase fusion vector showed that the construct from BN-Lx stimulated the SV40 promoter, whereas that from SHR slightly inhibited it. In contrast to the BN-Lx construct, the activity of the SHR fragment was refractory to downregulation by atrial natriuretic peptide. Genotype-phenotype correlation studies in recombinant inbred strains (RIS) derived from BN-Lx and SHR crosses revealed significant correlations of the TA repeat with basal guanylyl cyclase activity and Npr1 mRNA levels. The correlations were heightened by a locus on chromosome 10 containing the Ace gene. The highest basal guanylyl cyclase activity and Npr1 mRNA values were found in RIS with both genes (Npr1/Ace) of BN genotypes, whereas the lowest were recorded in RIS, with the SHR genotypes at both loci. This was inversely correlated with diastolic blood pressure in these strains. In conclusion, the longer TA repeat unit in the promoter of Npr1 of SHR, in tandem with a putative cGMP responsive element, regulates the transcription of the Npr1 gene with consequences on diastolic blood pressure.
Collapse
Affiliation(s)
- Johanne Tremblay
- Laboratory of Cellular Biology of Hypertension, Centre de recherche du Centre hospitalier de l'Université de Montréal-Hôtel-Dieu, , Montréal, Québec, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Szántó S, Csermely P, Kovács I, Csongor J, Illés A, Bakó G, Szegedi G, Sipka S. Inhibition of arachidonic acid release from human peripheral mononuclear cells by heat shock treatment and geldanamycin. Immunol Lett 2002; 83:181-5. [PMID: 12095708 DOI: 10.1016/s0165-2478(02)00103-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The objective of this study was to investigate the effects of heat shock (HS) treatment and geldanamycin (GA) on the release of arachidonic acid (AA) from human peripheral blood mononuclear cells (PBMC), monocytes and lymphocytes. Mononuclear cells prepared from blood of healthy subjects were preincubated with (3)H-AA. The release of (3)H-AA incorporated into the membrane was studied after pretreatment of cells by HS (43 degrees C, 1 h) and GA. The activation of AA producing enzymes was achieved by the addition of phorbol 12-myristate 13-acetate (PMA) or by the combination of PMA+calcium ionophore A-23187. Treatment of cells by HS inhibited the release of AA. Furthermore, the release of AA by PBMC was dose dependently inhibited by GA. The combination of treatments by HS and GA augmented the inhibition of AA release. The HS response involves a diminished release of AA from PBMC. The inhibitory effect of GA on the AA release is a new element in the antiinflammatory pharmacological ability of this drug.
Collapse
Affiliation(s)
- Sándor Szántó
- Third Department of Medicine, University of Debrecen, Medical and Health Science Center, Móricz Zs. u. 22., Debrecen H-4004, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 position of membrane glycerophospholipids to liberate arachidonic acid (AA), a precursor of eicosanoids including prostaglandins and leukotrienes. The same reaction also produces lysophosholipids, which represent another class of lipid mediators. So far, at least 19 enzymes that possess PLA2 activity have been identified and cloned in mammals. The secretory PLA2 (sPLA2) family, in which 10 isozymes have been identified, consists of low-molecular weight, Ca2+-requiring secretory enzymes that have been implicated in a number of biological processes, such as modification of eicosanoid generation, inflammation, and host defense. The cytosolic PLA2 (cPLA2) family consists of three enzymes, among which cPLA2alpha has been paid much attention by researchers as an essential component of the initiation of AA metabolism. The activation of cPLA2alpha is tightly regulated by Ca2+ and phosphorylation. The Ca2+-independent PLA2 (iPLA2) family contains two enzymes and may play a major role in phospholipid remodeling. The platelet-activating factor (PAF) acetylhydrolase (PAF-AH) family contains four enzymes that exhibit unique substrate specificity toward PAF and/or oxidized phospholipids. Degradation of these bioactive phospholipids by PAF-AHs may lead to the termination of inflammatory reaction and atherosclerosis.
