1
|
Li J, Mei B, Zhu Y, Huang J, Li M, Wang D, Huang J, Zhang G. CpG hypomethylation at proximal promoter and 5'UTR along with IL6 signaling loop associates with MYD88 upregulation in epithelial ovarian cancer. Sci Rep 2024; 14:30945. [PMID: 39730678 DOI: 10.1038/s41598-024-81975-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024] Open
Abstract
MYD88 is an IL-6 primary response gene and, its upregulation of expression has been shown to be a poor prognostic factor in epithelial ovarian cancer (EOC). We investigated the effects of CpG methylation at the proximal promoter/5'UTR and IL-6/SP1/IRF1 signaling on upregulation of MYD88 and prognosis in EOC. We assessed CpG methylation at the proximal promoter/5'UTR of MYD88 using bisulfite sequencing/PCR in 103 EOC patients, 28 normal ovarian tissues and two EOC cell lines with differential expression of MYD88 and identified the impact of the level of CpG methylation on MYD88 upregulation by SP1/IRF1 with knockdown or blockade of IL-6. The proximal promoter/5'UTR of MYD88 was significantly hypomethylated in 75 EOC tissues compared to 28 normal ovarian tissues (P < 0.001). CpG hypomethylation was relevant to MYD88 upregulation in 75 EOC cases (R2 = 0.4376; P < 0.001). Of them, 38 cases with m5CpGlow/MYD88high/IL-6high were associated with reduced progression-free/overall survival compared to 37 cases with m5CpGhigh/MYD88low/IL-6low (P < 0.01). Knockdown of IL-6 or blockade with IL-6 receptor McAb attenuated MYD88 upregulation by SP1/IRF1 signaling in EOC cells with MYD88high (P < 0.001). In conclusion, CpG hypomethylation at the proximal promoter/5'UTR contributes to MYD88 upregulation in EOC via IL-6/SP1/IRF1 pathway.
Collapse
Affiliation(s)
- Junyang Li
- Department Gynecological Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South People's Road, Chengdu, 610041, China
| | - Bingjie Mei
- Department Gynecological Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South People's Road, Chengdu, 610041, China
| | - Yi Zhu
- Department Gynecological Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South People's Road, Chengdu, 610041, China
- Department of Ultrasound, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Jianmei Huang
- Department Gynecological Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South People's Road, Chengdu, 610041, China
| | - Meiying Li
- Biochemistry and Molecular Biology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South People's Road, Chengdu, 610041, China
| | - Dengfeng Wang
- Department Gynecological Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South People's Road, Chengdu, 610041, China
| | - Jianming Huang
- Biochemistry and Molecular Biology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South People's Road, Chengdu, 610041, China.
| | - Guonan Zhang
- Department Gynecological Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South People's Road, Chengdu, 610041, China.
| |
Collapse
|
2
|
Gong X, Li M, Zhang L, Huang S, Wang G. Identification and functional analysis of myeloid differentiation factor 88 (MyD88) in early development of Haliotis diversicolor. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109085. [PMID: 37722440 DOI: 10.1016/j.fsi.2023.109085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is a universal adaptor protein and plays an important role in the signal transduction of Toll like receptors (TLR) family. In this study, the MyD88 gene from the Haliotis diversicolor (hdMyD88) was identified. The full-length cDNA of hdMyD88 has a 1927 base pairs (bp), with an open reading frame of 1314 bp encoding 437 amino acids including a death domain (DD) at the N-terminus and TIR domain at the C-terminus which are typical features of MyD88 family proteins. Three conserved boxes are also found in the hdMyD88, which are similar to MyD88 in vertebrates. The expression levels of hdMyD88 mRNA at different early embryonic developmental stages of abalone were measured by qPCR revealed that their constitutive expression at all developmental stages analyzed with the considerably highest values at 8 cell stage and the lowest level at the trochosphere stage. Additionally, the mRNA expression of hdMyD88 decreased significantly (P < 0.05) after MyD88-dsRNA soak in the stage of trochosphere and veliger than EGFP-dsRNA group and blank control group. Whole embryo in situ hybridization showed that the positive signals of hdMyD88 were in visceral mass of trochophore larvae and veliger larvae. These results indicate hdMyD88 may could respond to pathogenic infection and may play an important role in early innate immunity in the process of abalone larval development.
Collapse
Affiliation(s)
- Xiaoting Gong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Min Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Lili Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Shiyu Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Guodong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
3
|
Wei Y, Yang L, Pandeya A, Cui J, Zhang Y, Li Z. Pyroptosis-Induced Inflammation and Tissue Damage. J Mol Biol 2022; 434:167301. [PMID: 34653436 PMCID: PMC8844146 DOI: 10.1016/j.jmb.2021.167301] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
Programmed cell deaths are pathways involving cells playing an active role in their own destruction. Depending on the signaling system of the process, programmed cell death can be divided into two categories, pro-inflammatory and non-inflammatory. Pyroptosis is a pro-inflammatory form of programmed cell death. Upon cell death, a plethora of cytokines are released and trigger a cascade of responses from the neighboring cells. The pyroptosis process is a double-edged sword, could be both beneficial and detrimental in various inflammatory disorders and disease conditions. A physiological outcome of these responses is tissue damage, and sometimes death of the host. In this review, we focus on the inflammatory response triggered by pyroptosis, and resulting tissue damage in selected organs.
Collapse
Affiliation(s)
- Yinan Wei
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA.
| | - Ling Yang
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Ankit Pandeya
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Jian Cui
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Yan Zhang
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA.,Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou,China
| | - Zhenyu Li
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
4
|
Ouk C, Roland L, Gachard N, Poulain S, Oblet C, Rizzo D, Saintamand A, Lemasson Q, Carrion C, Thomas M, Balabanian K, Espéli M, Parrens M, Soubeyran I, Boulin M, Faumont N, Feuillard J, Vincent-Fabert C. Continuous MYD88 Activation Is Associated With Expansion and Then Transformation of IgM Differentiating Plasma Cells. Front Immunol 2021; 12:641692. [PMID: 34017329 PMCID: PMC8129569 DOI: 10.3389/fimmu.2021.641692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/14/2021] [Indexed: 11/19/2022] Open
Abstract
Activating mutations of MYD88 (MYD88L265P being the far most frequent) are found in most cases of Waldenström macroglobulinemia (WM) as well as in various aggressive B-cell lymphoma entities with features of plasma cell (PC) differentiation, such as activated B-cell type diffuse large B-cell lymphoma (DLBCL). To understand how MYD88 activation exerts its transformation potential, we developed a new mouse model in which the MYD88L252P protein, the murine ortholog of human MYD88L265P, is continuously expressed in CD19 positive B-cells together with the Yellow Fluorescent Protein (Myd88L252P mice). In bone marrow, IgM B and plasma cells were expanded with a CD138 expression continuum from IgMhigh CD138low to IgMlow CD138high cells and the progressive loss of the B220 marker. Serum protein electrophoresis (SPE) longitudinal analysis of 40 Myd88L252P mice (16 to 56 weeks old) demonstrated that ageing was first associated with serum polyclonal hyper gammaglobulinemia (hyper Ig) and followed by a monoclonal immunoglobulin (Ig) peak related to a progressive increase in IgM serum levels. All Myd88L252P mice exhibited spleen enlargement which was directly correlated with the SPE profile and was maximal for monoclonal Ig peaks. Myd88L252P mice exhibited very early increased IgM PC differentiation. Most likely due to an early increase in the Ki67 proliferation index, IgM lymphoplasmacytic (LP) and plasma cells continuously expanded with age being first associated with hyper Ig and then with monoclonal Ig peak. This peak was consistently associated with a spleen LP-like B-cell lymphoma. Clonal expression of both membrane and secreted µ chain isoforms was demonstrated at the mRNA level by high throughput sequencing. The Myd88L252P tumor transcriptomic signature identified both proliferation and canonical NF-κB p65/RelA activation. Comparison with MYD88L265P WM showed that Myd88L252P tumors also shared the typical lymphoplasmacytic transcriptomic signature of WM bone marrow purified tumor B-cells. Altogether these results demonstrate for the first time that continuous MYD88 activation is specifically associated with clonal transformation of differentiating IgM B-cells. Since MYD88L252P targets the IgM PC differentiation continuum, it provides an interesting preclinical model for development of new therapeutic approaches to both WM and aggressive MYD88 associated DLBCLs.
