1
|
Zheng XN, Sun LX, Elsheikha HM, Li TT, Gao J, Wu XJ, Zhang ZW, Wang M, Fu BQ, Zhu XQ, Wang JL. A newly characterized dense granule protein (GRA76) is important for the growth and virulence of Toxoplasma gondii. Int J Parasitol 2024; 54:109-121. [PMID: 37832712 DOI: 10.1016/j.ijpara.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 10/15/2023]
Abstract
Pathogenicity of the zoonotic pathogen Toxoplasma gondii largely depends on the secretion of effector proteins into the extracellular milieu and host cell cytosol, including the dense granule proteins (GRAs). The protein-encoding gene TGME49_299780 was previously identified as a contributor to parasite fitness. However, its involvement in parasite growth, virulence and infectivity in vitro and in vivo remains unknown. Here, we comprehensively examined the role of this new protein, termed GRA76, in parasite pathogenicity. Subcellular localization revealed high expression of GRA76 in tachyzoites inside the parasitophorous vacuole (PV). However, its expression was significantly decreased in bradyzoites. A CRISPR-Cas9 approach was used to knock out the gra76 gene in the T. gondii type I RH strain and type II Pru strain. The in vitro plaque assays and intracellular replication showed the involvement of GRA76 in replication of RH and Pru strains. Deletion of the gra76 gene significantly decreased parasite virulence, and reduced the brain cyst burden in mice. Using RNA sequencing, we detected a significant increase in the expression of bradyzoite-associated genes such as BAG1 and LDH2 in the PruΔgra76 strain compared with the wild-type Pru strain. Using an in vitro bradyzoite differentiation assay, we showed that loss of GRA76 significantly increased the propensity for parasites to form bradyzoites. Immunization with PruΔgra76 conferred partial protection against acute and chronic infection in mice. These findings show the important role of GRA76 in the pathogenesis of T. gondii and highlight the potential of PruΔgra76 as a candidate for a live-attenuated vaccine.
Collapse
Affiliation(s)
- Xiao-Nan Zheng
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People's Republic of China
| | - Li-Xiu Sun
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Ting-Ting Li
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province 610213, People's Republic of China
| | - Jin Gao
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People's Republic of China
| | - Xiao-Jing Wu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People's Republic of China
| | - Zhi-Wei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China
| | - Meng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province 610213, People's Republic of China
| | - Bao-Quan Fu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province 610213, People's Republic of China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People's Republic of China.
| | - Jin-Lei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province 610213, People's Republic of China.
| |
Collapse
|
2
|
Wang Z, Li J, Yang Q, Sun X. Global Proteome-Wide Analysis of Cysteine S-Nitrosylation in Toxoplasma gondii. Molecules 2023; 28:7329. [PMID: 37959749 PMCID: PMC10649196 DOI: 10.3390/molecules28217329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Toxoplasma gondii transmits through various routes, rapidly proliferates during acute infection and causes toxoplasmosis, which is an important zoonotic disease in human and veterinary medicine. T. gondii can produce nitric oxide and derivatives, and S-nitrosylation contributes to their signaling transduction and post-translation regulation. To date, the S-nitrosylation proteome of T. gondii remains mystery. In this study, we reported the first S-nitrosylated proteome of T. gondii using mass spectrometry in combination with resin-assisted enrichment. We found that 637 proteins were S-nitrosylated, more than half of which were localized in the nucleus or cytoplasm. Motif analysis identified seven motifs. Of these motifs, five and two contained lysine and isoleucine, respectively. Gene Ontology enrichment revealed that S-nitrosylated proteins were primarily located in the inner membrane of mitochondria and other organelles. These S-nitrosylated proteins participated in diverse biological and metabolic processes, including organic acid binding, carboxylic acid binding ribose and phosphate biosynthesis. T. gondii S-nitrosylated proteins significantly contributed to glycolysis/gluconeogenesis and aminoacyl-tRNA biosynthesis. Moreover, 27 ribosomal proteins and 11 microneme proteins were identified as S-nitrosylated proteins, suggesting that proteins in the ribosome and microneme were predominantly S-nitrosylated. Protein-protein interaction analysis identified three subnetworks with high-relevancy ribosome, RNA transport and chaperonin complex components. These results imply that S-nitrosylated proteins of T. gondii are associated with protein translation in the ribosome, gene transcription, invasion and proliferation of T. gondii. Our research is the first to identify the S-nitrosylated proteomic profile of T. gondii and will provide direction to the ongoing investigation of the functions of S-nitrosylated proteins in T. gondii.
Collapse
Affiliation(s)
- Zexiang Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (X.S.)
| | | | | | | |
Collapse
|
3
|
Pan M, Ge CC, Fan YM, Jin QW, Shen B, Huang SY. The determinants regulating Toxoplasma gondii bradyzoite development. Front Microbiol 2022; 13:1027073. [PMID: 36439853 PMCID: PMC9691885 DOI: 10.3389/fmicb.2022.1027073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular zoonotic pathogen capable of infecting almost all cells of warm-blooded vertebrates. In intermediate hosts, this parasite reproduces asexually in two forms, the tachyzoite form during acute infection that proliferates rapidly and the bradyzoite form during chronic infection that grows slowly. Depending on the growth condition, the two forms can interconvert. The conversion of tachyzoites to bradyzoites is critical for T. gondii transmission, and the reactivation of persistent bradyzoites in intermediate hosts may lead to symptomatic toxoplasmosis. However, the mechanisms that control bradyzoite differentiation have not been well studied. Here, we review recent advances in the study of bradyzoite biology and stage conversion, aiming to highlight the determinants associated with bradyzoite development and provide insights to design better strategies for controlling toxoplasmosis.
Collapse
Affiliation(s)
- Ming Pan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Ceng-Ceng Ge
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yi-Min Fan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Qi-Wang Jin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Si-Yang Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Sharifpour MF, Khadiv S, Meissner M, McAllister MM. A GRA2 minimal promoter improves the efficiency of TATi / Tet-Off conditional regulation of gene expression in Toxoplasma gondii. Mol Biochem Parasitol 2021; 244:111384. [PMID: 34051228 DOI: 10.1016/j.molbiopara.2021.111384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022]
Abstract
A tetracycline-responsive transcription system (Tet-Off) adapted for use in Toxoplasma gondii (nicknamed TATi) is useful for molecular biological studies of this organism. Previous studies using TATi incorporated minimal promoters derived from the gene promoters for TgSAG1 or TgSAG4. The present study achieves improved activation and suppression of an integrated reporter gene in the absence and presence of anhydrotetracycline, respectively (p < 0.0001), by use of a newly derived minimal promoter based on the core promoter of TgGRA2. In comparison with the SAG1 minimal promoter, use of the GRA2 minimal promoter in stable transfectants has a 23-fold higher Signal to Noise Ratio for EYFP fluorescence in the absence or presence of anhydrotetracycline. We conclude that the performance of TATi for both activation and suppression of transcription can be markedly enhanced by incorporating a GRA2 minimal promoter.
Collapse
Affiliation(s)
- Mohammad Farouq Sharifpour
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shadi Khadiv
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Markus Meissner
- Institute for Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität Munich, Bavaria, Germany
| | - Milton M McAllister
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
5
|
Sokol-Borrelli SL, Coombs RS, Boyle JP. A Comparison of Stage Conversion in the Coccidian Apicomplexans Toxoplasma gondii, Hammondia hammondi, and Neospora caninum. Front Cell Infect Microbiol 2020; 10:608283. [PMID: 33344268 PMCID: PMC7744739 DOI: 10.3389/fcimb.2020.608283] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/06/2020] [Indexed: 01/31/2023] Open
Abstract
Stage conversion is a critical life cycle feature for several Apicomplexan parasites as the ability to switch between life forms is critical for replication, dissemination, pathogenesis and ultimately, transmission to a new host. In order for these developmental transitions to occur, the parasite must first sense changes in their environment, such as the presence of stressors or other environmental signals, and then respond to these signals by initiating global alterations in gene expression. As our understanding of the genetic components required for stage conversion continues to broaden, we can better understand the conserved mechanisms for this process and unique components and their contribution to pathogenesis by comparing stage conversion in multiple closely related species. In this review, we will discuss what is currently known about the mechanisms driving stage conversion in Toxoplasma gondii and its closest relatives Hammondia hammondi and Neospora caninum. Work by us and others has shown that these species have some important differences in the way that they (1) progress through their life cycle and (2) respond to stage conversion initiating stressors. To provide a specific example of species-specific complexities associated with stage conversion, we will discuss our recent published and unpublished work comparing stress responses in T. gondii and H. hammondi.
Collapse
Affiliation(s)
| | | | - Jon P. Boyle
- University of Pittsburgh, Department of Biological Sciences, Kenneth P. Dietrich School of Arts and Sciences, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Veronica J, Chandrasekaran S, Dayakar A, Devender M, Prajapati VK, Sundar S, Maurya R. Iron superoxide dismutase contributes to miltefosine resistance in
Leishmania donovani. FEBS J 2019; 286:3488-3503. [DOI: 10.1111/febs.14923] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 02/19/2019] [Accepted: 05/10/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Jalaja Veronica
- Department of Animal Biology School of Life Sciences University of Hyderabad India
| | | | - Alti Dayakar
- Department of Animal Biology School of Life Sciences University of Hyderabad India
| | - Moodu Devender
- Department of Animal Biology School of Life Sciences University of Hyderabad India
| | - Vijay Kumar Prajapati
- Department of Biochemistry School of Life Sciences Central University of Rajasthan Ajmer India
| | - Shyam Sundar
- Department of Medicine IMS Banaras Hindu University Varanasi India
| | - Radheshyam Maurya
- Department of Animal Biology School of Life Sciences University of Hyderabad India
| |
Collapse
|
7
|
Tu V, Yakubu R, Weiss LM. Observations on bradyzoite biology. Microbes Infect 2018; 20:466-476. [PMID: 29287987 PMCID: PMC6019562 DOI: 10.1016/j.micinf.2017.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 02/06/2023]
Abstract
Tachyzoites of the Apicomplexan Toxoplasma gondii cause acute infection, disseminate widely in their host, and eventually differentiate into a latent encysted form called bradyzoites that are found within tissue cysts. During latent infection, whenever transformation to tachyzoites occurs, any tachyzoites that develop are removed by the immune system. In contrast, cysts containing bradyzoites are sequestered from the immune system. In the absence of an effective immune response released organisms that differentiate into tachyzoites cause acute infection. Tissue cysts, therefore, serve as a reservoir for the reactivation of toxoplasmosis when the host becomes immunocompromised by conditions such as HIV infection, organ transplantation, or due to the impaired immune response that occurs when pathogens are acquired in utero. While tachyzoites and bradyzoites are well defined morphologically, there is no clear consensus on how interconversion occurs or what exact signal(s) mediate this transformation. Advances in research methods have facilitated studies on T. gondii bradyzoites providing important new insights into the biology of latent infection.
