1
|
Huang CW, Zhang WZ, Liao Y, Hu T, Li JM, Wang CL. A targeted approach: Gene and RNA editing for neurodegenerative disease treatment. Life Sci 2025; 376:123756. [PMID: 40412606 DOI: 10.1016/j.lfs.2025.123756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/15/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
With the global aging trend, neurodegenerative diseases (NDs) have emerged as a significant public health concern in the 21st century, imposing substantial economic burdens on families and society. NDs are characterized by cognitive and motor decline, resulting from a combination of genetic and environmental factors. Currently, there is no cure for NDs. Gene and RNA editing therapies offer new possibilities for addressing NDs. Gene editing involves modifying mutant genes associated with NDs, while RNA editing can directly modify RNA molecules to regulate the protein translation process, potentially influencing the expression of genes related to NDs. In this review, we examined the historical evolution, mechanisms of action, applications in NDs, advantages and disadvantages, as well as ethical and safety considerations of gene and RNA editing. While gene and RNA editing technologies hold promise for treating NDs, further research and development are needed to address safety, efficacy, and treatment timing issues, ultimately offering improved treatment options for ND patients. Our review provides valuable insights for future gene and RNA editing applications in ND treatment.
Collapse
Affiliation(s)
- Chen-Wei Huang
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Wang-Zheqi Zhang
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Yan Liao
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Ting Hu
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Jia-Mei Li
- Department of Neurology, The 971st Hospital of Navy, Qingdao 266071, China.
| | - Chang-Li Wang
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Matuszek Z, Brown BL, Yrigollen CM, Keiser MS, Davidson BL. Current trends in gene therapy to treat inherited disorders of the brain. Mol Ther 2025; 33:1988-2014. [PMID: 40181540 DOI: 10.1016/j.ymthe.2025.03.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025] Open
Abstract
Gene therapy development, re-engineering, and application to patients hold promise to revolutionize medicine, including therapies for disorders of the brain. Advances in delivery modalities, expression regulation, and improving safety profiles are of critical importance. Additionally, each inherited disorder has its own unique characteristics as to regions and cell types impacted and the temporal dynamics of that impact that are essential for the design of therapeutic design strategies. Here, we review the current state of the art in gene therapies for inherited brain disorders, summarizing key considerations for vector delivery, gene addition, gene silencing, gene editing, and epigenetic editing. We provide examples from animal models, human cell lines, and, where possible, clinical trials. This review also highlights the various tools available to researchers for basic research questions and discusses our views on the current limitations in the field.
Collapse
Affiliation(s)
- Zaneta Matuszek
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Brandon L Brown
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Epilepsy and Neurodevelopmental Disorders (ENDD), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Carolyn M Yrigollen
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Megan S Keiser
- Department of Neurological Surgery, The Ohio State Wexner Medical Center, Columbus, OH 43210, USA
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Epilepsy and Neurodevelopmental Disorders (ENDD), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
de Amorim IFG, Melo CPDS, Pereira RDA, Cunha SM, Zózimo TRDS, Queiroz FR, Peixoto IDO, Lopes LMS, do Amaral LR, Gomes MDS, Oliveira JA, Cândido EB, Salles PGDO, Braga LDC. Association of a CHEK2 somatic variant with tumor microenvironment calprotectin expression predicts platinum resistance in a small cohort of ovarian carcinoma. PLoS One 2025; 20:e0315487. [PMID: 40146757 PMCID: PMC11949324 DOI: 10.1371/journal.pone.0315487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/27/2024] [Indexed: 03/29/2025] Open
Abstract
High-grade serous ovarian cancer (HGSOC) low overall survival rate is often attributed to platinum resistance. Recent studies suggest that the tumor associated-microenvironment (TME) is a determining factor in malignant tumor progression and DNA damage plays a crucial role in this process. Here, we sought to identify platinum resistance biomarkers associating the TME immune profile and the mutational landscape of the homologous repair pathway genes with the HGSOC patients prognosis and response to chemotherapy. Using a decision tree classifier approach, we found that platinum resistant (PR) patients were characterized by the presence of a novel deep intronic variant, the CHEK2 c.319+ 3943A > T, and higher L1 expression (p = 0.016), (100% accuracy). Chek2 protein is an important component of DNA repair and L1, also known as calprotectin, is one component of the neutrophil extracellular traps (NETs) during inflammation, previously suggested as a key contributor to the metastatic process in HGSOC. Also, PD-L2 levels were significantly higher in PR patients positive for this CHEK2 variant (p = 0.048), underscoring the need to explore its potential therapeutic role for this cancer. Our results suggest an interplay between TME and DNA repair variants that results in a multifactorial nature of HGSOC resistance to platinum chemotherapy.
Collapse
Affiliation(s)
- Izabela Ferreira Gontijo de Amorim
- Laboratório de Pesquisa Translacional em Oncologia, Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte, Minas Gerais, Brazil
- Curso de Medicina, Faculdade de Minas-FAMINAS, Belo Horizonte, Minas Gerais, Brazil
| | - Carolina Pereira de Souza Melo
- Laboratório de Pesquisa Translacional em Oncologia, Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte, Minas Gerais, Brazil
| | - Ramon de Alencar Pereira
- Laboratório de Pesquisa Translacional em Oncologia, Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte, Minas Gerais, Brazil
| | - Sidnéa Macioci Cunha
- Hospital Luxemburgo, Instituto Mário Penna, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-graduação em Saúde da Mulher, Departamento de Ginecologia e Obstetrícia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thalía Rodrigues de Souza Zózimo
- Laboratório de Pesquisa Translacional em Oncologia, Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte, Minas Gerais, Brazil
| | - Fábio Ribeiro Queiroz
- Laboratório de Pesquisa Translacional em Oncologia, Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte, Minas Gerais, Brazil
| | - Iago de Oliveira Peixoto
- Laboratório de Pesquisa Translacional em Oncologia, Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-graduação em Biotecnologia, Fundação Ezequiel Dias-FUNED, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana Maria Silva Lopes
- Programa de Pós-graduação em Biotecnologia, Fundação Ezequiel Dias-FUNED, Belo Horizonte, Minas Gerais, Brazil
| | - Laurence Rodrigues do Amaral
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, Campus Patos de Minas, Uberlândia, Minas Gerais, Brazil
| | - Matheus de Souza Gomes
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, Campus Patos de Minas, Uberlândia, Minas Gerais, Brazil
| | - Juliana Almeida Oliveira
- Curso de Medicina, Faculdade de Minas-FAMINAS, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Cirurgia e à Oftalmologia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo Batista Cândido
- Curso de Medicina, Faculdade de Minas-FAMINAS, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-graduação em Saúde da Mulher, Departamento de Ginecologia e Obstetrícia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo Guilherme de Oliveira Salles
- Laboratório de Pesquisa Translacional em Oncologia, Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte, Minas Gerais, Brazil
- Hospital Luxemburgo, Instituto Mário Penna, Belo Horizonte, Minas Gerais, Brazil
| | - Letícia da Conceição Braga
- Laboratório de Pesquisa Translacional em Oncologia, Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
4
|
Konishi CT, Mulaiese N, Butola T, Zhang Q, Kagan D, Yang Q, Pressler M, Dirvin BG, Devinsky O, Basu J, Long C. Modeling and correction of protein conformational disease in iPSC-derived neurons through personalized base editing. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102441. [PMID: 39877004 PMCID: PMC11773622 DOI: 10.1016/j.omtn.2024.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025]
Abstract
Altered protein conformation can cause incurable neurodegenerative disorders. Mutations in SERPINI1, the gene encoding neuroserpin, can alter protein conformation resulting in cytotoxic aggregation leading to neuronal death. Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a rare autosomal dominant progressive myoclonic epilepsy that progresses to dementia and premature death. We developed HEK293T and induced pluripotent stem cell (iPSC) models of FENIB, harboring a patient-specific pathogenic SERPINI1 variant or stably overexpressing mutant neuroserpin fused to GFP (MUT NS-GFP). Here, we utilized a personalized adenine base editor (ABE)-mediated approach to correct the pathogenic variant efficiently and precisely to restore neuronal dendritic morphology. ABE-treated MUT NS-GFP cells demonstrated reduced inclusion size and number. Using an inducible MUT NS-GFP neuron system, we identified early prevention of toxic protein expression allowed aggregate clearance, while late prevention halted further aggregation. To address several challenges for clinical applications of gene correction, we developed a neuron-specific engineered virus-like particle to optimize neuronal ABE delivery, resulting in higher correction efficiency. Our findings provide a targeted strategy that may treat FENIB and potentially other neurodegenerative diseases due to altered protein conformation such as Alzheimer's and Huntington's diseases.
Collapse
Affiliation(s)
- Colin T. Konishi
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Nancy Mulaiese
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Tanvi Butola
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Qinkun Zhang
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Dana Kagan
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Qiaoyan Yang
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Mariel Pressler
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Brooke G. Dirvin
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Jayeeta Basu
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Chengzu Long
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 100016, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY 100016, USA
| |
Collapse
|
5
|
Nyberg WA, Wang CH, Ark J, Liu C, Clouden S, Qualls A, Caryotakis S, Wells E, Simon K, Garza C, Bernard PL, Lopez-Ichikawa M, Li Z, Seo J, Kimmerly GR, Muldoon JJ, Chen PA, Li M, Liang HE, Kersten K, Rosales A, Kuhn N, Ye CJ, Gardner JM, Molofsky A, Ricardo-Gonzalez RR, Asokan A, Eyquem J. In vivo engineering of murine T cells using the evolved adeno-associated virus variant Ark313. Immunity 2025; 58:499-512.e7. [PMID: 39909036 DOI: 10.1016/j.immuni.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/31/2024] [Accepted: 01/10/2025] [Indexed: 02/07/2025]
Abstract
Genetic engineering of T cells in mouse models is essential for investigating immune mechanisms. We aimed to develop an approach to manipulate T cells in vivo using an evolved adeno-associated virus (AAV) capsid named Ark313. Delivery of a transient transgene expression cassette was feasible using Ark313, and this serotype outperformed natural serotypes. A single intravenous injection of a Cre recombinase-expressing Ark313 in the Ai9 fluorescent reporter mouse model achieved permanent genetic modifications of T cells. Ark313 facilitated in vivo gene editing in both tissue-resident and splenic T cells and validation of immunotherapy targets in solid tumor models. Ark313 delivered large DNA donor templates to T cells in vivo and integrated transgenes in primary CD4+ and CD8+ T cells, including naive T cells. Ark313-mediated transgene delivery presents an efficient approach to target mouse T cells in vivo and a resource for the interrogation of T cell biology and for immunotherapy applications.
Collapse
Affiliation(s)
- William A Nyberg
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.
| | - Charlotte H Wang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jonathan Ark
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chang Liu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Sylvanie Clouden
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anita Qualls
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sofia Caryotakis
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elina Wells
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Katherine Simon
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Celeste Garza
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Pierre-Louis Bernard
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Maya Lopez-Ichikawa
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zhongmei Li
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Jin Seo
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Gabriella R Kimmerly
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joseph J Muldoon
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Peixin Amy Chen
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mingcheng Li
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Hong-Erh Liang
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kelly Kersten
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alan Rosales
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Nicholas Kuhn
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chun Jimmie Ye
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Arc Institute, Palo Alto, CA 94304, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - James M Gardner
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ari Molofsky
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Roberto R Ricardo-Gonzalez
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
| | - Aravind Asokan
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| | - Justin Eyquem
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Hayrapetyan L, Roth SM, Quintin A, Hovhannisyan L, Medo M, Riedo R, Ott JG, Albers J, Aebersold DM, Zimmer Y, Medová M. HPV and p53 Status as Precision Determinants of Head and Neck Cancer Response to DNA-PKcs Inhibition in Combination with Irradiation. Mol Cancer Ther 2025; 24:214-229. [PMID: 39513374 PMCID: PMC11791480 DOI: 10.1158/1535-7163.mct-23-0794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 07/15/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Major risk factors of head and neck squamous cell carcinoma (HNSCC) are tobacco use and human papillomavirus (HPV). HPV E6 oncoprotein leads to p53 degradation, whereas HPV-negative cancers are frequently associated with TP53 mutations. Peposertib is a potent and selective, orally administered small-molecule inhibitor of the catalytic subunit of the DNA-dependent kinase (DNA-PKcs), a key regulator of nonhomologous end joining (NHEJ). NHEJ inhibition along with irradiation (IR)-induced DNA double-strand breaks has the potential to increase antitumor treatment efficacy. In this study, we investigated the responses of a panel of HNSCC models with distinct HPV and p53 status to treatments with IR, DNA-PKcs inhibition, and their combination in vitro and in vivo. IR-induced DNA damage combined with peposertib administration shortly before IR results in decreased cell viability and proliferation and causes DNA repair delay in all studied HNSCC cell lines. However, our data confirm that the actual cell fate upon this treatment is determined by cellular p53 and/or HPV status. Cells lacking functional p53 due to its degradation by HPV or due to a loss-of-function mutation are arrested in the G2/M phase of the cell cycle and eliminated by apoptosis, whereas p53-proficient HNSCC cell lines preferentially undergo senescence. This is also recapitulated in vivo, where HPV+ UD-SCC-2 xenografts display stronger and more durable responses to the combined treatment as compared with p53 wild-type UM-SCC-74A tumors. In conclusion, DNA-PKcs inhibitor peposertib should be further studied as a potential radiosensitizer for HNSCCs, taking into consideration the genetic background and the HPV status of a particular tumor.