Collapse
Affiliation(s)
- Catherine Ouk
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Lilian Roland
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Nathalie Gachard
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Stéphanie Poulain
- UMR CANTHER « CANcer Heterogeneity, Plasticity and Resistance to THERapies » INSERM 1277-CNRS 9020 UMRS 12, University of Lille, Hematology Laboratory, Biology and Pathology Center, CHU de Lille, Lille, France
| | - Christelle Oblet
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - David Rizzo
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Alexis Saintamand
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Quentin Lemasson
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Claire Carrion
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Morgane Thomas
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Karl Balabanian
- Institut de Recherche Saint-Louis, EMiLy, INSERM U1160, University of Paris, Paris, France
| | - Marion Espéli
- Institut de Recherche Saint-Louis, EMiLy, INSERM U1160, University of Paris, Paris, France
| | - Marie Parrens
- Pathology Department, Hospital University Center of Bordeaux, Bordeaux, France
| | | | - Mélanie Boulin
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Nathalie Faumont
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Jean Feuillard
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Christelle Vincent-Fabert
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| |
Collapse
|
5
|
Liu B, He R, Zhang L, Hao B, Jiang W, Wang W, Geng Q. Inflammatory Caspases Drive Pyroptosis in Acute Lung Injury. Front Pharmacol 2021; 12:631256. [PMID: 33613295 PMCID: PMC7892432 DOI: 10.3389/fphar.2021.631256] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022] Open
Abstract
Acute lung injury (ALI), a critical respiratory disorder that causes diffuse alveolar injury leads to high mortality rates with no effective treatment. ALI is characterized by varying degrees of ventilation/perfusion mismatch, severe hypoxemia, and poor pulmonary compliance. The diffuse injury to cells is one of most important pathological characteristics of ALI. Pyroptosis is a form of programmed cell death distinguished from apoptosis induced by inflammatory caspases, which can release inflammatory cytokines to clear cells infected by pathogens and promote monocytes to reassemble at the site of injury. And pyroptosis not only promotes inflammation in certain cell types, but also regulates many downstream pathways to perform different functions. There is increasing evidence that pyroptosis and its related inflammatory caspases play an important role in the development of acute lung injury. The main modes of activation of pyroptosis is not consistent among different types of cells in lung tissue. Meanwhile, inhibition of inflammasome, the key to initiating pyroptosis is currently the main way to treat acute lung injury. The review summarizes the relationship among inflammatory caspases, pyroptosis and acute lung injury and provides general directions and strategies to conduct further research.
Collapse
Affiliation(s)
- Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lin Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Hao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenyang Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Zhu Y, Zhang G, Li M, Ma L, Huang J, Qiu L. Ultrasound-Augmented Phase Transition Nanobubbles for Targeted Treatment of Paclitaxel-Resistant Cancer. Bioconjug Chem 2020; 31:2008-2020. [PMID: 32628454 DOI: 10.1021/acs.bioconjchem.0c00364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yi Zhu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Ultrasound, the Affiliated Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Cancer Hospital & Institute, Chengdu 610041, China
| | - Guonan Zhang
- Department of Gynecological Oncology, the Affiliated Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Cancer Hospital & Institute, Chengdu 610041, China
| | - Meiying Li
- Department of Biochemistry & Molecular Biology, the Affiliated Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Cancer Hospital & Institute, Chengdu 610041, China
| | - Lang Ma
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianming Huang
- Department of Biochemistry & Molecular Biology, the Affiliated Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Cancer Hospital & Institute, Chengdu 610041, China
| | - Li Qiu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Li J, Sasaki GY, Dey P, Chitchumroonchokchai C, Labyk AN, McDonald JD, Kim JB, Bruno RS. Green tea extract protects against hepatic NFκB activation along the gut-liver axis in diet-induced obese mice with nonalcoholic steatohepatitis by reducing endotoxin and TLR4/MyD88 signaling. J Nutr Biochem 2018; 53:58-65. [PMID: 29190550 DOI: 10.1016/j.jnutbio.2017.10.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 10/12/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022]
Abstract
Green tea extract (GTE) reduces NFκB-mediated inflammation during nonalcoholic steatohepatitis (NASH). We hypothesized that its anti-inflammatory activities would be mediated in a Toll-like receptor 4 (TLR4)-dependent manner. Wild-type (WT) and loss-of-function TLR4-mutant (TLR4m) mice were fed a high-fat diet containing GTE at 0 or 2% for 8 weeks before assessing NASH, NFκB-mediated inflammation, TLR4 and its adaptor proteins MyD88 and TRIF, circulating endotoxin, and intestinal tight junction protein mRNA expression. TLR4m mice had lower (P<.05) body mass compared with WT mice but similar adiposity, whereas body mass and adiposity were lowered by GTE regardless of genotype. Liver steatosis, serum alanine aminotransferase, and hepatic lipid peroxidation were also lowered by GTE in WT mice, and were similarly lowered in TLR4m mice regardless of GTE. Phosphorylation of the NFκB p65 subunit and pro-inflammatory genes (TNFα, iNOS, MCP-1, MPO) were lowered by GTE in WT mice, and did not differ from the lowered levels in TLR4m mice regardless of GTE. TLR4m mice had lower TLR4 mRNA, which was also lowered by GTE in both genotypes. TRIF expression was unaffected by genotype and GTE, whereas MyD88 was lower in mice fed GTE regardless of genotype. Serum endotoxin was similarly lowered by GTE regardless of genotype. Tight junction protein mRNA levels were unaffected by genotype. However, GTE similarly increased claudin-1 mRNA in the duodenum and jejunum and mRNA levels of occludin and zonula occluden-1 in the jejunum and ileum. Thus, GTE protects against inflammation during NASH, likely by limiting gut-derived endotoxin translocation and TLR4/MyD88/NFκB activation.