Collapse
Affiliation(s)
- Ichiro Kudo
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan.
| | | |
Collapse
|
37
|
Dumont LM, Wu CS, Aschkenasi CJ, Elmquist JK, Lowell BB, Mountjoy KG. Mouse melanocortin-4 receptor gene 5'-flanking region imparts cell specific expression in vitro. Mol Cell Endocrinol 2001; 184:173-85. [PMID: 11694353 DOI: 10.1016/s0303-7207(01)00558-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Weight homeostasis is exquisitely sensitive to changes in the abundance of melanocortin-4 receptor (MC4-R). To begin to understand the factors that regulate MC4-R gene expression, we determined there are no introns in the gene, there are multiple starts of transcription, and a cluster of 3' ends. A series of MC4-R-luciferase gene reporter chimerics was developed and transfected into cell lines expressing (UMR106; GT1-7; HEK293) and not expressing (Neuro 2A) endogenous MC4-R mRNA. The longest construct, which includes approximately 3.3 kb 5'-flanking, 425 bp 5'-untranslated (UTR) and 1852 bp 3'-flanking, significantly increased luciferase reporter gene expression 24-, 13-, and 3-fold compared to pGL3-basic when expressed in HEK293, UMR106, and GT1-7 cells, respectively. Deletion analysis of mMC4-R 5'-flanking cDNA identified full mMC4-R promoter activity within 178 bp upstream of the major start of transcription. The mMC4-R gene structure and reporter chimerics provide a fundamental framework for the identification of specific factors regulating MC4-R gene expression.
Collapse
Affiliation(s)
- L M Dumont
- Research Centre for Developmental Medicine and Biology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1, New Zealand
| | | | | | | | | | | |
Collapse
|
38
|
Blaine SA, Wick M, Dessev C, Nemenoff RA. Induction of cPLA2 in lung epithelial cells and non-small cell lung cancer is mediated by Sp1 and c-Jun. J Biol Chem 2001; 276:42737-43. [PMID: 11559711 DOI: 10.1074/jbc.m107773200] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activating mutations in ras genes are frequently associated with non-small cell lung cancer cells (NSCLC) and contribute to transformed growth in these cells. Expression of oncogenic forms of Ras in these cells is associated with increased expression and activity of cytosolic phospholipase A(2) (cPLA(2)) and cyclooxygenase-2 (COX-2), leading to constitutively elevated levels of prostaglandin production. Expression of oncogenic Ras is sufficient to induce these enzymes in normal lung epithelial cells. We have previously reported that the JNK and ERK pathways are necessary for induction of cPLA(2) and have defined a minimal region of the cPLA(2) promoter from -58 to -12 that is required for Ha-Ras-mediated induction. To further characterize the cis-regulatory elements within this region involved in this response, site-directed mutagenesis was used to make mutations at various sites. Three cis-regulatory elements were identified: regions -21/-18, -37/-30, and -55/-53. Mutations in any of these elements decreased basal and Ha-Ras-induced cPLA(2) promoter activity in both normal lung epithelial cells, as well as steady state promoter activity in A549 cells, with a mutation in element -21/-18 completely eliminating all promoter activity. Overexpression studies and gel shift assays indicated that Sp1 may serve as a transcription factor functionally regulating promoter activity by directly interacting with two of the cis-regulatory elements, -21/-18 and -37/-30. Expression of Ha-Ras led to induction of c-Jun protein, which showed functional cooperation with Sp1 in driving promoter activity. Additional unidentified transcription factors bound to the regions from -55/-53 and -37/-34.
Collapse
Affiliation(s)
- S A Blaine
- Department of Medicine and Pharmacology, University of Colorado Health Science Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
39
|
Rothenburg S, Koch-Nolte F, Rich A, Haag F. A polymorphic dinucleotide repeat in the rat nucleolin gene forms Z-DNA and inhibits promoter activity. Proc Natl Acad Sci U S A 2001; 98:8985-90. [PMID: 11447254 PMCID: PMC55360 DOI: 10.1073/pnas.121176998] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2001] [Indexed: 11/18/2022] Open
Abstract
Many sequences in eukaryotic genomes have the potential to adopt a left-handed Z-DNA conformation. We used a previously described assay based on the binding of a mAb to Z-DNA to inquire whether Z-DNA is formed in the rat nucleolin (Ncl) gene in metabolically active, permeabilized nuclei. Using real-time PCR to measure Z-DNA formation, the potential Z-DNA sequence element Z1 [(CA)(10)(CG)(8)] in the promoter region was found to be enriched 571- to 4,040-fold in different cell lines, whereas Z2 [AC(GC)(5)CCGT(CG)(2)] in the first intron was enriched 12- to 34-fold. Ncl promoter activity was 1.5- to 16-fold stronger than that of the simian virus 40 promoter and enhancer. This activity was further increased 36-54% when Z1 was deleted. The inhibitory effect of Z1 on Ncl promoter activity was independent of location and orientation. The Ncl Z1 element is identical to the genetic marker D9Arb5. Five allelic variants of Z1 were identified by sequence analysis of genomic DNA from various rats. The two most common alleles differed significantly (up to 27%) in their capacity to inhibit Ncl promoter activity. This finding suggests that differences in Z-DNA formation by polymorphic dinucleotide repeats may be one of the factors contributing to genetic variation.