Collapse
Affiliation(s)
- Vincent Tu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rama Yakubu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
8
|
Chen LF, Han XL, Li FX, Yao YY, Fang JP, Liu XJ, Li XC, Wu K, Liu M, Chen XG. Comparative studies of Toxoplasma gondii transcriptomes: insights into stage conversion based on gene expression profiling and alternative splicing. Parasit Vectors 2018; 11:402. [PMID: 29996885 PMCID: PMC6042387 DOI: 10.1186/s13071-018-2983-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/27/2018] [Indexed: 11/19/2022] Open
Abstract
Background Toxoplasma gondii is one of the most important apicomplexan parasites and infects one-third of the human population worldwide. Transformation between the tachyzoite and bradyzoite stages in the intermediate host is central to chronic infection and life-long risk. There have been some transcriptome studies on T. gondii; however, we are still early in our understanding of the kinds and levels of gene expression that occur during the conversion between stages. Results We used high-throughput RNA-sequencing data to assemble transcripts using genome-based and de novo strategies. The expression-level analysis of 6996 T. gondii genes showed that over half (3986) were significantly differentially expressed during stage conversion, whereas 2205 genes were upregulated, and 1778 genes were downregulated in tachyzoites compared with bradyzoites. Several important gene families were expressed at relatively high levels. Comprehensive functional annotation and gene ontology analysis revealed that stress response-related genes are important for survival of bradyzoites in immune-competent hosts. We compared Trinity-based de novo and genome-based strategies, and found that the de novo assembly strategy compensated for the defects of the genome-based strategy by filtering out several transcripts with low expression or those unannotated on the genome. We also found some inaccuracies in the ToxoDB gene models. In addition, our analysis revealed that alternative splicing can be differentially regulated in response to life-cycle change. In depth analysis revealed a 20-nt, AG-rich sequence, alternative splicing locus from alt_acceptor motif search in tachyzoite. Conclusion This study represents the first large-scale effort to sequence the transcriptome of bradyzoites from T. gondii tissue cysts. Our data provide a comparative view of the tachyzoite and bradyzoite transcriptomes to allow a more complete dissection of all the molecular regulation mechanisms during stage conversions. A better understanding of the processes regulating stage conversion may guide targeted interventions to disrupt the transmission of T. gondii. Electronic supplementary material The online version of this article (10.1186/s13071-018-2983-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Long-Fei Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou North Avenue No.1838, Guangzhou, 510515, Guangdong, China
| | - Xiao-Long Han
- Department of Bioinformatics, School of Basic Medicine School of Basic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Fen-Xiang Li
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou North Avenue No.1838, Guangzhou, 510515, Guangdong, China
| | - Yun-Ying Yao
- Epidemiology and Infection Control Branch, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, 518106, Guangdong, China
| | - Jin-Ping Fang
- First Clinical Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiao-Ju Liu
- First Clinical Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiao-Cong Li
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou North Avenue No.1838, Guangzhou, 510515, Guangdong, China
| | - Kun Wu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou North Avenue No.1838, Guangzhou, 510515, Guangdong, China
| | - Min Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou North Avenue No.1838, Guangzhou, 510515, Guangdong, China.
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou North Avenue No.1838, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
9
|
Xia N, Yang J, Ye S, Zhang L, Zhou Y, Zhao J, David Sibley L, Shen B. Functional analysis of Toxoplasma lactate dehydrogenases suggests critical roles of lactate fermentation for parasite growth in vivo. Cell Microbiol 2017; 20. [PMID: 29028143 DOI: 10.1111/cmi.12794] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/25/2017] [Accepted: 10/04/2017] [Indexed: 12/20/2022]
Abstract
Glycolysis was thought to be the major pathway of energy supply in both fast-replicating tachyzoites and slowly growing bradyzoites of Toxoplasma gondii. However, its biological significance has not been clearly verified. The genome of T. gondii encodes two lactate dehydrogenases (LDHs), which are differentially expressed in tachyzoites and bradyzoites. In this study, we knocked out the two LDH genes individually and in combination and found that neither gene was required for tachyzoite growth in vitro under standard growth conditions. However, during infection in mice, Δldh1 and Δldh1 Δldh2 mutants were unable to propagate and displayed significant virulence attenuation and cyst formation defects. LDH2 only played minor roles in these processes. To further elucidate the mechanisms underlying the critical requirement of LDH in vivo, we found that Δldh1 Δldh2 mutants replicated significantly more slowly than wild-type parasites when cultured under conditions with physiological levels of oxygen (3%). In addition, Δldh1 Δldh2 mutants were more susceptible to the oxidative phosphorylation inhibitor oligomycin A. Together these results suggest that lactate fermentation is critical for parasite growth under physiological conditions, likely because energy production from oxidative phosphorylation is insufficient when oxygen is limited and lactate fermentation becomes a key supplementation.
Collapse
Affiliation(s)
- Ningbo Xia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jichao Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shu Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lihong Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanqin Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Key Laboratory of Preventive Medicine in Hubei Province, Wuhan, Hubei, China
| | - Laurence David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Medicine in Hubei Province, Wuhan, Hubei, China
| |
Collapse
|
10
|
Deletion of mitogen-activated protein kinase 1 inhibits development and growth of Toxoplasma gondii. Parasitol Res 2015; 115:797-805. [DOI: 10.1007/s00436-015-4807-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/23/2015] [Indexed: 01/04/2023]
|
11
|
Alternative splicing mechanisms orchestrating post-transcriptional gene expression: intron retention and the intron-rich genome of apicomplexan parasites. Curr Genet 2015; 62:31-8. [PMID: 26194054 DOI: 10.1007/s00294-015-0506-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/09/2015] [Accepted: 07/09/2015] [Indexed: 12/13/2022]
Abstract
Apicomplexan parasites including Toxoplasma gondii and Plasmodium species have complex life cycles that include multiple hosts and differentiation through several morphologically distinct stages requiring marked changes in gene expression. This review highlights emerging evidence implicating regulation of mRNA splicing as a mechanism to prime these parasites for rapid gene expression upon differentiation. We summarize the most important insights in alternative splicing including its role in regulating gene expression by decreasing mRNA abundance via 'Regulated Unproductive Splicing and Translation'. As a related but less well-understood mechanism, we discuss also our recent work suggesting a role for intron retention for precluding translation of stage specific isoforms of T. gondii glycolytic enzymes. We additionally provide new evidence that intron retention might be a widespread mechanism during parasite differentiation. Supporting this notion, recent genome-wide analysis of Toxoplasma and Plasmodium suggests intron retention is more pervasive than heretofore thought. These findings parallel recent emergence of intron retention being more prevalent in mammals than previously believed, thereby adding to the established roles in plants, fungi and unicellular eukaryotes. Deeper mechanistic studies of intron retention will provide important insight into its role in regulating gene expression in apicomplexan parasites and more general in eukaryotic organisms.
Collapse
|
12
|
Lunghi M, Galizi R, Magini A, Carruthers VB, Di Cristina M. Expression of the glycolytic enzymes enolase and lactate dehydrogenase during the early phase ofToxoplasmadifferentiation is regulated by an intron retention mechanism. Mol Microbiol 2015; 96:1159-75. [DOI: 10.1111/mmi.12999] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Matteo Lunghi
- Department of Chemistry, Biology and Biotechnology; University of Perugia; Perugia Italy
| | - Roberto Galizi
- Department of Experimental Medicine; University of Perugia; Perugia Italy
| | - Alessandro Magini
- Department of Chemistry, Biology and Biotechnology; University of Perugia; Perugia Italy
| | - Vern B. Carruthers
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor MI USA
| | - Manlio Di Cristina
- Department of Chemistry, Biology and Biotechnology; University of Perugia; Perugia Italy
| |
Collapse
|
13
|
Zhang S, Guo A, Zhu X, You Y, Hou J, Wang Q, Luo X, Cai X. Identification and functional characterization of alpha-enolase from Taenia pisiformis metacestode. Acta Trop 2015; 144:31-40. [PMID: 25623259 DOI: 10.1016/j.actatropica.2015.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 01/13/2015] [Accepted: 01/17/2015] [Indexed: 01/05/2023]
Abstract
Enolase belongs to glycolytic enzymes with moonlighting functions. The role of enolase in Taenia species is still poorly understood. In this study, the full length of cDNA encoding for Taenia pisiformis alpha-enolase (Tpeno) was cloned from larval parasites and soluble recombinant Tpeno protein (rTpeno) was produced. Western blot indicated that both rTpeno and the native protein in excretion-secretion antigens from the larvae were recognized by anti-rTpeno monoclonal antibodies (MAbs). The primary structure of Tpeno showed the presence of a highly conserved catalytic site for substrate binding and an enolase signature motif. rTpeno enzymatic activities of catalyzing the reversible dehydration of 2-phosphoglycerate (2-PGA) to phosphoenolpyruvate (PEP) and vice versa were shown to be 30.71 ± 2.15 U/mg (2-PGA to PEP) and 11.29 ± 2.38 U/mg (PEP to 2-PGA), respectively. Far-Western blotting showed that rTpeno could bind to plasminogen, however its binding ability was inhibited by ϵ-aminocaproic acid (ϵACA) in a competitive ELISA test. Plasminogen activation assay showed that plasminogen bound to rTpeno could be converted into active plasmin using host-derived activators. Immunohistochemistry and immunofluorescence indicated that Tpeno was distributed in the bladder wall of the metacestode and the periphery of calcareous corpuscles. In addition, a vaccine trial showed that the enzyme could produce a 36.4% protection rate in vaccinated rabbits against experimental challenges from T. pisiformis eggs. These results suggest that Tpeno with multiple functions may play significant roles in the migration, growth, development and adaptation of T. pisiformis for survival in the host environment.
Collapse
Affiliation(s)
- Shaohua Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Aijiang Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Xueliang Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yanan You
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Junling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Qiuxia Wang
- Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xuenong Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| |
Collapse
|
14
|
Ruan J, Mouveaux T, Light SH, Minasov G, Anderson WF, Tomavo S, Ngô HM. The structure of bradyzoite-specific enolase from Toxoplasma gondii reveals insights into its dual cytoplasmic and nuclear functions. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:417-26. [PMID: 25760592 PMCID: PMC4356359 DOI: 10.1107/s1399004714026479] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/01/2014] [Indexed: 12/15/2022]
Abstract
In addition to catalyzing a central step in glycolysis, enolase assumes a remarkably diverse set of secondary functions in different organisms, including transcription regulation as documented for the oncogene c-Myc promoter-binding protein 1. The apicomplexan parasite Toxoplasma gondii differentially expresses two nuclear-localized, plant-like enolases: enolase 1 (TgENO1) in the latent bradyzoite cyst stage and enolase 2 (TgENO2) in the rapidly replicative tachyzoite stage. A 2.75 Å resolution crystal structure of bradyzoite enolase 1, the second structure to be reported of a bradyzoite-specific protein in Toxoplasma, captures an open conformational state and reveals that distinctive plant-like insertions are located on surface loops. The enolase 1 structure reveals that a unique residue, Glu164, in catalytic loop 2 may account for the lower activity of this cyst-stage isozyme. Recombinant TgENO1 specifically binds to a TTTTCT DNA motif present in the cyst matrix antigen 1 (TgMAG1) gene promoter as demonstrated by gel retardation. Furthermore, direct physical interactions of both nuclear TgENO1 and TgENO2 with the TgMAG1 gene promoter are demonstrated in vivo using chromatin immunoprecipitation (ChIP) assays. Structural and biochemical studies reveal that T. gondii enolase functions are multifaceted, including the coordination of gene regulation in parasitic stage development. Enolase 1 provides a potential lead in the design of drugs against Toxoplasma brain cysts.