Collapse
Affiliation(s)
- Jinhui Li
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Geoffrey Y Sasaki
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Priyankar Dey
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | | | - Allison N Labyk
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua D McDonald
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua B Kim
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Umasuthan N, Bathige SDNK, Thulasitha WS, Jayasooriya RGPT, Shin Y, Lee J. Identification of a gene encoding a membrane-anchored toll-like receptor 5 (TLR5M) in Oplegnathus fasciatus that responds to flagellin challenge and activates NF-κB. FISH & SHELLFISH IMMUNOLOGY 2017; 62:276-290. [PMID: 28111358 DOI: 10.1016/j.fsi.2017.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/12/2016] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
Toll-like receptor 5 (TLR5) recognizes bacterial flagellin and induces the downstream signaling through the myeloid differentiation primary response gene 88 (MyD88) protein to produce proinflammatory cytokines. In this study, we describe a TLR5 membrane form (OfTLR5M) and its adaptor protein MyD88 (OfMyD88) in rock bream, Oplegnathus fasciatus. Both Oftlr5m (6.7 kb) and Ofmyd88 (3.7 kb) genes displayed a quinquepartite structure with five exons and four introns. Protein structure of OfTLR5M revealed the conventional architecture of TLRs featured by an extracellular domain with 22 leucine rich repeats (LRR), a transmembrane domain and an endodomain with TIR motif. Primary OfTLR5M sequence shared a higher homology with teleost TLR5M. The evolutional analysis confirmed that TLR5 identified in the current study is a membrane receptor and the data further suggested the co-evolution of the membrane-anchored and soluble forms of TLR5 in teleosts. Inter-lineage comparison of gene structures in vertebrates indicated that the tlr5m gene has evolved with extensive rearrangement; whereas, the myd88 gene has maintained a stable structure throughout the evolution. Inspection of 5' flanking region of these genes disclosed the presence of several transcription factor binding sites including NF-κB. Quantitative real-time PCR (qPCR) detected Oftlr5m mRNA in eleven tissues with the highest abundance in liver. In vivo flagellin administration strongly induced the transcripts of both Oftlr5m and Ofmyd88 in gills and head kidney tissues suggesting their ligand-mediated upregulation. In a luciferase assay, HEK293T cells transiently transfected with Oftlr5m and Ofmyd88 demonstrated a higher NF-κB activity than the mock control, and the luciferase activity was intensified when cells were stimulated with flagellin. Collectively, our study represents the genomic, evolutional, expressional and functional insights into a receptor and adaptor molecules of teleost origin that are involved in flagellin sensing.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-8570, Japan
| | - S D N K Bathige
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - William Shanthakumar Thulasitha
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - R G P T Jayasooriya
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Younhee Shin
- Insilicogen Inc., Giheung-gu, Yongin-si, Gyeonggi-do, 16954, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
9
|
Li J, Sapper TN, Mah E, Moller MV, Kim JB, Chitchumroonchokchai C, McDonald JD, Bruno RS. Green tea extract treatment reduces NFκB activation in mice with diet-induced nonalcoholic steatohepatitis by lowering TNFR1 and TLR4 expression and ligand availability. J Nutr Biochem 2016; 41:34-41. [PMID: 28038359 DOI: 10.1016/j.jnutbio.2016.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/10/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022]
Abstract
NFκB-mediated inflammation contributes to liver injury during nonalcoholic steatohepatitis (NASH). We hypothesized that antiinflammatory activities of green tea extract (GTE) during NASH would lower tumor necrosis factor receptor-1 (TNFR1)- and Toll-like receptor-4 (TLR4)-mediated NFκB activation. Male C57BL6/J mice (6 weeks old) were fed a low-fat (LF) or high-fat (HF) diet for 12 weeks to induce NASH. They were then randomized to continue on these diets supplemented with 0 or 2% GTE (n=10/group) for an additional 8 weeks prior to evaluating NASH, NFκB inflammation and TNFR1 and TLR4 receptor complexes and their respective ligands, TNFα and endotoxin. HF feeding increased (P<.05) serum alanine aminotransferase (ALT) activity and histological evidence of NASH compared with LF controls. HF-mediated increases in NFκB p65 phosphorylation were also accompanied by increased serum TNFα and endotoxin concentrations, mRNA expression of hepatic TNFR1 and TLR4 and MyD88 protein levels. GTE in LF mice had no effect (P>.05) on liver histology or inflammatory responses. However, GTE in HF mice decreased biochemical and histological parameters of NASH and lowered hepatic p65 phosphorylation in association with decreased serum TNFα, mRNA expression of TNFR1 and TLR4 and MyD88 protein. GTE in HF-fed mice also lowered serum endotoxin and up-regulated mRNA expression of duodenal occludin and zonula occluden-1 and ileal occludin and claudin-1 that were otherwise lowered in expression by HF feeding. These data suggest that dietary GTE treatment reduces hepatic inflammation in NASH by decreasing proinflammatory signaling through TNFR1 and TLR4 that otherwise increases NFκB activation and liver injury.
Collapse
Affiliation(s)
- Jinhui Li
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Teryn N Sapper
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Eunice Mah
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA; Biofortis, Inc., Addison, IL 60101, USA
| | - Meredith V Moller
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua B Kim
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | | | - Joshua D McDonald
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
10
|
Tamai R, Sugawara S, Takeuchi O, Akira S, Takada H. Synergistic effects of lipopolysaccharide and interferon-γ in inducing interleukin-8 production in human monocytic THP-1 cells is accompanied by up-regulation of CD14, Toll-like receptor 4, MD-2 and MyD88 expression. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519030090030201] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipopolysaccharide (LPS) and interferon (IFN)-γ synergistically induced interleukin-8 (IL-8) production in human monocytic THP-1 cells. IFN-γ-primed THP-1 cells produced higher levels of IL-8 on stimulation with LPS than non-primed cells and the level correlated with duration of priming up to 24 h, although the level of IL-8 induced was most comparable to that induced by co-stimulation with LPS and IFN-γ . Unstimulated THP-1 cells were shown by flow cytometry to be practically devoid of membrane CD14 (mCD14). LPS and IFN-γ enhanced mCD14 and Toll-like receptor (TLR) 4 expression in THP-1 cells, respectively, and co-stimulation with LPS and IFN-γ induced higher levels of mCD14 and TLR4 expression than stimulation with either agent alone. LPS and IFN-γ alone each augmented MD-2 and MyD88 mRNA expression in THP-1 cells, and co-stimulation with LPS and IFN-γ markedly enhanced MD-2 and MyD88 mRNA expression in the cells compared to those with either LPS or IFN-γ alone. Anti-CD 14 and anti-TLR4 monoclonal antibodies almost completely inhibited IL-8 production induced by LPS plus IFN-γ in THP-1 cells. These findings suggest that combined stimulation of THP-1 cells with LPS and IFN-γ up-regulate mCD14, TLR4, MD-2 and MyD88 expression by these cells, which might be involved in synergistic IL-8 production by the cells.
Collapse
Affiliation(s)
- Riyoko Tamai
- Department of Microbiology and Immunology, Tohoku University School of Dentistry, Sendai, Japan
| | - Shunji Sugawara
- Department of Microbiology and Immunology, Tohoku University School of Dentistry, Sendai, Japan
| | - Osamu Takeuchi
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Haruhiko Takada
- Department of Microbiology and Immunology, Tohoku University School of Dentistry, Sendai, Japan,
| |
Collapse
|
11
|
Sun Q, Dai Y, Zhang X, Hu YC, Zhang D, Li W, Zhang XS, Zhu JH, Zhou ML, Hang CH. Expression and cell distribution of myeloid differentiation primary response protein 88 in the cerebral cortex following experimental subarachnoid hemorrhage in rats: a pilot study. Brain Res 2013; 1520:134-44. [PMID: 23684713 DOI: 10.1016/j.brainres.2013.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/18/2013] [Accepted: 05/02/2013] [Indexed: 11/24/2022]
Abstract
Subarachnoid hemorrhage (SAH) which is mostly caused by aneurysm rupture causes a lot of death every year. Convincing evidence can be made that inflammation contributes to the poor outcome caused by SAH. Toll like receptors (TLRs), nuclear factor-kappaB (NF-κB), Interleukin 1β (IL-1β) and tumor necrosis factor-α (TNF-α) are involved in the damaging inflammation process after SAH. Myeloid differentiation primary response protein 88 (MyD88) is essential to deliver TLRs signals down to NF-κB and pro-inflammatory factors. The study aims to detect the expression level of MyD88 and know more about the role of MyD88 after SAH. Sprague Dawley (SD) rats were randomly divided into sham group and SAH groups at 2h, 6h, 12h and on day 1, day 2, day 3, day 5 and day 7. SAH groups suffered experimental subarachnoid hemorrhage by injection of 0.3 ml autoblood into the prechiasmatic cistern. MyD88 expression is measured by western blot analysis, real-time polymerase chain reaction (PCR), immunohistochemistry and immunofluorescence. The levels of TNF-α and IL-1β were measured by real-time PCR. Our results demonstrated MyD88 expression was increased after SAH, and peaked on day 1 and day 5, which showed a parallel time course to the up-regulation of IL-1β, there was a highly positive relationship between them. Immunohistochemistry and immunofluorescence results indicated up-regulated MyD88 was mainly located in neurons while over expressed MyD88 could also be found in astrocytes and microglia. These results might have important implications during the administration of specific MyD88 antagonists in order to prevent or reduce inflammatory response following SAH.
