1
|
Jouravleva K, Zamore PD. A guide to the biogenesis and functions of endogenous small non-coding RNAs in animals. Nat Rev Mol Cell Biol 2025; 26:347-370. [PMID: 39856370 DOI: 10.1038/s41580-024-00818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/27/2025]
Abstract
Small non-coding RNAs can be categorized into two main classes: structural RNAs and regulatory RNAs. Structural RNAs, which are abundant and ubiquitously expressed, have essential roles in the maturation of pre-mRNAs, modification of rRNAs and the translation of coding transcripts. By contrast, regulatory RNAs are often expressed in a developmental-specific, tissue-specific or cell-type-specific manner and exert precise control over gene expression. Reductions in cost and improvements in the accuracy of high-throughput RNA sequencing have led to the identification of many new small RNA species. In this Review, we provide a broad discussion of the genomic origins, biogenesis and functions of structural small RNAs, including tRNAs, small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), vault RNAs (vtRNAs) and Y RNAs as well as their derived RNA fragments, and of regulatory small RNAs, such as microRNAs (miRNAs), endogenous small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs), in animals.
Collapse
Affiliation(s)
- Karina Jouravleva
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Bai L, Yi M, Xu B. Self-Assembly of Noncanonical Peptides: A New Frontier in Cancer Therapeutics and Beyond. Macromol Biosci 2025:e2500153. [PMID: 40260674 DOI: 10.1002/mabi.202500153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/03/2025] [Indexed: 04/24/2025]
Abstract
In addition to the 20 standard amino acids that form the building blocks of proteins, nature employs alternative amino acids to create specialized "noncanonical peptides." These unique peptides, found in organisms from bacteria to humans, often exhibit unconventional structures and functionalities, playing critical roles in modulating cellular processes, particularly as antibiotics. Their potential has attracted significant interest for designing novel functional materials based on noncanonical peptides. This review highlights recent advances in the generation and application of noncanonical peptide assemblies. It begins with a definition of noncanonical peptides, including classic examples that showcase their distinct structures and useful biological activities. Then the applications of noncanonical peptide assemblies in developing anticancer therapeutics are discussed, focusing on recent and representative studies that demonstrate their efficacy and versatility in targeting tumor cells. Beyond oncology, it is explored how noncanonical peptide assemblies have been utilized in biomaterials, regenerative medicine, molecular imaging and catalysis. Finally, perspectives are offered on future directions in this rapidly evolving field, emphasizing exciting opportunities and remaining challenges that will drive continued innovation in designing and applying noncanonical peptide-based assemblies.
Collapse
Affiliation(s)
- Lin Bai
- School of Chemistry, Brandeis University, 415 South St, Waltham, MA, 02453, USA
| | - Meihui Yi
- School of Chemistry, Brandeis University, 415 South St, Waltham, MA, 02453, USA
| | - Bing Xu
- School of Chemistry, Brandeis University, 415 South St, Waltham, MA, 02453, USA
| |
Collapse
|
3
|
Bogard B, Bonnet H, Boyarchuk E, Tellier G, Furling D, Mouly V, Francastel C, Hubé F. Small nucleolar RNAs promote the restoration of muscle differentiation defects in cells from myotonic dystrophy type 1. Nucleic Acids Res 2025; 53:gkaf232. [PMID: 40156865 PMCID: PMC11954525 DOI: 10.1093/nar/gkaf232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 02/19/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
Recently, the repertoire of human small nucleolar noncoding RNAs (snoRNAs) and their potential functions has expanded with the discovery of new snoRNAs and messenger RNA (mRNA) targets, for which snoRNA-guided modifications may influence their stability, translatability, and splicing. We previously identified snoRNAs that are abundant in healthy human muscle progenitor cells. In this study, we demonstrated that SNORA40 and SNORA70 loss-of-function impairs myogenic differentiation. Interestingly, gain-of-function can rescue impaired differentiation muscle progenitor cells in myotonic dystrophy type 1 (DM1). We identified cyclin D3 (CCND3) mRNA, which is partially located in the nucleolus, as a target for SNORA40 and SNORA70, which are required for its pseudouridylated status. Expression of the CCND3 protein is required for muscle progenitors to exit the cell-cycle when they are induced to differentiate. We revealed that this switch requires SNORA40/70. Finally, we observed that DM1 cells show reduced levels of SNORA40/70 and undetectable CCND3 protein. However, restoring normal levels of SNORA40/70 partially restored CCND3 protein expression, coinciding with improved cell fusion capacity in DM1 muscle progenitors. Collectively, these data suggest that this effect may stem from SNORA40/70-dependent pseudouridylation of CCND3 mRNA, emphasizing snoRNAs as key players in normal and pathological muscle differentiation.
Collapse
Affiliation(s)
- Baptiste Bogard
- Université de Paris Cité, CNRS, UMR7216 Épigénétique et Destin Cellulaire, F-75013 Paris, France
| | - Hélène Bonnet
- Université de Paris Cité, CNRS, UMR7216 Épigénétique et Destin Cellulaire, F-75013 Paris, France
| | - Ekaterina Boyarchuk
- Université de Paris Cité, CNRS, UMR7216 Épigénétique et Destin Cellulaire, F-75013 Paris, France
| | - Gilles Tellier
- Université de Paris Cité, CNRS, UMR7216 Épigénétique et Destin Cellulaire, F-75013 Paris, France
| | - Denis Furling
- Sorbonne Université, Inserm, Association Institut de myologie, Centre de recherche en myologie, UMRS 974, 47 boulevard de l’Hôpital, 75013 Paris, France
| | - Vincent Mouly
- Sorbonne Université, Inserm, Association Institut de myologie, Centre de recherche en myologie, UMRS 974, 47 boulevard de l’Hôpital, 75013 Paris, France
| | - Claire Francastel
- Université de Paris Cité, CNRS, UMR7216 Épigénétique et Destin Cellulaire, F-75013 Paris, France
- Sorbonne Université, CNRS UMR7622, Inserm U1156, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Florent Hubé
- Université de Paris Cité, CNRS, UMR7216 Épigénétique et Destin Cellulaire, F-75013 Paris, France
- Sorbonne Université, CNRS UMR7622, Inserm U1156, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, 75005 Paris, France
| |
Collapse
|
4
|
Salles J, Lin R, Turecki G. Small Nucleolar RNAs and the Brain: Growing Evidence Supporting Their Role in Psychiatric Disorders. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100415. [PMID: 39867567 PMCID: PMC11758842 DOI: 10.1016/j.bpsgos.2024.100415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 01/28/2025] Open
Abstract
Noncoding RNAs comprise most of the transcriptome and represent an emerging area of research. Among them, small nucleolar RNAs (snoRNAs) have emerged as a promising target because they have been associated with the development and evolution of several diseases, including psychiatric disorders. snoRNAs are expressed in the brain, with some showing brain-specific expression that indicates specific roles in brain development, function, and dysfunction. However, the role of snoRNAs in conditions that affect the brain needs further investigation to be better understood. This scoping review summarizes existing literature on studies that have investigated snoRNAs in psychiatry and offers insight into potential pathophysiological mechanisms to be further investigated in future research.
Collapse
Affiliation(s)
- Juliette Salles
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Rixing Lin
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Kha T, Zhao Y, Zhu R. Site-Selective Modification and Labeling of Native RNA. Chemistry 2025; 31:e202404244. [PMID: 39865772 PMCID: PMC11855268 DOI: 10.1002/chem.202404244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 01/28/2025]
Abstract
Ribonucleic acid (RNA) plays a pivotal role in regulating biological processes within living systems, with modified nucleosides serving as critical modulators of various aspects of biological functions. Therefore, the development of efficient methodologies for late-stage, site-selective RNA modification is of considerable interest, as it facilitates the functional exploration of RNA chemical modifications and their implications for therapeutic applications. Precise RNA modification holds significant promise for the treatment of genetic diseases by enabling the correction of mutated nucleobases to their wild-type forms. Additionally, the site-selective incorporation of synthetic labeling groups into RNA provides invaluable tools for structural and functional studies, thereby uncovering previously hidden dimensions of RNA's role in biological systems. In this review, we provide a comprehensive overview of three principal approaches to site-selective, late-stage RNA modifications: enzyme-mediated strategies, catalytic nucleic acid-based techniques, and chemical methodologies. These approaches predominantly target the nucleobase or the 2'-hydroxyl (2'-OH) group of RNA nucleosides. We evaluate the advantages and limitations of each strategy and discuss future directions for advancing this field of research.
Collapse
Affiliation(s)
- Tuan‐Khoa Kha
- Department of ChemistryNational University of SingaporeSingapore117544
| | - Yiran Zhao
- Department of ChemistryNational University of SingaporeSingapore117544
| | - Ru‐Yi Zhu
- Department of ChemistryNational University of SingaporeSingapore117544
| |
Collapse
|
6
|
Xu L, Zhao XH, Zhang YY, Zhang MY, Zhang LY, Ye KH, Teng L, Han MM, Yue YM, Yang J, Ogle R, Netherton J, Tang D, Lan S, Baker M, Ye Y, Liu T, Wang YF, Zhang XD, Fan T, Jin L. SNORD80-guided 2'-O-methylation stabilizes the lncRNA GAS5 to regulate cellular stress responses. Proc Natl Acad Sci U S A 2025; 122:e2418996122. [PMID: 39946530 PMCID: PMC11848286 DOI: 10.1073/pnas.2418996122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/10/2025] [Indexed: 02/26/2025] Open
Abstract
The introns of the gene encoding the long noncoding RNA (lncRNA) GAS5 host up to 10 C/D box small nucleolar RNAs (snoRNAs). However, whether there is a regulatory and functional relationship between these snoRNAs and GAS5 is unknown. Here, we show that the expression of SNORD80, but not the other snoRNAs, parallels GAS5 expression and is regulated alongside GAS5 in response to cellular stress. The 2'-O-methylation at the A496 site, located within a segment of GAS5 complementing the conserved RNA-binding region on SNORD80, promotes GAS5 stability and consequent upregulation. This methylation requires SNORD80, as it is diminished by knockdown of SNORD80 and increased by SNORD80 overexpression, similar to the effects of manipulating the expression of fibrillarin, the methyltransferase of the box C/D small nucleolar ribonucleoprotein particle (snoRNP). The upregulation of SNORD80 in response to cellular stress is due to an enhancement in its stability, which is associated with an increase in its interaction with fibrillarin. Collectively, these results identify a role for SNORD80 in guiding 2'-O-methylation to stabilize GAS5. This uncovers a feedforward regulatory loop at the GAS5 gene locus in response to cellular stress and sheds light on posttranscriptional mechanisms governing lncRNA expression.
Collapse
Affiliation(s)
- Liang Xu
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW2308, Australia
| | - Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW2308, Australia
| | - Yuan Yuan Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW2308, Australia
| | - Meng Yao Zhang
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
| | - Long Yue Zhang
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
| | - Kai Hong Ye
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
| | - Liu Teng
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
| | - Man Man Han
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
| | - Yi Meng Yue
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
| | - Jiezhen Yang
- Department of Pathology, Zhongshan Hospital (Xiamen Branch), Fudan University, Xiamen361015, China
| | - Rachel Ogle
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW2308, Australia
| | - Jacob Netherton
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW2308, Australia
| | - Deng Tang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan610041, China
| | - Siqi Lan
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan610041, China
| | - Mark Baker
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW2308, Australia
| | - Yan Ye
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui230032, China
| | - Tao Liu
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
- Children’s Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, NSW2750, Australia
| | - Yu Fang Wang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan610041, China
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW2308, Australia
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
| | - Tianli Fan
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Henan450001, China
| | - Lei Jin
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW2308, Australia
| |
Collapse
|
7
|
Liu B, Wu T, Miao BA, Ji F, Liu S, Wang P, Zhao Y, Zhong Y, Sundaram A, Zeng TB, Majcherska-Agrawal M, Keenan RJ, Pan T, He C. snoRNA-facilitated protein secretion revealed by transcriptome-wide snoRNA target identification. Cell 2025; 188:465-483.e22. [PMID: 39579764 PMCID: PMC11761385 DOI: 10.1016/j.cell.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/13/2024] [Accepted: 10/24/2024] [Indexed: 11/25/2024]
Abstract
Small nucleolar RNAs (snoRNAs) are non-coding RNAs known for guiding RNA modifications, including 2'-O-methylation (Nm) and pseudouridine (Ψ). While snoRNAs may also interact with other RNAs, such as mRNA, the full repertoire of RNAs targeted by snoRNA remains elusive due to the lack of effective technologies that identify snoRNA targets transcriptome wide. Here, we develop a chemical crosslinking-based approach that comprehensively detects cellular RNA targets of snoRNAs, yielding thousands of previously unrecognized snoRNA-mRNA interactions in human cells and mouse brain tissues. Many interactions occur outside of snoRNA-guided RNA modification sites, hinting at non-canonical functions beyond RNA modification. We find that one of these snoRNAs, SNORA73, targets mRNAs that encode secretory proteins and membrane proteins. SNORA73 also interacts with 7SL RNA, part of the signal recognition particle (SRP) required for protein secretion. The mRNA-SNORA73-7SL RNA interactions enhance the association of the SNORA73-target mRNAs with SRP, thereby facilitating the secretion of encoded proteins.