Collapse
Affiliation(s)
- Liana Hayrapetyan
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Selina M. Roth
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Aurélie Quintin
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
| | - Lusine Hovhannisyan
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Matúš Medo
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
| | - Rahel Riedo
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
| | - Julien G. Ott
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
| | - Joachim Albers
- Research Unit Oncology, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Daniel M. Aebersold
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
| | - Yitzhak Zimmer
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
| | - Michaela Medová
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Konishi CT, Mulaiese N, Butola T, Zhang Q, Kagan D, Yang Q, Pressler M, Dirvin BG, Devinsky O, Basu J, Long C. Modeling and Correction of Protein Conformational Disease in iPSC-derived Neurons through Personalized Base Editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576134. [PMID: 38293034 PMCID: PMC10827171 DOI: 10.1101/2024.01.17.576134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Altered protein conformation can cause incurable neurodegenerative disorders. Mutations in SERPINI1 , the gene encoding neuroserpin, can alter protein conformation resulting in cytotoxic aggregation leading to neuronal death. Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a rare autosomal dominant progressive myoclonic epilepsy that progresses to dementia and premature death. We developed HEK293T and induced pluripotent stem cell (iPSC) models of FENIB, harboring a patient-specific pathogenic SERPINI1 variant or stably overexpressing mutant neuroserpin fused to GFP (MUT NS-GFP). Here, we utilized a personalized adenine base editor (ABE)-mediated approach to correct the pathogenic variant efficiently and precisely to restore neuronal dendritic morphology. ABE-treated MUT NS-GFP cells demonstrated reduced inclusion size and number. Using an inducible MUT NS-GFP neuron system, we identified early prevention of toxic protein expression allowed aggregate clearance, while late prevention halted further aggregation. To address several challenges for clinical applications of gene correction, we developed a neuron-specific engineered virus-like particle to optimize neuronal ABE delivery, resulting in higher correction efficiency. Our findings provide a targeted strategy which may treat FENIB and potentially other neurodegenerative diseases due to altered protein conformation such as Alzheimer's and Huntington's diseases.
Collapse
|
8
|
Graham JP, Castro JG, Werba LC, Fardone LC, Francis KP, Ramamurthi A, Layden M, McCarthy HO, Gonzalez-Fernandez T. Versatile Cell Penetrating Peptide for Multimodal CRISPR Gene Editing in Primary Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614499. [PMID: 39386541 PMCID: PMC11463527 DOI: 10.1101/2024.09.23.614499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
CRISPR gene editing offers unprecedented genomic and transcriptomic control for precise regulation of cell function and phenotype. However, delivering the necessary CRISPR components to therapeutically relevant cell types without cytotoxicity or unexpected side effects remains challenging. Viral vectors risk genomic integration and immunogenicity while non-viral delivery systems are challenging to adapt to different CRISPR cargos, and many are highly cytotoxic. The arginine-alanine-leucine-alanine (RALA) cell penetrating peptide is an amphiphilic peptide that self-assembles into nanoparticles through electrostatic interactions with negatively charged molecules before delivering them across the cell membrane. This system has been used to deliver DNAs, RNAs, and small anionic molecules to primary cells with lower cytotoxicity compared to alternative non-viral approaches. Given the low cytotoxicity, versatility, and competitive transfection rates of RALA, we aimed to establish this peptide as a new CRISPR delivery system in a wide range of molecular formats across different editing modalities. We report that RALA was able to effectively encapsulate and deliver CRISPR in DNA, RNA, and ribonucleic protein (RNP) formats to primary mesenchymal stem cells (MSCs). Comparisons between RALA and commercially available reagents revealed superior cell viability leading to higher numbers of transfected cells and the maintenance of cell proliferative capacity. We then used the RALA peptide for the knock-in and knock-out of reporter genes into the MSC genome as well as for the transcriptional activation of therapeutically relevant genes. In summary, we establish RALA as a powerful tool for safer and effective delivery of CRISPR machinery in multiple cargo formats for a wide range of gene editing strategies.
Collapse
Affiliation(s)
- Josh P. Graham
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | | | - Lisette C. Werba
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Luke C. Fardone
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | | | - Anand Ramamurthi
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Michael Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University Belfast, Northern Ireland, United Kingdom
| | | |
Collapse
|
9
|
Kutashev K, Meschichi A, Reeck S, Fonseca A, Sartori K, White CI, Sicard A, Rosa S. Differences in RAD51 transcriptional response and cell cycle dynamics reveal varying sensitivity to DNA damage among Arabidopsis thaliana root cell types. THE NEW PHYTOLOGIST 2024; 243:966-980. [PMID: 38840557 DOI: 10.1111/nph.19875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/11/2024] [Indexed: 06/07/2024]
Abstract
Throughout their lifecycle, plants are subjected to DNA damage from various sources, both environmental and endogenous. Investigating the mechanisms of the DNA damage response (DDR) is essential to unravel how plants adapt to the changing environment, which can induce varying amounts of DNA damage. Using a combination of whole-mount single-molecule RNA fluorescence in situ hybridization (WM-smFISH) and plant cell cycle reporter lines, we investigated the transcriptional activation of a key homologous recombination (HR) gene, RAD51, in response to increasing amounts of DNA damage in Arabidopsis thaliana roots. The results uncover consistent variations in RAD51 transcriptional response and cell cycle arrest among distinct cell types and developmental zones. Furthermore, we demonstrate that DNA damage induced by genotoxic stress results in RAD51 transcription throughout the whole cell cycle, dissociating its traditional link with S/G2 phases. This work advances the current comprehension of DNA damage response in plants by demonstrating quantitative differences in DDR activation. In addition, it reveals new associations with the cell cycle and cell types, providing crucial insights for further studies of the broader response mechanisms in plants.
Collapse
Affiliation(s)
- Konstantin Kutashev
- Plant Biology Department, Swedish University of Agricultural Sciences, Almas allé 5, Uppsala, 756 51, Sweden
| | - Anis Meschichi
- Department of Biology, Institute of Molecular Plant Biology, Swiss Federal Institute of Technology Zürich, Zürich, 8092, Switzerland
| | - Svenja Reeck
- Department of Cell and Developmental Biology, John Innes Centre, Research Park, Norwich, NR4 7UH, UK
| | - Alejandro Fonseca
- Plant Biology Department, Swedish University of Agricultural Sciences, Almas allé 5, Uppsala, 756 51, Sweden
| | - Kevin Sartori
- Plant Biology Department, Swedish University of Agricultural Sciences, Almas allé 5, Uppsala, 756 51, Sweden
| | - Charles I White
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293, CNRS, U1103 INSERM, Clermont-Ferrand, 63001, France
| | - Adrien Sicard
- Plant Biology Department, Swedish University of Agricultural Sciences, Almas allé 5, Uppsala, 756 51, Sweden
| | - Stefanie Rosa
- Plant Biology Department, Swedish University of Agricultural Sciences, Almas allé 5, Uppsala, 756 51, Sweden
| |
Collapse
|
10
|
Cho CJ, Brown JW, Mills JC. Origins of cancer: ain't it just mature cells misbehaving? EMBO J 2024; 43:2530-2551. [PMID: 38773319 PMCID: PMC11217308 DOI: 10.1038/s44318-024-00099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 05/23/2024] Open
Abstract
A pervasive view is that undifferentiated stem cells are alone responsible for generating all other cells and are the origins of cancer. However, emerging evidence demonstrates fully differentiated cells are plastic, can be coaxed to proliferate, and also play essential roles in tissue maintenance, regeneration, and tumorigenesis. Here, we review the mechanisms governing how differentiated cells become cancer cells. First, we examine the unique characteristics of differentiated cell division, focusing on why differentiated cells are more susceptible than stem cells to accumulating mutations. Next, we investigate why the evolution of multicellularity in animals likely required plastic differentiated cells that maintain the capacity to return to the cell cycle and required the tumor suppressor p53. Finally, we examine an example of an evolutionarily conserved program for the plasticity of differentiated cells, paligenosis, which helps explain the origins of cancers that arise in adults. Altogether, we highlight new perspectives for understanding the development of cancer and new strategies for preventing carcinogenic cellular transformations from occurring.