Collapse
Affiliation(s)
- Qing Sun
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Serezani CH, Lewis C, Jancar S, Peters-Golden M. Leukotriene B4 amplifies NF-κB activation in mouse macrophages by reducing SOCS1 inhibition of MyD88 expression. J Clin Invest 2011; 121:671-82. [PMID: 21206089 DOI: 10.1172/jci43302] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 11/03/2010] [Indexed: 12/28/2022] Open
Abstract
Activation of NF-κB and 5-lipoxygenase-mediated (5-LO-mediated) biosynthesis of the lipid mediator leukotriene B4 (LTB4) are pivotal components of host defense and inflammatory responses. However, the role of LTB4 in mediating innate immune responses elicited by specific TLR ligands and cytokines is unknown. Here we have shown that responses dependent on MyD88 (an adaptor protein that mediates signaling through all of the known TLRs, except TLR3, as well as IL-1β and IL-18) are reduced in mice lacking either 5-LO or the LTB4 receptor BTL1, and that macrophages from these mice are impaired in MyD88-dependent activation of NF-κB. This macrophage defect was associated with lower basal and inducible expression of MyD88 and reflected impaired activation of STAT1 and overexpression of the STAT1 inhibitor SOCS1. Expression of MyD88 and responsiveness to the TLR4 ligand LPS were decreased by Stat1 siRNA silencing in WT macrophages and restored by Socs1 siRNA in 5-LO-deficient macrophages. These results uncover a pivotal role in macrophages for the GPCR BLT1 in regulating activation of NF-κB through Stat1-dependent expression of MyD88.
Collapse
Affiliation(s)
- Carlos H Serezani
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan 48109-5642, USA.
| | | | | | | |
Collapse
|
13
|
Essafi-Benkhadir K, Grosso S, Puissant A, Robert G, Essafi M, Deckert M, Chamorey E, Dassonville O, Milano G, Auberger P, Pagès G. Dual role of Sp3 transcription factor as an inducer of apoptosis and a marker of tumour aggressiveness. PLoS One 2009; 4:e4478. [PMID: 19212434 PMCID: PMC2636865 DOI: 10.1371/journal.pone.0004478] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 01/08/2009] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The ambiguous role of transcription factor Sp3 for tumour progression is still debated since it was described as a transcriptional repressor or activator. Here we tried to decipher the molecular mechanisms implicated in Sp3 accumulation observed in aggressive tumours. METHODOLOGY We generated normal and tumour cell lines conditionally expressing Sp3. Cell growth was analyzed in vitro and after inoculation in nude mice. Apoptosis was assessed by pan- caspase activity assays, by counting fragmented nuclei and by determination of caspase 9 cleavage. Gene expression was determined by quantitative PCR. Cleavage by different caspases was performed after in vitro translation of the Sp3 cDNA in the presence of [S(35)] labelled methionine. Different tumour cell lines and head and neck tumour samples were tested for the presence of Sp3 by western blots. Correlation between Sp3 expression and overall survival has been statistically determined. PRINCIPAL FINDINGS Conditional over-expression of Sp3 induces apoptosis and modifies expression of genes implicated in the regulation of cell cycle and pro and anti apoptotic genes. Sp3 over-expression strongly reduces the development of tumours in nude mice confirming its pro-apoptotic potential in vivo. However, cells can survive to apoptosis through selective Sp3 cleavage by caspase. Sp3 induction in established tumours resulted in transient regression then progression. Progression coincides with re-accumulation of the full length form of Sp3. Sp3 is over-expressed in tumour cell lines of different origins. The presence of high levels of the full-length form of Sp3 indicates a poor prognosis for overall survival of patients with head and neck tumours. CONCLUSIONS Full length Sp3 accumulation highlights bypass of tumour cell apoptotic capacities and is indicative of head and neck tumours aggressiveness.
Collapse
Affiliation(s)
- Khadija Essafi-Benkhadir
- University of Nice-Sophia Antipolis, Institute of Developmental Biology and Cancer Research UMR CNRS 6543, Centre Antoine Lacassagne, Nice, France
| | - Sébastien Grosso
- University of Nice-Sophia Antipolis, INSERM, U895, Cell Death Differentiation and Cancer Team, Equipe labellisée par la Ligue Nationale contre le Cancer, Faculty of Medicine, Nice, France
| | - Alexandre Puissant
- University of Nice-Sophia Antipolis, INSERM, U895, Cell Death Differentiation and Cancer Team, Equipe labellisée par la Ligue Nationale contre le Cancer, Faculty of Medicine, Nice, France
| | - Guillaume Robert
- University of Nice-Sophia Antipolis, INSERM, U895, Cell Death Differentiation and Cancer Team, Equipe labellisée par la Ligue Nationale contre le Cancer, Faculty of Medicine, Nice, France
| | - Makram Essafi
- University of Nice-Sophia Antipolis, INSERM, U576, Regulation of immunity and inflammatory reactions, Nice, France
| | - Marcel Deckert
- University of Nice-Sophia Antipolis, INSERM, U576, Regulation of immunity and inflammatory reactions, Nice, France
| | | | | | - Gérard Milano
- Oncopharmacology unit (EA 3836), Centre Antoine Lacassagne, Nice, France
| | - Patrick Auberger
- University of Nice-Sophia Antipolis, INSERM, U895, Cell Death Differentiation and Cancer Team, Equipe labellisée par la Ligue Nationale contre le Cancer, Faculty of Medicine, Nice, France
| | - Gilles Pagès
- University of Nice-Sophia Antipolis, Institute of Developmental Biology and Cancer Research UMR CNRS 6543, Centre Antoine Lacassagne, Nice, France
- * E-mail:
| |
Collapse
|
14
|
Chen R, Alvero AB, Silasi DA, Kelly MG, Fest S, Visintin I, Leiser A, Schwartz PE, Rutherford T, Mor G. Regulation of IKKbeta by miR-199a affects NF-kappaB activity in ovarian cancer cells. Oncogene 2008; 27:4712-23. [PMID: 18408758 DOI: 10.1038/onc.2008.112] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer progression is an abnormal form of tissue repair characterized by chronic inflammation. IkappaB kinase-beta (IKKbeta) required for nuclear factor-kappaB (NF-kappaB) activation plays a critical role in this process. Using EOC cells isolated from malignant ovarian cancer ascites and solid tumors, we identified IKKbeta as a major factor promoting a functional TLR-MyD88-NF-kappaB pathway that confers to EOC cell the capacity to constitutively secrete proinflammatory/protumor cytokines and therefore promoting tumor progression and chemoresistance. Furthermore, we describe for the first time the identification of the microRNA hsa-miR-199a as a regulator of IKKbeta expression. Our study describes the property of ovarian cancer cells to enhance the inflammatory microenvironment as a result of the expression of an active IKKbeta pathway. Identification of these markers in patients' tumor samples may facilitate the adequate selection of treatment and open new venues for the development of effective therapy for chemoresistant ovarian cancers.
Collapse
Affiliation(s)
- R Chen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wu M, Xu Y, Lin S, Zhang X, Xiang L, Yuan Z. Hepatitis B virus polymerase inhibits the interferon-inducible MyD88 promoter by blocking nuclear translocation of Stat1. J Gen Virol 2008; 88:3260-3269. [PMID: 18024894 DOI: 10.1099/vir.0.82959-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previous studies have suggested that hepatitis B virus (HBV) blocks expression of the alpha interferon (IFN-alpha)-inducible myeloid differential primary response protein (MyD88) gene. To study the molecular mechanism(s) of the inhibition of MyD88 expression by HBV, MyD88 promoter reporter plasmids and vectors expressing different HBV viral proteins were constructed. Co-transfection experiments showed that IFN-induced MyD88 promoter activity was inhibited by HBV polymerase expression in a dose-dependent manner and that the terminal protein (TP) domain of HBV polymerase was responsible for this antagonistic activity. Analysis of site mutants showed that the region targeted by the polymerase protein contained the signal transducer and activator of transcription (Stat) binding site. Chromatin immunoprecipitation analysis showed that the IFN-induced DNA-binding activity of Stat1 was affected. Further study demonstrated that the HBV polymerase protein inhibited the Stat1 nuclear translocation induced by IFN-alpha, but did not induce Stat1 degradation nor interfere with its phosphorylation. In addition, HBV polymerase could inhibit the transcriptional activity of other IFN-stimulated response element-driven promoters and the expression of interferon-stimulated genes (ISGs), such as Stat1 and ISG15. In summary, these results indicate that HBV polymerase is a general inhibitor of IFN signalling and can inhibit IFN-inducible MyD88 expression by inhibiting the activity of the MyD88 promoter through blocking the nuclear translocation of Stat1.