Collapse
Affiliation(s)
- Bei Liu
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, Chicago, IL 60637, USA
| | - Tong Wu
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, Chicago, IL 60637, USA
| | - Bernadette A Miao
- Howard Hughes Medical Institute, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA; Medical Scientist Training Program, The University of Chicago, Chicago, IL 60637, USA
| | - Fei Ji
- Howard Hughes Medical Institute, Chicago, IL 60637, USA; Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL 60637, USA; Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| | - Shun Liu
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, Chicago, IL 60637, USA
| | - Pingluan Wang
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, Chicago, IL 60637, USA
| | - Yutao Zhao
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, Chicago, IL 60637, USA
| | - Yuhao Zhong
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, Chicago, IL 60637, USA
| | - Arunkumar Sundaram
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Tie-Bo Zeng
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, Chicago, IL 60637, USA
| | - Marta Majcherska-Agrawal
- Howard Hughes Medical Institute, Chicago, IL 60637, USA; Committee on Genetics, Genomics & System Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
8
|
Vaysset H, Meers C, Cury J, Bernheim A, Sternberg SH. Evolutionary origins of archaeal and eukaryotic RNA-guided RNA modification in bacterial IS110 transposons. Nat Microbiol 2025; 10:20-27. [PMID: 39747689 PMCID: PMC11930352 DOI: 10.1038/s41564-024-01889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/14/2024] [Indexed: 01/04/2025]
Abstract
Transposase genes are ubiquitous in all domains of life and provide a rich reservoir for the evolution of novel protein functions. Here we report deep evolutionary links between bacterial IS110-family transposases, which catalyse RNA-guided DNA recombination using bridge RNAs, and archaeal/eukaryotic Nop5-family proteins, which promote RNA-guided RNA 2'-O-methylation using C/D-box snoRNAs. On the basis of conservation of protein sequence, domain architecture, three-dimensional structure and non-coding RNA features, alongside phylogenetic analyses, we propose that programmable RNA modification emerged through the exaptation of components derived from IS110-like transposons. These findings underscore how recurrent domestication events of transposable elements have driven the evolution of RNA-guided mechanisms.
Collapse
Affiliation(s)
- Hugo Vaysset
- Molecular Diversity of Microbes Lab, CNRS UMR3525, Institut Pasteur, Paris, France
- AgroParisTech, Université Paris-Saclay, Paris, France
| | - Chance Meers
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Jean Cury
- Molecular Diversity of Microbes Lab, CNRS UMR3525, Institut Pasteur, Paris, France
| | - Aude Bernheim
- Molecular Diversity of Microbes Lab, CNRS UMR3525, Institut Pasteur, Paris, France.
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
- Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
Wu K, Li Y, Yi Y, Yu Y, Wang Y, Zhang L, Cao Q, Chen K. The detection, function, and therapeutic potential of RNA 2'-O-methylation. THE INNOVATION LIFE 2024; 3:100112. [PMID: 40206865 PMCID: PMC11981644 DOI: 10.59717/j.xinn-life.2024.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
RNA modifications play crucial roles in shaping RNA structure, function, and metabolism. Their dysregulation has been associated with many diseases, including cancer, developmental disorders, cardiovascular diseases, as well as neurological and immune-related conditions. A particular type of RNA modification, 2'-O-methylation (Nm) stands out due to its widespread occurrence on all four types of nucleotides (A, U, G, C) and in most RNA categories, e.g., mRNA, rRNA, tRNA, miRNA, snRNA, snoRNA, and viral RNA. Nm is the addition of a methyl group to the 2' hydroxyl of the ribose moiety of a nucleoside. Given its great biological significance and reported association with many diseases, we first reviewed the occurrences and functional implications of Nm in various RNA species. We then summarized the reported Nm detection methods, ranging from biochemical techniques in the 70's and 80's to recent methods based on Illumina RNA sequencing, artificial intelligence (AI) models for computational prediction, and the latest nanopore sequencing methods currently under active development. Moreover, we discussed the applications of Nm in the realm of RNA medicine, highlighting its therapeutic potential. At last, we present perspectives on potential research directions, aiming to offer insights for future investigations on Nm modification.
Collapse
Affiliation(s)
- Kaiyuan Wu
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston 02215, USA
- Department of Bioengineering, Rice University, Houston 77005, USA
- Department of Computational Biology and Bioinformatics, School of Medicine, Duke University, Durham 27708, USA
- These authors contributed equally to this work
| | - Yanqiang Li
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston 02215, USA
- These authors contributed equally to this work
| | - Yang Yi
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago 60611, USA
| | - Yang Yu
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston 02215, USA
| | - Yunxia Wang
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston 02215, USA
| | - Lili Zhang
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston 02215, USA
| | - Qi Cao
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago 60611, USA
| | - Kaifu Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston 02215, USA
- Broad Institute of MIT and Harvard, Boston 02215, USA
- Dana-Farber / Harvard Cancer Center, Boston 02215, USA
| |
Collapse
|
10
|
Tando Y, Nonomura A, Ito-Matsuoka Y, Takehara A, Okamura D, Hayashi Y, Matsui Y. LARP7 is required for sex chromosome silencing during meiosis in mice. PLoS One 2024; 19:e0314329. [PMID: 39637191 PMCID: PMC11620648 DOI: 10.1371/journal.pone.0314329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Meiotic sex chromosome inactivation (MSCI) is an essential event in meiotic progression in mammalian spermatogenesis. We found that La Ribonucleoprotein 7 (LARP7) is involved in MSCI. LARP7 plays a role in fetal germ cells to promote their proliferation, but is once abolished in postnatal gonocytes and re-expressed in spermatocytes at the onset of meiosis. In spermatocytes, LARP7 localizes to the XY body, a compartmentalized chromatin domain on sex chromosomes. In germline-specific Larp7-deficient mice, spermatogenesis is arrested in spermatocytes, and transcription of the genes on sex chromosomes remained active, which suggests failure of meiotic sex chromosome inactivation (MSCI). Furthermore, the XY body in spermatocytes lacking Larp7 shows accumulation of H4K12ac and elimination of H3K9me2, suggesting defective chromatin silencing by abnormal epigenetic controls. These results indicate a new functional role for LARP7 in MSCI.
Collapse
Affiliation(s)
- Yukiko Tando
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | - Yumi Ito-Matsuoka
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Asuka Takehara
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Daiji Okamura
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Yohei Hayashi
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
Dou J, Hu W, Zhang X, Jiang K. NOP10 predicts poor prognosis and promotes pancreatic cancer progression. BMC Cancer 2024; 24:1394. [PMID: 39538226 PMCID: PMC11558815 DOI: 10.1186/s12885-024-13180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Telomere shortening and RNA pseudo-uridylation are common features of tumors. NOP10 is a member of the H/ACA snoRNP family, essential for maintaining telomerase activity and RNA pseudouridylation. NOP10 has been indicated to be substantially expressed in tumors such as breast and lung cancers and is associated with poor prognosis. Currently, no investigation exists on NOP10 in pancreatic cancer (PC). This is the first investigation to elucidate the impact on tumorigenesis and prognostic value of NOP10 in pancreatic adenocarcinoma (PAAD). METHOD NOP10 expression and its survival prognostic significance were analyzed via clinical PAAD data from the TCGA database and NOP10 expression in other tumors from the GEPIA database. Furthermore, the NOP10 expression and survival prognosis in clinical samples were validated by qRT-PCR. In-vitro experiments were carried out to elucidate the impact of NOP10 on the biological function of PC cells. RESULTS It was revealed that NOP10 expression was increased in PC tissues than in the normal pancreatic tissues. High NOP10 expression was markedly linked with poorer prognosis. NOP10 may be involved in focal adhesion, channel activity, cAMP signaling pathway, the interaction of neuroactive ligand-receptor, and cell adhesion molecules cams. NOP10 was associated with the tumour immune microenvironment and drug sensitivity. Down-regulation of NOP10 expression suppressed PC cells' ability to proliferate, migrate, and invade. CONCLUSIONS This investigation elucidated the prognostic and predictive importance of NOP10 in PAAD and revealed that NOP10 is associated with poor prognostic features, survival prognosis and TIME. Knockdown of NOP10 inhibits the progression of PAAD.
Collapse
Affiliation(s)
- Jin Dou
- Medical College, Yangzhou University, Yangzhou, China
- Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Weikang Hu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyu Zhang
- Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China.
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Hu X, Cui W, Liu M, Zhang F, Zhao Y, Zhang M, Yin Y, Li Y, Che Y, Zhu X, Fan Y, Deng X, Wei M, Wu H. SnoRNAs: The promising targets for anti-tumor therapy. J Pharm Anal 2024; 14:101064. [PMID: 39634568 PMCID: PMC11613181 DOI: 10.1016/j.jpha.2024.101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 12/07/2024] Open
Abstract
Recently, small nucleolar RNAs (snoRNAs) have transcended the genomic "noise" to emerge as pivotal molecular markers due to their essential roles in tumor progression. Substantial evidence indicates a strong association between snoRNAs and critical clinical features such as tumor pathology and drug resistance. Historically, snoRNA research has concentrated on two classical mechanisms: 2'-O-ribose methylation and pseudouridylation. This review specifically summarizes the novel regulatory mechanisms and functional patterns of snoRNAs in tumors, encompassing transcriptional, post-transcriptional, and post-translational regulation. We further discuss the synergistic effect between snoRNA host genes (SNHGs) and snoRNAs in tumor progression. More importantly, snoRNAs extensively contribute to the development of tumor cell resistance as oncogenes or tumor suppressor genes. Accordingly, we provide a comprehensive review of the clinical diagnosis and treatment associated with snoRNAs and explore their significant potential as novel drug targets.
Collapse
Affiliation(s)
- Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
- Scientific Experimental Center, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wanlin Cui
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Min Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Fangxiao Zhang
- The Second Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yingqi Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Mingrong Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Yuhang Yin
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Yalun Li
- Department of Anorectal Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Ying Che
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Xianglong Zhu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Yuxuan Fan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
- Scientific Experimental Center, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Shenyang Kangwei Medical Laboratory Analysis Co., Ltd., Shenyang, 110000, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
- Scientific Experimental Center, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Shenyang Kangwei Medical Laboratory Analysis Co., Ltd., Shenyang, 110000, China
| |
Collapse
|
13
|
Funk HM, Brooks JH, Detmer AE, Creech NN, Guy MP. Identification of Amino Acids in Trm734 Required for 2'- O-Methylation of the tRNA Phe Wobble Residue. ACS OMEGA 2024; 9:25063-25072. [PMID: 38882062 PMCID: PMC11170731 DOI: 10.1021/acsomega.4c02313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024]
Abstract
All organisms methylate their nucleic acids, and this methylation is critical for proper gene expression at both the transcriptional and translational levels. For proper translation in eukaryotes, 2'-O-methylation of C32 (Cm32) and G34 (Gm34) in the anticodon loop of tRNAPhe is critical, with defects in these modifications associated with human disease. In yeast, Cm32 is formed by an enzyme that consists of the methyltransferase Trm7 in complex with the auxiliary protein Trm732, and Gm34 is formed by an enzyme that consists of Trm7 in complex with Trm734. The role of Trm732 and Trm734 in tRNA modification is not fully understood, although previous studies have suggested that Trm734 is important for tRNA binding. In this report, we generated Trm734 variants and tested their ability to work with Trm7 to modify tRNAPhe. Using this approach, we identified several regions of amino acids that are important for Trm734 activity and/or stability. Based on the previously determined Trm7-Trm734 crystal structure, these crucial amino acids are near the active site of Trm7 and are not directly involved in Trm7-Trm734 protein-protein interactions. Immunoprecipitation experiments with these Trm734 variants and Trm7 confirm that these residues are not involved in Trm7-Trm734 binding. Further experiments should help determine if these residues are important for tRNA binding or have another role in the modification of the tRNA. Furthermore, our discovery of a nonfunctional, stable Trm734 variant will be useful in determining if the reported roles of Trm734 in other biological processes such as retromer processing and resistance to Ty1 transposition are due to tRNA modification defects or to other bona fide cellular roles of Trm734.