Collapse
Affiliation(s)
- Jiapeng Ruan
- Center for Structural Genomics of Infectious Diseases, Northwestern University, 320 E. Superior Street, Morton 7-601, Chicago, IL 60611, USA
| | - Thomas Mouveaux
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U1019, Institut Pasteur de Lille, Université Lille Nord de France, France
| | - Samuel H. Light
- Center for Structural Genomics of Infectious Diseases, Northwestern University, 320 E. Superior Street, Morton 7-601, Chicago, IL 60611, USA
| | - George Minasov
- Center for Structural Genomics of Infectious Diseases, Northwestern University, 320 E. Superior Street, Morton 7-601, Chicago, IL 60611, USA
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases, Northwestern University, 320 E. Superior Street, Morton 7-601, Chicago, IL 60611, USA
| | - Stanislas Tomavo
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U1019, Institut Pasteur de Lille, Université Lille Nord de France, France
| | - Huân M. Ngô
- Center for Structural Genomics of Infectious Diseases, Northwestern University, 320 E. Superior Street, Morton 7-601, Chicago, IL 60611, USA
- BrainMicro LLC, 21 Pendleton Street, New Haven, CT 06511, USA
| |
Collapse
|
15
|
Mouveaux T, Oria G, Werkmeister E, Slomianny C, Fox BA, Bzik DJ, Tomavo S. Nuclear glycolytic enzyme enolase of Toxoplasma gondii functions as a transcriptional regulator. PLoS One 2014; 9:e105820. [PMID: 25153525 PMCID: PMC4143315 DOI: 10.1371/journal.pone.0105820] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/28/2014] [Indexed: 01/07/2023] Open
Abstract
Apicomplexan parasites including Toxoplasma gondii have complex life cycles within different hosts and their infectivity relies on their capacity to regulate gene expression. However, little is known about the nuclear factors that regulate gene expression in these pathogens. Here, we report that T. gondii enolase TgENO2 is targeted to the nucleus of actively replicating parasites, where it specifically binds to nuclear chromatin in vivo. Using a ChIP-Seq technique, we provide evidence for TgENO2 enrichment at the 5′ untranslated gene regions containing the putative promoters of 241 nuclear genes. Ectopic expression of HA-tagged TgENO1 or TgENO2 led to changes in transcript levels of numerous gene targets. Targeted disruption of TgENO1 gene results in a decrease in brain cyst burden of chronically infected mice and in changes in transcript levels of several nuclear genes. Complementation of this knockout mutant with ectopic TgENO1-HA fully restored normal transcript levels. Our findings reveal that enolase functions extend beyond glycolytic activity and include a direct role in coordinating gene regulation in T. gondii.
Collapse
Affiliation(s)
- Thomas Mouveaux
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Gabrielle Oria
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Elisabeth Werkmeister
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Christian Slomianny
- Laboratory of Cell Physiology, INSERM U 1003, Université Lille Nord de France, Villeneuve d'Ascq, France
| | - Barbara A. Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - David J. Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Stanislas Tomavo
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
- * E-mail:
| |
Collapse
|
16
|
Zhou DH, Zhao FR, Nisbet AJ, Xu MJ, Song HQ, Lin RQ, Huang SY, Zhu XQ. Comparative proteomic analysis of differentToxoplasma gondiigenotypes by two-dimensional fluorescence difference gel electrophoresis combined with mass spectrometry. Electrophoresis 2013; 35:533-45. [DOI: 10.1002/elps.201300044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 08/30/2013] [Accepted: 10/10/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Dong-Hui Zhou
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Lanzhou Veterinary Research Institute; Chinese Academy of Agricultural Sciences; Lanzhou Gansu Province P. R. China
| | - Fu-Rong Zhao
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Lanzhou Veterinary Research Institute; Chinese Academy of Agricultural Sciences; Lanzhou Gansu Province P. R. China
| | - Alasdair J. Nisbet
- Vaccines and Diagnostics, Moredun Research Institute; Pentlands Science Park; Scotland UK
| | - Min-Jun Xu
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Lanzhou Veterinary Research Institute; Chinese Academy of Agricultural Sciences; Lanzhou Gansu Province P. R. China
| | - Hui-Qun Song
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Lanzhou Veterinary Research Institute; Chinese Academy of Agricultural Sciences; Lanzhou Gansu Province P. R. China
| | - Rui-Qing Lin
- College of Veterinary Medicine; South China Agricultural University; Guangzhou Guangdong Province P. R. China
| | - Si-Yang Huang
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Lanzhou Veterinary Research Institute; Chinese Academy of Agricultural Sciences; Lanzhou Gansu Province P. R. China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Lanzhou Veterinary Research Institute; Chinese Academy of Agricultural Sciences; Lanzhou Gansu Province P. R. China
- College of Animal Science and Veterinary Medicine; Heilongjiang Bayi Agricultural University; Daqing Heilongjiang Province P. R. China
| |
Collapse
|
17
|
Identification of differentially expressed proteins in sulfadiazine resistant and sensitive strains of Toxoplasma gondii using difference-gel electrophoresis (DIGE). INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2013; 3:35-44. [PMID: 24533291 PMCID: PMC3862439 DOI: 10.1016/j.ijpddr.2012.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 11/23/2022]
Abstract
Treatment options for toxoplasmosis in humans are generally limited to the use of sulfonamide and/or pyrimethamine-based compounds. However, there is increasing evidence for clinical therapy failures in patients suggesting the existence of drug resistance in these classes of drug. In vitro resistance to sulfadiazine has been detected in three strains of Toxoplasma gondii isolated from clinical cases. In order to begin to understand the mechanisms of resistance, we undertook a difference-gel electrophoresis (DIGE) approach combined with mass spectrometry to identify proteins that are differentially expressed in sulfadiazine-resistance strains of the parasite. Naturally resistant strains TgA 103001 (Type I), TgH 32006 (Type II) and TgH 32045 (Type II variant) were compared to sensitive strains RH (Type I) and ME-49 (Type II) using DIGE and the modulated proteins analyzed using LC–MS/MS. In total, 68 differentially expressed protein spots were analyzed by mass spectrometer and 31 unique proteins, including four hypothetical proteins, were identified. Among the differentially expressed proteins, 44% were over-expressed in resistant strains and 56% were over-expressed in sensitive strains. The virulence-associated rhoptry protein, ROP2A, was found in greater abundance in both naturally resistant Type II strains TgH 32006 and TgH 32045 compared to the sensitive strain ME-49. Enolase 2 and IMC1 were found to be in greater abundance in sensitive strains RH and ME-49, and MIC2 was found to be more abundant in the sensitive strain ME-49. Proteins regulation of ROP2, MIC2, ENO2, IMC1 and GRA7 were confirmed by Western blot analysis. In addition, gene expression patterns of ROP2, MIC2, ENO2 and IMC1 were analyzed with qRT-PCR. This study provides the first proteomics insights into sulfadiazine resistance in T. gondii resistant strains isolated from clinical cases.
Collapse
Key Words
- DIGE
- Drug resistance
- EF1-α, elongation factor 1 alpha
- ENO2, enolase 2
- G3PDH, glyceraldehyde-3-phosphate dehydrogenase
- GRA2, dense granule protein 2
- GRA7, dense granule protein 7
- Hsp70, heat shock protein 70
- Hsp90, heat shock protein 90
- MIC1, microneme protein 1
- MIC2, microneme protein 2
- PP2C, protein phosphatase 2C
- ROP2, rhoptry protein 2
- ROP9, rhoptry protein 9
- Sulfadiazine
- TgCDPK1, Toxoplasma gondii calcium-dependent protein kinase 1
- Toxoplasma gondii
- eIF-5A, translation initiation factor 5A
- small Hsp20, small heat shock protein 20
Collapse
|
18
|
Walker R, Gissot M, Croken MM, Huot L, Hot D, Kim K, Tomavo S. The Toxoplasma nuclear factor TgAP2XI-4 controls bradyzoite gene expression and cyst formation. Mol Microbiol 2012; 87:641-55. [PMID: 23240624 DOI: 10.1111/mmi.12121] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2012] [Indexed: 01/14/2023]
Abstract
Toxoplasma gondii undergoes many phenotypic changes during its life cycle. The recent identification of AP2 transcription factors in T. gondii has provided a platform for studying the mechanisms controlling gene expression. In the present study, we report that a recombinant protein encompassing the TgAP2XI-4 AP2 domain was able to specifically bind to a DNA motif using gel retardation assays. TgAP2XI-4 protein is localized in the parasite nucleus throughout the tachyzoite life cycle in vitro, with peak expression occurring after cytokinesis. We found that the TgAP2XI-4 transcript level was higher in bradyzoite cysts isolated from brains of chronically infected mice than in the rapidly replicating tachyzoites. A knockout of the TgAP2XI-4 gene in both T. gondii virulent type I and avirulent type II strains reveals its role in modulating expression and promoter activity of genes involved in stage conversion of the rapidly replicating tachyzoites to the dormant cyst forming bradyzoites. Furthermore, mice infected with the type II KO mutants show a drastically reduced brain cyst burden. Thus, our results validate TgAP2XI-4 as a novel nuclear factor that regulates bradyzoite gene expression during parasite differentiation and cyst formation.
Collapse
Affiliation(s)
- Robert Walker
- Center for Infection and Immunity of Lille, UMR CNRS 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Adomako-Ankomah Y, Wier GM, Boyle JP. Beyond the genome: recent advances in Toxoplasma gondii functional genomics. Parasite Immunol 2012; 34:80-9. [PMID: 21722143 DOI: 10.1111/j.1365-3024.2011.01312.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent years have witnessed an explosion in the amount of genomic information available for Toxoplasma gondii and other closely related pathogens. These data, many of which have been made publicly available prior to publication, have facilitated a wide variety of functional genomics studies. In this review, we provide a brief overview of existing database tools for querying the Toxoplasma genome and associated genome-wide data and review recent publications that have been facilitated by these data. Topics covered include strain comparisons and quantitative trait loci mapping, gene expression analyses during the cell cycle as well as during parasite differentiation, and proteomics.