Collapse
Affiliation(s)
- S Rothenburg
- Institute for Immunology, University Hospital Eppendorf, 20246 Hamburg, Germany
| | | | | | | |
Collapse
|
40
|
Wu YL, Jiang XR, Lillington DM, Newland AC, Kelsey SM. Upregulation of lipocortin 1 inhibits tumour necrosis factor-induced apoptosis in human leukaemic cells: a possible mechanism of resistance to immune surveillance. Br J Haematol 2000. [DOI: 10.1111/j.1365-2141.2000.02397.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Wu YL, Jiang XR, Lillington DM, Newland AC, Kelsey SM. Upregulation of lipocortin 1 inhibits tumour necrosis factor-induced apoptosis in human leukaemic cells: a possible mechanism of resistance to immune surveillance. Br J Haematol 2000. [DOI: 10.1046/j.1365-2141.2000.02397.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Hirabayashi T, Shimizu T. Localization and regulation of cytosolic phospholipase A(2). BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:124-38. [PMID: 11080682 DOI: 10.1016/s1388-1981(00)00115-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Liberation of arachidonic acid by cytosolic phospholipase A(2) (cPLA(2)) upon cell activation is often the initial and rate-limiting step in leukotriene and prostaglandin biosynthesis. This review discusses the essential features of cPLA(2) isoforms and addresses intriguing insights into the catalytic and regulatory mechanisms. Gene expression, posttranslational modification and subcellular localization can regulate these isoforms. Translocation of cPLA(2)alpha from the cytosol to the perinuclear region in response to calcium transients is critical for the immediate arachidonic acid release. Therefore, particular emphasis is placed on the mechanism of the translocation and the role of the proteins and lipids implicated in this process. The regional distribution and cellular localization of cPLA(2) may help to better understand its function as an arachidonic acid supplier to downstream enzymes and as a regulator of specific cellular processes.
Collapse
Affiliation(s)
- T Hirabayashi
- Department of Biochemistry and Molecular Biology, The University of Tokyo, Japan.
| | | |
Collapse
|
43
|
Jeyaseelan K, Armugam A, Donghui M, Tan NH. Structure and phylogeny of the venom group I phospholipase A(2) gene. Mol Biol Evol 2000; 17:1010-21. [PMID: 10889214 DOI: 10.1093/oxfordjournals.molbev.a026382] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phospholipases A(2) (PLA(2)s) catalyzing the hydrolysis of phospholipids form a family of proteins with diverse physiological and pharmacological properties. While there have been several reports on the cloning of PLA(2) cDNAs, very few studies have been carried out on the PLA(2) genes and, most importantly, no information has been available on the gene structure and function of group I venom PLA(2). This study, on the PLA(2) gene from a spitting cobra, besides being the very first report on any venom group I PLA(2) gene, constitutes the missing link in the biology and evolution of phospholipases. The 4-kb gene consists of four exons and three introns and resembles the human pancreatic PLA(2) gene. However, the size of intron 3 in particular is much smaller than that in the pancreatic gene. Interestingly, the information for the toxic and most of the pharmacological properties of the venom PLA(2) can be attributed to the end of exon 3 and the whole of exon 4 of the gene. This functional delineation fits in well with the theory of adaptive evolution exhibited by the venom PLA(2)s. We also show that the mammalian pancreatic and elapid PLA(2)s have similar paths of evolution (probably following gene duplication) from a common ancestral gene. Venom group II phospholipases, although evolved from the same ancestor, diverged early in evolution from the group I PLA(2) genes. Intriguingly, CAT reporter gene assays and DNase 1 footprinting studies on the promoter and its deletion constructs using CHO and HepG2 cell lines identified the possible involvement of cis elements such as Sp1, AP2, gamma-IRE, and (TG)(12) repeats in the expression of the gene in a tissue-specific manner.