Collapse
Affiliation(s)
- Min Wu
- Department of Research, Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China.,Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Xu
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shanshan Lin
- Institutes of Medical Microbiology and Biomedical Sciences, Fudan University, Shanghai 200032, China.,Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaonan Zhang
- Department of Research, Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China
| | - Li Xiang
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhenghong Yuan
- Institutes of Medical Microbiology and Biomedical Sciences, Fudan University, Shanghai 200032, China.,Department of Research, Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China.,Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
16
|
Passioura T, Dolnikov A, Shen S, Symonds G. N-Ras–Induced Growth Suppression of Myeloid Cells Is Mediated by IRF-1. Cancer Res 2005. [DOI: 10.1158/0008-5472.797.65.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Activating mutations in ras oncogenes occur at high frequency in human malignancies and expression of activated ras in immortalized cells lines is generally transforming. However, somewhat paradoxically, ectopic expression of ras in some myeloid cell lines has been shown to induce growth suppression associated with up-regulation of the cyclin-dependent kinase inhibitor p21CIP1/WAF1 in a p16INK4a, p15INK4b, and p53 independent fashion. We have used cDNA array technology to compare the expression profile induced by activated N-ras (N-rasG13R) in growth-suppressed myeloid cells with that induced in myeloid cells, which are transformed by N-rasG13R. The expression profile induced in growth suppressed cells was consistent with differentiation and included the up-regulation of the transcription factor IFN regulatory factor-1 (IRF-1), a known transcriptional activator of p21CIP/WAF1 expression and a target of oncogenic mutations associated with myeloid leukemia. Antisense suppression of IRF-1 prevented N-rasG13R–associated growth arrest and up-regulation of p21CIP1/WAF1. These results define a novel tumor suppressive response to oncogenic signaling and provide a mechanistic link between growth suppression and differentiation in myeloid cells.
Collapse
Affiliation(s)
- Toby Passioura
- 1School of Medical Sciences, The University of New South Wales, Kensington and
| | - Alla Dolnikov
- 1School of Medical Sciences, The University of New South Wales, Kensington and
- 2Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Sylvie Shen
- 1School of Medical Sciences, The University of New South Wales, Kensington and
- 2Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| | - Geoff Symonds
- 1School of Medical Sciences, The University of New South Wales, Kensington and
- 2Children's Cancer Institute Australia, Randwick, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Hardy MP, McGGettrick AF, O'Neill LAJ. Transcriptional regulation of the human TRIF (TIR domain-containing adaptor protein inducing interferon beta) gene. Biochem J 2004; 380:83-93. [PMID: 14960149 PMCID: PMC1224148 DOI: 10.1042/bj20040030] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 02/06/2004] [Accepted: 02/09/2004] [Indexed: 01/24/2023]
Abstract
TRIF [TIR (Toll/interleukin-1 receptor) domain-containing adaptor protein inducing interferon beta; also known as TICAM-1 (TIR-containing adaptor molecule-1)] is a key adaptor for TLR3 (Toll-like receptor 3)- and TLR4-mediated signalling. We have performed a detailed annotation of the human TRIF gene and fine analysis of the basal and inducible promoter elements lying 5' to the site of initiation of transcription. Human TRIF maps to chromosome 19p13.3 and is flanked upstream by TIP47, which encodes the mannose 6-phosphate receptor binding protein, and downstream by a gene encoding FEM1a, a human homologue of the Caenorhabditis elegans Feminisation-1 gene. Using promoter-reporter deletion constructs, we identified a distal region with the ability to negatively regulate basal transcription and a proximal region containing an Sp1 (stimulating protein 1) site that confers approx. 75% of basal transcriptional activity. TRIF expression can be induced by multiple stimuli, such as the ligands for TLR2, TLR3 and TLR4, and by the pro-inflammatory cytokines tumour necrosis factor alpha and interleukin-1alpha. All of these stimuli act via an NF-kappaB (nuclear factor-kappaB) motif at position -127. In spite of the presence of a STAT1 (signal transduction and activators of transcription 1) motif at position -330, the addition of type I or type II interferon had no effect on TRIF activity. The human TRIF gene would therefore appear to be regulated primarily by NF-kappaB.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/biosynthesis
- Adaptor Proteins, Vesicular Transport/genetics
- Animals
- Base Sequence
- Binding Sites
- Cells, Cultured
- Chromosome Mapping
- Chromosomes, Human, Pair 19/genetics
- Gene Expression Regulation
- Humans
- Interleukin-1/physiology
- Luciferases/genetics
- Membrane Glycoproteins/physiology
- Mice
- Molecular Sequence Data
- NF-kappa B/physiology
- Promoter Regions, Genetic/genetics
- Protein Structure, Tertiary
- Receptors, Cell Surface/physiology
- Sequence Alignment
- Sequence Homology, Nucleic Acid
- Sp1 Transcription Factor/physiology
- Toll-Like Receptor 2
- Toll-Like Receptor 3
- Toll-Like Receptor 4
- Toll-Like Receptors
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- Matthew P Hardy
- Department of Biochemistry and Biotechnology Institute, Trinity College, University of Dublin, College Green, Dublin 2, Ireland.
| | | | | |
Collapse
|
18
|
Mitsui H, Watanabe T, Saeki H, Mori K, Fujita H, Tada Y, Asahina A, Nakamura K, Tamaki K. Differential Expression and Function of Toll-like Receptors in Langerhans Cells: Comparison with Splenic Dendritic Cells. J Invest Dermatol 2004; 122:95-102. [PMID: 14962096 DOI: 10.1046/j.0022-202x.2003.22116.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Toll-like receptors are key elements in pathogen recognition by the host immune system. Although the expression pattern and functions of Toll-like receptors have been studied in a variety of cytokine-induced dendritic cells, it remains unknown whether Toll-like receptor stimulation influences maturation and cytokine production of authentic Langerhans cells. We purified murine epidermal Langerhans cells along with splenic dendritic cell using a panning method. Langerhans cells expressed Toll-like receptor 2, 4, and 9 but not 7, the pattern of which suggests Langerhans cells are the closest to one of the murine dendritic cell lineage, CD11c+11b+8 alpha-4-. Then we stimulated Toll-like receptor 2, 4, and 9 with the corresponding ligand, Staphylococcus aureus Cowan 1, lipopolysaccharide, and CpG, and found that all of these stimuli upregulated expression of B7-1 and B7-2 in splenic dendritic cells but not in Langerhans cells. As in human Langerhans cells, stimulation of murine Langerhans cells with Staphylococcus aureus Cowan 1, lipopolysaccharide, and CpG overall resulted in T helper 1-polarizing cytokine production (namely, induction of IL-12p40 and inhibition of TARC (thymus and activation-regulated chemokine)/CCL17). Exceptionally, lipopolysaccharide exhibited no effect on IL-12p40 production by Langerhans cells and inhibited IL-12p40 production by splenic dendritic cells. These results may represent the functional heterogeneity between Langerhans cells and splenic dendritic cells, and are important for better understanding of innate immunity to bacterial infections differentially regulated in the skin and spleen. MeSH terms: Toll-like receptors, Langerhans cells, dendritic cells.