Collapse
Affiliation(s)
- Y Adomako-Ankomah
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
20
|
Transcriptomic analysis of toxoplasma development reveals many novel functions and structures specific to sporozoites and oocysts. PLoS One 2012; 7:e29998. [PMID: 22347997 PMCID: PMC3278417 DOI: 10.1371/journal.pone.0029998] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/08/2011] [Indexed: 11/25/2022] Open
Abstract
Sexual reproduction of Toxoplasma gondii occurs exclusively within enterocytes of the definitive felid host. The resulting immature oocysts are excreted into the environment during defecation, where in the days following, they undergo a complex developmental process. Within each oocyst, this culminates in the generation of two sporocysts, each containing 4 sporozoites. A single felid host is capable of shedding millions of oocysts, which can survive for years in the environment, are resistant to most methods of microbial inactivation during water-treatment and are capable of producing infection in warm-blooded hosts at doses as low as 1–10 ingested oocysts. Despite its extremely interesting developmental biology and crucial role in initiating an infection, almost nothing is known about the oocyst stage beyond morphological descriptions. Here, we present a complete transcriptomic analysis of the oocyst from beginning to end of its development. In addition, and to identify genes whose expression is unique to this developmental form, we compared the transcriptomes of developing oocysts with those of in vitro-derived tachyzoites and in vivo-derived bradyzoites. Our results reveal many genes whose expression is specifically up- or down-regulated in different developmental stages, including many genes that are likely critical to oocyst development, wall formation, resistance to environmental destruction and sporozoite infectivity. Of special note is the up-regulation of genes that appear “off” in tachyzoites and bradyzoites but that encode homologues of proteins known to serve key functions in those asexual stages, including a novel pairing of sporozoite-specific paralogues of AMA1 and RON2, two proteins that have recently been shown to form a crucial bridge during tachyzoite invasion of host cells. This work provides the first in-depth insight into the development and functioning of one of the most important but least studied stages in the Toxoplasma life cycle.
Collapse
|
21
|
Targeted disruption of Toxoplasma gondii serine protease inhibitor 1 increases bradyzoite cyst formation in vitro and parasite tissue burden in mice. Infect Immun 2011; 80:1156-65. [PMID: 22202120 DOI: 10.1128/iai.06167-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As an intracellular protozoan parasite, Toxoplasma gondii is likely to exploit proteases for host cell invasion, acquisition of nutrients, avoidance of host protective responses, escape from the parasitophorous vacuole, differentiation, and other activities. T. gondii serine protease inhibitor 1 (TgPI1) is the most abundantly expressed protease inhibitor in parasite tachyzoites. We show here that alternative splicing produces two TgPI1 isoforms, both of which are secreted via dense granules into the parasitophorous vacuole shortly after invasion, become progressively more abundant over the course of the infectious cycle, and can be detected in the infected host cell cytoplasm. To investigate TgPI1 function, the endogenous genomic locus was disrupted in the RH strain background. ΔTgPI1 parasites replicate normally as tachyzoites but exhibit increased bradyzoite gene transcription and labeling of vacuoles with Dolichos biflorus lectin under conditions promoting in vitro differentiation. The differentiation phenotype can be partially complemented by either TgPI1 isoform. Mice infected with the ΔTgPI1 mutant display ∼3-fold-increased parasite burden in the spleen and liver, and this in vivo phenotype is also complemented by either TgPI1 isoform. These results demonstrate that TgPI1 influences both parasite virulence and bradyzoite differentiation, presumably by inhibiting parasite and/or host serine proteases.
Collapse
|
22
|
Yamagishi J, Watanabe J, Goo YK, Masatani T, Suzuki Y, Xuan X. Characterization of Toxoplasma gondii 5' UTR with encyclopedic TSS information. J Parasitol 2011; 98:445-7. [PMID: 22010783 DOI: 10.1645/ge-2864.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The 5' UTR is widely involved in gene expression via post-transcriptional regulation. However, a detailed profile of the 5' UTR for Toxoplasma gondii has not yet been demonstrated. To investigate the issue, we compared the predicted open reading frames (ORFs) and transcription start sites (TSSs) of T. gondii obtained by TSS-seq, a method that enables analysis of encyclopedic TSSs with next-generation sequencers. As a result, it was demonstrated that the mode length of the 5' UTR is between 120 and 140 nucleotides (nts) when a subset of genes with predicted signal peptides was examined. However, when genes without the signal peptide were examined, the length was extended to approximately 600 nts. Because additional information on the predicted signal peptide generates increased reliability to the 5' end estimation of each ORF, we believe that the former value was more reliable as a representative of the 5' UTR length of T. gondii. The discrepancy suggests that current predictions of the 5' end of the ORF were less accurate and considerably more discordant with the natural status. The 5' untranslated region (5' UTR) is defined as that between the 5' end of the transcripts and just in front of a start codon of an ORF. Therefore, the 5' UTR does not contain any information for a protein sequence; however, it is involved in the control of protein expression via the modulation of translational efficiency (Kozak, 1991b; Hughes, 2006).
Collapse
Affiliation(s)
- J Yamagishi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan 080-8555
| | | | | | | | | | | |
Collapse
|
23
|
Zhou DH, Yuan ZG, Zhao FR, Li HL, Zhou Y, Lin RQ, Zou FC, Song HQ, Xu MJ, Zhu XQ. Modulation of mouse macrophage proteome induced by Toxoplasma gondii tachyzoites in vivo. Parasitol Res 2011; 109:1637-46. [PMID: 21584632 DOI: 10.1007/s00436-011-2435-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/27/2011] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite, which can invade and multiply within the macrophages of humans and most warm-blooded animals. Macrophages are important effector cells for the control and killing of intracellular T. gondii, and they may also serve as long-term host cells for the replication and survival of the parasite. In the present study, we explored the proteomic profile of macrophages of the specific pathogen-free Kunming mice at 24 h after infection with tachyzoites of the virulent T. gondii RH strain using two-dimensional gel electrophoresis combined with matrix-assisted laser desorption ionization time-of-flight (TOF)/TOF tandem mass spectrometry. Totally, 60 differentially expressed protein spots were identified. Among them, 52 spots corresponded to 38 proteins matching to proteins of the mouse, including actin, enolase, calumenin, vimentin, plastin 2, annexin A1, cathepsin S, arginase-1, arachidonate 12-lipoxygenase, and aminoacylase-1. Functional prediction using Gene Ontology database showed that these proteins were mainly involved in metabolism, structure, protein fate, and immune responses. The findings provided an insight into the interactive relationship between T. gondii and the host macrophages, and will shed new lights on the understanding of molecular mechanisms of T. gondii pathogenesis.
Collapse
Affiliation(s)
- D H Zhou
- Department of Parasitology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Olguin-Lamas A, Madec E, Hovasse A, Werkmeister E, Callebaut I, Slomianny C, Delhaye S, Mouveaux T, Schaeffer-Reiss C, Van Dorsselaer A, Tomavo S. A novel Toxoplasma gondii nuclear factor TgNF3 is a dynamic chromatin-associated component, modulator of nucleolar architecture and parasite virulence. PLoS Pathog 2011; 7:e1001328. [PMID: 21483487 PMCID: PMC3068996 DOI: 10.1371/journal.ppat.1001328] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 03/01/2011] [Indexed: 01/13/2023] Open
Abstract
In Toxoplasma gondii, cis-acting elements present in promoter sequences of genes that are stage-specifically regulated have been described. However, the nuclear factors that bind to these cis-acting elements and regulate promoter activities have not been identified. In the present study, we performed affinity purification, followed by proteomic analysis, to identify nuclear factors that bind to a stage-specific promoter in T. gondii. This led to the identification of several nuclear factors in T. gondii including a novel factor, designated herein as TgNF3. The N-terminal domain of TgNF3 shares similarities with the N-terminus of yeast nuclear FK506-binding protein (FKBP), known as a histone chaperone regulating gene silencing. Using anti-TgNF3 antibodies, HA-FLAG and YFP-tagged TgNF3, we show that TgNF3 is predominantly a parasite nucleolar, chromatin-associated protein that binds specifically to T. gondii gene promoters in vivo. Genome-wide analysis using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified promoter occupancies by TgNF3. In addition, TgNF3 has a direct role in transcriptional control of genes involved in parasite metabolism, transcription and translation. The ectopic expression of TgNF3 in the tachyzoites revealed dynamic changes in the size of the nucleolus, leading to a severe attenuation of virulence in vivo. We demonstrate that TgNF3 physically interacts with H3, H4 and H2A/H2B assembled into bona fide core and nucleosome-associated histones. Furthermore, TgNF3 interacts specifically to histones in the context of stage-specific gene silencing of a promoter that lacks active epigenetic acetylated histone marks. In contrast to virulent tachyzoites, which express the majority of TgNF3 in the nucleolus, the protein is exclusively located in the cytoplasm of the avirulent bradyzoites. We propose a model where TgNF3 acts essentially to coordinate nucleolus and nuclear functions by modulating nucleosome activities during the intracellular proliferation of the virulent tachyzoites of T. gondii. Apicomplexa including Toxoplasma gondii are responsible for a variety of deadly infections. These intracellular parasites have complex life cycles within different hosts and their infectivity relies on their capacity to regulate gene expression in response to different environments. However, to date, little is known about nuclear factors that regulate their gene expression. Here, we have characterized parasite nuclear factors that bind to a stage-specific promoter. We identified several nuclear factors including a novel factor, designated herein as TgNF3. The N-terminal domain of TgNF3 shares similarities with the N-terminus of yeast nuclear FK506-binding protein (FKBP), known as a histone chaperone regulating gene silencing. We show that TgNF3 is predominantly a nucleolar, chromatin-associated protein that specifically binds to T. gondii nucleosome-associated histones and promoters. Genome-wide analysis identified promoter occupancies by TgNF3 and we demonstrated a direct role for this factor in transcriptional control of genes involved in parasite metabolism, transcription and translation. Ectopic expression of TgNF3 induces dynamic changes in the size of the nucleolus, and a severe attenuation of parasite virulence in vivo. In avirulent bradyzoites, TgNF3 is found exclusively in the cytoplasm, suggesting a potential role in regulating nucleolar and nuclear functions in the virulent tachyzoites of T. gondii.