Collapse
Affiliation(s)
- Charles J Cho
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
11
|
Banazadeh M, Abiri A, Poortaheri MM, Asnaashari L, Langarizadeh MA, Forootanfar H. Unexplored power of CRISPR-Cas9 in neuroscience, a multi-OMICs review. Int J Biol Macromol 2024; 263:130413. [PMID: 38408576 DOI: 10.1016/j.ijbiomac.2024.130413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/27/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The neuroscience and neurobiology of gene editing to enhance learning and memory is of paramount interest to the scientific community. The advancements of CRISPR system have created avenues to treat neurological disorders by means of versatile modalities varying from expression to suppression of genes and proteins. Neurodegenerative disorders have also been attributed to non-canonical DNA secondary structures by affecting neuron activity through controlling gene expression, nucleosome shape, transcription, translation, replication, and recombination. Changing DNA regulatory elements which could contribute to the fate and function of neurons are thoroughly discussed in this review. This study presents the ability of CRISPR system to boost learning power and memory, treat or cure genetically-based neurological disorders, and alleviate psychiatric diseases by altering the activity and the irritability of the neurons at the synaptic cleft through DNA manipulation, and also, epigenetic modifications using Cas9. We explore and examine how each different OMIC techniques can come useful when altering DNA sequences. Such insight into the underlying relationship between OMICs and cellular behaviors leads us to better neurological and psychiatric therapeutics by intelligently designing and utilizing the CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ardavan Abiri
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520, USA
| | | | - Lida Asnaashari
- Student Research Committee, Kerman Universiy of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Langarizadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
12
|
Mojtaba Mousavi S, Alireza Hashemi S, Yari Kalashgrani M, Rahmanian V, Riazi M, Omidifar N, Hamed Althomali R, Rahman MM, Chiang WH, Gholami A. Recent Progress in Prompt Molecular Detection of Exosomes Using CRISPR/Cas and Microfluidic-Assisted Approaches Toward Smart Cancer Diagnosis and Analysis. ChemMedChem 2024; 19:e202300359. [PMID: 37916531 DOI: 10.1002/cmdc.202300359] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/03/2023]
Abstract
Exosomes are essential indicators of molecular mechanisms involved in interacting with cancer cells and the tumor environment. As nanostructures based on lipids and nucleic acids, exosomes provide a communication pathway for information transfer by transporting biomolecules from the target cell to other cells. Importantly, these extracellular vesicles are released into the bloodstream by the most invasive cells, i. e., cancer cells; in this way, they could be considered a promising specific biomarker for cancer diagnosis. In this matter, CRISPR-Cas systems and microfluidic approaches could be considered practical tools for cancer diagnosis and understanding cancer biology. CRISPR-Cas systems, as a genome editing approach, provide a way to inactivate or even remove a target gene from the cell without affecting intracellular mechanisms. These practical systems provide vital information about the factors involved in cancer development that could lead to more effective cancer treatment. Meanwhile, microfluidic approaches can also significantly benefit cancer research due to their proper sensitivity, high throughput, low material consumption, low cost, and advanced spatial and temporal control. Thereby, employing CRISPR-Cas- and microfluidics-based approaches toward exosome monitoring could be considered a valuable source of information for cancer therapy and diagnosis. This review assesses the recent progress in these promising diagnosis approaches toward accurate cancer therapy and in-depth study of cancer cell behavior.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Health Policy Research Center, Health Institute, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Vahid Rahmanian
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland
| | - Mohsen Riazi
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71468-64685, Iran
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71468-64685, Iran
| |
Collapse
|
13
|
Zeng S, Lei S, Qu C, Wang Y, Teng S, Huang P. CRISPR/Cas-based gene editing in therapeutic strategies for beta-thalassemia. Hum Genet 2023; 142:1677-1703. [PMID: 37878144 DOI: 10.1007/s00439-023-02610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Beta-thalassemia (β-thalassemia) is an autosomal recessive disorder caused by point mutations, insertions, and deletions in the HBB gene cluster, resulting in the underproduction of β-globin chains. The most severe type may demonstrate complications including massive hepatosplenomegaly, bone deformities, and severe growth retardation in children. Treatments for β-thalassemia include blood transfusion, splenectomy, and allogeneic hematopoietic stem cell transplantation (HSCT). However, long-term blood transfusions require regular iron removal therapy. For allogeneic HSCT, human lymphocyte antigen (HLA)-matched donors are rarely available, and acute graft-versus-host disease (GVHD) may occur after the transplantation. Thus, these conventional treatments are facing significant challenges. In recent years, with the advent and advancement of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) gene editing technology, precise genome editing has achieved encouraging successes in basic and clinical studies for treating various genetic disorders, including β-thalassemia. Target gene-edited autogeneic HSCT helps patients avoid graft rejection and GVHD, making it a promising curative therapy for transfusion-dependent β-thalassemia (TDT). In this review, we introduce the development and mechanisms of CRISPR/Cas9. Recent advances on feasible strategies of CRISPR/Cas9 targeting three globin genes (HBB, HBG, and HBA) and targeting cell selections for β-thalassemia therapy are highlighted. Current CRISPR-based clinical trials in the treatment of β-thalassemia are summarized, which are focused on γ-globin reactivation and fetal hemoglobin reproduction in hematopoietic stem cells. Lastly, the applications of other promising CRISPR-based technologies, such as base editing and prime editing, in treating β-thalassemia and the limitations of the CRISPR/Cas system in therapeutic applications are discussed.
Collapse
Affiliation(s)
- Shujun Zeng
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China
| | - Shuangyin Lei
- The Second Norman Bethune Clinical College of Jilin University, Changchun, Jilin, People's Republic of China
| | - Chao Qu
- The First Norman Bethune Clinical College of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yue Wang
- The Second Norman Bethune Clinical College of Jilin University, Changchun, Jilin, People's Republic of China
| | - Shuzhi Teng
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China.
| | - Ping Huang
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
14
|
Khanna K, Ohri P, Bhardwaj R. Nanotechnology and CRISPR/Cas9 system for sustainable agriculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118049-118064. [PMID: 36973619 DOI: 10.1007/s11356-023-26482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR-Cas9), a genome editing tool, has gained a tremendous position due to its therapeutic efficacy, ability to counteract abiotic/biotic stresses in plants, environmental remediation and sustainable agriculture with the aim of food security. This is mainly due to their potential of precised genome modification and numerous genetic engineering protocols with versatility as well as simplicity. This technique is quite useful for crop refinement and overcoming the agricultural losses and regaining the soil fertility hampered by hazardous chemicals. Since CRISPR/Cas9 has been widely accepted in genome editing in plants, however, their revolutionised nature and progress enable genetic engineers to face numerous challenges in plant biotechnology. Therefore, nanoparticles have addressed these challenges and improved cargo delivery and genomic editing processes. Henceforth, this barrier prevents CRISPR-based genetic engineering in plants in order to show efficacy in full potential and eliminate all the barriers. This advancement accelerates the genome editing process and its applications in plant biotechnology enable us to sustain and feed the massive population under varying environments. Genome editing tools using CRISPR/Cas9 and nanotechnology are advantageous that produce transgenic-free plants that overcome global food demands. Here, in this review, we have aimed towards the mechanisms/delivery systems linked with CRISPR/Cas9 system. We have elaborated on the applications of CRISPR/Cas9 and nanotechnology-based systems for sustainable agriculture. Moreover, the challenges and limitations associated with genome editing and delivery systems have also been discussed with a special emphasis on crop improvement.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
- Department of Microbiology, DAV University, Sarmastpur, Jalandhar, 144001, Punjab, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
15
|
Li G, Yang X, Luo X, Wu Z, Yang H. Modulation of cell cycle increases CRISPR-mediated homology-directed DNA repair. Cell Biosci 2023; 13:215. [PMID: 38007480 PMCID: PMC10676593 DOI: 10.1186/s13578-023-01159-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/31/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Gene knock-in (KI) in animal cells via homology-directed repair (HDR) is an inefficient process, requiring a laborious work for screening from few modified cells. HDR tends to occur in the S and G2/M phases of cell cycle; therefore, strategies that enhance the proportion of cells in these specific phases could improve HDR efficiency. RESULTS We used various types of cell cycle inhibitors to synchronize the cell cycle in S and G2/M phases in order to investigate their effect on regulating CRISPR/Cas9-mediated HDR. Our results indicated that the four small molecules-docetaxel, irinotecan, nocodazole and mitomycin C-promoted CRISPR/Cas9-mediated KI with different homologous donor types in various animal cells. Moreover, the small molecule inhibitors enhanced KI in animal embryos. Molecular analysis identified common signal pathways activated during crosstalk between cell cycle and DNA repair. Synchronization of the cell cycle in the S and G2/M phases results in CDK1/CCNB1 protein accumulation, which can initiate the HDR process by activating HDR factors to facilitate effective end resection of CRISPR-cleaved double-strand breaks. We have demonstrated that augmenting protein levels of factors associated with the cell cycle via overexpression can facilitate KI in animal cells, consistent with the effect of small molecules. CONCLUSION Small molecules that induce cell cycle synchronization in S and G2/M phases promote CRISPR/Cas9-mediated HDR efficiency in animal cells and embryos. Our research reveals the common molecular mechanisms that bridge cell cycle progression and HDR activity, which will inform further work to use HDR as an effective tool for preparing genetically modified animals or for gene therapy.
Collapse
Affiliation(s)
- Guoling Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohui Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xinxin Luo
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.
- Yunfu Branch Center of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Yunfu, 527400, China.
| | - Huaqiang Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.
- Yunfu Branch Center of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Yunfu, 527400, China.
| |
Collapse
|
16
|
Mishra AP, Hartford S, Chittela RK, Sahu S, Kharat SS, Alvaro-Aranda L, Contreras-Perez A, Sullivan T, Martin BK, Albaugh M, Southon E, Burkett S, Karim B, Carreira A, Tessarollo L, Sharan SK. Characterization of BRCA2 R3052Q variant in mice supports its functional impact as a low-risk variant. Cell Death Dis 2023; 14:753. [PMID: 37980415 PMCID: PMC10657400 DOI: 10.1038/s41419-023-06289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Pathogenic variants in BRCA2 are known to significantly increase the lifetime risk of developing breast and ovarian cancers. Sequencing-based genetic testing has resulted in the identification of thousands of BRCA2 variants that are considered to be variants of uncertain significance (VUS) because the disease risk associated with them is unknown. One such variant is p.Arg3052Gln, which has conflicting interpretations of pathogenicity in the ClinVar variant database. Arginine at position 3052 in BRCA2 plays an important role in stabilizing its C-terminal DNA binding domain. We have generated a knock-in mouse model expressing this variant to examine its role on growth and survival in vivo. Homozygous as well as hemizygous mutant mice are viable, fertile and exhibit no overt phenotype. While we did not observe any hematopoietic defects in adults, we did observe a marked reduction in the in vitro proliferative ability of fetal liver cells that were also hypersensitive to PARP inhibitor, olaparib. In vitro studies performed on embryonic and adult fibroblasts derived from the mutant mice showed significant reduction in radiation induced RAD51 foci formation as well as increased genomic instability after mitomycin C treatment. We observed mis-localization of a fraction of R3052Q BRCA2 protein to the cytoplasm which may explain the observed in vitro phenotypes. Our findings suggest that BRCA2 R3052Q should be considered as a hypomorphic variant.
Collapse
Affiliation(s)
- Arun Prakash Mishra
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Suzanne Hartford
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Rajani Kant Chittela
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Applied Genomics Section, Bhabha Atomic Research Center, Trombay, Mumbai, 400085, India
| | - Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Suhas S Kharat
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Lucia Alvaro-Aranda
- Genome Instability and Cancer Predisposition Lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, Spain
| | - Aida Contreras-Perez
- Genome Instability and Cancer Predisposition Lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, Spain
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Betty K Martin
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mary Albaugh
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sandra Burkett
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Baktiar Karim
- Molecular Histotechnology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Aura Carreira
- Genome Instability and Cancer Predisposition Lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, Spain
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
17
|
Surya Krishna S, Viswanathan R, Valarmathi R, Lakshmi K, Appunu C. CRISPR/Cas-Mediated Genome Editing Approach for Improving Virus Resistance in Sugarcane. SUGAR TECH 2023; 25:735-750. [DOI: 10.1007/s12355-023-01252-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 01/11/2025]
|
18
|
Cuevas-Ocaña S, Yang JY, Aushev M, Schlossmacher G, Bear CE, Hannan NRF, Perkins ND, Rossant J, Wong AP, Gray MA. A Cell-Based Optimised Approach for Rapid and Efficient Gene Editing of Human Pluripotent Stem Cells. Int J Mol Sci 2023; 24:10266. [PMID: 37373413 PMCID: PMC10299534 DOI: 10.3390/ijms241210266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Introducing or correcting disease-causing mutations through genome editing in human pluripotent stem cells (hPSCs) followed by tissue-specific differentiation provide sustainable models of multiorgan diseases, such as cystic fibrosis (CF). However, low editing efficiency resulting in extended cell culture periods and the use of specialised equipment for fluorescence activated cell sorting (FACS) make hPSC genome editing still challenging. We aimed to investigate whether a combination of cell cycle synchronisation, single-stranded oligodeoxyribonucleotides, transient selection, manual clonal isolation, and rapid screening can improve the generation of correctly modified hPSCs. Here, we introduced the most common CF mutation, ΔF508, into the CFTR gene, using TALENs into hPSCs, and corrected the W1282X mutation using CRISPR-Cas9, in human-induced PSCs. This relatively simple method achieved up to 10% efficiency without the need for FACS, generating heterozygous and homozygous gene edited hPSCs within 3-6 weeks in order to understand genetic determinants of disease and precision medicine.
Collapse
Affiliation(s)
- Sara Cuevas-Ocaña
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (G.S.); (N.D.P.); (M.A.G.)