Collapse
Affiliation(s)
- Hiroshi Mitsui
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Messmer D, Jacqué JM, Santisteban C, Bristow C, Han SY, Villamide-Herrera L, Mehlhop E, Marx PA, Steinman RM, Gettie A, Pope M. Endogenously expressed nef uncouples cytokine and chemokine production from membrane phenotypic maturation in dendritic cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4172-82. [PMID: 12370346 DOI: 10.4049/jimmunol.169.8.4172] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Immature dendritic cells (DCs), unlike mature DCs, require the viral determinant nef to drive immunodeficiency virus (SIV and HIV) replication in coculture with CD4(+) T cells. Since immature DCs may capture and get infected by virus during mucosal transmission, we hypothesized that Nef associated with the virus or produced during early replication might modulate DCs to augment virus dissemination. Adenovirus vectors expressing nef were used to introduce nef into DCs in the absence of other immunodeficiency virus determinants to examine Nef-induced changes that might activate immature DCs to acquire properties of mature DCs and drive virus replication. Nef expression by immature human and macaque DCs triggered IL-6, IL-12, TNF-alpha, CXCL8, CCL3, and CCL4 release, but without up-regulating costimulatory and other molecules characteristic of mature DCs. Coincident with this, nef-expressing immature DCs stimulated stronger autologous CD4(+) T cell responses. Both SIV and HIV nef-expressing DCs complemented defective SIVmac239 delta nef, driving replication in autologous immature DC-T cell cultures. In contrast, if DCs were activated after capturing delta nef, virus growth was not exacerbated. This highlights one way in which nef-defective virus-bearing immature DCs that mature while migrating to draining lymph nodes could induce stronger immune responses in the absence of overwhelming productive infection (unlike nef-containing wild-type virus). Therefore, Nef expressed in immature DCs signals a distinct activation program that promotes virus replication and T cell recruitment but without complete DC maturation, thereby lessening the likelihood that wild-type virus-infected immature DCs would activate virus-specific immunity, but facilitating virus dissemination.
Collapse
Affiliation(s)
- Davorka Messmer
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The MyD88 adapter protein links members of the toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) superfamily to the downstream activation of nuclear factor-kappaB and mitogen-activated protein kinases. Although originally identified as a myeloid-differentiation marker, MyD88 is now known to play an essential role in the innate immune response of insects and mammals. The generation of MyD88-deficient mice, as well as the identification of MyD88-related proteins and regulators of MyD88 signaling, has revealed new and important insights into the function of MyD88.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Animals
- Antigens, Differentiation/genetics
- Antigens, Differentiation/immunology
- Antigens, Differentiation/physiology
- Bacterial Outer Membrane Proteins/immunology
- Bacterial Outer Membrane Proteins/physiology
- Humans
- Molecular Sequence Data
- Myeloid Differentiation Factor 88
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/physiology
- Receptors, Interleukin-1/metabolism
- Receptors, Interleukin-1/physiology
- Sequence Homology, Amino Acid
- Signal Transduction
Collapse
Affiliation(s)
- Sophie Janssens
- Dept of Molecular Biomedical Research, Unit of Molecular Signal Transduction in Inflammation, Ghent University-VIB, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | |
Collapse
|
21
|
da Silva AJ, Brickelmaier M, Majeau GR, Lukashin AV, Peyman J, Whitty A, Hochman PS. Comparison of gene expression patterns induced by treatment of human umbilical vein endothelial cells with IFN-alpha 2b vs. IFN-beta 1a: understanding the functional relationship between distinct type I interferons that act through a common receptor. J Interferon Cytokine Res 2002; 22:173-88. [PMID: 11911800 DOI: 10.1089/107999002753536149] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We analyzed whether interferon-alpha 2b (IFN-alpha 2b) and IFN-beta 1a engage their common receptor to generate activated receptor complexes possessing distinct signaling properties. Human vascular endothelial cells (HUVEC) are 100-1000-fold more sensitive to IFN-beta 1a than to IFN-alpha 2b in in vitro assays. An nonarray-based expression profiling (GeneCalling) technology was employed to compare the patterns and levels of gene expression induced by these IFN as the broadest means by which signaling events could be measured. To distinguish subtype-related differences from dose-related effects, RNA was prepared from HUVEC treated with 50-5000 pg/ml of each IFN. The results showed that at 50 pg/ml IFN, only a subset of the genes induced by IFN-beta 1a were also induced by IFN-alpha 2b and that individual genes were induced to higher levels by IFN-beta 1a. In contrast, at 5000 pg/ml, both subtypes induced essentially identical sets of genes to similar levels of expression. No genes were seen to be induced uniquely by IFN-alpha 2b but not by IFN-beta 1a. The results show that the two IFN are intrinsically capable of inducing similar gene induction responses and do not provide evidence that they generate activated receptor complexes possessing distinct signaling properties. In contrast, the two IFN generate gene induction patterns that are both qualitatively and quantitatively distinct at subsaturating and potentially physiologically more relevant concentrations.
Collapse
|
22
|
Miettinen M, Sareneva T, Julkunen I, Matikainen S. IFNs activate toll-like receptor gene expression in viral infections. Genes Immun 2001; 2:349-55. [PMID: 11607792 DOI: 10.1038/sj.gene.6363791] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2001] [Revised: 07/05/2001] [Accepted: 07/19/2001] [Indexed: 01/20/2023]
Abstract
Toll-like receptors (TLRs) mediate innate immune responses to microbes. TLR2, TLR5, TLR6, and TLR9 have been implicated in responses to bacterial components, and TLR4 is the receptor for Gram-negative bacteria. Recently, TLR4 was described to function in respiratory syncytial virus-induced NF-kappaB activation. Here we have analyzed TLR1-9 mRNA expression in human primary macrophages infected with influenza A and Sendai viruses. TLR1, TLR2, TLR4, TLR6, and TLR8 mRNAs were expressed at basal levels in macrophages. Viral infection enhanced TLR1, TLR2, TLR3, and TLR7 mRNA expression, and neutralizing anti-IFN-alpha/beta antibodies downregulated gene expression of these TLRs. Exogenously added IFN-alpha upregulated TLR1, TLR2, TLR3, and TLR7 mRNA expression in macrophages, as well as TLR3 mRNA expression in epithelial and endothelial cell lines. IFN-gamma enhanced the expression of TLR1 and TLR2 mRNA in macrophages, and TLR3 in epithelial and endothelial cells. The data suggests a novel role for IFNs in the activation of innate immunity.
Collapse
Affiliation(s)
- M Miettinen
- Department of Microbiology, National Public Health Institute, Helsinki, Finland
| | | | | | | |
Collapse
|
23
|
Uchijima M, Raz E, Carson DA, Nagata T, Koide Y. Identification of immunostimulatory DNA-induced genes by suppression subtractive hybridization. Biochem Biophys Res Commun 2001; 286:688-91. [PMID: 11520051 DOI: 10.1006/bbrc.2001.5453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacterial DNA and related synthetic immunostimulatory oligodeoxyribo-nucleotides (ISS-ODN) have stimulatory effects on mammalian immune cells through a Toll-like receptor, TLR9. Genes upregulated in ISS-ODN-stimulated immune cells are obviously significant to delineate the mechanism of the induced innate immunity. Employing suppression subtractive hybridization (SSH), we have generated a profile of genes induced by ISS-ODN in spleen cells. Sequencing of 87 clones isolated by the SSH showed 39 clones corresponding to known mouse genes in the public database. Eleven clones appeared to possess 80-90% homology with known mouse genes and the remaining 37 clones showed no significant homology with any known mouse genes. A series of known genes which have not previously been reported to be induced with ISS-ODN were confirmed to be induced in ISS-ODN-stimulated bone marrow-derived macrophages: NF-kappaB p105, IRF-1, PA28beta, IRG2, and MyD88. These genes were suggested to be involved in the molecular process of innate host defense mechanisms.