Collapse
Affiliation(s)
- Alejandro Olguin-Lamas
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université de Lille 1, Villeneuve d'Ascq, France
| | - Edwige Madec
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université de Lille 1, Villeneuve d'Ascq, France
| | - Agnes Hovasse
- Laboratoire de Spectrométrie de Masse Bioorganique, IPHC, CNRS UMR 7178, Université de Strasbourg, Strasbourg, France
| | - Elisabeth Werkmeister
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Isabelle Callebaut
- Centre National de la Recherche Scientifique, Universités Pierre et Marie Curie-Paris 6 et Denis Diderot-Paris 7, UMR7590, Paris, France
| | - Christian Slomianny
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Université de Lille 1, Villeneuve d'Ascq, France
| | - Stephane Delhaye
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université de Lille 1, Villeneuve d'Ascq, France
| | - Thomas Mouveaux
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université de Lille 1, Villeneuve d'Ascq, France
| | - Christine Schaeffer-Reiss
- Laboratoire de Spectrométrie de Masse Bioorganique, IPHC, CNRS UMR 7178, Université de Strasbourg, Strasbourg, France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse Bioorganique, IPHC, CNRS UMR 7178, Université de Strasbourg, Strasbourg, France
| | - Stanislas Tomavo
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université de Lille 1, Villeneuve d'Ascq, France
- * E-mail:
| |
Collapse
|
25
|
Hutson SL, Mui E, Kinsley K, Witola WH, Behnke MS, El Bissati K, Muench SP, Rohrman B, Liu SR, Wollmann R, Ogata Y, Sarkeshik A, Yates JR, McLeod R. T. gondii RP promoters & knockdown reveal molecular pathways associated with proliferation and cell-cycle arrest. PLoS One 2010; 5:e14057. [PMID: 21124925 PMCID: PMC2989910 DOI: 10.1371/journal.pone.0014057] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 10/25/2010] [Indexed: 01/16/2023] Open
Abstract
Molecular pathways regulating rapid proliferation and persistence are fundamental for pathogens but are not elucidated fully in Toxoplasma gondii. Promoters of T. gondii ribosomal proteins (RPs) were analyzed by EMSAs and ChIP. One RP promoter domain, known to bind an Apetela 2, bound to nuclear extract proteins. Promoter domains appeared to associate with histone acetyl transferases. To study effects of a RP gene's regulation in T. gondii, mutant parasites (Δrps13) were engineered with integration of tetracycline repressor (TetR) response elements in a critical location in the rps13 promoter and transfection of a yellow fluorescent-tetracycline repressor (YFP-TetR). This permitted conditional knockdown of rps13 expression in a tightly regulated manner. Δrps13 parasites were studied in the presence (+ATc) or absence of anhydrotetracycline (-ATc) in culture. -ATc, transcription of the rps13 gene and expression of RPS13 protein were markedly diminished, with concomitant cessation of parasite replication. Study of Δrps13 expressing Myc-tagged RPL22, -ATc, showed RPL22 diminished but at a slower rate. Quantitation of RNA showed diminution of 18S RNA. Depletion of RPS13 caused arrest of parasites in the G1 cell cycle phase, thereby stopping parasite proliferation. Transcriptional differences ±ATc implicate molecules likely to function in regulation of these processes. In vitro, -ATc, Δrps13 persists for months and the proliferation phenotype can be rescued with ATc. In vivo, however, Δrps13 could only be rescued when ATc was given simultaneously and not at any time after 1 week, even when L-NAME and ATc were administered. Immunization with Δrps13 parasites protects mice completely against subsequent challenge with wildtype clonal Type 1 parasites, and robustly protects mice against wildtype clonal Type 2 parasites. Our results demonstrate that G1 arrest by ribosomal protein depletion is associated with persistence of T. gondii in a model system in vitro and immunization with Δrps13 protects mice against subsequent challenge with wildtype parasites.
Collapse
Affiliation(s)
- Samuel L. Hutson
- Department of Surgery (Ophthalmology), The University of Chicago, Chicago, Illinois, United States of America
| | - Ernest Mui
- Department of Surgery (Ophthalmology), The University of Chicago, Chicago, Illinois, United States of America
| | - Karen Kinsley
- Department of Surgery (Ophthalmology), The University of Chicago, Chicago, Illinois, United States of America
| | - William H. Witola
- Department of Surgery (Ophthalmology), The University of Chicago, Chicago, Illinois, United States of America
| | - Michael S. Behnke
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Kamal El Bissati
- Department of Surgery (Ophthalmology), The University of Chicago, Chicago, Illinois, United States of America
| | - Stephen P. Muench
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, United Kingdom
| | - Brittany Rohrman
- Department of Surgery (Ophthalmology), The University of Chicago, Chicago, Illinois, United States of America
| | - Susan R. Liu
- Department of Surgery (Ophthalmology), The University of Chicago, Chicago, Illinois, United States of America
| | - Robert Wollmann
- Department of Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Yuko Ogata
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Ali Sarkeshik
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, California, United States of America
| | - Rima McLeod
- Department of Surgery (Ophthalmology), The University of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics (Infectious Disease), The University of Chicago, Chicago, Illinois, United States of America
- Committees on Immunology, Molecular Medicine, and Genetics, Institute of Genomics and Systems Biology, The College, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
26
|
Dixon SE, Stilger KL, Elias EV, Naguleswaran A, Sullivan WJ. A decade of epigenetic research in Toxoplasma gondii. Mol Biochem Parasitol 2010; 173:1-9. [PMID: 20470832 PMCID: PMC2886187 DOI: 10.1016/j.molbiopara.2010.05.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/30/2010] [Accepted: 05/04/2010] [Indexed: 11/25/2022]
Abstract
In the past 10 years, the field of parasitology has witnessed an explosion of studies investigating gene regulation. In this review, we will describe recent advances largely stemming from the study of Toxoplasma gondii, a significant opportunistic pathogen and useful model for other apicomplexan protozoa. Surprising findings have emerged, including the discovery of a wealth of epigenetic machinery in these primitive eukaryotes, unusual histone variants, and a battery of plant-like transcription factors. We will elaborate on how these unusual features impact parasite physiology and potential therapeutics as we summarize some of the key discoveries from the last decade. We will close by proposing a few questions to address in the next 10 years.
Collapse
Affiliation(s)
- Stacy E. Dixon
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Krista L. Stilger
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Eliana V. Elias
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Arunasalam Naguleswaran
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - William J. Sullivan
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| |
Collapse
|
27
|
Behnke MS, Wootton JC, Lehmann MM, Radke JB, Lucas O, Nawas J, Sibley LD, White MW. Coordinated progression through two subtranscriptomes underlies the tachyzoite cycle of Toxoplasma gondii. PLoS One 2010; 5:e12354. [PMID: 20865045 PMCID: PMC2928733 DOI: 10.1371/journal.pone.0012354] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 06/12/2010] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Apicomplexan parasites replicate by varied and unusual processes where the typically eukaryotic expansion of cellular components and chromosome cycle are coordinated with the biosynthesis of parasite-specific structures essential for transmission. METHODOLOGY/PRINCIPAL FINDINGS Here we describe the global cell cycle transcriptome of the tachyzoite stage of Toxoplasma gondii. In dividing tachyzoites, more than a third of the mRNAs exhibit significant cyclical profiles whose timing correlates with biosynthetic events that unfold during daughter parasite formation. These 2,833 mRNAs have a bimodal organization with peak expression occurring in one of two transcriptional waves that are bounded by the transition into S phase and cell cycle exit following cytokinesis. The G1-subtranscriptome is enriched for genes required for basal biosynthetic and metabolic functions, similar to most eukaryotes, while the S/M-subtranscriptome is characterized by the uniquely apicomplexan requirements of parasite maturation, development of specialized organelles, and egress of infectious daughter cells. Two dozen AP2 transcription factors form a series through the tachyzoite cycle with successive sharp peaks of protein expression in the same timeframes as their mRNA patterns, indicating that the mechanisms responsible for the timing of protein delivery might be mediated by AP2 domains with different promoter recognition specificities. CONCLUSION/SIGNIFICANCE Underlying each of the major events in apicomplexan cell cycles, and many more subordinate actions, are dynamic changes in parasite gene expression. The mechanisms responsible for cyclical gene expression timing are likely crucial to the efficiency of parasite replication and may provide new avenues for interfering with parasite growth.
Collapse
Affiliation(s)
- Michael S. Behnke
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John C. Wootton
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Margaret M. Lehmann
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Josh B. Radke
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
- Departments of Molecular Medicine and Global Health, University of South Florida, Tampa, Florida, United States of America
| | - Olivier Lucas
- Departments of Molecular Medicine and Global Health, University of South Florida, Tampa, Florida, United States of America
| | - Julie Nawas
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael W. White
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
- Departments of Molecular Medicine and Global Health, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
28
|
Yamagishi J, Wakaguri H, Ueno A, Goo YK, Tolba M, Igarashi M, Nishikawa Y, Sugimoto C, Sugano S, Suzuki Y, Watanabe J, Xuan X. High-resolution characterization of Toxoplasma gondii transcriptome with a massive parallel sequencing method. DNA Res 2010; 17:233-43. [PMID: 20522451 PMCID: PMC2920756 DOI: 10.1093/dnares/dsq013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
For the last couple of years, a method that permits the collection of precise positional information of transcriptional start sites (TSSs) together with digital information of the gene-expression levels in a high-throughput manner was established. We applied this novel method, ‘tss-seq’, to elucidate the transcriptome of tachyzoites of the Toxoplasma gondii, which resulted in the identification of 124 000 TSSs, and they were clustered into 10 000 transcription regions (TRs) with a statistics-based analysis. The TRs and annotated ORFs were paired, resulting in the identification of 30% of the TRs and 40% of the ORFs without their counterparts, which predicted undiscovered genes and stage-specific transcriptions, respectively. The massive data for TSSs make it possible to execute the first systematic analysis of the T. gondii core promoter structure, and the information showed that T. gondii utilized an initiator-like motif for their transcription in the major and novel motif, the downstream thymidine cluster, which was similar to the Y patch observed in plants. This encyclopaedic analysis also suggested that the TATA box, and the other well-known core promoter elements were hardly utilized.
Collapse
Affiliation(s)
- Junya Yamagishi
- 1National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cohn B, Manque P, Lara AM, Serrano M, Sheth N, Buck G. Putative cis-regulatory elements associated with heat shock genes activated during excystation of Cryptosporidium parvum. PLoS One 2010; 5:e9512. [PMID: 20209102 PMCID: PMC2832001 DOI: 10.1371/journal.pone.0009512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 02/05/2010] [Indexed: 11/30/2022] Open
Abstract
Background Cryptosporidiosis is a ubiquitous infectious disease, caused by the protozoan parasites Cryptosporidium hominis and C. parvum, leading to acute, persistent and chronic diarrhea worldwide. Although the complications of this disease can be serious, even fatal, in immunocompromised patients of any age, they have also been found to lead to long term effects, including growth inhibition and impaired cognitive development, in infected immunocompetent children. The Cryptosporidium life cycle alternates between a dormant stage, the oocyst, and a highly replicative phase that includes both asexual vegetative stages as well as sexual stages, implying fine genetic regulatory mechanisms. The parasite is extremely difficult to study because it cannot be cultured in vitro and animal models are equally challenging. The recent publication of the genome sequence of C. hominis and C. parvum has, however, significantly advanced our understanding of the biology and pathogenesis of this parasite. Methodology/Principal Findings Herein, our goal was to identify cis-regulatory elements associated with heat shock response in Cryptosporidium using a combination of in silico and real time RT-PCR strategies. Analysis with Gibbs-Sampling algorithms of upstream non-translated regions of twelve genes annotated as heat shock proteins in the Cryptosporidium genome identified a highly conserved over-represented sequence motif in eleven of them. RT-PCR analyses, described herein and also by others, show that these eleven genes bearing the putative element are induced concurrent with excystation of parasite oocysts via heat shock. Conclusions/Significance Our analyses suggest that occurrences of a motif identified in the upstream regions of the Cryptosporidium heat shock genes represent parts of the transcriptional apparatus and function as stress response elements that activate expression of these genes during excystation, and possibly at other stages in the life cycle of the parasite. Since heat shock and excystation represent a critical step in the development of the infectious sporozoite form of Cryptosporidium, these results provide important insight into the pathogenicity of the parasite.