- Biodiscovery Institute, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Jin Ye Yang
- Programme in Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.Y.); (J.R.); (A.P.W.)
| | - Magomet Aushev
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Biomedicine West Wing, Centre for Life, Times Square, Newcastle upon Tyne NE1 3BZ, UK;
| | - George Schlossmacher
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (G.S.); (N.D.P.); (M.A.G.)
| | - Christine E. Bear
- Programme in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Nicholas R. F. Hannan
- Biodiscovery Institute, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Neil D. Perkins
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (G.S.); (N.D.P.); (M.A.G.)
| | - Janet Rossant
- Programme in Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.Y.); (J.R.); (A.P.W.)
| | - Amy P. Wong
- Programme in Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.Y.); (J.R.); (A.P.W.)
| | - Michael A. Gray
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (G.S.); (N.D.P.); (M.A.G.)
| |
Collapse
|
19
|
Paschoudi K, Yannaki E, Psatha N. Precision Editing as a Therapeutic Approach for β-Hemoglobinopathies. Int J Mol Sci 2023; 24:9527. [PMID: 37298481 PMCID: PMC10253463 DOI: 10.3390/ijms24119527] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Beta-hemoglobinopathies are the most common genetic disorders worldwide, caused by a wide spectrum of mutations in the β-globin locus, and associated with morbidity and early mortality in case of patient non-adherence to supportive treatment. Allogeneic transplantation of hematopoietic stem cells (allo-HSCT) used to be the only curative option, although the indispensable need for an HLA-matched donor markedly restricted its universal application. The evolution of gene therapy approaches made possible the ex vivo delivery of a therapeutic β- or γ- globin gene into patient-derived hematopoietic stem cells followed by the transplantation of corrected cells into myeloablated patients, having led to high rates of transfusion independence (thalassemia) or complete resolution of painful crises (sickle cell disease-SCD). Hereditary persistence of fetal hemoglobin (HPFH), a syndrome characterized by increased γ-globin levels, when co-inherited with β-thalassemia or SCD, converts hemoglobinopathies to a benign condition with mild clinical phenotype. The rapid development of precise genome editing tools (ZFN, TALENs, CRISPR/Cas9) over the last decade has allowed the targeted introduction of mutations, resulting in disease-modifying outcomes. In this context, genome editing tools have successfully been used for the introduction of HPFH-like mutations both in HBG1/HBG2 promoters or/and in the erythroid enhancer of BCL11A to increase HbF expression as an alternative curative approach for β-hemoglobinopathies. The current investigation of new HbF modulators, such as ZBTB7A, KLF-1, SOX6, and ZNF410, further expands the range of possible genome editing targets. Importantly, genome editing approaches have recently reached clinical translation in trials investigating HbF reactivation in both SCD and thalassemic patients. Showing promising outcomes, these approaches are yet to be confirmed in long-term follow-up studies.
Collapse
Affiliation(s)
- Kiriaki Paschoudi
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Gene and Cell Therapy Center, Hematology Clinic, George Papanikolaou Hospital, Exokhi, 57010 Thessaloniki, Greece;
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Clinic, George Papanikolaou Hospital, Exokhi, 57010 Thessaloniki, Greece;
- Department of Hematology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Nikoletta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
20
|
Gutási A, Hammer SE, El-Matbouli M, Saleh M. Review: Recent Applications of Gene Editing in Fish Species and Aquatic Medicine. Animals (Basel) 2023; 13:1250. [PMID: 37048506 PMCID: PMC10093118 DOI: 10.3390/ani13071250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Gene editing and gene silencing techniques have the potential to revolutionize our knowledge of biology and diseases of fish and other aquatic animals. By using such techniques, it is feasible to change the phenotype and modify cells, tissues and organs of animals in order to cure abnormalities and dysfunctions in the organisms. Gene editing is currently experimental in wide fields of aquaculture, including growth, controlled reproduction, sterility and disease resistance. Zink finger nucleases, TALENs and CRISPR/Cas9 targeted cleavage of the DNA induce favorable changes to site-specific locations. Moreover, gene silencing can be used to inhibit the translation of RNA, namely, to regulate gene expression. This methodology is widely used by researchers to investigate genes involved in different disorders. It is a promising tool in biotechnology and in medicine for investigating gene function and diseases. The production of food fish has increased markedly, making fish and seafood globally more popular. Consequently, the incidence of associated problems and disease outbreaks has also increased. A greater investment in new technologies is therefore needed to overcome such problems in this industry. To put it concisely, the modification of genomic DNA and gene silencing can comprehensively influence aquatic animal medicine in the future. On the ethical side, these precise genetic modifications make it more complicated to recognize genetically modified organisms in nature and can cause several side effects through created mutations. The aim of this review is to summarize the current state of applications of gene modifications and genome editing in fish medicine.
Collapse
Affiliation(s)
- Anikó Gutási
- Department of Farm Animals and Veterinary Public Health, Division of Fish Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Sabine E. Hammer
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Mansour El-Matbouli
- Department of Farm Animals and Veterinary Public Health, Division of Fish Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Mona Saleh
- Department of Farm Animals and Veterinary Public Health, Division of Fish Health, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
21
|
Guo Y, Xu Z, Chao Y, Cao X, Jiang H, Li H, Li T, Wan Z, Shao H, Qin A, Xie Q, Ye J. An efficient double-fluorescence approach for generating fiber-2-edited recombinant serotype 4 fowl adenovirus expressing foreign gene. Front Microbiol 2023; 14:1160031. [PMID: 37065110 PMCID: PMC10102364 DOI: 10.3389/fmicb.2023.1160031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Recently, the infection of serotype 4 fowl adenovirus (FAdV-4) in chicken flocks has become endemic in China, which greatly threatens the sustainable development of poultry industry. The development of recombinant FAdV-4 expressing foreign genes is an efficient strategy for controlling both FAdV-4 and other important poultry pathogens. Previous reverse genetic technique for generating the recombinant fowl adenovirus is generally inefficient. In this study, a recombinant FAdV-4 expressing enhanced green fluorescence protein (EGFP), FA4-EGFP, was used as a template virus and directly edited fiber-2 gene to develop an efficient double-fluorescence approach to generate recombinant FAdV-4 through CRISPR/Cas9 and Cre-Loxp system. Moreover, using this strategy, a recombinant virus FAdV4-HA(H9) stably expressing the HA gene of H9N2 influenza virus was generated. Chicken infection study revealed that the recombinant virus FAdV4-HA(H9) was attenuated, and could induce haemagglutination inhibition (HI) titer against H9N2 influenza virus at early time points and inhibit the viral replication in oropharynx. All these demonstrate that the novel strategy for constructing recombinant FAdV-4 expressing foreign genes developed here paves the way for rapidly developing attenuated FAdV-4-based recombinant vaccines for fighting the diseases caused by both FAdV-4 and other pathogens.
Collapse
Affiliation(s)
- Yiwen Guo
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhenqi Xu
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yifei Chao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xudong Cao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Huiru Jiang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Han Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tuofan Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhimin Wan
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hongxia Shao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Aijian Qin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Quan Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
- *Correspondence: Quan Xie,
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
- Jianqiang Ye,
| |
Collapse
|
22
|
Burko P, D’Amico G, Miltykh I, Scalia F, Conway de Macario E, Macario AJL, Giglia G, Cappello F, Caruso Bavisotto C. Molecular Pathways Implicated in Radioresistance of Glioblastoma Multiforme: What Is the Role of Extracellular Vesicles? Int J Mol Sci 2023; 24:ijms24054883. [PMID: 36902314 PMCID: PMC10003080 DOI: 10.3390/ijms24054883] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a primary brain tumor that is very aggressive, resistant to treatment, and characterized by a high degree of anaplasia and proliferation. Routine treatment includes ablative surgery, chemotherapy, and radiotherapy. However, GMB rapidly relapses and develops radioresistance. Here, we briefly review the mechanisms underpinning radioresistance and discuss research to stop it and install anti-tumor defenses. Factors that participate in radioresistance are varied and include stem cells, tumor heterogeneity, tumor microenvironment, hypoxia, metabolic reprogramming, the chaperone system, non-coding RNAs, DNA repair, and extracellular vesicles (EVs). We direct our attention toward EVs because they are emerging as promising candidates as diagnostic and prognostication tools and as the basis for developing nanodevices for delivering anti-cancer agents directly into the tumor mass. EVs are relatively easy to obtain and manipulate to endow them with the desired anti-cancer properties and to administer them using minimally invasive procedures. Thus, isolating EVs from a GBM patient, supplying them with the necessary anti-cancer agent and the capability of recognizing a specified tissue-cell target, and reinjecting them into the original donor appears, at this time, as a reachable objective of personalized medicine.
Collapse
Affiliation(s)
- Pavel Burko
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
| | - Giuseppa D’Amico
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
| | - Ilia Miltykh
- Department of Human Anatomy, Institute of Medicine, Penza State University, 440026 Penza, Russia
| | - Federica Scalia
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Alberto J. L. Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Giuseppe Giglia
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Section of Human Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
| | - Francesco Cappello
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Correspondence: ; Tel.: +39-0916553501
| |
Collapse
|
23
|
Boti MA, Athanasopoulou K, Adamopoulos PG, Sideris DC, Scorilas A. Recent Advances in Genome-Engineering Strategies. Genes (Basel) 2023; 14:129. [PMID: 36672870 PMCID: PMC9859587 DOI: 10.3390/genes14010129] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
In October 2020, the chemistry Nobel Prize was awarded to Emmanuelle Charpentier and Jennifer A. Doudna for the discovery of a new promising genome-editing tool: the genetic scissors of CRISPR-Cas9. The identification of CRISPR arrays and the subsequent identification of cas genes, which together represent an adaptive immunological system that exists not only in bacteria but also in archaea, led to the development of diverse strategies used for precise DNA editing, providing new insights in basic research and in clinical practice. Due to their advantageous features, the CRISPR-Cas systems are already employed in several biological and medical research fields as the most suitable technique for genome engineering. In this review, we aim to describe the CRISPR-Cas systems that have been identified among prokaryotic organisms and engineered for genome manipulation studies. Furthermore, a comprehensive comparison between the innovative CRISPR-Cas methodology and the previously utilized ZFN and TALEN editing nucleases is also discussed. Ultimately, we highlight the contribution of CRISPR-Cas methodology in modern biomedicine and the current plethora of available applications for gene KO, repression and/or overexpression, as well as their potential implementation in therapeutical strategies that aim to improve patients' quality of life.
Collapse
Affiliation(s)
| | | | - Panagiotis G. Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | | | | |
Collapse
|
24
|
Tomizawa I, Chiu YW, Hori Y, Tomita T. [Identification of novel regulators involved in AD pathogenesis using the CRISPR-Cas9 system]. Nihon Yakurigaku Zasshi 2023; 158:21-25. [PMID: 36596482 DOI: 10.1254/fpj.22081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The production of amyloid β peptide (Aβ) is an important process relating to the pathogenesis of Alzheimer disease (AD). It is widely known that the sequential cleavage of amyloid precursor protein (APP) by β- and γ-secretases lead to the production of Aβ. However, the precise regulatory mechanism for Aβ production remains unclear. We have established a CRISPR-Cas9 based screening system to identify the novel regulators of Aβ production. Calcium and integrin-binding protein 1 (CIB1) was identified as a novel potential negative regulator of Aβ production. The knockdown and knockout of Cib1 significantly increased Aβ levels. In addition, immunoprecipitation showed that CIB1 interacts with the γ-secretase complex but did not alter its enzymatic activity. Moreover, Cib1 disruption specifically reduced the cell-surface localization of the γ-secretase complex. Finally, the single-cell RNA-seq analysis in the human brain demonstrated that early-stage AD patients have lower neuronal CIB1 mRNA levels compared to healthy controls. Taken together, we have shown that CIB1 controls the subcellular localization of γ-secretase, resulting in the regulation of Aβ production, suggesting the involvement of CIB1 in the development of AD pathogenesis.
Collapse
Affiliation(s)
- Ikumi Tomizawa
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Yung-Wen Chiu
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Yukiko Hori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo
| |
Collapse
|
25
|
Novotny JP, Mariño-Enríquez A, Fletcher JA. Targeting DNA-PK. Cancer Treat Res 2023; 186:299-312. [PMID: 37978142 PMCID: PMC11870302 DOI: 10.1007/978-3-031-30065-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
This chapter explores the multifaceted roles of DNA-PK with particular focus on its functions in non-homologous end-joining (NHEJ) DNA repair. DNA-PK is the primary orchestrator of NHEJ but also regulates other biologic processes. The growing understanding of varied DNA-PK biologic roles highlights new avenues for cancer treatment. However, these multiple roles also imply challenges, particularly in combination therapies, with perhaps a higher risk of clinical toxicities than was previously envisioned. These considerations underscore the need for compelling and innovative strategies to accomplish effective clinical translation.