Collapse
Affiliation(s)
- Holly M Funk
- Department of Chemistry & Biochemistry, Dorothy Westerman Herrmann Science Center (SC), Room 204F, Northern Kentucky University, Highland Heights, Kentucky 41076, United States of America
| | - Jennifer H Brooks
- Department of Chemistry & Biochemistry, Dorothy Westerman Herrmann Science Center (SC), Room 204F, Northern Kentucky University, Highland Heights, Kentucky 41076, United States of America
| | - Alisha E Detmer
- Department of Chemistry & Biochemistry, Dorothy Westerman Herrmann Science Center (SC), Room 204F, Northern Kentucky University, Highland Heights, Kentucky 41076, United States of America
| | - Natalie N Creech
- Department of Chemistry & Biochemistry, Dorothy Westerman Herrmann Science Center (SC), Room 204F, Northern Kentucky University, Highland Heights, Kentucky 41076, United States of America
| | - Michael P Guy
- Department of Chemistry & Biochemistry, Dorothy Westerman Herrmann Science Center (SC), Room 204F, Northern Kentucky University, Highland Heights, Kentucky 41076, United States of America
| |
Collapse
|
14
|
Casey C, Fullard JF, Sleator RD. Unravelling the genetic basis of Schizophrenia. Gene 2024; 902:148198. [PMID: 38266791 DOI: 10.1016/j.gene.2024.148198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Neuronal development is a highly regulated mechanism that is central to organismal function in animals. In humans, disruptions to this process can lead to a range of neurodevelopmental phenotypes, including Schizophrenia (SCZ). SCZ has a significant genetic component, whereby an individual with an SCZ affected family member is eight times more likely to develop the disease than someone with no family history of SCZ. By examining a combination of genomic, transcriptomic and epigenomic datasets, large-scale 'omics' studies aim to delineate the relationship between genetic variation and abnormal cellular activity in the SCZ brain. Herein, we provide a brief overview of some of the key omics methods currently being used in SCZ research, including RNA-seq, the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and high-throughput chromosome conformation capture (3C) approaches (e.g., Hi-C), as well as single-cell/nuclei iterations of these methods. We also discuss how these techniques are being employed to further our understanding of the genetic basis of SCZ, and to identify associated molecular pathways, biomarkers, and candidate drug targets.
Collapse
Affiliation(s)
- Clara Casey
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Roy D Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland.
| |
Collapse
|
15
|
Saeinasab M, Atlasi Y, M Matin M. Functional role of lncRNAs in gastrointestinal malignancies: the peculiar case of small nucleolar RNA host gene family. FEBS J 2024; 291:1353-1385. [PMID: 36282516 DOI: 10.1111/febs.16668] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in normal physiology and are often de-regulated in disease states such as cancer. Recently, a class of lncRNAs referred to as the small nucleolar RNA host gene (SNHG) family have emerged as important players in tumourigenesis. Here, we discuss new findings describing the role of SNHGs in gastrointestinal tumours and summarize the three main functions by which these lncRNAs promote carcinogenesis, namely: competing with endogenous RNAs, modulating protein function, and regulating epigenetic marking. Furthermore, we discuss how SNHGs participate in different hallmarks of cancer, and how this class of lncRNAs may serve as potential biomarkers in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | - Yaser Atlasi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Iran
| |
Collapse
|
16
|
Döring M, Brux M, Paszkowski-Rogacz M, Guillem-Gloria PM, Buchholz F, Pisabarro MT, Theis M. Nucleolar protein TAAP1/ C22orf46 confers pro-survival signaling in non-small cell lung cancer. Life Sci Alliance 2024; 7:e202302257. [PMID: 38228372 PMCID: PMC10791977 DOI: 10.26508/lsa.202302257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
Tumor cells subvert immune surveillance or lytic stress by harnessing inhibitory signals. Hence, bispecific antibodies have been developed to direct CTLs to the tumor site and foster immune-dependent cytotoxicity. Although applied with success, T cell-based immunotherapies are not universally effective partially because of the expression of pro-survival factors by tumor cells protecting them from apoptosis. Here, we report a CRISPR/Cas9 screen in human non-small cell lung cancer cells designed to identify genes that confer tumors with the ability to evade the cytotoxic effects of CD8+ T lymphocytes engaged by bispecific antibodies. We show that the gene C22orf46 facilitates pro-survival signals and that tumor cells devoid of C22orf46 expression exhibit increased susceptibility to T cell-induced apoptosis and stress by genotoxic agents. Although annotated as a non-coding gene, we demonstrate that C22orf46 encodes a nucleolar protein, hereafter referred to as "Tumor Apoptosis Associated Protein 1," up-regulated in lung cancer, which displays remote homologies to the BH domain containing Bcl-2 family of apoptosis regulators. Collectively, the findings establish TAAP1/C22orf46 as a pro-survival oncogene with implications to therapy.
Collapse
Affiliation(s)
- Marietta Döring
- National Center for Tumor Diseases/University Cancer Center (NCT/UCC): German Cancer Research Center (DKFZ) Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Melanie Brux
- National Center for Tumor Diseases/University Cancer Center (NCT/UCC): German Cancer Research Center (DKFZ) Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Medical Systems Biology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Maciej Paszkowski-Rogacz
- Medical Systems Biology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Frank Buchholz
- National Center for Tumor Diseases/University Cancer Center (NCT/UCC): German Cancer Research Center (DKFZ) Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Medical Systems Biology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, Dresden, Germany
| | - M Teresa Pisabarro
- Structural Bioinformatics, BIOTEC, Technische Universität Dresden, Dresden, Germany
| | - Mirko Theis
- National Center for Tumor Diseases/University Cancer Center (NCT/UCC): German Cancer Research Center (DKFZ) Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Medical Systems Biology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
17
|
Xue M, Dong L, Zhang H, Li Y, Qiu K, Zhao Z, Gao M, Han L, Chan AKN, Li W, Leung K, Wang K, Pokharel SP, Qing Y, Liu W, Wang X, Ren L, Bi H, Yang L, Shen C, Chen Z, Melstrom L, Li H, Timchenko N, Deng X, Huang W, Rosen ST, Tian J, Xu L, Diao J, Chen CW, Chen J, Shen B, Chen H, Su R. METTL16 promotes liver cancer stem cell self-renewal via controlling ribosome biogenesis and mRNA translation. J Hematol Oncol 2024; 17:7. [PMID: 38302992 PMCID: PMC10835888 DOI: 10.1186/s13045-024-01526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND While liver cancer stem cells (CSCs) play a crucial role in hepatocellular carcinoma (HCC) initiation, progression, recurrence, and treatment resistance, the mechanism underlying liver CSC self-renewal remains elusive. We aim to characterize the role of Methyltransferase 16 (METTL16), a recently identified RNA N6-methyladenosine (m6A) methyltransferase, in HCC development/maintenance, CSC stemness, as well as normal hepatogenesis. METHODS Liver-specific Mettl16 conditional KO (cKO) mice were generated to assess its role in HCC pathogenesis and normal hepatogenesis. Hydrodynamic tail-vein injection (HDTVi)-induced de novo hepatocarcinogenesis and xenograft models were utilized to determine the role of METTL16 in HCC initiation and progression. A limiting dilution assay was utilized to evaluate CSC frequency. Functionally essential targets were revealed via integrative analysis of multi-omics data, including RNA-seq, RNA immunoprecipitation (RIP)-seq, and ribosome profiling. RESULTS METTL16 is highly expressed in liver CSCs and its depletion dramatically decreased CSC frequency in vitro and in vivo. Mettl16 KO significantly attenuated HCC initiation and progression, yet only slightly influenced normal hepatogenesis. Mechanistic studies, including high-throughput sequencing, unveiled METTL16 as a key regulator of ribosomal RNA (rRNA) maturation and mRNA translation and identified eukaryotic translation initiation factor 3 subunit a (eIF3a) transcript as a bona-fide target of METTL16 in HCC. In addition, the functionally essential regions of METTL16 were revealed by CRISPR gene tiling scan, which will pave the way for the development of potential inhibitor(s). CONCLUSIONS Our findings highlight the crucial oncogenic role of METTL16 in promoting HCC pathogenesis and enhancing liver CSC self-renewal through augmenting mRNA translation efficiency.
Collapse
Affiliation(s)
- Meilin Xue
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lei Dong
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, 7539, USA
| | - Honghai Zhang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Yangchan Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Kangqiang Qiu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Zhicong Zhao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Min Gao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Li Han
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- School of Pharmacy, China Medical University, Shenyang, 110001, Liaoning, China
| | - Anthony K N Chan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Wei Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Keith Leung
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Kitty Wang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Sheela Pangeni Pokharel
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Wei Liu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Xueer Wang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Lili Ren
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Hongjie Bi
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Chao Shen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Laleh Melstrom
- Division of Surgical Oncology, Department of Surgery, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Hongzhi Li
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA, 91016, USA
| | - Nikolai Timchenko
- Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Graduate School of Biological Science, City of Hope, Duarte, CA, 91010, USA
| | - Steven T Rosen
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, 91010, USA
| | - Jingyan Tian
- State Key Laboratory of Medical Genomics, Clinical Trial Center, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, 7539, USA
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, 91010, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, 91010, USA
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA, 91010, USA
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA.
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
18
|
Momanyi BM, Zhou YW, Grace-Mercure BK, Temesgen SA, Basharat A, Ning L, Tang L, Gao H, Lin H, Tang H. SAGESDA: Multi-GraphSAGE networks for predicting SnoRNA-disease associations. Curr Res Struct Biol 2023; 7:100122. [PMID: 38188542 PMCID: PMC10771890 DOI: 10.1016/j.crstbi.2023.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/30/2023] [Accepted: 12/24/2023] [Indexed: 01/09/2024] Open
Abstract
Over the years, extensive research has highlighted the functional roles of small nucleolar RNAs in various biological processes associated with the development of complex human diseases. Therefore, understanding the existing relationships between different snoRNAs and diseases is crucial for advancing disease diagnosis and treatment. However, classical biological experiments for identifying snoRNA-disease associations are expensive and time-consuming. Therefore, there is an urgent need for cost-effective computational techniques that can enhance the efficiency and accuracy of prediction. While several computational models have already been proposed, many suffer from limitations and suboptimal performance. In this study, we introduced a novel Graph Neural Network-based (GNN) classification model, called SAGESDA, which is implemented through the GraphSAGE architecture with attention for the prediction of snoRNA-disease associations. The classifier leverages local neighbouring nodes in a heterogeneous network to generate new node embeddings through message passing. The mini-batch gradient descent technique was applied to divide the graph into smaller sub-graphs, which enhances the model's accuracy, speed and scalability. With these advancements, SAGESDA attained an area under the receiver operating characteristic (ROC) curve (AUC) of 0.92 using the standard dot product classifier, surpassing previous related studies. This notable performance demonstrates that SAGESDA is a promising model for predicting unknown snoRNA-disease associations with high accuracy. The SAGESDA implementation details can be obtained from https://github.com/momanyibiffon/SAGESDA.git.