Collapse
Affiliation(s)
- Benjamin Cohn
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Patricio Manque
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ana M. Lara
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Myrna Serrano
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Nihar Sheth
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Gregory Buck
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
30
|
Reverse vaccinology approach identify an Echinococcus granulosus tegumental membrane protein enolase as vaccine candidate. Parasitol Res 2010; 106:873-82. [PMID: 20127115 DOI: 10.1007/s00436-010-1729-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 01/04/2010] [Indexed: 10/19/2022]
Abstract
Applying reverse vaccinology strategy, we employed a sequence encoding an enolase from Taenia asiatica to search its homolog in the expression sequence tag (EST) database of Echinococcus granulosus and found two EST sequences (Access number: CN653186 and CN649593) of a clone Eg_PSGRS_13B09 from E. granulosus protoscolex full-length cDNA library, which are responding for the 5' and 3' partial cds of E. granulosus enolase, respectively. Primers are designed according to the 5' end and 3'end of the putative encoding sequence to amplify the genomic DNA of E. granulosus strain isolated from sheep in Qinghai province of China by polymerase chain reaction (PCR). A sole product of 1,449 bp in length was obtained, which contains two little introns of 78 bp and 69 bp, respectively. The introns were excised by unsymmetrical PCR with combined flank sequences of introns as primers. The structural, functional, and immunological characteristics of putative amino acid sequence were predicted by bioinformatics analysis. The complete coding sequence was predicted to encode 433 residues and contain a transmembrane region aa(104-124), with the N terminus outside and C terminus inside. The inside part is quite the functional domain. SWISS-MODEL modulated its 3D structure as a barrel which constitutes of alternatively arranged alpha helix-beta sheet, with the key sites such as substrate binding region, active sites, Mg(2+)-binding sites closely located at the center. The protein contains a potential nuclear localization sequence aa(190-199) and several linear B cell epitopes and CTL T cell epitopes, of which the outside epitope aa(49-57) and inside epitope aa(228-236) are facultative T cell and B cell epitope, and the linear B cell epitope aa(206-213) contains the active center site Glu(210), suggesting the putative protein is a potential membrane with strong immunogenicity. The complete cds was expressed in Escherichia coli, and the recombinant protein can be recognized by the serum from patient infected with E. granulosus. Reverse vaccinology process identified E. granulosus tegumental membrane protein enolase as vaccine candidate.
Collapse
|
31
|
Holmes M, Liwak U, Pricop I, Wang X, Tomavo S, Ananvoranich S. Silencing of tachyzoite enolase 2 alters nuclear targeting of bradyzoite enolase 1 in Toxoplasma gondii. Microbes Infect 2010; 12:19-27. [DOI: 10.1016/j.micinf.2009.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/14/2009] [Accepted: 09/05/2009] [Indexed: 11/30/2022]
|
32
|
Mullapudi N, Joseph SJ, Kissinger JC. Identification and functional characterization of cis-regulatory elements in the apicomplexan parasite Toxoplasma gondii. Genome Biol 2009; 10:R34. [PMID: 19351398 PMCID: PMC2688925 DOI: 10.1186/gb-2009-10-4-r34] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Revised: 01/11/2009] [Accepted: 04/07/2009] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is a member of the phylum Apicomplexa, which consists entirely of parasitic organisms that cause several diseases of veterinary and human importance. Fundamental mechanisms of gene regulation in this group of protistan parasites remain largely uncharacterized. Owing to their medical and veterinary importance, genome sequences are available for several apicomplexan parasites. Their genome sequences reveal an apparent paucity of known transcription factors and the absence of canonical cis-regulatory elements. We have approached the question of gene regulation from a sequence perspective by mining the genomic sequence data to identify putative cis-regulatory elements using a de novo approach. RESULTS We have identified putative cis-regulatory elements present upstream of functionally related groups of genes and subsequently characterized the function of some of these conserved elements using reporter assays in the parasite. We show a sequence-specific role in gene-expression for seven out of eight identified elements. CONCLUSIONS This work demonstrates the power of pure sequence analysis in the absence of expression data or a priori knowledge of regulatory elements in eukaryotic organisms with compact genomes.
Collapse
Affiliation(s)
- Nandita Mullapudi
- Department of Genetics, University of Georgia, East Green Street, Athens, Georgia, 30602, USA
- Current address: Department of Pulmonary Medicine, Albert Einstein College of Medicine, Morris Park Ave, Bronx, New York, NY 10461, USA
| | - Sandeep J Joseph
- Department of Genetics, University of Georgia, East Green Street, Athens, Georgia, 30602, USA
| | - Jessica C Kissinger
- Department of Genetics, University of Georgia, East Green Street, Athens, Georgia, 30602, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, DW Brooks Drive, Athens, Georgia, 30602, USA
| |
Collapse
|
33
|
Huang R, Que X, Hirata K, Brinen LS, Lee JH, Hansell E, Engel J, Sajid M, Reed S. The cathepsin L of Toxoplasma gondii (TgCPL) and its endogenous macromolecular inhibitor, toxostatin. Mol Biochem Parasitol 2009; 164:86-94. [PMID: 19111576 PMCID: PMC2663568 DOI: 10.1016/j.molbiopara.2008.11.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 11/20/2008] [Accepted: 11/24/2008] [Indexed: 10/21/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite of all vertebrates, including man. Successful invasion and replication requires the synchronized release of parasite proteins, many of which require proteolytic processing. Unlike most parasites, T. gondii has a limited number of Clan CA, family C1 cysteine proteinases with one cathepsin B (TgCPB), one cathepsin L (TgCPL) and three cathepsin Cs (TgCPC1, 2, 3). Previously, we characterized toxopain, the only cathepsin B enzyme, which localizes to the rhoptry organelle. Two cathepsin Cs are trafficked through dense granules to the parasitophorous vacuole where they degrade peptides. We now report the cloning, expression, and modeling of the sole cathepsin L gene and the identification of two new endogenous inhibitors. TgCPL differs from human cathepsin L with a pH optimum of 6.5 and its substrate preference for leucine (vs. phenylalanine) in the P2 position. This distinct preference is explained by homology modeling, which reveals a non-canonical aspartic acid (Asp 216) at the base of the predicted active site S2 pocket, which limits substrate access. To further our understanding of the regulation of cathepsins in T. gondii, we identified two genes encoding endogenous cysteine proteinase inhibitors (ICPs or toxostatins), which are active against both TgCPB and TgCPL in the nanomolar range. Over expression of toxostatin-1 significantly decreased overall cysteine proteinase activity in parasite lysates, but had no detectable effect on invasion or intracellular multiplication. These findings provide important insights into the proteolytic cascades of T. gondii and their endogenous control.
Collapse
Affiliation(s)
- Robert Huang
- Department of Medicine, University of California, San Diego, San Diego, California 92103
| | - Xuchu Que
- Department of Medicine, University of California, San Diego, San Diego, California 92103
| | - Ken Hirata
- Department of Pathology, University of California, San Diego, San Diego, California 92103
| | - Linda S. Brinen
- Departments of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - Ji Hyun Lee
- Departments of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - Elizabeth Hansell
- Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, San Francisco, CA 94143
| | - Juan Engel
- Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, San Francisco, CA 94143
| | - Mohammed Sajid
- Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, San Francisco, CA 94143
| | - Sharon Reed
- Department of Medicine, University of California, San Diego, San Diego, California 92103
- Department of Pathology, University of California, San Diego, San Diego, California 92103
| |
Collapse
|
34
|
The heptanucleotide motif GAGACGC is a key component of a cis-acting promoter element that is critical for SnSAG1 expression in Sarcocystis neurona. Mol Biochem Parasitol 2009; 166:85-8. [PMID: 19428678 DOI: 10.1016/j.molbiopara.2009.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 02/09/2009] [Accepted: 02/12/2009] [Indexed: 11/23/2022]
Abstract
The apicomplexan parasite Sarcocystis neurona undergoes a complex process of intracellular development, during which many genes are temporally regulated. The described study was undertaken to begin identifying the basic promoter elements that control gene expression in S. neurona. Sequence analysis of the 5'-flanking region of five S. neurona genes revealed a conserved heptanucleotide motif GAGACGC that is similar to the WGAGACG motif described upstream of multiple genes in Toxoplasma gondii. The promoter region for the major surface antigen gene SnSAG1, which contains three heptanucleotide motifs within 135 bases of the transcription start site, was dissected by functional analysis using a dual luciferase reporter assay. These analyses revealed that a minimal promoter fragment containing all three motifs was sufficient to drive reporter molecule expression, with the presence and orientation of the 5'-most heptanucleotide motif being absolutely critical for promoter function. Further studies should help to identify additional sequence elements important for promoter function and for controlling gene expression during intracellular development by this apicomplexan pathogen.
Collapse
|
35
|
Guo X, Silva JC. Properties of non-coding DNA and identification of putative cis-regulatory elements in Theileria parva. BMC Genomics 2008; 9:582. [PMID: 19055776 PMCID: PMC2612703 DOI: 10.1186/1471-2164-9-582] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 12/03/2008] [Indexed: 01/24/2023] Open
Abstract
Background Parasites in the genus Theileria cause lymphoproliferative diseases in cattle, resulting in enormous socio-economic losses. The availability of the genome sequences and annotation for T. parva and T. annulata has facilitated the study of parasite biology and their relationship with host cell transformation and tropism. However, the mechanism of transcriptional regulation in this genus, which may be key to understanding fundamental aspects of its parasitology, remains poorly understood. In this study, we analyze the evolution of non-coding sequences in the Theileria genome and identify conserved sequence elements that may be involved in gene regulation of these parasitic species. Results Intergenic regions and introns in Theileria are short, and their length distributions are considerably right-skewed. Intergenic regions flanked by genes in 5'-5' orientation tend to be longer and slightly more AT-rich than those flanked by two stop codons; intergenic regions flanked by genes in 3'-5' orientation have intermediate values of length and AT composition. Intron position is negatively correlated with intron length, and positively correlated with GC content. Using stringent criteria, we identified a set of high-quality orthologous non-coding sequences between T. parva and T. annulata, and determined the distribution of selective constraints across regions, which are shown to be higher close to translation start sites. A positive correlation between constraint and length in both intergenic regions and introns suggests a tight control over length expansion of non-coding regions. Genome-wide searches for functional elements revealed several conserved motifs in intergenic regions of Theileria genomes. Two such motifs are preferentially located within the first 60 base pairs upstream of transcription start sites in T. parva, are preferentially associated with specific protein functional categories, and have significant similarity to know regulatory motifs in other species. These results suggest that these two motifs are likely to represent transcription factor binding sites in Theileria. Conclusion Theileria genomes are highly compact, with selection seemingly favoring short introns and intergenic regions. Three over-represented sequence motifs were independently identified in intergenic regions of both Theileria species, and the evidence suggests that at least two of them play a role in transcriptional control in T. parva. These are prime candidates for experimental validation of transcription factor binding sites in this single-celled eukaryotic parasite. Sequences similar to two of these Theileria motifs are conserved in Plasmodium hinting at the possibility of common regulatory machinery across the phylum Apicomplexa.