Collapse
Affiliation(s)
- M Uchijima
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Hamamatsu 431-3192, Japan.
| | | | | | | | | |
Collapse
|
24
|
Lawless VA, Zhang S, Ozes ON, Bruns HA, Oldham I, Hoey T, Grusby MJ, Kaplan MH. Stat4 regulates multiple components of IFN-gamma-inducing signaling pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6803-8. [PMID: 11120802 DOI: 10.4049/jimmunol.165.12.6803] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Stat4 is activated in response to IL-12. Most functions of IL-12, including the induction of IFN-gamma, are compromised in the absence of Stat4. Since the precise role of Stat4 in IFN-gamma induction has not been established, experiments were conducted to examine Stat4 activation of IFN-gamma and other genes required for cytokine-induced expression of IFN-gamma. We first examined IL-12 signaling components. Basal expression of IL-12Rss1 and IL-12Rss2 is decreased in Stat4-deficient cells compared with that in control cells. However, IL-12 was still capable of inducing equivalent phosphorylation of Jak2 and Tyk2 in wild-type and Stat4-deficient activated T cells. We have further determined that other cytokine signaling pathways that induce IFN-gamma production are defective in the absence of Stat4. IL-18 induces minimal IFN-gamma production from Stat4-deficient activated T cells compared with control cells. This is due to defective IL-18 signaling, which results from the lack of IL-12-induced, and Stat4-dependent, expression of the IL-18R. Following IL-12 pretreatment to induce IL-18R, wild-type, but not Stat4-deficient, activated T cells demonstrated IL-18-induced NF-kappaB DNA-binding activity. In addition, IL-12-pretreated Stat4-deficient activated T cells have minimal IFN-gamma production followed by stimulation with IL-18 alone or in combination with IL-12 compared with control cells. Thus, Stat4 activation by IL-12 is required for the function of multiple cytokine pathways that result in induction of IFN-gamma.
Collapse
Affiliation(s)
- V A Lawless
- Department of Microbiology and Immunology and Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Sareneva T, Julkunen I, Matikainen S. IFN-alpha and IL-12 induce IL-18 receptor gene expression in human NK and T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1933-8. [PMID: 10925275 DOI: 10.4049/jimmunol.165.4.1933] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-18 is a proinflammatory cytokine that enhances innate and specific Th1 immune responses. During microbial infections, IL-18 is produced by activated macrophages. IL-18 exerts its effects in synergy with IFN-alpha or IL-12 to induce IFN-gamma. Here we show that in human NK and T cells IFN-alpha and IL-12 strongly up-regulate mRNA expression of the IL-18R components, accessory protein-like (AcPL) and IL-1R-related protein (IL-1Rrp). In addition, IFN-alpha enhanced the expression of MyD88, an adaptor molecule involved in IL-18 signaling. Pretreatment of T cells with IFN-alpha or IL-12 enhanced IL-18-induced NF-kappaB activation and sensitized the cells to respond to lower concentrations of IL-18. AcPL and IL-1Rrp genes were strongly expressed in T cells polarized with IL-12, whereas in IL-4-polarized cells these genes were expressed at very low levels, indicating that AcPL and IL-1Rrp genes are preferentially expressed in Th1 cells. In conclusion, the results suggest that IFN-alpha and IL-12 enhance innate as well as Th1 immune response by inducing IL-18R expression.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adjuvants, Immunologic/physiology
- Antigens, Differentiation/biosynthesis
- Antigens, Differentiation/genetics
- Cell Line
- Cell Polarity/immunology
- Cells, Cultured
- DNA/metabolism
- Drug Synergism
- Gene Expression Regulation/immunology
- Humans
- Interferon-alpha/physiology
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Interleukin-12/physiology
- Interleukin-18/physiology
- Interleukin-18 Receptor alpha Subunit
- Interleukin-18 Receptor beta Subunit
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocyte Activation/immunology
- Myeloid Differentiation Factor 88
- NF-kappa B/metabolism
- Protein Binding/immunology
- Protein Biosynthesis
- Proteins/genetics
- RNA, Messenger/biosynthesis
- Receptors, Immunologic
- Receptors, Interleukin/biosynthesis
- Receptors, Interleukin/genetics
- Receptors, Interleukin-1/biosynthesis
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-12
- Receptors, Interleukin-18
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- T Sareneva
- Department of Virology, National Public Health Institute, Helsinki, Finland
| | | | | |
Collapse
|
26
|
Chatterjee-Kishore M, Wright KL, Ting JP, Stark GR. How Stat1 mediates constitutive gene expression: a complex of unphosphorylated Stat1 and IRF1 supports transcription of the LMP2 gene. EMBO J 2000; 19:4111-22. [PMID: 10921891 PMCID: PMC306607 DOI: 10.1093/emboj/19.15.4111] [Citation(s) in RCA: 281] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Analysis of mRNA levels in cells that express or lack signal transducers and activators of transcription 1 (Stat1) reveals that Stat1 mediates the constitutive transcription of many genes. Expression of the low molecular mass polypeptide 2 (LMP2), which requires Stat1, has been studied in detail. The overlapping interferon consensus sequence 2/gamma-interferon-activated sequence (ICS-2/GAS) elements in the LMP2 promoter bind to interferon regulatory factor 1 (IRF1) and Stat1 and are occupied constitutively in vivo. The point mutant of Stat1, Y701F, which does not form dimers involving SH2-phosphotyrosine interactions, binds to the GAS element and supports LMP2 expression. Unphosphorylated Stat1 binds to IRF1 directly and we conclude that this complex uses the ICS-2/GAS element to mediate constitutive LMP2 transcription in vivo. The promoter of the IRF1 gene, which also contains a GAS site but not an adjacent ICS-2 site, is not activated by Stat1 Y701F. The promoters of other genes whose constitutive expression requires Stat1 may also utilize complexes of unphosphorylated Stat1 with IRF1 or other transcription factors.
Collapse
Affiliation(s)
- M Chatterjee-Kishore
- Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
27
|
Chatterjee-Kishore M, van Den Akker F, Stark GR. Adenovirus E1A down-regulates LMP2 transcription by interfering with the binding of stat1 to IRF1. J Biol Chem 2000; 275:20406-11. [PMID: 10764778 DOI: 10.1074/jbc.m001861200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The LMP2 gene, which encodes a protein required for efficient presentation of viral antigens, requires both unphosphorylated Stat1 and IRF1 for basal expression. LMP2 expression is down-regulated by the adenovirus protein E1A, which binds to Stat1 and CBP/p300, and by the mutant E1A protein RG2, which binds to Stat1 but not to CBP/p300, but not by the mutant protein Delta2-36, which does not bind to either Stat1 or CBP/p300. Stat1 and IRF1 associate in untreated cells and bind as a complex to the overlapping ICS-2/GAS element of the LMP2 promoter. E1A interferes with the formation of this complex by occupying domains of Stat1 that bind to IRF1. These results reveal how adenovirus infection attenuates LMP2 expression, thereby interfering with the presentation of viral antigens.
Collapse
Affiliation(s)
- M Chatterjee-Kishore
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44145, USA
| | | | | |
Collapse
|
28
|
Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S, Janeway CA. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 1998; 2:253-8. [PMID: 9734363 DOI: 10.1016/s1097-2765(00)80136-7] [Citation(s) in RCA: 1196] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Toll-mediated signaling cascade using the NF-kappaB pathway has been shown to be essential for immune responses in adult Drosophila, and we recently reported that a human homolog of the Drosophila Toll protein induces various immune response genes via this pathway. We now demonstrate that signaling by the human Toll receptor employs an adaptor protein, MyD88, and induces activation of NF-kappaB via the Pelle-like kinase IRAK and the TRAF6 protein, similar to IL-1R-mediated NF-kappaB activation. However, we find that Toll and IL-1R signaling pathways are not identical with respect to AP-1 activation. Finally, our findings implicate MyD88 as a general adaptor/regulator molecule for the Toll/IL-1R family of receptors for innate immunity.
Collapse
Affiliation(s)
- R Medzhitov
- Section of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Burns K, Martinon F, Esslinger C, Pahl H, Schneider P, Bodmer JL, Di Marco F, French L, Tschopp J. MyD88, an adapter protein involved in interleukin-1 signaling. J Biol Chem 1998; 273:12203-9. [PMID: 9575168 DOI: 10.1074/jbc.273.20.12203] [Citation(s) in RCA: 483] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MyD88 has a modular organization, an N-terminal death domain (DD) related to the cytoplasmic signaling domains found in many members of the tumor necrosis factor receptor (TNF-R) superfamily, and a C-terminal Toll domain similar to that found in the expanding family of Toll/interleukin-1-like receptors (IL-1R). This dual domain structure, together with the following observations, supports a role for MyD88 as an adapter in IL-1 signal transduction; MyD88 forms homodimers in vivo through DD-DD and Toll-Toll interactions. Overexpression of MyD88 induces activation of the c-Jun N-terminal kinase (JNK) and the transcription factor NF-kappaB through its DD. A point mutation in MyD88, MyD88-lpr (F56N), which prevents dimerization of the DD, also blocks induction of these activities. MyD88-induced NF-kappaB activation is inhibited by the dominant negative versions of TRAF6 and IRAK, which also inhibit IL-1-induced NF-kappaB activation. Overexpression of MyD88-lpr or MyD88-Toll (expressing only the Toll domain) acted to inhibit IL-1-induced NF-kappaB and JNK activation in a 293 cell line overexpressing the IL-1RI. MyD88 coimmunoprecipitates with the IL-1R signaling complex in an IL-1-dependent manner.