Collapse
Affiliation(s)
- Biffon Manyura Momanyi
- School of Computer Science and Engineering, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu-Wei Zhou
- School of Health Care Technology, Chengdu Neusoft University, Chengdu, China
| | - Bakanina Kissanga Grace-Mercure
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Sebu Aboma Temesgen
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ahmad Basharat
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lin Ning
- School of Health Care Technology, Chengdu Neusoft University, Chengdu, China
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lixia Tang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Hui Gao
- School of Computer Science and Engineering, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Lin
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Hua Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, 646000, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, 646000, China
| |
Collapse
|
19
|
Kim S, Noh JH, Lee MJ, Park YJ, Kim BM, Kim YS, Hwang S, Park C, Kim K. Effects of Mitochondrial Transplantation on Transcriptomics in a Polymicrobial Sepsis Model. Int J Mol Sci 2023; 24:15326. [PMID: 37895006 PMCID: PMC10607172 DOI: 10.3390/ijms242015326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Previously, we demonstrated that mitochondrial transplantation has beneficial effects in a polymicrobial sepsis model. However, the mechanism has not been fully investigated. Mitochondria have their own genes, and genomic changes in sepsis are an important issue in terms of pathophysiology, biomarkers, and therapeutic targets. To investigate the changes in transcriptomic features after mitochondrial transplantation in a polymicrobial sepsis model, we used a rat model of fecal slurry polymicrobial sepsis. Total RNA from splenocytes of sham-operated (SHAM, n = 10), sepsis-induced (SEPSIS, n = 7), and sepsis receiving mitochondrial transplantation (SEPSIS + MT, n = 8) samples was extracted and we conducted a comparative transcriptome-wide analysis between three groups. We also confirmed these results with qPCR. In terms of percentage of mitochondrial mapped reads, the SEPSIS + MT group had a significantly higher mapping ratio than the others. RT1-M2 and Cbln2 were identified as highly expressed in SEPSIS + MT compared with SEPSIS. Using SHAM expression levels as another control variable, we further identified six genes (Fxyd4, Apex2l1, Kctd4, 7SK, SNORD94, and SNORA53) that were highly expressed after sepsis induction and observed that their expression levels were attenuated by mitochondrial transplantation. Changes in transcriptomic features were identified after mitochondrial transplantation in sepsis. This might provide a hint for exploring the mechanism of mitochondrial transplantation in sepsis.
Collapse
Affiliation(s)
- Seongmin Kim
- School of Biological Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji Heon Noh
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Min Ji Lee
- Department of Emergency Medicine, CHA University School of Medicine, Seongnam 13497, Republic of Korea
| | - Ye Jin Park
- Department of Emergency Medicine, CHA University School of Medicine, Seongnam 13497, Republic of Korea
| | - Bo Mi Kim
- Department of Emergency Medicine, CHA University School of Medicine, Seongnam 13497, Republic of Korea
| | - Yun-Seok Kim
- Department of Emergency Medicine, CHA University School of Medicine, Seongnam 13497, Republic of Korea
| | - Sangik Hwang
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chungoo Park
- School of Biological Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyuseok Kim
- Department of Emergency Medicine, CHA University School of Medicine, Seongnam 13497, Republic of Korea
| |
Collapse
|
20
|
Xu D, Chen X, Kuang Y, Hong M, Xu T, Wang K, Huang X, Fu C, Ruan K, Zhu C, Feng X, Guang S. rRNA intermediates coordinate the formation of nucleolar vacuoles in C. elegans. Cell Rep 2023; 42:112915. [PMID: 37537842 DOI: 10.1016/j.celrep.2023.112915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
The nucleolus is the most prominent membraneless organelle within the nucleus. How the nucleolar structure is regulated is poorly understood. Here, we identified two types of nucleoli in C. elegans. Type I nucleoli are spherical and do not have visible nucleolar vacuoles (NoVs), and rRNA transcription and processing factors are evenly distributed throughout the nucleolus. Type II nucleoli contain vacuoles, and rRNA transcription and processing factors exclusively accumulate in the periphery rim. The NoV contains nucleoplasmic proteins and is capable of exchanging contents with the nucleoplasm. The high-order structure of the nucleolus is dynamically regulated in C. elegans. Faithful rRNA processing is important to prohibit NoVs. The depletion of 27SA2 rRNA processing factors resulted in NoV formation. The inhibition of RNA polymerase I (RNAPI) transcription and depletion of two conserved nucleolar factors, nucleolin and fibrillarin, prohibits the formation of NoVs. This finding provides a mechanism to coordinate structure maintenance and gene expression.
Collapse
Affiliation(s)
- Demin Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yan Kuang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Minjie Hong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ting Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chuanhai Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ke Ruan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Xuezhu Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230027, China; CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Hefei, Anhui 230027, China.
| |
Collapse
|
21
|
Alagar Boopathy L, Beadle E, Xiao A, Garcia-Bueno Rico A, Alecki C, Garcia de-Andres I, Edelmeier K, Lazzari L, Amiri M, Vera M. The ribosome quality control factor Asc1 determines the fate of HSP70 mRNA on and off the ribosome. Nucleic Acids Res 2023; 51:6370-6388. [PMID: 37158240 PMCID: PMC10325905 DOI: 10.1093/nar/gkad338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023] Open
Abstract
Cells survive harsh environmental conditions by potently upregulating molecular chaperones such as heat shock proteins (HSPs), particularly the inducible members of the HSP70 family. The life cycle of HSP70 mRNA in the cytoplasm is unique-it is translated during stress when most cellular mRNA translation is repressed and rapidly degraded upon recovery. Contrary to its 5' untranslated region's role in maximizing translation, we discovered that the HSP70 coding sequence (CDS) suppresses its translation via the ribosome quality control (RQC) mechanism. The CDS of the most inducible Saccharomyces cerevisiae HSP70 gene, SSA4, is uniquely enriched with low-frequency codons that promote ribosome stalling during heat stress. Stalled ribosomes are recognized by the RQC components Asc1p and Hel2p and two novel RQC components, the ribosomal proteins Rps28Ap and Rps19Bp. Surprisingly, RQC does not signal SSA4 mRNA degradation via No-Go-Decay. Instead, Asc1p destabilizes SSA4 mRNA during recovery from heat stress by a mechanism independent of ribosome binding and SSA4 codon optimality. Therefore, Asc1p operates in two pathways that converge to regulate the SSA4 mRNA life cycle during stress and recovery. Our research identifies Asc1p as a critical regulator of the stress response and RQC as the mechanism tuning HSP70 synthesis.
Collapse
Affiliation(s)
| | - Emma Beadle
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | - Alan RuoChen Xiao
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | | | - Celia Alecki
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | | | - Kyla Edelmeier
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | - Luca Lazzari
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | - Mehdi Amiri
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | - Maria Vera
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| |
Collapse
|
22
|
Stott J, Wright T, Holmes J, Wilson J, Griffiths-Jones S, Foster D, Wright B. A systematic review of non-coding RNA genes with differential expression profiles associated with autism spectrum disorders. PLoS One 2023; 18:e0287131. [PMID: 37319303 PMCID: PMC10270643 DOI: 10.1371/journal.pone.0287131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
AIMS To identify differential expression of shorter non-coding RNA (ncRNA) genes associated with autism spectrum disorders (ASD). BACKGROUND ncRNA are functional molecules that derive from non-translated DNA sequence. The HUGO Gene Nomenclature Committee (HGNC) have approved ncRNA gene classes with alignment to the reference human genome. One subset is microRNA (miRNA), which are highly conserved, short RNA molecules that regulate gene expression by direct post-transcriptional repression of messenger RNA. Several miRNA genes are implicated in the development and regulation of the nervous system. Expression of miRNA genes in ASD cohorts have been examined by multiple research groups. Other shorter classes of ncRNA have been examined less. A comprehensive systematic review examining expression of shorter ncRNA gene classes in ASD is timely to inform the direction of research. METHODS We extracted data from studies examining ncRNA gene expression in ASD compared with non-ASD controls. We included studies on miRNA, piwi-interacting RNA (piRNA), small NF90 (ILF3) associated RNA (snaR), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), transfer RNA (tRNA), vault RNA (vtRNA) and Y RNA. The following electronic databases were searched: Cochrane Library, EMBASE, PubMed, Web of Science, PsycINFO, ERIC, AMED and CINAHL for papers published from January 2000 to May 2022. Studies were screened by two independent investigators with a third resolving discrepancies. Data was extracted from eligible papers. RESULTS Forty-eight eligible studies were included in our systematic review with the majority examining miRNA gene expression alone. Sixty-four miRNA genes had differential expression in ASD compared to controls as reported in two or more studies, but often in opposing directions. Four miRNA genes had differential expression in the same direction in the same tissue type in at least 3 separate studies. Increased expression was reported in miR-106b-5p, miR-155-5p and miR-146a-5p in blood, post-mortem brain, and across several tissue types, respectively. Decreased expression was reported in miR-328-3p in bloods samples. Seven studies examined differential expression from other classes of ncRNA, including piRNA, snRNA, snoRNA and Y RNA. No individual ncRNA genes were reported in more than one study. Six studies reported differentially expressed snoRNA genes in ASD. A meta-analysis was not possible because of inconsistent methodologies, disparate tissue types examined, and varying forms of data presented. CONCLUSION There is limited but promising evidence associating the expression of certain miRNA genes and ASD, although the studies are of variable methodological quality and the results are largely inconsistent. There is emerging evidence associating differential expression of snoRNA genes in ASD. It is not currently possible to say whether the reports of differential expression in ncRNA may relate to ASD aetiology, a response to shared environmental factors linked to ASD such as sleep and nutrition, other molecular functions, human diversity, or chance findings. To improve our understanding of any potential association, we recommend improved and standardised methodologies and reporting of raw data. Further high-quality research is required to shine a light on possible associations, which may yet yield important information.
Collapse
Affiliation(s)
- Jon Stott
- Child Oriented Mental Health Intervention Collaborative (COMIC), University of York in Collaboration with Leeds and York Partnership NHS Foundation Trust, York, United Kingdom
- Tees, Esk & Wear Valleys NHS Foundation Trust, Foss Park Hospital, York, United Kingdom
| | - Thomas Wright
- Manchester Centre for Genomic Medicine, Clinical Genetics Service, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jannah Holmes
- Child Oriented Mental Health Intervention Collaborative (COMIC), University of York in Collaboration with Leeds and York Partnership NHS Foundation Trust, York, United Kingdom
- Hull York Medical School, University of York, Heslington, York, United Kingdom
| | - Julie Wilson
- Department of Mathematics, University of York, Heslington, York, United Kingdom
| | - Sam Griffiths-Jones
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Deborah Foster
- Tees, Esk & Wear Valleys NHS Foundation Trust, Foss Park Hospital, York, United Kingdom
| | - Barry Wright
- Child Oriented Mental Health Intervention Collaborative (COMIC), University of York in Collaboration with Leeds and York Partnership NHS Foundation Trust, York, United Kingdom
- Hull York Medical School, University of York, Heslington, York, United Kingdom
| |
Collapse
|
23
|
Challakkara MF, Chhabra R. snoRNAs in hematopoiesis and blood malignancies: A comprehensive review. J Cell Physiol 2023; 238:1207-1225. [PMID: 37183323 DOI: 10.1002/jcp.31032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023]
Abstract
Small nucleolar RNAs (snoRNAs) are noncoding RNA molecules of highly variable size, usually ranging from 60 to 150 nucleotides. They are classified into H/ACA box snoRNAs, C/D box snoRNAs, and scaRNAs. Their functional profile includes biogenesis of ribosomes, processing of rRNAs, 2'-O-methylation and pseudouridylation of RNAs, alternative splicing and processing of mRNAs and the generation of small RNA molecules like miRNA. The snoRNAs have been observed to have an important role in hematopoiesis and malignant hematopoietic conditions including leukemia, lymphoma, and multiple myeloma. Blood malignancies arise in immune system cells or the bone marrow due to chromosome abnormalities. It has been estimated that annually over 1.25 million cases of blood cancer occur worldwide. The snoRNAs often show a differential expression profile in blood malignancies. Recent reports associate the abnormal expression of snoRNAs with the inhibition of apoptosis, uncontrolled cell proliferation, angiogenesis, and metastasis. This implies that targeting snoRNAs could be a potential way to treat hematologic malignancies. In this review, we describe the various functions of snoRNAs, their role in hematopoiesis, and the consequences of their dysregulation in blood malignancies. We also evaluate the potential of the dysregulated snoRNAs as biomarkers and therapeutic targets for blood malignancies.