Collapse
|
26
|
Wani AK, Akhtar N, Singh R, Prakash A, Raza SHA, Cavalu S, Chopra C, Madkour M, Elolimy A, Hashem NM. Genome centric engineering using ZFNs, TALENs and CRISPR-Cas9 systems for trait improvement and disease control in Animals. Vet Res Commun 2023; 47:1-16. [PMID: 35781172 DOI: 10.1007/s11259-022-09967-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023]
Abstract
Livestock is an essential life commodity in modern agriculture involving breeding and maintenance. The farming practices have evolved mainly over the last century for commercial outputs, animal welfare, environment friendliness, and public health. Modifying genetic makeup of livestock has been proposed as an effective tool to create farmed animals with characteristics meeting modern farming system goals. The first technique used to produce transgenic farmed animals resulted in random transgene insertion and a low gene transfection rate. Therefore, genome manipulation technologies have been developed to enable efficient gene targeting with a higher accuracy and gene stability. Genome editing (GE) with engineered nucleases-Zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) regulates the targeted genetic alterations to facilitate multiple genomic modifications through protein-DNA binding. The application of genome editors indicates usefulness in reproduction, animal models, transgenic animals, and cell lines. Recently, CRISPR/Cas system, an RNA-dependent genome editing tool (GET), is considered one of the most advanced and precise GE techniques for on-target modifications in the mammalian genome by mediating knock-in (KI) and knock-out (KO) of several genes. Lately, CRISPR/Cas9 tool has become the method of choice for genome alterations in livestock species due to its efficiency and specificity. The aim of this review is to discuss the evolution of engineered nucleases and GETs as a powerful tool for genome manipulation with special emphasis on its applications in improving economic traits and conferring resistance to infectious diseases of animals used for food production, by highlighting the recent trends for maintaining sustainable livestock production.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, 120 Mason Farm Road, CB# 7260, 3093 Genetic Medicine, Chapel Hill, NC, 27599-2760, USA
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P -ta 1Decembrie 10, 410073, Oradea, Romania
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Mahmoud Madkour
- Animal Production Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Ahmed Elolimy
- Animal Production Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Nesrein M Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| |
Collapse
|
27
|
Munj SA, Taz TA, Arslanturk S, Heath EI. Biomarker-driven drug repurposing on biologically similar cancers with DNA-repair deficiencies. Front Genet 2022; 13:1015531. [PMID: 36583025 PMCID: PMC9792769 DOI: 10.3389/fgene.2022.1015531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
Similar molecular and genetic aberrations among diseases can lead to the discovery of jointly important treatment options across biologically similar diseases. Oncologists closely looked at several hormone-dependent cancers and identified remarkable pathological and molecular similarities in their DNA repair pathway abnormalities. Although deficiencies in Homologous Recombination (HR) pathway plays a significant role towards cancer progression, there could be other DNA-repair pathway deficiencies that requires careful investigation. In this paper, through a biomarker-driven drug repurposing model, we identified several potential drug candidates for breast and prostate cancer patients with DNA-repair deficiencies based on common specific biomarkers and irrespective of the organ the tumors originated from. Normalized discounted cumulative gain (NDCG) and sensitivity analysis were used to assess the performance of the drug repurposing model. Our results showed that Mitoxantrone and Genistein were among drugs with high therapeutic effects that significantly reverted the gene expression changes caused by the disease (FDR adjusted p-values for prostate cancer =1.225e-4 and 8.195e-8, respectively) for patients with deficiencies in their homologous recombination (HR) pathways. The proposed multi-cancer treatment framework, suitable for patients whose cancers had common specific biomarkers, has the potential to identify promising drug candidates by enriching the study population through the integration of multiple cancers and targeting patients who respond poorly to organ-specific treatments.
Collapse
Affiliation(s)
- Seeya Awadhut Munj
- Department of Computer Science, Wayne State University, Detroit, MI, United States
| | - Tasnimul Alam Taz
- Department of Computer Science, Wayne State University, Detroit, MI, United States
| | - Suzan Arslanturk
- Department of Computer Science, Wayne State University, Detroit, MI, United States,*Correspondence: Suzan Arslanturk,
| | - Elisabeth I. Heath
- Department of Oncology, Wayne State University, Detroit, MI, United States,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, United States
| |
Collapse
|
28
|
Lim CKW, McCallister TX, Saporito-Magriña C, McPheron GD, Krishnan R, Zeballos C MA, Powell JE, Clark LV, Perez-Pinera P, Gaj T. CRISPR base editing of cis-regulatory elements enables the perturbation of neurodegeneration-linked genes. Mol Ther 2022; 30:3619-3631. [PMID: 35965414 PMCID: PMC9734028 DOI: 10.1016/j.ymthe.2022.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
CRISPR technology has demonstrated broad utility for controlling target gene expression; however, there remains a need for strategies capable of modulating expression via the precise editing of non-coding regulatory elements. Here, we demonstrate that CRISPR base editors, a class of gene-modifying proteins capable of creating single-base substitutions in DNA, can be used to perturb gene expression via their targeted mutagenesis of cis-acting sequences. Using the promoter region of the human huntingtin (HTT) gene as an initial target, we show that editing of the binding site for the transcription factor NF-κB led to a marked reduction in HTT gene expression in base-edited cell populations. We found that these gene perturbations were persistent and specific, as a transcriptome-wide RNA analysis revealed minimal off-target effects resulting from the action of the base editor protein. We further demonstrate that this base-editing platform could influence gene expression in vivo as its delivery to a mouse model of Huntington's disease led to a potent decrease in HTT mRNA in striatal neurons. Finally, to illustrate the applicability of this concept, we target the amyloid precursor protein, showing that multiplex editing of its promoter region significantly perturbed its expression. These findings demonstrate the potential for base editors to regulate target gene expression.
Collapse
Affiliation(s)
- Colin K W Lim
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
| | | | | | - Garrett D McPheron
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
| | - Ramya Krishnan
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
| | | | - Jackson E Powell
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
| | - Lindsay V Clark
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana, IL 61801, USA
| | - Pablo Perez-Pinera
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA; Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois, Urbana, IL 61801, USA.
| | - Thomas Gaj
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
29
|
In Vivo Hematopoietic Stem Cell Genome Editing: Perspectives and Limitations. Genes (Basel) 2022; 13:genes13122222. [PMID: 36553489 PMCID: PMC9778055 DOI: 10.3390/genes13122222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The tremendous evolution of genome-editing tools in the last two decades has provided innovative and effective approaches for gene therapy of congenital and acquired diseases. Zinc-finger nucleases (ZFNs), transcription activator- like effector nucleases (TALENs) and CRISPR-Cas9 have been already applied by ex vivo hematopoietic stem cell (HSC) gene therapy in genetic diseases (i.e., Hemoglobinopathies, Fanconi anemia and hereditary Immunodeficiencies) as well as infectious diseases (i.e., HIV), and the recent development of CRISPR-Cas9-based systems using base and prime editors as well as epigenome editors has provided safer tools for gene therapy. The ex vivo approach for gene addition or editing of HSCs, however, is complex, invasive, technically challenging, costly and not free of toxicity. In vivo gene addition or editing promise to transform gene therapy from a highly sophisticated strategy to a "user-friendly' approach to eventually become a broadly available, highly accessible and potentially affordable treatment modality. In the present review article, based on the lessons gained by more than 3 decades of ex vivo HSC gene therapy, we discuss the concept, the tools, the progress made and the challenges to clinical translation of in vivo HSC gene editing.
Collapse
|
30
|
Chu YY, Yam C, Yamaguchi H, Hung MC. Biomarkers beyond BRCA: promising combinatorial treatment strategies in overcoming resistance to PARP inhibitors. J Biomed Sci 2022; 29:86. [PMID: 36284291 PMCID: PMC9594904 DOI: 10.1186/s12929-022-00870-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) exploit the concept of synthetic lethality and offer great promise in the treatment of tumors with deficiencies in homologous recombination (HR) repair. PARPi exert antitumor activity by blocking Poly(ADP-ribosyl)ation (PARylation) and trapping PARP1 on damaged DNA. To date, the U.S. Food and Drug Administration (FDA) has approved four PARPi for the treatment of several cancer types including ovarian, breast, pancreatic and prostate cancer. Although patients with HR-deficient tumors benefit from PARPi, majority of tumors ultimately develop acquired resistance to PARPi. Furthermore, even though BRCA1/2 mutations are commonly used as markers of PARPi sensitivity in current clinical practice, not all patients with BRCA1/2 mutations have PARPi-sensitive disease. Thus, there is an urgent need to elucidate the molecular mechanisms of PARPi resistance to support the development of rational effective treatment strategies aimed at overcoming resistance to PARPi, as well as reliable biomarkers to accurately identify patients who will most likely benefit from treatment with PARPi, either as monotherapy or in combination with other agents, so called marker-guided effective therapy (Mget). In this review, we summarize the molecular mechanisms driving the efficacy of and resistance to PARPi as well as emerging therapeutic strategies to overcome PARPi resistance. We also highlight the identification of potential markers to predict PARPi resistance and guide promising PARPi-based combination strategies.
Collapse
Affiliation(s)
- Yu-Yi Chu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hirohito Yamaguchi
- Research Center for Cancer Biology, and Center for Molecular Medicine, Graduate Institute of Biomedical Sciences, China Medical University, 100, Sec 1, Jingmao Rd., Beitun, Taichung, 40402, Taiwan, ROC
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,Research Center for Cancer Biology, and Center for Molecular Medicine, Graduate Institute of Biomedical Sciences, China Medical University, 100, Sec 1, Jingmao Rd., Beitun, Taichung, 40402, Taiwan, ROC. .,Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
31
|
Feng S, Qian X, Feng D, Zhang X. Downregulation of BLM RecQ helicase inhibits proliferation, promotes the apoptosis and enhances the sensitivity of bladder cancer cells to cisplatin. Mol Med Rep 2022; 26:313. [PMID: 36004459 PMCID: PMC9437972 DOI: 10.3892/mmr.2022.12829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/25/2022] [Indexed: 11/21/2022] Open
Abstract
Bloom syndrome protein (BLM) is known to maintain genomic integrity including DNA repair, recombination, replication and transcription. Its dysregulation affects the genomic instability of cells, which results in a high risk of developing various types of cancer and even Bloom syndrome. However, to date, to the best of our knowledge, no association has been made between human BLM and bladder cancer. Thus, the aim of the present study was to investigate the role of BLM in human bladder cancer. The expression pattern of BLM in bladder cancer tissue was detected by immunohistochemistry. The viability, proliferation, cell cycle and apoptosis of bladder cancer cell lines were determined by Cell Counting Kit-8, EdU and flow cytometry following transfection of BLM small interfering RNA. Finally, the effect of BLM on sensitivity of bladder cancer cell lines to cisplatin was investigated by reverse transcription-quantitative PCR and western blot. It was demonstrated that the expression of BLM in human bladder cancer was increased compared with adjacent healthy bladder tissues. In addition, silencing of BLM inhibited the proliferation and promoted the apoptosis of bladder cancer cells and it also enhanced the sensitivity of bladder cancer cells to cisplatin. Together, the findings of the present study demonstrated that the regulation of BLM activity may have potential for use as a novel therapeutic target and a predictor for the prognosis of bladder cancer.