Collapse
Affiliation(s)
- Xiang Guo
- The Institute for Genomic Research/J. Craig Venter Institute, 9712 Medical Center Drive, Rockville, MD 20850, USA.
| | | |
Collapse
|
36
|
Abstract
How apicomplexan parasites regulate their gene expression is poorly understood. The complex life cycle of these parasites implies tight control of gene expression to orchestrate the appropriate expression pattern at the right moment. Recently, several studies have demonstrated the role of epigenetic mechanisms for control of coordinated expression of genes. In this review, we discuss the contribution of epigenomics to the understanding of gene regulation in Toxoplasma gondii. Studying the distribution of modified histones on the genome links chromatin modifications to gene expression or gene repression. In particular, coincident trimethylated lysine 4 on histone H3 (H3K4me3), acetylated lysine 9 on histone H3 (H3K9ac), and acetylated histone H4 (H4ac) mark promoters of actively transcribed genes. However, the presence of these modified histones at some non-expressed genes and other histone modifications at only a subset of active promoters implies the presence of other layers of regulation of chromatin structure in T. gondii. Epigenomics analysis provides a powerful tool to characterize the activation state of genomic loci of T. gondii and possibly of other Apicomplexa including Plasmodium or Cryptosporidium. Further, integration of epigenetic data with expression data and other genome-wide datasets facilitates refinement of genome annotation based upon experimental data.
Collapse
Affiliation(s)
- Mathieu Gissot
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
37
|
Gissot M, Kim K, Schaap D, Ajioka JW. New eukaryotic systematics: a phylogenetic perspective of developmental gene expression in the Apicomplexa. Int J Parasitol 2008; 39:145-51. [PMID: 18983845 DOI: 10.1016/j.ijpara.2008.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/01/2008] [Accepted: 10/14/2008] [Indexed: 12/14/2022]
Abstract
The phylum Apicomplexa consists of obligate intracellular protistan parasites, some of which are responsible for global disease causing serious morbidity and mortality in humans and animals. Understanding the mechanisms of gene expression that drive the cellular changes required to complete their life cycles will be critical in combating infection and disease. Plasmodium spp. and Toxoplasma gondii have served as good models for growth and development in the Apicomplexa. Elucidating developmental gene expression relies on comparisons with known mechanisms and their DNA, RNA and protein components. Transcriptional profiling across asexual development suggests a model where a cascade of gene expression results in a "just-in-time" production process that makes products only when needed. Some mechanisms that control transcription such as chromatin/histone modification are highly conserved in the phylum compared with the traditional model organisms, yeast, worms, flies and mammals. Studies exploiting this phenomenon show great potential for both investigating the effects of chromatin structure on developmental gene expression, and helping to identify genes that are expressed in a stage-specific manner. Transcription factors and their cognate cis-acting binding sites have been difficult to identify. This may be because the DNA binding motifs that have evolved to act as transcription factors in the Apicomplexa, e.g. the AP2 family, may be more like plants than the traditional model organisms. A new eukaryotic phylogenetic model comprised of six super-groups divides the traditional model organisms, plants and the Apicomplexa into separate super-groups. This phylogenetic model helps explain why basic functions such as transcriptional regulation appear be a composite of mechanisms in the Apicomplexa compared with what is known from other eukaryotes.
Collapse
Affiliation(s)
- Mathieu Gissot
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
38
|
Frankel MB, Knoll LJ. Functional analysis of key nuclear trafficking components reveals an atypical Ran network required for parasite pathogenesis. Mol Microbiol 2008; 70:410-20. [PMID: 18761691 PMCID: PMC2577059 DOI: 10.1111/j.1365-2958.2008.06419.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protozoan parasites represent major public health challenges. Many aspects of their cell biology are distinct from their animal hosts, providing potential therapeutic targets. Toxoplasma gondii is a protozoan parasite that contains a divergent regulator of chromosome condensation 1 (TgRCC1) that is required for virulence and efficient nuclear trafficking. RCC1 proteins function as a guanine exchange factor for Ras-related nuclear protein (Ran), an abundant GTPase responsible for the majority of nucleocytoplasmic transport. Here we show that while there are dramatic differences from well-conserved RCC1 proteins, TgRCC1 associates with chromatin, interacts with Ran and complements a mammalian temperature-sensitive RCC1 mutant cell line. During the investigation of TgRCC1, we observed several unprecedented phenotypes for TgRan, despite a high level of sequence conservation. The cellular distribution of TgRan is found throughout the parasite cell, whereas Ran in late branching eukaryotes is predominantly nuclear. Additionally, T. gondii tolerates at least low-level expression of dominant lethal Ran mutants. Wild type parasites expressing dominant negative TgRan grew similarly to wild type in standard tissue culture conditions, but were attenuated in serum-starved host cells and mice. These growth characteristics paralleled the TgRCC1 mutant and highlight the importance of the nuclear transport pathway for virulence of eukaryotic pathogens.
Collapse
Affiliation(s)
- Matthew B. Frankel
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53706, USA
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
39
|
Bolten KE, Marsh AE, Reed SM, Dubey JP, Toribio RE, Saville WJA. Sarcocystis neurona: molecular characterization of enolase domain I region and a comparison to other protozoa. Exp Parasitol 2008; 120:108-12. [PMID: 18625501 DOI: 10.1016/j.exppara.2008.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 05/12/2008] [Accepted: 05/16/2008] [Indexed: 10/22/2022]
Abstract
Sarcocystis neurona causes protozoal myeloencephalitis and has the ability to infect a wide host range in contrast to other Sarcocystis species. In the current study, five S. neurona isolates from a variety of sources, three Sarcocystis falcatula, one Sarcocystis dasypi/S. neurona-like isolate, and one Besnoitia darlingi isolate were used to compare the enolase 2 gene segment containing the domain I region to previously sequenced enolase genes from Neospora caninum, Neospora hughesi, Toxoplasma gondii, Plasmodium falciparum, and Trypanosoma cruzi; enolase 2 segment containing domain I region is highly conserved amongst these parasites of veterinary and medical importance. Immunohistochemistry results indicates reactivity of T. gondii enolase 1 and 2 antibodies to S. neurona merozoites and metrocytes, but no reactivity of anti-enolase 1 to the S. neurona bradyzoite stage despite reactivity to T. gondii bradyzoites, suggesting expression differences between organisms.
Collapse
Affiliation(s)
- K E Bolten
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon Tharp Street, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
40
|
Behnke MS, Radke JB, Smith AT, Sullivan WJ, White MW. The transcription of bradyzoite genes in Toxoplasma gondii is controlled by autonomous promoter elements. Mol Microbiol 2008; 68:1502-18. [PMID: 18433450 PMCID: PMC2440561 DOI: 10.1111/j.1365-2958.2008.06249.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2008] [Indexed: 11/28/2022]
Abstract
Experimental evidence suggests that apicomplexan parasites possess bipartite promoters with basal and regulated cis-elements similar to other eukaryotes. Using a dual luciferase model adapted for recombinational cloning and use in Toxoplasma gondii, we show that genomic regions flanking 16 parasite genes, which encompass examples of constitutive and tachyzoite- and bradyzoite-specific genes, are able to reproduce the appropriate developmental stage expression in a transient luciferase assay. Mapping of cis-acting elements in several bradyzoite promoters led to the identification of short sequence spans that are involved in control of bradyzoite gene expression in multiple strains and under different bradyzoite induction conditions. Promoters that regulate the heat shock protein BAG1 and a novel bradyzoite-specific NTPase during bradyzoite development were fine mapped to a 6-8 bp resolution and these minimal cis-elements were capable of converting a constitutive promoter to one that is induced by bradyzoite conditions. Gel-shift experiments show that mapped cis-elements are bound by parasite protein factors with the appropriate functional sequence specificity. These studies are the first to identify the minimal sequence elements that are required and sufficient for bradyzoite gene expression and to show that bradyzoite promoters are maintained in a 'poised' chromatin state throughout the intermediate host life cycle in low passage strains. Together, these data demonstrate that conventional eukaryotic promoter mechanisms work with epigenetic processes to regulate developmental gene expression during tissue cyst formation.
Collapse
Affiliation(s)
- Michael S Behnke
- Department of Veterinary Molecular Biology, Montana State University BozemanMT 59717, USA
| | - Josh B Radke
- Department of Veterinary Molecular Biology, Montana State University BozemanMT 59717, USA
| | - Aaron T Smith
- Department Pharmacology and Toxicology, Indiana University School of MedicineIndianapolis, IN 46202, USA
| | - William J Sullivan
- Department Pharmacology and Toxicology, Indiana University School of MedicineIndianapolis, IN 46202, USA
| | - Michael W White
- Department of Veterinary Molecular Biology, Montana State University BozemanMT 59717, USA
| |
Collapse
|
41
|
Daher W, Oria G, Fauquenoy S, Cailliau K, Browaeys E, Tomavo S, Khalife J. A Toxoplasma gondii leucine-rich repeat protein binds phosphatase type 1 protein and negatively regulates its activity. EUKARYOTIC CELL 2007; 6:1606-17. [PMID: 17660360 PMCID: PMC2043371 DOI: 10.1128/ec.00260-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have characterized the Toxoplasma gondii protein phosphatase type 1 (TgPP1) and a potential regulatory binding protein belonging to the leucine-rich repeat protein family, designated TgLRR1. TgLRR1 is capable of binding to TgPP1 to inhibit its activity and to override a G(2)/M cell cycle checkpoint in Xenopus oocytes. In the parasite, TgLRR1 mRNA and protein are both highly expressed in the rapidly replicating and virulent tachyzoites, while only low levels are detected in the slowly dividing and quiescent bradyzoites. TgPP1 mRNA and protein levels are equally abundant in tachyzoites and bradyzoites. Affinity pull down and immunoprecipitation experiments reveal that the TgLRR1-TgPP1 interaction takes place in the nuclear subcompartment of tachyzoites. These results are consistent with those of localization studies using both indirect immunofluorescence with specific polyclonal antibody and transient transfection of T. gondii vector expressing TgLRR1 and TgPP1. The inability to obtain stable transgenic tachyzoites suggested that overexpression of TgLRR1 and TgPP1 may impair the parasite's growth. Together with the activation of Xenopus oocyte meiosis reinitiation, these data indicate that TgLRR1 protein could play a role in the regulation of the T. gondii cell cycle through the modulation of phosphatase activity.