Collapse
Affiliation(s)
- Mohamed Fahad Challakkara
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
24
|
Balakittnen J, Weeramange CE, Wallace DF, Duijf PHG, Cristino AS, Kenny L, Vasani S, Punyadeera C. Noncoding RNAs in oral cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1754. [PMID: 35959932 PMCID: PMC10909450 DOI: 10.1002/wrna.1754] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/09/2022] [Accepted: 07/05/2022] [Indexed: 05/13/2023]
Abstract
Oral cancer (OC) is the most prevalent subtype of cancer arising in the head and neck region. OC risk is mainly attributed to behavioral risk factors such as exposure to tobacco and excessive alcohol consumption, and a lesser extent to viral infections such as human papillomaviruses and Epstein-Barr viruses. In addition to these acquired risk factors, heritable genetic factors have shown to be associated with OC risk. Despite the high incidence, biomarkers for OC diagnosis are lacking and consequently, patients are often diagnosed in advanced stages. This delay in diagnosis is reflected by poor overall outcomes of OC patients, where 5-year overall survival is around 50%. Among the biomarkers proposed for cancer detection, noncoding RNA (ncRNA) can be considered as one of the most promising categories of biomarkers due to their role in virtually all cellular processes. Similar to other cancer types, changes in expressions of ncRNAs have been reported in OC and a number of ncRNAs have diagnostic, prognostic, and therapeutic potential. Moreover, some ncRNAs are capable of regulating gene expression by various mechanisms. Therefore, elucidating the current literature on the four main types of ncRNAs namely, microRNA, lncRNA, snoRNA, piwi-RNA, and circular RNA in the context of OC pathogenesis is timely and would enable further improvements and innovations in diagnosis, prognosis, and treatment of OC. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jaikrishna Balakittnen
- The Centre for Biomedical Technologies, The School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyKelvin GroveQueenslandAustralia
- Saliva & Liquid Biopsy Translational Laboratory, Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
- Department of Medical Laboratory Sciences, Faculty of Allied Health SciencesUniversity of JaffnaJaffnaSri Lanka
| | - Chameera Ekanayake Weeramange
- Saliva & Liquid Biopsy Translational Laboratory, Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Daniel F. Wallace
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Pascal H. G. Duijf
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
- Queensland University of Technology, School of Biomedical SciencesFaculty of Health at the Translational Research InstituteWoolloongabbaQueenslandAustralia
- Centre for Data Science, Queensland University of Queensland, TechnologyBrisbaneQueenslandAustralia
- Institute of Clinical Medicine, Faculty of Medicine, HerstonUniversity of OsloOsloNorway
- Department of Medical GeneticsOslo University HospitalOsloNorway
- University of Queensland Diamantina InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | | | - Liz Kenny
- Royal Brisbane and Women's Hospital, Cancer Care ServicesHerstonQueenslandAustralia
- Faculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Sarju Vasani
- Royal Brisbane and Women's Hospital, Cancer Care ServicesHerstonQueenslandAustralia
- Department of OtolaryngologyRoyal Brisbane and Women's HospitalHerstonQueenslandAustralia
| | - Chamindie Punyadeera
- Saliva & Liquid Biopsy Translational Laboratory, Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
- Queensland University of Technology, School of Biomedical SciencesFaculty of Health at the Translational Research InstituteWoolloongabbaQueenslandAustralia
- Menzies Health InstituteGriffith UniversityGold CoastQueenslandAustralia
| |
Collapse
|
25
|
Asano-Inami E, Yokoi A, Sugiyama M, Hyodo T, Hamaguchi T, Kajiyama H. The association of UBAP2L and G3BP1 mediated by small nucleolar RNA is essential for stress granule formation. Commun Biol 2023; 6:415. [PMID: 37059803 PMCID: PMC10104854 DOI: 10.1038/s42003-023-04754-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/24/2023] [Indexed: 04/16/2023] Open
Abstract
Stress granules (SGs) are dynamic, non-membranous structures composed of non-translating mRNAs and various proteins and play critical roles in cell survival under stressed conditions. Extensive proteomics analyses have been performed to identify proteins in SGs; however, the molecular functions of these components in SG formation remain unclear. In this report, we show that ubiquitin-associated protein 2-like (UBAP2L) is a crucial component of SGs. UBAP2L localized to SGs in response to various stresses, and its depletion significantly suppressed SG organization. Proteomics and RNA sequencing analyses found that UBAP2L formed a protein-RNA complex with Ras-GTP-activating protein SH3 domain binding protein 1 (G3BP1) and small nucleolar RNAs (snoRNAs). In vitro binding analysis demonstrated that snoRNAs were required for UBAP2L association with G3BP1. In addition, decreased expression of snoRNAs reduced the interaction between UBAP2L and G3BP1 and suppressed SG formation. Our results reveal a critical role of SG component, the UBAP2L/snoRNA/G3BP1 protein-RNA complex, and provide new insights into the regulation of SG assembly.
Collapse
Affiliation(s)
- Eri Asano-Inami
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku Nagoya, 466-8550, Japan.
- Bell Research Center for Reproductive Health and Cancer, Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku Nagoya, 466-8550, Japan.
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku Nagoya, 466-8550, Japan.
- Institute for Advanced Research, Nagoya University, Nagoya, Japan.
| | - Mai Sugiyama
- Bell Research Center for Reproductive Health and Cancer, Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku Nagoya, 466-8550, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Tomonari Hamaguchi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku Nagoya, 466-8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku Nagoya, 466-8550, Japan
| |
Collapse
|
26
|
The emerging diagnostic and therapeutic roles of small nucleolar RNAs in lung diseases. Biomed Pharmacother 2023; 161:114519. [PMID: 36906975 DOI: 10.1016/j.biopha.2023.114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023] Open
Abstract
Small nucleolar RNAs (snoRNAs) are non-coding RNA molecules that range from 60 to 300 nucleotides in length and are primarily located in the nucleoli of cells. They play a critical role in modifying ribosomal RNA and can also regulate alternative splicing and posttranscriptional modification of mRNA. Alterations in snoRNA expression can affect numerous cellular processes, including cell proliferation, apoptosis, angiogenesis, fibrosis, and inflammation, making them a promising target for diagnostics and treatment of various human pathologies. Recent evidence suggests that abnormal snoRNA expression is strongly associated with the development and progression of several lung diseases, such as lung cancer, asthma, chronic obstructive pulmonary disease, and pulmonary hypertension, as well as COVID-19. While few studies have shown a causal relationship between snoRNA expression and disease onset, this research field presents exciting opportunities for identifying new biomarkers and therapeutic targets in lung disease. This review discusses the emerging role and molecular mechanisms of snoRNAs in the pathogenesis of lung diseases, focusing on research opportunities, clinical studies, biomarkers, and therapeutic potential.
Collapse
|
27
|
Mokashi SS, Shankar V, Johnstun JA, Mackay TFC, Anholt RRH. Pleiotropic fitness effects of a Drosophila odorant-binding protein. G3 (BETHESDA, MD.) 2023; 13:jkac307. [PMID: 36454098 PMCID: PMC9911060 DOI: 10.1093/g3journal/jkac307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022]
Abstract
Insect odorant-binding proteins (OBPs) are members of a rapidly evolving multigene family traditionally thought to facilitate chemosensation. However, studies on Drosophila have shown that members of this family have evolved functions beyond chemosensation, as evident from their expression in reproductive tissues and the brain. Previous studies implicated diverse functions of Obp56h, a member of the largest gene cluster of the D. melanogaster Obp repertoire. Here, we examined the effect of CRISPR/Cas9-mediated deletion of Obp56h on 2 fitness phenotypes, on resistance to starvation stress and heat stress, and on locomotion and sleep phenotypes. Obp56h-/- mutants show a strong sexually dimorphic effect on starvation stress survival, with females being more resistant to starvation stress than the control. In contrast, Obp56h-/- females, but not males, are highly sensitive to heat stress. Both sexes show changes in locomotion and sleep patterns. Transcriptional profiling of RNA from heads of Obp56h-/- flies and the wildtype control reveals differentially expressed genes, including gene products associated with antimicrobial immune responses and members of the Turandot family of stress-induced secreted peptides. In addition, differentially expressed genes of unknown function were identified in both sexes. Genes encoding components of the mitochondrial electron transport chain, cuticular proteins, gene products associated with regulation of feeding behavior (Lst and CCHa2), ribosomal proteins, lncRNAs, snoRNAs, tRNAs, and snRNAs show changes in transcript abundances in Obp56h-/- females. These differentially expressed genes are likely to contribute to Obp56h-mediated effects on the diverse phenotypes that arise upon deletion of this OBP.
Collapse
Affiliation(s)
- Sneha S Mokashi
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Vijay Shankar
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Joel A Johnstun
- Department of Biological Sciences, Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | - Trudy F C Mackay
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Robert R H Anholt
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| |
Collapse
|
28
|
Wang H, Feng Y, Zheng X, Xu X. The Diagnostic and Therapeutic Role of snoRNA and lincRNA in Bladder Cancer. Cancers (Basel) 2023; 15:cancers15041007. [PMID: 36831352 PMCID: PMC9954389 DOI: 10.3390/cancers15041007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Bladder cancer is one of the most common malignancies of the urinary tract and can be divided into non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). Although the means of diagnosis and treatment have continually improved in recent years, the recurrence rate of bladder cancer remains high, and patients with MIBC typically have an unfavourable prognosis and a low quality of life. Emerging evidence demonstrates that long noncoding RNAs play a crucial role in the carcinogenesis and progression of bladder cancer. Long intergenic noncoding RNAs (lincRNAs) are a subgroup of long noncoding RNAs (lncRNAs) that do not overlap protein-coding genes. The potential role of lincRNAs in the regulation of gene expression has been explored in depth in recent years. Small nucleolar RNAs (snoRNAs) are a class of noncoding RNAs (ncRNAs) that mainly exist in the nucleolus, are approximately 60-300 nucleotides in length, and are hosted inside the introns of genes. Small nucleolar RNA host genes (SNHGs) have been associated with the origin and development of bladder cancer. In this review, we aim to comprehensively summarize the biological functions of these molecules in bladder cancer.
Collapse
Affiliation(s)
- Hao Wang
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yanfei Feng
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiangyi Zheng
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Correspondence: (X.Z.); (X.X.)
| | - Xin Xu
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Correspondence: (X.Z.); (X.X.)
| |
Collapse
|
29
|
Guerra-Slompo E, Cesaro G, Guimarães B, Zanchin N. Dissecting Trypanosoma brucei RRP44 function in the maturation of segmented ribosomal RNA using a regulated genetic complementation system. Nucleic Acids Res 2023; 51:396-419. [PMID: 36610751 PMCID: PMC9841430 DOI: 10.1093/nar/gkac1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 11/29/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Trypanosoma brucei belongs to a group of protozoans presenting fragmented large subunit rRNA. Its LSU rRNA equivalent to the 25S/28S rRNA of other eukaryotes is split into six fragments, requiring additional processing for removal of the extra spacer sequences. We have used a genetic complementation strategy to further investigate the T. brucei RRP44 nuclease in pre-rRNA maturation. TbRRP44 contains both a PIN and a RNB domain whose homologues are found in association with the exosome complex. We found that the exonucleolytic activity of the RNB domain as well as the physical presence of the PIN domain are essential for TbRRP44 function, while a catalytic site mutation in the PIN domain has no detectable effect on cell growth. A new endonucleolytic cleavage site in ITS1 was identified. In addition to the 5.8S rRNA 3'-end maturation, TbRRP44 is required for degradation of the excised 5'-ETS and for removal of part of ITS1 during maturation of the 18S rRNA 3'-end. TbRRP44 deficiency leads to accumulation of many LSU intermediate precursors, most of them not detected in control cells. TbRRP44 is also required for U3 snoRNA and spliced leader processing, indicating that TbRRP44 may have a wide role in RNA processing in T. brucei.
Collapse
Affiliation(s)
- Eloise Pavão Guerra-Slompo
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Giovanna Cesaro
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil,Biochemistry Postgraduate Program, Federal University of Paraná, Curitiba-PR, Brazil
| | - Beatriz Gomes Guimarães
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil,Biochemistry Postgraduate Program, Federal University of Paraná, Curitiba-PR, Brazil
| | | |
Collapse
|
30
|
Udroiu I, Marinaccio J, Sgura A. Many Functions of Telomerase Components: Certainties, Doubts, and Inconsistencies. Int J Mol Sci 2022; 23:ijms232315189. [PMID: 36499514 PMCID: PMC9736166 DOI: 10.3390/ijms232315189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
A growing number of studies have evidenced non-telomeric functions of "telomerase". Almost all of them, however, investigated the non-canonical effects of the catalytic subunit TERT, and not the telomerase ribonucleoprotein holoenzyme. These functions mainly comprise signal transduction, gene regulation and the increase of anti-oxidative systems. Although less studied, TERC (the RNA component of telomerase) has also been shown to be involved in gene regulation, as well as other functions. All this has led to the publication of many reviews on the subject, which, however, are often disseminating personal interpretations of experimental studies of other researchers as original proofs. Indeed, while some functions such as gene regulation seem ascertained, especially because mechanistic findings have been provided, other ones remain dubious and/or are contradicted by other direct or indirect evidence (e.g., telomerase activity at double-strand break site, RNA polymerase activity of TERT, translation of TERC, mitochondrion-processed TERC). In a critical study of the primary evidence so far obtained, we show those functions for which there is consensus, those showing contradictory results and those needing confirmation. The resulting picture, together with some usually neglected aspects, seems to indicate a link between TERT and TERC functions and cellular stemness and gives possible directions for future research.