Collapse
Affiliation(s)
- Sujuan Feng
- Department of Urology, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xiaosong Qian
- Department of Urology, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Dalin Feng
- Department of Urology, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xiaodong Zhang
- Department of Urology, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
32
|
Patel A, Iannello G, Diaz AG, Sirabella D, Thaker V, Corneo B. Efficient Cas9-based Genome Editing Using CRISPR Analysis Webtools in Severe Early-onset-obesity Patient-derived iPSCs. Curr Protoc 2022; 2:e519. [PMID: 35950852 PMCID: PMC9377717 DOI: 10.1002/cpz1.519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The CRISPR system is an adaptive defense mechanism used by bacteria and archaea against viruses and plasmids. The discovery of the CRISPR-associated protein Cas9 and its RNA-guided cleavage mechanism marked the beginning of a new era in genomic engineering by enabling the editing of a target region in the genome. Gene-edited cells or mice can be used as models for understanding human diseases. Given its high impact in functional genomic experiments on different model systems, several CRISPR/Cas9 protocols have been generated in the past years. The technique uses a straightforward "cut and stitch" mechanism, but requires an accurate step-by-step design. One of the key points is the use of an efficient programmable guide RNA to increase the rate of success in obtaining gene-specific edited clones. Here, we describe an efficient editing protocol using a ribonucleotide protein (RNP) complex for homology-directed repair (HDR)-based correction of a point mutation in an induced pluripotent stem cell (iPSC) line generated from a 14-year-old patient with severe early-onset obesity carrying a de novo variant of ARNT2. The resulting isogenic iPSC line, named CUIMCi003-A-1, has a normal karyotype, expresses stemness markers, and can be differentiated into progenies from all three germ layers. We provide a detailed workflow for designing a single guide RNA and donor DNA, and for isolating clonal human iPSCs edited with the desired modification. This article also focuses on parameters to consider when selecting reagents for CRISPR/Cas9 gene editing after testing their efficiency with in silico tools. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Design of sgRNAs and PCR primers Basic Protocol 2: Testing the efficiency of sgRNAs Basic Protocol 3: Design of template or donor DNA Basic Protocol 4: Targeted gene editing Basic Protocol 5: Selection of positive clones Basic Protocol 6: Freezing, thawing, and expansion of cells Basic Protocol 7: Characterization of edited cell lines.
Collapse
Affiliation(s)
- Achchhe Patel
- Columbia Stem Cell Initiative, Stem Cell CoreColumbia University Irving Medical CenterNew YorkNew York
| | - Grazia Iannello
- Columbia Stem Cell Initiative, Stem Cell CoreColumbia University Irving Medical CenterNew YorkNew York
| | | | - Dario Sirabella
- Columbia Stem Cell Initiative, Stem Cell CoreColumbia University Irving Medical CenterNew YorkNew York
| | - Vidhu Thaker
- Division of Molecular Genetics, Department of PediatricsColumbia University Irving Medical CenterNew YorkNew York
| | - Barbara Corneo
- Columbia Stem Cell Initiative, Stem Cell CoreColumbia University Irving Medical CenterNew YorkNew York
| |
Collapse
|
33
|
Shalaby KE, Aouida M, Gupta V, Abdesselem H, El-Agnaf OMA. Development of non-viral vectors for neuronal-targeted delivery of CRISPR-Cas9 RNA-proteins as a therapeutic strategy for neurological disorders. Biomater Sci 2022; 10:4959-4977. [PMID: 35880637 DOI: 10.1039/d2bm00368f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aging population contributes to an increase in the prevalence of neurodegenerative diseases, such as Parkinson's disease (PD). Due to the progressive nature of these diseases and an incomplete understanding of their pathophysiology, current drugs are inefficient, with a limited efficacy and major side effects. In this study, CRISPR-Cas9 RNA-proteins (RNP) composed of a Cas9 nuclease and single-guide RNA were delivered with a non-viral targeted delivery system to rescue the PD-associated phenotype in neuronal cells. Here, we fused the cell-penetrating amphipathic peptide, PepFect14 (PF14), with a short fragment of the rabies virus glycoprotein (C2) previously shown to have an affinity towards nicotinic acetylcholine receptors expressed on neuronal cells and on the blood-brain barrier. The resultant peptide, C2-PF14, was used to complex with and deliver RNPs to neuronal cells. We observed that RNP/C2-PF14 complexes formed nanosized, monodispersed, and nontoxic nanoparticles that led to a specific delivery into neuronal cells. α-Synuclein (α-syn) plays a major role in the pathology of PD and is considered to be a target for therapy. We demonstrated that CRISPR/Cas9 RNP delivered by C2-PF14 achieved α-syn gene (SNCA) editing in neuronal cells as determined by T7EI assay and western blotting. Furthermore, RNP/C2-PF14 relieved PD-associated toxicity in neuronal cells in vitro. This is a proof-of-concept towards simple and safe targeted genome-editing for treating PD and other neurological disorders.
Collapse
Affiliation(s)
- Karim E Shalaby
- Biological and Biomedical Sciences Division, College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar. .,Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Mustapha Aouida
- Biological and Biomedical Sciences Division, College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| | - Vijay Gupta
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Houari Abdesselem
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Omar M A El-Agnaf
- Biological and Biomedical Sciences Division, College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar. .,Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
34
|
Wang Z, Huang Y, Lu W, Liu J, Li X, Zhu S, Liu H, Song Y. c-myc-mediated upregulation of NAT10 facilitates tumor development via cell cycle regulation in non-small cell lung cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:140. [PMID: 35834140 DOI: 10.1007/s12032-022-01736-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/16/2022] [Indexed: 11/30/2022]
Abstract
N-acetyltransferase 10 (NAT10) is a nucleolar acetyltransferase and has been reported to facilitate tumorigenesis in various cancers, but its role in NSCLC and how it is regulated remain to be assessed. The expression of NAT10 was explored in online databases and our collected clinical specimens. The relationship of NAT10 and clinical characteristics was evaluated using the online databases. Functional analyses were utilized to determine the effect of NAT10 on the proliferation and migration abilities. KEGG pathway analyses were conducted to investigate NAT10-related pathways in NSCLC. The influence of NAT10 on cell cycle was assessed by flow cytometry and cell synchronization assay. The association between c-myc and NAT10 promoter was determined by ChIP. Compared with normal tissue, NAT10 was significantly overexpressed in NSCLC. Upregulated NAT10 was associated with more advanced stage for lung adenocarcinoma and shorter overall survival and first progression time for lung cancer. NAT10 could promote proliferation and migration of NSCLC cells in vitro. c-myc positively regulated the expression of NAT10 as a transcription factor. KEGG pathway analyses indicated that NAT10 was significantly involved in cell cycle regulation, cytokine-cytokine receptor interaction and other pathways. The knockdown of NAT10-induced G1 arrest, which was possibly mediated by the downregulation of cyclin D1.Our findings suggested that c-myc-mediated upregulation of NAT10 promoted the proliferation and migration of NSCLC cells and NAT10 might be a marker for prognosis and a promising target for treatment in NSCLC.
Collapse
Affiliation(s)
- Zimu Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yicong Huang
- Donald Bren School of Information and Computer Sciences, University of California, Irvine, USA
| | - Wanjun Lu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Jiaxin Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Xinying Li
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, 210008, Jiangsu, China
| | - Suhua Zhu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Hongbing Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China.
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
35
|
Zai X, Shi B, Shao H, Qian K, Ye J, Yao Y, Nair V, Qin A. Identification of a Novel Insertion Site HVT-005/006 for the Generation of Recombinant Turkey Herpesvirus Vector. Front Microbiol 2022; 13:886873. [PMID: 35694305 PMCID: PMC9174942 DOI: 10.3389/fmicb.2022.886873] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Turkey herpesvirus (HVT) has been widely used as a successful live virus vaccine against Marek's disease (MD) in chickens for more than five decades. Increasingly, HVT is also used as a highly effective recombinant vaccine vector against multiple avian pathogens. Conventional recombination, or recombineering, techniques that involve the cloning of viral genomes and, more recently, gene editing methods have been used for the generation of recombinant HVT-based vaccines. In this study, we used NHEJ-dependent CRISPR/Cas9-based approaches to insert the mCherry cassette for the screening of the HVT genome and identifying new potential sites for the insertion of foreign genes. A novel intergenic site HVT-005/006 in the unique long (UL) region of the HVT genome was identified, and mCherry was found to be stably expressed when inserted at this site. To confirm whether this site was suitable for the insertion of other exogenous genes, haemagglutinin (HA) of the H9N2 virus was inserted into this site, and a recombinant HVT-005/006-HA was rescued. The recombinant HVT-HA can grow well and express HA protein stably, which demonstrated that HVT-005/006 is a promising site for the insertion of foreign genes.
Collapse
Affiliation(s)
- Xusheng Zai
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China
| | - Bin Shi
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China
| | - Jianqiang Ye
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Guildford, United Kingdom
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Guildford, United Kingdom
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China
| |
Collapse
|
36
|
Al-Soodani AT, Wu X, Kelp NC, Brown AJ, Roberts SA, Her C. hMSH5 Regulates NHEJ and Averts Excessive Nucleotide Alterations at Repair Joints. Genes (Basel) 2022; 13:genes13040673. [PMID: 35456479 PMCID: PMC9026759 DOI: 10.3390/genes13040673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 02/05/2023] Open
Abstract
Inappropriate repair of DNA double-strand breaks (DSBs) leads to genomic instability, cell death, or malignant transformation. Cells minimize these detrimental effects by selectively activating suitable DSB repair pathways in accordance with their underlying cellular context. Here, we report that hMSH5 down-regulates NHEJ and restricts the extent of DSB end processing before rejoining, thereby reducing “excessive” deletions and insertions at repair joints. RNAi-mediated knockdown of hMSH5 led to large nucleotide deletions and longer insertions at the repair joints, while at the same time reducing the average length of microhomology (MH) at repair joints. Conversely, hMSH5 overexpression reduced end-joining activity and increased RPA foci formation (i.e., more stable ssDNA at DSB ends). Furthermore, silencing of hMSH5 delayed 53BP1 chromatin spreading, leading to increased end resection at DSB ends.
Collapse
|
37
|
Meyer F, Engel AM, Krause AK, Wagner T, Poole L, Dubrovska A, Peitzsch C, Rothkamm K, Petersen C, Borgmann K. Efficient DNA Repair Mitigates Replication Stress Resulting in Less Immunogenic Cytosolic DNA in Radioresistant Breast Cancer Stem Cells. Front Immunol 2022; 13:765284. [PMID: 35280989 PMCID: PMC8913591 DOI: 10.3389/fimmu.2022.765284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/02/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer stem cells (CSCs) are a major cause of tumor therapy failure. This is mainly attributed to increased DNA repair capacity and immune escape. Recent studies have shown that functional DNA repair via homologous recombination (HR) prevents radiation-induced accumulation of DNA in the cytoplasm, thereby inhibiting the intracellular immune response. However, it is unclear whether CSCs can suppress radiation-induced cytoplasmic dsDNA formation. Here, we show that the increased radioresistance of ALDH1-positive breast cancer stem cells (BCSCs) in S phase is mediated by both enhanced DNA double-strand break repair and improved replication fork protection due to HR. Both HR-mediated processes lead to suppression of radiation-induced replication stress and consequently reduction of cytoplasmic dsDNA. The amount of cytoplasmic dsDNA correlated significantly with BCSC content (p=0.0002). This clearly indicates that HR-dependent avoidance of radiation-induced replication stress mediates radioresistance and contributes to its immune evasion. Consistent with this, enhancement of replication stress by inhibition of ataxia telangiectasia and RAD3 related (ATR) resulted in significant radiosensitization (SER37 increase 1.7-2.8 Gy, p<0.0001). Therefore, disruption of HR-mediated processes, particularly in replication, opens a CSC-specific radiosensitization option by enhancing their intracellular immune response.