Collapse
Affiliation(s)
- K Jeyaseelan
- Department of Biochemistry, Faculty of Medicine and Bioscience Center, Faculty of Science, National University of Singapore, Singapore.
| | | | | | | |
Collapse
|
44
|
Dolan-O'Keefe M, Chow V, Monnier J, Visner GA, Nick HS. Transcriptional regulation and structural organization of the human cytosolic phospholipase A(2) gene. Am J Physiol Lung Cell Mol Physiol 2000; 278:L649-57. [PMID: 10749741 DOI: 10.1152/ajplung.2000.278.4.l649] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytokines are established regulators of the arachidonic acid cascade in lung cells. The levels of various arachidonic metabolites distinguish the normal and pathogenic states of the human lung. Arachidonyl-selective cytosolic phospholipase A(2) (cPLA(2)) is ubiquitously present in human lung and is most likely the rate-limiting step in eicosanoid generation. We therefore studied the regulation of this pivotal gene in human lung fibroblasts and epithelial cells by proinflammatory cytokines. We demonstrate a dose- and time-dependent induction of human cPLA(2) mRNA by interleukin-1beta, tumor necrosis factor-alpha, and interferon-gamma as well as the abrogation of this induction by glucocorticoids. Nuclear runoff studies demonstrate that de novo transcription of the cPLA(2) gene is required for cytokine induction. We have characterized the human cPLA(2) gene, which is encoded by 18 exons and spans in excess of 137 kb. Deletion analysis of a 3.4-kb fragment of the human promoter identified two regions responsible for basal expression of the cPLA(2) gene. Conversely, a CA-dinucleotide repeat in the proximal promoter appears to repress overall promoter activity. Understanding the molecular mechanisms associated with cytokine-dependent expression of the cPLA(2) gene should provide further insight into regulating the level of proinflammatory mediators in pulmonary diseases.
Collapse
Affiliation(s)
- M Dolan-O'Keefe
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
45
|
Soloff MS, Jeng YJ, Copland JA, Strakova Z, Hoare S. Signal pathways mediating oxytocin stimulation of prostaglandin synthesis in select target cells. Exp Physiol 2000; 85 Spec No:51S-58S. [PMID: 10795906 DOI: 10.1111/j.1469-445x.2000.tb00007.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A major action of oxytocin is to stimulate prostaglandin production in reproductive tissues. The two major enzyme systems involved are cytosolic phospholipase A2 (cPLA2), which catalyses the formation of arachidonic acid from membrane glycerophospholipids, and prostaglandin endoperoxide-H synthases-1 and -2, which allow conversion of arachidonic acid to prostaglandins. During gestation, the concentrations of all three enzymes rise in the rabbit amnion. Agonists, including oxytocin, increase cPLA2 activity, in part, by elevating intracellular Ca2+ concentration, which causes cPLA2 to be translocated from the cytosol to intracellular membrane binding sites. Cytosolic PLA2 is then activated by a mitogen-activated protein kinase (MAPK)-dependent step. Our studies have elucidated signal pathways involved in oxytocin-stimulated prostaglandin output in both rabbit amnion cells and Chinese hamster ovary cells stably transfected with the rat oxytocin receptor. The two cell types are alike with respect to oxytocin-stimulated intracellular Ca2+ transients, mediation via Gq, and the specific MAPK that catalyses the phosphorylation of cPLA2. However, they differ with respect to the mechanisms of upregulation of key enzymes involved in prostaglandin E2 synthesis. These findings illustrate the tiers of complementary mechanisms involved in oxytocin stimulation of prostaglandin E2, and the extent of the diversity in the cellular signalling pathways involved.