Collapse
|
31
|
Paramanantham A, Asfiya R, Das S, McCully G, Srivastava A. Extracellular Vesicle (EVs) Associated Non-Coding RNAs in Lung Cancer and Therapeutics. Int J Mol Sci 2022; 23:13637. [PMID: 36362424 PMCID: PMC9655370 DOI: 10.3390/ijms232113637] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/26/2022] [Indexed: 08/13/2023] Open
Abstract
Lung cancer is one of the most lethal forms of cancer, with a very high mortality rate. The precise pathophysiology of lung cancer is not well understood, and pertinent information regarding the initiation and progression of lung cancer is currently a crucial area of scientific investigation. Enhanced knowledge about the disease will lead to the development of potent therapeutic interventions. Extracellular vesicles (EVs) are membrane-bound heterogeneous populations of cellular entities that are abundantly produced by all cells in the human body, including the tumor cells. A defined class of EVs called small Extracellular Vesicles (sEVs or exosomes) carries key biomolecules such as RNA, DNA, Proteins and Lipids. Exosomes, therefore, mediate physiological activities and intracellular communication between various cells, including constituent cells of the tumor microenvironment, namely stromal cells, immunological cells, and tumor cells. In recent years, a surge in studying tumor-associated non-coding RNAs (ncRNAs) has been observed. Subsequently, studies have also reported that exosomes abundantly carry different species of ncRNAs and these exosomal ncRNAs are functionally involved in cancer initiation and progression. Here, we discuss the function of exosomal ncRNAs, such as miRNAs and long non-coding RNAs, in the pathophysiology of lung tumors. Further, the future application of exosomal-ncRNAs in clinics as biomarkers and therapeutic targets in lung cancer is also discussed due to the multifaceted influence of exosomes on cellular physiology.
Collapse
Affiliation(s)
- Anjugam Paramanantham
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Rahmat Asfiya
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Siddharth Das
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Grace McCully
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Akhil Srivastava
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
32
|
Single-base resolution mapping of 2′-O-methylation sites by an exoribonuclease-enriched chemical method. SCIENCE CHINA LIFE SCIENCES 2022; 66:800-818. [PMID: 36323972 DOI: 10.1007/s11427-022-2210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
2'-O-methylation (Nm) is one of the most abundant RNA epigenetic modifications and plays a vital role in the post-transcriptional regulation of gene expression. Current Nm mapping approaches are normally limited to highly abundant RNAs and have significant technical hurdles in mRNAs or relatively rare non-coding RNAs (ncRNAs). Here, we developed a new method for enriching Nm sites by using RNA exoribonuclease and periodate oxidation reactivity to eliminate 2'-hydroxylated (2'-OH) nucleosides, coupled with sequencing (Nm-REP-seq). We revealed several novel classes of Nm-containing ncRNAs as well as mRNAs in humans, mice, and drosophila. We found that some novel Nm sites are present at fixed positions in different tRNAs and are potential substrates of fibrillarin (FBL) methyltransferase mediated by snoRNAs. Importantly, we discovered, for the first time, that Nm located at the 3'-end of various types of ncRNAs and fragments derived from them. Our approach precisely redefines the genome-wide distribution of Nm and provides new technologies for functional studies of Nm-mediated gene regulation.
Collapse
|
33
|
Wang K, Song X, Wang S, Li X, Zhang Z, Xie L, Song X. Plasma
SNORD42B
and
SNORD111
as potential biomarkers for early diagnosis of non‐small cell lung cancer. J Clin Lab Anal 2022; 36:e24740. [PMID: 36284435 PMCID: PMC9701848 DOI: 10.1002/jcla.24740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/04/2022] Open
Abstract
Background Non‐small‐cell lung cancer (NSCLC) still occupied the leading reason of cancer death due to lack of availability of early detection. This study aimed to identify the effective biomarkers for the early‐stage NSCLC diagnostics based on plasma snoRNAs. Materials and Methods The differential snoRNAs between lung cancer patients and healthy donors were analyzed using the SNORic and TCGA databases. SNORD42B and SNORD111 were screened out and further verified in 48 FFPE NSCLC and adjacent normal tissues, as well as in plasma from 165 NSCLC patients and 118 health donors using qRT‐PCR. Next, their diagnostic efficiency, as well as combined with carcinoembryonic antigen (CEA), was obtained by the analysis of receiver operating characteristic (ROC). Results We first screened out 47 top differential snoRNAs, among which the top 10 upregulated snoRNAs in LUAD were U44, U75, U78, U77, SNORD72, SNORD13, SNORD12B, SCARNA5, U80, SNORD41, and in LUSC were U44, U75, U78, SNORD41, SNORD111, SNORA56, U17a, SNORD35A, SNORD32A, SNORA71D. SNORD42B and SNORD111 was significantly increased not only in tumor tissues but also in plasma from NSCLC and early‐stage NSCLC patients. They were capable to act as promising biomarkers for NSCLC and early‐stage NSCLC diagnosis. Moreover, CEA diagnostic efficiency for early‐stage NSCLC was significantly improved when combined with these two plasma snoRNAs. Conclusion SNORD42B and SNORD111 could act as the potential and non‐invasive diagnostic biomarkers for NSCLC and early‐stage NSCLC.
Collapse
Affiliation(s)
- Kangyu Wang
- Department of Clinical Laboratory Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences Jinan China
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan China
| | - Xingguo Song
- Department of Clinical Laboratory Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences Jinan China
| | - Shiwen Wang
- Department of Clinical Laboratory Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences Jinan China
| | - Xinyi Li
- Department of Clinical Laboratory Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences Jinan China
| | - Zhijun Zhang
- Department of Clinical Laboratory Taian City Central Hospital Taian China
| | - Li Xie
- Department of Clinical Laboratory Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences Jinan China
| | - Xianrang Song
- Department of Clinical Laboratory Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences Jinan China
- Shandong Provincial Key Laboratory of Radiation Oncology Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences Jinan China
| |
Collapse
|
34
|
Sommerauer C, Kutter C. Noncoding RNAs in liver physiology and metabolic diseases. Am J Physiol Cell Physiol 2022; 323:C1003-C1017. [PMID: 35968891 DOI: 10.1152/ajpcell.00232.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The liver holds central roles in detoxification, energy metabolism and whole-body homeostasis but can develop malignant phenotypes when being chronically overwhelmed with fatty acids and glucose. The global rise of metabolic-associated fatty liver disease (MAFLD) is already affecting a quarter of the global population. Pharmaceutical treatment options against different stages of MAFLD do not yet exist and several clinical trials against hepatic transcription factors and other proteins have failed. However, emerging roles of noncoding RNAs, including long (lncRNA) and short noncoding RNAs (sRNA), in various cellular processes pose exciting new avenues for treatment interventions. Actions of noncoding RNAs mostly rely on interactions with proteins, whereby the noncoding RNA fine-tunes protein function in a process termed riboregulation. The developmental stage-, disease stage- and cell type-specific nature of noncoding RNAs harbors enormous potential to precisely target certain cellular pathways in a spatio-temporally defined manner. Proteins interacting with RNAs can be categorized into canonical or non-canonical RNA binding proteins (RBPs) depending on the existence of classical RNA binding domains. Both, RNA- and RBP-centric methods have generated new knowledge of the RNA-RBP interface and added an additional regulatory layer. In this review, we summarize recent advances of how of RBP-lncRNA interactions and various sRNAs shape cellular physiology and the development of liver diseases such as MAFLD and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Christian Sommerauer
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, grid.4714.6Karolinska Institute, Stockholm, Sweden
| | - Claudia Kutter
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, grid.4714.6Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
35
|
Sobhani N, Chahwan R, Roudi R, Morris R, Volinia S, Chai D, D’Angelo A, Generali D. Predictive and Prognostic Value of Non-Coding RNA in Breast Cancer. Cancers (Basel) 2022; 14:2952. [PMID: 35740618 PMCID: PMC9221286 DOI: 10.3390/cancers14122952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 12/21/2022] Open
Abstract
For decades since the central dogma, cancer biology research has been focusing on the involvement of genes encoding proteins. It has been not until more recent times that a new molecular class has been discovered, named non-coding RNA (ncRNA), which has been shown to play crucial roles in shaping the activity of cells. An extraordinary number of studies has shown that ncRNAs represent an extensive and prevalent group of RNAs, including both oncogenic or tumor suppressive molecules. Henceforth, various clinical trials involving ncRNAs as extraordinary biomarkers or therapies have started to emerge. In this review, we will focus on the prognostic and diagnostic role of ncRNAs for breast cancer.
Collapse
Affiliation(s)
- Navid Sobhani
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Richard Chahwan
- Institute of Experimental Immunology, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Raheleh Roudi
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, Stanford, CA 94305, USA;
| | - Rachel Morris
- Thunder Biotech, 395 Cougar Blvd, Provo, UT 84604, USA;
| | - Stefano Volinia
- Department of Morphology, Embryology and Medical Oncology, Università Degli Studi di Ferrara, 44100 Ferrara, Italy;
| | - Dafei Chai
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Alberto D’Angelo
- Department of Biology & Biochemistry, University of Bath, Bath BA27AY, UK;
| | - Daniele Generali
- Department of Medical Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
36
|
Wu C, Lu X, Lu S, Wang H, Li D, Zhao J, Jin J, Sun Z, He QY, Chen Y, Zhang G. Efficient Detection of the Alternative Spliced Human Proteome Using Translatome Sequencing. Front Mol Biosci 2022; 9:895746. [PMID: 35720116 PMCID: PMC9201276 DOI: 10.3389/fmolb.2022.895746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/28/2022] [Indexed: 01/08/2023] Open
Abstract
Alternative splicing (AS) isoforms create numerous proteoforms, expanding the complexity of the genome. Highly similar sequences, incomplete reference databases and the insufficient sequence coverage of mass spectrometry limit the identification of AS proteoforms. Here, we demonstrated full-length translating mRNAs (ribosome nascent-chain complex-bound mRNAs, RNC-mRNAs) sequencing (RNC-seq) strategy to sequence the entire translating mRNA using next-generation sequencing, including short-read and long-read technologies, to construct a protein database containing all translating AS isoforms. Taking the advantage of read length, short-read RNC-seq identified up to 15,289 genes and 15,906 AS isoforms in a single human cell line, much more than the Ribo-seq. The single-molecule long-read RNC-seq supplemented 4,429 annotated AS isoforms that were not identified by short-read datasets, and 4,525 novel AS isoforms that were not included in the public databases. Using such RNC-seq-guided database, we identified 6,766 annotated protein isoforms and 50 novel protein isoforms in mass spectrometry datasets. These results demonstrated the potential of full-length RNC-seq in investigating the proteome of AS isoforms.