Collapse
Affiliation(s)
- Felix Meyer
- Laboratory of Radiobiology & Experimental Radiooncology, Department of Radiotherapy and Radiation Oncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Maria Engel
- Laboratory of Radiobiology & Experimental Radiooncology, Department of Radiotherapy and Radiation Oncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ann Kristin Krause
- Laboratory of Radiobiology & Experimental Radiooncology, Department of Radiotherapy and Radiation Oncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Wagner
- Laboratory of Radiobiology & Experimental Radiooncology, Department of Radiotherapy and Radiation Oncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Poole
- Laboratory of Radiobiology & Experimental Radiooncology, Department of Radiotherapy and Radiation Oncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Claudia Peitzsch
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology & Experimental Radiooncology, Department of Radiotherapy and Radiation Oncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiation Oncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Borgmann
- Laboratory of Radiobiology & Experimental Radiooncology, Department of Radiotherapy and Radiation Oncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Kerstin Borgmann,
| |
Collapse
|
38
|
Li X, Sun B, Qian H, Ma J, Paolino M, Zhang Z. A high-efficiency and versatile CRISPR/Cas9-mediated HDR-based biallelic editing system. J Zhejiang Univ Sci B 2022; 23:141-152. [PMID: 35187887 DOI: 10.1631/jzus.b2100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9), the third-generation genome editing tool, has been favored because of its high efficiency and clear system composition. In this technology, the introduced double-strand breaks (DSBs) are mainly repaired by non-homologous end joining (NHEJ) or homology-directed repair (HDR) pathways. The high-fidelity HDR pathway is used for genome modification, which can introduce artificially controllable insertions, deletions, or substitutions carried by the donor templates. Although high-level knock-out can be easily achieved by NHEJ, accurate HDR-mediated knock-in remains a technical challenge. In most circumstances, although both alleles are broken by endonucleases, only one can be repaired by HDR, and the other one is usually recombined by NHEJ. For gene function studies or disease model establishment, biallelic editing to generate homozygous cell lines and homozygotes is needed to ensure consistent phenotypes. Thus, there is an urgent need for an efficient biallelic editing system. Here, we developed three pairs of integrated selection systems, where each of the two selection cassettes contained one drug-screening gene and one fluorescent marker. Flanked by homologous arms containing the mutated sequences, the selection cassettes were integrated into the target site, mediated by CRISPR/Cas9-induced HDR. Positively targeted cell clones were massively enriched by fluorescent microscopy after screening for drug resistance. We tested this novel method on the amyloid precursor protein (APP) and presenilin 1 (PSEN1) loci and demonstrated up to 82.0% biallelic editing efficiency after optimization. Our results indicate that this strategy can provide a new efficient approach for biallelic editing and lay a foundation for establishment of an easier and more efficient disease model.
Collapse
Affiliation(s)
- Xinyi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.,Karolinska Institute, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital Solna, 17176 Stockholm, Sweden
| | - Bing Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hongrun Qian
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jinrong Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Magdalena Paolino
- Karolinska Institute, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital Solna, 17176 Stockholm, Sweden
| | - Zhiying Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
39
|
Zhdanova PV, Chernonosov AA, Prokhorova DV, Stepanov GA, Kanazhevskaya LY, Koval VV. Probing the Dynamics of Streptococcus pyogenes Cas9 Endonuclease Bound to the sgRNA Complex Using Hydrogen-Deuterium Exchange Mass Spectrometry. Int J Mol Sci 2022; 23:1129. [PMID: 35163047 PMCID: PMC8834707 DOI: 10.3390/ijms23031129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
The Cas9 endonuclease is an essential component of the CRISPR-Cas-based genome editing tools. The attainment of high specificity and efficiency of Cas9 during targetted DNA cleavage is the main problem that limits the clinical application of the CRISPR-Cas9 system. A deep understanding of the Cas9 mechanism and its structural-functional relationships is required to develop strategies for precise gene editing. Here, we present the first attempt to describe the solution structure of Cas9 from S. pyogenes using hydrogen-deuterium exchange mass spectrometry (HDX-MS) coupled to molecular dynamics simulations. HDX data revealed multiple protein regions with deuterium uptake levels varying from low to high. By analysing the difference in relative deuterium uptake by apoCas9 and its complex with sgRNA, we identified peptides involved in the complex formation and possible changes in the protein conformation. The REC3 domain was shown to undergo the most prominent conformational change upon enzyme-RNA interactions. Detection of the HDX in two forms of the enzyme provided detailed information about changes in the Cas9 structure induced by sgRNA binding and quantified the extent of the changes. The study demonstrates the practical utility of HDX-MS for the elucidation of mechanistic aspects of Cas9 functioning.
Collapse
Affiliation(s)
- Polina V. Zhdanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (P.V.Z.); (A.A.C.); (D.V.P.); (G.A.S.); (L.Y.K.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexander A. Chernonosov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (P.V.Z.); (A.A.C.); (D.V.P.); (G.A.S.); (L.Y.K.)
| | - Daria V. Prokhorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (P.V.Z.); (A.A.C.); (D.V.P.); (G.A.S.); (L.Y.K.)
| | - Grigory A. Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (P.V.Z.); (A.A.C.); (D.V.P.); (G.A.S.); (L.Y.K.)
| | - Lyubov Yu. Kanazhevskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (P.V.Z.); (A.A.C.); (D.V.P.); (G.A.S.); (L.Y.K.)
| | - Vladimir V. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (P.V.Z.); (A.A.C.); (D.V.P.); (G.A.S.); (L.Y.K.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
40
|
Newby GA, Liu DR. In vivo somatic cell base editing and prime editing. Mol Ther 2021; 29:3107-3124. [PMID: 34509669 PMCID: PMC8571176 DOI: 10.1016/j.ymthe.2021.09.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022] Open
Abstract
Recent advances in genome editing technologies have magnified the prospect of single-dose cures for many genetic diseases. For most genetic disorders, precise DNA correction is anticipated to best treat patients. To install desired DNA changes with high precision, our laboratory developed base editors (BEs), which can correct the four most common single-base substitutions, and prime editors, which can install any substitution, insertion, and/or deletion over a stretch of dozens of base pairs. Compared to nuclease-dependent editing approaches that involve double-strand DNA breaks (DSBs) and often result in a large percentage of uncontrolled editing outcomes, such as mixtures of insertions and deletions (indels), larger deletions, and chromosomal rearrangements, base editors and prime editors often offer greater efficiency with fewer byproducts in slowly dividing or non-dividing cells, such as those that make up most of the cells in adult animals. Both viral and non-viral in vivo delivery methods have now been used to deliver base editors and prime editors in animal models, establishing that base editors and prime editors can serve as effective agents for in vivo therapeutic genome editing in animals. This review summarizes examples of in vivo somatic cell (post-natal) base editing and prime editing and prospects for future development.
Collapse
Affiliation(s)
- Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02142 USA.
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02142 USA.
| |
Collapse
|
41
|
Peterson D, Barone P, Lenderts B, Schwartz C, Feigenbutz L, St. Clair G, Jones S, Svitashev S. Advances in Agrobacterium transformation and vector design result in high-frequency targeted gene insertion in maize. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2000-2010. [PMID: 33934470 PMCID: PMC8486252 DOI: 10.1111/pbi.13613] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 05/03/2023]
Abstract
CRISPR-Cas is a powerful DNA double-strand break technology with wide-ranging applications in plant genome modification. However, the efficiency of genome editing depends on various factors including plant genetic transformation processes and types of modifications desired. Agrobacterium infection is the preferred method of transformation and delivery of editing components into the plant cell. While this method has been successfully used to generate gene knockouts in multiple crops, precise nucleotide replacement and especially gene insertion into a pre-defined genomic location remain highly challenging. Here, we report an efficient, selectable marker-free site-specific gene insertion in maize using Agrobacterium infection. Advancements in maize transformation and new vector design enabled increase of targeted insertion frequencies by two orders of magnitude in comparison to conventional Agrobacterium-mediated delivery. Importantly, these advancements allowed not only a significant improvement of the frequency, but also of the quality of generated events. These results further enable the application of genome editing for trait product development in a wide variety of crop species amenable to Agrobacterium-mediated transformation.
Collapse
|
42
|
Abstract
The imaging of chromatin, genomic loci, RNAs, and proteins is very important to study their localization, interaction, and coordinated regulation. Recently, several clustered regularly interspaced short palindromic repeats (CRISPR) based imaging methods have been established. The refurbished tool kits utilizing deactivated Cas9 (dCas9) and dCas13 have been established to develop applications of CRISPR-Cas technology beyond genome editing. Here, we review recent advancements in CRISPR-based methods that enable efficient imaging and visualization of chromatin, genomic loci, RNAs, and proteins. RNA aptamers, Pumilio, SuperNova tagging system, molecular beacons, halotag, bimolecular fluorescence complementation, RNA-guided endonuclease in situ labeling, and oligonucleotide-based imaging methods utilizing fluorescent proteins, organic dyes, or quantum dots have been developed to achieve improved fluorescence and signal-to-noise ratio for the imaging of chromatin or genomic loci. RNA-guided RNA targeting CRISPR systems (CRISPR/dCas13) and gene knock-in strategies based on CRISPR/Cas9 mediated site-specific cleavage and DNA repair mechanisms have been employed for efficient RNA and protein imaging, respectively. A few CRISPR-Cas-based methods to investigate the coordinated regulation of DNA-protein, DNA-RNA, or RNA-protein interactions for understanding chromatin dynamics, transcription, and protein function are also available. Overall, the CRISPR-based methods offer a significant improvement in elucidating chromatin organization and dynamics, RNA visualization, and protein imaging. The current and future advancements in CRISPR-based imaging techniques can revolutionize genome biology research for various applications.
Collapse
Affiliation(s)
- Vikram Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
43
|
Katsuyama Y, Sato Y, Okano Y, Masaki H. Intracellular oxidative stress induced by calcium influx initiates the activation of phagocytosis in keratinocytes accumulating at S-phase of the cell cycle after UVB irradiation. J Dermatol Sci 2021; 103:41-48. [PMID: 34147320 DOI: 10.1016/j.jdermsci.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Phagocytosis is an essential process that maintains cellular homeostasis. In the epidermis, the phagocytosis of melanosomes into keratinocytes is important to protect their DNA against damage from ultraviolet B (UVB) radiation. Furthermore, it is considered that UVB activates the phagocytosis by keratinocytes but the detailed mechanism involved is not fully understood. OBJECTIVE To clarify the mechanism of UVB-enhanced phagocytosis in keratinocytes, we investigated the relationship between the phagocytic ability of keratinocytes and the cell cycle stage of keratinocytes. METHODS The phagocytic ability of keratinocytes was evaluated using the incorporation of fluorescent beads after exposure to UVB or oxidative stress. S-phase was evaluated by BrdU incorporation and immunostaining of cyclin D1. Intracellular calcium levels of keratinocytes were measured using the probe Fluo-4AM. RESULTS The phagocytosis of fluorescent beads into keratinocytes was enhanced by UVB and also by oxidative stress. We found that keratinocytes exposed to UVB or oxidative stress were at S-phase of the cell cycle. Furthermore, keratinocytes synchronized to S-phase showed a higher phagocytic ability according to the increased intracellular ROS level. The UVB-enhanced phagocytosis and entrance into S-phase of keratinocytes was abolished by ascorbic acid, a typical antioxidant. Keratinocytes synchronized to S-phase and exposed to UVB or oxidative stress had increased levels of intracellular calcium and their enhanced phagocytic abilities were diminished by the calcium ion chelator BAPTA-AM. CONCLUSION Taken together, intracellular oxidative stress induced by intracellular calcium influx mediates the UVB-enhanced phagocytic ability of keratinocytes accumulating at S-phase of the cell cycle.
Collapse
Affiliation(s)
| | | | | | - Hitoshi Masaki
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo, Japan
| |
Collapse
|
44
|
Zhong H, Ceballos CC, Massengill CI, Muniak MA, Ma L, Qin M, Petrie SK, Mao T. High-fidelity, efficient, and reversible labeling of endogenous proteins using CRISPR-based designer exon insertion. eLife 2021; 10:64911. [PMID: 34100715 PMCID: PMC8211447 DOI: 10.7554/elife.64911] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 06/07/2021] [Indexed: 12/26/2022] Open
Abstract
Precise and efficient insertion of large DNA fragments into somatic cells using gene editing technologies to label or modify endogenous proteins remains challenging. Non-specific insertions/deletions (INDELs) resulting from the non-homologous end joining pathway make the process error-prone. Further, the insert is not readily removable. Here, we describe a method called CRISPR-mediated insertion of exon (CRISPIE) that can precisely and reversibly label endogenous proteins using CRISPR/Cas9-based editing. CRISPIE inserts a designer donor module, which consists of an exon encoding the protein sequence flanked by intron sequences, into an intronic location in the target gene. INDELs at the insertion junction will be spliced out, leaving mRNAs nearly error-free. We used CRISPIE to fluorescently label endogenous proteins in mammalian neurons in vivo with previously unachieved efficiency. We demonstrate that this method is broadly applicable, and that the insert can be readily removed later. CRISPIE permits protein sequence insertion with high fidelity, efficiency, and flexibility.