Collapse
Affiliation(s)
- K Burns
- Institute of Biochemistry, Lausanne Branch, University of Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Research over the past few years has begun to provide significant advances in our understanding of the interplay between the innate and adaptive immune systems. New findings in several model systems reveal remarkable parallels and conservation of ancient host defense pathways in organisms separated by over a billion years of evolution.
Collapse
Affiliation(s)
- R Medzhitov
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
31
|
Hardiman G, Jenkins NA, Copeland NG, Gilbert DJ, Garcia DK, Naylor SL, Kastelein RA, Bazan JF. Genetic structure and chromosomal mapping of MyD88. Genomics 1997; 45:332-9. [PMID: 9344657 DOI: 10.1006/geno.1997.4940] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The myeloid differentiation (MyD) marker MyD88 was initially characterized as a primary response gene, upregulated in mouse M1 myeloleukemic cells in response to differentiation induced by interleukin-6. Subsequent analysis revealed that MyD88 possesses a unique modular structure, which consists of an N-terminal "death domain," similar to the intracellular segments of TNF receptor 1 and Fas, and a C-terminal region related to the cytoplasmic domains of the Drosophila morphogen Toll and vertebrate interleukin-1 receptors. In this report we describe the cloning and gene structure of mouse MyD88. The complete coding sequence of mouse MyD88 spans five exons, with the first exon encoding the complete death domain. Zooblot analysis revealed that MyD88 is an evolutionarily conserved gene. MyD88 was localized to the distal region of mouse chromosome 9 by interspecific backcross mapping. The human homolog (hMyD88) was mapped to chromosome 3p22-p21.3 by PCR analysis of a human chromosome 3 somatic cell hybrid mapping panel. Northern blot analysis revealed widespread expression of MyD88 in many adult mouse tissues, and RT-PCR studies detected MyD88 mRNA in T and B cell lines and differentiating embryonic stem cells. The broad expression pattern demonstrates that mouse MyD88 expression is not restricted to cells of myeloid lineage as was originally believed.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Animals
- Antigens, Differentiation
- Base Sequence
- Chromosome Mapping
- Chromosomes, Human, Pair 3/genetics
- Crosses, Genetic
- DNA Primers/genetics
- DNA, Complementary/genetics
- Evolution, Molecular
- Exons
- Female
- Gene Expression
- Genetic Markers
- Humans
- Hybrid Cells
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Muridae
- Myeloid Differentiation Factor 88
- Polymerase Chain Reaction
- Proteins/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Immunologic
- Tissue Distribution
Collapse
Affiliation(s)
- G Hardiman
- Department of Molecular Biology, DNAX Research Institute, Palo Alto, California 94304-1104, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang Y, O'Neal KD, Yu-Lee L. Multiple prolactin (PRL) receptor cytoplasmic residues and Stat1 mediate PRL signaling to the interferon regulatory factor-1 promoter. Mol Endocrinol 1997; 11:1353-64. [PMID: 9259325 DOI: 10.1210/mend.11.9.9982] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Nb2 PRL receptor (PRL-R) is known to mediate PRL signaling to the interferon (IFN) regulatory factor-1 (IRF-1) gene via the family of signal transducers and activators of transcription or Stats. To analyze the components of the PRL-R/Stat/IRF-1 signaling pathway, various PRL-R, Stat, and IRF-1-CAT reporter constructs were transiently cotransfected into COS cells. First, mutations in the IFNgamma-activated sequence (GAS), either multimerized or in the context of the 1.7-kb IRF-1 promoter, failed to mediate a PRL response, showing that the IRF-1 GAS is a target of PRL signaling. Next, pairwise alanine substitutions into conserved residues in the proline-rich motif or Box 1 region and two tyrosine mutations, Y308F and Y382F, in the PRL-R intracellular domain all impaired PRL signaling to multimerized GAS or to the 1.7-kb IRF-1 promoter. Furthermore, these PRL-R mutants mediated reduced Stat1 binding to the IRF-1 GAS. Transfection of Stat1 further enhanced PRL signaling to the IRF-1 promoter, suggesting that Stat1 is a positive mediator of PRL action. These studies show that both membrane proximal and distal residues of the PRL-R are involved in signaling to the IRF-1 gene. Further, Stat1 and the GAS element are important for PRL activation of the IRF-1 gene.
Collapse
Affiliation(s)
- Y Wang
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
33
|
Decker T, Kovarik P, Meinke A. GAS elements: a few nucleotides with a major impact on cytokine-induced gene expression. J Interferon Cytokine Res 1997; 17:121-34. [PMID: 9085936 DOI: 10.1089/jir.1997.17.121] [Citation(s) in RCA: 326] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gamma interferon activation site (GAS) elements are short stretches of DNA, originally defined as a requirement for the rapid transcriptional induction of genes in response to interferon-gamma (IFN-gamma). The protein complex binding to GAS sequences in IFN-gamma-treated cells, the gamma interferon activation factor (GAF), is a dimer of Stat1, the prototype of a family of cytokine-responsive transcription factors, the signal transducers and activators of transcription. To date, seven different Stats are known (excluding alternatively spliced or processed forms), six of which recognize the same small palindromic consensus sequence TTCN2-4 GAA that defines a GAS element. Because one or several Stats take part in nuclear signaling in response to most cytokines or growth factors, the GAS sequence has changed from being viewed as a specific site for IFN-activated GAF to becoming the general nuclear end of the Jak-Stat signaling pathways. This review focuses on the identification and definition of GAS elements, their interaction with Stat transcription factors, and their contribution to the specificity of cytokine-induced gene expression.
Collapse
Affiliation(s)
- T Decker
- Vienna Biocenter, Institute of Microbiology and Genetics, Austria.
| | | | | |
Collapse
|
34
|
Minami M, Inoue M, Wei S, Takeda K, Matsumoto M, Kishimoto T, Akira S. STAT3 activation is a critical step in gp130-mediated terminal differentiation and growth arrest of a myeloid cell line. Proc Natl Acad Sci U S A 1996; 93:3963-6. [PMID: 8632998 PMCID: PMC39468 DOI: 10.1073/pnas.93.9.3963] [Citation(s) in RCA: 282] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Myeloid leukemia M1 cells can be induced for growth arrest and terminal differentiation into macrophages in response to interleukin 6 (IL-6) or leukemia inhibitory factor (LIF). Recently, a large number of cytokines and growth factors have been shown to activate the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. In the case of IL-6 and LIF, which share a signal transducing receptor gp130, STAT3 is specifically tyrosine-phosphorylated and activated by stimulation with each cytokine in various cell types. To know the role of JAK-STAT pathway in M1 differentiation, we have constructed dominant negative forms of STAT3 and established M1 cell lines that constitutively express them. These M1 cells that overexpressed dominant negative forms showed no induction of differentiation-associated markers including Fc gamma receptors, ferritin light chain, and lysozyme after treatment with IL-6. Expression of either c-myb or c-myc was not downregulated. Furthermore, IL-6- and LIF-mediated growth arrest and apoptosis were completely blocked. Thus these findings demonstrate that STAT3 activation is the critical step in a cascade of events that leads to terminal differentiation of M1 cells.
Collapse
Affiliation(s)
- M Minami
- Institute for Molecular and Cellular Biology, Osaka University, Japan
| | | | | | | | | | | | | |
Collapse
|