Collapse
Affiliation(s)
- Chun Wu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Xiaolong Lu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Shaohua Lu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Hongwei Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Dehua Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Jing Zhao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Jingjie Jin
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Zhenghua Sun
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Yang Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
37
|
Morozova TV, Shankar V, MacPherson RA, Mackay TFC, Anholt RRH. Modulation of the Drosophila transcriptome by developmental exposure to alcohol. BMC Genomics 2022; 23:347. [PMID: 35524193 PMCID: PMC9074282 DOI: 10.1186/s12864-022-08559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/18/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Prenatal exposure to ethanol can cause fetal alcohol spectrum disorder (FASD), a prevalent, preventable pediatric disorder. Identifying genetic risk alleles for FASD is challenging since time, dose, and frequency of exposure are often unknown, and manifestations of FASD are diverse and evident long after exposure. Drosophila melanogaster is an excellent model to study the genetic basis of the effects of developmental alcohol exposure since many individuals of the same genotype can be reared under controlled environmental conditions. RESULTS We used 96 sequenced, wild-derived inbred lines from the Drosophila melanogaster Genetic Reference Panel (DGRP) to profile genome-wide transcript abundances in young adult flies that developed on ethanol-supplemented medium or standard culture medium. We found substantial genetic variation in gene expression in response to ethanol with extensive sexual dimorphism. We constructed sex-specific genetic networks associated with alcohol-dependent modulation of gene expression that include protein-coding genes, Novel Transcribed Regions (NTRs, postulated to encode long non-coding RNAs) and female-specific coordinated regulation of snoRNAs that regulate pseudouridylation of ribosomal RNA. We reared DGRP lines which showed extreme upregulation or downregulation of snoRNA expression during developmental alcohol exposure on standard or ethanol supplemented medium and demonstrated that developmental exposure to ethanol has genotype-specific effects on adult locomotor activity and sleep. CONCLUSIONS There is significant and sex-specific natural genetic variation in the transcriptional response to developmental exposure to ethanol in Drosophila that comprises networks of genes affecting nervous system development and ethanol metabolism as well as networks of regulatory non-coding RNAs.
Collapse
Affiliation(s)
- Tatiana V Morozova
- Bioskryb Genomics, 2810 Meridian Parkway, Suite 110, Durham, NC, 27713, USA
| | - Vijay Shankar
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| | - Rebecca A MacPherson
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| | - Trudy F C Mackay
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA.
| | - Robert R H Anholt
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA.
| |
Collapse
|
38
|
Gómez-Romero L, Alvarez-Suarez DE, Hernández-Lemus E, Ponce-Castañeda MV, Tovar H. The regulatory landscape of retinoblastoma: a pathway analysis perspective. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220031. [PMID: 35620002 PMCID: PMC9114937 DOI: 10.1098/rsos.220031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/13/2022] [Indexed: 05/03/2023]
Abstract
Retinoblastoma (Rb) is a rare intraocular tumour in early childhood, with an approximate incidence of 1 in 18 000 live births. Experimental studies for Rb are complex due to the challenges associated with obtaining a normal retina to contrast with diseased tissue. In this work, we reanalyse a dataset that contains normal retina samples. We identified the individual genes whose expression is different in Rb in contrast with normal tissue, determined the pathways whose global expression pattern is more distant from the global expression observed in normal tissue, and finally, we identified which transcription factors regulate the highest number of differentially expressed genes (DEGs) and proposed as transcriptional master regulators (TMRs). The enrichment of DEGs in the phototransduction and retrograde endocannabinoid signalling pathways could be associated with abnormal behaviour of the processes leading to cellular differentiation and cellular proliferation. On the other hand, the TMRs nuclear receptor subfamily 5 group A member 2 and hepatocyte nuclear factor 4 gamma are involved in hepatocyte differentiation. Therefore, the enrichment of aberrant expression in these transcription factors could suggest an abnormal retina development that could be involved in Rb origin and progression.
Collapse
Affiliation(s)
- Laura Gómez-Romero
- Computational Genomics Division, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Diana E. Alvarez-Suarez
- Medical Research Unit in Infectious Diseases, Hospital de Pediatría, CMN SXXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Pharmacology Department, CINVESTAV, Mexico City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
- Center for Complexity Sciences, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - M. Verónica Ponce-Castañeda
- Medical Research Unit in Infectious Diseases, Hospital de Pediatría, CMN SXXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Hugo Tovar
- Computational Genomics Division, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| |
Collapse
|
39
|
SNORD1C maintains stemness and 5-FU resistance by activation of Wnt signaling pathway in colorectal cancer. Cell Death Dis 2022; 8:200. [PMID: 35422067 PMCID: PMC9010412 DOI: 10.1038/s41420-022-00996-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/05/2023]
Abstract
Small nucleolar RNAs (snoRNAs) are a class of non-coding RNAs that play indispensable roles in cancers, including colorectal cancer (CRC). However, the role of SNORD1C in CRC is unclear. In the current study, SNORD1C expression was measured in CRC tissues using quantitative real-time PCR. A series of in vivo and in vitro experiments were performed to examine the functional role of SNORD1C in CRC. Quantitative real-time PCR, western blotting, sphere formation assay, and chemotherapy resistance analysis were conducted to illustrate the SNORD1C molecular mechanism. SNORD1C was upregulated in CRC and that high SNORD1C expression was related to poor prognosis. After knocking down SNORD1C in CRC cell lines, cell proliferation, colony formation, cell migration, and invasion were alleviated, while apoptosis was increased. Transcriptional RNA-sequencing analysis revealed that following SNORD1C knockdown, β-catenin was downregulated, as was the transcription factor TCF7, which inhibited the Wnt/β-catenin pathway. Meanwhile, levels of the stem cell-related factors were reduced, diminishing cell stemness and tumorigenesis. Our findings suggest that SNORD1C functions via the Wnt/β-catenin pathway to enhance cancer cell stemness in CRC and could be a predictive biomarker for the prognosis ad aggressiveness of this malignancy. Additionally, targeting SNORD1C may be a novel therapeutic strategy for CRC.
Collapse
|
40
|
Ismail S, Flemming D, Thoms M, Gomes-Filho JV, Randau L, Beckmann R, Hurt E. Emergence of the primordial pre-60S from the 90S pre-ribosome. Cell Rep 2022; 39:110640. [PMID: 35385737 PMCID: PMC8994135 DOI: 10.1016/j.celrep.2022.110640] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/01/2022] [Accepted: 03/16/2022] [Indexed: 01/03/2023] Open
Abstract
Synthesis of ribosomes begins in the nucleolus with formation of the 90S pre-ribosome, during which the pre-40S and pre-60S pathways diverge by pre-rRNA cleavage. However, it remains unclear how, after this uncoupling, the earliest pre-60S subunit continues to develop. Here, we reveal a large-subunit intermediate at the beginning of its construction when still linked to the 90S, the precursor to the 40S subunit. This primordial pre-60S is characterized by the SPOUT domain methyltransferase Upa1-Upa2, large α-solenoid scaffolds, Mak5, one of several RNA helicases, and two small nucleolar RNA (snoRNAs), C/D box snR190 and H/ACA box snR37. The emerging pre-60S does not efficiently disconnect from the 90S pre-ribosome in a dominant mak5 helicase mutant, allowing a 70-nm 90S-pre-60S bipartite particle to be visualized by electron microscopy. Our study provides insight into the assembly pathway when the still-connected nascent 40S and 60S subunits are beginning to separate.
Collapse
Affiliation(s)
- Sherif Ismail
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Dirk Flemming
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Matthias Thoms
- Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | | | - Lennart Randau
- Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Roland Beckmann
- Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany.
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|
41
|
Wu F, Zhang L, Wu P, Wu Y, Zhang T, Zhang D, Tian J. The Potential Role of Small Nucleolar RNAs in Cancers – An Evidence Map. Int J Gen Med 2022; 15:3851-3864. [PMID: 35431571 PMCID: PMC9005336 DOI: 10.2147/ijgm.s352333] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/29/2022] [Indexed: 12/11/2022] Open
Abstract
Purpose Cancer seriously endangers human health in every country of the world. New evidence shows that small nucleolar RNAs play important roles in tumorigenesis. Herein, we created this evidence map to systematically assess the impact of dysregulated snoRNAs on cancers. Methods We searched four databases to February 2022 using the keywords, “carcinoma”, “neoplasms”, “tumor”, “cancer”, “snoRNA”, and “small nucleolar rna”. The research data were independently screened by two reviewers. Bubble plot, mind map, heatmap were used to depict the relationship between snoRNAs and cancers. Results In total, 102 studies met the inclusion criteria and were analyzed in this evidence map. In this study, we found that dysregulated snoRNAs were statistically associated with the clinicopathological characteristics of cancer patients, and affected tumor cell phenotypes. Abnormally expressed snoRNAs were associated with poor survival in cancer patients. Current research confirmed that snoRNAs have good diagnostic efficiency for cancers. snoRNAs could modulate biological processes and signaling pathways of different cancer cells by altering rRNA, regulating mRNA, and recruiting protein factors. Conclusion Taken all together, ectopic snoRNAs may serve as new biomarkers for clinical assessment, diagnostic, prognostic prediction of cancer patients, and provide a potential therapeutic strategy for cancer treatment. This article provided a visual analysis of existing evidence on snoRNAs and cancers, which can offer useful information for different researchers interested in snoRNAs.
Collapse
Affiliation(s)
- Fanqi Wu
- Department of Respiratory, Lanzhou University Second Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Longguo Zhang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| | - Pingfan Wu
- Department of Pathology, The 940th Hospital of the Joint Logistic Support of the People’s Liberation Army, Lanzhou, Gansu Province, People’s Republic of China
| | - Yi Wu
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| | - Tao Zhang
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Dekui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, People’s Republic of China
- Correspondence: Dekui Zhang; Jinhui Tian, Tel +86 139 1978 8616; +86 136 1934 2312, Email ;
| | - Jinhui Tian
- Evidence-Based Medicine Center, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| |
Collapse
|
42
|
Rashid S, Correia-Mesquita TO, Godoy P, Omran RP, Whiteway M. SAGA Complex Subunits in Candida albicans Differentially Regulate Filamentation, Invasiveness, and Biofilm Formation. Front Cell Infect Microbiol 2022; 12:764711. [PMID: 35350439 PMCID: PMC8957876 DOI: 10.3389/fcimb.2022.764711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/11/2022] [Indexed: 11/24/2022] Open
Abstract
SAGA (Spt-Ada-Gcn5-acetyltransferase) is a highly conserved, multiprotein co-activator complex that consists of five distinct modules. It has two enzymatic functions, a histone acetyltransferase (HAT) and a deubiquitinase (DUB) and plays a central role in processes such as transcription initiation, elongation, protein stability, and telomere maintenance. We analyzed conditional and null mutants of the SAGA complex module components in the fungal pathogen Candida albicans; Ngg1, (the HAT module); Ubp8, (the DUB module); Tra1, (the recruitment module), Spt7, (the architecture module) and Spt8, (the TBP interaction unit), and assessed their roles in a variety of cellular processes. We observed that spt7Δ/Δ and spt8Δ/Δ strains have a filamentous phenotype, and both are highly invasive in yeast growing conditions as compared to the wild type, while ngg1Δ/Δ and ubp8Δ/Δ are in yeast-locked state and non-invasive in both YPD media and filamentous induced conditions compared to wild type. RNA-sequencing-based transcriptional profiling of SAGA mutants reveals upregulation of hyphal specific genes in spt7Δ/Δ and spt8Δ/Δ strains and downregulation of ergosterol metabolism pathway. As well, spt7Δ/Δ and spt8Δ/Δ confer susceptibility to antifungal drugs, to acidic and alkaline pH, to high temperature, and to osmotic, oxidative, cell wall, and DNA damage stresses, indicating that these proteins are important for genotoxic and cellular stress responses. Despite having similar morphological phenotypes (constitutively filamentous and invasive) spt7 and spt8 mutants displayed variation in nuclear distribution where spt7Δ/Δ cells were frequently binucleate and spt8Δ/Δ cells were consistently mononucleate. We also observed that spt7Δ/Δ and spt8Δ/Δ mutants were quickly engulfed by macrophages compared to ngg1Δ/Δ and ubp8Δ/Δ strains. All these findings suggest that the SAGA complex modules can have contrasting functions where loss of Spt7 or Spt8 enhances filamentation and invasiveness while loss of Ngg1 or Ubp8 blocks these processes.