Collapse
Affiliation(s)
- Haining Zhong
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Cesar C Ceballos
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | | | - Michael A Muniak
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Lei Ma
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Maozhen Qin
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Stefanie Kaech Petrie
- Department of Neurology, Oregon Health & Science University, Portland, United States
| | - Tianyi Mao
- Vollum Institute, Oregon Health & Science University, Portland, United States
| |
Collapse
|
45
|
COMMD4 functions with the histone H2A-H2B dimer for the timely repair of DNA double-strand breaks. Commun Biol 2021; 4:484. [PMID: 33875784 PMCID: PMC8055684 DOI: 10.1038/s42003-021-01998-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Genomic stability is critical for normal cellular function and its deregulation is a universal hallmark of cancer. Here we outline a previously undescribed role of COMMD4 in maintaining genomic stability, by regulation of chromatin remodelling at sites of DNA double-strand breaks. At break-sites, COMMD4 binds to and protects histone H2B from monoubiquitination by RNF20/RNF40. DNA damage-induced phosphorylation of the H2A-H2B heterodimer disrupts the dimer allowing COMMD4 to preferentially bind H2A. Displacement of COMMD4 from H2B allows RNF20/40 to monoubiquitinate H2B and for remodelling of the break-site. Consistent with this critical function, COMMD4-deficient cells show excessive elongation of remodelled chromatin and failure of both non-homologous-end-joining and homologous recombination. We present peptide-mapping and mutagenesis data for the potential molecular mechanisms governing COMMD4-mediated chromatin regulation at DNA double-strand breaks. Amila Suraweera et al. use a range of biochemical and in vitro cellular assays to examine the role of the COMMD4 in DNA repair. Their results suggest that COMMD4 interacts with the histone H2A-H2B during repair of double-stranded DNA breaks, thereby maintaining genomic stability by regulating chromatin structure.
Collapse
|
46
|
Kaur A, Lim JYS, Sepramaniam S, Patnaik S, Harmston N, Lee MA, Petretto E, Virshup DM, Madan B. WNT inhibition creates a BRCA-like state in Wnt-addicted cancer. EMBO Mol Med 2021; 13:e13349. [PMID: 33660437 PMCID: PMC8033517 DOI: 10.15252/emmm.202013349] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Wnt signaling maintains diverse adult stem cell compartments and is implicated in chemotherapy resistance in cancer. PORCN inhibitors that block Wnt secretion have proven effective in Wnt-addicted preclinical cancer models and are in clinical trials. In a survey for potential combination therapies, we found that Wnt inhibition synergizes with the PARP inhibitor olaparib in Wnt-addicted cancers. Mechanistically, we find that multiple genes in the homologous recombination and Fanconi anemia repair pathways, including BRCA1, FANCD2, and RAD51, are dependent on Wnt/β-catenin signaling in Wnt-high cancers, and treatment with a PORCN inhibitor creates a BRCA-like state. This coherent regulation of DNA repair genes occurs in part via a Wnt/β-catenin/MYBL2 axis. Importantly, this pathway also functions in intestinal crypts, where high expression of BRCA and Fanconi anemia genes is seen in intestinal stem cells, with further upregulation in Wnt-high APCmin mutant polyps. Our findings suggest a general paradigm that Wnt/β-catenin signaling enhances DNA repair in stem cells and cancers to maintain genomic integrity. Conversely, interventions that block Wnt signaling may sensitize cancers to radiation and other DNA damaging agents.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Program in Cancer and Stem Cell BiologyDuke‐NUS Medical SchoolSingaporeSingapore
| | - Jun Yi Stanley Lim
- Program in Cancer and Stem Cell BiologyDuke‐NUS Medical SchoolSingaporeSingapore
| | | | - Siddhi Patnaik
- Program in Cancer and Stem Cell BiologyDuke‐NUS Medical SchoolSingaporeSingapore
| | - Nathan Harmston
- Program in Cancer and Stem Cell BiologyDuke‐NUS Medical SchoolSingaporeSingapore
- Science DivisionYale‐NUS CollegeSingaporeSingapore
| | - May Ann Lee
- Experimental Drug Development CentreA*StarSingaporeSingapore
| | - Enrico Petretto
- Center for Computational Biology and Program in Cardiovascular and Metabolic DisordersDuke‐NUS Medical SchoolSingaporeSingapore
| | - David M Virshup
- Program in Cancer and Stem Cell BiologyDuke‐NUS Medical SchoolSingaporeSingapore
- Department of PediatricsDuke University School of MedicineDurhamNCUSA
| | - Babita Madan
- Program in Cancer and Stem Cell BiologyDuke‐NUS Medical SchoolSingaporeSingapore
| |
Collapse
|
47
|
Ghosh D, Raghavan SC. Nonhomologous end joining: new accessory factors fine tune the machinery. Trends Genet 2021; 37:582-599. [PMID: 33785198 DOI: 10.1016/j.tig.2021.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/08/2023]
Abstract
Nonhomologous DNA end joining (NHEJ) is one of the major DNA double-strand break (DSB) repair pathways in eukaryotes. The well-known critical proteins involved in NHEJ include Ku70/80, DNA-PKcs, Artemis, DNA pol λ/μ, DNA ligase IV-XRCC4, and XLF. Recent studies have added a number of new proteins to the NHEJ repertoire namely paralog of XRCC4 and XLF (PAXX), modulator of retroviral infection (MRI)/ cell cycle regulator of NHEJ (CYREN), transactivation response DNA-binding protein (TARDBP) of 43 kDa (TDP-43), intermediate filament family orphan (IFFO1), ERCC excision repair 6 like 2 (ERCC6L2), and RNase H2. PAXX acts as a stabilizing factor for the main NHEJ components. MRI/CYREN seems to play a dual role stimulating NHEJ in the G1 phase of the cell cycle, while inhibiting the pathway in the S and G2 phases. TDP-43 can recruit the ligase IV-XRCC4 complex to the DSB sites and stimulate ligation in neuronal cells. RNase H2 excises out the ribonucleotides inserted during repair by DNA polymerase μ/TdT. This review provides a brief glimpse into how these new partners were discovered and their contribution to the mechanism and regulation of NHEJ.
Collapse
Affiliation(s)
- Dipayan Ghosh
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
48
|
Fang H, Bygrave AM, Roth RH, Johnson RC, Huganir RL. An optimized CRISPR/Cas9 approach for precise genome editing in neurons. eLife 2021; 10:65202. [PMID: 33689678 PMCID: PMC7946428 DOI: 10.7554/elife.65202] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/22/2021] [Indexed: 01/01/2023] Open
Abstract
The efficient knock-in of large DNA fragments to label endogenous proteins remains especially challenging in non-dividing cells such as neurons. We developed Targeted Knock-In with Two (TKIT) guides as a novel CRISPR/Cas9 based approach for efficient, and precise, genomic knock-in. Through targeting non-coding regions TKIT is resistant to INDEL mutations. We demonstrate TKIT labeling of endogenous synaptic proteins with various tags, with efficiencies up to 42% in mouse primary cultured neurons. Utilizing in utero electroporation or viral injections in mice TKIT can label AMPAR subunits with Super Ecliptic pHluorin, enabling visualization of endogenous AMPARs in vivo using two-photon microscopy. We further use TKIT to assess the mobility of endogenous AMPARs using fluorescence recovery after photobleaching. Finally, we show that TKIT can be used to tag AMPARs in rat neurons, demonstrating precise genome editing in another model organism and highlighting the broad potential of TKIT as a method to visualize endogenous proteins.
Collapse
Affiliation(s)
- Huaqiang Fang
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, United States.,PKU-Nanjing Institute of Translational Medicine, Nanjing, China.,Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Alexei M Bygrave
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Richard H Roth
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Richard C Johnson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
49
|
Tatiossian KJ, Clark RDE, Huang C, Thornton ME, Grubbs BH, Cannon PM. Rational Selection of CRISPR-Cas9 Guide RNAs for Homology-Directed Genome Editing. Mol Ther 2021; 29:1057-1069. [PMID: 33160457 PMCID: PMC7934447 DOI: 10.1016/j.ymthe.2020.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 09/27/2020] [Accepted: 10/08/2020] [Indexed: 01/27/2023] Open
Abstract
Homology-directed repair (HDR) of a DNA break allows copying of genetic material from an exogenous DNA template and is frequently exploited in CRISPR-Cas9 genome editing. However, HDR is in competition with other DNA repair pathways, including non-homologous end joining (NHEJ) and microhomology-mediated end joining (MMEJ), and the efficiency of HDR outcomes is not predictable. Consequently, to optimize HDR editing, panels of CRISPR-Cas9 guide RNAs (gRNAs) and matched homology templates must be evaluated. We report here that CRISPR-Cas9 indel signatures can instead be used to identify gRNAs that maximize HDR outcomes. Specifically, we show that the frequency of deletions resulting from MMEJ repair, characterized as deletions greater than or equal to 3 bp, better predicts HDR frequency than consideration of total indel frequency. We further demonstrate that tools that predict gRNA indel signatures can be repurposed to identify gRNAs to promote HDR. Finally, by comparing indels generated by S. aureus and S. pyogenes Cas9 targeted to the same site, we add to the growing body of data that the targeted DNA sequence is a major factor governing genome editing outcomes.
Collapse
Affiliation(s)
- Kristina J Tatiossian
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Robert D E Clark
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Chun Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Matthew E Thornton
- Department of Obstetrics and Gynecology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Brendan H Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
50
|
Bonnerjee D, Bagh S. Application of CRISPR-Cas systems in neuroscience. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 178:231-264. [PMID: 33685599 DOI: 10.1016/bs.pmbts.2020.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CRISPR-Cas systems have, over the years, emerged as indispensable tools for Genetic interrogation in contexts of clinical interventions, elucidation of genetic pathways and metabolic engineering and have pervaded almost every aspect of modern biology. Within this repertoire, the nervous system comes with its own set of perplexities and mysteries. Scientists have, over the years, tried to draw up a clearer genetic picture of the neuron and how it functions in a network, mainly in an endeavor to mitigate diseases of the human nervous system like Alzheimer's, Parkinson's, Huntington's, Autism Spectrum Disorder (ASD), etc. With most being progressive in nature, these diseases have plagued mankind for centuries. In spite of our immense progress in modern biology, we are yet to get a grasp over these diseases and unraveling their mechanisms is of utmost importance. Before CRISPR-Cas systems came along, the elucidation of the complex interactome of the mammalian nervous system was attempted with erstwhile existing electrophysiological, histological and pharmacological techniques coupled with Next Generation Sequencing and cell-specific targeting technologies. Zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), imparted excellent sequence specific DNA targeting capabilities but came with their huge baggage of extensive protein engineering requirements, which practically rendered them unsuitable for high throughput exercises. With the discovery of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and CRISPR Associated proteins(CAS) systems by Ishino (1987)1, the era of extensive custom made endonuclease targeting was ushered in. For the first time in 2012, Jinek et al. (2012)2 repurposed the CRISPR-Cas mediated bacterial immune system for customizable mammalian gene editing. The CRISPR-Cas technology made it possible to easily customize Cas9 endonucleases to cleave near specifically targeted sequences, thereby facilitating knock-ins or knock-outs, silencing or activating or editing any gene, at any locus of the genome, both at the base-pair level or at the epigenetic level. With this enhanced degree of freedom, decrypting the nervous system and therapeutic interventions for neuropathies became significantly less cumbersome an exercise. Here we take a brisk walk through the several endeavors of research that show how the humble bacteria's CRISPR-Cas system gave us the "nerves" to "talk" to our nerves with ease.
Collapse
Affiliation(s)
- Deepro Bonnerjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute (HBNI), Kolkata, India.
| | - Sangram Bagh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute (HBNI), Kolkata, India
| |
Collapse
|