Collapse
Affiliation(s)
- M S Soloff
- Department of Obstetrics and Gynaecology, The University of Texas Medical Branch, Galveston, USA.
| | | | | | | | | |
Collapse
|
46
|
Adamson R, Logan M, Kinnaird J, Langsley G, Hall R. Loss of matrix metalloproteinase 9 activity in Theileria annulata-attenuated cells is at the transcriptional level and is associated with differentially expressed AP-1 species. Mol Biochem Parasitol 2000; 106:51-61. [PMID: 10743610 DOI: 10.1016/s0166-6851(99)00213-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The schizont stage of the protozoan parasite Theileria annulata reversibly transforms bovine monocytes into an immortalised and metastatic state. We have been studying T. annulata induction of host matrix metalloproteinases (MMP) which are involved in parasite dissemination and pathogenesis. We have observed that prolonged in vitro culture of T. annulata-infected cell lines results in their attenuation and this process is associated with alterations in both host and parasite gene expression. In particular, a loss in bovine MMP expression in later passage cultures suggests that these parasite-induced MMPs are virulence factors. As a means to further our understanding of the attenuation process we examine in detail the parasite-induced differential expression of one particular bovine proteinase, MMP9, in non-attenuated (p58) and attenuated (p158) passage levels of the Ode vaccine line. We show here that MMP9 expression is regulated at the transcriptional level and we suggest that a particular parasite-induced AP-1 recognition transcription factor present in the Ode non-attenuated line may have a role to play in the expression of this host gene.
Collapse
Affiliation(s)
- R Adamson
- Department of Biology, University of York, UK.
| | | | | | | | | |
Collapse
|
47
|
Schimmel JJ, Crews L, Roffler-Tarlov S, Chikaraishi DM. 4.5 kb of the rat tyrosine hydroxylase 5' flanking sequence directs tissue specific expression during development and contains consensus sites for multiple transcription factors. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 74:1-14. [PMID: 10640671 DOI: 10.1016/s0169-328x(99)00234-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
To delineate DNA sequences responsible for developmentally correct expression of the rat tyrosine hydroxylase (TH) gene, we analyzed a line of transgenic mice expressing high levels of human placental alkaline phosphatase (AP) under control of 4.5 kb of 5' flanking DNA from the rat TH gene in embryos and adults. Several regions, such as the accessory olfactory bulb, which were not thought to synthesize TH protein or do so only transiently, were shown to express TH protein using an improved method of antigen retrieval for TH immunohistochemistry. Many of these regions had been shown to express TH-driven reporter genes in transgenic mice. In the central nervous system, AP was detected in essentially all TH-expressing cell groups throughout development and in adults. In the peripheral nervous system, transgene expression paralleled endogenous TH expression in the developing adrenal medulla and sympathetic ganglia but not in transiently TH-positive cells in dorsal root ganglia. Peripheral expression in the adult adrenal medulla was very weak and absent in sympathetic ganglia. The specificity with which the 4.5 kb region directs transgene expression in embryos is comparable to that observed with longer 5' flanking promoter regions, implying that this region contains the control elements for appropriate expression during development. Sequence analysis of the region demonstrates a GT dinucleotide repeat, an element that resembles the neural restrictive silencer element (NRSE), which restricts transcription of neuronal genes in non-neuronal cells, and consensus sites for three families of transcription factors, Ptx1/3, Nurr1 and Gli1/2, which are required for the early differentiation of mesencephalic neurons.
Collapse
Affiliation(s)
- J J Schimmel
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
48
|
Ikegishi Y, Tawata M, Aida K, Onaya T. Z-4 allele upstream of the aldose reductase gene is associated with proliferative retinopathy in Japanese patients with NIDDM, and elevated luciferase gene transcription in vitro. Life Sci 1999; 65:2061-70. [PMID: 10579460 DOI: 10.1016/s0024-3205(99)00329-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We determined by PCR the number of (A-C)n repeats in the 2. 1 kb upstream of the aldose reductase (AR2) gene in healthy control subjects and in patients with NIDDM in Japanese. Sixty-one patients were recruited based on the severity of retinopathy and subdivided into two groups with proliferative retinopathy and without retinopathy. Japanese exhibited 10 different alleles in this region. The most prevalent allele was designated Z ((A-C)24 repeats) allele. The Z-4 allele was significantly associated with patients with proliferative retinopathy, whereas the Z+2 allele was significantly associated with patients without retinopathy. Erythrocyte AR2 protein levels were significantly elevated in patients exhibiting the Z-4 allele compared to those exhibiting other alleles. When Z-4 allele was ligated in transfection experiments to luciferase vector containing the promoter region of the AR2 gene, the construct showed significantly higher transcription of the reporter gene compared to constructs without (A-C) repeat or with Z-2, Z or Z+2 alleles. Our results suggest that the Z-4 allele in the 2. 1 kb upstream of the AR2 gene may enhance gene transcription and may be a genetic risk factor, which determines the predisposition to retinopathy in Japanese patients with NIDDM.