Collapse
Affiliation(s)
| | | | | | | | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
43
|
Xiao L, Wang J, Ju S, Cui M, Jing R. Disorders and roles of tsRNA, snoRNA, snRNA and piRNA in cancer. J Med Genet 2022; 59:623-631. [PMID: 35145038 DOI: 10.1136/jmedgenet-2021-108327] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 11/04/2022]
Abstract
Most small non-coding RNAs (sncRNAs) with regulatory functions are encoded by majority sequences in the human genome, and the emergence of high-throughput sequencing technology has greatly expanded our understanding of sncRNAs. sncRNAs are composed of a variety of RNAs, including tRNA-derived small RNA (tsRNA), small nucleolar RNA (snoRNA), small nuclear RNA (snRNA), PIWI-interacting RNA (piRNA), etc. While for some, sncRNAs' implication in several pathologies is now well established, the potential involvement of tsRNA, snoRNA, snRNA and piRNA in human diseases is only beginning to emerge. Recently, accumulating pieces of evidence demonstrate that tsRNA, snoRNA, snRNA and piRNA play an important role in many biological processes, and their dysregulation is closely related to the progression of cancer. Abnormal expression of tsRNA, snoRNA, snRNA and piRNA participates in the occurrence and development of tumours through different mechanisms, such as transcriptional inhibition and post-transcriptional regulation. In this review, we describe the research progress in the classification, biogenesis and biological function of tsRNA, snoRNA, snRNA and piRNA. Moreover, we emphasised their dysregulation and mechanism of action in cancer and discussed their potential as diagnostic and prognostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Lin Xiao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Jie Wang
- Department of Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ming Cui
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Rongrong Jing
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
44
|
Wang D, Ye R, Cai Z, Xue Y. Emerging roles of RNA-RNA interactions in transcriptional regulation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1712. [PMID: 35042277 DOI: 10.1002/wrna.1712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022]
Abstract
Pervasive transcription of the human genome generates a massive amount of noncoding RNAs (ncRNAs) that lack protein-coding potential but play crucial roles in development, differentiation, and tumorigenesis. To achieve these biological functions, ncRNAs must first fold into intricate structures via intramolecular RNA-RNA interactions (RRIs) and then interact with different RNA substrates via intermolecular RRIs. RRIs are usually facilitated, stabilized, or mediated by RNA-binding proteins. With this guiding principle, several protein-based high-throughput methods have been developed for unbiased mapping of defined or all RNA-binding protein-mediated RRIs in various species and cell lines. In addition, some chemical-based approaches are also powerful to detect RRIs globally based on the fact that RNA duplex can be cross-linked by psoralen or its derivative 4'-aminomethyltrioxsalen. These efforts have significantly expanded our understanding of RRIs in determining the specificity and variability of gene regulation. Here, we review the current knowledge of the regulatory roles of RRI, focusing on their emerging roles in transcriptional regulation and nuclear body formation. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Di Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rong Ye
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaokui Cai
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Liang L, Ji Y, Chen K, Gao P, Zhao Z, Hou G. Solid-State NMR Dipolar and Chemical Shift Anisotropy Recoupling Techniques for Structural and Dynamical Studies in Biological Systems. Chem Rev 2022; 122:9880-9942. [PMID: 35006680 DOI: 10.1021/acs.chemrev.1c00779] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With the development of NMR methodology and technology during the past decades, solid-state NMR (ssNMR) has become a particularly important tool for investigating structure and dynamics at atomic scale in biological systems, where the recoupling techniques play pivotal roles in modern high-resolution MAS NMR. In this review, following a brief introduction on the basic theory of recoupling in ssNMR, we highlight the recent advances in dipolar and chemical shift anisotropy recoupling methods, as well as their applications in structural determination and dynamical characterization at multiple time scales (i.e., fast-, intermediate-, and slow-motion). The performances of these prevalent recoupling techniques are compared and discussed in multiple aspects, together with the representative applications in biomolecules. Given the recent emerging advances in NMR technology, new challenges for recoupling methodology development and potential opportunities for biological systems are also discussed.
Collapse
Affiliation(s)
- Lixin Liang
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Ji
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuizhi Chen
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Pan Gao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Zhenchao Zhao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
46
|
Ugur MR, Guerreiro DD, Moura AA, Memili E. Identification of biomarkers for bull fertility using functional genomics. Anim Reprod 2022; 19:e20220004. [PMID: 35573862 PMCID: PMC9083437 DOI: 10.1590/1984-3143-ar2022-0004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 09/21/2023] Open
Abstract
Prediction of bull fertility is critical for the sustainability of both dairy and beef cattle production. Even though bulls produce ample amounts of sperm with normal parameters, some bulls may still suffer from subpar fertility. This causes major economic losses in the cattle industry because using artificial insemination, semen from one single bull can be used to inseminate hundreds of thousands of cows. Although there are several traditional methods to estimate bull fertility, such methods are not sufficient to explain and accurately predict the subfertility of individual bulls. Since fertility is a complex trait influenced by a number of factors including genetics, epigenetics, and environment, there is an urgent need for a comprehensive methodological approach to clarify uncertainty in male subfertility. The present review focuses on molecular and functional signatures of bull sperm associated with fertility. Potential roles of functional genomics (proteome, small noncoding RNAs, lipidome, metabolome) on determining male fertility and its potential as a fertility biomarker are discussed. This review provides a better understanding of the molecular signatures of viable and fertile sperm cells and their potential to be used as fertility biomarkers. This information will help uncover the underlying reasons for idiopathic subfertility.
Collapse
Affiliation(s)
| | | | - Arlindo A. Moura
- Universidade Federal do Ceará, Brasil; Universidade Federal do Ceará, Brasil
| | - Erdogan Memili
- Mississippi State University, USA; Prairie View A&M University, USA
| |
Collapse
|
47
|
Kramer MC, Kim HJ, Palos KR, Garcia BA, Lyons E, Beilstein MA, Nelson ADL, Gregory BD. A Conserved Long Intergenic Non-coding RNA Containing snoRNA Sequences, lncCOBRA1, Affects Arabidopsis Germination and Development. FRONTIERS IN PLANT SCIENCE 2022; 13:906603. [PMID: 35693169 PMCID: PMC9175010 DOI: 10.3389/fpls.2022.906603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/04/2022] [Indexed: 05/04/2023]
Abstract
Long non-coding RNAs (lncRNAs) are an increasingly studied group of non-protein coding transcripts with a wide variety of molecular functions gaining attention for their roles in numerous biological processes. Nearly 6,000 lncRNAs have been identified in Arabidopsis thaliana but many have yet to be studied. Here, we examine a class of previously uncharacterized lncRNAs termed CONSERVED IN BRASSICA RAPA (lncCOBRA) transcripts that were previously identified for their high level of sequence conservation in the related crop species Brassica rapa, their nuclear-localization and protein-bound nature. In particular, we focus on lncCOBRA1 and demonstrate that its abundance is highly tissue and developmental specific, with particularly high levels early in germination. lncCOBRA1 contains two snoRNAs domains within it, making it the first sno-lincRNA example in a non-mammalian system. However, we find that it is processed differently than its mammalian counterparts. We further show that plants lacking lncCOBRA1 display patterns of delayed germination and are overall smaller than wild-type plants. Lastly, we identify the proteins that interact with lncCOBRA1 and propose a novel mechanism of lincRNA action in which it may act as a scaffold with the RACK1A protein to regulate germination and development, possibly through a role in ribosome biogenesis.
Collapse
Affiliation(s)
- Marianne C. Kramer
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, United States
| | - Kyle R. Palos
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Eric Lyons
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
- CyVerse Inc., Tucson, AZ, United States
| | - Mark A. Beilstein
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| | | | - Brian D. Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Brian D. Gregory,
| |
Collapse
|
48
|
Wang K, Song X, Li X, Zhang Z, Xie L, Song X. Plasma SNORD83A as a potential biomarker for early diagnosis of non-small-cell lung cancer. Future Oncol 2021; 18:821-832. [PMID: 34842456 DOI: 10.2217/fon-2021-1278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: This study aimed to access the efficacy of plasma small nucleolar RNAs in early diagnosis of non-small-cell lung cancer (NSCLC). Methods: SNORD83A was selected based on databases and further verified in 48 paired formalin-fixed, paraffin-embedded tissues, as well as in plasma from 150 NSCLC patients and 150 healthy donors. The diagnostic efficiency of plasma SNORD83A, as well as in combination with carcinoembryonic antigen, was determined by receiver operating characteristic analysis. Results: SNORD83A was significantly increased not only in tissues but also in plasma from NSCLC patients compared with those from healthy donors. Plasma SNORD83A was able to act as a diagnostic biomarker for NSCLC. The diagnostic efficiency of carcinoembryonic antigen was also significantly elevated for early-stage NSCLC when combined with SNORD83A. Conclusion: SNORD83A can serve as a diagnostic biomarker for NSCLC.
Collapse
Affiliation(s)
- Kangyu Wang
- Department of Clinical Laboratory, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, PR China
| | - Xingguo Song
- Department of Clinical Laboratory, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, PR China
| | - Xinyi Li
- Department of Clinical Laboratory, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, PR China
| | - Zhijun Zhang
- Department of Clinical Laboratory, Taian City Central Hospital, Shandong, 271000, China
| | - Li Xie
- Department of Clinical Laboratory, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, PR China
| | - Xianrang Song
- Department of Clinical Laboratory, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, PR China.,Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, PR China
| |
Collapse
|
49
|
Gabanella F, Barbato C, Fiore M, Petrella C, de Vincentiis M, Greco A, Minni A, Corbi N, Passananti C, Di Certo MG. Fine-Tuning of mTOR mRNA and Nucleolin Complexes by SMN. Cells 2021; 10:3015. [PMID: 34831238 PMCID: PMC8616268 DOI: 10.3390/cells10113015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence points to the Survival Motor Neuron (SMN) protein as a key determinant of translation pathway. Besides its role in RNA processing and sorting, several works support a critical implication of SMN in ribosome biogenesis. We previously showed that SMN binds ribosomal proteins (RPs) as well as their encoding transcripts, ensuring an appropriate level of locally synthesized RPs. SMN impacts the translation machinery in both neural and non-neural cells, in agreement with the concept that SMN is an essential protein in all cell types. Here, we further assessed the relationship between SMN and translation-related factors in immortalized human fibroblasts. We focused on SMN-nucleolin interaction, keeping in mind that nucleolin is an RNA-binding protein, highly abundant within the nucleolus, that exhibits a central role in ribosomes production. Nucleolin may also affects translation network by binding the mammalian target of rapamycin (mTOR) mRNA and promoting its local synthesis. In this regard, for the first time we provided evidence that SMN protein itself associates with mTOR transcript. Collectively, we found that: (1) SMN coexists with nucleolin-mTOR mRNA complexes at subcellular level; (2) SMN deficiency impairs nucleolar compartmentalization of nucleolin, and (3) this event correlates with the nuclear retention of mTOR mRNA. These findings suggest that SMN may regulate not only structural components of translation machinery, but also their upstream regulating factors.
Collapse
Affiliation(s)
- Francesca Gabanella
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.B.); (M.F.); (C.P.)
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291-00161 Rome, Italy; (N.C.); (C.P.)
| | - Christian Barbato
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.B.); (M.F.); (C.P.)
| | - Marco Fiore
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.B.); (M.F.); (C.P.)
| | - Carla Petrella
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.B.); (M.F.); (C.P.)
| | - Marco de Vincentiis
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (M.d.V.); (A.G.); (A.M.)
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (M.d.V.); (A.G.); (A.M.)
| | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (M.d.V.); (A.G.); (A.M.)
| | - Nicoletta Corbi
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291-00161 Rome, Italy; (N.C.); (C.P.)
| | - Claudio Passananti
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291-00161 Rome, Italy; (N.C.); (C.P.)
| | - Maria Grazia Di Certo
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.B.); (M.F.); (C.P.)
| |
Collapse
|
50
|
Calvo Sánchez J, Köhn M. Small but Mighty-The Emerging Role of snoRNAs in Hematological Malignancies. Noncoding RNA 2021; 7:68. [PMID: 34842767 PMCID: PMC8629011 DOI: 10.3390/ncrna7040068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Over recent years, the long known class of small nucleolar RNAs (snoRNAs) have gained interest among the scientific community, especially in the clinical context. The main molecular role of this interesting family of non-coding RNAs is to serve as scaffolding RNAs to mediate site-specific RNA modification of ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs). With the development of new sequencing techniques and sophisticated analysis pipelines, new members of the snoRNA family were identified and global expression patterns in disease backgrounds could be determined. We will herein shed light on the current research progress in snoRNA biology and their clinical role by influencing disease outcome in hematological diseases. Astonishingly, in recent studies snoRNAs emerged as potent biomarkers in a variety of these clinical setups, which is also highlighted by the frequent deregulation of snoRNA levels in the hema-oncological context. However, research is only starting to reveal how snoRNAs might influence cellular functions and the connected disease hallmarks in hematological malignancies.
Collapse
Affiliation(s)
| | - Marcel Köhn
- Junior Research Group ‘RBPs and ncRNAs in Human Diseases’, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Saale, Germany;
| |
Collapse
|