Collapse
Affiliation(s)
- Wassim Daher
- Unité INSERM 547, Institut Pasteur de Lille, 1 rue du Prof. Calmette, 59019 Lille, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Gissot M, Kelly KA, Ajioka JW, Greally JM, Kim K. Epigenomic modifications predict active promoters and gene structure in Toxoplasma gondii. PLoS Pathog 2007; 3:e77. [PMID: 17559302 PMCID: PMC1891328 DOI: 10.1371/journal.ppat.0030077] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 04/17/2007] [Indexed: 11/23/2022] Open
Abstract
Mechanisms of gene regulation are poorly understood in Apicomplexa, a phylum that encompasses deadly human pathogens like Plasmodium and Toxoplasma. Initial studies suggest that epigenetic phenomena, including histone modifications and chromatin remodeling, have a profound effect upon gene expression and expression of virulence traits. Using the model organism Toxoplasma gondii, we characterized the epigenetic organization and transcription patterns of a contiguous 1% of the T. gondii genome using custom oligonucleotide microarrays. We show that methylation and acetylation of histones H3 and H4 are landmarks of active promoters in T. gondii that allow us to deduce the position and directionality of gene promoters with >95% accuracy. These histone methylation and acetylation "activation" marks are strongly associated with gene expression. We also demonstrate that the pattern of histone H3 arginine methylation distinguishes certain promoters, illustrating the complexity of the histone modification machinery in Toxoplasma. By integrating epigenetic data, gene prediction analysis, and gene expression data from the tachyzoite stage, we illustrate feasibility of creating an epigenomic map of T. gondii tachyzoite gene expression. Further, we illustrate the utility of the epigenomic map to empirically and biologically annotate the genome and show that this approach enables identification of previously unknown genes. Thus, our epigenomics approach provides novel insights into regulation of gene expression in the Apicomplexa. In addition, with its compact genome, genetic tractability, and discrete life cycle stages, T. gondii provides an important new model to study the evolutionarily conserved components of the histone code.
Collapse
Affiliation(s)
- Mathieu Gissot
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Krystyna A Kelly
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Medical Research Council Biostatistics Unit, Institute of Public Health, Cambridge, United Kingdom
| | - James W Ajioka
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - John M Greally
- Department of Medicine (Hematology), Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Kami Kim
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
43
|
Mullapudi N, Lancto CA, Abrahamsen MS, Kissinger JC. Identification of putative cis-regulatory elements in Cryptosporidium parvum by de novo pattern finding. BMC Genomics 2007; 8:13. [PMID: 17212834 PMCID: PMC1779779 DOI: 10.1186/1471-2164-8-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Accepted: 01/09/2007] [Indexed: 11/24/2022] Open
Abstract
Background Cryptosporidium parvum is a unicellular eukaryote in the phylum Apicomplexa. It is an obligate intracellular parasite that causes diarrhea and is a significant AIDS-related pathogen. Cryptosporidium parvum is not amenable to long-term laboratory cultivation or classical molecular genetic analysis. The parasite exhibits a complex life cycle, a broad host range, and fundamental mechanisms of gene regulation remain unknown. We have used data from the recently sequenced genome of this organism to uncover clues about gene regulation in C. parvum. We have applied two pattern finding algorithms MEME and AlignACE to identify conserved, over-represented motifs in the 5' upstream regions of genes in C. parvum. To support our findings, we have established comparative real-time -PCR expression profiles for the groups of genes examined computationally. Results We find that groups of genes that share a function or belong to a common pathway share upstream motifs. Different motifs are conserved upstream of different groups of genes. Comparative real-time PCR studies show co-expression of genes within each group (in sub-sets) during the life cycle of the parasite, suggesting co-regulation of these genes may be driven by the use of conserved upstream motifs. Conclusion This is one of the first attempts to characterize cis-regulatory elements in the absence of any previously characterized elements and with very limited expression data (seven genes only). Using de novo pattern finding algorithms, we have identified specific DNA motifs that are conserved upstream of genes belonging to the same metabolic pathway or gene family. We have demonstrated the co-expression of these genes (often in subsets) using comparative real-time-PCR experiments thus establishing evidence for these conserved motifs as putative cis-regulatory elements. Given the lack of prior information concerning expression patterns and organization of promoters in C. parvum we present one of the first investigations of gene regulation in this important human pathogen.
Collapse
Affiliation(s)
- Nandita Mullapudi
- Department of Genetics & Center for Tropical and Emerging Global Diseases, Paul D. Coverdell Center, D.W. Brooks Dr., University of Georgia, Athens, GA 30602, USA
| | - Cheryl A Lancto
- Veterinary and Biomedical Sciences, University of Minnesota, St Paul, MN 55108, USA
| | | | - Jessica C Kissinger
- Department of Genetics & Center for Tropical and Emerging Global Diseases, Paul D. Coverdell Center, D.W. Brooks Dr., University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
44
|
Radke JR, Behnke MS, Mackey AJ, Radke JB, Roos DS, White MW. The transcriptome of Toxoplasma gondii. BMC Biol 2005; 3:26. [PMID: 16324218 PMCID: PMC1325263 DOI: 10.1186/1741-7007-3-26] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 12/02/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Toxoplasma gondii gives rise to toxoplasmosis, among the most prevalent parasitic diseases of animals and man. Transformation of the tachzyoite stage into the latent bradyzoite-cyst form underlies chronic disease and leads to a lifetime risk of recrudescence in individuals whose immune system becomes compromised. Given the importance of tissue cyst formation, there has been intensive focus on the development of methods to study bradyzoite differentiation, although the molecular basis for the developmental switch is still largely unknown. RESULTS We have used serial analysis of gene expression (SAGE) to define the Toxoplasma gondii transcriptome of the intermediate-host life cycle that leads to the formation of the bradyzoite/tissue cyst. A broad view of gene expression is provided by >4-fold coverage from nine distinct libraries (approximately 300,000 SAGE tags) representing key developmental transitions in primary parasite populations and in laboratory strains representing the three canonical genotypes. SAGE tags, and their corresponding mRNAs, were analyzed with respect to abundance, uniqueness, and antisense/sense polarity and chromosome distribution and developmental specificity. CONCLUSION This study demonstrates that phenotypic transitions during parasite development were marked by unique stage-specific mRNAs that accounted for 18% of the total SAGE tags and varied from 1-5% of the tags in each developmental stage. We have also found that Toxoplasma mRNA pools have a unique parasite-specific composition with 1 in 5 transcripts encoding Apicomplexa-specific genes functioning in parasite invasion and transmission. Developmentally co-regulated genes were dispersed across all Toxoplasma chromosomes, as were tags representing each abundance class, and a variety of biochemical pathways indicating that trans-acting mechanisms likely control gene expression in this parasite. We observed distinct similarities in the specificity and expression levels of mRNAs in primary populations (Day-6 post-sporozoite infection) that occur prior to the onset of bradyzoite development that were uniquely shared with the virulent Type I-RH laboratory strain suggesting that development of RH may be arrested. By contrast, strains from Type II-Me49B7 and Type III-VEGmsj contain SAGE tags corresponding to bradyzoite genes, which suggests that priming of developmental expression likely plays a role in the greater capacity of these strains to complete bradyzoite development.
Collapse
Affiliation(s)
- Jay R Radke
- Department of Veterinary Molecular Biology, Montana State University Bozeman, MT 59717, USA
| | - Michael S Behnke
- Department of Veterinary Molecular Biology, Montana State University Bozeman, MT 59717, USA
| | - Aaron J Mackey
- Department of Biology and Penn Genomics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josh B Radke
- Department of Veterinary Molecular Biology, Montana State University Bozeman, MT 59717, USA
| | - David S Roos
- Department of Biology and Penn Genomics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael W White
- Department of Veterinary Molecular Biology, Montana State University Bozeman, MT 59717, USA
| |
Collapse
|
45
|
Vanchinathan P, Brewer JL, Harb OS, Boothroyd JC, Singh U. Disruption of a locus encoding a nucleolar zinc finger protein decreases tachyzoite-to-bradyzoite differentiation in Toxoplasma gondii. Infect Immun 2005; 73:6680-8. [PMID: 16177345 PMCID: PMC1230886 DOI: 10.1128/iai.73.10.6680-6688.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During its life cycle in intermediate hosts, Toxoplasma gondii exists in two interconverting developmental stages: tachyzoites and bradyzoites. This interconversion is essential for the survival and pathogenicity of the parasite, but little is known about the genetic mechanisms that control this process. We have previously generated tachyzoite-to-bradyzoite differentiation (Tbd(-)) mutants using chemical mutagenesis and a green fluorescent protein-based selection strategy. The genetic loci responsible for the Tbd(-) phenotype, however, could not be identified. We have now used an insertional mutagenesis strategy to generate two differentiation mutants: TBD-5 and TBD-6 that switch to bradyzoites at 10 and 50% of wild-type levels, respectively. In TBD-6 there is a single insertion of the mutagenesis vector 164 bp upstream of the transcription start site of a gene encoding a zinc finger protein (ZFP1). Disruption of this locus in wild-type parasites reproduces the decreased stage conversion phenotype. ZFP1 is targeted to the parasite nucleolus by CCHC motifs and significantly altered expression levels are toxic to the parasites. This represents the first identification of a gene necessary for efficient conversion of tachyzoites to bradyzoites.
Collapse
Affiliation(s)
- Padmini Vanchinathan
- Department of Internal Medicine, Division of Infectious Diseases, Stanford University School of Medicine, California 94305-5124, USA
| | | | | | | | | |
Collapse
|
46
|
Meissner M, Soldati D. The transcription machinery and the molecular toolbox to control gene expression in Toxoplasma gondii and other protozoan parasites. Microbes Infect 2005; 7:1376-84. [PMID: 16087378 DOI: 10.1016/j.micinf.2005.04.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 04/28/2005] [Accepted: 04/29/2005] [Indexed: 02/06/2023]
Abstract
The phylum of Apicomplexa groups a large variety of obligate intracellular protozoan parasites that exhibit complicated life cycles, involving transmission and differentiation within and between different hosts. Little is known about the level of regulation and the nature of the factors controlling gene expression throughout their life stages. Unravelling the mechanisms that govern gene regulation is critical for the development of adequate tools to manipulate these parasites and modulate gene expression, in order to study their function in molecular terms in vivo. A comparative analysis of the transcriptional machinery of several apicomplexan genomes and other protozoan parasites has revealed the existence of a primitive eukaryotic transcription apparatus consisting only of a subset of the general transcription factors found in higher eukaryotes. These findings have some direct implications on development of tools.
Collapse
Affiliation(s)
- Markus Meissner
- Hygieneinstitut, abteilung parasitologie, universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | | |
Collapse
|