Collapse
Affiliation(s)
- Y Ikegishi
- Third Department of Internal Medicine, Yamanashi Medical University, Tamaho, Japan
| | | | | | | |
Collapse
|
49
|
Sebastian S, White JA, Wilson JE. Characterization of the rat type III hexokinase gene promoter. A functional octamer 1 motif is critical for basal promoter activity. J Biol Chem 1999; 274:31700-6. [PMID: 10531380 DOI: 10.1074/jbc.274.44.31700] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 1532-base pair 5'-flanking region of the gene encoding rat type III hexokinase has been cloned and sequenced. The total sequence includes positions -1548 to -17 (A of the translational start ATG as position +1). Using luciferase reporter constructs transfected into PC12 (rat pheochromocytoma) and L2 (rat lung) cells, basal promoter activity has been associated with sequence between -182 and -89. This includes a single transcriptional start site, an adenine at position -134 identified by primer extension. Together with previously cloned cDNA sequence, this accounts for an mRNA of approximately 3.9 kilobases, found by Northern blotting of RNA from rat lung and kidney. Sequence upstream of the transcriptional start site was devoid of canonical TATA and CAAT elements. An octamer 1 (Oct-1) binding site, located between positions -166 and -159 was shown by deletion analysis and site-directed mutation to be critical for promoter activity. Nuclear extracts from PC12 cells contained a protein (or proteins) specifically binding the octamer sequence, and supershift experiments with anti-Oct-1 indicated involvement of this ubiquitously expressed transcription factor in the complex. Sequence including the Oct-1 site and immediately adjacent regions was protected from DNase I digestion in footprinting experiments with nuclear extracts from PC12 cells. Reverse transcription polymerase chain reaction indicated that levels of type III hexokinase mRNA in rat tissues increased in the order brain < liver < lung approximately kidney; immunoblotting indicated that type III hexokinase protein in these tissues increased in a similar manner.
Collapse
Affiliation(s)
- S Sebastian
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | |
Collapse
|
50
|
Akai J, Kimura A, Hata RI. Transcriptional regulation of the human type I collagen alpha2 (COL1A2) gene by the combination of two dinucleotide repeats. Gene 1999; 239:65-73. [PMID: 10571035 DOI: 10.1016/s0378-1119(99)00380-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human type I collagen alpha2 (COL1A2) gene has two dinucleotide repeats: one in the 5'-flanking region of the gene is composed of poly(dC-dA) and poly(dC-dG), while the other in the first intron consists of poly(dG-dT). In this study, we show that transcription of the COL1A2 gene is regulated by these repeats. Luciferase reporter gene assay indicated that the transcriptional activity of the COL1A2 gene was enhanced by the co-presence of both repeats, but not by either repeat alone. Analysis of the polymorphism in the two repeat regions indicated that both sequences have a variation in their repetition number, thus showing that these dinucleotide repeats constitute microsatellites. A study using constructs containing various combinations of the repeat alleles showed differences in their transcriptional activities. The results, however, showed that the stimulation rate of luciferase activity was not linear with the repetitive number of the repeats either in the 5' flanking region or in the first intron of the gene and that the stimulation was provided by the combination of these polymorphic repetitive sequences. These observations indicated that the dinucleotide repeats have an enhancing activity on transcription of the COL1A2 gene and that the variation in the number of repetitions may partly be responsible for the difference in the transcriptional activity of the gene.
Collapse
Affiliation(s)
- J Akai
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | | | | |
Collapse
|